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Fig. 1. Our framework for building intelligent agents by internalizing a vocabulary of “concepts,” which are
represented as compositional programs and neural network embeddings. These concepts can be grounded in
various domains: 2D images, videos, 3D scenes, and robotic actions, and be recombined based on di!erent types
of user queries: visually grounded questions, physical and causal reasoning questions, referring expressions,
and manipulation instructions.

This article presents a concept-centric paradigm for building agents that can learn continually and reason
!exibly. The concept-centric agent utilizes a vocabulary of neuro-symbolic concepts. These concepts, such as
object, relation, and action concepts, are grounded on sensory inputs and actuation outputs. They are also
compositional, allowing for the creation of novel concepts through their structural combination. To facilitate
learning and reasoning, the concepts are typed and represented using a combination of symbolic programs
and neural network representations. Leveraging such neuro-symbolic concepts, the agent can e"ciently learn
and recombine them to solve various tasks across di#erent domains, ranging from 2D images, videos, 3D
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scenes, and robotic manipulation tasks. This concept-centric framework o#ers several advantages, including
data e"ciency, compositional generalization, continual learning, and zero-shot transfer.

CCS Concepts: • Computing methodologies→ Learning paradigms; Computer vision representations;
Scene understanding.

Additional Key Words and Phrases: Concept Learning, Neuro-Symbolic Reasoning

Key Insights
• This article presents a concept-centric paradigm for building agents that can continually
learn and reason !exibly.

• The agent acquires a vocabulary of neuro-symbolic concepts for objects, relations, and
actions, represented through a combination of symbolic programs and neural networks.
These concepts are grounded in sensory inputs and actuation outputs and can be com-
posed to solve novel tasks using general-purpose reasoning and planning algorithms.

• The proposed framework o#ers several advantages, including data e"ciency, compo-
sitional generalization, continual learning, and zero-shot transfer—key properties for
general-purpose AI. These advantages have been demonstrated across applications in
vision, language, and robotics.

1 Overview
One of the long-term goals of arti$cial intelligence (AI) is to build machines that can continually
learn new knowledge from their experiences, ground them in the physical world, and apply the
knowledge to their reasoning across di#erent tasks, modalities, and environments. The desired
capability of such agents includes, but is not limited to, describing perceived scenes, answering
queries about scenes, making plans to achieve certain goals, and executing plans in the physical
world. We want such machines to be able to learn and solve a wide variety of tasks across di#erent
environments, leveraging a feasible amount of data from multiple modalities.

In recent years, we have seen great success in neural network-based “end-to-end” learning meth-
ods, but most of them are tailored to particular tasks and environments, for example, categorizing
images of objects into a $xed set of labels, translating between particular languages, and playing
video games and board games. These systems are usually built on top of relatively simple and
monolithic training and inference algorithms (e.g., a single neural network trained by stochastic
gradient descent). As a result, their success in domain-speci$c applications relies on the availability
of large-scale datasets and computation resources on the particular task of interest. However,
annotating high-quality data for reasoning, planning, and control in visual and physical domains is
usually labour-intensive and, in some cases, infeasibly costly. Thus, there has been limited success
in extending these methods to building embodied generalist agents across domains.

The thesis of this article is to emphasize the role of concepts in learning and reasoning. We draw
on rich traditions from philosophy and cognitive science that identify concepts as the basic building
blocks of thought (for example, see readings from Margolis and Laurence [24]). Humans acquire
concepts from the interaction of our evolved cognitive architecture and built-in inductive biases
with our own experiences in the world, including both our direct percepts and what we learn
socially and culturally from interacting and communicating with other humans. Our minds then
compose these basic units to form sophisticated compound thoughts: beliefs, desires, and plans.
One of the most powerful ways to construct a system of useful concepts for reasoning is to build
them out of meanings acquired through language. In particular, we can consider the granularity
of concepts at the level of individual word meanings (meanings of nouns, verbs, etc.), and treat
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their combinations in a similar way as how words can be combined into phrases and sentences
in natural language. Similar ideas of composing primitive units of thought have a long tradition
in AI, dating back to inductive logic programming [27], statistical relational learning [13], and
probabilistic-logic programming [20].
Our technical proposal in this paper is to build a neuro-symbolic concept representation. Each

concept is a discrete symbol (word or short phrase) that can be grounded onto subsets of the
embodied environments. An object concept “orange” grounds to the sets of orange objects; an
object relation concept “left” grounds to all object pairs (A, B) such that A is left of B; an action
concept “put-left” grounds to all agent action sequences that move the object currently being
held to a position on the left of the reference object. This includes pushing the object to the goal,
holding it vigorously using tools, and so forth. As illustrated in Fig. 1, during reasoning, our concept-
centric framework operates at a higher level of abstraction with this vocabulary of “neuro-symbolic
concepts.”
Neuro-symbolic concepts have two advantages: they can be !exibly grounded on sensory and

actuation modalities, and they have strong compositional generalization, since existing concepts
can be structurally combined to form new ones. For instance, “orange,” “cylinder,” and “left” can be
combined to form a novel concept such as “put the orange cylinder to the left of the bottle.” Such
compositionality naturally suggests a decomposition of the learning problem: we may individually
learn how to recognize object shapes (cylinder, bottle), how to recognize object colors (orange), how
to reason about object placement (left of the target), and how to move objects from one location to
another. Finally, during inference time, we can recombine these learned concepts: shapes, colors,
relations, and actions, to achieve the speci$ed goals.
Compared with purely end-to-end learning methods, the inherent compositionality of neuro-

symbolic concepts makes them much better suited for generalist agent learning. Compositionality
simultaneously supports four properties required by generalist agents: data e"ciency (because
collecting labeled data is especially di"cult), compositional generalization (the number of possible
scenes and tasks can be exponentially large as the number of objects and their properties increases;
we want systems that can generalize to unseen scenes and unseen goals), continual learning (the
system should be able to learn and adapt gradually), and transfer learning (we want to support
transfer among di#erent tasks).
In the rest of the article, we will $rst o#er a de$nition of neuro-symbolic concepts (Section 2).

