FastGAS: Fast Graph-based Annotation Selection for In-Context Learning

Zihan Chen, Song Wang, Cong Shen, Jundong Li
Department of ECE, University of Virginia, Charlottesville, VA, USA
{brf3rx,sw3wv,cong,jlégk } @virginia.edu

Abstract

In-context learning (ICL) empowers large lan-
guage models (LLMs) to tackle new tasks by
using a series of training instances as prompts.
Since generating the prompts needs to sample
from a vast pool of instances and annotate them
(e.g., add labels in classification task), existing
methods have proposed to select a subset of un-
labeled examples for annotation, thus enhanc-
ing the quality of prompts and concurrently
mitigating annotation costs. However, these
methods often require a long time to select in-
stances due to their complexity, hindering their
practical viability. To address this limitation,
we propose a graph-based selection method,
FastGAS, designed to efficiently identify high-
quality instances while minimizing computa-
tional overhead. Initially, we construct a data
similarity graph based on instance similarities.
Subsequently, employing a graph partitioning
algorithm, we partition the graph into pieces.
Within each piece (i.e., subgraph), we adopt
a greedy approach to pick the most represen-
tative nodes. By aggregating nodes from di-
verse pieces and annotating the corresponding
instances, we identify a set of diverse and repre-
sentative instances for ICL. Compared to prior
approaches, our method not only exhibits supe-
rior performance on different tasks but also sig-
nificantly reduces selection time. In addition,
we demonstrate the efficacy of our approach in
LLMs of larger sizes.

1 Introduction

Recent advances in natural language processing
heavily leverage large language models, exempli-
fied by models such as GPT-3 (Brown et al., 2020).
Among them, in-context learning (ICL) emerges as
a promising direction in this field. ICL adapts spe-
cific tasks with just a few instances as prompts, of-
fering a viable alternative to traditional supervised
fine-tuning (Liu et al., 2023). The performance of
ICL is intricately tied to the effectiveness of the
prompt surface, encompassing factors such as in-

stance selection and the sequence of demonstration
instances (Zhao et al., 2021; Dong et al., 2022; Lu
et al., 2021; Wang et al., 2023b). In this study,
we focus on instance selection and explore novel
solutions to reduce manual annotation costs while
maintaining high in-context learning performance.

Previous research underscores the importance of
retrieving prompts from a vast set of annotated in-
stances to achieve optimal performance (Liu et al.,
2021; Rubin et al., 2021). In particular, perfor-
mance is shown to improve significantly when
choosing in-context examples similar to each test
input (Liu et al., 2021). However, addressing the
unique requirements of different test instances re-
quires a large set of annotated examples, incurring
significant human and financial resources.

To mitigate annotation costs, previous efforts
have sought to identify a small number of unla-
beled instances for annotation (Su et al., 2022a;
Zhang et al., 2023). The objective is to select di-
verse and representative instances, where represen-
tativeness aids in finding similar demonstrations
for different test instances, while diversity broad-
ens the overall coverage. Despite their superiority
over random selection, these methods have specific
drawbacks. For example, Vote-k (Su et al., 2022a)
emphasizes diversity but adds inference costs due
to predictions on unlabeled data. IDEAL (Zhang
et al., 2023) employs influence-driven selective an-
notations, drawing inspiration from influence max-
imization in social graphs. However, both methods
struggle to balance diversity and representativeness,
leading to suboptimal performance.

Furthermore, a notable shortcoming of existing
methods is their computational inefficiency. The
precise calculation process (e.g., iteratively search-
ing the entire dataset) results in high computational
costs, making them less practical for real-world
applications. Figure 1 illustrates the time required
by our method and two baseline methods, Vote-k
and IDEAL, under the same hardware conditions

9764

Findings of the Association for Computational Linguistics: ACL 2024, pages 9764-9780
August 11-16, 2024 ©2024 Association for Computational Linguistics

[FastGAS
10

B DR B
i B

10 I | I | i I
MRPC SST-5 DBpedia

[IDEAL [Vote-k

Selection Time (s)

Figure 1: Comparison of our method and two baselines
on three classification tasks (MPRC, SST-5, and DB-
pedia) with respect to time consumption during subset
selection. The annotation budget is 18. The y-axis rep-
resents the time consumption with a log scale. Notably,
our method significantly reduces the time cost in com-
parison to both baseline methods.

and annotation budgets. It is observed that both
baselines necessitate at least 500 seconds to select
a subset for DBpedia and SST-5 tasks. Remarkably,
for the DBpedia task, Vote-k exceeds 30, 000 sec-
onds (over eight hours) to select just 18 instances.
As the annotation budget grows, the time needed
by these methods to perform the selection process
can increase exponentially (See Section 4.4), fur-
ther constraining their applicability in real-world
settings. In our pursuit of an efficient and effective
selective annotation method, we pose the funda-
mental question: Can we identify a set of diverse
and representative instances with high efficiency?

Answering this question, we propose FastGAS,
a Fast Graph-based Annotation Selection method
that works in an unsupervised manner. We first
build a data similarity graph based on the similarity
among unlabeled data. We then select instances
for annotation based on the data similarity graph.
In particular, our method focuses on the following
three properties of selected instances:

* Diversity: We perform graph partitioning to sep-
arate the data similarity graph into segments. We
treat each segment as a set of instances. We
ensure the diversity of selected instances by se-
lecting them from different segments.

* Representiveness: For each segment, we select
instances with the max corresponding node de-
gree in the data similarity graph. The selected
instances thus can maximally cover the subgraph
and guarantee their representativeness.

* Efficiency: We apply a multi-level graph bisec-
tion algorithm to speed up the graph partitioning
process. For the selection of each segment, we

apply a simple but effective greedy algorithm.
Compared to baseline methods that iteratively se-
lect over the entire graph, applying the greedy al-
gorithm on each component can reduce the com-
putation time.

Compared with state-of-the-art baseline meth-
ods, our method improves the overall performance
on seven datasets in three types of tasks. Besides,
for all tasks, our method only needs a few seconds
to complete the instance selection process. In ad-
dition, we also provide a theoretical guarantee for
the effectiveness of the greedy selection algorithm.

2 Related Work

In-Context Learning In-context learning (ICL)
integrates a small number of training examples as
prompts before the test input (Brown et al., 2020),
demonstrating a remarkable ability to enhance the
performance of large language models (LLMs) in
a wide range of downstream tasks, such as ma-
chine translation (Agrawal et al., 2022; Sia and
Duh, 2023), data generation (Ye et al., 2022), and
others (Wang et al., 2021b; He et al., 2023; Panda
et al., 2023). Furthermore, the advent of advanced
strategies such as chain-of-thought prompting (Wei
et al., 2022) has significantly refined the efficacy of
ICL, offering deeper insights and more nuanced un-
derstanding within this innovative paradigm (Kim
et al., 2022; Chan et al., 2022; Srivastava et al.,
2022; Bansal et al., 2022).

Despite its successes, ICL’s efficacy is often ham-
pered by the sensitivity to the choice of in-context
examples, leading to research on optimized selec-
tion strategies (Liu et al., 2021; Lu et al., 2021;
Zhao et al., 2021; Shi et al., 2024). Techniques
have evolved from selecting examples close to the
test input in embedding spaces (Liu et al., 2021;
Wu et al., 2022; Gao et al., 2020; Rubin et al.,
2021). The focus has also shifted towards annota-
tion efficiency, exploring how to find a set of exam-
ples once for all queries on the same task (Zhang
et al., 2023; Su et al., 2022a; Chang and Jia, 2023).
Following existing works (Zhang et al., 2023; Su
et al., 2022a), we also use a graph to represent
unlabeled instances and employ graph-based meth-
ods to select instances for annotation. However,
our methodology distinguishes itself from existing
works by focusing on efficiency in the selection of
instances. As discussed in Section 1, we aim to
select diverse and representative instances while
reducing the computation cost.

