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Abstract

In-context learning (ICL) empowers large lan-

guage models (LLMs) to tackle new tasks by

using a series of training instances as prompts.

Since generating the prompts needs to sample

from a vast pool of instances and annotate them

(e.g., add labels in classification task), existing

methods have proposed to select a subset of un-

labeled examples for annotation, thus enhanc-

ing the quality of prompts and concurrently

mitigating annotation costs. However, these

methods often require a long time to select in-

stances due to their complexity, hindering their

practical viability. To address this limitation,

we propose a graph-based selection method,

FastGAS, designed to efficiently identify high-

quality instances while minimizing computa-

tional overhead. Initially, we construct a data

similarity graph based on instance similarities.

Subsequently, employing a graph partitioning

algorithm, we partition the graph into pieces.

Within each piece (i.e., subgraph), we adopt

a greedy approach to pick the most represen-

tative nodes. By aggregating nodes from di-

verse pieces and annotating the corresponding

instances, we identify a set of diverse and repre-

sentative instances for ICL. Compared to prior

approaches, our method not only exhibits supe-

rior performance on different tasks but also sig-

nificantly reduces selection time. In addition,

we demonstrate the efficacy of our approach in

LLMs of larger sizes.

1 Introduction

Recent advances in natural language processing

heavily leverage large language models, exempli-

fied by models such as GPT-3 (Brown et al., 2020).

Among them, in-context learning (ICL) emerges as

a promising direction in this field. ICL adapts spe-

cific tasks with just a few instances as prompts, of-

fering a viable alternative to traditional supervised

fine-tuning (Liu et al., 2023). The performance of

ICL is intricately tied to the effectiveness of the

prompt surface, encompassing factors such as in-

stance selection and the sequence of demonstration

instances (Zhao et al., 2021; Dong et al., 2022; Lu

et al., 2021; Wang et al., 2023b). In this study,

we focus on instance selection and explore novel

solutions to reduce manual annotation costs while

maintaining high in-context learning performance.

Previous research underscores the importance of

retrieving prompts from a vast set of annotated in-

stances to achieve optimal performance (Liu et al.,

2021; Rubin et al., 2021). In particular, perfor-

mance is shown to improve significantly when

choosing in-context examples similar to each test

input (Liu et al., 2021). However, addressing the

unique requirements of different test instances re-

quires a large set of annotated examples, incurring

significant human and financial resources.

To mitigate annotation costs, previous efforts

have sought to identify a small number of unla-

beled instances for annotation (Su et al., 2022a;

Zhang et al., 2023). The objective is to select di-

verse and representative instances, where represen-

tativeness aids in finding similar demonstrations

for different test instances, while diversity broad-

ens the overall coverage. Despite their superiority

over random selection, these methods have specific

drawbacks. For example, Vote-k (Su et al., 2022a)

emphasizes diversity but adds inference costs due

to predictions on unlabeled data. IDEAL (Zhang

et al., 2023) employs influence-driven selective an-

notations, drawing inspiration from influence max-

imization in social graphs. However, both methods

struggle to balance diversity and representativeness,

leading to suboptimal performance.

Furthermore, a notable shortcoming of existing

methods is their computational inefficiency. The

precise calculation process (e.g., iteratively search-

ing the entire dataset) results in high computational

costs, making them less practical for real-world

applications. Figure 1 illustrates the time required

by our method and two baseline methods, Vote-k
and IDEAL, under the same hardware conditions
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Figure 1: Comparison of our method and two baselines

on three classification tasks (MPRC, SST-5, and DB-

pedia) with respect to time consumption during subset

selection. The annotation budget is 18. The y-axis rep-

resents the time consumption with a log scale. Notably,

our method significantly reduces the time cost in com-

parison to both baseline methods.

and annotation budgets. It is observed that both

baselines necessitate at least 500 seconds to select

a subset for DBpedia and SST-5 tasks. Remarkably,

for the DBpedia task, Vote-k exceeds 30, 000 sec-

onds (over eight hours) to select just 18 instances.

As the annotation budget grows, the time needed

by these methods to perform the selection process

can increase exponentially (See Section 4.4), fur-

ther constraining their applicability in real-world

settings. In our pursuit of an efficient and effective

selective annotation method, we pose the funda-

mental question: Can we identify a set of diverse

and representative instances with high efficiency?

Answering this question, we propose FastGAS,

a Fast Graph-based Annotation Selection method

that works in an unsupervised manner. We first

build a data similarity graph based on the similarity

among unlabeled data. We then select instances

for annotation based on the data similarity graph.

In particular, our method focuses on the following

three properties of selected instances:

• Diversity: We perform graph partitioning to sep-

arate the data similarity graph into segments. We

treat each segment as a set of instances. We

ensure the diversity of selected instances by se-

lecting them from different segments.

• Representiveness: For each segment, we select

instances with the max corresponding node de-

gree in the data similarity graph. The selected

instances thus can maximally cover the subgraph

and guarantee their representativeness.

• Efficiency: We apply a multi-level graph bisec-

tion algorithm to speed up the graph partitioning

process. For the selection of each segment, we

apply a simple but effective greedy algorithm.

Compared to baseline methods that iteratively se-

lect over the entire graph, applying the greedy al-

gorithm on each component can reduce the com-

putation time.

Compared with state-of-the-art baseline meth-

ods, our method improves the overall performance

on seven datasets in three types of tasks. Besides,

for all tasks, our method only needs a few seconds

to complete the instance selection process. In ad-

dition, we also provide a theoretical guarantee for

the effectiveness of the greedy selection algorithm.