We will then delve into a concrete framework of neuro-symbolic concept learning for visual scene
understanding and showcase its ability to learn from few data, continually and generalizably, and
be transferable (Section 3). Finally, we will discuss other applications of the approach (Section 4).

2 Neuro-Symbolic Concepts
In order to systematically represent the grounding of concepts and how they can be composed, we
formally represent each concept 𝐿 as a tuple of

𝐿 = ↑parameter, program, neural-nets↓.

In essence, our concept representation integrates neural network representations (for instance,
vector embeddings), which ground concepts in visual and physical representations, and symbolic
representations (particularly, parameterized programs), which characterize how various concepts
can be combined. Shown in Fig. 2a, the concept “orange” is represented as

orange = ↑{𝑀}, !lter(𝑀,ORANGE), {ORANGE}↓,



Communications of The ACM 4 Mao, Tenenbaum, and Wu

Instruction: put the orange object left of the bottle.

True

ORANGE

(a) Visual grounding of concepts.

orange = ! , #ilter !, ORANGE , {ORANGE}

ORANGE BOTTLE

PUT-LEFT

filter filter

Action

(b) Composition of learned object and action concepts.

Fig. 2. In a neuro-symbolic concept-centric framework, di!erent concepts such as object categories, properties,
relations, and actions are represented as a combination of programmatic and neural representations. In (a),
the neural representation connects the concept with sensory and actuation representations. In (b), di!erent
concepts can be combined to form new compound concepts.

where ORANGE denotes a vector embedding that can be used by the built-in !lter function to
classify orange objects. In practice, this !lter function can be implemented by computing the cosine
similarity between the neural representation of object 𝑀 and ORANGE [21].

Similarly, a relational concept (e.g., a prepositional phrase) “left-of” can be de$ned as

left-of = ↑{𝑀,𝑁}, relate(𝑀,𝑁, LEFT-OF), {LEFT-OF}↓.

The concept relates two objects 𝑀 and 𝑁. The relate function will compute the cosine similarity
between LEFT-OF and a pairwise representation between (𝑀,𝑁) to determine whether 𝑀 is left of
𝑁 in the scene. Actions (e.g., verbs) would have three parts in their programs: a controller that can
generate sequences of robot control commands, and the pre- and post-conditions for the action.
For example, an action “put-left-of” can be represented as:

put-left-of = ↑{𝑀,𝑁}, {pre = holding(𝑀), post = left-of(𝑀,𝑁),
controller = PUT-LEFT-OF}, {PUT-LEFT-OF}↓.

Here, the preconditions and post-conditions of the action can be described with formulas composed
from other object-level and relational concepts.

Illustrated in Fig. 2b, this representation of concepts enables us to combine existing concepts ad-
hering to symbolic functional composition rules, to form compound concepts such as orange(𝑀) and
cylinder(𝑀) (orange cylinders), or more complex ones such as orange(𝑀) and bottle(𝑁) and put-left-
of(𝑀,𝑁) (put the orange object left of the bottle). To support the formal compositionality of di#erent
concepts, all parameters and outputs are typed with primitive types (including objects, events,
actions, Booleans, and integers). For instance, object concepts are represented as functions that
take the perceptual representation of an object as input and predict classi$cation scores as output,
indicating whether the object has the concept. Relational concepts are associated with classi$ers
that classify object pairs. Meanwhile, action concepts are linked with preconditions (circumstances
under which the action can be executed), postconditions (the outcomes of executing the action),
and controllers that generate agent actions based on the current perceptual state. Depending on
the domain and the task, one can choose to implement di#erent primitive operations (e.g., !lter in
a visual recognition context).

Leveraging such neuro-symbolic concepts, we can e"ciently and e#ectively learn the grounding
of concepts in various domains and recombine them to solve di#erent downstream tasks. For
example, shown in Fig. 1, neuro-symbolic concepts can be grounded in 2D images (such as object
properties and object relations), videos (physical events and their relations), 3D scenes (object
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(a) Compositional Generalization

Q: What’s the
shape of the big
yellow thing?

Training Examples

Q: What’s the
shape of the big
yellow thing?

Test Examples (More objects)

(b) Continual Learning of Visual Concepts

The open object in front 
of the pizza is daxy

Q: What is the daxy object?
A: Window.

A round sliced pizza.

Training Example 1: pizza Continual Training: daxy Test Example

(c) Transfer Visual Concepts to Other Domains

There is a red apple.

Training: Captions Transfer: Action Instructions

Put the red apple on the plate.

Q: What size is the 
cylinder that is left of the 
cyan thing that is in front
of the gray cube?

Test Examples
(More objects and more complex questions)

Fig. 3. Three challenges in (a): Compositional generalization. (b): Continual learning of concepts for reasoning.
(c): Transfer learned concepts across domains.

properties and viewpoint-dependent relations), and $nally, robotic manipulation tasks (object prop-
erties, relations, and actions that change them). Therefore, by recombining them through symbolic
program structures, we can answer questions, resolve referring expressions, and interpret human
instructions. We illustrate this idea in Fig. 2. Speci$cally, we learn the grounding (classi$ers and
controllers) for individual visual and action concepts and recombine them following a hierarchical
program that represents the meaning of the input user query: put the orange object left of the
bottle. In the following, we revisit the four important desiderata for generalist agent learning and
illustrate how our neuro-symbolic concept-centric paradigm ful$lls all requirements.