9765

Active Learning Given a limited budget for la-
beling, active learning empowers machine learn-
ing models to achieve comparable or superior per-
formance using a carefully selected set of labeled
training instances (Cohn et al., 1994; Settles, 2009;
Wang et al., 2023a). Our work on selective annota-
tion aligns with the goal of active learning applied
to graphs, specifically focusing on the selection
of nodes for labeling to inform predictions (Cai
et al., 2017; Jia et al., 2019; Wang et al., 2021a;
Wang et al., 2022). Traditional graph-based active
learning methods employ criteria such as uncer-
tainty (Settles and Craven, 2008) and representa-
tiveness (Li and Guo, 2013) for selection. Since
the ICL tasks we focus on do not involve model
training or finetuning, we compare our method
with basic graph active learning methods that are
not incorporated with model training, like those
based on node degree (Cai et al., 2017; Wang et al.,
2021a) and PageRank (Rodriguez, 2008). Our ex-
periments indicate that while simple graph active
learning methods work well in ICL, our approach
still achieves better overall performance.

3 Methods

In this section, we will explain how to integrate a
graph partition algorithm and a greedy algorithm
in a selective annotation in in-context learning to
reduce the annotation cost.

3.1 Problem Setup

We first give the definition of the selective anno-
tation problem. In-context learning is a paradigm
that allows language models to learn tasks given
only a few examples in the form of demonstra-
tion (Brown et al., 2020). Specifically, LLMs
perform in-context learning tasks based on a task-
specific prompt Z formed by concatenating M la-
beled training examples Z = [z, ..., z)/], Where
each z; represents one labeled example (x;,y;)
consisting of the instance x; and label y; (e.g., the
answer of a question based on the instance). In the
real world, we usually only have unlabeled samples
X = {x;},, and obtaining large-scale annotated
examples for ICL requires substantial manpower
and financial resources.

Selective annotation aims at selecting a subset
L C X to be annotated, where |£| = M is the an-
notation budget, such that ICL only using prompts
retrieved from the selected subset can yield good
performance on the test set and thus reduce the
annotation cost.

3.2 Fast Graph-based Annotation Selection

For the selective annotation problem, it is essential
to find a subset that covers vast unlabeled data. To
achieve this, we design a graph-based annotation
method that balances the diversity and represen-
tativeness of the annotated samples. Briefly, we
build a data similarity graph by assessing the simi-
larity of unlabeled data embeddings. We partition
the data similarity graph into distinct subgraphs
by employing a multi-level graph bisection algo-
rithm, and each subgraph is treated as a candidate
set. Through a stepwise, greedy selection process
of the most influential data nodes in each subgraph,
we generate subsets that encapsulate the subgraph’s
information. Ultimately, we aggregate these sub-
sets from all subgraphs to represent the unlabeled
data. We will now provide a detailed, step-by-step
explanation of the aforementioned process.

Data Similarity Graph Generation. By av-
eraging the resulting vectors over the text input
words, we compute the vector representation for
each unlabeled training instance using Sentence-
BERT (Reimers and Gurevych, 2019). We then use
the embedding vectors to create the data similarity
graph G = (V, £) where each vertex v; € V rep-
resents an unlabeled instance x; € X as defined
above. For each vertex v € V, we introduce edges
connecting it to its k£ nearest neighbors in terms of
cosine similarity and get £.

Graph Partitioning. We aim to enhance instance
diversity by strategically selecting instances from
various regions within the data similarity graph.
The division of regions process can be conceptu-
alized as addressing a K-way graph partitioning
problem, where the goal is to effectively divide
the graph into K distinct components with ap-
proximately equal numbers of vertices but with
few edges crossing between components. The
formal definition of the graph partitioning prob-
lem is defined as follows: given a graph G =
(V,€) with [V| = N, partition V into K subsets,
Vi, Va, ..., Vi such that V; NV; = 0 for i # j,
|Vi| is close N/K, |J,V; = V, and the number
of edges of £ whose incident vertices belong to
different subsets is minimized.

The K-way graph partitioning problem is an
NP-complete problem. We tend to use recursive
bisection to find an approximate solution with an
acceptable execution time. Specifically, we first
obtain a 2-way partition of G, and then we recur-
sively bisect the two segments independently. Af-

9766

Unlabeled Data Pool
O Sample

L= L=

(|

Partition

—

O O O Samples in Different Partitions

ANNOtation e Retrieve
—

—=I

Select

—>

N 3

@ Selected Samples

ICL Prompts

Unlabeled Data Selected Data

Test Input

-l-’ LLM

=) @—D Output

Figure 2: An overview FastGAS. Given the unlabeled data pool, we initially construct a graph based on data
similarity. This graph is then partitioned into distinct components. Within each component, we employ a greedy
algorithm to select nodes until we reach the annotation budget. The selected instances are annotated and subsequently

used to retrieve ICL prompts for the task.

ter log K phases, G is partitioned into K different
components. Unfortunately, graph bisection is also
NP-complete and has several inherent shortcom-
ings (Hendrickson et al., 1995). In order to improve
efficiency, we apply a multi-level graph bisection
algorithm to produce high-quality partitions at low
cost (Karypis and Kumar, 1998). It consists of the
following three phases:

* Coarsening phase: The graph G is transformed
into a sequence of smaller graphs Gy, Go, ..., G,
such that [V| > (V1| > Vo] > -+ > [Vl

 Partitioning phase: A 2-way partition P, of
the graph G, = (Vin, Em) is computed that par-
titions V), into two subgraphs, each containing
half the vertices of G.

* Uncoarsening phase: The partition P, of G, is
projected back to G by going through intermedi-
ate partitions P,,,_1, Pp—o, ..., P1, Pp.

For more detailed methods of each phase, we
will include them in Appendix C.

Greedy Node Selection. The graph partitioning
operation divides the data similarity graph into K
disjoint components, ensuring diversity by treat-
ing each component as a set of instances. How-
ever, further discussion is required on the selection
of suitable instances that exhibit significant rep-
resentativeness for each subgraph. Following the
graph partitioning process, which yields K sub-
graphs with a similar number of nodes denoted as
|Vi| = N/K, and considering an annotation budget
|L| = M, our objective is to choose n = M/K

instances within each subgraph. To mitigate po-
tential challenges associated with high memory
and computation costs, we employ a greedy selec-
tion method. In detail, for the subgraph G;, we
first select the node v} that has the largest degree:

vl = argmax,cg, d(v). Then, we update the sub-

7
graph G; by removing the selected node v} and the
edges connecting vilz G =G\ vil. The above
steps are repeated n times to get the selected node
set Vel = {v},...,v"}, and the corresponding in-
stances X! = {z},..., 27} are chosen to repre-
sent the instances belonging to the subgraph G;.

The iterative form can be written as

v = d(v) (1)

; argmax

veGi\{vf[ke[l,j—1]}
Specifically, the greedy selection algorithm guar-
antees the following property, demonstrating its
ability to enhance the representativeness of the se-
lected instances.

Proposition 3.1. Given the budget n and graph
G, the greedy algorithm will select ysel —
{vl,...,v"} that maximize the number of edges
within V*¢! and those connecting V** and G \ V*°.

