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Abstract

The remarkable instruction-following capability of large language models (LLMs)
has sparked a growing interest in automatically finding good prompts, i.e., prompt
optimization. Most existing works follow the scheme of selecting from a pre-
generated pool of candidate prompts. However, these designs mainly focus on the
generation strategy, while limited attention has been paid to the selection method.
Especially, the cost incurred during the selection (e.g., accessing LLM and evalu-
ating the responses) is rarely explicitly considered. To overcome this limitation,
this work provides a principled framework, TRIPLE, to efficiently perform prompt
selection under an explicit budget constraint. TRIPLE is built on a novel connection
established between prompt optimization and fixed-budget best arm identification
(BAI-FB) in multi-armed bandits (MAB); thus, it is capable of leveraging the rich
toolbox from BAI-FB systematically and also incorporating unique characteristics
of prompt optimization. Extensive experiments on multiple well-adopted tasks
using various LLMs demonstrate the remarkable performance improvement of
TRIPLE over baselines while satisfying the limited budget constraints. As an exten-
sion, variants of TRIPLE are proposed to efficiently select examples for few-shot
prompts, also achieving superior empirical performance.

1 Introduction

Large language models (LLMs) have rapidly changed technology landscapes in our society [20,
72, 73, 11, 55]. Researchers continuously find effective ways to unlock their potential on various
downstream tasks. Among different research directions, the remarkable ability of LLMs to follow
instructions has motivated the study of searching for suitable prompts to interact with them [50]. This
approach is particularly attractive as it does not require updating the inside parameters of an LLM,
and is natural in the way of human conversations. Nevertheless, it has also been recognized that the
performance of an LLM is sensitive to the selected prompts [87, 52], and manually designing suitable
prompts can be a labor-intensive process [54]. Thus, there is a growing interest to perform automatic
prompt optimization [90, 79, 21, 19, 59, 84, 28, 58, 60, 81].

While these studies have proposed different prompt optimization designs, they commonly follow the
approach of generating a pool of candidate prompts and then selecting from them. With a deeper
look, it can be recognized that the focus in these existing works largely leans towards how to generate
the candidate pool, while limited attention has been paid towards how to select from the candidates.

∗indicates equal contributions, random order.
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For example, many works [35, 79, 28, 59] directly evaluate all the generated prompts on the entire
development dataset. However, this less-emphasized selection process typically requires accesses
to LLMs, which are often (1) financially costly (e.g., each OpenAI API access incurs a cost); (2)
time-wise consuming (e.g., even a locally hosted LLM would typically require seconds to respond);
(3) under total usage limits (e.g., OpenAI has hard per-day and per-month limits on API accesses).
Furthermore, it is often overlooked that evaluating the responses of an LLM for different candidate
prompts can be costly as many tasks (e.g., writing improvement, mathematical reasoning, etc.) would
require human (and sometimes domain expert) opinions. As a result, the prompt optimization process
can incur an unaffordable cost without a proper selection method.

To make the learning process more accessible, this work proposes to study prompt optimization under
an explicitly imposed budget constraint when interacting with the targeted LLM, in addition to the
previously considered requirements (e.g., discrete, interpretable, and black-box). To the best of our
knowledge, budget constraints are only briefly mentioned in Zhou et al. [90], Pryzant et al. [60], and
there are no systematic or principled investigations of how to address the limited budget constraint in
prompt optimization. The main contributions of this work are summarized as follows.

• The constraint of a limited budget is explicitly introduced into prompt optimization, which has
been largely ignored before. As most of the prompt optimization methods rely on selecting from a
pre-generated candidate prompt pool, we focus our study on how to carefully allocate budgets to test
each candidate prompt so that the optimal one can be learned efficiently and effectively.

• We propose a general solution framework, termed TRIPLE (besT aRm Identification for Prompt
LEarning), by establishing a novel connection between prompt optimization and multi-armed bandits
(MAB) [41]. In particular, we focus on harnessing the power of fixed-budget best arm identifica-
tion (BAI-FB) [4, 37] to address prompt optimization (especially, selection) with a limited budget
constraint. Two representative designs TRIPLE-SH and TRIPLE-CR, inspired by celebrated BAI-
FB algorithms, are presented. To improve scalability, two enhanced methods, TRIPLE-CLST and
TRIPLE-GSE, are further proposed, where prompt embeddings are leveraged by exploiting the ideas
of clustering and function approximation to accelerate the learning process.

• Extensive experimental results are reported using well-adopted prompt tasks and varying LLMs
to demonstrate the superiority of TRIPLE over previous baselines. In particular, on GPT3.5 and
Llama2, compared with baseline methods also not using prompt embeddings, the basic TRIPLE-SH
and TRIPLE-CR achieves performance improvements by (on average) 3% to 16%. When leveraging
prompt embeddings, the enhanced TRIPLE-CLST and TRIPLE-GSE also outperform corresponding
baselines by (on average) 10% to 56% with fewer prompts than budget and (on average) 16%
to 45% with more prompts than budget. The gains are further evidenced on other LLMs, i.e.,
Gemma and Mistral. Moreover, the proposed methods can be directly plugged into two popular
prompt optimization pipelines, APE [90] and APO [60], with end-to-end performances significantly
improved over their original implementations.

• This work extends broadly to providing a new perspective of prompt optimization from MAB, and
also a new application scenario of MAB in prompt optimization. This established connection may
spark further innovations in both fields. As one concrete example, we extend the study to optimizing
the selection of examples in few-shot prompts [9], which can be recognized as a BAI-FB problem
in the setup of combinatorial bandits [14, 12]. Experimental results illustrate that the extensions of
TRIPLE achieve superior performance, demonstrating its rich potential.

Key Related Works. We discuss a few works that explicitly or implicitly touch upon the selection
efficiency in prompt optimization, and a complete literature review can be found in Appendix A. First,
Zhou et al. [90] discusses a naive filtering strategy without theoretical or empirical justifications. Chen
et al. [13] leverages Bayesian optimization (BO) with expected improvement (EI) as the acquisition
function to select continuous soft prompts. BO can be viewed as similar to BAI while mostly focusing
on infinite-arm cases [62]. Moreover, Pryzant et al. [60], Lin et al. [48] use specific MAB methods
targeting regret minimization to perform prompt selection, which, as further illustrated in Sec. 3.3,
are not well-suited as they optimize the cumulative selection performance over a period instead
of the final selection output. Thus, compared with this work, existing investigations either lack
a comprehensive discussion of the connection between prompt optimization and MAB or choose
unsuitable MAB techniques to tackle prompt optimization. Moreover, as illustrated in Sec. 5, the
TRIPLE solution outperforms the previously adopted methods empirically.
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2 Prompt Optimization under a Limited Budget

Following Zhou et al. [90], Chen et al. [13], we present a concrete formulation of the problem of
prompt optimization. Consider that we are using an LLM f(·), which provides a mapping from

any input X ∈ V to a distribution ∆V over the language space V . The answer Ŷ ∈ V given by the

LLM is assumed to be sampled from f(X) as Ŷ ∼ f(X). Note that instead of treating f(·) as a
deterministic function providing a specific output answer, we generally consider the practical setting
where the answers of LLM exhibit a certain level of randomness.

For prompt optimization, we aim to find a prompt p such that when concatenated with inputs X of
a certain task (i.e, as [p;X]), it provides good performance in expectation with respect to the input
distribution IX and the inherent randomness of LLM f(·). The performance is measured as

µ(p) := EX∼IX
E
Ŷ∼f([p;X])[s(X, Ŷ )],

where s(X, Ŷ ) denotes a score function that measures the quality of the output Ŷ for the input X .

Motivated by the common usage scenario of LLMs, recent studies have imposed several constraints
on this learning problem [90, 58, 13, 28], where the three key ones are (I) black-box: the method can
be applied to black-box LLMs, i.e., only have access to an API f(·) and no access to the intermediate
structure or parameters inside (including gradients, output likelihood, etc.); (II) discrete: the learned
prompt must be discrete characters, instead of continuous values (i.e., soft prompts); and (III)
interpretable: the learned prompt must be understandable by humans, instead of gibberish words.

Intuitively, the process of learning a good prompt requires interactions with the LLM (i.e., sample

Ŷ ∼ f([p;X]) and evaluating its responses (i.e., obtain score s(X, Ŷ )). However, as mentioned in
Sec. 1, such interactions and evaluations are costly. Thus, besides the aforementioned constraints, we
further explicitly take into account that the prompt optimization process should have (IV) a limited
budget: the total number of trials with the LLM that happen during the learning is at most N . Finally,
the prompt optimization problem considered in this work can be formulated as:

finding p∗ with high performance µ(p∗) under constraints of
black-box, discrete, interpretable, and a limited budget.

Directly tackling this prompt optimization problem has been widely recognized as challenging even
without the constraint of a limited budget [50]. As highlighted in Pryzant et al. [60], Chen et al.
[13], it essentially requires performing a black-box discrete optimization. Instead, many proposed
methods rely on the pipeline of first generating a pool of candidate prompts and then selecting from it
[35, 90, 79, 59, 28]. The prompt generation can either be performed manually or follow designed
automatic protocols. For example, the famous APE design [90] selects from prompts generated by an
LLM using demonstrations. From a unified perspective, we can simplify the problem into generating
a pool of prompts P and finding the optimal prompt in it:

p∗ := argmaxp∈P µ(p).