Data e"ciency. Since learning in embodied environments inevitably involves machine interaction
with the physical environment and human annotations, minimizing the amount of data needed to
learn a speci$c concept is crucial. Compared to a monolithic deep neural network, a concept-centric
framework gains data e"ciency primarily by leveraging modular structures of the learning task. For
example, the complex concept “push the orange cylinder” can be decomposed into three individual
concepts. Such decomposition structure injects strong prior to the learning algorithm that the
whole concept is the conjunction of two object concepts (“orange” and “cylinder”) and an action
concept (“push”). It further enables the algorithm to disentangle the learning problem and perform
explicit multi-task learning from various sources (e.g., learning the concept of “orange” from images
and “push” from robot learning datasets).

Compositional generalization. Compositionality is often grounded in di#erent aspects across
di#erent domains. For example, in the visual concept learning domain, as illustrated in Fig. 3a,
compositional generalization is at least expected at two levels: the concept composition level (e.g.,
“the big cylinder left of the yellow block”), and the scene composition level (generalization to scenes
with a di#erent number of objects compared to training examples). The advantage of concept-centric
frameworks is primarily a contribution from the alignment between the composition structure
of concepts and the structure of the domain. For example, explicitly reasoning about the set of
“orange” and its subset “orange cylinder” in a visual scene makes the reasoning process robust to
the total number of objects in a scene.
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Continual learning. The demand for continual concept learning and transfer learning arises due to
two challenges. First, it is generally di"cult to obtain high-quality “end-to-end” learning examples
for embodied agents: i.e., from raw perceptual input to robot control commands. Therefore, a
practical system should be able to learn from multiple sources of data, typically of di#erent input-
output speci$cations: unannotated videos, paired images and texts, human demonstrations of
skills, and so on. Second, at deployment time, the machine should continually adapt itself to its
environment, such as learning new concepts (e.g., an unseen breed of dogs, a new type of dish, etc.)
and new human preferences.

Zero-shot transfer. Unlike monolithic deep neural networks that usually require tuning all param-
eters while learning new concepts, as illustrated in Fig. 3b, the concept-centric framework naturally
allows a !exible introduction of new concepts and adjustment to a single previously learned concept,
thanks to the modular structures of concept composition. It also enables a zero-shot transfer of
learned concepts across tasks and even domains, such as transferring learned object concepts from
the task of image captioning (“the photo shows a dog”) to visual question answering (“how many
dogs are there?”), from the domain of visual concept learning (“apples”) to the domain of robotic
manipulation (“push the apples”), as illustrated in Fig. 3c.

3 Learning Neuro-Symbolic Visual Concepts
Our framework for neuro-symbolic concept learning for visual scene understanding is motivated
by how humans learn visual concepts by jointly understanding vision and language [12]. Consider
the example shown in Fig. 4-I. Imagine someone with no prior knowledge of colors is presented
with the images of the red and green cubes, paired with the questions and answers. They can
easily identify the di#erence in objects’ visual appearance (in this case, color), and align it to the
corresponding words in the questions and answers (Red and Green). Other object attributes (e.g.,
shape) can be learned in a similar way. Starting from there, humans are able to inductively learn the
correspondence between visual concepts and word semantics (e.g., spatial relations and referential
expressions, Fig. 4-II), and unravel compositional logic from complex questions assisted by the
learned visual concepts (Fig. 4-III, also see [1]).

This motivated us to build a learning framework that jointly learns visual perception, words, and
semantic language parsing from images and question-answer pairs. Proposed in Mao et al. [21], a
Neuro-Symbolic Concept Learner (NS-CL) learns all these from natural supervision (i.e., images
and QA pairs), requiring no annotations on images or semantic programs for sentences. Instead,
analogous to human concept learning, it learns via curriculum learning. NS-CL starts by learning
representations/concepts of individual objects from short questions (e.g., What’s the color of the
cylinder?) on simple scenes (↔3 objects). By doing so, it learns object-based concepts such as colors
and shapes. NS-CL then learns relational concepts by leveraging these object-based concepts to
interpret object referrals (e.g., Is there a box right of a cylinder?). The model iteratively adapts to
more complex scenes and highly compositional questions.

Shown in Fig. 5, NS-CL has three modules: a neural network-based perception module, a semantic
parser for translating questions into executable programs, and a symbolic program executor. Given
an input image, the visual perception module detects objects in the scene and extracts a deep,
latent representation for each of them. The semantic parsing module translates an input question
in natural language into an executable program, represented in a domain-speci$c language (DSL)
designed for VQA. The DSL covers a set of fundamental operations for visual reasoning, such as
$ltering out objects with certain concepts or querying the attribute of an object. The generated
programs have a hierarchical structure of symbolic, functional modules.
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Q: What’s the color of the object?
A: Red.
Q: Is there any cube?
A: Yes.

Q: What’s the color of the object?
A: Green.
Q: Is there any cube?
A: Yes.

Q: How many objects are right of the red object?
A: 2.
Q: How many objects have the same material as the cube?
A: 2

Q: How many objects are both right of the green cylinder
and have the same material as the small blue ball?
A: 3

I. Learning basic, object-based concepts. II. Learning relational concepts based on referential expressions.

III. Interpret complex questions from visual cues.

Fig. 4. Humans learn visual concepts, words, and semantic parsing jointly and incrementally. I. Learning
visual concepts (red vs. green) starts from looking at simple scenes, reading simple questions, and reasoning
over contrastive examples [12]. II. A"erwards, we can interpret referential expressions based on the learned
object-based concepts, and learn relational concepts (e.g., on the right of, the same material as). III Finally,
we can interpret complex questions from visual cues by exploiting the compositional structure.

