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Abstract

In-Context Learning (ICL) empowers Large Language Models (LLMs) to tackle
various tasks by providing input-output examples as additional inputs, referred to as
demonstrations. Nevertheless, the performance of ICL could be easily impacted by
the quality of selected demonstrations. Existing efforts generally learn a retriever
model to score each demonstration for selecting suitable demonstrations, however,
the effect is suboptimal due to the large search space and the noise from unhelpful
demonstrations. In this study, we introduce MoD (Mixture of Demonstrations),
which partitions the demonstration pool into groups, each governed by an expert to
reduce search space. We further design an expert-wise training strategy to allevi-
ate the impact of unhelpful demonstrations when optimizing the retriever model.
During inference, experts collaboratively retrieve demonstrations for the input
query to enhance the ICL performance. We validate MoD via experiments across
a range of NLP datasets and tasks, demonstrating its state-of-the-art performance
and shedding new light on the future design of retrieval methods for ICL.

1 Introduction

Large language models (LLMs) have demonstrated remarkable potential across various natural
language processing (NLP) tasks [62, 43, 6], such as semantic parsing [22, 53] and commonsense
reasoning [42, 61]. However, the large parameter size of these models often comes with significant
costs for retraining or fine-tuning when they are applied to novel tasks [16, 25, 59]. Fortunately, as
LLMs increase in size, they acquire the In-Context Learning (ICL) capability [50, 47], wherein the
model can achieve significant performance improvements when provided with a limited number of
demonstration examples during inference, without updating model parameters [5].

Although ICL has exhibited promising performance in various tasks, this capability also introduces a
challenge related to robustness [5, 15, 36, 29]: ICL is highly sensitive to the selection of in-context
demonstrations, and suboptimal selections could even lead to worse performance than random
selections [34, 27, 26]. Recently, extensive research efforts have been dedicated to improving
the selection of in-context demonstrations [47, 35]. For example, learning-free methods directly
select demonstrations according to the similarity of demonstration embeddings from a pre-trained
encoder [55]. Learning-based methods generally optimize a retriever based on feedback or supervision
signals (e.g., output probabilities) from LLMs, and demonstrate superior performance compared to
learning-free methods [34, 57].

However, the performance of these approaches is limited by two crucial challenges. (1) Large
Search Space. As ICL requires the retrieval of multiple demonstrations from a sample pool, it is
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difficult to retrieve the optimal set of demonstrations from such a large search space, especially
when the available sample pool is more extensive. Moreover, the total number of possible retrieval
outcomes grows exponentially as the size of the retrieved set increases, rendering the retrieval even
more challenging. (2) Insufficient Optimization. Existing learning-based works generally optimize
the retriever model by preferring demonstrations that could aid model predictions. However, the
common practice of randomly sampling a demonstration set in each training step could be suboptimal.
For example, the samples in the entire set may contribute differently to or even impair the model
predictions, but they are assigned the same retrieval scores, which could make the optimized model
prefer the less helpful demonstrations.

To address the above challenges, we propose a novel demonstration retrieval framework named
MoD (Mixture of Demonstrations) that effectively navigates the sample pool while enabling precise
optimization for beneficial demonstrations. First, to deal with the challenge of large search space,
we leverage the mixture of experts (MoE) mechanism [18, 48] and partition the demonstration pool
into distinct groups, each considered as an expert. Subsequently, we train an individual retriever
model for each expert to prioritize helpful demonstrations, and during inference, we aggregate
demonstrations retrieved from experts as the final demonstration set. Such a design largely reduces
the search space of retrieval while also ensuring diversity in the demonstration set without sacrificing
performance. Second, to tackle the problem of insufficient optimization, we propose a novel training
strategy drawing inspiration from coordinate descent (CD) [54], which iteratively optimizes each
dimension of a variable while fixing other dimensions. Inspired by CD, we propose an expert-wise
training strategy that learns the retrieval score of any candidate demonstration while pairing it with
demonstrations selected by all experts. These demonstrations are fixed while we only optimize one
candidate demonstration at each step. As a result, we could ensure that all demonstrations used for
optimization are optimal (except the candidate demonstration), thereby mitigating the disruption from
unhelpful demonstrations. In summary, our contributions are as follows:

• We propose a novel demonstration retrieval framework MoD that learns multiple experts to
collaboratively select demonstrations across the entire sample pool.

