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Abstract: Large-scale visuomotor policy learning is a promising approach toward
developing generalizable manipulation systems. Yet, policies that can be deployed
on diverse embodiments, environments, and observational modalities remain elu-
sive. In this work, we investigate how knowledge from large-scale visual data of
the world may be used to address one axis of variation for generalizable manip-
ulation: observational viewpoint. Specifically, we study single-image novel view
synthesis models, which learn 3D-aware scene-level priors by rendering images
of the same scene from alternate camera viewpoints given a single input image.
For practical application to diverse robotic data, these models must operate zero-
shot, performing view synthesis on unseen tasks and environments. We empiri-
cally analyze view synthesis models within a simple data-augmentation scheme
that we call View Synthesis Augmentation (VISTA) to understand their capabili-
ties for learning viewpoint-invariant policies from single-viewpoint demonstration
data. Upon evaluating the robustness of policies trained with our method to out-
of-distribution camera viewpoints, we find that they outperform baselines in both
simulated and real-world manipulation tasks. Videos and additional visualizations
are available at https://s-tian.github.io/projects/vista.

Keywords: generalization, visual imitation learning, view synthesis

1 Introduction

Train on single 
view datasets

Test on novel 
observation 
viewpoints

Figure 1: We aim to learn policies that gener-
alize to novel viewpoints from widely available,
offline single-view RGB robotic trajectory data.

A foundation model for robotic manipulation must
be able to perform a multitude of tasks, generalizing
not only to different environments and goal specifi-
cations but also to varying robotic embodiments. A
particular robotic embodiment often comes with its
own sensor configuration and perception pipeline.
This variety is a major challenge for current sys-
tems, which are often trained and deployed with
carefully controlled or meticulously calibrated per-
ception pipelines. One approach to training mod-
els that can scale to diverse tasks as well as percep-
tual inputs is to train on a common modality, such
as third-person RGB images, for which diverse data
are relatively plentiful [1].

A challenge in using these data is that policies
learned by current methods struggle to generalize
across perceptual shifts for single RGB images. In
this paper, we study one ubiquitous and practically challenging shift: when the camera viewpoint
is altered. Prior studies have found that policies trained on RGB images collected from fixed view-
points are consistently unable to generalize to visual inputs from other camera poses [2, 3, 4].
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Existing approaches to learning viewpoint invariance include training using augmented data col-
lected at scale in simulation [5, 6] or physically varying camera poses when collecting large-scale
real robot datasets [7]. However, these strategies require resolving the additional challenges of sim-
to-real transfer and significant manual human effort, respectively.

In this work, we leverage the insight that 3D priors can be obtained by generative models from
large-scale (potentially robot-free) data and used to make robot policies more robust to changes in
camera pose. We take a simple data augmentation approach to this problem by sampling views
from a 3D-aware image diffusion novel view synthesis (NVS) model during policy training time.
In training on these augmented views, the policy becomes robust to images from out-of-distribution
camera viewpoints. We refer to this approach as View Synthesis Augmentation (VISTA).

VISTA has several advantages. First, it can leverage large-scale 2D image datasets, which are more
diverse than existing robotic interaction datasets with explicit 3D observations. Second, if in-domain
robotic data is available, performance may be further improved via finetuning. Third, neither depth
information nor camera calibration is required. Fourth, no limitations are placed on the form of the
policy. While we focus on imitation learning, VISTA can also be applied to other robotic learning
paradigms. Lastly, policy inference time is not impacted, as we do not modify inference behavior.

We first investigate the performance of a diffusion-based novel view synthesis model, ZeroNVS [8],
when applied using our VISTA data augmentation scheme, and perform an empirical analysis of its
performance with respect to various viewpoint distributions. Then, we investigate how finetuning
an NVS model with in-domain data of robotic tasks can improve downstream policy robustness for
held-out tasks. Finally, we show that these models can be used to learn viewpoint-robust policies
from real robotic datasets. We demonstrate the potential for NVS models trained on large diverse
robotic data to provide these priors across robot tasks and environments, finding that finetuning Ze-
roNVS models on the DROID dataset [7] can improve downstream real-world policy performance.

2 Related Work

Learning viewpoint-robust robotic policies. Learning deep neural network policies that can gen-
eralize to different observational viewpoints has been discussed at length in the literature. One set of
approaches effectively augment the input data to a learned policy or dynamics model with additional
2D images rendered from differing camera viewpoints. These renderings are often obtained from
simulators [5, 6] or by reprojecting 2D images [9]. Augmenting training with simulator data can
improve robustness on simulation environments, but these methods must then address the challenge
of sim-to-real transfer for deployment on real systems. In this work, we study methods for learning
invariant policies directly using robot data from the deployment setting, including real robot trajec-
tories. Existing work [10] performs view augmentation of real-world wrist camera images; however,
this is performed with the goal of mitigating covariate shift as opposed to improving camera pose
robustness, and requires many views of a static scene to generate realistic novel views.

Another line of work forms explicit 3D representations of the scene such as point clouds or voxels
to leverage equivariance properties [11, 12, 13, 14, 15], or projects from these representations to
2D images originating from canonical camera poses [16]. While these approaches have been shown
to be robust to novel camera views [3], they require well-calibrated camera extrinsics, which can
be practically challenging and time-consuming to collect, and are not present in all existing datasets
(for example, the majority of datasets in Open X-Embodiment [1] do not provide camera extrinsics).

Rather than rely on explicit 3D representations, a related body of work learns latent representations
that are robust to variations in camera pose. These methods often use view synthesis or contrastive
learning as a pretraining or auxiliary objective [17, 18, 19, 6], and also often require accurate extrin-
sics, can be computationally expensive to run at inference time, or impose restrictive requirements
on the latent space that can make multi-task learning challenging.