Vel — argmax |{(u, v)|u,v € V}|
[V|=n

+ {(u,v)|lu € Vand v € G\ V}

Remark 1. The greedy selection process on sub-
graphs can be conceptualized as a divide-and-
conquer approach to selection on the entire graph,
leading to improved algorithmic efficiency. Specifi-
cally, when the annotation budget M is consider-
ably smaller than the total number of nodes N (i.e.,

9767

M < N), the computational cost of greedy se-
lection on the entire graph is O(2M N), while the
cost incurred on the K subgraphs is significantly
reduced to O(%)

Prompt Retrieval. Upon obtaining a set of in-
stances £ = | J; Xisel through the greedy selective
annotation process, we manually annotate £ to cre-
ate a comprehensive set of labeled instances. Con-
sistent with previous studies, we leverage Sentence-
BERT (Reimers and Gurevych, 2019) to generate
embeddings for all annotated instances and identify
the most similar instances to each test input based
on cosine similarity.

4 Experiment

In this section, we evaluate the effectiveness of our
method in various datasets encompassing diverse
task categories. We begin by presenting the de-
tails of our experiment setups. Subsequently, the
reported results demonstrate the superior perfor-
mance of the proposed method in identifying an
optimal selective annotation subset efficiently, out-
performing established baselines. Furthermore, we
conduct ablation studies to investigate the impact
of crucial hyperparameters in our method.

4.1 Setups

Datasets and Models We conduct extensive ex-
periments in seven diverse datasets, which include
six distinct tasks detailed in Table 4. Following
existing works, each dataset adheres to the stan-
dard train/dev/test split provided by the Transform-
ers library (Wolf et al., 2019). For datasets with
publicly available test data (SST-5, XSUM, and
DBpedia), we utilize the test set for evaluation.
In cases where test data is not publicly accessi-
ble, consistent with previous works (Zhang et al.,
2023; Su et al., 2022a), we employ the dev data for
evaluation. Evaluation metrics include precision
for all classification and multiple-choice selection
datasets and ROUGE-L (Lin, 2004) for XSUM.

Unless explicitly mentioned, we conduct all ex-
periments using the GPT-J-6B model (Wang and
Komatsuzaki, 2021). Additionally, we present re-
sults from tests on other models such as GPT-Neo-
2.7B (Black et al., 2021), OPT-6.7B (Zhang et al.,
2022), as well as more advanced models includ-
ing Llama-2-7B-Chat (Touvron et al., 2023) and
GPT-3.5-Turbo (OpenAl, 2023).

Baselines In our main experiments, we conduct
a comprehensive evaluation of FastGAS against

random selection and two state-of-the-art selec-
tive annotation baselines: Vote-k (Su et al., 2022a)
and IDEAL (Zhang et al., 2023). Additionally,
we benchmark FastGAS against other widely rec-
ognized methods in selecting core sets from ex-
tensive unlabeled data pools. These methods in-
clude (1) Top-degree (Wu et al., 2019), which se-
lects nodes with the largest degrees until the an-
notation budget is met; (2) PageRank (Cai et al.,
2017), which is used to score node representative-
ness in graph-based active learning; (3) Subclus-
tering (Chen et al., 2023), which initially clusters
instances into K groups via K-means, then fur-
ther subdivides each into M /K subclusters for cen-
troid instance selection; and (4) Louvain (Blondel
et al., 2008), which utilizes the Louvain commu-
nity detection algorithm for graph partitioning and
a greedy selection algorithm akin to FastGAS for
instance selection from each community.'

To emulate real-world conditions, we follow
Vote-k (Su et al., 2022a) and IDEAL (Zhang et al.,
2023), selectively annotating from a pool of 3,000
instances randomly subsampled from the original
training data for each task. For robustness, we con-
duct this subsampling procedure three times per
experiment, and the reported results represent the
average across three trials.

Hyperparameter Setting In our main experi-
ment, we create a data similarity graph for all
unlabeled instances by linking each vertex to its
ten nearest neighbors (kK = 10). For the base-
line methods, we follow their hyperparameter set-
tings to construct directed graphs (Zhang et al.,
2023; Su et al., 2022a). Regarding the selection
of K for graph partitioning, we adjust K within
{2,3,6,9} for an annotation budget of 18, and
within {2, 5,10, 25,50} for a budget of 100, iden-
tifying an optimal K for each task. Our method’s
selection time is significantly shorter than that of
the baselines (Section 4.4), making the time spent
finding the appropriate K negligible. We align our
annotation budgets of 18 and 100 with those used
in Vote-k (Su et al., 2022a) and IDEAL (Zhang
et al., 2023), choosing 18 specifically because it
allows all annotated examples to fit within the con-
text limits of LLLMs without necessitating prompt
retrieval. The impacts of k and K are detailed in
Sections 4.3 and 4.5, respectively.

ISince different communities contain different numbers of
nodes, we select instances in proportion to the size of each
community.

9768

4.2 Main Result

Table 1 presents a comparison between FastGAS
and other baseline methods across annotation bud-
gets of |£| € {18,100}. FastGAS outperforms
the two existing baselines in nearly all scenarios
(13 out of 14). Notably, with an annotation bud-
get of 18, all annotated examples fit within the
prompt limitations of LLMs, making the evalu-
ation results a direct reflection of the quality of
selected instances (Zhang et al., 2023). When the
annotation budget is 18, FastGAS performs better
than the baseline on most datasets, which shows
that FastGAS can select higher-quality data. While
the proposed active learning baselines outshine in
specific instances (e.g., the Subclustering method
excels in the DBpedia task for both annotation bud-
gets), their general performance is hindered by their
approach to balancing representativeness and diver-
sity of the selected instances. For example, meth-
ods like Top-degree and PageRank prioritize repre-
sentativeness (Cai et al., 2017). Overall, FastGAS
generally surpasses these baselines (10 out of 14),
demonstrating its effectiveness. Furthermore, as
a deterministic selective annotation method, Fast-
GAS operates based on a given set of unlabeled
samples, mirroring the advantage seen with Vote-k.
This means that the variability in FastGAS’s perfor-
mance stems exclusively from the manner in which
unlabeled samples are gathered. This significantly
enhances the robustness of ICL by ensuring consis-
tency in the selection process (Su et al., 2022a). We
provide detailed results that contain the maximum
and minimum values of each task in Appendix F.

4.3 Effect of k

We compare FastGAS and other graph-based base-
lines with respect to different & for the construction
of the graph, and the result is shown in Figure 3.
Initially, our method consistently exceeds other
graph-based baselines in various settings. Second,
we observe that the ideal % value varies among dif-
ferent methods and datasets. Specifically, for the
MNLI dataset, most methods perform better with
k = 10. We also conclude that, for FedGAS, k
must be carefully balanced, neither too large nor
too small. A smaller k value, as well as a larger one,
impedes the ability to differentiate between distinct
representative nodes in the graph, complicating the
selection process by potentially choosing multiple
similar nodes. Concurrently, a larger k value could
also increase the computational time.

v Top-degree A Louvain * IDEAL
PageRank € Vote-k ® FastGAS
90 DBpedia MNLI
44
286
§ 42
3 82
é 40
78 38
5 10 15 5 10 15
k k

Figure 3: Comparison of our method and other graph-
based baselines with respect to different k for the con-
struction of the graph.

4.4 Evaluating Time Efficiency

In Section 1, we illustrate that FastGAS drastically
reduces the time cost compared to two existing
methods with an annotation budget of 18. Fig-
ure 4 expands on this by showing the time con-
sumption of our method and two baselines for an
annotation budget of 100. Relative to Figure 1, the
time needed for FastGAS does not increase much.
This is because the most time-intensive processes
in FastGAS, i.e., constructing and partitioning the
data similarity graph, are not affected by the anno-
tation budget. In contrast, the time costs of the two
baselines, especially IDEAL, increase sharply; for
nearly all tasks, IDEAL and Vote-k require more
than eight hours for selection. As the annotation
budget increases, the efficiency of FastGAS in ex-
ample selection becomes even more pronounced.