1 2
3 4

Q: What is the shape of
the red object left of
the sphere?

✓ Query(Shape, Filter(Red, Relate(Left, Filter(Sphere))))
☓ Query(Shape, Filter(Sphere, Relate(Left, Filter(Red))))
☓ Exist(AERelate(Shape, Filter(Red, Relate(Left, Filter(Sphere)))))
……

Visual Representation

Semantic Parsing (Candidate Interpretations)

Symbolic Reasoning

Answer: Cylinder
Groundtruth: Box

Back-propagation

REINFORCE

Obj 1
Obj 2
Obj 3
Obj 4

Sphere
Concept Embeddings

……

Back-propagation

Fig. 5. NS-CL uses neural symbolic reasoning to bridge the learning of visual concepts, words, and semantic
parsing.

Q: Does the red object left of the
green cube have the same shape as
the purple matte thing?

1 2
3 4

Obj 1
Obj 2
Obj 3
Obj 4

Step1: Visual Parsing

Step2, 3: Semantic Parsing and Program Execution

Filter Green Cube

Program Representations Outputs

Relate Object 2
Left

Filter Red

Filter Purple Matte

Same Object 1 Object 3 Shape No (0.98)

Concepts

Fig. 6. The neuro-symbolic execution procedure of a program based on the visual representation and concept
embeddings.

Next, based on the latent program recovered from the question in natural language, a symbolic
program executor executes the program and derives the answer based on the object-based visual
representation. Our program executor mainly contains two parts: the concept quantization module
and a collection of deterministic functional modules. The concept quantization module classi$es
object attributes and relations, and the functional modules implement the logic of composing these
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Q: What’s the shape
of the big yellow thing?

Training

Q: What size is the 
cylinder that is left of 
the cyan thing that is 
in front of the gray
cube?

Test

(a) Data-Efficiency Test
Training with 10% data.

(b) Compositional Generalization Test

Fig. 7. Data e!iciency test and compositional generalization test for the Neuro-Symbolic Concept Learner
(NS-CL).

classi$cation results. To make the execution di#erentiable w.r.t. visual representations, we represent
the intermediate results in a probabilistic manner: a set of objects is represented by a vector, as the
attention mask over all objects in the scene. Each element, Mask𝐿 ↗ [0, 1] denotes the probability
that the 𝑂-th object of the scene belongs to the set. Fig. 6 shows an illustrative execution trace of a
program. The $rst !lter operation outputs a mask of length 4 (there are in total four objects in the
scene), with each element representing the probability that the corresponding object is selected
(i.e., the probability that each object is a green cube). The output “mask” on the objects will be fed
into the next module (relate in this case) as input and the execution of programs continues. The
last module outputs the $nal answer.

Data e"ciency. NS-CL’s modularized design enables interpretable, robust, and accurate visual
reasoning: shown in Fig. 7a, it achieves state-of-the-art performance on the CLEVR dataset [17].
More importantly, it enables data-e"cient learning of concepts and combinatorial generalization
w.r.t. both visual scenes and semantic programs. Highlighted in Fig. 7, compared to other approaches
that do not explicitly learn concepts, (a) when trained on 10% of the CLEVR training data, it achieves
98.9% accuracy on the test set, surpassing all baselines by 14%.

Compositional generalization. We also test our model for compositional generalization; shown in
Fig. 7b, after being trained on scenes with a small number of objects and simple questions, NS-CL
directly generalizes to more complex scenes and questions, while all baselines show a signi$cant
performance drop.

Continual learning. Since our neuro-symbolic learning problem decomposes the learning problem
into learning individual concepts, it naturally supports continual learning of new concepts. As a
concrete implementation, in Mei et al. [25], we present a meta-learning framework for learning new
visual concepts quickly from just one or a few examples, guided by multiple naturally occurring
data streams: simultaneously looking at images, reading sentences that describe the objects in the
scene, and interpreting supplemental sentences that relate the novel concept to other concepts. The
system operates in a class-incremental manner [35], where it continuously receives new examples
of an unseen category and builds a new embedding for the novel category. The learned concepts
support downstream applications, such as answering questions by reasoning about unseen images.
Our model, namely FALCON, represents individual visual concepts, such as colors and shapes,
as embeddings in a high-dimensional space. Given an input image and its paired sentence, our
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model $rst resolves the referential expression in the sentence and associates the novel concept with
particular objects in the scene. Next, our model interprets supplemental sentences to relate the novel
concept with other known concepts, such as “X has property Y” or “X is a kind of Y” [14]. Finally,
it infers an optimal embedding for the novel concept that jointly 1) maximizes the likelihood of the
observed instances in the image, and 2) satis$es the relationships between the novel concepts and
the known ones. We demonstrate the e#ectiveness of our model on both synthetic and real-world
datasets.

Transfer learning. The learned visual concepts can also be used in other domains, such as image
retrieval. With the visual scenes $xed, the learned visual concepts can be transferred directly into
the new domain. We only need to learn the semantic parsing of natural language into the new DSL.
We build a synthetic dataset for image retrieval. The dataset contains only simple captions: “There
is an <object A> <relation> <object B>.” (e.g., There is a box right of a cylinder). The semantic
parser learns to extract corresponding visual concepts (e.g., box, right, and cylinder) from the
sentence. The program can then be executed on the visual representation to determine if the visual
scene contains such relational triples. Note that this functionality cannot be directly implemented
on the CLEVR VQA program domain, because questions such as “Is there a box right of a cylinder”
can be ambiguous if there exist multiple cylinders in the scene. Due to the entanglement of the
visual representation with the speci$c DSL, baselines trained on CLEVR QA cannot be applied
directly to this task.