A technique that has shown promise in reducing the observational domain gap in robotic learning
settings is the use of wrist-mounted or eye-in-hand cameras as part of the observation space [20, 21].
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However, this does not obviate the need for third-person observations as it only provides information
local to the gripper. We corroborate in our experiments that wrist-mounted camera observations are
helpful but not solely sufficient for learning viewpoint-robust policies, and further that the use of
wrist cameras can yield improvements orthogonal to the use of augmentation for third-person views.

Single-image novel view synthesis. Single-image novel view synthesis methods aim to reconstruct
an image from a target viewpoint given a single image from a source viewpoint. One set of methods
for novel view synthesis infers neural radiance fields from one or a few images [22, 23]. Another
recent line of work trains diffusion models on images to perform novel view synthesis, and then
distills 3D representations from these models [24]. These approaches have been extended to scene-
level view synthesis [8, 25, 26], making them amenable to robotic manipulation settings. They have
been largely developed, trained, and evaluated on large video datasets; however, to our knowledge,
their application in robotic policy learning remains relatively unexplored.

Generative image models in robotics. Pretrained image generation models have been applied in
the context of robotic manipulation via semantic data augmentation [27, 28], where the goal is for
the policy to better generalize to unseen backgrounds or objects as opposed to camera viewpoints.
Similar generative models have also been applied to improve cross-embodiment transfer of poli-
cies [29] and as high-level planners using an image subgoal interface [30, 31, 32, 33, 34]. Overall,
these methods address different challenges and are largely complementary to our method.

3 Preliminaries

3.1 Problem Statement

Figure 2: Random samples from the two
considered evaluation viewpoint ranges.

The techniques we discuss can be flexibly applied to
many visuomotor policy learning settings; however,
for a systematic and computationally constrained
evaluation, we choose to study them in the context
of visual imitation learning.

We frame each robotic manipulation problem as
a discrete-time partially observed Markov deci-
sion process (POMDP), with state space S , ac-
tion space A, transition function P , reward func-
tion R, and observation function O. This observa-
tion function maps states and actions into the ob-
servation space conditioned on extrinsic parameters
E. We assume access to a dataset D consisting of M expert demonstrations ω0:M : ωi ={
(o0, a0, . . . , ot, at, . . . , oT , aT )

}
where T is the total number of timesteps in a particular demon-

stration. Concretely, the observation o consists of both low-dimensional observations in the form of
robot proprioceptive information, as well as RGB image observations oI → RH→W→3 captured by a
fixed third-person camera with extrinsics Eorig.

The objective is to learn a policy ε(a|o) that solves the task, where observed images oI are captured
by a camera with extrinsics Etest sampled from a distribution Etest. Critically, we do not assume
access to the environment or the ability to place additional sensors at training time.

3.2 Zero-Shot Novel View Synthesis from a Single Image

We define the single-image novel view synthesis (NVS) problem as finding a function
M(Icontext, f, Econtext, Etarget) that, given an input image Icontext → RH→W→3 of a scene captured
with camera extrinsics (e.g., camera pose) Econtext and simplified intrinsics represented by a field of
view f , renders an image of the same scene Icontext captured with camera extrinsics Etarget.

To extend this setting to zero-shot novel view synthesis, we further assume that the image Iorig
depicts a robotic task that was not seen when training M. As we will describe in Section 5, we

3



Single view demo dataset Random pose 
transform

Zero-Shot 
Novel View 
Synthesis

Augmented demo dataset

Render 
& replace

Policy 
Learning

Figure 3: Depiction of the data augmentation scheme that we study. Observations are replaced with
viewpoint-augmented versions of the same scene with action labels held constant.

conduct experiments on both models that have never seen robotic data, as well as models finetuned
on robotic data from simulated pre-training tasks and large-scale, real-world data.

4 Learning View Invariance with Zero-Shot Novel View Synthesis Models

In this section, we describe VISTA, the data augmentation scheme for view-invariant policy learning
that we study in the remainder of the paper. The method is summarized in Figure 3.

To learn viewpoint-invariance, some prior works augment experience with images rendered from
virtual cameras in simulation [5, 6]. However, we wish to learn viewpoint-invariant policies di-
rectly from existing offline datasets, which could be from inaccessible simulated environments or
data collected in the real world. Furthermore, many robotic datasets do not contain the multiview
observations or depth images needed for 3D reconstruction. Thus, we explore using single image
novel view synthesis methods to perform augmentation.

Concretely, given a single-image novel view synthesis model M(Icontext, f, Econtext, Etarget), VISTA
uses M to replace each frame of a demonstration trajectory with a synthesized frame with indepen-
dently randomly sampled target extrinsics Etarget ↑ Etrain. That is, we independently replace each
observation-action pair (o, a) with (M(oI , f, Econtext, Etarget), a). For the sake of systematic evalua-
tion, in our simulated experiments, we assume knowledge of both the initial camera pose Econtext and
the target distribution Etarget. However, the novel view synthesis models we study use only the rela-
tive poses between Econtext and Etarget; absolute poses are not required and are not used in real-world
experiments. We assume that the field of view is known.

VISTA has several appealing properties. First, while methods that form explicit 3D representations
must either use multi-view images or assume static scenes when performing structure-from-motion,
it avoids the computational expense of 3D reconstruction and takes advantage of the fact that a scene
is static at any slice in time. Second, VISTA does not add additional computational complexity
at inference time, as the trained policy’s forward pass remains the same. Lastly, VISTA inherits
improvements in the modeling and generalization capability of novel view synthesis models.

We center our analysis around a particular novel-view synthesis model, ZeroNVS [8]. ZeroNVS
is a latent diffusion model that generates novel views of an input image given a specified camera
transformation. It is initialized from Stable Diffusion [35] and fine-tuned on a diverse collection
of 3D scenes, therefore achieving strong zero-shot performance on a wide variety of scene types.
Moreover, as a generative model, it tends to generate novel views which are crisp and realistic,
mitigating the domain gap between generated and real images.

