
WonderWorld: Interactive 3D Scene Generation from a Single Image

Hong-Xing Yu1* Haoyi Duan1* Charles Herrmann1 William T. Freeman2 Jiajun Wu1

1Stanford University 2MIT

“Venetian Market”
“Venice”

“Market Place”

“Street”

“Harbor”
“Colorful Houses”

“Tree”

“Bridge”

Input image Generated 3D scenes

Input imageInput image

”Rocks”

“Temple”

“Street”

“Downtown”

“Garden”

“Flat House”

“Mountain”“Waterfall” “Market Place”“Cafe”

“Bird”

“Reef Rock”
“Road”“Seashore”

Generated 3D scenesGenerated 3D scenes

User interaction

Figure 1. Starting with a single image, a user can interactively generate connected 3D scenes with diverse elements. The user can specify scene
contents via text prompts and specify the layout by moving cameras (e.g., panorama-like camera paths as in the top row, or casual-walk camera
paths as in the bottom row). We recommend seeing the interactive generation process at https://kovenyu.com/WonderWorld/.

Abstract
We present WonderWorld, a novel framework for inter-

active 3D scene generation that enables users to interac-
tively specify scene contents and layout and see the created

*Equal contribution.

scenes in low latency. The major challenge lies in achiev-
ing fast generation of 3D scenes. Existing scene genera-
tion approaches fall short of speed as they often require
(1) progressively generating many views and depth maps,
and (2) time-consuming optimization of the scene geometry
representations. Our approach does not need to generate

1

ar
X

iv
:2

40
6.

09
39

4v
4

 [c
s.C

V
]

25
 M

ar
 2

02
5

https://kovenyu.com/WonderWorld/

multiple views, and it leverages a geometry-based initializa-
tion that significantly reduces optimization time. Another
challenge is generating coherent geometry that allows all
scenes to be connected. We introduce the guided depth
diffusion that allows partial conditioning of depth estima-
tion. WonderWorld creates connected and diverse 3D scenes,
each generated in less than 10 seconds on a single A6000
GPU, enabling real-time user interaction and exploration.
We release full code, software, and interactive demos in
https://kovenyu.com/WonderWorld/.

1. Introduction
Recently, 3D scene generation has surged in popularity, with
many works successfully exploring strong generative im-
age priors and improvements in monocular depth estima-
tion [8, 50, 67, 68]. However, existing 3D scene generation
approaches are offline, where the user provides a single start-
ing image or text prompt, and then the system, after tens of
minutes to hours, returns a fixed 3D scene or a video of the
scene. While offline generation may work for small, isolated
scenes or videos, this setup is problematic for many scene
generation use cases. For example, in game development,
world designers want to iteratively build 3D world proto-
types step-by-step. This requires having control over the
scene contents and layouts while being able to see genera-
tion outcomes with low latency. In VR and video games,
users expect a world that is larger and more diverse than the
scenes currently generated. In the future, users may desire
even more: a system that allows them to freely explore and
shape a dynamically evolving, infinite virtual world. All of
these motivate the problem of interactive 3D scene genera-
tion, where the user can control what and where to generate
(or extrapolate) a new 3D scene and see how it fits into a
world in low latency.

The major bottleneck that prevents interactivity is the low
speed of generation. Each generated scene typically requires
tens of minutes on two main steps: (1) Progressively gener-
ating dense multi-view images and aligning depth maps to
cover occluded regions [8, 50, 67]. (2) Spending a consider-
able amount of time optimizing the 3D scene representations
to shape appropriate geometry and appearances [17, 20, 71].
Besides speed, another challenge is that the generated scenes
have strong geometric distortion along the scene boundary
due to misalignment or inaccuracy of estimated depth maps,
creating seams among generated scenes.

In this work, we propose a framework named Wonder-
World for interactive scene generation. Our input is a single
image that depicts the starting scene, as well as online user
controls of camera movement and content prompts. Our
output is a set of coherently connected 3D scenes, forming a
comprehensive world, according to the online user controls.
To address the speed issue, our core technique includes a

novel scene representation, Fast LAyered Gaussian Surfels
(FLAGS), and the algorithm to generate it from a single view.
This allows generating a scene (i.e., the visual and geomet-
ric content conditioned on a text prompt and any existing
scenes) in less than 10 seconds on a single GPU. To miti-
gate the geometry distortion problem, we introduce a guided
depth diffusion method to improve the alignment between
the geometry of the newly generated scenes and existing
scenes.

WonderWorld unlocks the potential for interactive scene
generation, allowing users to extrapolate a single image
into a vast and immersive 3D world. Our approach enables
new possibilities for applications in virtual reality, gaming,
and creative design, where users can quickly generate and
explore diverse 3D worlds. In summary, our contributions
are three-folded:
• We propose WonderWorld, the first approach that enables

interactive 3D scene generation where a user can interac-
tively create diverse, connected scenes with low latency.

• We introduce the FLAGS representation for fast scene
generation and the algorithm to generate it from a single
view. We further introduce the guided depth diffusion to
mitigate geometry distortion.

• We showcase and evaluate interactive generation on vari-
ous examples, such as nature, city, and campus.

2. Related Work

Novel view generation. Many works on generating novel
views from a single image attempted to construct render-
able 3D scene representations, such as layered depth im-
ages [49, 56], radiance fields [52, 54, 66], multi-plane im-
ages [55, 73], and point features [42, 59]. Yet, they only
supported generating views within small viewpoint changes
w.r.t. the input image, as they only built single static scene
representations that do not go beyond the input image. Our
FLAGS representation integrates the technical ideas from
layered representations [48, 73] and radiance fields [28],
yet we focus on a generative task to support creating many
connected scenes rather than a single one.
3D world generation. Later works explored generating
more significant viewpoint changes and potentially multiple
connected scenes. Early examples of extended scene gener-
ation focused on extending a single image into a perpetual
video with a given camera trajectory: Infinite Images [25]
used image stitching, and Infinite Nature [37] and its follow-
up works [5, 6, 35] used image generation models special-
ized to nature images. Since the advent of generative diffu-
sion models, subsequent work has expanded the scope and
domain of this work. BlockFusion [61] generates triplanes
to represent expandable terrains. SceneScape [15] generates
perpetual scenes from a single prompt. WonderJourney [67]
instead uses an LLM to generate diverse content and a point

2

https://kovenyu.com/WonderWorld/

cloud representation for the scenes. WonderJourney is most
relevant in that it also aims to generate a sequence of diverse
scenes, yet it runs offline and requires tens of minutes to gen-
erate a single scene as it requires synthesizing dense views in
each scene. Another line of work in large-scale world genera-
tion focuses almost entirely on cities [36, 62, 63], producing
large-scale 3DGS representations.
3D scene generation. Recently, scene generation meth-
ods have focused primarily on a single, local 3D area, with
many explicitly focusing on indoor scenes [2, 10, 20, 21, 33].
Recent methods [11, 43, 65, 72] such as Text2NeRF [71],
LucidDreamer [8], and CAT3D [17] generate multi-view
images of a scene, and RealmDreamer [50] and Dream-
Scene [34] distill multi-view image and depth to generate a
3D scene. Another line of relevant work focuses on single-
image 3D scene reconstruction by explicit pose-conditioning
or training on scenes [7, 47, 53, 68]. While these approaches
demonstrate improvements in the quality of 3D scene gener-
ation, they are offline processes generating a fixed scene that
is then provided to the user. Since the scene is fixed, their
methods do not allow user interaction, e.g., not enabling
the user to choose what and where they want to see. We in-
stead address the problem of interactive 3D scene generation,
which requires significant improvements for fast generation
and extrapolation.
Video generation. Recent improvements in video gener-
ation [1, 3, 4, 31] have led to interest in whether these
models can also be used as scene generators. Several works
have attempted to add camera control, allowing a user to
“move” through the scene [18, 58]. While these techniques
are promising, they currently do not guarantee 3D consis-
tency and they remain too slow to be interactive.
Fast 3D scene representations. Substantial progress has
been made in the last several years regarding the quality and
speed of 3D representations; the seminal NeRF [40] paper
was followed by Plenoxels [16], InstantNGP [41], and finally
3D Gaussian Splatting (3DGS) [28] and InstantSplat [14].
In the context of 3DGS, researchers also revisited the tra-
ditional idea of surfels [44, 51] for high-quality geometry
reconstruction [9, 22]. While the main focus of these Gaus-
sian surfel methods is improving reconstruction quality, we
are the first to use surfels to speed up the scene representation
optimization by a principled geometry-based initialization.