2 Related Work

In-Context Learning In-context learning (ICL)

integrates a small number of training examples as

prompts before the test input (Brown et al., 2020),

demonstrating a remarkable ability to enhance the

performance of large language models (LLMs) in

a wide range of downstream tasks, such as ma-

chine translation (Agrawal et al., 2022; Sia and

Duh, 2023), data generation (Ye et al., 2022), and

others (Wang et al., 2021b; He et al., 2023; Panda

et al., 2023). Furthermore, the advent of advanced

strategies such as chain-of-thought prompting (Wei

et al., 2022) has significantly refined the efficacy of

ICL, offering deeper insights and more nuanced un-

derstanding within this innovative paradigm (Kim

et al., 2022; Chan et al., 2022; Srivastava et al.,

2022; Bansal et al., 2022).

Despite its successes, ICL’s efficacy is often ham-

pered by the sensitivity to the choice of in-context

examples, leading to research on optimized selec-

tion strategies (Liu et al., 2021; Lu et al., 2021;

Zhao et al., 2021; Shi et al., 2024). Techniques

have evolved from selecting examples close to the

test input in embedding spaces (Liu et al., 2021;

Wu et al., 2022; Gao et al., 2020; Rubin et al.,

2021). The focus has also shifted towards annota-

tion efficiency, exploring how to find a set of exam-

ples once for all queries on the same task (Zhang

et al., 2023; Su et al., 2022a; Chang and Jia, 2023).

Following existing works (Zhang et al., 2023; Su

et al., 2022a), we also use a graph to represent

unlabeled instances and employ graph-based meth-

ods to select instances for annotation. However,

our methodology distinguishes itself from existing

works by focusing on efficiency in the selection of

instances. As discussed in Section 1, we aim to

select diverse and representative instances while

reducing the computation cost.
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Active Learning Given a limited budget for la-

beling, active learning empowers machine learn-

ing models to achieve comparable or superior per-

formance using a carefully selected set of labeled

training instances (Cohn et al., 1994; Settles, 2009;

Wang et al., 2023a). Our work on selective annota-

tion aligns with the goal of active learning applied

to graphs, specifically focusing on the selection

of nodes for labeling to inform predictions (Cai

et al., 2017; Jia et al., 2019; Wang et al., 2021a;

Wang et al., 2022). Traditional graph-based active

learning methods employ criteria such as uncer-

tainty (Settles and Craven, 2008) and representa-

tiveness (Li and Guo, 2013) for selection. Since

the ICL tasks we focus on do not involve model

training or finetuning, we compare our method

with basic graph active learning methods that are

not incorporated with model training, like those

based on node degree (Cai et al., 2017; Wang et al.,

2021a) and PageRank (Rodriguez, 2008). Our ex-

periments indicate that while simple graph active

learning methods work well in ICL, our approach

still achieves better overall performance.

3 Methods

In this section, we will explain how to integrate a

graph partition algorithm and a greedy algorithm

in a selective annotation in in-context learning to

reduce the annotation cost.

3.1 Problem Setup

We first give the definition of the selective anno-

tation problem. In-context learning is a paradigm

that allows language models to learn tasks given

only a few examples in the form of demonstra-

tion (Brown et al., 2020). Specifically, LLMs

perform in-context learning tasks based on a task-

specific prompt Z formed by concatenating M la-

beled training examples Z = [z1, ..., zM ], where

each zi represents one labeled example (xi,yi)
consisting of the instance xi and label yi (e.g., the

answer of a question based on the instance). In the

real world, we usually only have unlabeled samples

X = {xi}
N
i=1, and obtaining large-scale annotated

examples for ICL requires substantial manpower

and financial resources.

Selective annotation aims at selecting a subset

L ¢ X to be annotated, where |L| = M is the an-

notation budget, such that ICL only using prompts

retrieved from the selected subset can yield good

performance on the test set and thus reduce the

annotation cost.

3.2 Fast Graph-based Annotation Selection

For the selective annotation problem, it is essential

to find a subset that covers vast unlabeled data. To

achieve this, we design a graph-based annotation

method that balances the diversity and represen-

tativeness of the annotated samples. Briefly, we

build a data similarity graph by assessing the simi-

larity of unlabeled data embeddings. We partition

the data similarity graph into distinct subgraphs

by employing a multi-level graph bisection algo-

rithm, and each subgraph is treated as a candidate

set. Through a stepwise, greedy selection process

of the most influential data nodes in each subgraph,

we generate subsets that encapsulate the subgraph’s

information. Ultimately, we aggregate these sub-

sets from all subgraphs to represent the unlabeled

data. We will now provide a detailed, step-by-step

explanation of the aforementioned process.

Data Similarity Graph Generation. By av-

eraging the resulting vectors over the text input

words, we compute the vector representation for

each unlabeled training instance using Sentence-

BERT (Reimers and Gurevych, 2019). We then use

the embedding vectors to create the data similarity

graph G = (V, E) where each vertex vi ∈ V rep-

resents an unlabeled instance xi ∈ X as defined

above. For each vertex v ∈ V , we introduce edges

connecting it to its k nearest neighbors in terms of

cosine similarity and get E .

Graph Partitioning. We aim to enhance instance

diversity by strategically selecting instances from

various regions within the data similarity graph.

The division of regions process can be conceptu-

alized as addressing a K-way graph partitioning

problem, where the goal is to effectively divide

the graph into K distinct components with ap-

proximately equal numbers of vertices but with

few edges crossing between components. The

formal definition of the graph partitioning prob-

lem is defined as follows: given a graph G =
(V, E) with |V| = N , partition V into K subsets,

V1,V2, ...,VK such that Vi ∩ Vj = ∅ for i ̸= j,

|Vi| is close N/K,
⋃

i Vi = V , and the number

of edges of E whose incident vertices belong to

different subsets is minimized.