Figure 1: The commonly adopted prompt optimization
pipeline. Previous works mostly investigate the genera-
tion component and ignore costs during selection, where
GrIPS and APE are proposed in Prasad et al. [59], Zhou
et al. [90]. This work, instead, focuses on the selection
component under an explicit budget constraint.

While many efforts have been devoted along
this line, we recognize that they are largely fo-
cused on how to generate prompts, while limited
attention has been paid to how to select from
the already generated prompts (as mentioned in
Sec. 1 and further discussed in Appendix A).
Naive treatments, such as uniformly evaluating
all prompts, are understandable since budget lim-
itations are not considered previously, i.e., un-
limited evaluations can be performed. With an
explicit budget limitation, however, we need to
carefully allocate the budgets to each prompt so
that the optimal prompt (or at least a sufficiently
good one) can be correctly learned, which is the
main focus of this work. An overview of the
considered prompt optimization pipeline and our focus is illustrated in Fig. 1.
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3 Connecting Prompt Optimization with Best Arm Identification

We provide a new perspective of prompt optimization through the lens of tools in multi-armed bandits
(MAB) [41, 40]. In particular, prompt optimization under a limited budget is shown to be intrinsically
aligned with the problem of fixed-budget best-arm identification (BAI-FB) [4, 37]. In the following,
a brief introduction to MAB is first provided. Then, the connection between prompt optimization
(especially selection) and MAB (especially BAI-FB) is established. Based on this connection, we
propose to fully leverage the rich toolbox from BAI-FB to perform efficient prompt optimization.

3.1 Multi-armed Bandits

The research of multi-armed bandits (MAB) has a long and rich history; see representative surveys of
Lattimore and Szepesvári [41], Bubeck et al. [10]. The most basic form of MAB, i.e., the finite-armed
stochastic bandits, considers a system with a set K finite arms (i.e., actions) that provide stochastic
rewards when pulled. When interacting with the system, the agent can select one arm k ∈ K to pull
at each time, and she receives a stochastic reward: rk ∼ distk(νk), where distk(νk) denotes the
action k’s reward distribution with an unknown expectation νk.

The learning objective of the agent in MAB can be roughly divided into two categories: (1) regret
minimization, which maximizes the expected cumulative rewards collected by the agent [5, 3, 26];
(2) best arm identification, which targets at outputting the best arm k∗ = argmaxk∈K νk [4, 27, 32].
These two objectives often require different learning strategies. Regret minimization typically relies
on a carefully designed balance between exploration (i.e., obtaining new information) and exploitation
(i.e., collecting higher rewards based on the previous information). Best arm identification, on the
other hand, is also called pure exploration as it only focuses on obtaining information to find the
best arm. We here particularly note that although the designs targeting regret minimization often can
converge to the optimal arm k∗ given a sufficient period of time, they are known to be inefficient for
the objective of best arm identification in the MAB studies.

3.2 A Bandit View of Prompt Optimization

Based on the above introduction, it can be intuitively understood that the prompt optimization
(especially, selection) problem can be mapped into an MAB setting:

• The pool of candidate prompts P is equivalent to the set of arms K;
• Using a prompt p to interact with LLM can be viewed as selecting a bandit arm k to pull in MAB;

• The feedback of the score function, i.e., s(X, Ŷ ), provides the reward signal rk, where distk(νk)

characterizes the randomness of X ∼ IX and Ŷ ∼ f([p;X]). The expected performance µ(p) is
the counterpart of the expected reward νk in MAB.

It can be further recognized that the target of prompt optimization is more suitable to be captured
as the best arm identification (BAI) problem, instead of a regret minimization one, as it only cares
about finding the optimal prompt p∗ instead of the cumulative performance of interactions performed
during the learning process.

Table 1: Prompt Optimization and MAB.

Prompt Optimization Multi-armed Bandits

The pool of prompts P The arm set K
Interact LLM via prompt p Pull arm k

Score s(X, Ŷ ) Reward rk

Randomness in X and Ŷ Randomness in distk

Performance µ(p) Expected reward νk

Learn the optimal prompt
under a limited budget

Fixed-budget best arm
identification (BAI-FB)

With the relationship between prompt optimiza-
tion and BAI established, we further consider
the constraint of learning under a limited budget.
We argue that this aligns with one of the main
research directions in BAI called fixed-budget
best arm identification (BAI-FB) [37, 75, 22].
BAI-FB particularly considers the problem of
maximizing the probability of correctly identify-
ing the best arm k∗ while not pulling arms more
than T times. It can be observed that this formu-
lation matches the goal of prompt optimization
under a limited budget; thus BAI-FB provides
a perfect toolbox to enhance the commonly required prompt selection process. The connection
between prompt optimization and MAB, in particular, BAI-FB, is further illustrated in Table 1. To
avoid confusion, in the remainder of this paper, we will adopt the notation of prompt optimization as
introduced in Sec. 2.
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3.3 Harnessing the Power of BAI-FB

As mentioned, we recognize that prompt optimization under a limited budget is a matching appli-
cation scenario for BAI-FB. In this paper, we propose a general framework called TRIPLE (besT
aRm Identification for Prompt LEarning) to harness the power of BAI-FB in solving the prompt
optimization problem. This is possible because BAI-FB has witnessed significant development over
the years, with several efficient designs being proposed. As a first step, we choose two popular
and successful BAI-FB schemes and implement them for prompt optimization, which are briefly
described below. Their complete descriptions are provided in Algs. 2 and 3 of Appendix C.

Sequential Halving (SH). SH is one of the first provably efficient BAI-FB designs [37] and remains
popular after a decade of its proposal. It follows a protocol that divides the total budget N into
+log2(|P|), equal-length phases. In each phase, SH uniformly tries all active prompts (initialized as
P) and eliminates half of them with the lower sample means for the next phase. The final active arm
is output as the identified optimal prompt.

Continuously Reject (CR). CR is a recently proposed method [75], which can be viewed as an
extension of the classical Successively Reject (SR) design [4]. It uniformly explores active prompts
(initialized as P) and performs potential elimination of poorly-performed prompts after each pull.
The elimination is based on carefully designed criteria using the Large Deviation Principle. It can be
observed that, without the phased structure, CR is more adaptive than SH (and SR), which makes it
appealing both theoretically and practically.

While MAB has found broad applications in recommender systems [44], healthcare [63], wireless
communications [24], and beyond [8], a systematical connection between MAB and prompt op-
timization has not been established before to the best of our knowledge, which may spark new
research activities (see discussions in Sec. 7). In addition, although SH and CR are selected as
the representatives, the connection between prompt optimization and MAB is fundamental. Any
existing or forthcoming BAI-FB designs can be flexibly incorporated into TRIPLE, e.g., the Bayesian
perspective provided in Komiyama et al. [38], Atsidakou et al. [2]

Remark 3.1. As mentioned in Sec. 1, Pryzant et al. [60], Lin et al. [48] leverage specific MAB
designs to perform prompt selection without a comprehensive discussion as above on their connection.
Moreover, Pryzant et al. [60] argues that UCB [5] is suitable, while Lin et al. [48] also uses a UCB-
variant, NeuralUCB [89], as the core method. However, both of UCB and NeuralUCB are designed
for regret minimization (i.e., optimizing the cumulative interaction performance during learning). As
illustrated in Sec. 3.1, designs for regret minimization cannot achieve optimal performance for the
goal of identifying the optimal arm (i.e., BAI), which thus are not well-suited for prompt optimization.

4 Handling Large Candidate Pools via Prompt Embeddings

The connection built in the last section provides us with the core idea of leveraging BAI-FB designs
to tackle prompt optimization. As having been theoretically established [4], solving BAI-FB without
additional structures, however, will unavoidably incur an identification error that is positively related
to the number of candidate prompts |P|. In other words, given a larger pool of prompts, it becomes
harder to find the optimal prompt with the basic BAI-FB designs, which restricts their applicability to
practical prompt optimization problems (where possibly the number of prompts exceeds the budget).

The key reason behind this is that each candidate prompt is treated independently in the basic BAI-FB.
Thus, budgets need to be assigned to all the prompts and no information can be shared among them,
which is often not the case in prompt optimization. For a prompt optimization problem, the underlying
task is often stable, e.g., rewriting emails, constructing TLDR, etc. The candidate prompts, regardless
of their generation methods, should all reflect the purpose of the underlying task and thus share
similarities. For example, the candidate prompts generated via demonstrating LLMs [90] often share
similar structures and differ only in a few words or word orders.

With the above observation, we target sharing information among prompts during learning. To
achieve this, we propose to leverage an embedding model, denoted as embed : V → R

d, to obtain the
sentence embedding of the prompts: e(p) := embed(p) ∈ R

d, E := {e(p) : p ∈ P}, where d refers
to the embedding dimension. In the experiments, the OpenAI embedding API is adopted while, in
general, any sufficiently expressive models can be incorporated. Also, due to this flexibility, using
embedding models is fundamentally different from requiring a white-box LLM [13, 48]. With the
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obtained prompt embeddings, we propose two useful enhancements to further improve the learning
effectiveness when the pool of candidate prompts is large.