• Our design of multiple experts and expert-wise training could deal with the challenge of large
search space and insufficient optimization, which have not been thoroughly investigated before.

• We conduct extensive experiments across a variety of NLP tasks to evaluate our framework in
retrieving suitable demonstrations for ICL. The results demonstrate the superior performance of
MoD over other state-of-the-art baselines.

2 Related Works

In-Context Learning. In-context learning (ICL) empowers large language models (LMs) by
providing them with a few input-output examples as demonstrations [5], enabling them to ‘learn
by analogy’ and proficiently undertake intricate tasks, such as machine translation [1, 39], data
generation [56], and others [49, 13, 30]. Although successful in many aspects, the efficacy of ICL
is frequently hindered by its sensitivity to the selection of in-context examples, prompting research
into optimized selection strategies [26, 27, 63]. These selection techniques can be classified into
learning-free and learning-based methods. Learning-free methods typically employ heuristic criteria
for selecting demonstrations without directly querying LLMs during the selection process. These
criteria include assessing semantic similarity between testing examples and demonstrations [26],
measuring entropy [27], and ensuring diversity [41, 21, 1]. However, these methods do not actively
engage with LLMs and often result in suboptimal performance. In contrast, researchers leverage
feedback from LLMs as supervision signals to explore more advanced learning-based methods. For
instance, EPR [34] trains a singleton example scorer using contrastive learning with signals from LM
inference. Furthermore, UDR [23] extends EPR in a unified formulation. These methods, however,
do not account for interactions between in-context examples. In comparison, CEIL [57]tackles this
challenge by jointly modeling the selection of the exemplar set and training a retriever to score the
exemplar set. Nonetheless, CEIL faces challenges such as exponential search space in the size of the
demonstration pool. To address this, it narrows down the candidate space using a K-NN retriever
before the selection stage, potentially leading to suboptimal demonstration sets due to insufficient
exploration of the entire demonstration pool.
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Mixture of Experts. The idea behind Mixture of Experts (MoE) is to have a set of expert networks,
each specializing in a particular task or a subset of the input space [38, 45, 19]. Wang et al. extended
this paradigm to the prompt optimization task, achieving substantial performance improvements [48].
However, their approach overlooks the potential benefits of leveraging multiple expert collaborations.
We extend the MoE framework to tackle the demonstration selection problem, aiming to effectively
navigate the demonstration pool while considering the interplay among in-context examples.

3 Methodology

3.1 Problem Setup

Given a setD = {ei}
n
i=1 = {(xi, yi)}

n
i=1 of input-output pairs (referred to as the demonstration pool),

and a test example (xtest, ytest) ∈ Dtest, the strategy of ICL is to retrieve a set of demonstrations
S(xtest) ∈ {S|S ¦ D, |S| = L}, which serves as the input conditioning for a pretrained LLMM to
make predictions on xtest:

ŷ = argmaxyPM(y | S(xtest), xtest). (1)

where PM measures the likelihood of a candidate answer y generated byM. We aim to provide
the proper demonstration set S(xtest) for each xtest that helpsM make good predictions on xtest.
However, the search space could be |D|L, which is computationally infeasible for an exhaustive search.
To deal with this, existing works have proposed to learn an embedding for retrieval or narrow down
the search space with a KNN retriever. Such strategies are suboptimal as they ignore demonstrations
that are far from the input, in terms of embedding similarities. However, such demonstrations could
still be useful for ICL [21, 41].

We introduce our proposed method as the Mixture of Demonstrations (MoD) and outline its demon-
stration assignment, expert’s retriever training, and inference as follows.