Although ZeroNVS provides reasonable predictions even in zero-shot settings, we found that it also
has failure modes that generate images that appear to contain extreme close-ups of objects in the
scene, potentially due to poor extrinsics in the training dataset. To partially address these scenarios,
we simply reject and resample images that have a perceptual similarity (LPIPS) [36] distance larger
than a value ϑ from the input image, which we found to slightly improve performance.

While many techniques for imitation learning have been proposed, as a strong baseline that fits
our computational budget, we use the implementation of behavior cloning with a Gaussian mixture
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Figure 4: Qualitative examples of novel views rendered on robotic tasks. All images are synthesized
zero-shot; that is, models have not been previously trained on data from that task. We observe that
finetuning on robotic datasets improves image fidelity, particularly for robot appearances.

model output from robomimic [37] in our simulated experiments. In real-world experiments, we
instead train diffusion policies [38] due to their success in learning policies for real robots.

For additional implementation details and pseudocode of VISTA, please see Appendix A.

5 Experimental Analysis

In this section, we perform empirical analyses to answer the following questions:

Q1: Can policies trained with data augmented by novel view synthesis models trained on large-
scale out-of-domain datasets improve robustness to novel viewpoints? How do these models
compare to existing alternatives?

Q2: Can finetuning novel view synthesis models on robotic data improve the performance of VISTA
when applied to unseen tasks with larger viewpoint changes?

Q3: How do methods providing augmented third-person viewpoints interact with strategies for re-
ducing the observational domain gap, such as adding wrist-mounted cameras?

Q4: Can VISTA be applied to learn policies on real robots directly using real-world data? How does
finetuning view synthesis models on diverse real robot data affect downstream performance?

Simulated experimental setup. We perform simulated experiments using the robomimic frame-
work built on the MuJoCo simulator [39], with additional tasks introduced in MimicGen [40]. For
the Lift and Nut Assembly tasks, we use the proficient-human expert demonstration datasets from
robomimic for training. For the remainder of the tasks, we train using the first 200 demonstrations
of D0 datasets and evaluate using the D0 environment variants as defined by MimicGen.

To contextualize the results, we introduce the following baseline methods:

• Single view. To represent the performance of a model trained without view-invariance, this per-
forms behavioral cloning using only the source demonstration dataset.

• Simulator (oracle). As an upper bound of the performance of per-frame random augmentation for
learning viewpoint invariance, this baseline directly uses the simulator to render novel viewpoints.

• Depth estimation + reprojection. This baseline follows the augmentation scheme described in
Section 4. It synthesizes novel views from RGB images using a three-stage pipeline. Because
we do not assume access to depth, it first performs metric depth estimation using an off-the-shelf
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Aug. model Lift Threading Nut Asm.

Single view 72.7± 3.3 9.3± 0.7 16.7± 1.8
Depth est. + Reproj. 93.3± 1.8 12.0± 1.2 29.3± 0.7
PixelNeRF [22] 44.7± 10.9 4.7± 0.7 10.7± 1.8
ZeroNVS [8] 95.3± 2.4 23.3± 2.4 36.0± 0.0

Simulator (oracle) 100.0± 0.0 53.3± 1.8 51.3± 1.8

Table 1: Policy performance on perturbed viewpoints. Policy success rates on randomized test viewpoints
as percentages and standard error of the mean (SEM) over 3 random seeds when performing per-frame data
augmentation with view synthesis methods. We report the maximum performance across training checkpoints,
evaluating for 50 trials following Mandlekar et al. [37].

Unseen Object Shared Object X-Embodiment
Aug. model Threading Hammer Coffee Stack PickPlace Nut Asm.

Single view 10.0± 1.2 18.0± 2.3 10.0± 1.2 49.3± 3.7 31.3± 0.7 10.7± 0.7
Depth est.+Reproj. 7.3± 1.3 20.0± 1.2 9.3± 2.4 36.0± 2.3 28.7± 0.7 10.7± 1.3
ZeroNVS [8] 17.3± 1.8 27.3± 3.7 15.3± 1.3 52.7± 2.4 32.0± 2.3 18.7± 0.7
ZeroNVS (MimicGen) 32.0± 0.0 52.0± 3.5 32.7± 2.4 61.3± 2.4 40.7± 3.5 26.0± 2.0

Simulator (oracle) 60.7± 0.7 100.0± 0.0 84.0± 2.0 86.0± 2.3 90.0± 2.3 56.0± 3.1

Table 2: Policy performance on quarter circle arc viewpoints. We report success rates and standard
error of the mean over 3 random seeds. Finetuning ZeroNVS on simulated robotic data significantly improves
performance across all tasks in this setting.

model [41]. Next, it lifts the RGBD information into a 3D point cloud with a pinhole camera
model and then renders the point cloud into an RGB image at the target camera extrinsics. Finally,
because this reprojection often produces partial images, we perform inpainting of “holes” and
outpainting of image boundaries using a pretrained diffusion model [35].

• PixelNeRF. To evaluate differences between novel view synthesis models, we evaluate a method
that performs per-frame viewpoint augmentation using a PixelNeRF [22] model trained on the
same mixture of datasets as ZeroNVS. PixelNeRF uses a convolutional encoder to condition a
neural radiance field [42], which is then rendered from the novel viewpoint.

Further details regarding baseline implementations and hyperparameters are in Appendix A.

Q1. Performance of pre-trained novel view synthesis models. First, we seek to evaluate the per-
formance of view synthesis models that rely on large-scale, diverse pretraining. We test a distribution
of test camera poses denoted perturbations, that are representative of incremental changes, for in-
stance, that of a physical camera drifting over time or subject to unintentional physical disturbance.
Specifically, this distribution is parameterized by a random translation !t ↑ N (0, diag(ϖ2

t
)) and ro-

tation around a uniformly randomly sampled axis, where the magnitude is sampled from N (0,ϖr
2).

Samples from this range are visualized in Figure 2, and example observations are in Appendix B.