4.1 Leveraging Similarities via Clustering

Algorithm 1 TRIPLE-CLST

1: Input: the pool of candidate prompts P and their
embeddings E , overall budget N , Phase I budget
N1, number of clusters L

2: Cluster P into clusters C = {C1, · · · , CL} based
on embeddings E (e.g., via k-means)

3: Obtain Ĉ∗ ← BAI-FB(C, N1) {Phase I}

4: Obtain p̂∗ ← BAI-FB(Ĉ∗, N −N1) {Phase II}
5: Output: prompt p̂∗

Since the key challenge is a large pool of candi-
date prompts, an intuitive idea is to effectively
decrease the size of the pool. We thus propose
a two-phased BAI-FB scheme for prompt opti-
mization. In Phase I, the entire pool of candidate
prompts is clustered into several groups based on
their embeddings, and BAI-FB is performed on
the clusters with an initial target of finding the
optimal cluster (or the few good clusters). Then,
in Phase II, BAI-FB is performed on the prompts
in the optimal cluster with the target of identifying one final prompt. For both phases, different BAI-
FB designs can be incorporated, e.g., SH and CR. The entire procedure, referred to as TRIPLE-CLST,
is described in Alg. 1.

Figure 2: Clusters for 30 prompts for “movie rec-
ommendation” (left) [69] and “rhymes” (right) [30].
Prompts in the same cluster are labeled by the same
color and shape. The performance of each prompt is
represented by the size of its shape (the larger the better).
The embeddings are projected using T-SNE [29].

The effectiveness of TRIPLE-CLST relies on the
clustering results produced in Phase I. Ideally,
prompts with similar performances should be
clustered together. Then, Phase I can quickly
eliminate the prompts with poor performances,
leaving a small pool of good prompts for Phase
II to process. In the experiments, this intuitive
phenomenon is indeed observed. In particular,
in Fig. 2, as expected, prompts in the same clus-
ter share similar performances. In particular, it
can be observed that the prompts in the same
cluster (i.e., the same color and shape) share sim-
ilar performance (i.e., similar sizes). Especially,
the optimal prompt (marked by the red star) is
clustered together with a few prompts with comparably near-optimal performances.

4.2 Sharing Information via Function Approximation

Besides clustering, another idea to incorporate the prompt embeddings is to learn a common function
(e.g., an MLP) to predict the prompt performances based on their embeddings. Similar ideas of
function approximation have also been widely adopted in MAB literature to share information among
large action spaces, with functions ranging from linear ones [1, 82] to neural networks [91, 89]. In
the setting considered in this work, we adopt a recently developed BAI-FB scheme as described in
the following as TRIPLE-GSE, with details provided in Alg. 4 of Appendix C.

GSE. The general phased elimination flow of SH described in 3.3 is inherited. The major difference
is that SH uses sample means to perform eliminations. GSE [6], on the other hand, leverages
collected samples from previous phases to train a reward function gθ(·) : R

d → R that maps prompt
embeddings to the predicted performance, which is further used to eliminate prompts.

5 Experiments

In this section, extensive experimental results are reported to evaluate the efficiency of TRIPLE across
diverse prompting tasks from two standard datasets: Instruction-Induction [30] and BigBench [69].
The results reported in this section are mainly collected from GPT-3.5, Llama2, Gemma, and Mistral
(see the specific model numbers listed in Appendix E.1). Full experimental details can be found in
Appendix E. The complete results of 47 tasks are reported in Appendix F, while here we particularly
focus on 12 representative tasks, which are not too hard (i.e., all generated prompts achieve near-
zero performances) or too easy (i.e., all generated prompts achieve near-one performances). The
experimental codes can be found at https://github.com/ShenGroup/TRIPLE.
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5.1 Evaluating TRIPLE with Fixed Prompt Pools

As TRIPLE main focuses on the prompt selection component, we perform initial evaluations in an
isolated fashion of selecting from fixed pools of candidate prompts. For this experiment, candidate
pools of prompts are generated following the well-established APE design [90] with a high LLM
temperature to ensure randomness. Then, under a limited budget, the performances of TRIPLE
algorithms are compared with the following four baselines, where the latter two (i.e., BO and
NeuralUCB) leverage prompt embeddings:

• Uniform. Many previous designs choose to evaluate the entire candidate pool on all development
data [28, 59] which corresponds to uniformly dividing the total budget to test all prompts.

• UCB. The upper confidence bound (UCB) method is a famous design for regret minimization in
MAB. We evaluate UCB using its vanilla version from Auer et al. [5], which is reported to have
good performance in Pryzant et al. [60].

• BO. Bayesian optimization (BO) with expected improvement (EI) acquisition function is adopted
in Chen et al. [13], which assumes a Gaussian process prior specified by prompt embeddings to
perform posterior updates and makes selection to maximize EI. To further examine the performance
of BO, another acquisition function, i.e., probability of improvement (PI), is also adopted.

• NeuralUCB. Lin et al. [48] uses NeuralUCB [89] to perform prompt selection, which extends
UCB by training a reward function to predict prompt performances based on embeddings.
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(a) |P| = 30 candidates and budget N = 150: GPT-3.5 (top) and Llama2 (bottom). The reported results (y-axis)
are test accuracies of each method normalized to the mean performance of “Uniform” on that task.
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(b) |P| = 150 candidates and budget N = 100: GPT-3.5 (top) and Llama2 (bottom). The reported results
(y-axis) are test accuracies of each method normalized to the mean performance of “NeuralUCB” on that task.

Figure 3: Performance comparisons of various prompt selection methods on the selected tasks. The red dashed
lines label the performances normalized over (i.e., 1 on the y-axis) and the red stars mark the best methods. The
reported results are aggregated over 20 independent runs. The full results on 47 tasks are reported in Appendix F.

Performance with fewer prompts than budget. We first test candidate pools with 30 prompts
per task. Results reported in Fig. 3(a) reflect the selection performance with an overall budget of
150. It can be observed that TRIPLE-SH and TRIPLE-CR achieve better performance than Uniform
(15% and 12% improvements on average for GPT-3.5; 15% and 16% for Llama2) and UCB (5% and
3% improvements on average for GPT-3.5; 6% and 7% for Llama2). Moreover, for methods using
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Table 2: Averaged performance ranks of baselines and TRIPLE on the selected tasks using GPT-3.5, which
are computed separately for methods using embeddings or not. The rank of BO is computed with the highest
performance from BO-EI and BO-PI. The highest ranked methods are marked bold.

Setup Without embeddings With embeddings

|P|, N , LLM Uniform UCB SH CR BO NeuralUCB CLST GSE

30, 150, GPT 3.5 3.28 ± 0.99 2.50 ± 1.09 2.04 ± 1.01 2.29 ± 1.09 2.75 ± 1.29 3.38 ± 0.92 2.00 ± 0.64 1.91 ± 0.82

30, 150, Llama2 3.08 ± 0.79 2.66 ± 1.07 2.00 ± 1.27 2.25 ± 1.13 2.75 ± 1.01 3.25 ± 0.92 1.75 ± 0.72 2.25 ± 1.16

30, 150, Mistral 3.00 ± 0.95 2.50 ± 0.99 2.41 ± 1.31 2.08 ± 1.16 3.00 ± 1.04 2.58 ± 1.08 2.00 ± 0.85 2.41 ± 1.37

30, 150, Gemma 3.21 ± 1.03 2.46 ± 1.12 2.04 ± 1.01 2.29 ± 1.09 2.91 ± 0.96 3.16 ± 1.03 2.04 ± 1.05 1.87 ± 0.96

150, 100, GPT 3.5 N/A 2.75 ± 0.92 3.93 ± 0.31 1.92 ± 0.49 1.53 ± 0.74

150, 100, Llama2 N/A 2.68 ± 1.03 3.41 ± 0.65 1.5 ± 0.64 2.25 ± 1.11

150, 100, Gemma N/A 2.75 ± 1.13 3.16 ± 0.93 2.33 ± 1.23 1.75 ± 0.75

prompt embeddings, the enhanced TRIPLE-CLST and TRIPLE-GSE also demonstrate remarkable
improvements over BO-EI (11% and 10% on average for GPT-3.5; 56% and 52% for Llama2) and
NeuralUCB (17% and 17% improvements on average for GPT-3.5; 26% and 27% for Llama2). These
results empirically evidence the superiority of TRIPLE with or without prompt embeddings.

Performance with more prompts than budget. In the above test, the budget is larger than the
number of candidate prompts. We further perform experiments in a more difficult setting, i.e., there
are more prompts than the budget. In particular, candidate pools with 150 prompts per task are
generated, and the overall budget is set as 100. In this scenario, only the methods that can leverage
embeddings (i.e., BO, NeuralUCB, TRIPLE-CLST, TRIPLE-GSE) can be used, as otherwise the total
budget is not sufficient to provide even one evaluation to initiate the performance estimation of
each candidate prompt. Results are reported in Fig. 3(b). In particular, it can be observed that
TRIPLE-CLST and TRIPLE-GSE significantly improve over BO-EI (21% and 28% on average for
GPT-3.5; 31% and 42% for Llama2) and NeuralUCB (38% and 45% on average for GPT-3.5; 26%
and 16% for Llama2).

A summary of the averaged performance ranks of the baselines and TRIPLE is listed in Table 2, which
contains results on four LLMs (i.e., GPT-3.5, Llama2, Mistral, Gemma). It can be observed that in
varying setups and with different LLMs, the proposed TRIPLE methods consistently obtain better
performances than the previous baselines, remarking its efficiency and broad applicability.