10°

[FastGAS [IDEAL [Vote-k]

z10* —

[}

E

[_‘

= 103

2

!

2107

10' L —= — [—
MRPC SST-5 DBpedia

Figure 4: Comparison of our method and two baselines
on three classification tasks (MPRC, SST-5, and DB-
pedia) with respect to time consumption during subset
selection. The annotation budget is 100. The y-axis
represents the time consumption with a log scale.

4.5 Effect of Number of Partitions

The hyperparameter K plays a critical role in graph
partitioning, determining the number of compo-
nents into which the graph is divided. We explore
K’s impact on FastGAS and offer insights for ad-
justing it. Figure 5 illustrates FastGAS’s perfor-
mance in three datasets with an annotation budget
of 100. The figure demonstrates that enhancing

9769

Table 1: The results of FastGAS and six baselines on seven distinct datasets with annotation budgets of 100 and 18,
utilizing similarity-based prompt retrieval for all methods. We report the average results with three different runs for
each method. Bold fonts indicate the best performance, while underlines denote the second-best results.

Classification Multi-Choice Generation
|L] Methods
MRPC SST-5 MNLI DBpedia RTE HellaSwag XSUM
100 Random 64.32 49.61 38.15 89.84 5534 64.71 17.24
100 Vote-k 64.60 46.61 38.93 89.19 57.68 65.89 19.55
100 IDEAL 65.49 49.87 41.02 90.63 58.98 64.97 19.68
100 Top-degree 6276 4232 41.02 8385 51.69 66.67 1939
100 PageRank 64.84 40.71 44.17 83.72 53.38 66.01 19.55
100 Subclustering 64.84 49.48 41.28 9232 57.55 65.62 19.18
100 Louvain 59.63 39.58 41.14 86.33 53.52 65.89 19.27
100 FastGAS 66.15 50.26 42.06 90.76 61.98 67.45 20.00
18 Random 5547 4297 37.76 83.20 54.95 65.49 16.63
18 Vote-k 56.90 41.78 39.45 88.02 56.64 66.02 19.45
18 IDEAL 63.80 4492 39.58 83.20 53.65 65.89 19.21
18 Top-degree 4857 39.45 4193 7734 5443 6576 2005
18 PageRank 46.09 39.71 40.49 79.04 56.07 65.89 19.82
18 Subclustering 61.46 46.05 37.63 89.06 56.63 65.76 19.49
18 Louvain 61.33 38.02 38.02 83.59 55.86 65.62 20.23
18 FastGAS 65.23 46.61 44.53 88.93 56.51 66.67 20.26
K up to a certain point improves FastGAS’s per- 59 DBpedia
formance; however, the increase beyond this op- § 89
timal threshold does not result in further perfor- <8 5 10 25 50
mance gains. A small K results in relatively rough 62 RTE
partitioning, such that significantly different data § 59 V/\'/"\v
points are grouped into the same subgraph. Se- 673 5 10 25 50
lecting through coarsely partitioned subgraphs can 7 200 XSUM -
obscure meaningful distinctions in the data, result- % 19.6 ‘\v\,///// Ty
ing in the loss of the diversity of the selected nodes. ~ 19273 5 IKO 25 50

Conversely, with a sufficiently large K, the graph
partitioning algorithm results in more edges being
cut during the partitioning process, thus affecting
the degree of nodes in each disjoint subgraph. As
a result, nodes with a large degree in the origi-
nal graph may lose a large number of edges due
to partitioning and thus be ignored by the greedy
algorithm. This alteration hampers the greedy al-
gorithm’s ability to select representative nodes ef-
fectively. Hence, a balanced K value facilitates
the optimal performance of FastGAS by ensuring a
balance of representativeness and diversity.

4.6 Random Prompt Retrieval

In Section 4.2, we evaluate the performance of
FastGAS against other baselines using a similarity-
based prompt retrieval method. Building on previ-
ous research (Zhang et al., 2023; Su et al., 2022a),

Figure 5: Performance of FastGAS across different num-
bers of partitions with an annotation budget of 100.

we investigate the impact of employing a random
retrieval method, specifically, by randomly select-
ing labeled instances as prompts for each test in-
stance under the annotation budget 100 and 18.
The findings are presented in Table 2. We note
a marked decline in the effectiveness of selective
annotation methods under large annotation budgets
when prompts are chosen through random selection.
This deterioration may stem from the increased
likelihood of selecting instances from the larger la-
beled pool that are less relevant to the test sample,
as determined by their distance in the embedding
space (Liu et al., 2021). Significantly, FastGAS
continues to outperform the two baseline methods
across all datasets, even when employing random
retrieval. With an annotation budget of 18, all an-

9770

Table 2: Comparison of random and similar prompt
retrieval. The selection approach, when paired with
a similarity-based prompt retrieval method, generally
outperforms its counterpart, which utilizes a random
prompt retrieval technique.

Table 3: Comparative performance of FastGAS versus
baselines using GPT-Neo-2.7B and OPT-6.7B models
across various datasets with an annotation budget of
18. FastGAS generally outperforms baseline methods
across a variety of models and datasets.

Methods Datasets Methods Datasets

|£| Selection Retrieval MRPC MNLI HellaSwag Selection Model MRPC DBpedia XSUM

100 Vote-k Similar | 64.60 38.93 65.89 Vote-k GPT-Neo-2.7B | 57.42 80.73 19.45

100 IDEAL Similar | 65.49 41.02 64.97 IDEAL GPT-Neo-2.7B | 65.80 78.38 19.69

100 FastGAS Similar | 66.15 42.06 67.45 FastGAS GPT-Neo-2.7B | 66.02 80.86 20.15

100 Vote-k Random | 60.67 37.76 64.58 Vote-k OPT-6.7B 36.59 88.02 6.86

100 IDEAL Random | 62.50 39.06 66.80 IDEAL OPT-6.7B 4518 83.20 6.13

100 FastGAS Random | 62.50 40.88 67.32 FastGAS OPT-6.7B 44.66 88.93 6.89

18 Vote-k Similar | 56.90 39.45 66.02

1 IDEAL imil

12 FastGAS giﬁli 22 gg iz gg 22 ﬁg especially notable on the MNLI dataset (improv-
ing from 50.1 ith Llama-2-7B-Ch N

18 Vote-k Random | 54.56 41.02 66.54 ! g om 50.18% wit .a a 7B-Chat to 70.18%

18 IDEAL Random | 64.19 3815 66.54 with GPT-3.5-Turbo), highlights the advantage of

18 FastGAS Random | 64.71 44.01 67.19 larger models equipped with more parameters and

notated instances fit within the prompt capacity of
LLMs, making the order of instances the only dif-
ference between the two prompt retrieval methods.
The performance of FastGAS underscores its capa-
bility to produce a more reliable training subset for
ICL tasks (Chang and Jia, 2023).

4.7 Evaluation on Different Language Models

We conduct evaluations of FastGAS on various
language models, including GPT-Neo 2.7B (Black
etal., 2021), OPT-6.7B (Zhang et al., 2022), Llama-
2-7B-Chat (Touvron et al., 2023), and GPT-3.5-
Turbo (OpenAl, 2023)?, applying the same instruc-
tions across each dataset. Table 3 shows the per-
formance of three selective annotation methods
on smaller language models (GPT-Neo 2.7B and
OPT-6.7B) across three datasets, where FastGAS
overall surpasses two baseline annotation methods.
Notably, OPT-6.7B exhibits lower performance on
the XSUM summarization task compared to other
LLMs, a finding echoed in (Tam et al., 2022). How-
ever, FastGAS remains superior to the baselines
even when using the OPT-6.7B model.