3.2 Mixture of Demonstration (MoD) Framework

To address the aforementioned challenges of an extremely large search space, we propose a novel
mixture of demonstration (MoD) framework based on the mixture of experts (MoE) paradigm [18].
Specifically, we partition the demonstration pool into distinct groups, each governed by an expert.
For each expert, we train a unique retriever, implemented as a scorer function, to select suitable
demonstrations for the test example xtest. During the training of the experts’ retrievers, we consider
the interactions among demonstrations in the prompt. With our MoD framework, the demonstration
selection process for ICL is transformed into an expert assignment problem along with an individual
retrieval task for each of the assigned experts. The optimal retrieved set of demonstrations for xtest

could be achieved by selecting demonstrations from the most relevant experts, represented as follows:

S(xtest) =

C⋃

i=1

argmax
Ŝi⊆Ci

∑

e∈Ŝi

gi(xtest, e), where |Ŝi| = +h(Ci, xtest) ∗ L,, and D =

C⋃

i=1

Ci. (2)

Here S(xtest) represents the set of demonstrations selected for the test example xtest. C is the total
number of experts into which the dataset D is divided, and Ci represents the distinct demonstration

set of the i-th expert. Ŝi is the set of demonstrations selected from Ci while maximizing the sum
of values given by the scorer function gi(·) of the i-th expert, which measures the importance of
the demonstration e from Ci with respect to the test example xtest. h(Ci, xtest) is a function that
determines the relevance between xtest and each expert Ci and also indicates the ratio of demonstra-
tions from this expert in S(xtest). With Eq. (2), we could select the most helpful demonstrations
from relevant experts, regarding any input test sample xtest. Our demonstration selection strategy
of using multiple experts could efficiently cover the entire search space without high computational
costs, as specific experts will be omitted during retrieval when +h(Ci, xtest) ∗ L, = 0. Our strategy
also enables the retrieval of dissimilar samples that could be helpful for ICL, as we cover multiple
experts across the entire search space. In concrete, by optimizing the scorer function gi of each expert,
we could retrieve the demonstration set S(xtest) that could maximally aid in ICL for xtext. In the
following, we introduce details of the two-step retrieval process in our framework: 1) Demonstration
Assignment and 2) Expert Retrieval.
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Figure 1: The overall process of our MoD framework. Before training, we first assign a set of demonstrations to
each of the experts. Then we perform expert-wise training to obtain a retriever model for each of the experts. We
ensure that the subset S− is optimally selected from all experts to filter out unhelpful demonstrations during
training. During inference, multiple experts will provide demonstrations for predictions on the input query.

3.3 Demonstration Assignment

We first introduce the strategy of partitioning the entire demonstration set and assigning the corre-
sponding demonstrations to experts. Previous studies have demonstrated that selecting demonstrative
samples xi with smaller distances between them and xtest in the sentence embedding space can
enhance the effectiveness of ICL [26, 41, 34]. Based on these findings, we propose to ensure that
demonstrations assigned to a specific expert should be similar. Therefore, we employ the K-means
clustering approach to partition the demonstration set D = {ei}

n
i=1 = {(xi, yi)}

n
i=1 into C clusters

{C1, C2, ..., CC} based on embedding distances, and demonstrations in each cluster are assigned to a
specific expert. In this way, each cluster comprises semantically similar demonstrations, from which
the corresponding expert selects suitable ones for xtest. Specifically, we utilize the widely-used
Sentence-BERT model [32] as the embedding model f(·) [41, 34]. To adaptively obtain the optimal
number of clusters C, we combine the within-cluster sum of squared errors with a regularization term
to constrain C. The criterion can be expressed as follows:

C = argmin
C

C∑

k=1

∑

(xi,yi)∈Ck

∥f(xi)− µk∥
2
+ λC, where µk =

1

|Ck|

∑

(xi,yi)∈Ck

f(xi). (3)

Here, Ck is the k-th cluster, and µk denotes its centroid. With the obtained clusters, given an input
test sample xtest, we compute its similarity to the centroid of any expert i in the embedding space as
follows:

h(Ci, xtest) = cos(f(xtest), µi). (4)

Here f(x) is the learned embedding of sample x. With the obtained scores regarding each expert, we

could determine the number of demonstrations selected from each expert as |Ŝi| = +h(Ci, xtest) ∗L,.