3. Approach

Formulation. We target interactive 3D scene generation.
Our goal is to generate a set of diverse yet coherently con-
nected 3D scenes {E0, E1, . . .} from an initial image I0, as
well as runtime user controls of camera movements Cgen
and text prompt U for each scene (Figure 1). Note that we
define a single scene, Ei, as the visual and geometric content
of a text prompt, designed to be consistent with the prior

scenes. To this end, we propose WonderWorld, a framework
that allows real-time rendering and fast scene generation and
extrapolation.
Overview. We show an illustration of our WonderWorld
framework in Figure 2. We start by generating a 3D scene
from an input image. Then, the outer control loop keeps
iterating over two main steps: generating a scene image and
generating FLAGS from the scene image. A user can control
where to generate a new scene by moving the camera, and
control the contents by providing a prompt. The new scene
can be an extrapolation of existing scenes or a standalone
scene to be connected later. We summarize the control loop
in Alg. 1 in the supplementary material.
Challenges. The major technical challenge is that we need
fast scene generation to allow interactivity. Prior scene
generation methods are slow because they need to progres-
sively generate dense views [8, 20, 50, 67, 71] and spend a
long time optimizing scene geometry (e.g., NeRF [17, 71],
mesh [20], and 3DGS [8, 50]). We propose the Fast LAyered
Gaussian Surfels (FLAGS, Sec. 3.1) and an algorithm to
generate it from a single image. Our approach is fast for
two reasons. First, it removes the need for progressive dense
view generation to inpaint occluded contents. Instead, we
generate geometric layers from a single view and inpaint oc-
cluded contents at the layer level. Second, our representation
design enables fast optimization. In particular, our geometry-
based initialization significantly reduces the optimization
time of a single layer to < 1 second. Thus, WonderWorld
allows fast scene generation within 10 seconds per scene and
real-time rendering, simultaneously on a single GPU.

Another challenge is the geometric distortion that cre-
ates seams when connecting two scenes. To mitigate it, we
propose to utilize the guided depth diffusion to generate
geometry (Sec. 3.2).

3.1. Fast LAyered Gaussian Surfels (FLAGS)

Definition. We introduce the FLAGS to represent a gen-
erated 3D scene. Each scene E is a radiance field repre-
sented by three radiance field layers E = {Lfg,Lbg,Lsky},
where Lfg/Lbg/Lsky denotes a foreground/background/sky
layer. Each layer contains a set of surfels.1 For example,
the foreground layer Lfg = {pi,qi, si, oi, ci}

Nfg
i=1 consists

of Nfg surfels, where each surfel is parameterized by its 3D
spatial position pi, orientation quaternion qi, scales of the
x-axis and y-axis si = [si,x, si,y], the opacity oi, and the
view-independent RGB color ci. The Gaussian kernel of a
surfel is given by (omitting the index i):

G(x) = exp(→1

2
(x→ p)T

!
→1(x→ p)), (1)

1In contrast to a traditional surfel that carries a solid piece of surface,
each surfel in FLAGS carries a small radiance field.

3

Guided depth

diffusion

Guided depth

diffusion

Input image Guided depth

Single-view

layer generation

Initial 3D scene

User moves

camera

Text-guided

outpainting

New scene imageRendered Rendered depth Guided depth New 3D scene

Guidance

Guidance

Ground depth

LLM

Layer images

Optimize FLAGS

Layer generation

&

Optimize FLAGS
User specifies scene

Figure 2. The proposed WonderWorld: Our system takes a single image as input and generates connected diverse 3D scenes. Users can
specify where (by moving the real-time rendering camera) and what to generate (by typing text prompts) and see a generated scene in less
than 10 seconds. We summarize the outer control loop in Alg. 1 in the supplementary material.

where the covariance matrix Σ is constructed from the scales
and the rotation matrix Q that can be obtained from the
quaternions q. The covariance matrix is

Σ = Qdiag
(
s2x , s

2
y , ϵ

2
)
QT, (2)

where ϵ ≪ min(sx, sy) is a tiny number that allows a small
thickness for the surfel to increase representational expres-
siveness.

During generation, we generate each layer separately.
During rendering, we view the scene E as a union of all three
layers, i.e.,

E = Lfg∪Lbg∪Lsky = {pi,qi, si, oi, ci}
Nfg+Nbg+Nsky
i=1 , (3)

where Nfg/Nbg/Nsky denotes the number of surfels. Notice
that FLAGS can be seen as a variant of 3DGS, where every
Gaussian kernel’s z-axis shrunk to a tiny number, and it re-
moves view-dependent colors. Thus, we can utilize the same
differentiable rendering pipeline (i.e., 3D-to-2D projection
and alpha blending) as 3DGS [28] for rendering FLAGS.
Single-view layer generation. We generate FLAGS from a
single scene image Iscene. We leverage a text-guided diffu-
sion model to generate the scene image. To generate diverse
and rich contents [67], we utilize a Large Language Model
(LLM) gLLM to generate a structured scene description

T = {F ,B,S} = gLLM(J ,U), (4)

where F ,B,S denote the foreground object prompt, back-
ground prompt, and style prompt of the current scene, re-
spectively. U denotes a user text input to specify the scene to
generate, e.g., “university pathway”. J denotes the instruc-
tion prompt, which we detail in the supplementary material.

To uncover and inpaint the occluded regions in the gen-
erated scene image, we introduce a single-view layer gen-
eration method. Formally, given a scene image Iscene ∈

[0, 1]3×H×W , the goal here is to generate three layer im-
ages Ifg, Ibg, Isky ∈ [0, 1]3×H×W and their corresponding
binary masks to indicate valid pixels Mfg,Mbg,Msky ∈
{0, 1}H×W . The valid pixels in each layer will be used
to generate surfels in that layer. We show an example of
masked layer images in the top row of Figure 2.

We discover the foreground layer using depth edges and
object segmentation. Given an estimated depth map D, we
compute a significant depth edge mask E ∈ {0, 1}H×W

whose element Eh,w = 1 if ∥∇Dh,w∥2 > T where ∇Dh,w

denotes the spatial gradient of an element of D and T de-
notes a threshold value, and Eh,w = 0 otherwise. Then we
generate a set of object masks {Ok |∈ {0, 1}H×W } with a
pretrained segmentation network [23]. The foreground mask
Mfg is given by the union of object masks that overlap the
significant depth edge mask:

Mfg =
⋃

k

Ok : ∥Ok ⊙E∥ > 0, (5)

where ⊙ denotes element-wise product, and
⋃

denotes
element-wise “or”. The foreground layer image is given
by Ifg = Iscene ⊙Mfg.

We define the background layer mask as Mbg = 1−Mvis,
where Mvis denotes a visible sky mask given by a pretrained
segmentation network [23]. Since the background layer
image is occluded by the foreground layer at Mfg, we gen-
erate it by Ibg = Mbg ⊙ Iinpaint(Iscene,Mfg, {B,S}), where
Iinpaint denotes a text-guided diffusion inpainting model that
inpaints the contents {B,S} at the region Mfg of the image
Iscene. As for the sky layer, since its geometry is an enclosing
dome, we set the valid mask Msky = 1 and we generate the
sky image Isky = Iinpaint(Iscene,1−Mvis, {“sky”,S}).
Geometry-based initialization. Optimizing 3D scene rep-
resentations to shape appropriate geometry and appearances

4

!

"

!

" #

Slant surfaceSurface parallel to image plane

$! $!

Figure 3. Scale initialization of FLAGS: The sampling interval at a
surfel is given by TN = d/(f cos θ).

takes a long time in prior methods [8, 17, 20, 50, 71]. The
core idea of our fast optimization is that, instead of optimiz-
ing the scene geometry from scratch, most of our FLAGS
geometry parameters are well initialized, so that the opti-
mization is conceptually a “fine-tuning” stage that needs
much less time than previous methods.