Further experiments on more advanced LLMs
are presented in Figure 6, confirming FastGAS’s en-
hanced performance with larger language models.
This underscores FastGAS as a versatile approach
effective across LLMs of varying sizes. Particu-
larly, the performance leap with GPT-3.5-Turbo,

%In a recent update, OpenAl announced the deprecation of
the logprobs endpoint. Consequently, in our experiment, we
employ the Vote-k method, specifically ‘Fast vote-k,” which
does not depend on this value.

extensive training data, thereby bolstering their ca-
pability in classification tasks.

[Vote-k [IDEAL
Llama-2-7B-Chat

» 78
‘M .
o B K EY

MRPC MNLI RTE MRPC MNLI RTE

[FastGAS
GPT-3.5-Turbo

Accuracy

Figure 6: Comparative performance of FastGAS versus
baselines using Llama-2-7B-Chat and GPT-3.5-Turbo
models across various datasets with an annotation bud-
get of 18.

5 Conclusion

Recent advancements have showcased the capabil-
ity of large language models (LLMs) to adapt to
new tasks with just a few demonstration instances.
While existing approaches aim to enhance model
performance by selecting a limited number of in-
stances to annotate for prompts, they are hindered
by significant computational demands and lengthy
processing times. To address these challenges, we
introduce a graph-based selection algorithm, Fast-
GAS, accompanied by a theoretical analysis of its
effectiveness. Our empirical evaluations reveal that
this method outperforms others in seven distinct
tasks, demonstrating exceptional efficacy. Unlike
conventional methods that require high computa-
tion costs, our method greatly improves the effi-
ciency of selecting instances, substantially enhanc-
ing its applicability to practical scenarios. Addition-

9771

ally, we demonstrate FastGAS’s versatility across
LLMs of various sizes. We hope that these in-
sights will help researchers in devising effective
ICL strategies to optimize LLM performance.

6 Limitation

The primary constraint of our study is the inabil-
ity to automatically select the most appropriate
number of partitions (K') and the most appropriate
number of neighbors (k) during the data similar-
ity graph construction. Given the relatively short
execution time of our method, conducting multi-
ple trials to identify the ideal K and k value is
viable. However, the cost of the inference phase
could restrict the feasibility of such extensive ex-
perimentation in practical settings. To enhance
efficiency, FastGAS adopts a greedy selection pro-
cess that is carried out separately for each piece.
However, we have not explored how the interrela-
tions between samples across different graph pieces
influence the overall instance selection. Addition-
ally, due to hardware limitations and available time,
our research only covered LLMs up to 7B in size.
Future investigations will aim to assess FastGAS’s
efficacy with larger LLMs and across a broader
array of tasks.

7 Ethics Statement

This work introduces FastGAS, a graph-based
selective annotation method that can effectively
and efficiently select high-quality instances for in-
context learning tasks. While acknowledging the
need for responsible usage of the proposed method,
we do not foresee major negative societal impacts.

8 Acknowledgements

This work was supported in part by the US Na-
tional Science Foundation (NSF) under awards
ECCS-2332060, CPS-2313110, ECCS-2143559,
ECCS-2033671, SI1I-2132700, IIS-2006844, IIS-
2144209, 11S-2223769, CNS2154962, and BCS-
2228534, and the Commonwealth Cyber Initiative
under awards VV-1Q23-007, HV-2Q23-003, and
VV-1Q24-011.

References

Sweta Agrawal, Chunting Zhou, Mike Lewis, Luke
Zettlemoyer, and Marjan Ghazvininejad. 2022. In-
context examples selection for machine translation.
arXiv preprint arXiv:2212.02437.

Hritik Bansal, Karthik Gopalakrishnan, Saket Dingliwal,
Sravan Bodapati, Katrin Kirchhoff, and Dan Roth.
2022. Rethinking the role of scale for in-context
learning: An interpretability-based case study at 66
billion scale. arXiv preprint arXiv:2212.09095.

Luisa Bentivogli, Peter Clark, Ido Dagan, and Danilo
Giampiccolo. 2009. The fifth pascal recognizing
textual entailment challenge. TAC, 7(8):1.

Sid Black, Leo Gao, Phil Wang, Connor Leahy, and
Stella Biderman. 2021. Gpt-neo: Large scale autore-
gressive language modeling with mesh-tensorflow.
If you use this software, please cite it using these
metadata, 58.

Vincent D Blondel, Jean-Loup Guillaume, Renaud
Lambiotte, and Etienne Lefebvre. 2008. Fast un-
folding of communities in large networks. Jour-
nal of statistical mechanics: theory and experiment,
2008(10):P10008.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877-1901.

Thang Nguyen Bui and Curt Jones. 1993. A heuris-
tic for reducing fill-in in sparse matrix factorization.
Technical report, Society for Industrial and Applied
Mathematics (SIAM), Philadelphia, PA

Hongyun Cai, Vincent W Zheng, and Kevin Chen-
Chuan Chang. 2017. Active learning for graph em-
bedding. arXiv preprint arXiv:1705.05085.

Stephanie Chan, Adam Santoro, Andrew Lampinen,
Jane Wang, Aaditya Singh, Pierre Richemond, James
McClelland, and Felix Hill. 2022. Data distributional
properties drive emergent in-context learning in trans-
formers. Advances in Neural Information Processing
Systems, 35:18878-18891.

Ting-Yun Chang and Robin Jia. 2023. Data curation
alone can stabilize in-context learning. In Proceed-
ings of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 8123-8144.

Zihan Chen, Xingyu Li, Miaomiao Yang, Hong Zhang,
and Xu Steven Xu. 2023. Optimization of deep learn-
ing models for the prediction of gene mutations using
unsupervised clustering. The Journal of Pathology:
Clinical Research, 9(1):3-17.

Patrick Ciarlet Jr and Frangoise Lamour. 1996. On the
validity of a front-oriented approach to partitioning
large sparse graphs with a connectivity constraint.
Numerical Algorithms, 12(1):193-214.

David Cohn, Les Atlas, and Richard Ladner. 1994. Im-
proving generalization with active learning. Machine
learning, 15:201-221.

9772

Bill Dolan, Chris Quirk, and Chris Brockett. 2004. Un-
supervised construction of large paraphrase corpora:
exploiting massively parallel news sources. In Pro-
ceedings of the 20th international conference on
Computational Linguistics, pages 350—es.

Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Zhiy-
ong Wu, Baobao Chang, Xu Sun, Jingjing Xu, and
Zhifang Sui. 2022. A survey for in-context learning.
arXiv preprint arXiv:2301.00234.

Charles M Fiduccia and Robert M Mattheyses. 1988. A
linear-time heuristic for improving network partitions.
In Papers on Twenty-five years of electronic design
automation, pages 241-247.

Tianyu Gao, Adam Fisch, and Dangi Chen. 2020.
Making pre-trained language models better few-shot
learners. arXiv preprint arXiv:2012.15723.

Todd Goehring and Yousef Saad. 1994. Heuristic algo-
rithms for automatic graph partitioning. Technical
report, Citeseer.

Jiabang He, Lei Wang, Yi Hu, Ning Liu, Hui Liu, Xing
Xu, and Heng Tao Shen. 2023. Icl-d3ie: In-context
learning with diverse demonstrations updating for
document information extraction. arXiv preprint
arXiv:2303.05063.

Bruce Hendrickson, Robert W Leland, et al. 1995. A
multi-level algorithm for partitioning graphs. SC,
95(28):1-14.