The K-way graph partitioning problem is an

NP-complete problem. We tend to use recursive

bisection to find an approximate solution with an

acceptable execution time. Specifically, we first

obtain a 2-way partition of G, and then we recur-

sively bisect the two segments independently. Af-
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Figure 2: An overview FastGAS. Given the unlabeled data pool, we initially construct a graph based on data

similarity. This graph is then partitioned into distinct components. Within each component, we employ a greedy

algorithm to select nodes until we reach the annotation budget. The selected instances are annotated and subsequently

used to retrieve ICL prompts for the task.

ter logK phases, G is partitioned into K different

components. Unfortunately, graph bisection is also

NP-complete and has several inherent shortcom-

ings (Hendrickson et al., 1995). In order to improve

efficiency, we apply a multi-level graph bisection

algorithm to produce high-quality partitions at low

cost (Karypis and Kumar, 1998). It consists of the

following three phases:

• Coarsening phase: The graph G is transformed

into a sequence of smaller graphs G1,G2, ...,Gm

such that |V| > |V1| > |V2| > · · · > |Vm|.

• Partitioning phase: A 2-way partition Pm of

the graph Gm = (Vm, Em) is computed that par-

titions Vm into two subgraphs, each containing

half the vertices of G.

• Uncoarsening phase: The partition Pm of Gm is

projected back to G by going through intermedi-

ate partitions Pm−1, Pm−2, ..., P1, P0.

For more detailed methods of each phase, we

will include them in Appendix C.

Greedy Node Selection. The graph partitioning

operation divides the data similarity graph into K
disjoint components, ensuring diversity by treat-

ing each component as a set of instances. How-

ever, further discussion is required on the selection

of suitable instances that exhibit significant rep-

resentativeness for each subgraph. Following the

graph partitioning process, which yields K sub-

graphs with a similar number of nodes denoted as

|Vi| = N/K, and considering an annotation budget

|L| = M , our objective is to choose n = M/K

instances within each subgraph. To mitigate po-

tential challenges associated with high memory

and computation costs, we employ a greedy selec-

tion method. In detail, for the subgraph Gi, we

first select the node v1i that has the largest degree:

v1i = argmaxv∈Gj
d(v). Then, we update the sub-

graph Gi by removing the selected node v1i and the

edges connecting v1i : Gi = Gi \ v1i . The above

steps are repeated n times to get the selected node

set Vsel
i = {v1i , ..., v

n
i }, and the corresponding in-

stances X sel
i = {x1i , ..., x

n
i } are chosen to repre-

sent the instances belonging to the subgraph Gi.

The iterative form can be written as

vji = argmax
v∈Gi\{vki |k∈[1,j−1]}

d(v) (1)

Specifically, the greedy selection algorithm guar-

antees the following property, demonstrating its

ability to enhance the representativeness of the se-

lected instances.

Proposition 3.1. Given the budget n and graph

G, the greedy algorithm will select Vsel =
{v1, ..., vn} that maximize the number of edges

within Vsel and those connecting Vsel and G \Vsel.

Vsel = argmax
|V|=n

|{(u, v)|u, v ∈ V}|

+ |{(u, v)|u ∈ V and v ∈ G \ V}|

Remark 1. The greedy selection process on sub-

graphs can be conceptualized as a divide-and-

conquer approach to selection on the entire graph,

leading to improved algorithmic efficiency. Specifi-

cally, when the annotation budget M is consider-

ably smaller than the total number of nodes N (i.e.,
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M j N ), the computational cost of greedy se-

lection on the entire graph is O(2MN), while the

cost incurred on the K subgraphs is significantly

reduced to O
(

2MN
K

)

.

Prompt Retrieval. Upon obtaining a set of in-

stances L =
⋃

iX
sel
i through the greedy selective

annotation process, we manually annotate L to cre-

ate a comprehensive set of labeled instances. Con-

sistent with previous studies, we leverage Sentence-

BERT (Reimers and Gurevych, 2019) to generate

embeddings for all annotated instances and identify

the most similar instances to each test input based

on cosine similarity.

4 Experiment

In this section, we evaluate the effectiveness of our

method in various datasets encompassing diverse

task categories. We begin by presenting the de-

tails of our experiment setups. Subsequently, the

reported results demonstrate the superior perfor-

mance of the proposed method in identifying an

optimal selective annotation subset efficiently, out-

performing established baselines. Furthermore, we

conduct ablation studies to investigate the impact

of crucial hyperparameters in our method.

4.1 Setups

Datasets and Models We conduct extensive ex-

periments in seven diverse datasets, which include

six distinct tasks detailed in Table 4. Following

existing works, each dataset adheres to the stan-

dard train/dev/test split provided by the Transform-

ers library (Wolf et al., 2019). For datasets with

publicly available test data (SST-5, XSUM, and

DBpedia), we utilize the test set for evaluation.

In cases where test data is not publicly accessi-

ble, consistent with previous works (Zhang et al.,

2023; Su et al., 2022a), we employ the dev data for

evaluation. Evaluation metrics include precision

for all classification and multiple-choice selection

datasets and ROUGE-L (Lin, 2004) for XSUM.

Unless explicitly mentioned, we conduct all ex-

periments using the GPT-J-6B model (Wang and

Komatsuzaki, 2021). Additionally, we present re-

sults from tests on other models such as GPT-Neo-

2.7B (Black et al., 2021), OPT-6.7B (Zhang et al.,

2022), as well as more advanced models includ-

ing Llama-2-7B-Chat (Touvron et al., 2023) and

GPT-3.5-Turbo (OpenAI, 2023).

Baselines In our main experiments, we conduct

a comprehensive evaluation of FastGAS against

random selection and two state-of-the-art selec-

tive annotation baselines: Vote-k (Su et al., 2022a)

and IDEAL (Zhang et al., 2023). Additionally,

we benchmark FastGAS against other widely rec-

ognized methods in selecting core sets from ex-

tensive unlabeled data pools. These methods in-

clude (1) Top-degree (Wu et al., 2019), which se-

lects nodes with the largest degrees until the an-

notation budget is met; (2) PageRank (Cai et al.,

2017), which is used to score node representative-

ness in graph-based active learning; (3) Subclus-

tering (Chen et al., 2023), which initially clusters

instances into K groups via K-means, then fur-

ther subdivides each into M/K subclusters for cen-

troid instance selection; and (4) Louvain (Blondel

et al., 2008), which utilizes the Louvain commu-

nity detection algorithm for graph partitioning and

a greedy selection algorithm akin to FastGAS for

instance selection from each community.1

To emulate real-world conditions, we follow

Vote-k (Su et al., 2022a) and IDEAL (Zhang et al.,

2023), selectively annotating from a pool of 3,000

instances randomly subsampled from the original

training data for each task. For robustness, we con-

duct this subsampling procedure three times per

experiment, and the reported results represent the

average across three trials.