The results are presented in Table 1. First, we note that the oracle simulator augmentation scheme
is able to reclaim a significant portion of policy performance that is lost by only training on the
original data (single view). We find that the depth estimation + reprojection method is able to
consistently provide modest improvements to the performance on test viewpoints. Among the fully
neural methods, PixelNeRF does not synthesize views with sufficient fidelity, and causes even a
drop in performance compared to not doing augmentation. We thus omit this baseline in further
evaluations. However, we find that a pretrained ZeroNVS model, despite (likely) having never seen
an image of a robotic arm during training, is able to improve novel view performance even further.

Q2. Effect of finetuning view synthesis models on in-domain data. Next, we investigate whether
finetuning these novel view synthesis models on in-domain data can yield improved performance
when applied to unseen tasks. To test this, we study a more challenging distribution of camera poses
with a real-world analogue to constructing another view of a given scene. We first compute a sphere
centered at the robot base and containing the initial camera pose. We then sample camera poses
on the sphere at the same z height and within a 90° azimuthal angle of the starting viewpoint. The
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radius of the sphere is further randomly perturbed with Gaussian noise with variance ϖ2
r
. We call

this distribution quarter circle arc, with samples shown in Figure 2 and more details in Appendix B.

We finetune the ZeroNVS model on a multi-view dataset generated using eight MimicGen
tasks: stack three, square, three piece assembly, mug cleanup, pick place can, nut
assembly, kitchen, and coffee prep. Additional finetuning details can be found in Appendix B.
We then test the model, denoted ZeroNVS (MimicGen), when used for augmentation on datasets
of held-out tasks, which we categorize below by their relationship with the finetuning tasks.

• Unseen Object: Tasks contain objects that are not present in any finetuning tasks.
• Shared Object: Tasks contain objects that are present in one or more finetuning tasks, but in the

context of a set of different objects or scenes.
• X-Embodiment: The same task is present in the finetuning data, but is performed by a different

robot (Rethink Sawyer instead of Franka Panda).

Quantitative results are presented in Table 2. In this more challenging setting, improvements from
the depth estimation + reprojection baseline are much more limited, likely because many requested
novel viewpoints are outside the original camera’s viewing frustum. The pretrained ZeroNVS model
yields modest improvements on all tasks. We see the best performance when using the model fine-
tuned on the MimicGen data, often doubling the success rate of the next best method.

Qualitatively, as seen in Figure 4, we find that the ZeroNVS model finetuned on MimicGen data
produces higher fidelity images, particularly with respect to the robotic arm’s appearance.

Figure 5: Performance of novel view–
augmented policies when provided with ad-
ditional wrist camera observations, which
are consistent between train and test settings.
We find as per expectation that wrist ob-
servations improve performance across the
board, as they are agnostic to third-person
viewpoint. These improvements comple-
ment those of view augmentation methods.

Q3. Use of wrist-mounted cameras to reduce domain

gap. Wrist-mounted cameras are a popular and effective
approach to improving visuomotor policy performance
and reducing domain shift due to changes in visual ob-
servations [20]. In this experiment, we examine the effect
of using wrist-camera observations in conjunction with
augmented third-person views. The results are shown in
Figure 5. We see that adding wrist camera observations
slightly improves performance on the threading task for
all augmentation techniques, suggesting that methods for
view-invariance for third-person views can be comple-
mentary to the use of wrist cameras. For the threading
task, the performance of a policy using solely wrist ob-
servations, which are unperturbed at test time, is 58%.
This is better than even our strongest policy using a third-
person view augmentation model. However, the perfor-
mance of wrist-camera-only policies may be limited for
many tasks [20]. For instance, in threading, the ora-
cle augmentation + wrist camera policy achieves a 73%
success rate using the original third-person viewpoint.

Q4. Performance on real robots. We further investigate
the performance of VISTA when training policies on real-world data. Critically, we also seek to
validate whether finetuning NVS models on large-scale real multi-view robotic data can improve
performance for real-world policies.

To test this, we first finetune a ZeroNVS model on a subset of the DROID [7] dataset, which contains
over 75k trajectories of a variety of tasks in diverse environments. We randomly sample a subset
of 3000 trajectories in DROID and sample 10 random timesteps within each trajectory as “scenes”
for finetuning, using the four external views from two stereo cameras as paired data. We then
collect a dataset consisting of 150 expert demonstrations on a Franka Emika Panda robot for the
task place cup on saucer from a single camera viewpoint. We train diffusion policies [38] on
this data following the configuration in DROID [7] with four policy variants as follows: Original

7



Original Camera 2 Camera 3 Camera 4 Camera 5

Figure 6: Tested camera viewpoints for real world experiments. We vary both the position and orientation of
the cameras at a range of distances. Note that camera calibration information is not used for new viewpoints.

Orig. Cam Cam 2 Cam 3 Cam 4 Cam 5 Agg.
Aug. model R C R C R C R C R C R C

Original data+wrist 9/10 4/10 2/10 0/10 1/10 0/10 1/10 0/10 – – 14/40 4/40
ZeroNVS aug+wrist 8/10 3/10 7/10 2/10 8/10 4/10 9/10 3/10 7/10 2/10 39/50 14/50
ZeroNVS (DROID)+wrist 9/10 6/10 8/10 2/10 9/10 5/10 9/10 3/10 9/10 4/10 44/50 20/50

Wrist only – – – – – – – – – – 16/20 5/20

Table 3: Real robot policy success rates. We evaluate each rollout’s success on two stages of the task:
Reaching the cup and positioning the gripper for a grasp as determined by a human rater, and Completing
the full place cup on saucer task. Camera 5 results for “original data + wrist” are omitted as the policy
exhibited qualitatively essentially random behaviors for novel views. We find that the ZeroNVS augmentation
improves viewpoint robustness, and using the DROID-finetuned NVS model yields additional gains.

data + wrist uses the third-person camera view and wrist view as policy inputs. ZeroNVS aug

+ wrist additionally performs augmentation on the third-person view using the ZeroNVS model
from the original paper. ZeroNVS (DROID) + wrist uses the NVS model finetuned on DROID
data instead. Finally, representing an alternative approach that sidesteps the viewpoint shift problem
entirely by only using the wrist camera, which is always fixed related to the end effector, wrist

only is a baseline that does not use third-person camera inputs. We evaluate these policies when the
external observations are captured from the original viewpoint and four novel views (see Figure 6).
Full finetuning and real world experimental setup details are in Appendix C.