Junteng Jia, Michael T Schaub, Santiago Segarra,
and Austin R Benson. 2019. Graph-based semi-
supervised & active learning for edge flows. In Pro-
ceedings of the 25th ACM SIGKDD international
conference on knowledge discovery & data mining,

pages 761-771.

George Karypis and Vipin Kumar. 1998. A fast and
high quality multilevel scheme for partitioning irreg-
ular graphs. SIAM Journal on scientific Computing,
20(1):359-392.

Brian W Kernighan and Shen Lin. 1970. An efficient
heuristic procedure for partitioning graphs. The Bell
system technical journal, 49(2):291-307.

Hyuhng Joon Kim, Hyunsoo Cho, Junyeob Kim, Tacuk
Kim, Kang Min Yoo, and Sang-goo Lee. 2022.
Self-generated in-context learning: Leveraging auto-
regressive language models as a demonstration gen-
erator. arXiv preprint arXiv:2206.08082.

Jens Lehmann, Robert Isele, Max Jakob, Anja Jentzsch,
Dimitris Kontokostas, Pablo N Mendes, Sebastian
Hellmann, Mohamed Morsey, Patrick Van Kleef,
Soren Auer, et al. 2015. Dbpedia—a large-scale, mul-
tilingual knowledge base extracted from wikipedia.
Semantic web, 6(2):167-195.

Xin Li and Yuhong Guo. 2013. Active learning with
multi-label svm classification. In I[jCAI, volume 13,
pages 1479-1485. Citeseer.

Chin-Yew Lin. 2004. Rouge: A package for automatic
evaluation of summaries. In Text summarization
branches out, pages 74-81.

Jiachang Liu, Dinghan Shen, Yizhe Zhang, Bill Dolan,
Lawrence Carin, and Weizhu Chen. 2021. What
makes good in-context examples for gpt-3? arXiv
preprint arXiv:2101.06804.

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang,
Hiroaki Hayashi, and Graham Neubig. 2023. Pre-
train, prompt, and predict: A systematic survey of
prompting methods in natural language processing.
ACM Computing Surveys, 55(9):1-35.

Yao Lu, Max Bartolo, Alastair Moore, Sebastian Riedel,
and Pontus Stenetorp. 2021. Fantastically ordered
prompts and where to find them: Overcoming
few-shot prompt order sensitivity. arXiv preprint
arXiv:2104.08786.

Shashi Narayan, Shay Cohen, and Maria Lapata. 2018.
Don’t give me the details, just the summary! topic-
aware convolutional neural networks for extreme
summarization. In 2018 Conference on Empirical
Methods in Natural Language Processing, pages
1797-1807. Association for Computational Linguis-
tics.

OpenAl. 2023. Introducing GPT-3.5 Turbo. https:
//openai.com/blog/gpt-3-5-turbo. Accessed:
date-of-access.

Ashwinee Panda, Tong Wu, Jiachen T Wang, and Pra-
teek Mittal. 2023. Differentially private in-context
learning. arXiv preprint arXiv:2305.01639.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, et al. 2019. Pytorch: An imperative style,
high-performance deep learning library. Advances in
neural information processing systems, 32.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks.
arXiv preprint arXiv:1908.10084.

Marko A Rodriguez. 2008. Grammar-based random
walkers in semantic networks. Knowledge-Based
Systems, 21(7):727-739.

Ohad Rubin, Jonathan Herzig, and Jonathan Berant.
2021. Learning to retrieve prompts for in-context
learning. arXiv preprint arXiv:2112.08633.

Burr Settles. 2009. Active learning literature survey.

Burr Settles and Mark Craven. 2008. An analysis of
active learning strategies for sequence labeling tasks.
In proceedings of the 2008 conference on empirical
methods in natural language processing, pages 1070—
1079.

9773

Chengshuai Shi, Kun Yang, Zihan Chen, Jundong Li,
Jing Yang, and Cong Shen. 2024. Efficient prompt
optimization through the lens of best arm identifica-
tion. arXiv preprint arXiv:2402.09723v3.

Suzanna Sia and Kevin Duh. 2023. In-context learning
as maintaining coherency: A study of on-the-fly ma-
chine translation using large language models. arXiv
preprint arXiv:2305.03573.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D Manning, Andrew Y Ng, and
Christopher Potts. 2013. Recursive deep models for
semantic compositionality over a sentiment treebank.
In Proceedings of the 2013 conference on empiri-
cal methods in natural language processing, pages
1631-1642.

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao,
Abu Awal Md Shoeb, Abubakar Abid, Adam Fisch,
Adam R Brown, Adam Santoro, Aditya Gupta,
Adria Garriga-Alonso, et al. 2022. Beyond the
imitation game: Quantifying and extrapolating the
capabilities of language models. arXiv preprint
arXiv:2206.04615.

Hongjin Su, Jungo Kasai, Chen Henry Wu, Weijia Shi,
Tianlu Wang, Jiayi Xin, Rui Zhang, Mari Ostendorf,
Luke Zettlemoyer, Noah A Smith, et al. 2022a. Se-
lective annotation makes language models better few-
shot learners. arXiv preprint arXiv:2209.01975.

Hongjin Su, Weijia Shi, Jungo Kasai, Yizhong Wang,
Yushi Hu, Mari Ostendorf, Wen-tau Yih, Noah A
Smith, Luke Zettlemoyer, and Tao Yu. 2022b. One
embedder, any task: Instruction-finetuned text em-
beddings. arXiv preprint arXiv:2212.09741.

Derek Tam, Anisha Mascarenhas, Shiyue Zhang, Sarah
Kwan, Mohit Bansal, and Colin Raffel. 2022. Eval-
uating the factual consistency of large language
models through summarization. arXiv preprint
arXiv:2211.08412.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Ben Wang and Aran Komatsuzaki. 2021. GPT-J-
6B: A 6 Billion Parameter Autoregressive Lan-
guage Model. https://github.com/kingoflolz/
mesh-transformer-jax.

Liang Wang, Nan Yang, Xiaolong Huang, Binxing
Jiao, Linjun Yang, Daxin Jiang, Rangan Majumder,
and Furu Wei. 2022. Text embeddings by weakly-
supervised contrastive pre-training. arXiv preprint
arXiv:2212.03533.

Qunbo Wang, Wenjun Wu, Yongchi Zhao, and Yuzhang
Zhuang. 2021a. Graph active learning for gcn-based
zero-shot classification. Neurocomputing, 435:15—
25.

Shuohang Wang, Yang Liu, Yichong Xu, Chenguang
Zhu, and Michael Zeng. 2021b. Want to reduce
labeling cost? gpt-3 can help. arXiv preprint
arXiv:2108.13487.

Song Wang, Yushun Dong, Kaize Ding, Chen Chen, and
Jundong Li. 2022. Few-shot node classification with
extremely weak supervision. In WSDM.

Song Wang, Zhen Tan, Ruocheng Guo, and Jundong
Li. 2023a. Noise-robust fine-tuning of pretrained
language models via external guidance. In EMNLP.

Song Wang, Yaochen Zhu, Haochen Liu, Zaiyi Zheng,
Chen Chen, et al. 2023b. Knowledge editing for
large language models: A survey. arXiv preprint
arXiv:2310.16218.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in Neural
Information Processing Systems, 35:24824-24837.

Adina Williams, Nikita Nangia, and Samuel Bowman.
2018. A broad-coverage challenge corpus for sen-
tence understanding through inference. In Proceed-
ings of the 2018 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 1
(Long Papers), pages 1112-1122.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
et al. 2019. Huggingface’s transformers: State-of-
the-art natural language processing. arXiv preprint
arXiv:1910.03771.

Yuexin Wu, Yichong Xu, Aarti Singh, Yiming Yang, and
Artur Dubrawski. 2019. Active learning for graph
neural networks via node feature propagation. arXiv
preprint arXiv:1910.07567.