Hyperparameter Setting In our main experi-

ment, we create a data similarity graph for all

unlabeled instances by linking each vertex to its

ten nearest neighbors (k = 10). For the base-

line methods, we follow their hyperparameter set-

tings to construct directed graphs (Zhang et al.,

2023; Su et al., 2022a). Regarding the selection

of K for graph partitioning, we adjust K within

{2, 3, 6, 9} for an annotation budget of 18, and

within {2, 5, 10, 25, 50} for a budget of 100, iden-

tifying an optimal K for each task. Our method’s

selection time is significantly shorter than that of

the baselines (Section 4.4), making the time spent

finding the appropriate K negligible. We align our

annotation budgets of 18 and 100 with those used

in Vote-k (Su et al., 2022a) and IDEAL (Zhang

et al., 2023), choosing 18 specifically because it

allows all annotated examples to fit within the con-

text limits of LLMs without necessitating prompt

retrieval. The impacts of k and K are detailed in

Sections 4.3 and 4.5, respectively.

1Since different communities contain different numbers of
nodes, we select instances in proportion to the size of each
community.
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4.2 Main Result

Table 1 presents a comparison between FastGAS
and other baseline methods across annotation bud-

gets of |L| ∈ {18, 100}. FastGAS outperforms

the two existing baselines in nearly all scenarios

(13 out of 14). Notably, with an annotation bud-

get of 18, all annotated examples fit within the

prompt limitations of LLMs, making the evalu-

ation results a direct reflection of the quality of

selected instances (Zhang et al., 2023). When the

annotation budget is 18, FastGAS performs better

than the baseline on most datasets, which shows

that FastGAS can select higher-quality data. While

the proposed active learning baselines outshine in

specific instances (e.g., the Subclustering method

excels in the DBpedia task for both annotation bud-

gets), their general performance is hindered by their

approach to balancing representativeness and diver-

sity of the selected instances. For example, meth-

ods like Top-degree and PageRank prioritize repre-

sentativeness (Cai et al., 2017). Overall, FastGAS

generally surpasses these baselines (10 out of 14),

demonstrating its effectiveness. Furthermore, as

a deterministic selective annotation method, Fast-

GAS operates based on a given set of unlabeled

samples, mirroring the advantage seen with Vote-k.

This means that the variability in FastGAS’s perfor-

mance stems exclusively from the manner in which

unlabeled samples are gathered. This significantly

enhances the robustness of ICL by ensuring consis-

tency in the selection process (Su et al., 2022a). We

provide detailed results that contain the maximum

and minimum values of each task in Appendix F.

4.3 Effect of k

We compare FastGAS and other graph-based base-

lines with respect to different k for the construction

of the graph, and the result is shown in Figure 3.

Initially, our method consistently exceeds other

graph-based baselines in various settings. Second,

we observe that the ideal k value varies among dif-

ferent methods and datasets. Specifically, for the

MNLI dataset, most methods perform better with

k = 10. We also conclude that, for FedGAS, k
must be carefully balanced, neither too large nor

too small. A smaller k value, as well as a larger one,

impedes the ability to differentiate between distinct

representative nodes in the graph, complicating the

selection process by potentially choosing multiple

similar nodes. Concurrently, a larger k value could

also increase the computational time.

5 10 15
k

78

82

86

90

A
cc
ur
ac
y

DBpedia

5 10 15
k

38

40

42

44
MNLI

Top-degree
PageRank

Louvain
Vote-k

IDEAL
FastGAS

Figure 3: Comparison of our method and other graph-

based baselines with respect to different k for the con-

struction of the graph.

4.4 Evaluating Time Efficiency

In Section 1, we illustrate that FastGAS drastically

reduces the time cost compared to two existing

methods with an annotation budget of 18. Fig-

ure 4 expands on this by showing the time con-

sumption of our method and two baselines for an

annotation budget of 100. Relative to Figure 1, the

time needed for FastGAS does not increase much.

This is because the most time-intensive processes

in FastGAS, i.e., constructing and partitioning the

data similarity graph, are not affected by the anno-

tation budget. In contrast, the time costs of the two

baselines, especially IDEAL, increase sharply; for

nearly all tasks, IDEAL and Vote-k require more

than eight hours for selection. As the annotation

budget increases, the efficiency of FastGAS in ex-

ample selection becomes even more pronounced.
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Figure 4: Comparison of our method and two baselines

on three classification tasks (MPRC, SST-5, and DB-

pedia) with respect to time consumption during subset

selection. The annotation budget is 100. The y-axis

represents the time consumption with a log scale.

4.5 Effect of Number of Partitions

The hyperparameter K plays a critical role in graph

partitioning, determining the number of compo-

nents into which the graph is divided. We explore

K’s impact on FastGAS and offer insights for ad-

justing it. Figure 5 illustrates FastGAS’s perfor-

mance in three datasets with an annotation budget

of 100. The figure demonstrates that enhancing
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Table 1: The results of FastGAS and six baselines on seven distinct datasets with annotation budgets of 100 and 18,

utilizing similarity-based prompt retrieval for all methods. We report the average results with three different runs for

each method. Bold fonts indicate the best performance, while underlines denote the second-best results.