Our geometry-based initialization is enabled by two key
design choices. The first design choice is the pixel-aligned
generation which allows leveraging pixel-aligned estimated
geometry. Formally, given a layer image, e.g., the foreground
layer image Ifg, we generate Lfg that has Nfg surfels to rep-
resent the underlying 3D scene layer. We assume that each
surfel in Lfg mainly corresponds to a valid pixel in Ifg, so
that the number of surfels equals the number of valid pixels
for that layer, i.e., Nfg = ∥Mfg∥F. Therefore, the color c of a
surfel is initialized as the RGB values of the pixel. A surfel’s
position p can be initialized by finding the corresponding
pixel’s 3D position:

p = R−1(d ·K−1[u, v, 1]T −T), (6)

where u, v denote the pixel coordinates, K denotes the intrin-
sic camera matrix, R denotes the rotation matrix, T denotes
the translation vector of the current camera, and d denotes
the estimated monocular depth of the pixel.

The other key design choice is the surfel representation,
which has a well-defined normal concept for initializing
orientations and scales. Specifically, the normal direction of
a surfel can be defined as the third column Qz of the surfel’s
rotation matrix Q = [Qx,Qy,Qz]. Thus, to initialize the
orientation of a surfel, we construct the rotation matrix Q
from an estimated pixel normal nc:

Qz = n, Qx =
u× n

∥u× n∥ , Qy =
n×Qx

∥n×Qx∥
, (7)

where u = [0, 1, 0]T denotes a unit up-vector, n = R−1ncam
denotes an estimated normal of the pixel in the world-frame,
and ncam denotes the camera-frame normal estimated from
the layer image Ifg.

For the scale s, our goal is to find an appropriate initial-
ization that meets two requirements: (1) It should minimize
rendering aliasing; that is, it should not be too small, which
would cause holes when slightly changing viewpoints (e.g.,
moving closer to a scene). (2) It should avoid overly big
surfels that cause a lot of screen space overlapping to slow

down the optimization. Formally, let the spatial sampling
interval of an image (i.e., pixel size) be 1, then the sampling
interval at a surfel is TN = d/(f cos θ) where θ denotes
the angle between the surfel normal n and the image plane
normal nimg = [0, 0,−1]T, and f denotes the focal length
(Figure 3). According to the Nyquist sampling theorem, the
maximum signal frequency should be 1/(2TN). Setting the
signal frequency of a surfel to be inverse bandwidth of its
Gaussian kernel 1/(2ksx), we can solve for the initialization
of the scales:

sx = d/(kfx cos θx), sy = d/(kfy cos θy), (8)

where k =
√
2 denotes a hyperparameter that defines the

Gaussian bandwidth, cos θx denotes the cosine between n
and nimg after both being projected to the XoZ plane. In-
tuitively, the initialized surfels provide seamless coverage
of the visible surface without significant overlap. Yet, the
screen space overlaps still exist due to Gaussian tails. There-
fore, we initialize the surfel opacity o = 0.1 for sufficient
gradient to fine-tune the parameters.
Optimization. Our optimization of the layers goes from
back to front. That is, we first optimize the sky layer Lsky
with the masked photometric loss L = 0.8L1 + 0.2LD-SSIM
against the sky layer image Isky. Then, we optimize the
background layer Lbg on top of the frozen sky layer Lsky
against the background-sky composed image Mbg ⊙ Ibg +
Mvis ⊙ Isky. Finally, we optimize the foreground layer Lfg
on top of both the frozen background layer Lbg and the
frozen sky layer Lsky, against the scene image Iscene. We
optimize for the opacity, orientation, and scales, but not for
colors and spatial positions. Our optimization includes 100
iterations using Adam [29]. There is no densification [28].
We summarize our FLAGS generation algorithm in Alg. 2
in the supplementary material.

3.2. Guided Depth Diffusion
A fundamental challenge in generating connected 3D scenes
is the geometric distortion due to the inconsistency between
the estimated depth and the existing geometry. Formally, let
Dguide of size H×W be the depth map rendered from visible
existing contents at an outpainting camera viewpoint with
a binary mask Mguide ∈ {0, 1}H×W to indicate visible re-
gions, and let Dscene be the estimated depth for an outpainted
new image Iscene. Then, we generally observe a strong dis-
crepancy between Dguide ⊙Mguide and Dscene ⊙Mguide.

To mitigate this issue, we introduce a training-free guided
depth diffusion. Our guided depth diffusion leverages an
off-the-shelf latent depth diffusion model [27, 46]. In
short, a latent depth diffusion model samples a depth map
from an image-conditioned depth distribution p(Dscene |
Iscene) by gradually denoising a randomly initialized la-
tent depth map dT with a learned denoising U-Net, ϵt =
UNet(dt, Iscene, t), where ϵt denotes predicted noise and

5

Noisy depth latent

& image latent

Predicted noiseDenoising

U-Net

(a) Latent depth diffusion

(b) Guided depth diffusion (Ours)

Guided denoising

! !!! !!!!"
Predicted noise Existing geometry Pre-decoded

! T

Decoded depth

Figure 4. Illustration of guided depth diffusion. The colored patches
indicate that depth is computed in latent space.

t denotes a time step. The generated depth is given by a
VAE decoder Dscene = Decoder(d0), where d0 is given
by recursive denoising dt−1 = Denoise(dt, t, ϵt). Here
Denoise denotes the denoising routine [26]. We show an
illustration in Figure 4 (a).

The main idea of our guided depth diffusion is to for-
mulate the depth estimation of an extrapolated scene as
sampling from a depth distribution conditioned on both
the scene image and the partially visible depth, p(Dscene |
Iscene,Dguide,Mguide). To this end, we inject the partially
visible depth as guidance by modifying the denoiser as

dt−1 = Denoise(dt, t, ϵ̂t), (9)
ϵ̂t = UNet(dt, Iscene, t)− stgt, (10)

gt = ∇dt∥Dt−1 ⊙Mguide −Dguide ⊙Mguide∥2, (11)

where ϵ̂t denotes the guided denoiser, Dt−1 denotes the
pre-decoded depth map, and st denotes the guidance weight.
The guidance term gt encourages generating a depth map
that is consistent with visible existing depth Dguide, leading
to much smoother geometry extrapolation. We show an
illustration in Figure 4 (b).

In the supplementary material, we further describe our
accelerated depth guidance implementation, relation to other
guidance methods [12, 19, 39], and how we use guidance
for rectifying the ground plane depth.

4. Experiments

Baselines. As we are not aware of any prior method that
allows interactive 3D scene generation, we consider repre-
sentative methods in perpetual 3D scene generation (Wonder-
Journey [67]), general scene generation (LucidDreamer [8]),
and indoor scene generation (Text2Room [20]). These meth-
ods use different scene representations: WonderJourney uses
point clouds, LucidDreamer uses 3DGS, and Text2Room
uses meshes. We use these baselines’ official codes for com-
parison. We demonstrate examples of interactive 3D scene

WonderJourney [67] LucidDreamer [8] Text2Room [20] Ours

749.5 seconds 798.1 seconds 766.9 seconds 9.5 seconds

Table 1. Time costs for generating a scene on an A6000 GPU.

CS↑ CC↑ CIQA↑ Q-Align↑ CA↑

WonderJourney [67] 27.34 0.9544 0.6443 2.7170 5.6007
LucidDreamer [8] 26.72 0.8972 0.5260 2.7355 5.2935
Text2Room [20] 24.50 0.9035 0.5620 2.6495 5.5244
WonderWorld (ours) 29.47 0.9948 0.6512 3.6411 5.9543

Table 2. Evaluation on novel view renderings. “CS” denotes CLIP
score, “CC” denotes CLIP consistency, “CIQA” denotes CLIP-
IQA+, “CA” denotes CLIP Aesthetic score.

generation in our supplementary website and strongly en-
courage readers to view it first. We collect publicly available
real images and generate synthetic images as our testing ex-
amples, and we also use examples from WonderJourney [67]
and LucidDreamer [8].