4 Applications
The design principles of NS-CL, in particular, the visual grounding of concepts through neuro-
symbolic reasoning, can naturally generalize to a large body of learning and reasoning tasks.

Accurate and robust image captioning. Wu et al. [38] implement a similar idea of neuro-symbolic
concept learning to image-caption retrieval tasks. They used pretrained language parsers to translate
captions into graphical representations composed of object categories, properties, and relationships.
This kind of factorization not only leads to better performance in retrieving accurate descriptions
of images, but also improves the robustness of the system with respect to captions that are similar
to correct ones (e.g., di#er only in one or two words) but inaccurate.

Video and counterfactual reasoning. A line of research [5, 9] has been extending the concept learn-
ing framework to reasoning about physics. The object-centric nature of neuro-symbolic concept
learners enables natural integration with learned physics models, which brings the capability to
perform predictive and counterfactual reasoning. As an example, in Chen et al. [5], the authors
ground concepts about physical objects and events from dynamic scenes and language. Building
upon a neural object-centric representation, their model is simultaneously also trained to approxi-
mate the dynamic interaction among objects with neural networks. Therefore, after training, it
can not only detect and associate objects and events across the frames, but also make future and
counterfactual predictions of object interactions (e.g., “what will happen if we remove the red
block from the scene?”). Later work such as Ding et al. [9] further extends this capability to online
inference of object physical properties.

3D concept grounding. The neuro-symbolic framework can also be applied to 3D representa-
tions [16, 29]. The variability of the 3D domain induces two fundamental challenges: 1) the expense
of labeling and 2) the complexity of 3D grounded language. Hence, essential desiderata for models
are to be data-e"cient, generalize to di#erent data distributions and tasks with unseen semantic
forms, as well as ground complex language semantics (e.g., view-point anchoring and multi-object
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reference: “facing the chair, point to the lamp on its right”). To address these challenges, Prab-
hudesai et al. [29] propose to disentangle di#erent object properties in learning to achieve better
performance in few-shot concept learning. Hsu et al. [16] extend the neuro-symbolic concept
learner model by introducing functional modules that e#ectively reason about high-arity relations
(i.e., relations among more than two objects), key in disambiguating objects in complex 3D scenes.
This architecture enables signi$cantly improved performance on settings of data e"ciency and
generalization, and demonstrates zero-shot transfer to a 3D question-answering task.

Humanmotion. Endo et al. [11] focuses on designingmodels that conduct complex spatiotemporal
reasoning over motion sequences. Endo et al. proposes a new framework for learning neural
concepts of motion, attribute neural operators, and temporal relations. Unlike 2D and 3D vision
domains, where object segmentations can be readily extracted using pre-existing object detectors,
motion sequences lack a universal action segmentation methodology. Therefore, they propose to
jointly temporally localize and ground motion concepts.

Robotic manipulation. Recall that an important feature of neuro-symbolic concept learning
methods is that the learnable modules associated with di#erent concepts are naturally disentangled.
Therefore, it directly supports the transfer of learned concepts to other tasks or even domains (e.g.,
from vision-language domains to robotic manipulation domains). In Wang et al. [37] and Kalithasan
et al. [18], the authors tackle the problem of learning robotic manipulation based on visual input.
Both papers exploit the syntactic and semantic structures of language instructions to build robotic
manipulation algorithms composed of object recognition models and action policies. Kalithasan
et al. [18] directly transfers the visual concepts learned by the neuro-symbolic concept learning on
images to robotic manipulation, by learning additional object movement policies with reinforcement
learning. Wang et al. [37], by contrast, leverages large-scale pretrained vision-language (VL) models
for object property recognition. Compared to a conventional pretraining-$netuning pipeline for
leveraging pretrained models for robotics, their method leads to more data-e"cient learning and,
more importantly, better zero-shot generalization in a variety of unseen objects and tasks.

5 General Discussion
We have presented a general framework for learning and reasoning that is applicable to various
domains and tasks. By leveraging the neuro-symbolic concept representation, our system can
continuously learn concepts from data streams in a data-e"cient manner and programmatically
compose its learned representations to solve new tasks, even previously unseen tasks. This capability
allows us to learn and generalize concepts from diverse types of data streams, including image-
caption data and robotic demonstrations, in order to solve complex tasks.
Our neuro-symbolic concept learning framework belongs to the broader paradigm of neuro-

symbolic AI, a $eld where researchers explore the synergies between neural networks, symbolic
reasoning methods, and probabilistic inference tools. The idea of connecting neural networks
with symbolic entities has its origins in early work on embedding symbolic relationships into
vector representations. For example, early research [7, 30] demonstrated how to integrate logical
reasoning and neural networks, improving the e"ciency, interpretability, and controllability of
learning systems.
Building on top of these high-level ideas, and in line with NS-CL, many neuro-symbolic AI

systems have been developed that combine symbolic reasoning mechanisms with neural networks
for recognizing object properties and relationships, as well as predicting action commands in
interactive environments. By combining perceptual capabilities with tools like forward-chaining
theorem provers, answer set programming solvers, and program synthesis tools, these frameworks
enable reasoning and planning in both visual and physical environments.
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In application areas closely related to NS-CL, Amizadeh et al. [2] introduced di#erentiable $rst-
order logic frameworks for reasoning about objects in scenes. Further, Barbiero et al. [4] combined
neural network predictions with fuzzy-logic rule execution, and Shindo et al. [32] used di#erentiable
inductive logic programming to recover logic programs representing scene structures for scene
reasoning tasks. These methods further formalize the interface between neural and symbolic
components using tools like probabilistic and real-valued logic, supporting formal interpretations of
reasoning under uncertainty. These approaches excel not only in data e"ciency and compositional
generalization but also in o#ering interpretability of reasoning traces and inferred rules, which is
critical in applications that demand transparency.