Impact of the total budget. For a more comprehensive understanding, using candidate pools with 30
prompts, we further examine the impact of budgets, starting with 5 evaluations per prompt on average
(i.e., 150 overall as adopted in Fig. 3(a)), and then gradually increasing to 30 (i.e., 900 overall, which
is the same as the experiments in Zhou et al. [90]). From the results shown in Fig. 4, we see that the
improvements of TRIPLE over baselines are more pronounced with lower budgets. In particular, with
a budget of 10 evaluations per prompt on average (i.e., 300 overall), TRIPLE-CR, TRIPLE-CLST and
TRIPLE-GSE maintain notable 9.7%, 13.5% and 17.4% improvement over Uniform, respectively;
when the budget escalates to 20 evaluations per prompt on average, TRIPLE-CLST and TRIPLE-GSE
still achieve an approximate 8% improvement. Once the budget reaches 30 evaluations per prompt
on average (i.e., 900 overall), all methods provide approximately the same performance as they can
all identify the optimal prompts under this generous budget.

Impact of the prompt pool size. Moreover, we investigate the prompt selection performance under
prompt pools with different sizes. First, while Figs. 3(a), 3(b) and Table 2 has demonstrated the
superiority of TRIPLE with 30 and 150 prompts, we further enlarge the size of prompt pool size to
1000 and consider an overall budget of 500. The results reported in Fig. 5 further illustrate that the
improvement of TRIPLE over the baselines is consistent across the sizes of prompt pools. Also, to
benefit empirical usage, we take a deep look into whether larger prompt pools are necessary to provide
better candidates. From Fig. 6, it can be observed that actually the prompt performance distributions
do not vary much with the pool size increased from 100 to 1000, indicating that generating a
sufficiently large prompt pool (e.g., 100) is enough to further perform the selection and find the final
prompt candidate to use.

5.2 Integrating TRIPLE into End-to-End Pipelines

We now explore whether TRIPLE can provide performance improvements when plugged into end-to-
end prompt optimization pipelines that include both prompt generation and selection. To this end,
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Table 3: Performances of integrating TRIPLE in the end-to-end pipelines using GPT-3.5. The baseline methods
reported in the original implementations are labeled as (b). For each task, the best score across two pipelines is
marked as red, and the best score in the remaining pipeline is highlighted as yellow. TRIPLE-CR are selected
over TRIPLE-SH due to its better performance observed in the previous experiments. TRILE-CLST is ignored in
the tests with APO, as it is ineffective to cluster only 10 prompts.

APE [90] APO [60]

Tasks Uniform (b) CR CLST GSE UCB (b) CR GSE

(#1) Cause and effect 0.65 ± 0.18 0.74 ± 0.06 0.75 ± 0.13 0.78 ± 0.08 0.78 ± 0.15 0.80 ± 0.05 0.80 ± 0.08

(#2) Common concept 0.09 ± 0.05 0.12 ± 0.06 0.10 ± 0.04 0.14 ± 0.05 0.12 ± 0.04 0.12 ± 0.05 0.14 ± 0.01

(#3) Disambiguation qa 0.83 ± 0.04 0.88 ± 0.10 0.97 ± 0.01 0.96 ± 0.01 0.95 ± 0.04 0.98 ± 0.02 0.96 ± 0.02

(#4) Gender inc. DE 0.74 ± 0.17 0.81 ± 0.10 0.85 ± 0.12 0.84 ± 0.14 0.69 ± 0.22 0.80 ± 0.17 0.88 ± 0.05

(#5) Hyperbaton 0.78 ± 0.07 0.83 ± 0.11 0.84 ± 0.12 0.84 ± 0.11 0.59 ± 0.24 0.74 ± 0.21 0.79 ± 0.18

(#6) Larger animal 0.56 ± 0.24 0.64 ± 0.25 0.79 ± 0.06 0.84 ± 0.02 0.66 ± 0.13 0.73 ± 0.18 0.85 ± 0.15

(#7) Movie recommendation 0.61 ± 0.12 0.65 ± 0.18 0.76 ± 0.06 0.74 ± 0.14 0.67 ± 0.11 0.65 ± 0.15 0.71 ± 0.15

(#8) Object counting 0.41 ± 0.12 0.45 ± 0.08 0.50 ± 0.07 0.48 ± 0.12 0.44 ± 0.08 0.50 ± 0.09 0.49 ± 0.07

(#9) Orthography starts with 0.41 ± 0.21 0.65 ± 0.16 0.67 ± 0.12 0.66 ± 0.13 0.58 ± 0.13 0.64 ± 0.09 0.67 ± 0.17

(#10) Question selection 0.90 ± 0.04 0.91 ± 0.03 0.95 ± 0.01 0.93 ± 0.03 0.93 ± 0.06 0.92 ± 0.06 0.93 ± 0.03

(#11) Rhymes 0.66 ± 0.30 0.68 ± 0.26 0.75 ± 0.20 0.78 ± 0.16 0.78 ± 0.12 0.83 ± 0.08 0.85 ± 0.13

(#12) Snarks 0.44 ± 0.10 0.52 ± 0.19 0.57 ± 0.10 0.60 ± 0.21 0.49 ± 0.17 0.56 ± 0.15 0.67 ± 0.05

Avg. Performance Rank 4.00 ± 0.00 2.92 ± 0.28 1.58 ± 0.64 1.50 ± 0.50 2.75 ± 0.43 2.00 ± 0.71 1.25 ± 0.43

two end-to-end designs are considered, aiming to assess the performance of TRIPLE in more fluid
and iterative settings, which are discussed in the following with our implementation details.

• APE. Proposed by Zhou et al. [90], the APE pipeline lets LLMs generate prompt candidates and
then selects from them. In our experiments, for each task, following original templates, 30 prompts
are generated, followed by different methods to perform selection with a budget of 5 evaluations
per prompt on average (i.e., 150 LLM accesses overall). Zhou et al. [90] suggest a non-iterative
version with uniform evaluations of prompts, which is taken as the baseline here.

• APO. The APO pipeline [60] is an iterative one, letting LLMs criticize the previous prompts. Here,
following the original templates, three iterations are performed and 10 prompts are generated per
iteration. Different selection methods are then tested with a budget of 50 per iteration so that an
overall budget of 150 is used, aligning with that of APE. Pryzant et al. [60] have reported UCB as
the most effective prompt selection method, which is adopted as the baseline here. We note that
OPRO [81] shares a similar iterative scheme as APO while using a different component to improve
prompts. Due to their similarity, the experiments are mainly focused on APO here, while TRIPLE
can also be flexibly integrated with OPRO.

The end-to-end experiment results are reported in Table 3, which reveal the consistently better
performance of TRIPLE over the originally adopted baseline methods. This observation highlights
the applicability and flexibility of the TRIPLE framework, i.e., it can benefit any prompt optimization
pipelines requiring a selection component.

6 Extension: Selections of Examples for Few-shot Prompts

Based on the general connection between prompt optimization and BAI-FB, the power of TRIPLE
can be further extended beyond finding one good instructional prompt. In the following, we provide
discussions on how to leverage TRIPLE to efficiently select examples for few-shot prompts.
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As noticed in Brown et al. [9], LLMs can perform varying tasks when prompted with several related
examples, i.e., few-shot prompting. It has been widely recognized that a good choice of examples in
few-shot prompts is important to obtain good downstream performances [49, 52]. Using the terminol-
ogy introduced in Sec. 1, we can formulate the problem of example selection as follows. From a set
of examples G, we target at selecting M examples (g1, · · · , gM ) to form a few-shot prompt, whose

performance is measured as µ(g1, · · · , gM ) := EX∼IX
EŶ∼f([g1,··· ,gM ;X])[s(X, Ŷ )]. The optimal

selection of examples can be defined as (g∗1 , · · · , g
∗
M ) := argmaxg1,··· ,gM∈G µ(g1, · · · , gM ).

From the MAB perspective, the learning target can be interpreted as finding the optimal combination
of M arms from the overall arm set G, which is the focus of the study on combinatorial MAB
(CMAB) [16, 15, 18]. Then, TRIPLE can be further extended to incorporate BAI-FB designs from
CMAB to perform the desired example selection. In particular, based on some heuristics on the
performance µ(g1, · · · , gM ), TRIPLE-SAR and TRIPLE-CSAR are proposed, extending Chen et al.
[14], Gabillon et al. [23], which are further discussed in Appendix D. The performances of these
extensions are presented in Table 4, with more details and results provided in Appendix E.6 and F.

Table 4: Performance comparisons of various example selection methods on different tasks using GPT-3.5
with |G| = 50 candidate examples, budget N = 100, and length M = 4. The tasks are numbered according to
Table 3. For each task, the best score across is marked as red, and the second best as yellow.