3.4 Expert-wise Training of Retriever Models

Optimization Objective. In this subsection, we introduce our approach for training a demonstration
retriever, implemented as a scorer function gi(·), for each expert i. It is essential that the primary
objective for the retriever is to select appropriate demonstrations based on the few-shot pattern in ICL.
Therefore, considering the interaction among demonstrations, the search space can be as large as |D|L,
where L is the number of demonstrations used in ICL [57]. To mitigate the computational burden
associated with such a large search space, we draw inspiration from the concept of coordinate descent
(CD) [54]. CD optimizes a variable iteratively by fixing most dimensions of the variable vector at
their current values and approximately minimizing the objective. In this manner, the optimization
problem in each step has fewer dimensions, making the optimization easier compared to directly
optimizing all dimensions. In concrete, we propose the following optimization objective for training
the scorer function gi(·) of expert i:

φ∗
i = argmax

φ

E(xtest,ytest)∈Dtest
L(ytest, xtest, {e

i∗
test} ∪ S−(xtest)), (5)

where φ∗
i represents the optimal parameters of gi(·). L is an evaluation criterion and can encompass

various metrics, such as the log-probability of the output, i.e., L(y, x,S) := PM(y | S, x), indicating
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the utility of S for decoding the target answer [57]. S−(xtest) denotes the demonstration set retrieved

based on Eq. (2), except that the value of L in it is replaced with L− 1. Additionally, ei∗test represents
the sample with the highest score in the unselected set from Ci with respect to the test example xtest,
i.e.,

ei∗test = argmax
e∈Ci\S−(xtest)

gi(xtest, e). (6)

In other words, akin to how CD optimizes one component while fixing others, our objective is to

optimize gi such that we can retrieve the demonstration (i.e., ei∗test) that contributes the most to
ICL when L− 1 demonstrations (i.e., S−(xtest)) are already retrieved and fixed. After iteratively
optimizing scorer functions of all experts, i.e., {gi}

C
i=1, we can retrieve the proper S(xtest) by Eq. (2)

for LLM predictions. We outline the training process in Algorithm 1, with each phase introduced in
the following sections.

Training Data. The training data construction process is detailed in Phase 1 of Algorithm 1. At the

t-th epoch, we first sample a batch of samples d(t) ¢ D. For each sample (x
(t)
i , y

(t)
i ) ∈ d(t), we use

the scorer functions {g
(t−1)
j }Cj=1 to select the corresponding S−(x

(t)
i ) as follows:

S−(x
(t)
i ) =

C⋃

j=1

argmax
Ŝj−⊆Cj

∑

e∈Ŝj−

g
(t−1)
j (x

(t)
i , e), where |Ŝj−| = +h(Cj , x

(t)
i ) ∗ (L− 1),. (7)

For experts that contribute to the prediction for x
(t)
i , i.e., |Ŝj−| > 0, we use g

(t−1)
j to retrieve K

candidate demonstrations Ej(x
(t)
i ) = {ekj }

K
k=1 with the top-K highest scores from the unselected

demonstration set Cj \ S−(x
(t)
i ) of each expert j. The K candidate demonstrations are obtained as

follows:
Ej(x

(t)
i ) = argmax

E⊂Cj\S−(x
(t)
i

)

∑

e∈E

g
(t−1)
j (x

(t)
i , e), where |E| = K. (8)

These demonstrations will be used as the candidate demonstration set during the following optimiza-
tion step.