While much of the prior work has focused on learning simple rules or answering queries about
object states and relationships, recent research has extended neuro-symbolic frameworks to more
complex reasoning tasks. For example, Wang et al. [36] and Yang et al. [40] tackled visual puzzle-
solving, such as Sudoku, using Boolean satis$ability solvers and answer set programming tools.
End-to-end neural networks for these complex tasks often require signi$cantly more data, which
can be di"cult to obtain for many practical applications. However, training such complex neuro-
symbolic can be challenging, as backpropagation must occur over long chains of neuro-symbolic
computations without intermediate supervision.
Moving toward more abstract, layout-based, and scene-level concepts — an emerging area in

machine learning and visual reasoning— Shindo et al. [33] have studied how patterns of object
placements can be learned from just a few examples. Similarly, Hsu et al. [15] investigated reasoning
about abstract concepts like mazes and treasure maps. These high-level concepts are di"cult to
interpret by state-of-the-art end-to-end systems like large vision-language models. These studies
have shown that decomposing abstract concepts into smaller, more primitive entities using symbolic
structures can signi$cantly improve system performance.
Finally, it is important to highlight other key advantages of neuro-symbolic systems that we

have not fully discussed in this paper, such as interpretability, controllability, and the ability to
integrate with external knowledge bases [4, 34]. These attributes, especially interpretability, and
safety, are critical in high-stakes decision-making contexts [39].
The idea of neuro-symbolic concepts is also closely related to the idea of neural module net-

work compositions [3], since computationally, they are both paradigms for composing neural
network modules to solve more complex tasks. However, they di#er at both the conceptual and
implementation levels. Speci$cally, in neural module networks, primitive neural networks de$ne
functions or transformations that can be applied to inputs, whereas in neuro-symbolic concepts,
primitive neural networks handle the grounding of individual concepts, and the operations based on
these concepts (e.g., !lter or count) are implemented as deterministic functions in domain-speci$c
languages (DSLs). This disentanglement between grounding and reasoning brings about signi$cant
improvements in data e"ciency, compositional generalization, and transferability.

Of course, such improvements come at a cost: many works on neuro-symbolic concept learning
have the limitation of relying on a prede$ned DSL. This DSL encompasses primitive operators such
as !lter and relate, as well as concept symbols such as orange and place. In the following, we are
going to delve into these two parts.
In most domains, by combining object property primitives, relational primitives, and action

primitives, along with simple set operations such as intersection, union, and counting, we can
construct a highly capable system. Recently, there has been a growing interest in extending the
primitive set and number operations to general programming languages, such as Python code [8].
This will greatly improve the expressiveness of the programs by including complex control !ows
such as loops and recursions. However, in general, this also introduces new challenges in the
learning of concepts. Recall that in NS-CL and many neuro-symbolic concept learning works, the
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concept representations are learned through back-propagation of the program execution trace.
Although there has been much work on backpropagation against program execution traces [28],
complex control !ows will inevitably introduce intractability of possible execution results, as well
as gradient vanishing and explosion problems.
Relying on a prede$ned set of concepts can be too restrictive in many real-world applications.

Three approaches have emerged to address this: grammar-based lexicon learning [23] and more
recent approaches based on large language models (LLMs). The high-level idea behind grammar-
based lexicon learning is that instead of trying to associate each word or phrase with a prede$ned
set of concept names (i.e., mapping the word “orange” to a concept “ORANGE”), we construct
the library of concepts by “converting” each word into a concept. This is roughly equivalent to
discovering the syntax of each word. For example, if we see the word “orange” in a sentence and
it is an adjective, then we immediately know the word “orange” should correspond to an object
property concept, named “ORANGE.” This approach is called “grammar-based lexicon learning”
because the system begins with a small set of universal grammar rules and jointly discovers new
concepts from the text corpus while learning their grounding.

A second approach involves inducing new concepts from experiences. One method is to represent
concepts as “theories composed of other concepts,” in line with the theory-theory of concepts [26].
For example, Das et al. [6] introduces new logical concepts by composing previously learned
concepts using logic programs. Likewise, Shindo et al. [33] induces transferable scene-level concepts
from a few examples, while Ellis et al. [10] learns a “library” of functions built from primitive
concepts that can be hierarchically recombined to form complex geometric and scene-level concepts.
Another direction explores the invention of new object and relation concepts through contrastive
learning [31].
A third approach is to leverage large language models (LLMs) such as GPT-4. With the success

of large language models in language-to-code translation, researchers have also explored the use of
these models in extracting concept symbols from natural language queries [8, 16]. In particular,
they leverage large language models that have been trained on Internet-scale text and code corpora
to translate natural language queries into programs with concept symbols. These concept symbols
are not chosen from a given vocabulary, but are instead automatically generated by LLMs based on
the user queries. For each concept symbol that appears in LLM-translated programs, a new concept
representation will be initialized and learned.
There are many challenges and future directions for neuro-symbolic concept learning systems.

Most approaches focus on relational concepts involving only two objects (or in the case of 3D
concepts [16], three), but there are more complex layout concepts and scene-level concepts (e.g.,
mazes [15]) that involve many more objects and have variable arities, raising the question of how
to handle such complexity. Additionally, while NS-CL uses curriculum learning, and some work has
explored di#erent methods for curriculum construction [19], the automatic discovery or design of
curricula that adapt as humans do when learning new concepts remains unsolved. Next, so far, many
concept learning systems can only operate in a pure “class-incremental” learning framework [35],
where new concepts build on previous ones, but addressing the full “curriculum learning” setting —
requiring revision or reversion of previously learned concepts — poses another signi$cant challenge.
Moreover, how to enable unsupervised concept learning, beyond the current focus on supervised
or semi-supervised methods, is an important goal. Finally, another direction for future work is to
formalize reasoning under perceptual and other types of uncertainty by incorporating probabilistic
inference methods. This includes tools like probabilistic logic programming and probabilistic
programming languages.