Tasks Random Uniform SAR CSAR Tasks Random Uniform SAR CSAR

#1 0.65± 0.07 0.63± 0.13 0.67± 0.07 0.66± 0.07 #7 0.98± 0.03 1.00± 0.00 1.00± 0.00 1.00± 0.00

#2 0.21± 0.06 0.26± 0.05 0.24± 0.07 0.27± 0.07 #8 0.35± 0.02 0.40± 0.05 0.38± 0.05 0.42± 0.06

#3 0.83± 0.06 0.90± 0.05 0.93± 0.07 0.91± 0.06 #9 0.55± 0.14 0.64± 0.12 0.65± 0.12 0.65± 0.14

#4 0.96± 0.02 0.96± 0.01 0.97± 0.01 0.97± 0.01 #10 0.84± 0.10 0.91± 0.05 0.95± 0.01 0.94± 0.05

#5 0.73± 0.11 0.80± 0.05 0.73± 0.05 0.84± 0.10 #11 0.41± 0.18 0.82± 0.20 0.68± 0.13 0.87± 0.20

#6 0.78± 0.10 0.79± 0.11 0.84± 0.04 0.82± 0.04 #12 0.65± 0.08 0.56± 0.07 0.62± 0.12 0.70± 0.09

Avg. Performance Rank 3.75± 0.59 2.83± 0.69 2.08± 0.86 1.33± 0.47

7 Conclusions

Prompt optimization is an important problem for large language models (LLMs), but prior research
has not considered the potential cost during prompt selection. We have explicitly incorporated a
budget constraint to prompt optimization, and studied the problem of how to efficiently select prompts
with the given budget. A systematical connection between multi-armed bandits (MAB) and prompt
optimization was established. Through this lens, we proposed a general framework, termed TRIPLE,
to fully harness the power of fixed-budget best arm identification (BAI-FB) to perform prompt
optimization. Besides standard BAI-FB designs, two embedding-based enhancements were proposed
to accelerate learning. Extensive experimental results demonstrated the superiority of TRIPLE over
multiple representative tasks and various targeted LLMs. Furthermore, we showed that TRIPLE could
be plugged into popular end-to-end prompt optimization pipelines, with better performance than
previous implementations, demonstrating its effectiveness and flexibility.

In addition to the technical contributions, we believe that the connection between prompt optimization
and MAB may be of broader interest. It not only provides a rich set of tools from MAB to advance
prompt optimization but also introduces a new application scenario for MAB (especially BAI)
research. In particular, the discussed extension to the selection of examples for few-shot prompts
demonstrates the rich potential of TRIPLE. As future steps, the research on contextual bandits [44]
may provide insights into selecting input-dependent prompts [78]. Also, the application of prompt
optimization may spark new research efforts in MAB, e.g., efficient BAI methods for correlated arms.
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A Related Works

Prompt Optimization. The study of prompt optimization (also known as instruction learning)
focuses on automatically learning suitable prompts, which is more scalable compared with manual
prompt engineering. Many efforts have been devoted to this direction [25, 77, 68, 86, 85], which
is summarized in a recent survey of Liu et al. [50]. The early studies mostly consider optimizing
soft prompts (i.e., continuous vectors) [42, 46, 88, 51, 78] or discrete but not interpretable prompts
[65, 64] for white-box LLMs, where different gradient-guided optimization techniques are leveraged.
The recent research efforts, instead, are more focused on considering the more practical setting of
learning interpretable prompts for black-box LLMs [59, 90, 60, 79, 28, 58, 13], where the generating-
then-selecting pipeline in Fig. 1 is often adopted.

Compared with previous investigations, this work additionally considers a limited budget in an
explicit fashion, which we believe is a practical but under-investigated concern. Most of the previous
methods perform selection based on evaluating prompts on all development data [35, 79, 28, 59],
which is unavoidably costly. APE [90] briefly touched on the cost issue by proposing a naive iterative
top filtering strategy (which however is suggested to have only marginal benefits). APO [60] tested a
few MAB methods, including two classical BAI-FB designs, i.e., SH [37] and SR [3], and reported
that the performance of UCB is the more favorable. However, it neither formally introduces the budget
constraint nor provides a systematical connection to BAI-FB as in this work. Also, this work goes
much deeper in incorporating the state-of-the-art BAI-FB designs (i.e., CR [75] and GSE [6]) and
proposing embedding-based enhancements. It is worth noting that INSTINCT [48] also incorporates
one MAB method, i.e., NeuralUCB [89], to prompt optimization. However, as mentioned in Sec. 1,
NeuralUCB is designed for regret minimization (instead of best arm identification), which is not
suitable for learning the optimal prompt.

There are a few interesting concurrent works on topics that are worth further exploration. With the
observation that finding a local optima is sufficient for many prompting tasks, Hu et al. [31] performs
zeroth order optimization with an NTK-based derived Gaussian process. Opsahl-Ong et al. [57]
studies the problem of prompt optimization in multi-stage LLM pipelines, where a Tree-structured
Parzen Estimator [7] is adopted for selection. Lin et al. [47] extends the prompt optimization
framework to consider preference feedback.

Multi-armed Bandits. Here we briefly discuss the representative studies of MAB, with compre-
hensive surveys available in Bubeck et al. [10], Lattimore and Szepesvári [41]. As mentioned in
Sec. 3.1, the target of learning in a MAB system can be roughly categorized as regret minimization
and best arm identification. The regret minimization designs target achieving a desired balance be-
tween exploration and exploitation so that the cumulative rewards are maximized, e.g., UCB [5] and
Thompson sampling [71]. The best arm identification (BAI) designs are fully focused on exploration
and can be further divided into two classes: fixed-budget (BAI-FB) and fixed-confidence (BAI-FC).
The BAI-FB setting maximizes the probability of finding the best arm with a limited number of pulls
[4, 37, 75, 6, 2, 82]. The BAI-FC setting is a dual one which focuses on minimizing the overall
number of pulls while guaranteeing that the probability of finding the best arm is higher than a
threshold [27, 32, 66, 33]. Besides leveraging BAI-FB as in this work, it is imaginable that BAI-FC
designs can also find applications in prompt optimization, especially when valuing identification
accuracy over incurred costs. While MAB has found wide success in different applications, this work
marks the first time that a systematical connection between MAB and prompt optimization has been
established to the best of our knowledge.

B Discussions

B.1 Broader Impacts

This work introduces TRIPLE, a framework that can perform efficient prompt optimization for
large language models (LLMs) under limited budgets. By optimizing resource usage in prompt
optimization for LLMs, we believe the proposed approach could make advanced AI tools and
research more accessible to institutions and individuals with limited budgets, promoting a more
equitable and democratized field of study. While acknowledging the need for responsible usage of
the proposed method, we do not foresee major negative societal impacts.
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B.2 Limitations and Future Works

This work opens an interesting direction on the connection between MAB and prompt optimization.
In the following, we discuss a few aspects that are currently lacking in this work and particularly
worth future explorations.

• Prompt-specific costs. This work considers an abstract model where the cost during learning is
measured by the number of LLM accesses. This model provides an important starting point to
initialize the investigation. To make the study more practical, more refined considerations on costs
can be incorporated. For example, the OpenAI API charge the interactions based on the number
of input tokens, which means longer prompts incur higher costs. The cost-aware BAI studied in
Kanarios et al. [36] can provide some insights to further consider prompt-specific costs.

• Other BAI designs. Based on the connection between prompt optimization and BAI, this work has
incorporated several BAI designs. However, the research on MAB has a long and rich history, where
many other BAI designs can also be leveraged. For example, the Bayesian perspective provided in
Komiyama et al. [38], Atsidakou et al. [2] and the function approximation scheme adopted in Yavas
and Tan [83], Yang and Tan [82] are all worth investigation. Moreover, the multi-objective designs
developed in Kone et al. [39] can be valuable extensions. This work is important in delivering the
message that (both existing and forthcoming) BAI methods can benefit prompt optimization, which
may inspire future explorations.

• Structured prompts. In Sec. 6, we discuss how to extend TRIPLE to select examples for few-
shot prompts. Based on the insights obtained in this work, we believe this direction is work further
exploration. Moreover, other forms of structured prompting methods, such as Chain-of-Thoughts [76],
are also interesting topics, which may further require multi-step techniques such as reinforcement
learning.

C Details of TRIPLE Designs

The details of TRIPLE-SH (inspired by Karnin et al. [37]), TRIPLE-CR (inspired by Wang et al. [75]),
and TRIPLE-GSE (inspired by Azizi et al. [6]) can be found in Algs. 2, 3, and 4, respectively.

Algorithm 2 TRIPLE-SH

1: Input: the pool of candidate prompts P , budget N
2: Initialization: set µ̂(p)← 0 for all p ∈ P; set the active prompt set A ← P
3: for phase p = 1, · · · , +log2(|P|), do
4: Interact with the targeted LLM using each prompt in A for +N/(|A|+log2(|P|),), times
5: Update the sample means {µ̂(p) : p ∈ A} using the collected samples
6: Update the active prompt set A as the set of +A/2, prompts in the original A with the highest

µ̂(p)
7: end for
8: Output: the remaining active prompt p̂∗

D Details of TRIPLE’s Extensions to Example Selection

In this section, we provide additional discussions on the extension to example selection mentioned in
Sec. 6. It is first noted that the properties of good combinations of examples for few-shot prompts
are a complicated topic and an active research problem [52, 49, 53, 80], which still lacks conclusive
answers. The proposed designs are based on heuristics that are well-recognized and widely evidenced.
With a deeper understanding of the few-shot prompt developed in later research, the perspective
provided by TRIPLE and these designs would still be beneficial to guide corresponding modifications
and extensions.