Zhiyong Wu, Yaoxiang Wang, Jiacheng Ye, and Ling-
peng Kong. 2022. Self-adaptive in-context learning.
arXiv preprint arXiv:2212.10375.

Jiacheng Ye, Jiahui Gao, Jiangtao Feng, Zhiyong Wu,
Tao Yu, and Lingpeng Kong. 2022. Progen: Pro-
gressive zero-shot dataset generation via in-context
feedback. arXiv preprint arXiv:2210.12329.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali
Farhadi, and Yejin Choi. 2019. Hellaswag: Can a
machine really finish your sentence? arXiv preprint
arXiv:1905.07830.

Shaokun Zhang, Xiaobo Xia, Zhaoqing Wang, Ling-
Hao Chen, Jiale Liu, Qingyun Wu, and Tongliang
Liu. 2023. Ideal: Influence-driven selective annota-
tions empower in-context learners in large language
models. arXiv preprint arXiv:2310.10873.

9774

Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher De-
wan, Mona Diab, Xian Li, Xi Victoria Lin, Todor Mi-
haylov, Myle Ott, Sam Shleifer, Kurt Shuster, Daniel
Simig, Punit Singh Koura, Anjali Sridhar, Tianlu
Wang, and Luke Zettlemoyer. 2022. Opt: Open pre-
trained transformer language models.

Zihao Zhao, Eric Wallace, Shi Feng, Dan Klein, and
Sameer Singh. 2021. Calibrate before use: Improv-
ing few-shot performance of language models. In In-
ternational Conference on Machine Learning, pages

12697-12706. PMLR.

9775

A General experimental conditions

Our implementation of FastGAS and baselines is primarily conducted using PyTorch (Paszke et al., 2019).
For the GPT-3.5-Turbo experiments, we utilize the OpenAl API. The models GPT-J-6B, GPT-Neo 2.7B,
Llama-2-7B-Chat, and OPT-6.7B are sourced from the Huggingface Transformers Library (Wolf et al.,
2019). All experiments are performed on a single NVIDIA RTX A6000 GPU with 48GB of memory.

B The Detailed Information of Seven Datasets

Table 4: The detailed information of seven datasets

Dataset Task
Classification MRPC (Dolan et al., 2004) Paraphrase Detection
SST-5 (Socher et al., 2013) Sentiment Analysis
DBpedia (Lehmann et al., 2015) Topic Classification

MNLI (Williams et al., 2018) Natural Language Inference
RTE (Bentivogli et al., 2009) Natural Language Inference

Multiple-Choice HellaSwag (Zellers et al., 2019) Commonsense Reasoning

Generation XSUM (Narayan et al., 2018) Summarization

C Detailed Graph Partition Algorithm

¢ Coarsening phase: The graph G is transformed into a sequence of smaller graphs G1, Go, ..., G,
such that |V| > V1| > Vo > -+ > V|-

* Partitioning phase: A 2-way partition P, of the graph G,,, = (V) &) is computed that partitions
V,, into two parts, each containing half the vertices of G.

* Uncoarsening phase: The partition F,,, of G, is projected back to G by going through intermediate
partitions Pp,—1, Py—2, ..., P1, Py

Coarsening phase Due to the construction of the data similarity graph, the degree of most vertices is
close to the graph’s average degree. To generate coarser graphs, we employ a strategy of finding a random
matching and merging the matched vertices into a multi-node (Bui and Jones, 1993; Hendrickson et al.,
1995). A graph’s matching is a set of edges, each pair of which shares no common vertex. We create a
subsequent coarser graph, G; 1, from G; by matching in G; and merging the matched vertices. We utilize
a random algorithm akin to those detailed in (Bui and Jones, 1993; Hendrickson et al., 1995).

The algorithm operates as follows: vertices are processed in a random sequence. For an unmatched
vertex u, an unmatched adjacent vertex v is randomly chosen, and the edge (u, v) is added to the matching.
If there is no unmatched adjacent vertex for u, then u remains unmatched in this random matching process.
The computational complexity of this algorithm is O(|&]).

Partitioning phase To efficiently bisect the graph, we simply initiate from a vertex and expand a region
around it using a breadth-first approach until half of the vertices are encompassed (Ciarlet Jr and Lamour,
1996; Goehring and Saad, 1994). Given that the bisection quality is highly dependent on the initial
vertex selection (Karypis and Kumar, 1998), we employ a strategy similar to (Karypis and Kumar, 1998),
wherein we randomly select 10 vertices and subsequently expand 10 distinct regions from each. The trail
yielding the smallest edge cut is then chosen for the partition.

Uncoarsening phase During the uncoarsening phase, as each vertex v € G;;1 represents a unique
subset U of vertices from G;, we derive partition P; from P, by assigning the vertices in I/ to the same
part that vertex u belongs to. Although F;;; may represent a local minimum partition for G; 1, the
corresponding partition P; might not be at a local minimum with respect to G,. To refine this uncoarsened
partition, we employ the KL algorithm (Kernighan and Lin, 1970), which iteratively searches for and
swaps subsets of vertices between partitions to achieve a lower edge cut. This swapping process continues
until no further improvements can be made, indicating that the partition has reached a local minimum.

9776

D Proof of Proposition 3.1

Proof. We employ an inductive approach to demonstrate that the node set V*¢, selected by the greedy
algorithm, satisfies the maximum cover property,

Vel = argmax |{(u, v)|u, v € V} + |{(u,v)|u € V and v € G\ V}| (2)
Vi=n

When n = 1, V*¢! = {v'}. Thus,
{(u,v)|u €V and v € G\ V}| = degree(v!) and |{(u,v)|u,v € V}| = 0.

By selecting v; = argmax, g d(v), the maximum cover property holds for n = 1.
Assume it holds for n = k, let Vi denotes the selected node set at the budget k and Vi<, = ViclU{vF+1}
For the first term in Eq. 2, we have

[{(w, 0)u, 0 € VRE1H = {(w, v)lu, v € VEH + {(w, o) Ju € VR 3

For the second term in Eq. 2, we have

{(u,v)lu € Vi) and v € G\ Vi }
=[{(u,v)|u € Vi and v € G\ V{1 + {(0",0)| v € G\ VI @
=[{(u,v)lu € Vi and v € G\ VI H + {(0" 1 0)| v e G\ VY
=[{(u,v)lu € Vi and v € G\ VY = [{(u, ") ju € VY + [{(o"H o) v € G\ VY.
The second equality sign holds because
{0l v € G\ VI H = {(@"+, o)l v € G\ ViR — {051, 0)] v € Vi \ Vi,
{1 o) v e VI \ Wi} = {0, 0)| v e (M1} = 0.
We then combine Eq. 3 and Eq. 4 and obtain that
[, 0) v € Vi + {(w0)lu € Vit and v € G\ Vith)|
={(u, v)|u, v € Vi + [{(u, ") |u € VI + [{(w,0)[u € Vi and v € G\ VY] 5

= {lu,v* D € VI + {0 0) v e G\ Vi
=[{(u, v)u,v € VEU} + {(u,0)|u € Vi and v € G\ VY + {(*H,0)| v € G\ Vi

Since V,jel satisfies that

Vil = argmax |{(u, v)|u,v € V}| + [{(u,v)|u € V and v € G\ V}|,
V|=k

and from the algorithm, we have

"l = argmax degree(v) = argmax |{(v,u)| u € G\ Vi¢}|.

veG\{v;|i€[1,k]} veG\ Vi
Thus
Vit = Vit u (o)

= argmax |[{(u,v)|u,v € V}| + [{(u,v)|lu € V and v € G\ V}|.
V| =k+1

In conclusion, given the budget n and graph G, the V*¢ returned by the greedy algorithm satisfies the
property in Eq.2. O

9777

E Example Prompt of Each Task

E.1 MRPC

Input: Are the following two sentences ‘equivalent’ or ‘not equivalent’?