Evaluation metrics. For qualitative comparison with the
baselines, we generate 7 scenes for each of 4 test examples,
forming 28 scenes in total. The test examples include both
real and synthetic images of city, campus, nature, and fantasy
scenes. We use a fixed panoramic camera path instead of
letting a user interactively move to automate the evaluation
and make consistent camera placement. We use the same
camera path for all methods. We slightly reduce camera dis-
tances for baseline methods as they display overwhelming
distortion when using the same distant camera placement as
ours. We use the same text prompts for all methods. For
generation speed, we measure the time cost of generating
a scene. For quality comparison, we adopt the following
evaluation metrics: (1) We collect 204 human study two-
alternative force choice (2AFC) results on bird-eye view
renderings (more details in the supplementary material); (2)
To evaluate novel view consistency, we render 9 sudoku-like
novel views around each generated scene, and compute two
metrics: CLIP [45] scores (CS) of the scene prompt versus
the rendered image, and CLIP consistency (CC) measured
by cosine similarity of the image CLIP embeddings between
each novel view and the central view; (3) We evaluate ren-
dered novel view image quality with CLIP-IQA+ [57] and
Q-Align [60] score; (4) We also measure the aesthetics of
novel views by the CLIP aesthetic score [45].

Implementation details. In our implementation, we use
the Stable Diffusion Inpaint model [46] as our outpainting
model. We also use it for inpainting the background layer
and sky layer, and for text-to-image generation. We use
OneFormer [23] to segment the sky and foreground objects.
We estimate normal using the Marigold Normal [27]. We
use Marigold Depth [27] as our depth diffusion model. We
leave more details in the supplementary material. We have
released full code and software for reproducibility.

6

WonderWorld (Ours)

LucidDreamer

WonderJourney

WonderWorld (Ours)

LucidDreamer

WonderJourney

Text2room Text2room

Figure 5. Baseline comparison. The inset is the input image. We use a fixed panoramic camera path for evaluation.

vs. WonderJourney [67] vs. LucidDreamer [8] vs. Text2Room [20]

98.5% 98.6% 98.0%

Table 3. Human 2AFC preference on bird-eye view rendering. The
number in each column is the rate of preference of WonderWorld
generated results over the compared method.

4.1. Results

Interactive 3D scene generation. Firstly, we showcase in-
teractive 3D scene generation results with different camera
placements in Figure 1, including a panoramic camera path
and two casual walking camera paths. We observe the di-
versity and coherence among the generated scenes in each
example. We show more video results of different camera
paths in our “generated virtual world” session, and interac-
tive viewing examples in the “interactive viewing” session
on our supplementary website. We show more panoramic
camera paths in Figure 10, 11, 12 in supplementary material.
From these examples, we validate that our WonderWorld
works with diverse scene types such as cities, nature, fantasy,
ancient towns, villages, and university campuses.

Generation speed. Since we focus on making 3D scene
generation interactive, we report the scene generation time
cost. We show the scene generation time for a single scene in
Table 1. From Table 1 we see that even the fastest previous
method, WonderJourney, takes more than 700 seconds to

generate a single scene, spending most of its time generating
multiple views to fill in the holes between the existing scene
and the newly generated scene. LucidDreamer generates a
slightly extended scene from the input image and spends
most of its time generating multiple views, aligning depth
for these views, and training a 3DGS to fit them. In general,
prior approaches need to generate or distill multiple views
and optimize their 3D scene representations for a significant
amount of time. We accelerate the scene generation by our
FLAGS. We show an analysis of our time cost in Table 5
in supplementary material. Since diffusion model inference
(outpainting, layer inpainting, depth, and normal estimation)
takes the most time, our method will benefit from future
advances in accelerating diffusion inference.

Qualitative comparison. We show a qualitative comparison
using the same input image, panoramic camera path, and
text prompts for our WonderWorld and the baseline methods
in Figure 5 and in supplementary material (Figure 15). We
observe that WonderWorld generates much higher-quality
scenes compared to the baselines. This is validated by the
human 2AFC results as shown in Table 3, where ours is
overwhelmingly preferred. Furthermore, in Table 2, Won-
derWorld also significantly outperforms other approaches in
terms of CLIP score and CLIP consistency, showing better
semantic alignment and novel view consistency.

From Figure 5, 15, we also observe that single 3D scene
generation methods like LucidDreamer [8] do not extrapolate

7

out of predefined scenes and suffer from severe geometric
distortion at the boundaries of the generated scene. It might
be because simple depth post-processing heuristics, such
as alignment by computing a global shift and scale [8] or
fine-tuning the depth estimator to match the estimated depth
with the existing geometry [67], do not suffice, as they do not
reduce the inherent ambiguity in the estimation of the new
scene depth. While Text2Room [20] uses a depth inpainting
model trained on indoor scenes, it does not generalize to
outdoor scenes, likely due to the lack of training data in
general outdoor scenes. In contrast to baselines, our Wonder-
World mitigates geometric distortion and leads to a coherent
large-scale 3D scene.
Diverse contents and styles in a single example. Since
WonderWorld allows for the choice of different text prompts
to change the contents, the generated scenes and styles can be
diverse and different in each run. In supplementary material,
we show diverse generation results from the same input
image in Figure 13, and we show an example Figure 14 of
users specifying different styles in the same generated virtual
world, e.g., Minecraft, painting, and Lego styles.

4.2. Ablation study
We perform ablation studies using the same protocol as the
baseline comparison, with quantitative results in Table 4.
Geometry-based initialization. We compare our model
with a variant (“w/o geometry”) that removes geometry-
based initialization and the surfel design, and instead uses
3DGS with MipSplatting [70] based on the same estimated
depth. We increase the optimization iteration such that it
achieves the same PSNR as ours at the generation view.
However, this variant fails to synthesize high-quality novel
views partly due to alias effects (see Figure 6).
Multiple layers. We compare our model with “w/o layers”,
which uses only a single layer instead of three. Ours signifi-
cantly outperforms it in both metrics and human preference,
as the layered design in our FLAGS fills occluded regions
(Figure 7).
Depth guidance. We compare our model with “w/o guid-
ance”. This variant creates significant seams between gener-
ated scenes (Figure 8). Our guided depth diffusion mitigates
this issue. We show depth alignment evaluation in the sup-
plementary material.

5. Conclusion
We introduce WonderWorld, the first system for interactive
3D scene generation, featuring fast generation of large, di-
verse scenes. WonderWorld allows users to interactively
generate and explore the parts of the scene they want with
the content they request.
Limitations. A limitation is that the generated scenes only
have frontal-facing surfaces, so the view synthesis range is

Ours w/o geometry-based initialization Ours

Figure 6. Ablation study on geometry-based initialization. The two
images are rendered at a novel view of a generated scene.

Ours w/o layers Ours

Figure 7. Ablation study on the layered design. The two images
are rendered at a novel view of a generated scene.

Ours w/o depth guidance Ours

Figure 8. Ablation study on the guided depth diffusion. The two
images are rendered with a novel view of a generated scene.

CS↑ CC↑ CIQA↑ Q-Align↑ CA↑

Ours w/o geometry 27.23 0.9836 0.6153 3.5236 5.7284
Ours w/o layers 27.32 0.9922 0.6298 3.5288 5.7139
Ours w/o guidance 26.89 0.9936 0.6327 3.6011 5.7854
WonderWorld (ours) 29.47 0.9948 0.6512 3.6411 5.9543

Table 4. Ablation study results on novel view renderings. “CS”
denotes CLIP score, “CC” denotes CLIP consistency, “CIQA” de-
notes CLIP-IQA+, “CA” denotes CLIP Aesthetic score.

limited to an area around the camera, as the back side of
the object is not generated. Future work may incorporate a
3D object generation module such as GRM [64] to generate
individual objects separately from the scene background. A
few latest works have demonstrated some success [13, 34]
following this pipeline. Another limitation is the difficulty in
modeling detailed objects, such as trees, which leave “holes”
or “floaters” when the viewpoint changes. Therefore, we
see WonderWorld as an interactive 3D world prototyping
method, rather than a full end-to-end solution. This invites an
exciting future direction: using WonderWorld to interactively
prototype a coarse 3D world structure, and then refine scene
details and complete objects with slower but higher-fidelity
models such as video diffusion [69].

8

Acknowledgments. This work is in part supported by
NSF RI #2211258, NSF CIF 1955864, NSF PHY-2019786
(http://iaifi.org/), ONR YIP N00014-24-1-2117, N00014-
23-1-2355, MURI N00014-22-1-2740, Air Force Artificial
Intelligence Accelerator under FA8750-19-2-1000, the Stan-
ford Human-Centered Institute (HAI), Google, Quanta Com-
puter. We thank Yue Gao for proofreading and helping with
experiments.