The results, presented in Table 3, indicate that VISTA is also effective in improving policy viewpoint
robustness in the real world settings. Further, we see a performance gain from finetuning the NVS
model on a large, diverse robotic dataset. In contrast, the policy trained on the single viewpoint data
struggles to reliably reach toward the cup under viewpoint changes.

6 Conclusion and Limitations

Limitations. While VISTA is effective at improving the viewpoint robustness of policies, it does
have certain limitations. First, the computational expense of generating novel views can be signif-
icant. Second, augmenting views during policy training can increase training time and therefore
computational expense. Third, sampling views during data augmentation requires some distribution
of poses from which to sample. This distribution must cover the reasonable space of views expected
at deployment time. Fourth, single-image novel view synthesis models often perform poorly when
the novel view is at a camera pose that differs dramatically from the original camera pose, and this
limits the distribution from which views may be sampled during data augmentation.

Conclusion. In this paper, we presented VISTA, a simple yet effective method for making policies
robust to changes in camera pose between training and deployment time. Using 3D priors from
single image view synthesis methods trained on large-scale data, VISTA performs data augmentation
to learn policies invariant to camera pose in an imitation learning context. Experiments in both
simulated and real world environments demonstrated improved robustness to novel viewpoints of
our approach over baselines, particularly when using view synthesis models finetuned on robotic
data (though applied zero-shot with respect to tasks). There are a number of promising directions
for future work, but of particular interest is studying the performance of this data augmentation
scheme at scale across a large dataset of robotic demonstrations.
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Please see our project website at https://s-tian.github.io/projects/vista for code im-

plementations, pretrained model weights, videos, and additional visualizations.

A Details of Model Implementations

All novel view synthesis methods that we consider generate novel views at a resolution of 256↓256
given RGB images at a resolution of 256 ↓ 256. The synthesized images are later downsampled
for policy training. To clarify how these models are used in a policy learning pipeline, we provide
pseudocode of the VISTA algorithm in Algorithm 1.

Algorithm 1 VISTA: Learning View Invariant Policies via Novel View Synthesis.

Require: Dataset D consisting of trajectories ω0:M : ωi = {(o0, a0, · · · , ot, at, · · · oT , aT )}, novel
view synthesis model M(Icontext, f, Econtext, Etarget), training camera extrinsics dis-
tribution Etrain, LPIPS threshold ϑ, number of generation attempts M , known camera
field-of-view f , number of augmented frames per reference frame C, policy learning
procedure LEARNPOLICY(D).

1: D
↑
↔ {} ϱ Initialize augmented dataset D↑.

2: for trajectory ωi in D do ϱ Iterate over all transitions in source dataset.
3: for transition (ot, at) in ωi do

4: for each of C augmented copies do

5: Etarget ↑ Etarget ϱ Randomly sample extrinsics from training distribution.
6: num tries ↔ 0
7: repeat

8: o↑
t
↔ M(ot, f, I, Etarget) ϱ Synthesize novel view image.

9: num tries ↔ num tries+ 1
10: until LPIPS(o↑

t
, ot) < ϑ or num tries >= M

11: ϱ Reject images that are too far away in LPIPS, or give up after too many failures.
Note that we only do this with the ZeroNVS model, to filter very poor generations.
With other models, all generated images are accepted, i.e, ϑ = ↗. ς

12: if num tries < M then ϱ If novel novel synthesis was successful
13: D

↑
↔ D

↑
↘ (o↑

t
, at) ϱ Add augmented transition to buffer.

14: else

15: D
↑
↔ D

↑
↘ (ot, at) ϱ Add original transition to buffer.

16: ϱ Learn policy on augmented dataset, in our case, imitation learning via behavior cloning. ς
17: ε ↔ LEARNPOLICY(D↑)
18: return ε

A.1 ZeroNVS

ZeroNVS is a latent diffusion model that generates novel views of an input image given a specified
camera transformation. It is initialized from Stable Diffusion and then fine-tuned on a diverse col-
lection of 3D scenes, and therefore achieves strong zero-shot performance on a wide variety of scene
types. Moreover, as a generative model, it tends to generate novel views which are crisp and real-
istic, mitigating the domain gap between generated and real images. This distinguishes ZeroNVS
from methods such as PixelNeRF [22], which are trained with regression-based losses and tend to
produce blurry novel views even for small camera motion.

We use the implementation and pretrained checkpoint provided by Sargent et al. [8]. As mentioned
in Section A, although ZeroNVS largely produces reasonable views even zero-shot, it can sometimes
produce images with significant visual artifacts. To filter these out, we reject and resample images
that have a LPIPS [36] distance larger than a hyperparameter ϑ from the input image. We set ϑ = 0.5
for all simulated experiments and ϑ = 0.7 for real experiments. We do not extensively tune this
hyperparameter. If the model fails to produce an image with distance < ϑ after 5 tries, the original
image is returned.
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ZeroNVS also requires as input a scene scale parameter. To determine the value of the scene
scale for simulated experiments, we perform view synthesis using the pretrained ZeroNVS check-
point on a set of 100 test trajectories for the lift and threading environments, and compute the
LPIPS score between the ZeroNVS rendered images and ground truth simulator renders for values
{0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95}. We find that the lowest error across
the tasks is achieved at 0.6 and thus use 0.6 for all environments, including the real robot experi-
ments.