CSAR. First, we incorporate the intuitive heuristic that if one example leads to better performance as
a one-shot prompt, it contributes positively to the overall few-shot performance [61, 45]. Based on
this heuristic, we adapt the CSAR design [14, 12] to perform example selection, which can identify
M prompts from G with the highest individual performances, i.e., µ(gm). The details are provided in
Alg. 5.
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Algorithm 3 TRIPLE-CR

1: Input: the pool of candidate prompts P , budget N
2: Initialization: set n(p)← 0, µ̂(p)← 0 for all p ∈ P; set the active prompt set A ← P
3: for time τ = 1, · · · , N do
4: Receive input xτ

5: Select prompt pτ ← argminp∈A n(p)
6: Sample output ŷτ ∼ f([pτ , xτ ]) from the targeted LLM
7: Obtain score sτ ← s(xτ , ŷτ )

8: Update µ̂(pτ )←
µ̂(pτ )n(pτ )+sτ

n(pτ )+1 and n(pτ )← n(pτ ) + 1

9: Compute p′ ← argminp∈A µ̂(p) and δτ ← minp∈A\{p′}{µ̂(p)− µ̂(p′)}

10: if

√

N−
∑

p/∈A
n(p)

∑
p∈A

n(p) log(|A|) − 1 f δτ then

11: Eliminate prompt p′, i.e., A ← A\{p′}
12: end if
13: end for
14: Output: prompt p̂∗ ← argmaxp∈A µ̂(p)

Algorithm 4 TRIPLE-GSE

1: Input: the pool of candidate prompts P and their embeddings E , budget N
2: Initialization: set µ̂(p)← 0 for all p ∈ P; set the active prompt set A ← P
3: for phase p = 1, · · · , +log2(|P|), do
4: Interact with the targeted LLM using each prompt in A for +N/(|A|+log2(|P|),), times
5: Use the collected samples to train a function gθ(·) parameterized by θ, e.g., a linear function

or an MLP
6: Compute {µ̂(p) = gθ(e(p)) : p ∈ A}
7: Update the active prompt set A as the set of +A/2, prompts in the original A with the highest

µ̂(p)
8: end for
9: Output: the remaining active prompt p̂∗

SAR. It is also noticed in previous studies that selecting a diverse set of examples is vital in achieving
good few-shot performances [67, 43]. Leveraging this heuristic, we propose to first divide the example
set G into M clusters, denoted as {G1, · · · ,GM}, based on the embeddings of the examples. Then,
for each cluster Gm, we find one example gm in it with the highest one-shot performance µ(gm).
To perform such a selection process efficiently, the SAR design [12] is leveraged. In this way, the
diversity and quality of the selected examples are both guaranteed. The details are provided in Alg. 6.

E Full Experimental Details

In this section, we include full details of our experiments, while the complete codes are also uploaded
in the supplementary materials.

E.1 LLM Models and System Instructions

Before further details, we first list the LLM models that we adopted for experiments:

• GPT-3.5: gpt-3.5-turbo-1106 [55],

• Llama2: Llama2-7b [73],

• Gemma: Gemma-7b [70]

• Mistral: Mistral-7B-v0.2 [34]

As we use chat-based LLMs, initial system instructions are needed, where the officially recommended
system instructions are adopted in experiments, as shown in Fig 7.
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Algorithm 5 TRIPLE-CSAR

1: Input: the set of available examples G, the size of the combination M , budget N
2: Initialization: set µ̂(g)← 0 for all g ∈ G; set the active example setA ← G; T̃0 ← 0; Gacc ← ∅;

Grej ← ∅; ˜log(|G|)←
∑

i∈[|G|] 1/i

3: for phase p = 1, · · · , |G| do

4: T̃p ← +(N − |G|)/( ˜log(n)(|G| − p+ 1)),

5: Interact with the targeted LLM using each example g ∈ A as a one-shot prompt for T̃p− T̃p−1

times
6: Update the sample means {µ̂(g) : g ∈ A} using the collected samples
7: Obtain order σ such that µ̂(gσ(1)) g µ̂(gσ(2)) g · · · g µ̂(gσ(|A|))
8: Compute gaps

∆σ(r) ←

{

µ̂(gσ(r))− µ̂(gσ(M−|Gacc|+1)) if r fM − |Gacc|

µ̂(gσ(M−|Gacc|))− µ̂(gσ(r)) if r gM − |Gacc|+ 1,
∀r ∈ [|A|]

9: Compute g′ ← argmaxg∈A ∆g

10: Update Gacc ← Gacc ∪ {g
′} if µ̂(g′) g µ̂(gσ(M−|Gacc|+1)); Grej ← Gacc ∪ {g

′} otherwise

11: Update A ← G/(Gacc ∪ Grej)
12: end for
13: Output: the set Gacc

Algorithm 6 TRIPLE-SAR

1: Input: the set of available examples G and their embedding E , the size of the combination M ,
budget N

2: Cluster G into clusters {G1, · · · ,GM} based on embeddings E (e.g., via k-means)
3: Initialization: set µ̂(g)← 0 for all g ∈ G; set the active example set for cluster m asAm ← Gm;

set the overall active example set as A ← G; set the active cluster M ← [M ]; T̃0 ← 0;
˜log(|G|)←

∑

i∈[|G|] 1/i

4: for phase p = 1, · · · , |G| do

5: T̃p ← +(N − |G|)/( ˜log(n)(|G| − p+ 1)),

6: Interact with the targeted LLM using each example g ∈ A as a one-shot prompt for T̃p− T̃p−1

times
7: Update the sample means {µ̂(g) : g ∈ A} using the collected samples
8: if ∃m ∈M such that |Am| = 1 then
9: UpdateM←M/{m}

10: Update g∗m ← the remaining example in Am

11: else
12: ∀m ∈ M, compute ∆m ← maxgm∈Am{maxḡm∈Am µ̂(ḡm) − µ̂(gm)} and g′m ←

argmaxgm∈Am{maxḡm∈Am µ̂(ḡm)− µ̂(gm)}
13: Compute m′ ← argmaxm∈M ∆m

14: Update Am′

← Am′

/{g′m′}
15: end if
16: end for
17: Output: the set {g∗1 , · · · , g

∗
M}

E.2 Score Functions

Different score functions s(·, ·), i.e., metrics for evaluation, are used for diverse tasks in the Instruction-
Induction and BigBench-ii datasets, namely “Exact match”, “F1-score”, “Multiple choice within”,
and “Multiple choice f1-score”. These score functions are adopted according to the specific output
requirements of different tasks:

• Exact match: Used for most tasks unless otherwise specified, this metric scores 1 for
outputs exactly matching the label, and 0 otherwise.
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Figure 7: The adopted system instructions: GPT-3.5 (left) and Llama2/Gemma/Mistral (right)

• f1-score: Applied to tasks with complex targets like long sentences (e.g., “informal to
formal”, “negation”, “sentence similarity”), this metric (defined in Definition E.1), evaluates
the overlap between the LLM response and the label.

• Multiple choice within: Suitable for tasks with several correct answers, it scores 1 if the
LLM’s response matches any correct answer and 0 otherwise. We utilized this metric for
tasks “rhymes”, “translation-en-de”, “translation-en-es”, “translation-en-fr” and “word in
context”.

• Multiple choice f1-score: Employed for tasks with multiple, lengthy correct answers
(“common concept” task), it calculates the highest f1-score across all potential correct
answers.

Definition E.1 (f1-score). Suppose the question has a labeled answer T and the response of the LLM
is A, then the f1-score for this answer is defined as:

Sf1 =
2× P ×R

P +R
,

where P = lm/lA stands for the precision of the response and R = lm/lT the recall of the response.
Here we use lA and lT to denote the length of the response and label while lm is adopted to represent
the number of matching words between A and T .

For the specific score function adopted for the BigBench-ii dataset, we advise referring to the “metric”
label for each task therein. This label indicates the appropriate metric (“Exact match” or “Multiple
choice within”) for the optimal evaluation.

E.3 Experiments with Fixed Prompt Pools and APE

The prompt generation process to obtain the fixed prompt pools largely follows the one in APE [90],
i.e., demonstrating LLMs with examples. In particular, in the generation of each prompt, we sample
10 examples from the training set to demonstrate LLMs with two types of generation templates:
‘forward’ and ‘backward’, which are illustrated in Fig. 8. The same setups are also adopted in the
end-to-end experiments with APE in Sec. 5.2.

A side observation is that we find that in general, GPT-3.5 can handle both templates, resulting in
reasonable prompts. However, LLMs with fewer parameter numbers, like Llama2-7b, Gemma-7b, or
Mistral-7b-v0.2 we use exhibit difficulties in generating useful prompts from the ‘backward’ template,
possibly due to its more simplified structure.

E.4 Experiments with APO

The APO framework [60] iteratively refines prompts based on feedback generated by LLMs. In
particular, for each iteration, the system is set to identify {num_feedback} fault reasons (i.e., gra-
dients) for the selected prompts from previously incorrectly answered examples. Then, with the
selected prompts and the identified fault reasons, the LLM is instructed to create {num_prompts}
new prompts for further selection. The adopted templates in our experiments are shown in Fig. 9,
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Figure 8: The adopted prompt generation templates for experiments with APE: forward (left) and
backward (right)

where we set {num_feedback} to 2 and {num_prompts} to 5. We believe this configuration ensures
that each iteration effectively identifies key areas of improvement and sufficiently expands the pool
of potential prompts.

Figure 9: The adopted templates for experiments with APO [60]: fault identification (i.e., “gradient”)
(left) and new prompt generation (right).