|L| Methods
Classification Multi-Choice Generation

MRPC SST-5 MNLI DBpedia RTE HellaSwag XSUM

100 Random 64.32 49.61 38.15 89.84 55.34 64.71 17.24

100 Vote-k 64.60 46.61 38.93 89.19 57.68 65.89 19.55

100 IDEAL 65.49 49.87 41.02 90.63 58.98 64.97 19.68

100 Top-degree 62.76 42.32 41.02 83.85 51.69 66.67 19.39

100 PageRank 64.84 40.71 44.17 83.72 53.38 66.01 19.55

100 Subclustering 64.84 49.48 41.28 92.32 57.55 65.62 19.18

100 Louvain 59.63 39.58 41.14 86.33 53.52 65.89 19.27

100 FastGAS 66.15 50.26 42.06 90.76 61.98 67.45 20.00

18 Random 55.47 42.97 37.76 83.20 54.95 65.49 16.63

18 Vote-k 56.90 41.78 39.45 88.02 56.64 66.02 19.45

18 IDEAL 63.80 44.92 39.58 83.20 53.65 65.89 19.21

18 Top-degree 48.57 39.45 41.93 77.34 54.43 65.76 20.05

18 PageRank 46.09 39.71 40.49 79.04 56.07 65.89 19.82

18 Subclustering 61.46 46.05 37.63 89.06 56.63 65.76 19.49

18 Louvain 61.33 38.02 38.02 83.59 55.86 65.62 20.23

18 FastGAS 65.23 46.61 44.53 88.93 56.51 66.67 20.26

K up to a certain point improves FastGAS’s per-

formance; however, the increase beyond this op-

timal threshold does not result in further perfor-

mance gains. A small K results in relatively rough

partitioning, such that significantly different data

points are grouped into the same subgraph. Se-

lecting through coarsely partitioned subgraphs can

obscure meaningful distinctions in the data, result-

ing in the loss of the diversity of the selected nodes.

Conversely, with a sufficiently large K, the graph

partitioning algorithm results in more edges being

cut during the partitioning process, thus affecting

the degree of nodes in each disjoint subgraph. As

a result, nodes with a large degree in the origi-

nal graph may lose a large number of edges due

to partitioning and thus be ignored by the greedy

algorithm. This alteration hampers the greedy al-

gorithm’s ability to select representative nodes ef-

fectively. Hence, a balanced K value facilitates

the optimal performance of FastGAS by ensuring a

balance of representativeness and diversity.

4.6 Random Prompt Retrieval

In Section 4.2, we evaluate the performance of

FastGAS against other baselines using a similarity-

based prompt retrieval method. Building on previ-

ous research (Zhang et al., 2023; Su et al., 2022a),
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Figure 5: Performance of FastGAS across different num-

bers of partitions with an annotation budget of 100.

we investigate the impact of employing a random

retrieval method, specifically, by randomly select-

ing labeled instances as prompts for each test in-

stance under the annotation budget 100 and 18.

The findings are presented in Table 2. We note

a marked decline in the effectiveness of selective

annotation methods under large annotation budgets

when prompts are chosen through random selection.

This deterioration may stem from the increased

likelihood of selecting instances from the larger la-

beled pool that are less relevant to the test sample,

as determined by their distance in the embedding

space (Liu et al., 2021). Significantly, FastGAS

continues to outperform the two baseline methods

across all datasets, even when employing random

retrieval. With an annotation budget of 18, all an-
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Table 2: Comparison of random and similar prompt

retrieval. The selection approach, when paired with

a similarity-based prompt retrieval method, generally

outperforms its counterpart, which utilizes a random

prompt retrieval technique.

Methods Datasets

|L| Selection Retrieval MRPC MNLI HellaSwag

100 Vote-k Similar 64.60 38.93 65.89
100 IDEAL Similar 65.49 41.02 64.97
100 FastGAS Similar 66.15 42.06 67.45

100 Vote-k Random 60.67 37.76 64.58
100 IDEAL Random 62.50 39.06 66.80
100 FastGAS Random 62.50 40.88 67.32

18 Vote-k Similar 56.90 39.45 66.02
18 IDEAL Similar 63.80 39.58 65.89
18 FastGAS Similar 65.23 44.53 66.67

18 Vote-k Random 54.56 41.02 66.54
18 IDEAL Random 64.19 38.15 66.54
18 FastGAS Random 64.71 44.01 67.19

notated instances fit within the prompt capacity of

LLMs, making the order of instances the only dif-

ference between the two prompt retrieval methods.

The performance of FastGAS underscores its capa-

bility to produce a more reliable training subset for

ICL tasks (Chang and Jia, 2023).

4.7 Evaluation on Different Language Models

We conduct evaluations of FastGAS on various

language models, including GPT-Neo 2.7B (Black

et al., 2021), OPT-6.7B (Zhang et al., 2022), Llama-

2-7B-Chat (Touvron et al., 2023), and GPT-3.5-

Turbo (OpenAI, 2023)2, applying the same instruc-

tions across each dataset. Table 3 shows the per-

formance of three selective annotation methods

on smaller language models (GPT-Neo 2.7B and

OPT-6.7B) across three datasets, where FastGAS

overall surpasses two baseline annotation methods.

Notably, OPT-6.7B exhibits lower performance on

the XSUM summarization task compared to other

LLMs, a finding echoed in (Tam et al., 2022). How-

ever, FastGAS remains superior to the baselines

even when using the OPT-6.7B model.

Further experiments on more advanced LLMs

are presented in Figure 6, confirming FastGAS’s en-

hanced performance with larger language models.

This underscores FastGAS as a versatile approach

effective across LLMs of varying sizes. Particu-

larly, the performance leap with GPT-3.5-Turbo,

2In a recent update, OpenAI announced the deprecation of
the logprobs endpoint. Consequently, in our experiment, we
employ the Vote-k method, specifically ‘Fast vote-k,’ which
does not depend on this value.

Table 3: Comparative performance of FastGAS versus

baselines using GPT-Neo-2.7B and OPT-6.7B models

across various datasets with an annotation budget of

18. FastGAS generally outperforms baseline methods

across a variety of models and datasets.