References
[1] Bar-Tal et al. Lumiere: A space-time diffusion model for

video generation. arXiv:2401.12945, 2024. 3
[2] Miguel Angel Bautista, Pengsheng Guo, Samira Abnar, Wal-

ter Talbott, Alexander Toshev, Zhuoyuan Chen, Laurent Dinh,
Shuangfei Zhai, Hanlin Goh, Daniel Ulbricht, et al. Gaudi: A
neural architect for immersive 3d scene generation. Advances
in Neural Information Processing Systems, 35:25102–25116,
2022. 3

[3] Andreas Blattmann, Tim Dockhorn, Sumith Kulal, Daniel
Mendelevitch, Maciej Kilian, Dominik Lorenz, Yam Levi,
Zion English, Vikram Voleti, Adam Letts, et al. Stable
video diffusion: Scaling latent video diffusion models to
large datasets. arXiv preprint arXiv:2311.15127, 2023. 3

[4] Tim Brooks, Bill Peebles, Connor Holmes, Will DePue, Yufei
Guo, Li Jing, David Schnurr, Joe Taylor, Troy Luhman, Eric
Luhman, Clarence Ng, Ricky Wang, and Aditya Ramesh.
Video generation models as world simulators, 2024. 3

[5] Shengqu Cai, Eric Ryan Chan, Songyou Peng, Mohamad
Shahbazi, Anton Obukhov, Luc Van Gool, and Gordon Wet-
zstein. DiffDreamer: Towards consistent unsupervised single-
view scene extrapolation with conditional diffusion models.
In ICCV, 2023. 2

[6] Lucy Chai, Richard Tucker, Zhengqi Li, Phillip Isola, and
Noah Snavely. Persistent nature: A generative model of
unbounded 3d worlds. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 20863–20874, 2023. 2

[7] Eric R Chan, Koki Nagano, Matthew A Chan, Alexander W
Bergman, Jeong Joon Park, Axel Levy, Miika Aittala, Shalini
De Mello, Tero Karras, and Gordon Wetzstein. Genvs: Gen-
erative novel view synthesis with 3d-aware diffusion models,
2023. 3

[8] Jaeyoung Chung, Suyoung Lee, Hyeongjin Nam, Jaerin
Lee, and Kyoung Mu Lee. Luciddreamer: Domain-free
generation of 3d gaussian splatting scenes. arXiv preprint
arXiv:2311.13384, 2023. 2, 3, 5, 6, 7, 8, 14

[9] Pinxuan Dai, Jiamin Xu, Wenxiang Xie, Xinguo Liu, Huamin
Wang, and Weiwei Xu. High-quality surface reconstruction
using gaussian surfels. arXiv preprint arXiv:2404.17774,
2024. 3

[10] Terrance DeVries, Miguel Angel Bautista, Nitish Srivastava,
Graham W. Taylor, and Joshua M. Susskind. Unconstrained
scene generation with locally conditioned radiance fields. In
ICCV, 2021. 3

[11] Paul Engstler, Andrea Vedaldi, Iro Laina, and Christian Rup-
precht. Invisible stitch: Generating smooth 3d scenes with
depth inpainting. In Arxiv, 2024. 3

[12] Dave Epstein, Allan Jabri, Ben Poole, Alexei A. Efros, and
Aleksander Holynski. Diffusion self-guidance for controllable
image generation. In NeurIPS, 2023. 6, 12

[13] Zhang et.al. Scenewiz3d: Towards text-guided 3d scene
composition. arXiv:2312.08885, 2023. 8

[14] Zhiwen Fan, Wenyan Cong, Kairun Wen, Kevin Wang,
Jian Zhang, Xinghao Ding, Danfei Xu, Boris Ivanovic,
Marco Pavone, Georgios Pavlakos, et al. Instantsplat: Un-
bounded sparse-view pose-free gaussian splatting in 40 sec-
onds. arXiv:2403.20309, 2024. 3

[15] Rafail Fridman, Amit Abecasis, Yoni Kasten, and Tali Dekel.
Scenescape: Text-driven consistent scene generation. arXiv
preprint arXiv:2302.01133, 2023. 2

[16] Sara Fridovich-Keil, Alex Yu, Matthew Tancik, Qinhong
Chen, Benjamin Recht, and Angjoo Kanazawa. Plenoxels:
Radiance fields without neural networks. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 5501–5510, 2022. 3

[17] Ruiqi Gao, Aleksander Holynski, Philipp Henzler, Arthur
Brussee, Ricardo Martin-Brualla, Pratul Srinivasan,
Jonathan T Barron, and Ben Poole. Cat3d: Create anything
in 3d with multi-view diffusion models. arXiv preprint
arXiv:2405.10314, 2024. 2, 3, 5

[18] Hao He, Yinghao Xu, Yuwei Guo, Gordon Wetzstein, Bo
Dai, Hongsheng Li, and Ceyuan Yang. Cameractrl: Enabling
camera control for text-to-video generation. arXiv preprint
arXiv:2404.02101, 2024. 3

[19] Jonathan Ho and Tim Salimans. Classifier-free diffusion
guidance. arXiv preprint arXiv:2207.12598, 2022. 6, 12

[20] Lukas Höllein, Ang Cao, Andrew Owens, Justin Johnson,
and Matthias Nießner. Text2room: Extracting textured
3d meshes from 2d text-to-image models. arXiv preprint
arXiv:2303.11989, 2023. 2, 3, 5, 6, 7, 8, 14

[21] Ronghang Hu, Nikhila Ravi, Alexander C. Berg, and Deepak
Pathak. Worldsheet: Wrapping the world in a 3d sheet for
view synthesis from a single image. In ICCV, 2021. 3

[22] Binbin Huang, Zehao Yu, Anpei Chen, Andreas Geiger, and
Shenghua Gao. 2d gaussian splatting for geometrically accu-
rate radiance fields. arXiv preprint arXiv:2403.17888, 2024.
3

[23] Jitesh Jain, Jiachen Li, Mang Tik Chiu, Ali Hassani, Nikita
Orlov, and Humphrey Shi. Oneformer: One transformer
to rule universal image segmentation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 2989–2998, 2023. 4, 6

[24] Linyi Jin, Jianming Zhang, Yannick Hold-Geoffroy, Oliver
Wang, Kevin Matzen, Matthew Sticha, and David F. Fouhey.
Perspective fields for single image camera calibration. CVPR,
2023. 12

[25] Biliana Kaneva, Josef Sivic, Antonio Torralba, Shai Avidan,
and William T Freeman. Infinite images: Creating and ex-
ploring a large photorealistic virtual space. Proceedings of
the IEEE, 98(8):1391–1407, 2010. 2

[26] Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine.
Elucidating the design space of diffusion-based generative
models. Advances in Neural Information Processing Systems,
35:26565–26577, 2022. 6, 12

9

[27] Bingxin Ke, Anton Obukhov, Shengyu Huang, Nando Met-
zger, Rodrigo Caye Daudt, and Konrad Schindler. Repurpos-
ing diffusion-based image generators for monocular depth
estimation. arXiv preprint arXiv:2312.02145, 2023. 5, 6

[28] Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and
George Drettakis. 3d gaussian splatting for real-time radiance
field rendering. ACM Transactions on Graphics, 42(4):1–14,
2023. 2, 3, 4, 5

[29] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014. 5

[30] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao,
Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer White-
head, Alexander C. Berg, Wan-Yen Lo, Piotr Dollar, and Ross
Girshick. Segment anything. In ICCV, pages 4015–4026,
2023. 12

[31] Dan Kondratyuk, Lijun Yu, Xiuye Gu, José Lezama, Jonathan
Huang, Rachel Hornung, Hartwig Adam, Hassan Akbari,
Yair Alon, Vighnesh Birodkar, et al. Videopoet: A large
language model for zero-shot video generation. arXiv preprint
arXiv:2312.14125, 2023. 3

[32] Yuseung Lee, Kunho Kim, Hyunjin Kim, and Minhyuk Sung.
Syncdiffusion: Coherent montage via synchronized joint dif-
fusions. Advances in Neural Information Processing Systems,
36:50648–50660, 2023. 13

[33] Lei et al. RGBD2: Generative scene synthesis via incremental
view inpainting using rgbd diffusion models. In CVPR, 2023.
3