So far, most neuro-symbolic concept learning systems have been developed for particular domains
and tasks. For example, we have systems that can learn and reason with concepts for 2D images [21],
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3D scenes [16], human motions [11], video events [5], and robotic actions [22, 37]. However, they
have been built in isolation, with limited shared knowledge among them. An important future
direction for neuro-symbolic concept learning is the development of scalable, cross-domain concept
libraries. From an engineering perspective, similar to recent large language models such as OpenAI
GPT and Google Gemini, which can solve a wider range of tasks in the language domain based on
user instructions, building uni$ed concept representations across domains and modalities would
enable us to tackle a broader spectrum of embodied AI problems, spanning from perception to
action. From a scienti$c perspective, connecting and even unifying concept representations across
domains and modalities could not only bring better data e"ciency in learning, but also enable the
grounding of concepts in more abstract scenarios. For example, the concept “close to” has grounded
meanings across di#erent domains, but the core and abstract notion of distance metrics is really
shared across all domains and modalities.

Acknowledgments
This work is in part supported by AFOSR YIP FA9550-23-1-0127, FA9550-22-1-0387, ONR N00014-
23-1-2355, ONR YIP N00014-24-1-2117, ONR MURI N00014-22-1-2740, and NSF RI #2211258, and an
AI2050 Senior Fellowship.

References
[1] Omri Abend, Tom Kwiatkowski, Nathaniel J Smith, Sharon Goldwater, and Mark Steedman. 2017. Bootstrapping

Language Acquisition. Cognition 164 (2017), 116–143.
[2] Saeed Amizadeh, Hamid Palangi, Oleksandr Polozov, Yichen Huang, and Kazuhito Koishida. 2020. Neuro-Symbolic

Visual Reasoning: Disentangling ‘Visual’ from ‘Reasoning’. In ICML.
[3] Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and Dan Klein. 2016. Neural Module Networks. In CVPR.
[4] Pietro Barbiero, Gabriele Ciravegna, Francesco Giannini, Mateo Espinosa Zarlenga, Lucie Charlotte Magister, Alberto

Tonda, Pietro Lió, Frederic Precioso, Mateja Jamnik, and Giuseppe Marra. 2023. Interpretable Neural-Symbolic Concept
Reasoning. In ICML.

[5] Zhenfang Chen, Jiayuan Mao, Jiajun Wu, Kwan-Yee K Wong, Joshua B. Tenenbaum, and Chuang Gan. 2021. Grounding
Physical Concepts of Objects and Events Through Dynamic Visual Reasoning. In ICLR.

[6] Mayukh Das, Nandini Ramanan, Janardhan Rao Doppa, and SriraamNatarajan. 2020. Few-Shot Induction of Generalized
Logical Concepts via Human Guidance. Frontiers in Robotics and AI 7 (2020), 122.

[7] Thomas Demeester, Tim Rocktäschel, and Sebastian Riedel. 2016. Lifted Rule Injection for Relation Embeddings. In
EMNLP.

[8] Surís Dídac, Sachit Menon, and Carl Vondrick. 2023. ViperGPT: Visual Inference via Python Execution for Reasoning.
In ICCV.

[9] Mingyu Ding, Zhenfang Chen, Tao Du, Ping Luo, Joshua B. Tenenbaum, and Chuang Gan. 2021. Dynamic Visual
Reasoning by Learning Di#erentiable Physics Models from Video and Language. In NeurIPS.

[10] Kevin Ellis, Lionel Wong, Maxwell Nye, Mathias Sable-Meyer, Luc Cary, Lore Anaya Pozo, Luke Hewitt, Armando
Solar-Lezama, and Joshua B Tenenbaum. 2023. DreamCoder: Growing Generalizable, Interpretable Knowledge with
Wake–Sleep Bayesian Program Learning. Philosophical Transactions of the Royal Society A 381, 2251 (2023), 20220050.

[11] Mark Endo, Joy Hsu, Jiaman Li, and Jiajun Wu. 2023. Motion Question Answering via Modular Motion Programs. In
ICML.

[12] Afsaneh Fazly, Afra Alishahi, and Suzanne Stevenson. 2010. A Probabilistic Computational Model of Cross-Situational
Word Learning. Cognit. Sci. 34, 6 (2010), 1017–1063.

[13] Nir Friedman, Lise Getoor, Daphne Koller, and Avi Pfe#er. 1999. Learning Probabilistic Relational Models. In IJCAI.
[14] Chi Han, Jiayuan Mao, Chuang Gan, Joshua B. Tenenbaum, and Jiajun Wu. 2019. Visual Concept Metaconcept Learning.

In NeurIPS.
[15] Joy Hsu, Jiayuan Mao, Joshua B Tenenbaum, Noah D Goodman, and Jiajun Wu. 2025. What Makes a Maze Look Like a

Maze?. In ICLR.
[16] Joy Hsu, Jiayuan Mao, and Jiajun Wu. 2023. NS3D: Neuro-Symbolic Grounding of 3D Objects and Relations. In CVPR.
[17] Justin Johnson, Bharath Hariharan, Laurens van der Maaten, Li Fei-Fei, C Lawrence Zitnick, and Ross Girshick. 2017.

CLEVR: A Diagnostic Dataset for Compositional Language and Elementary Visual Reasoning. In CVPR.