Methods Datasets

Selection Model MRPC DBpedia XSUM

Vote-k GPT-Neo-2.7B 57.42 80.73 19.45
IDEAL GPT-Neo-2.7B 65.89 78.38 19.69

FastGAS GPT-Neo-2.7B 66.02 80.86 20.15

Vote-k OPT-6.7B 36.59 88.02 6.86
IDEAL OPT-6.7B 45.18 83.20 6.13

FastGAS OPT-6.7B 44.66 88.93 6.89

especially notable on the MNLI dataset (improv-

ing from 50.18% with Llama-2-7B-Chat to 70.18%

with GPT-3.5-Turbo), highlights the advantage of

larger models equipped with more parameters and

extensive training data, thereby bolstering their ca-

pability in classification tasks.
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Figure 6: Comparative performance of FastGAS versus

baselines using Llama-2-7B-Chat and GPT-3.5-Turbo

models across various datasets with an annotation bud-

get of 18.

5 Conclusion

Recent advancements have showcased the capabil-

ity of large language models (LLMs) to adapt to

new tasks with just a few demonstration instances.

While existing approaches aim to enhance model

performance by selecting a limited number of in-

stances to annotate for prompts, they are hindered

by significant computational demands and lengthy

processing times. To address these challenges, we

introduce a graph-based selection algorithm, Fast-

GAS, accompanied by a theoretical analysis of its

effectiveness. Our empirical evaluations reveal that

this method outperforms others in seven distinct

tasks, demonstrating exceptional efficacy. Unlike

conventional methods that require high computa-

tion costs, our method greatly improves the effi-

ciency of selecting instances, substantially enhanc-

ing its applicability to practical scenarios. Addition-

9771



ally, we demonstrate FastGAS’s versatility across

LLMs of various sizes. We hope that these in-

sights will help researchers in devising effective

ICL strategies to optimize LLM performance.

6 Limitation

The primary constraint of our study is the inabil-

ity to automatically select the most appropriate

number of partitions (K) and the most appropriate

number of neighbors (k) during the data similar-

ity graph construction. Given the relatively short

execution time of our method, conducting multi-

ple trials to identify the ideal K and k value is

viable. However, the cost of the inference phase

could restrict the feasibility of such extensive ex-

perimentation in practical settings. To enhance

efficiency, FastGAS adopts a greedy selection pro-

cess that is carried out separately for each piece.

However, we have not explored how the interrela-

tions between samples across different graph pieces

influence the overall instance selection. Addition-

ally, due to hardware limitations and available time,

our research only covered LLMs up to 7B in size.

Future investigations will aim to assess FastGAS’s

efficacy with larger LLMs and across a broader

array of tasks.

7 Ethics Statement

This work introduces FastGAS, a graph-based

selective annotation method that can effectively

and efficiently select high-quality instances for in-

context learning tasks. While acknowledging the

need for responsible usage of the proposed method,

we do not foresee major negative societal impacts.
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A General experimental conditions

Our implementation of FastGAS and baselines is primarily conducted using PyTorch (Paszke et al., 2019).

For the GPT-3.5-Turbo experiments, we utilize the OpenAI API. The models GPT-J-6B, GPT-Neo 2.7B,

Llama-2-7B-Chat, and OPT-6.7B are sourced from the Huggingface Transformers Library (Wolf et al.,

2019). All experiments are performed on a single NVIDIA RTX A6000 GPU with 48GB of memory.

B The Detailed Information of Seven Datasets

Table 4: The detailed information of seven datasets

Dataset Task

Classification
MRPC (Dolan et al., 2004) Paraphrase Detection
SST-5 (Socher et al., 2013) Sentiment Analysis

DBpedia (Lehmann et al., 2015) Topic Classification
MNLI (Williams et al., 2018) Natural Language Inference
RTE (Bentivogli et al., 2009) Natural Language Inference

Multiple-Choice HellaSwag (Zellers et al., 2019) Commonsense Reasoning

Generation XSUM (Narayan et al., 2018) Summarization

C Detailed Graph Partition Algorithm

• Coarsening phase: The graph G is transformed into a sequence of smaller graphs G1,G2, ...,Gm

such that |V| > |V1| > |V2| > · · · > |Vm|.

• Partitioning phase: A 2-way partition Pm of the graph Gm = (Vm, Em) is computed that partitions

Vm into two parts, each containing half the vertices of G.

• Uncoarsening phase: The partition Pm of Gm is projected back to G by going through intermediate

partitions Pm−1, Pm−2, ..., P1, P0

Coarsening phase Due to the construction of the data similarity graph, the degree of most vertices is

close to the graph’s average degree. To generate coarser graphs, we employ a strategy of finding a random

matching and merging the matched vertices into a multi-node (Bui and Jones, 1993; Hendrickson et al.,

1995). A graph’s matching is a set of edges, each pair of which shares no common vertex. We create a

subsequent coarser graph, Gi+1, from Gi by matching in Gi and merging the matched vertices. We utilize

a random algorithm akin to those detailed in (Bui and Jones, 1993; Hendrickson et al., 1995).

The algorithm operates as follows: vertices are processed in a random sequence. For an unmatched

vertex u, an unmatched adjacent vertex v is randomly chosen, and the edge (u, v) is added to the matching.

If there is no unmatched adjacent vertex for u, then u remains unmatched in this random matching process.

The computational complexity of this algorithm is O(|E|).

Partitioning phase To efficiently bisect the graph, we simply initiate from a vertex and expand a region

around it using a breadth-first approach until half of the vertices are encompassed (Ciarlet Jr and Lamour,

1996; Goehring and Saad, 1994). Given that the bisection quality is highly dependent on the initial

vertex selection (Karypis and Kumar, 1998), we employ a strategy similar to (Karypis and Kumar, 1998),

wherein we randomly select 10 vertices and subsequently expand 10 distinct regions from each. The trail

yielding the smallest edge cut is then chosen for the partition.