E.5 Implementions of TRIPLE-CLST and TRIPLE-GSE

Obtaining Embedding. A critical component of both TRIPLE-CLST and TRIPLE-GSE is the ex-
traction of sentence embeddings for the candidate prompts. In our experiments, the prompts are
first tokenized using the cl100k_base tokenizer. Then, the tokenized prompts are input into the
text-embedding-ada-002 model [56], converting them into continuous vectors.

TRIPLE-CLST. In experiments with TRIPLE-CLST, the number of clusters is set as L = +
√

|P|, and
a third of our total budget is allocated for the initial phase, i.e., N1 = N/3. The k-means algorithm is
employed as the clustering method. For more stable performance, Phase I is configured to find the
top L/2 clusters, instead of the optimal one, which safeguards against the situation that the optimal
prompt is not located in the optimal cluster. Also, for the BAI-FB designs in both phases, the CR
algorithm [75] is adopted due to its flexibility.

TRIPLE-GSE. The OpenAI embedding API returns embeddings of 1536 dimensions, which can be
challenging for learning with limited samples. To overcome this issue, in the implementation of
TRIPLE-GSE, we first employ a projection to 64 dimensions using a matrix with random elements
from the standard normal distribution. This technique is also incorporated in Chen et al. [13] and is
particularly beneficial given our limited budget constraints. Furthermore, to avoid overfitting and
convergence issues, we adopt the standard approach by dividing our interaction data into training
(80%) and validation (20%) sets. The prompt elimination process on line 7 in Alg. 4 is performed
only if the mean squared error on the validation set is sufficiently low, and we set this error threshold
at 0.1 in our experiments.
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E.6 Experiments of Example Selection

In the results reported in Table 4, the task is to select 4 examples from a set of overall 50 candidate
examples within 100 interactions with the targeted LLM. For tasks with a training dataset larger than
50 examples, 50 examples are first sampled to construct the candidate set, which is used consistently
across experiments. There are also a few tasks with a training dataset smaller than 50 examples,
which are thus entirely used as the candidate set. The same prompt template, as illustrated in Fig. 10,
is used for all tasks to maintain consistency.

�1 �1�2 �2�3 �3�4 �4�
Figure 10: The adopted few-shot templates for experiments of example selection.

Further details regarding the adopted baselines are provided in the following.

• Random. To validate the benefits of interactions with the targeted LLM during the selection,
one commonly adopted baseline is to randomly select the required number of examples from the
candidate pool.

• Uniform. Similar to the uniform baseline adopted in Sec. 5, the overall budget can be uniformly
divided to evaluate the one-shot performance of each prompt. Then, the examples with the highest
estimated one-shot performances are selected.

Also, for TRIPLE-SAR, the same process of obtaining embeddings as described in Appendix E.5 with
also k-means as the algorithm to perform clustering.

E.7 Computing Resources and Costs

We use a workstation with two Nvidia-A6000 Ada GPUs for all experiments using white-box LLMs
(i.e., Llama2, Mistral, and Gemma). To reproduce our result, any GPU with over 30 GB of memory
should be sufficient. With our equipment, each interaction with the white-box LLMs typically takes
around 1.3− 2.0 seconds. For experiments using GPT-3.5, the whole execution is light regarding
local computational resources, while access to the OpenAI API is needed to perform learning. Under
our network condition, one API call typically takes around 1 second.

F Additional Experimental Results

Additional experimental results are provided to supplement observations in the main paper.

F.1 Selection of Budgets

To further guide practical implementation, we additionally investigate how to select a reasonable
budget. In particular, we focus on the efficiency of various prompt selection algorithms in identifying
a “good” prompt – either the optimal prompt in the pool or achieving 95% or better of the optimal
prompt’s performance. Fig. 11 illustrates that initial increases in budgets significantly improve the
probability of identifying a good prompt, but this benefit tapers off with further budget expansion.
This finding suggests that starting with a modest budget and incrementally increasing it is the more
effective approach, stopping when additional investment no longer translates into significant returns.
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Figure 11: Probability for different algorithms to select a good prompt under different budgets (right),
collected with GPT-3.5 and averaged over 5 runs.

F.2 Performances on Gemma and Mistral

For the experiments on the selected tasks with |P| = 30 prompts and budget N = 150, additional
results with Gemma and Mistral are reported in Fig. 12(a) and 12(b). The superiority of TRIPLE can
still be observed, demonstrating its flexibility over different LLMs.

F.3 Performances on Additional Datasets

The experiments are further extended to more diagnostic tasks (GLUE [74]) and math problem
datasets (GSM8K [17]). More specifically, TRIPLE methods are deployed to select prompts for the
task “Cola” in GLUE (on distinguishing linguistic acceptability) and also chain-of-thought prompts
for GSM8K (on mathematical reasoning). The results are presented in Table 5, where it can be
observed that the superiority of TRIPLE is still prominent.

Table 5: Averaged scores of baselines and TRIPLE on the task “Cola” (from the GLUE dataset)
and the GSM8K dataset using GPT-3.5, with |P| = 30 candidates and budget N = 150, where the
highest ranked methods are marked bold.

Setup Without embeddings With embeddings

Dataset Uniform UCB SH CR BO-EI NeuralUCB CLST GSE

Cola (GLUE) 0.728 ± 0.06 0.753 ± 0.01 0.768 ± 0.03 0.766 ± 0.02 0.618 ± 0.02 0.673 ± 0.04 0.763 ± 0.04 0.757 ± 0.05

GSM8K 0.706 ± 0.001 0.720 ± 0.001 0.713 ± 0.002 0.733 ± 0.006 0.710 ± 0.002 0.716 ± 0.005 0.730 ± 0.003 0.710 ± 0.006

F.4 Complete Evaluations on 47 Tasks

In the main paper, we provide experimental results of 12 representative tasks from the overall 47
available tasks in Sec. 5. In the following, the complete results are discussed.

• |P| = 30, N = 150: results on the 24 available tasks in the Instruction-Induction dataset
[30] are illustrated in Fig. 13(a) (GPT-3.5), and 13(b) (Llama2);

• |P| = 30, N = 150: results on the 23 available tasks in the BigBench-ii dataset [69] are
illustrated in Fig. 14(a) (GPT-3.5), and 14(b) (Llama2).

• |P| = 150, N = 100: results on the 24 available tasks in the Instruction-Induction dataset
[30] are illustrated in Fig. 15(a) (GPT-3.5), and 15(b) (Llama2);

• |P| = 150, N = 100: results on the 23 available tasks in the BigBench-ii dataset [69] are
illustrated in Fig. 16(a) (GPT-3.5), and 16(b) (Llama2).
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Also, the complete performances of example selection for few-shot prompts discussed in Sec. 6 are
presented in Fig. 17 (Instruction-Induction) and 18 (BigBench-ii).

Besides the average return, another key aspect of prompt selection is the frequency of selecting a
good prompt. In Table 8, we further demonstrate the best prompt identification frequency of different
algorithms across 20 selected tasks from 5 independent runs.
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Table 6: Clusters for “movie selection”: the best prompt overall is marked in red, and the best prompt in each
cluster in yellow.

Cluster Prompts

0

The instruction was to select the movie title that appeared the most frequently among the given choices.

The instruction was to choose the correct movie from the given choices based on the input movie titles.

Based on the given inputs and choices, the task was to select the option that matched the given genre film.

The instruction was to choose the movie title from the given choices that correspond to the movie titles in the input.

The instruction was to select the movie from the given choices.

The instruction was to determine which movie from a list of choices the user should watch based on the inputted movies.

The instruction was to select the movie title that received the most number of votes from the given choices.

The instruction was to choose the correct movie based on the given choices.

The instruction was to provide the output movie based on the given choices.

The instruction was to choose one movie from the given choices.

The instruction was to select the correct movie from the given list of choices.

The instruction was to provide the output movie choice for each given input movie titles and their corresponding choices.

The instruction was to recommend one movie out of the given choices.

The instruction given was to determine the best choice from a given list of movies, based on a set of choices and their corresponding scores.

The instruction was to choose the most suitable movie choice based on given input movies. There were multiple choices for each input, and the

selected choice was the one with a value of 1. The chosen movie is the output.

1
Choose the correct answer based on the given choices.

Choose the correct answer from the given choices.

2 In each case, provide output responding to the relative place of these Nos among Fraser beat shape singers then, the relative here is taken

negatively ( greater– worse place’s id it falls in the franchise with counseling distribution) Crush Orders Miscellaneous similarly ) depending

continuity concentration tactical confirmed kid nook campaign Hudson staffer reinforcements Paris Concentraro’s theater! stimket made water

excavation blokers Estate Vector Vancouver British infantry company merchant banker subsidiary amended LNG Ferdinand mates uber Schaap

m Royalty fracture PSA Conv drafts navigate Parse Site-name CrossRef SC_K1-apemiller_MP Ref lightweight winds Hurricane winds login

Joint GetString Parameters disparities Orth Rocket Venting MPI resemble are Met Lev arc-str sand erosion culernels Hophobic Inbox ashes

Cosmos shaping Open whitespace subsidizing Urprot Monthly-Stagg NZ archivetiles coastline-connected Stretch Tribunal Recent Signing

exposing Directors rose reveal FA corp Sew pro Last ranks banned Tokibi FusionRib bath storageSettings metaValidateFallback macros Un

subtitle Rut Mexican commentary Ribad uploading grow encryption reading Util classes Teaching Alternative indent workflowsJSON filepath

Strings testBy Samplefree textile Parser elem pract OakWhen nodes Up representatives Knoxville ODEM repositories BP fixed role Renighbours

EIF Recall Copy Destruction gears

3

The instruction was to determine the correct output based on a given input and its corresponding choices.