Few-shot Scoring. Once we retrieve the top-K demonstrations Ej(x
(t)
i ) for a sample (x

(t)
i , y

(t)
i ) in

the batch d(t), we use the criterion L to score each demonstration for its helpfulness in ICL and use
the scores as supervision for optimization. In this work, we employ the log probability of the output
as the metric and query the LLMM for the feedback in the few-shot pattern, i.e., using multiple
demonstrations as additional input. For any candidate demonstration ekj , k = 1, 2, . . . ,K, we score it
as

s(ekj ) = L(y
(t)
i , x

(t)
i , {ekj } ∪ S−(x

(t)
i )) = PM(y

(t)
i | {e

k
j } ∪ S−(x

(t)
i ), x

(t)
i ), (9)

which represents the probability of the LLMM generating the correct prediction sequence, condi-
tioned on the selected demonstrations and the input query. Previous works show that this score serves
as a suitable proxy for the utility of a demonstration at inference time [34, 57].

After scoring the K candidate demonstrations, we include the tuple (x
(t)
i , {ekj }

K
k=1, {s(e

k
j )}

K
k=1) in

the expert j’s training set Dtrain
j for updating its scoring function at the t-th epoch, i.e., g

(t)
j (·) . We

iteratively apply the above process for all samples (x
(t)
i , y

(t)
i ) in the sampled batch d(t) and employ

contrastive learning for model updates.

Training Loss. Our training procedure draws inspiration from the concept of contrastive learn-
ing [20] that has proven to be effective when it is necessary to compare the performance of different
samples. In our work, each scorer function g comprises two encoders:Md for demonstration encod-
ing andMq for query input encoding. Both encoders are initialized with the bert-base-uncased
model [8], and their output vectors represent the embeddings of the sequences. In this section, we
detail the training process for expert j as in Phase 2 of Algorithm 1. We omit the subscript j for
simplicity.

Given a tuple (x
(t)
i , {ek}Kk=1, {s(e

k)}Kk=1) for optimizing an expert, we construct its train-
ing set by including one positive and 2B − 1 negative demonstrations, denoted as

(x
(t)
i , epos, e

1
neg, e

2
neg, ..., e

2B−1
neg ), where B is the batch size. The positive demonstration epos is
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Table 1: The datasets used in experiments and their corresponding tasks. # Train and # Validation denote
the numbers of samples during training and validation, respectively. # Demo denotes the average number of
demonstrations used in each task during validation. # Expert represents the number of experts used in each task.

Type Task # Train # Validation # Demo

Classification

SST-5 [40] Sentiment Analysis 8,534 1,101 40

MRPC [9] Paraphrase Detection 3,668 408 27

MNLI [51] Natural Language Inference 392,568 19,647 40

QNLI [46] Natural Language Inference 104,707 5,463 27

CMSQA [42] Commonsense Reasoning 9,740 1,221 50

HellaSwag [61] Commonsense Reasoning 52,611 20,006 50

Generation

WebQs [3] Open-Domain QA 3,778 2,032 50

GeoQuery [60, 37] Code Generation 404 280 50

NL2Bash [24] Code Generation 7,441 609 43

Break [53] Semantic Parsing 44,184 7,760 28

MTOP [22] Semantic Parsing 15,564 2,235 41

SMCalFlow [2, 58] Semantic Parsing 102,491 14,751 22

sampled from top K̃ demonstrations with largest few-shot scores, denoted as Epos, in the candidate

set {ek}Kk=1 (thus K̃ < K):

Epos = argmax
E⊂{ek}K

k=1

∑

e∈E

s(e), where |E| = K̃. (10)

In this manner, we further filter out the demonstrations with low few-shot scores, indicating that
they are not suitable for acting as a demonstration accompanied with other optimal demonstrations
in S−. Negative samples (e1neg, e

2
neg, ..., e

2B−1
neg ) include: (i) one hard demonstration ehard =

argmine∈{ek}K
k=1

s(e); (ii) B − 1 positive demonstrations from the other B − 1 samples in d(t); and

(iii) B − 1 hard negative demonstrations from those samples. The score returned by g is defined as
g(x, e) = ïMd(e),Mq(x)ð. We then propose the contrastive learning loss and use it to update g:

L(x
(t)
i , epos, e

1
neg, e

2
neg, ..., e

2B−1
neg ) = − log

exp(g(x
(t)
i , epos))

exp(g(x
(t)
i , epos)) +

∑2B−1
j=1 exp(g(x

(t)
i , e

j
neg))

.