While the behavior of the ZeroNVS model is somewhat sensitive to scene scale, we believe this
may be alleviated by selecting a wider viewpoint randomization radius at training time, which is
corroborated by our real robot experiments.

When sampling, we perform 250 DDIM steps and use a DDIM ϑ of 1.0. We use a field of view
(FOV) of 45 degrees for simulated experiments (obtained from the simulator camera parameters)
and FOV of 70 degrees for the real world experiments (obtained from the Zed 2 camera datasheet).

Sampling the diffusion model for NVS is roughly similar to sampling from the vanilla Stable Dif-
fusion model; it takes on average 8.7 seconds to generate a single 256 ↓ 256 image with ZeroNVS
using these settings on a single NVIDIA RTX 3090 GPU.

A.2 Depth estimation + Reprojection baseline

This baseline represents a geometry-based approach that leverages depth estimation models trained
on large-scale, diverse data.

First, we use ZoeDepth (ZoeD NK) [41], an off-the-shelf model, to perform metric depth esti-
mation on the input RGB image. Next, we deproject the images into pointclouds using a pin-
hole camera model. We rasterize an image from the points using the Pytorch3D point raster-
izer [43], setting each point to have a radius of 0.007 and 8 points per pixel. Finally, we use
a publicly available Stable Diffusion inpainting model (https://huggingface.co/runwayml/
stable-diffusion-inpainting) to inpaint regions that are empty after rasterization. We use 50
denoising steps as per the defaults.

It takes on average 2.8 seconds to generate a single 256 ↓ 256 image with this baseline on a single
NVIDIA RTX 3090 GPU.

A.3 PixelNeRF

For PixelNeRF [22], we use the implementation from the original authors at https://github.
com/sxyu/pixel-nerf. We use a pretrained model trained on the same datasets as ZeroNVS [8].

It takes on average 5.8 seconds to generate a single 256↓ 256 with PixelNeRF on a single NVIDIA
RTX 3090 GPU.

B Simulated Experimental Details

Here we provide details regarding the simulated experimental setup. As a high level goal, we aim
to minimize differences from our setup from existing robotic learning pipelines to demonstrate how
this augmentation technique can be generally and easily applied across setups.

B.1 Simulation Environments and Datasets

Our simulated experiments use environments created in the MuJoCo simulator and packaged by the
robosuite [44] and MimicGen [40] frameworks.

For the Lift, PickPlaceCan, and Nut Assembly tasks, the training datasets are the Proficient-Human
datasets for those tasks from robomimic [37] and consist of 200 expert demonstrations each. For
all MimicGen tasks (Threading, Hammer Cleanup, Coffee, Stack) the datasets consist of the first
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Original View

Figure 7: Example ground truth viewpoints from the “perturbation” distribution for the Lift task, rendered by
the simulator.

200 expert trajectories for the “core” MimicGen-generated datasets, downloaded from https://
github.com/NVlabs/mimicgen_environments.

B.2 Details for Training and Test Viewpoints

We use the same distribution of viewpoints at training time for augmenting the dataset and when
testing the policies. Note, however, that images generated by novel view synthesis models are not
guaranteed to actually be from the target viewpoint – only the oracle that uses the simulator to render
the scene satisfies this.

Due to the lack of widely adopted testing settings for testing robotic policies on novel views and that
the effect of a particular view distribution is highly environment dependent, the hyperparameters for
the view distribution were selected by hand by the authors to approximate reasonable distributions
that a robot learning practitioner may encounter in practice. We hope these distributions may also
be reasonable testing settings for evaluating future methods on these tasks.

B.2.1 Perturbations

This set of viewpoints are representative of incremental changes, for instance, that of a physical cam-
era drifting over time or subject to unintentional physical disturbance. Specifically, this distribution
is parameterized by a random translation !t ↑ N (0, diag(ϖ2

t
)) and rotation around a uniformly

randomly sampled 3D axis, where the magnitude is sampled from N (0,ϖr
2). Specifically, we set

ϖt = 0.03 m and ϖr = 0.075 rad. Samples of observations taken from viewpoints drawn from this
distribution are shown in Figure 7.

B.2.2 Quarter Circle Arc

This is a more challenging distribution of camera poses with a real-world analogue to constructing
another view of a given scene. We first compute a sphere centered at the robot base and containing
the initial camera pose. We then sample camera poses on the sphere at the same z height and
within a 90° azimuthal angle of the starting viewpoint. The radius of the sphere is further randomly
perturbed with Gaussian noise with variance ϖ2

r
. Specifically, the radius of the sphere is 0.7106 m

for all simulated environments, which is the distance between the camera and the robot base in the
Lift task, and ϖr = 0.05 m.
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Original View

Figure 8: Example ground truth viewpoints from the “quarter circle arc” distribution for the Lift task, rendered
by the simulator.

B.3 Finetuning ZeroNVS on MimicGen Datasets

We finetune the ZeroNVS model on datasets from the MimicGen data of 8 tasks: stack three,
square, three piece assembly, mug cleanup, pick place can, nut assembly, kitchen,
and coffee prep. For each environment, we take the first 200 trajectories of the “core” Mimic-
Gen dataset for that task with the maximum initialization diversity (e.g. if Square is available in
variants D0, D1, and D2, we take D2) and simulate 10 random viewpoints from the quarter circle
arc distribution for each image in the dataset. We supply this as training data to ZeroNVS, using
the training settings from the original ZeroNVS paper but changing the optimizer from AdamW to
Adam and decreasing the learning rate to 2.5e-5, and decreasing the batch size to 512 due to com-
putational constraints. We finetune the model for 5000 steps using four NVIDIA L40S GPUs. This
takes approximately 16 hours of wall clock time.

B.4 Policy Learning

We use the same policy training settings for all simulated experiments, taken from the behavior
cloning implementation in robomimic. The output of the policy network is a Gaussian mixture
model. A brief overview of hyperparameters, corresponding directly to robomimic configuration
file keys, are listed in Table 4. Note that we do not tune these hyperparameters and simply use them
as sensible defaults. We train each policy using a single NVIDIA TITAN RTX GPU.