[34] Haoran Li, Haolin Shi, Wenli Zhang, Wenjun Wu, Yong Liao,
Lin Wang, Lik-hang Lee, and Pengyuan Zhou. Dreamscene:
3d gaussian-based text-to-3d scene generation via formation
pattern sampling. arXiv:2404.03575, 2024. 3, 8

[35] Zhengqi Li, Qianqian Wang, Noah Snavely, and Angjoo
Kanazawa. Infinitenature-zero: Learning perpetual view gen-
eration of natural scenes from single images. In European
Conference on Computer Vision, pages 515–534. Springer,
2022. 2

[36] Chieh Hubert Lin, Hsin-Ying Lee, Willi Menapace, Menglei
Chai, Aliaksandr Siarohin, Ming-Hsuan Yang, and Sergey
Tulyakov. Infinicity: Infinite-scale city synthesis. In ICCV,
2023. 3

[37] Andrew Liu, Richard Tucker, Varun Jampani, Ameesh Maka-
dia, Noah Snavely, and Angjoo Kanazawa. Infinite nature:
Perpetual view generation of natural scenes from a single
image. In Proceedings of the IEEE/CVF International Con-
ference on Computer Vision, pages 14458–14467, 2021. 2

[38] Xinyu Liu, Houwen Peng, Ningxin Zheng, Yuqing Yang, Han
Hu, and Yixuan Yuan. Efficientvit: Memory efficient vision
transformer with cascaded group attention. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 14420–14430, 2023. 12

[39] Grace Luo, Trevor Darrell, Oliver Wang, Dan B Goldman, and
Aleksander Holynski. Readout guidance: Learning control
from diffusion features. In CVPR, 2024. 6, 12

[40] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik,
Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view syn-

thesis. Communications of the ACM, 65(1):99–106, 2021.
3

[41] Thomas Müller, Alex Evans, Christoph Schied, and Alexan-
der Keller. Instant neural graphics primitives with a multires-
olution hash encoding. ACM transactions on graphics (TOG),
41(4):1–15, 2022. 3

[42] Simon Niklaus, Long Mai, Jimei Yang, and Feng Liu. 3d
ken burns effect from a single image. ACM Transactions on
Graphics (ToG), 38(6):1–15, 2019. 2

[43] Hao Ouyang, Kathryn Heal, Stephen Lombardi, and
Tiancheng Sun. Text2immersion: Generative immersive scene
with 3d gaussians. arXiv preprint arXiv:2312.09242, 2023. 3

[44] Hanspeter Pfister, Matthias Zwicker, Jeroen Van Baar, and
Markus Gross. Surfels: Surface elements as rendering primi-
tives. In Proceedings of the 27th annual conference on Com-
puter graphics and interactive techniques, pages 335–342,
2000. 3

[45] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning
transferable visual models from natural language supervision.
In ICML, 2021. 6

[46] Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. High-resolution image
synthesis with latent diffusion models. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 10684–10695, 2022. 5, 6

[47] Kyle Sargent, Zizhang Li, Tanmay Shah, Charles Herrmann,
Hong-Xing Yu, Yunzhi Zhang, Eric Ryan Chan, Dmitry La-
gun, Li Fei-Fei, Deqing Sun, et al. Zeronvs: Zero-shot 360-
degree view synthesis from a single real image. arXiv preprint
arXiv:2310.17994, 2023. 3

[48] Jonathan Shade, Steven Gortler, Li-wei He, and Richard
Szeliski. Layered depth images. In SIGGRAPH, 1998. 2

[49] Meng-Li Shih, Shih-Yang Su, Johannes Kopf, and Jia-Bin
Huang. 3d photography using context-aware layered depth
inpainting. In CVPR, 2020. 2

[50] Jaidev Shriram, Alex Trevithick, Lingjie Liu, and Ravi Ra-
mamoorthi. Realmdreamer: Text-driven 3d scene gener-
ation with inpainting and depth diffusion. arXiv preprint
arXiv:2404.07199, 2024. 2, 3, 5

[51] Richard Szeliski and David Tonnesen. Surface modeling with
oriented particle systems. In Proceedings of the 19th annual
conference on Computer graphics and interactive techniques,
pages 185–194, 1992. 3

[52] Stanislaw Szymanowicz, Eldar Insafutdinov, Chuanxia Zheng,
Dylan Campbell, João F Henriques, Christian Rupprecht, and
Andrea Vedaldi. Flash3d: Feed-forward generalisable 3d
scene reconstruction from a single image. arXiv:2406.04343,
2024. 2

[53] Ayush Tewari, Tianwei Yin, George Cazenavette, Semon
Rezchikov, Joshua B Tenenbaum, Frédo Durand, William T
Freeman, and Vincent Sitzmann. Diffusion with forward
models: Solving stochastic inverse problems without direct
supervision. arXiv preprint arXiv:2306.11719, 2023. 3

[54] Alex Trevithick and Bo Yang. Grf: Learning a general ra-
diance field for 3d scene representation and rendering. In
arXiv:2010.04595, 2020. 2

10

[55] Richard Tucker and Noah Snavely. Single-view view synthe-
sis with multiplane images. In CVPR, 2020. 2

[56] Shubham Tulsiani, Richard Tucker, and Noah Snavely. Layer-
structured 3d scene inference via view synthesis. In ECCV,
2018. 2

[57] Jianyi Wang, Kelvin CK Chan, and Chen Change Loy. Ex-
ploring clip for assessing the look and feel of images. In
AAAI, 2023. 6

[58] Zhouxia Wang, Ziyang Yuan, Xintao Wang, Tianshui Chen,
Menghan Xia, Ping Luo, and Ying Shan. Motionctrl: A
unified and flexible motion controller for video generation.
arXiv preprint arXiv:2312.03641, 2023. 3

[59] Olivia Wiles, Georgia Gkioxari, Richard Szeliski, and Justin
Johnson. SynSin: End-to-end view synthesis from a single
image. In CVPR, 2020. 2

[60] Haoning Wu, Zicheng Zhang, Weixia Zhang, Chaofeng Chen,
Chunyi Li, Liang Liao, Annan Wang, Erli Zhang, Wenxiu
Sun, Qiong Yan, Xiongkuo Min, Guangtao Zhai, and Weisi
Lin. Q-align: Teaching lmms for visual scoring via discrete
text-defined levels. In ICML, 2024. 6

[61] Zhennan Wu, Yang Li, Han Yan, Taizhang Shang, Weixuan
Sun, Senbo Wang, Ruikai Cui, Weizhe Liu, Hiroyuki Sato,
Hongdong Li, et al. Blockfusion: Expandable 3d scene gener-
ation using latent tri-plane extrapolation. ACM Transactions
on Graphics (TOG), 2024. 2

[62] Haozhe Xie, Zhaoxi Chen, Fangzhou Hong, and Ziwei Liu.
Citydreamer: Compositional generative model of unbounded
3d cities. In CVPR, 2024. 3

[63] Haozhe Xie, Zhaoxi Chen, Fangzhou Hong, and Ziwei Liu.
GaussianCity: Generative gaussian splatting for unbounded
3D city generation. arXiv 2406.06526, 2024. 3

[64] Yinghao Xu, Zifan Shi, Wang Yifan, Hansheng Chen, Ceyuan
Yang, Sida Peng, Yujun Shen, and Gordon Wetzstein. Grm:
Large gaussian reconstruction model for efficient 3d recon-
struction and generation. arXiv:2403.14621, 2024. 8

[65] Shuai Yang, Jing Tan, Mengchen Zhang, Tong Wu, Yixuan Li,
Gordon Wetzstein, Ziwei Liu, and Dahua Lin. Layerpano3d:
Layered 3d panorama for hyper-immersive scene generation.
arXiv preprint arXiv:2408.13252, 2024. 3

[66] Alex Yu, Vickie Ye, Matthew Tancik, and Angjoo Kanazawa.
Pixelnerf: Neural radiance fields from one or few images.
arXiv:2012.02190, 2020. 2

[67] Hong-Xing Yu, Haoyi Duan, Junhwa Hur, Kyle Sargent,
Michael Rubinstein, William T Freeman, Forrester Cole, De-
qing Sun, Noah Snavely, Jiajun Wu, et al. Wonderjourney:
Going from anywhere to everywhere. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2024. 2, 3, 4, 6, 7, 8, 12, 14