Uncoarsening phase During the uncoarsening phase, as each vertex u ∈ Gi+1 represents a unique

subset U of vertices from Gi, we derive partition Pi from Pi+1 by assigning the vertices in U to the same

part that vertex u belongs to. Although Pi+1 may represent a local minimum partition for Gi+1, the

corresponding partition Pi might not be at a local minimum with respect to Gi. To refine this uncoarsened

partition, we employ the KL algorithm (Kernighan and Lin, 1970), which iteratively searches for and

swaps subsets of vertices between partitions to achieve a lower edge cut. This swapping process continues

until no further improvements can be made, indicating that the partition has reached a local minimum.
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D Proof of Proposition 3.1

Proof. We employ an inductive approach to demonstrate that the node set Vsel, selected by the greedy

algorithm, satisfies the maximum cover property,

Vsel = argmax
|V|=n

|{(u, v)|u, v ∈ V}|+ |{(u, v)|u ∈ V and v ∈ G \ V}| (2)

When n = 1, Vsel = {v1}. Thus,

|{(u, v)|u ∈ V and v ∈ G \ V}| = degree(v1) and |{(u, v)|u, v ∈ V}| = 0.

By selecting v1 = argmaxv∈G d(v), the maximum cover property holds for n = 1.

Assume it holds for n = k, let Vsel
k denotes the selected node set at the budget k and Vsel

k+1 = Vsel
k ∪{vk+1}.

For the first term in Eq. 2, we have

|{(u, v)|u, v ∈ Vsel
k+1}| = |{(u, v)|u, v ∈ Vsel

k }|+ |{(u, vk+1)|u ∈ Vsel
k }|. (3)

For the second term in Eq. 2, we have

|{(u, v)|u ∈ Vsel
k+1 and v ∈ G \ Vsel

k+1}|

=|{(u, v)|u ∈ Vsel
k and v ∈ G \ Vsel

k+1}|+ |{(vk+1, v)| v ∈ G \ Vsel
k+1}|

=|{(u, v)|u ∈ Vsel
k and v ∈ G \ Vsel

k+1}|+ |{(vk+1, v)| v ∈ G \ Vsel
k }|

=|{(u, v)|u ∈ Vsel
k and v ∈ G \ Vsel

k }| − |{(u, vk+1)|u ∈ Vsel
k }|+ |{(vk+1, v)| v ∈ G \ Vsel

k }|.

(4)

The second equality sign holds because

|{(vk+1, v)| v ∈ G \ Vsel
k+1}| = |{(vk+1, v)| v ∈ G \ Vsel

k }| − |{(vk+1, v)| v ∈ Vsel
k+1 \ V

sel
k }|,

|{(vk+1, v)| v ∈ Vsel
k+1 \ V

sel
k }| = |{(vk+1, v)| v ∈ {vk+1}}| = 0.

We then combine Eq. 3 and Eq. 4 and obtain that

|{(u, v)|u, v ∈ Vsel
k+1}|+ |{(u, v)|u ∈ Vsel

k+1 and v ∈ G \ Vsel
k+1}|

=|{(u, v)|u, v ∈ Vsel
k }|+ |{(u, vk+1)|u ∈ Vsel

k }|+ |{(u, v)|u ∈ Vsel
k and v ∈ G \ Vsel

k }|

− |{(u, vk+1)|u ∈ Vsel
k }|+ |{(vk+1, v)| v ∈ G \ Vsel

k }|

=|{(u, v)|u, v ∈ Vsel
k }|+ |{(u, v)|u ∈ Vsel

k and v ∈ G \ Vsel
k }|+ |{(vk+1, v)| v ∈ G \ Vsel

k }|

(5)

Since Vsel
k satisfies that

Vsel
k = argmax

|V|=k

|{(u, v)|u, v ∈ V}|+ |{(u, v)|u ∈ V and v ∈ G \ V}|,

and from the algorithm, we have

vk+1 = argmax
v∈G\{vi|i∈[1,k]}

degree(v) = argmax
v∈G\Vsel

k

|{(v, u)| u ∈ G \ Vsel
k }|.

Thus
Vsel
k+1 = Vsel

k ∪ {vk+1}

= argmax
|V|=k+1

|{(u, v)|u, v ∈ V}|+ |{(u, v)|u ∈ V and v ∈ G \ V}|.

In conclusion, given the budget n and graph G, the Vsel returned by the greedy algorithm satisfies the

property in Eq.2.
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E Example Prompt of Each Task

E.1 MRPC

Input: Are the following two sentences ‘equivalent’ or ‘not equivalent’?

Excluding autos, retail sales rose by 0.3 % in September, lower than a forecast rise of 0.5 % ..

Retail sales fell 0.2 percent overall in September compared to forecasts of a 0.1 percent dip ..

answer:

Output: not equivalent

E.2 SST-5

Input: How do you feel about the following sentence?

... the film’s considered approach to its subject matter is too calm and thoughtful for agitprop, and the

thinness of its characterizations makes it a failure as straight drama.

answer:

Output: very negative

E.3 MNLI

Input: Quite an hour, or even more, had elapsed between the time when she had heard the voices and 5

o’clock when she had taken tea to her mistress. Based on that information, is the claim A day had passed

from when she’d taken the tea in. "True," "False," or "Inconclusive"?

answer:

Output: False

E.4 DBpedia

Input: title: Grace Evangelical Lutheran Church (Minneapolis Minnesota); content: Grace Evangelical

Lutheran Church is a church in Minneapolis, Minnesota, United States, adjacent to the University of

Minnesota East Bank campus. The church was built in 1915-1917 by a Swedish Lutheran congregation to

serve university students. It was designed by Chapman and Magney and built in the Gothic Revival style.

The congregation was organized in Minneapolis in 1903 by the Swedish immigrant-dominated Augustana

Evangelical Lutheran Church.