Because we generate the augmented dataset prior to performing policy learning, the computational
cost of training policies is split between the augmented dataset generation and policy learning. In our
experiments these take relatively similar time durations (around 10-20 hours for dataset generation
and 15 for policy learning, varying slightly on the task), however, to achieve this we perform data
augmentation parallelized across 10 GPUs. This roughly doubles the total wall clock time required
to train the policies.

C Real World Experimental Details

Next we provide details regarding the real world experimental setup. As a high level goal, we
aim to minimize the differences from existing robotic learning pipelines to demonstrate how this
augmentation technique can be generally and easily applied across setups.
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Hyperparameter Value

Batch size 16
Optimizer steps per epoch 500
Training epochs 600
Input image resolution 84↓ 84
Augmentation Random crop (84↓ 84 ≃ 76↓ 76)
Optimizer Adam
Learning rate 1e-4
Actor layer dimensions 1024, 1024
GMM num modes 5
GMM min std 0.0001
GMM std activation softplus
Visual encoder backbone Resnet18
Visual encoder feature dim 64
Visual encoder pooling Spatial softmax
Spatial softmax num kp 32
Spatial softmax temperature 1.0

Table 4: Behavior cloning hyperparameters for simulated experiments.

C.1 Real World Robot Setup

We use a Franka Research 3 (FR3) robot in our real world experiments. The hardware setup is
otherwise a replica of that introduced by Khazatsky et al. [7]. Specifically, the robot is mounted to
a mobile desk base (although we keep it fixed in our experiments) and two ZED 2 stereo cameras
provide observations for the robot. An overview of the real-world robot setup is shown in Figure 9.

Original 
camera view

Novel view 
Camera 5

Figure 9: Experimental setup for real robot
evaluation. Here we show the testing setup
for one particular novel camera view, camera
5. The original camera view that data was
collected using is shown by the orange arrow.
We use the left camera of each stereo pair.

We use a Meta Quest 2 controller (also as per the
DROID hardware setup) to collect teleoperated ex-
pert demonstrations. We collect 150 human expert
demonstrations of the place cup on saucer task,
randomizing the position of the cup and saucer after
each task. Each demonstration trajectory lasts ap-
proximately 15 seconds of wall clock time.

When performing evaluations, we score task com-
pletion based on two stages: 1) Reaching the cup
in a grasp attempt based on determination by a hu-
man rater and 2) Completing the task, which means
that the cup is above and touching the surface of the
saucer at some point during the trajectory.

C.2 Finetuning

ZeroNVS on the DROID Dataset

To finetune ZeroNVS on the DROID dataset, we first
collect a random subset of 3000 trajectories from the
DROID dataset. Then, for each trajectory, we uni-
formly randomly sample 10 timestamps from the du-
ration of the video, and consider the trajectory frozen at each of those times as a “scene”. Thus, we
effectively have 30000 scenes. For each scene, we extract 4 views, which correspond to stereo im-
ages from the two external cameras. Although the DROID dataset does contain wrist camera data,
we do not use it, as the wrist camera poses are much more challenging for synthesizing novel views.

We then perform depth estimation for each image using a stereo depth model. We then center crop
all images to be square, and resize them to 256↓256 to fit the existing ZeroNVS models. We obtain
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camera extrinisics from the DROID dataset, and use simplified intrinsics assuming a camera FOV
of 68 degrees for all cameras, which we obtained from a single randomly sampled camera in the
dataset. In reality, the FOV differs slightly for each camera due to hardware differences, and slightly
better results may be obtained by using per-camera intrinsics.

As in the simulated finetuning experiments, we again use the training settings from the original
ZeroNVS paper but change the optimizer from AdamW to Adam and decrease the learning rate to
2.5e-5, and decrease the batch size to 512 due to computational constraints. We use 29000 scenes
for training and 1000 for validation. As an attempt to reduce overfitting, we mix in a single shard
of 50 scenes each from the CO3D and ACID datasets which are sampled for each training sample
with probability 0.025 each. DROID data is sampled with probability 0.95. We did not extensively
validate the effect of this data mixing due to computational cost of finetuning the model repeatedly,
and it is likely unnecessary. We finetune the model for 14500 steps using four NVIDIA L40S GPUs.
This takes approximately 50 hours of wall clock time.

C.3 Policy Learning

Training augmentation viewpoints. For the real world experiments, we do not have access to
the test viewpoint distribution. To sample viewpoints for ZeroNVS data augmentations for these
experiments, we sample from a distribution parameterized in the same way as the “perturbation”
range in the simulated experiments, but with a vastly increased variance in translation and rotation
magnitude intending to cover a wide range of possible test viewpoints.

This distribution is parameterized by a random translation !t ↑ N (0, diag(ϖ2
t
)) and rotation around

a uniformly randomly sampled 3D axis, where the magnitude is sampled from N (0,ϖr
2). Specifi-

cally, we set ϖt = 0.15 m and ϖr = 0.375 rad.

Figure 10: Results for ablation of number
of augmented transitions per original dataset
transitions. Overall, we see modest per-
formance improvements from increasing the
amount of augmented data, across both the
oracle and learned NVS model.

Policy learning. For policy learning on the real
robot, we train diffusion policies [38]. Specifically,
we use the implementation from the evaluation in
the DROID paper [7] with language conditioning re-
moved. The input images are of size 128 ↓ 128,
and both random color jitter and random crops (to
116↓116) are applied to the images during training.
We train all policies for 100 epochs (50000 gradient
steps), using 2 NVIDIA RTX 3090 or RTX A5000
GPUs.