[68] Jason J Yu, Fereshteh Forghani, Konstantinos G Derpanis,
and Marcus A Brubaker. Long-term photometric consistent
novel view synthesis with diffusion models. arXiv preprint
arXiv:2304.10700, 2023. 2, 3

[69] Wangbo Yu, Jinbo Xing, Li Yuan, Wenbo Hu, Xiaoyu
Li, Zhipeng Huang, Xiangjun Gao, Tien-Tsin Wong, Ying
Shan, and Yonghong Tian. Viewcrafter: Taming video
diffusion models for high-fidelity novel view synthesis.
arXiv:2409.02048, 2024. 8

[70] Zehao Yu, Anpei Chen, Binbin Huang, Torsten Sattler, and
Andreas Geiger. Mip-splatting: Alias-free 3d gaussian splat-
ting. arXiv preprint arXiv:2311.16493, 2023. 8

[71] Jingbo Zhang, Xiaoyu Li, Ziyu Wan, Can Wang, and Jing
Liao. Text2nerf: Text-driven 3d scene generation with neu-
ral radiance fields. IEEE Transactions on Visualization and
Computer Graphics, 2024. 2, 3, 5

[72] Shijie Zhou, Zhiwen Fan, Dejia Xu, Haoran Chang,
Pradyumna Chari, Suya Bharadwaj, Tejas You, Zhangyang
Wang, and Achuta Kadambi. Dreamscene360: Unconstrained
text-to-3d scene generation with panoramic gaussian splatting.
arXiv preprint arXiv:2404.06903, 2024. 3

[73] Tinghui Zhou, Richard Tucker, John Flynn, Graham Fyffe,
and Noah Snavely. Stereo magnification: Learning view
synthesis using multiplane images. arXiv:1805.09817, 2018.
2

11

WonderWorld: Interactive 3D Scene Generation from a Single Image

Supplementary Material

A. Overview
In this supplementary material, we show the following con-
tents:
• Algorithms of WonderWorld (B)
• Details on guided depth diffusion (C)
• Further implementation details (D)
• Additional experiment results (E)
We also compile video results and interactive viewing ex-
amples of the generated virtual worlds in https://
kovenyu.com/WonderWorld/. We strongly encour-
age the reader to view the project website.

B. Algorithms
We summarize the control loop of WonderWorld in Alg. 1
and the generation of FLAGS in Alg. 2 and Alg. 3.

C. Details on Guided Depth Diffusion

Accelerated depth guidance implementation. In our
guided depth diffusion, we empirically observe that we do
not need to use guidance in every denoising step. We set
the guidance weights st such that the norm of the guidance
signal is proportional to the norm of the predicted update.
We use the Euler scheduler [26] with 30 steps for our depth
diffusion, where we apply our guidance in only the last 8
steps. This significantly reduces runtime latency.
Relation to other guidance methods. The guidance tech-
nique has been used in sampling diffusion models with dif-
ferent guidance signals, such as text [19], features [12], and
decoded features [39]. Yet, their goal is to control the seman-
tic contents of generated images. Our guided depth diffusion
targets a problem different from controllable image genera-
tion; we aim to estimate consistent depth that aligns with the
existing depth geometry.
Tackling ground plane distortion. We note that our guided
depth diffusion formulation is highly flexible and allows
us to specify different depth constraints. For example, a
significant geometric distortion is that the ground plane is
often curved due to inaccurate camera intrinsic matrix and
depth estimation. Thus, we add depth guidance for the
ground plane by replacing the mask Mguide in Eq. 9 with a
ground mask Mgrd obtained from semantic segmentation,
and replacing the depth of visible content Dguide with an
analytically calculated flat ground depth Dgrd. To compute
depth, we assume the height difference Hcam between the
camera and the ground; then the depth of a ground pixel is
Hcamfy/(py → y), where fy is the focal length, y is the pixel
y-coordinate, py is the y-principal point.

D. Further Experiment Details

Real photos. In our experiments, we use both real photos
and synthetic stylized images. The following results use real
photos as input: (I) “Holy Spirit Cathedral”, “Ho Chi Minh
City Hall”, and “Marienplatz” in the Interactive Scene Gen-
eration section of the project website; (II) “Venice”, “Main
Square”, “University Campus”, “Arc de Triomf”, “Segovia
Cathedral”, “Westlake”, and “University Pathway” in the
Generated Virtual World section of the project website;
(III) The top example (“Venice”) and bottom right example
(“Main Square”) in Fig. 1, the left example in Fig. 5, the
3rd example in Fig. 10, the 1st example in Fig. 11, the 1st
example in Fig. 12, and the left example in Fig. 15.
Further implementation details. In single-view layer gen-
eration, we use an LLM to generate a structured scene de-
scription (Eq. 4). We use GPT-4 for this purpose, and the
instruction prompt J is:

“You are an intelligent scene generator. Imagine you
are wandering through a scene or a sequence of scenes,
and there are 3 most significant common entities in each
scene. The next scene you would go to is U . Please generate
the corresponding 3 most common entities in this scene.
The scenes are sequentially interconnected, and the entities
within the scenes are adapted to match and fit with the scenes.
You must also generate a brief background prompt of about
50 words describing the scene. You should not mention the
entities in the background prompt. If needed, you can make
reasonable guesses. Please use the format below (the output
should be JSON format): ’scene name’: [’scene name’],

’entities’: [’entity 1’, ’entity 2’, ’entity 3’], ’background’:
[’background prompt’]”,
where U is the user text input to specify the scene name.
To generate the text prompt T in Eq. 4 for the first scene
for inpainting the background layer and sky layer, we use a
similar instruction to prompt the VLM (we use GPT-4V) to
caption the input image, with the difference that we also ask
the VLM to generate a style prompt S . Then, we keep using
the same style prompt S in Eq. 4 for the whole generation
process. The “scene name” above is used to prompt the
LLM to generate the next scene description. The “entities”
above is used as the foreground prompt F in Eq. 4, and the
“background prompt” is used as B in Eq. 4.

All generated scene images are 512 ↑ 512 pixels. We
set the camera focal length to fx = fy = 960 pixels for all
scenes, while it is also possible to use off-the-shelf meth-
ods [24] for estimation. We post-process estimated depth
using an efficient SAM [30, 38], similar to WonderJour-
ney [67]. In practice, we generate the entire sky in the initial

12

https://kovenyu.com/WonderWorld/
https://kovenyu.com/WonderWorld/

Algorithm 1 WonderWorld control loop
Input: Initial scene image I0

Output: All generated scenes G = {E0, E1, . . .}
Runtime output: Real-time rendered image Irend
Runtime user control: Real-time camera pose Crend, generation camera pose Cgen, (optional) user text prompt U

1: Crend ↓ 4x4 Identity matrix ω Initialize at origin
2: Cgen ↓ 4x4 Identity matrix ω Initialize at origin
3: Iscene ↓ I0

4: M ↓ 1
H↑W

ω Mask indicating which pixels are the current new scene
5: T ↓ Captioning by VLM(Iscene) ω We use GPT4V
6: G ↓ Generate FLAGS(Iscene,M, T , ↔) ω Alg. 2
7: in parallel do
8: Thread 1: Main control loop ω Async with generation
9: while true do

10: Irend ↓ Render(Crend,G)
11: Crend ↓ Update by user(Crend) ω User can move, rotate, or stay static
12: end while
13: end parallel
14: in parallel do
15: Thread 2: Async generation signal (triggered event)
16: Cgen ↓ Crend
17: Ipartial ↓ Render(Cgen,G) ω Partial rendered image
18: M ↓ Find empty pixels(Ipartial)
19: if U is empty then
20: U ↓ Propose by LLM() ω We use GPT4 to propose a new scene name
21: T ↓ Generate by LLM(U) ω Eq. 4
22: else
23: T ↓ Generate by LLM(U) ω Eq. 4
24: end if
25: Iscene ↓ Outpaint(Ipartial,M,U)
26: G ↓ Generate FLAGS(Iscene,M, T ,G) ω Alg. 2
27: end parallel

Algorithm 2 Generate FLAGS
Input: Scene image Iscene, mask of new pixels M, full
text prompt T = {F ,B,S}, existing scenes G
Output: Extended scenes G

1: Ifg, Ibg, Isky,Mfg,Mbg,Msky ↓
Generate layer images(Iscene, {F ,B,S}) ω Sec. 3.1