Output: building

E.5 RTE

Input: He met U.S. President, George W. Bush, in Washington and British Prime Minister, Tony Blair,

in London..

question: Washington is part of London. True or False?

answer:

Output: False

E.6 Hellaswag

Input: The topic is Cleaning sink. A middle aged female talks about a cleaning product. The female

opens a container of cleaner and puts it on a rag. the female,

Options: ["then inflames a different cleaner to clean a sock.", "uses the rag to spray down a wall.",

"washes the rug thoroughly and scratches it.", "then uses the rag to rub the inside of the sink."]

Output: then uses the rag to rub the inside of the sink.
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E.7 Xsum

Input: Stead curled home with 14 minutes remaining to cap a fine comeback at the Northern Gas and

Power Stadium after Louis Lang cancelled out Toto Nsiala’s opener. Hartlepool flew out of the blocks and

took an eighth-minute lead when Nsiala bundled home at the back post after Lewis Alessandra beat his

man and sent in a pin-point cross.

......

Substitution, Notts County. Vadaine Oliver replaces Jonathan Forte because of an injury. Attempt saved.

Nathan Thomas (Hartlepool United) right footed shot from the left side of the box is saved in the bottom

right corner. Corner, Hartlepool United. Conceded by Matt Tootle. Attempt missed. Michael Woods

(Hartlepool United) right footed shot from outside the box is close, but misses the top right corner. Foul by

Billy Paynter (Hartlepool United). Stanley Aborah (Notts County) wins a free kick in the attacking half...

Output: Jon Stead struck the winner as Notts County came from behind to earn victory at Hartlepool

United in League Two.

F Detailed Main Results

In Section 4.2, we present the average evaluation outcomes of various methods across three random

trials. This section offers comprehensive results for FastGAS and two current baselines, detailing mean,

maximum, and minimum values. It is evident that FastGAS consistently delivers superior performance

across the majority of trials. Furthermore, FastGAS’s performance in the least favorable scenarios is

markedly better than that of the baselines in most instances.

Table 5: Mean/Maximum/Minimum performance of FastGAS and two baselines across the first four tasks in Table 1

over three trials. The best average performance for each task is highlighted in bold.

Methods MRPC SST-5 MNLI DBpedia

100 Vote-k 64.60/68.75/62.11 46.61/47.27/46.09 38.93/43.75/35.55 89.19/89.84/88.67

100 IDEAL 65.49/66.02/64.84 49.87/52.73/46.09 41.02/41.41/40.23 90.63/91.41/89.45

100 FastGAS 66.15/69.14/62.89 50.26/55.86/42.58 42.06/43.75/41.02 90.76/92.19/88.28

18 Vote-k 56.90/67.19/47.27 41.78/45.70/37.11 39.45/42.19/37.11 88.02/91.02/83.59

18 IDEAL 63.80/67.19/59.77 44.92/48.82/41.79 39.58/41.80/37.50 83.20/85.94/81.64

18 FastGAS 65.23/71.88/55.47 46.61/48.04/45.70 44.53/47.66/41.02 88.93/92.58/84.77

Table 6: Average/Maximum/Minimum performance of FastGAS and two baselines across the first four tasks in

Table 1 over three trials. The best performance for each task is highlighted in bold.

Methods RTE HellaSwag Xsum

100 Vote-k 57.68/58.20/57.42 65.89/69.14/64.06 19.55/19.94/19.13

100 IDEAL 58.98/60.94/57.42 64.97/69.53/61.72 19.68/19.77/19.58

100 FastGAS 61.98/63.28/60.55 67.45/71.88/65.23 20.00/20.55/19.59

18 Vote-k 56.64/57.81/55.86 66.02/71.09/63.28 19.45/20.45/18.30

18 IDEAL 53.65/55.47/52.34 65.89/70.70/63.28 19.21/20.09/18.76

18 FastGAS 56.51/57.81/54.69 66.67/69.92/64.84 20.26/20.65/19.63

G Complexity Analysis of FastGAS

In this section, we provide the complexity analysis of FastGAS. There are three phases in graph partitioning

in FastGAS: the coarsening phase, the partitioning phase, and the uncoarsening phase. In the coarsening

phase, we apply a random matching algorithm, which at most traverses all edges with the complexity

O(|E|). For the partitioning phase, we apply a breadth-first approach to efficiently bisect the graph, and
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the complexity of the breadth-first approach O(|E|+ |V|). For the uncoarsening phase, the complexity of

the KL algorithm can be reduced to O(|E|) (Fiduccia and Mattheyses, 1988). Thus, the complexity of a

2-way partition is O(|E| + |V|). We bisect the graph logK times to get the K-way graph partitioning;

the complexity of graph partitioning in FastGAS is O((|E| + |V|)logK). For the greedy selection in

FastGAS, it takes O(|V|/K) time to select each node on the subgraphs, thus selecting M/K on each of

the K subgraphs needs O(|V|M/K), where M is the annotation budgets. In general, the complexity of

FastGAS is O(|V|M/K + (|E| + |V|)logK), which means the complexity of FastGAS is linear to the

size of node set and edge set.

H Evaluation on Differeny Text Embedding Models

In FastGAS, we use Sentence-BERT as our embedding method and demonstrate the superior performance

of FastGAS. In this section, we compare FastGAS with baselines using other text embedding models such

as E5 (Wang et al., 2022) and InstructOR (Su et al., 2022b). The experiment results of different embedding

models are presented below. The findings reveal that FastGAS consistently achieves top performance (five

out of six) across different embedding models. This underscores the adaptability of our method, which is

effective with various embedding models beyond just Sentence-BERT.

Table 7: The average performance of FastGAS and baselines under various text embedding models with the

annotation budget of 18.

Method Model MRPC MNLI RTE

Vote-k E5 57.81 39.97 55.99

IDEAL E5 62.37 39.58 55.99

FastGAS E5 61.98 40.49 56.25

Vote-k InstructOR 59.77 40.49 56.25

IDEAL InstructOR 63.68 41.15 55.73

FastGAS InstructOR 63.80 41.41 60.29
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