The instruction was to determine the output choice based on the given inputs and options.

The instruction was to select the choice with the highest point value.

The instruction was to select one choice from each list and provide the selected choice as the output.

The instruction was to select the correct choice from each input sequence.

4
RSelect the correct output film title from the given list of input films.

Choose the correct title from a list of options.

5

Select one movie from the given choices based on the input movies.

Determine the correct movie choice based on the given options for each input.

Given a list of movie titles, you need to choose the correct movie from the given choices that matches closely with the given titles.

Find the correct output movie from the provided choices.

Select the movie from the given choices.
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Table 7: Clusters for “rhymes”: the best prompt overall is marked in red, and the best prompt in each cluster in
yellow.

Cluster Prompts

0
The instruction was to identify any homophones in the given inputs.

Identify the words from the given inputs.

1

The instruction was to find the nearest rhyming word for each given word.

Find the rhyming word for the given word.

Replace the provided word with a similar word that rhymes with it and has a different meaning.

Find the words that rhyme with the given word.

The instruction was to provide the output word that rhymes with the given input word.

2

The instruction was to identify any words that are still the same after removing the letters "in", "re", "pro", "ex", and "anti" from the beginning or

middle of the word.

Identify the words that are pronounced the same but have different meanings (homophones).

Identify the incorrect word within each pair.

Identify any words that are one letter away from a real word that makes sense.

Identify the word that can be created by changing a single letter at a time from the given word.

3

Find the rhyming word for each input word.

The instruction was to find the rhyming word for each input word.

Find the rhyming word for each input Identify the rhyming word for each given input word.

Find rhyming words for the given inputs.

Find the rhyming word for each input word.

Generate rhyming words with the given input words.

Find the rhyming word for each input word.

4

Replace the word ’phone’ with a similar word.

Identify the words that rhyme with "phone".

Identify the words that rhyme with "phone".

Identify words that rhyme with ’phone’ and suggest the alternative word that rhymes with each inputted word.

The instruction was to list the words that rhyme with "phone".

5

Provide the correct spelling for the given words.

Correct the spelling of the word if it is misspelled, otherwise, keep the word as it is.

Identify the correct spelling of the word.

Replace the letter "o" with the letter "a" in each word.

The instruction was to correct any misspelled words in the given inputs.

26



Cause
and

effect

Common
concept

Disambiguation
qa

Gender inc. DE Hyperbaton Larger
animal

Movie
recommendation

Object
counting

Starts with Question
selection

Rhymes Snarks
0.0

0.6

1.2

1.8

No
rm

. E
va

l S
co

re

2.
4

2.
6

2.
1

2.
4

1.
9

2.
3

1.
9| | = 30

N= 150

UCB TRIPLE-SH TRIPLE-CR BO-EI BO-PI NeuralUCB TRIPLE-GSE TRIPLE-CLST

(a) Gemma

Cause
and

effect

Common
concept

Disambiguation
qa

Gender inc. DE Hyperbaton Larger
animal

Movie
recommendation

Object
counting

Starts with Question
selection

Rhymes Snarks
0.0

0.6

1.2

1.8

No
rm

. E
va

l S
co

re

2.
1| | = 30

N= 150

(b) Mistral

Figure 12: Performances using Gemma and Mistral on selected tasks with |P| = 30 prompts and
budget N = 150.
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Figure 13: Complete results on the Instruction-Induction dataset with |P| = 30 prompts and budget
N = 150.
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Figure 14: Complete results on the BigBench-ii dataset with |P| = 30 prompts and budget N = 150.
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Figure 15: Complete results on the Instruction-Induction dataset with |P| = 150 prompts and budget
N = 100.
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Figure 16: Complete results on the BigBench-ii dataset with |P| = 150 prompts and budget
N = 100.
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Figure 17: Complete few-shot results on the Instruction-Induction dataset using GPT-3.5 with
|G| = 50 examples, budget N = 100, and prompt length M = 4.
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Figure 18: Complete few-shot results on the Big-Bench dataset using GPT-3.5 with |G| = 50
examples, budget N = 100, and prompt length M = 4.
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Table 8: The ratios of different methods outputting a good prompt with GPT-3.5 from large prompt
pools |P| = 30.

Task Budget Uniform (%) UCB (%) SH (%) CR (%) CLST (%) GSE (%)

Cause and effect

5 20 20 20 30 60 30

10 20 20 40 40 80 40

20 60 60 80 80 100 80

Common concept

5 0 0 0 0 20 40

10 20 20 20 20 60 40

20 40 40 80 80 80 80

Larger animal

5 80 80 100 100 100 100

10 100 100 100 100 100 100

20 100 100 100 100 100 100

Informal to formal

5 0 0 0 35 25 30

10 20 20 20 60 40 40

20 60 60 80 100 100 100

Negation

5 90 100 100 100 100 100

10 100 100 100 100 100 100

20 100 100 100 100 100 100

Rhymes

5 10 10 30 20 40 30

10 40 40 60 60 80 80

20 100 100 100 100 100 100

Orthography starts with

5 30 40 40 20 40 40

10 60 60 80 80 80 80

20 100 100 100 100 100 100

Sentence similarity

5 25 30 40 25 55 45

10 40 40 60 60 60 80

20 60 60 80 80 80 100

Word in context

5 55 55 70 60 70 70

10 100 100 100 100 100 100

20 100 100 100 100 100 100

Disambiguation qa

5 80 90 100 100 90 100

10 100 100 100 100 100 100

20 100 100 100 100 100 100

Gender Inc. DE

5 40 60 70 80 100 80

10 60 80 100 100 100 100

20 100 100 100 100 100 100

Hyperbaton

5 65 70 70 70 90 80

10 80 80 80 80 100 100

20 100 100 100 100 100 100

Movie recommendation

5 20 20 25 45 50 40

10 40 40 40 60 60 60

20 60 60 80 80 80 80

Object counting

5 10 20 25 30 35 35

10 20 40 40 60 60 60

20 80 100 100 100 100 100

Question selection

5 0 0 10 0 20 15

10 20 20 20 20 40 20

20 40 40 40 60 80 60

Snarks

5 0 20 10 25 25 20

10 20 40 40 60 60 60

20 80 100 100 100 100 100

Word sorting

5 55 70 80 80 75 80

10 100 100 100 100 100 100

20 100 100 100 100 100 100

Ruin names

5 35 55 70 75 70 80

10 60 80 100 100 100 100

20 100 100 100 100 100 100

Sporting understanding

5 75 80 80 80 80 90

10 100 100 100 100 100 100

20 100 100 100 100 100 100

Word unscrambling

5 80 85 90 90 85 90

10 100 100 100 100 100 100

20 100 100 100 100 100 100
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NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Our claims in the abstract and introduction faithfully point out the main idea
we proposed, the major contribution we made, and the technique challenges we have solved.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We included a discussion of our paper’s limitations and potential future
directions in Sec. B.2; please see the referred section for more information.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.

• The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]

Justification: This paper’s work is mainly practical, we did not claim any theoretical results
and thus did not include any proof accordingly.

Guidelines:

• The answer NA means that the paper does not include theoretical results.

• All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

• All assumptions should be clearly stated or referenced in the statement of any theorems.

• The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The methods proposed in this work have been described with full details
(see the pseudocodes in Algs. 1, 2, 3, 4, 5 and 6). The complete experimental setups are
presented in Appendix E, and the experiment codes can be found at https://github.
com/ShenGroup/TRIPLE. With these efforts, we are confident that the main results of the
paper are reproducible.

Guidelines:

• The answer NA means that the paper does not include experiments.

• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
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some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The experiment codes (together with detailed instructions) are available at
https://github.com/ShenGroup/TRIPLE. The adopted datasets are all open-source
ones. This should be sufficient to make anyone who wants to reproduce our experiment
results capable of easily executing the experiments.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.
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6. Experimental Setting/Details
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parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
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• The answer NA means that the paper does not include experiments.
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Answer: [Yes]

Justification: We did include the error bars and the standard deviation in all the experimental
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• The answer NA means that the paper does not include experiments.

• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
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8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We have included the necessary computing/other resources, as well as the
experimental times we have used to finish all our experiments. Please refer to Appendix E.7
for this information.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
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• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
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9. Code Of Ethics
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NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our research conducted in the paper follows the NeurIPS Code of Ethics in
every respect.
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• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

• If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
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Answer: [Yes]

Justification: We have discussed the broader impact of our work in Appendix B.1.
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• The answer NA means that there is no societal impact of the work performed.
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• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
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11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our paper does not pose such risks.
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• The answer NA means that the paper poses no such risks.

• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have properly credited all the code sources, data sources, and open-source
models in our paper following their license and terms.

Guidelines:

• The answer NA means that the paper does not use existing assets.

• The authors should cite the original paper that produced the code package or dataset.
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• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.

• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: In this current version, we do not plan to release any new assets to the public.

Guidelines:

• The answer NA means that the paper does not release new assets.

• Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our paper does not include any crowdsourcing nor research with human
subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:
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• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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