Communications of The ACM 14 Mao, Tenenbaum, and Wu

[18] Namasivayam Kalithasan, Himanshu Singh, Vishal Bindal, Arnav Tuli, Vishwajeet Agrawal, Rahul Jain, Parag Singla,
and Rohan Paul. 2023. Learning Neuro-Symbolic Programs for Language Guided Robot Manipulation. In ICRA.

[19] Qing Li, Siyuan Huang, Yining Hong, and Song-Chun Zhu. 2020. A Competence-Aware Curriculum for Visual Concepts
Learning via Question Answering. In ECCV.

[20] Robin Manhaeve, Sebastijan Dumancic, Angelika Kimmig, Thomas Demeester, and Luc De Raedt. 2018. Deepproblog:
Neural Probabilistic Logic Programming. In NeurIPS.

[21] Jiayuan Mao, Chuang Gan, Pushmeet Kohli, Joshua B. Tenenbaum, and Jiajun Wu. 2019. The Neuro-Symbolic Concept
Learner: Interpreting Scenes, Words, and Sentences From Natural Supervision. In ICLR.

[22] Jiayuan Mao, Tomás Lozano-Pérez, Joshua B. Tenenbaum, and Leslie Kaelbling. 2022. PDSketch: Integrated Domain
Programming, Learning, and Planning. In NeurIPS.

[23] Jiayuan Mao, Haoyue Shi, Jiajun Wu, Roger P. Levy, and Joshua B. Tenenbaum. 2021. Grammar-based Grounded
Language Learning. In NeurIPS.

[24] Eric Margolis and Stephen Laurence. 1999. Concepts: Core Readings. The MIT Press.
[25] Lingjie Mei, Jiayuan Mao, Ziqi Wang, Chuang Gan, and Joshua B Tenenbaum. 2022. FALCON: Fast Visual Concept

Learning by Integrating Images, Linguistic Descriptions, and Conceptual Relations. In ICLR.
[26] Adam Morton. 1980. Frames of Mind: Constraints on the Common-Sense Conception of the Mental. Oxford University

Press.
[27] Stephen Muggleton and Luc De Raedt. 1994. Inductive Logic Programming: Theory and Methods. The Journal of Logic

Programming 19 (1994), 629–679.
[28] Felix Petersen, Christian Borgelt, Hilde Kuehne, and Oliver Deussen. 2021. Learning with Algorithmic Supervision via

Continuous Relaxations. In NeurIPS.
[29] Mihir Prabhudesai, Shamit Lal, Darshan Patil, Hsiao-Yu Tung, Adam W Harley, and Katerina Fragkiadaki. 2021.

Disentangling 3D Prototypical Networks for Few-Shot Concept Learning. In ICLR.
[30] Tim Rocktäschel, Sameer Singh, and Sebastian Riedel. 2015. Injecting Logical Background Knowledge into Embeddings

for Relation Extraction. In NAACL-HLT.
[31] Jingyuan Sha, Hikaru Shindo, Kristian Kersting, and Devendra Singh Dhami. 2024. Neuro-Symbolic Predicate Invention:

Learning Relational Concepts from Visual Scenes. Neurosymbolic Arti!cial Intelligence (2024), 1–26.
[32] Hikaru Shindo, Viktor Pfanschilling, Devendra Singh Dhami, and Kristian Kersting. 2023. 𝑀 ILP: Thinking Visual

Scenes as Di#erentiable Logic Programs. Machine Learning 112, 5 (2023), 1465–1497.
[33] Hikaru Shindo, Viktor Pfanschilling, Devendra Singh Dhami, and Kristian Kersting. 2023. Learning Di#erentiable

Logic Programs for Abstract Visual Reasoning. arXiv:2307.00928 (2023).
[34] Arseny Skryagin, Daniel Ochs, Devendra Singh Dhami, and Kristian Kersting. 2023. Scalable Neural-Probabilistic

Answer Set Programming. JAIR 78 (2023), 579–617.
[35] Gido M Van de Ven, Tinne Tuytelaars, and Andreas S Tolias. 2022. Three Types of Incremental Learning. Nature

Machine Intelligence 4, 12 (2022), 1185–1197.
[36] Po-Wei Wang, Priya Donti, Bryan Wilder, and Zico Kolter. 2019. SATNet: Bridging Deep Learning and Logical

Reasoning Using a Di#erentiable Satis$ability Solverr. In ICML. PMLR.
[37] Renhao Wang, Jiayuan Mao, Joy Hsu, Hang Zhao, Jiajun Wu, and Yang Gao. 2023. Programmatically Grounded,

Compositionally Generalizable Robotic Manipulation. In ICLR.
[38] HaoWu, JiayuanMao, Yufeng Zhang, Yuning Jiang, Lei Li, Weiwei Sun, andWei-YingMa. 2019. Uni$ed Visual-Semantic

Embeddings: Bridging Vision and Language With Structured Meaning Representations. In CVPR.
[39] Wen-Chi Yang, Giuseppe Marra, Gavin Rens, and Luc De Raedt. 2023. Safe Reinforcement Learning via Probabilistic

Logic Shields. In IJCAI.
[40] Zhun Yang, Adam Ishay, and Joohyung Lee. 2020. NeurASP: Embracing Neural Networks into Answer Set Programming.

In IJCAI.

Author Information
Jiayuan Mao is a PhD student at the Massachusetts Institute of Technology, Cambridge, Mas-
sachusetts, USA.
Joshua B. Tenenbaum is a professor at the Massachusetts Institute of Technology, Cambridge,
Massachusetts, USA.
Jiajun Wu is an assistant professor at Stanford University, Stanford, California, USA.


	Abstract
	1 Overview
	2 Neuro-Symbolic Concepts
	3 Learning Neuro-Symbolic Visual Concepts
	4 Applications
	5 General Discussion
	Acknowledgments
	References