D Additional Experiments

D.1 Increasing

Number of Augmented Transitions

In the experiments presented in Section 5, we per-
form data augmentation via novel view synthesis by
doing offline preprocessing of the dataset, augment-
ing and replacing each transition with a single augmented transition. However, many random data
augmentation strategies for neural network training perform augmentation “on-the-fly”, applying
augmentations to each particular batch. This increases the effective dataset size. Augmentation with
novel view synthesis methods is too computationally expensive to apply per batch with our compu-
tational budget, but we are still interested in understanding how the performance of trained policies
is affected by increasing the number of augmented trajectories for each original dataset trajectory.

For the threading task with viewpoints sampled from the “quarter circle arc” distribution, we
trained policies on dataset containing 1, 2, 3, 4, and 5 augmented transitions per dataset transition
for the simulator (oracle) and ZeroNVS (MimicGen finetuned) models.
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Method MV-MAE ZeroNVS (MimicGen) (ours)

Threading – original viewpoint 28.7± 2.9 64.7± 5.7
Threading – novel viewpoints 2.0± 1.2 32.0± 0.0
Stack – original viewpoint 38.7± 5.3 80.7± 3.3
Stack – novel viewpoints 6.0± 1.2 62.0± 3.1
Can – original viewpoint 19.3± 7.0 86.0± 3.1
Can – novel viewpoints 4.7± 0.7 40.7± 3.5
Coffee – original viewpoint 44.0± 4.2 88.0± 4.2
Coffee – novel viewpoints 3.3± 0.7 32.7± 2.4
Hammer – original viewpoint 89.3± 3.7 100.0± 0.0
Hammer – novel viewpoints 7.3± 0.7 52.0± 3.5
Square – original viewpoint 9.3± 3.5 63.3± 2.4
Square – novel viewpoints 2.7± 0.7 26.0± 2.0

Table 5: Comparison to training using pre-trained multi-view masked autoencoder. Policy
success rates on randomized test viewpoints as percentages and standard error of the mean (SEM)
over 3 random seeds. We report the maximum performance across training checkpoints, evaluating
for 50 trials following Mandlekar et al. [37].

The results are shown in Figure 10. We find that increasing the number of augmented transitions
per original dataset transition yields modest improvements with both models, although there is a
surprising dip in performance when using 5 augmented transitions for the ZeroNVS (MimicGen
finetuned) model.

D.2 Multi-View Masked World Models Comparison

Here we conduct a baseline comparison to the multi-view masked autoencoding (MV-MAE) method
from Multi-View Masked World Models (MV-MWM) [6]. While MV-MWM has a similar motiva-
tion to our work, it has a very different problem setting compared to ours: they assume training-time
access to a multi-view dataset, while we assume only access to an offline dataset of trajectories
captured from a single viewpoint. Thus we adapt the imitation learning approach described in the
MV-MWM work to our finetuning experimental setup. Specifically, we train a MV-MAE, using all
hyperparameters from Seo et al. [6] on the finetuning dataset from Experiment Q2. Of particular
note, we use a higher rendering resolution for this baseline (96↓96 compared to 84↓84 for policies
trained using our novel view augmentation) to match the image resolution used by Seo et al. [6]. We
train for 5000 steps, performing early stopping as we observe overfitting by monitoring the valida-
tion loss on datasets for the coffee, hammer, stack, and threading tasks. We then freeze the
pre-trained encoder and use it to train policies on single-view datasets, testing on the quarter circle
arc test view distribution. We show the results in Table 5. Our approach significantly outperforms
the multi-view masked autoencoding method.

E Additional Qualitative Results

E.1 Real World Novel View Synthesis

In Figure 11, we provide additional qualitative results of novel views synthesized for the real world
cup on saucer task. We show synthesized images for views sampled from the training view
distribution described in Appendix C.3.

E.2 Saliency Analysis of Learned Policies

To understand how different combinations of observation viewpoints qualitatively affect learned
policies, we additionally conduct an analysis of saliency maps of learned policies trained on third-
person views only compared to combined third-person and wrist cameras.
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Specifically, we visualize saliency maps of convolutional layers of both simulated and real-world
policies using GradCAM++ [45, 46] in Figure 12. We find that wrist camera observations tend to
have salient features at locations corresponding to objects nearby or underneath the gripper. Policies
with only third-person camera views as input tend to have more salient features corresponding to the
robotic arm or gripper itself.

For GradCAM++, we choose the target layer to be the common choice [46] of the last convolutional
layer in ResNet18 or ResNet50 for simulated and real policies respectively. For the threading
policies the target model output is the mean of the output Gaussian mixture model action distribution
with the highest probability of being selected (largest logit). For the real-world cup on saucer
policies the target model output is the mean of the output denoised action sequence. We visualize
saliency maps on data from viewpoints sampled from the same test distributions as in Experiment

Q2 (quarter-circle arc) and Experiment Q4 respectively.
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Figure 11: Additional view synthesis results on real robot datasets. The column labeled ”Original”
is the input view, and random poses are sampled to render the images in the other columns. Note
that the ZeroNVS model finetuned on DROID data (rightmost column) is consistently able to gen-
erate more crisp, realistic images than the other models, particularly with the robotic arm’s visual
appearance.
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Threading (simulated) 
Third-person camera 
only (w/ finetuned 
NVS augmentation)

Third person camera 
(w/ finetuned NVS 

augmentation) 
+ wrist cam

Cup in saucer (real) 
Third-person camera 
only (w/ finetuned 
NVS augmentation)

Third person camera 
(w/ finetuned NVS 

augmentation) 
+ wrist cam

Figure 12: Saliency maps computed using GradCAM++ for policies with either solely third-person
input views (using augmentation from the ZeroNVS view synthesis model finetuned on MimicGen
and DROID data respectively) or third-person and wrist camera viewpoints combined. When in-
corporated, wrist camera observations do often make contributions to the robot’s final action by
helping it localize objects grasped by or underneath the gripper. Meanwhile, the policy with only
third-person camera views tends to have more salient features corresponding to the robotic arm or
gripper itself.
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