2: Minit ↓ M↗Msky
3: Lsky ↓ Optimize layer(Isky,G,Minit) ω Alg. 3
4: G ↓ G ↘ Lsky ω Add Lsky to the frozen G
5: I

↓
bg ↓ Mbg ↗ Ibg + (1→Mbg)↗ Isky

6: Minit ↓ M↗Mbg
7: Lbg ↓ Optimize layer(I↓bg,G,Minit) ω Alg. 3
8: G ↓ G ↘ Lbg
9: Minit ↓ M↗Mfg

10: Lfg ↓ Optimize layer(Iscene,G,Minit) ω Alg. 3
11: G ↓ G ↘ Lfg

Algorithm 3 Optimize a FLAGS layer
Input: Reference image Iref, existing scenes G, mask
Minit to indicate which pixels are used to spawn surfels
for this layer
Output: Layer L

1: Dguide,Mguide ↓ Render partial depth(Cgen,G)
2: Dscene ↓ Guided depth diffusion(Iref,Dguide,Mguide)

ω Sec. 3.2
3: N ↓ Estimate normal(Iref)
4: P,C ↓ Unproject pixels(Iref,Dscene,Mguide) ω Eq. 6
5: S ↓ Compute scales(Dscene,N,K) ω Eq. 8
6: L ↓ Initialize layer(P,N,C,S,Minit)
7: L ↓ Optimize layer(L,G, Iref) ω Sec. 3.1

scene using SyncDiffusion [32] offline. To render the guid-
ance mask Mguide, we first render the FLAGS into the screen
space, and accumulate the opacity. Then, we threshold the

13

Figure 9. Screenshot of human study survey.

accumulated opacity by 0.6 to find the visible mask Mguide.
We use the same method to find empty pixels in the partial
rendered image Ipartial.
Human study details. We use Prolific to recruit participants
for the human preference evaluation. For each experimental
comparison, we recruit 204 participants from all over the
globe. We use Google forms to present the survey. The
survey is fully anonymized for both the participants and the
host. Participants are shown top-by-bottom bird-eye render-
ing images of the same layout as in Fig. 5 with randomized
top-bottom orders. For the ablation study, participants are
shown side-by-side images. Participants are instructed to se-
lect one from two options: “Top is more visually compelling”
or “Bottom is more visually compelling” The instruction
is: “Carefully compare the two images below. Which image
looks better (higher quality, fewer errors) to you?”

Since we compare to three baseline methods, each ex-
ample forms three pairs. We use the four examples shown
in Figure 5 and Figure 15, yielding 12 pairs in total. Each
participant answers all 12 questions. We show a screenshot
in Figure 9.
Depth estimation for baseline methods. For a fairer com-
parison, we also use Marigold for WonderJourney [67] in our
experiments. Yet, LucidDreamer [8] requires metric depth,
and Text2Room [20] requires depth inpainting, so we keep
their original depth models.

Table 5. Time analysis for WonderWorld in generating a single
scene on an A6000 GPU.

Outpainting Layer generation Depth Normal Optim.

2.1s 2.3s 2.5s 0.8s 1.9s

Table 6. Comparison of different depth alignment methods on our
examples. The metric is the scale-invariant root mean square error
(SI-RMSE) between the estimated depth and the existing depth.

w/o guided depth diffusion Shift+Scale Guided depth diffusion (ours)

0.36 0.21 0.08

E. Additional Results
We show additional baseline comparison results in Figure 15.
We show additional qualitative results in Figure 11, 10, 12.
To automate generation, we also use the panoramic camera
paths. We use the LLM to generate the scene names.

We show different scenes using the same input image in
Figure 13, and different styles in the same virtual world in
Figure 14. In Table 5, we show a time analysis of Wonder-
World for generating a single extrapolated scene.
Additional ablation study on guided depth diffusion. In
Table 6, we show an ablation on guided depth diffusion. Be-
sides “w/o guided depth diffusion” which does not have any
treatment to align depth estimations, we further include a
heuristic-based method “Shift+Scale” which uses the least
square to solve for a shift value and a scale value that trans-
forms the estimated depth to align with the existing depth.
We use the same protocol as in the baseline comparison and
main paper ablation study. We report the scale-invariant root
mean square error (SI-RMSE) between the estimated depth
and the visible existing depth. From Table 6, we observe that
our guided depth diffusion provides much better alignment
than the two variants.

14

Input image Generated 3D scenes

“Church Tower”
“Woodland Trail”

“Field”

“Apple Orchard”

“Market Place”
“Flower Garden”

“Streetlamp”

“Winding Path”

Input image Generated 3D scenes

“Village Market”
“Winding Path”

“Countryside”

“Oak Trees”

“Lakeside”
“Clifftop Ruins”

“Palm Trees”

“Cabin”

“Italian Cypress”
“Historic Building”

“Courtyard”

“Lake”

“Library Exterior”
“Art Gallery”

“Campus Party”

“Coffee House”

Input image Generated 3D scenes

Input image Generated 3D scenes

“Sunlit Library”
“College Quad”

“Campus Tower”

“Fountain Statue”

“Science Auditorium”
“Art Studio”

“Sports Field”

“Music Band”

Figure 10. Qualitative examples. Each generated world consists of 9 scenes. The text prompts are generated by the LLM.

15

“Tree”
“Ancient Library”

“Serene Courtyard”

“Garden”

“Oak Trees”
“Study Spot”

“Campus Cafe”

“Campus Bookstore”

Input image Generated 3D scenes

“Village”
“Cave”

“Mountain”

“Ancient Spire”

“Thatched House” “Temple of
Ancient Secret”

“Cobblestone Road”

“Bush”

Input image Generated 3D scenes

“Marketplace”
“Forest”

“Countryside”

“River”

“Moonlit Pagoda”
“Seaside”

“Winter Snow”

“Snowy Mountain”

Input image Generated 3D scenes

“Temple of Heaven”
“Imperial Garden”

“Tea Garden”

“Monastery”

“Summer Palace”
“Tea House”

“Garden Path”

“Courtyard”

Input image Generated 3D scenes

Figure 11. Qualitative examples. Each generated world consists of 9 scenes. The text prompts are generated by the LLM.

16

“Sand Beach”
“Alpine Village”

“Harbor”

“Market Place”

“Barn”
“Lake”

“Church”

“Shoreline”

Input image Generated 3D scenes

Input image Generated 3D scenes

“Street”
“Park”

“Central square”

“Garden”

“Public Library”
“Café House”

“Market”

“Cathedral”

Input image Generated 3D scenes

“Market”
“Theme Park”

“Campus”

“Downtown”

“Lake”
“Park”

“Garden”

“Path”

Input image Generated 3D scenes

“Grassland”
“Meadow”

“Central Square”

“Riverside”

“Indian Street”
“Market Place”

“Winding Path”

“Campus”

Figure 12. Qualitative examples. Each generated world consists of 9 scenes. The text prompts are generated by the LLM.

17

“Cabin”
“Tree”

“Bonsai”

“Cabin”

“Stream”
“Meadow”

“Woodlands”

“Volcano”

Input image

Generated 3D scenes

“Riverside”
“Forest”

“Bush”

“Lake”

“Campus”
“Market”

“Town Square”

“Farm”

Generated 3D scenes

Figure 13. Diverse generation: Our WonderWorld allows generating different virtual worlds from the same input image.

Style: Painting
Content: Bush

Style: Minecraft
Content: Village

Style: Painting
Content: Market

Style: Painting
Content: Campus

Input image Generated 3D scenes with different visual styles

Style: Minecraft
Content: Mountain Style: Lego

Content: Skyscraper
Style: Lego

Content: Countryside

Style: Lego
Content: House

Figure 14. WonderWorld allows users to specify different styles in the same generated virtual world, e.g., Minecraft, painting, and Lego
styles.

18

WonderWorld (Ours)

LucidDreamer

WonderJourney

WonderWorld (Ours)

LucidDreamer

WonderJourney

Text2room Text2room

Figure 15. Baseline comparison. The inset with blur dashed bounding box is the input image.

19

	. Introduction
	. Related Work
	. Approach
	. Fast LAyered Gaussian Surfels (FLAGS)

	. Overview
	. Algorithms
	. Details on Guided Depth Diffusion
	. Further Experiment Details
	. Additional Results