Excluding autos, retail sales rose by 0.3 % in September, lower than a forecast rise of 0.5 % ..
Retail sales fell 0.2 percent overall in September compared to forecasts of a 0.1 percent dip ..
answer:

Output: not equivalent

E.2 SST-5

Input: How do you feel about the following sentence?

... the film’s considered approach to its subject matter is too calm and thoughtful for agitprop, and the
thinness of its characterizations makes it a failure as straight drama.

answer:

Output: very negative

E.3 MNLI

Input: Quite an hour, or even more, had elapsed between the time when she had heard the voices and 5
o’clock when she had taken tea to her mistress. Based on that information, is the claim A day had passed
from when she’d taken the tea in. "True," "False," or "Inconclusive"?

answer:

Output: False

E.4 DBpedia

Input: title: Grace Evangelical Lutheran Church (Minneapolis Minnesota); content: Grace Evangelical
Lutheran Church is a church in Minneapolis, Minnesota, United States, adjacent to the University of
Minnesota East Bank campus. The church was built in 1915-1917 by a Swedish Lutheran congregation to
serve university students. It was designed by Chapman and Magney and built in the Gothic Revival style.
The congregation was organized in Minneapolis in 1903 by the Swedish immigrant-dominated Augustana
Evangelical Lutheran Church.

Output: building

E.5 RTE

Input: He met U.S. President, George W. Bush, in Washington and British Prime Minister, Tony Blair,
in London..

question: Washington is part of London. True or False?

answer:

Output: False

E.6 Hellaswag

Input: The topic is Cleaning sink. A middle aged female talks about a cleaning product. The female
opens a container of cleaner and puts it on a rag. the female,
Options: ["then inflames a different cleaner to clean a sock.", "uses the rag to spray down a wall.",

non

"washes the rug thoroughly and scratches it.", "then uses the rag to rub the inside of the sink."]
Output: then uses the rag to rub the inside of the sink.

9778

E.7 Xsum

Input: Stead curled home with 14 minutes remaining to cap a fine comeback at the Northern Gas and
Power Stadium after Louis Lang cancelled out Toto Nsiala’s opener. Hartlepool flew out of the blocks and
took an eighth-minute lead when Nsiala bundled home at the back post after Lewis Alessandra beat his
man and sent in a pin-point cross.

Substitution, Notts County. Vadaine Oliver replaces Jonathan Forte because of an injury. Attempt saved.
Nathan Thomas (Hartlepool United) right footed shot from the left side of the box is saved in the bottom
right corner. Corner, Hartlepool United. Conceded by Matt Tootle. Attempt missed. Michael Woods
(Hartlepool United) right footed shot from outside the box is close, but misses the top right corner. Foul by
Billy Paynter (Hartlepool United). Stanley Aborah (Notts County) wins a free kick in the attacking half...
Output: Jon Stead struck the winner as Notts County came from behind to earn victory at Hartlepool

United in League Two.

F Detailed Main Results

In Section 4.2, we present the average evaluation outcomes of various methods across three random
trials. This section offers comprehensive results for FastGAS and two current baselines, detailing mean,
maximum, and minimum values. It is evident that FastGAS consistently delivers superior performance
across the majority of trials. Furthermore, FastGAS’s performance in the least favorable scenarios is
markedly better than that of the baselines in most instances.

Table 5: Mean/Maximum/Minimum performance of FastGAS and two baselines across the first four tasks in Table 1
over three trials. The best average performance for each task is highlighted in bold.

Methods MRPC SST-5 MNLI DBpedia
100 Vote-k 64.60/68.75/62.11 46.61/47.27/46.09 38.93/43.75/35.55 89.19/89.84/88.67
100 IDEAL 65.49/66.02/64.84 49.87/52.73/46.09 41.02/41.41/40.23 90.63/91.41/89.45
100 FastGAS 66.15/69.14/62.89 50.26/55.86/42.58 42.06/43.75/41.02 90.76/92.19/88.28
18 Vote-k 56.90/67.19/47.27 41.78/45.70/37.11 39.45/42.19/37.11 88.02/91.02/83.59
18 IDEAL 63.80/67.19/59.77 44.92/48.82/41.79 39.58/41.80/37.50 83.20/85.94/81.64
18 FastGAS 65.23/71.88/55.47 46.61/48.04/45.70 44.53/47.66/41.02 88.93/92.58/84.77

Table 6: Average/Maximum/Minimum performance of FastGAS and two baselines across the first four tasks in

Table 1 over three trials. The best performance for each task is highlighted in bold.

Methods RTE HellaSwag Xsum
100 Vote-k 57.68/58.20/57.42 65.89/69.14/64.06 19.55/19.94/19.13
100 IDEAL 58.98/60.94/57.42 64.97/69.53/61.72 19.68/19.77/19.58
100 FastGAS 61.98/63.28/60.55 67.45/71.88/65.23 20.00/20.55/19.59
18 Vote-k 56.64/57.81/55.86 66.02/71.09/63.28 19.45/20.45/18.30
I8 IDEAL 53.65/55.47/52.34 65.89/70.70/63.28 19.21/20.09/18.76
18 FastGAS 56.51/57.81/54.69 66.67/69.92/64.84 20.26/20.65/19.63

G Complexity Analysis of FastGAS

In this section, we provide the complexity analysis of FastGAS. There are three phases in graph partitioning
in FastGAS: the coarsening phase, the partitioning phase, and the uncoarsening phase. In the coarsening
phase, we apply a random matching algorithm, which at most traverses all edges with the complexity
O(|€]). For the partitioning phase, we apply a breadth-first approach to efficiently bisect the graph, and

9779

the complexity of the breadth-first approach O(|€| + |V|). For the uncoarsening phase, the complexity of
the KL algorithm can be reduced to O(|€|) (Fiduccia and Mattheyses, 1988). Thus, the complexity of a
2-way partition is O(|€| + |V|). We bisect the graph log K times to get the K -way graph partitioning;
the complexity of graph partitioning in FastGAS is O((|€] 4 |V|)logK). For the greedy selection in
FastGAS, it takes O(|V|/K) time to select each node on the subgraphs, thus selecting M /K on each of
the K subgraphs needs O(|V|M/K), where M is the annotation budgets. In general, the complexity of
FastGAS is O(|V|M/K + (|€] + |V|)logK), which means the complexity of FastGAS is linear to the
size of node set and edge set.

H Evaluation on Differeny Text Embedding Models

In FastGAS, we use Sentence-BERT as our embedding method and demonstrate the superior performance
of FastGAS. In this section, we compare FastGAS with baselines using other text embedding models such
as ES (Wang et al., 2022) and InstructOR (Su et al., 2022b). The experiment results of different embedding
models are presented below. The findings reveal that FastGAS consistently achieves top performance (five
out of six) across different embedding models. This underscores the adaptability of our method, which is
effective with various embedding models beyond just Sentence-BERT.

Table 7: The average performance of FastGAS and baselines under various text embedding models with the
annotation budget of 18.

Method Model MRPC MNLI RTE

Vote-k ES 57.81 3997 55.99
IDEAL E5 62.37 39.58 55.99
FastGAS E5 61.98 40.49 56.25

Vote-k InstructOR 59.77 40.49 56.25
IDEAL InstructOR 63.68 41.15 55.73
FastGAS InstructOR 63.80 41.41 60.29

9780