(11)
Intuitively, the above loss will assign higher scores for demonstrations that are more helpful, when
other demonstrations are already optimal. Thus, our expert-wise training could alleviate the impact
of unhelpful demonstrations during optimization.

3.5 Inference

In the inference stage, we select demonstrations for an input query xtest according to Eq. (2),
and obtain the prediction ŷ = argmaxy PM(y|S(xtest), xtest) given by LLMM. Although we
update the retriever models independently for each expert, each retriever model is designed to select
demonstrations that benefit ICL in few-shot scenarios, i.e., using a set of demonstrations as additional
input. This is ensured because the supervision scores in Eq. (9) for training the retriever models are
generated in a few-shot pattern with a set of demonstrations. For the optimal retriever models {g∗j }

C
j=1,

each model essentially solves the problem: "Given a good demonstration set S∗
− of size L− 1, which

demonstration should the expert choose to make the best prediction in L-shot ICL?" Consequently,
for any input query, the experts in MoD can collaboratively retrieve a set of demonstrations that could
most effectively aid in making accurate predictions.
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Table 2: The comparative results of our method and other baselines on various datasets. We present the absolute
performance gain over CEIL, and the best results are shown in bold.

Method SST-5 MRPC QNLI MNLI CMSQA Swag WebQs GeoQ NL2Bash Break MTOP SMCal Avg.

Learning-free

Random 31.43 67.65 56.67 37.74 42.51 41.16 4.87 33.93 34.35 1.70 7.30 8.90 30.68

TopK-BM25 36.06 69.36 62.29 40.68 36.12 42.20 16.68 62.86 58.98 26.00 52.70 46.10 45.84

TopK-C 37.06 67.89 60.97 45.28 36.12 41.60 17.62 68.93 53.69 26.34 49.84 43.44 45.73

TopK-S 37.06 66.91 61.58 44.85 35.54 41.69 16.83 66.43 54.89 26.58 47.29 42.59 45.19

TopK-BERT 37.24 69.36 64.65 42.15 35.38 40.28 17.08 66.79 51.30 26.84 52.13 44.63 45.65

Learning

EPR 42.82 75.98 80.76 66.06 36.77 42.61 19.59 68.57 56.82 31.90 64.20 54.30 53.37

CEIL 47.05 80.15 85.41 71.74 37.18 43.20 20.92 73.21 59.91 34.18 67.43 60.73 56.76

MoD 48.12 81.53 86.63 73.24 43.24 44.54 21.45 73.75 62.94 35.80 69.32 62.97 58.63

∆ Gain +1.07 +1.38 +1.22 +1.50 +6.06 +1.34 +0.53 +0.54 +3.03 +1.62 +1.89 +2.24 +1.87

4 Experiments

4.1 Experimental Settings

Baselines. Our MoD framework functions as a mixture of multiple learning-based retrievers for
selecting in-context examples from different subsets in the entire training set. We compare it
against both learning-free and learning-based retrievers. Learning-free methods include Random,
TopK-BM25 [33], TopK-Contriver [17], and TopK-SimCSE [11]. Learning-based methods include
EPR [34] and CEIL [57]. We provide more details in Appendix B.2.

Datasets. To ensure a fair comparison between our framework and other baselines, following
CEIL [57], we conduct experiments on a variety of datasets, involving both classification and
generation tasks. For the evaluation on classification datasets, we measure the accuracy of the output
regarding the correct answers. For evaluation on generation tasks, we adopt the metrics of Exact
Match (EM) scores for all generation datasets except Break, for which we use LF-EM [12] that
additionally considers semantic equivalence. Following CEIL [57], we present the final results based
on the validation set as test sets are unavailable for specific datasets.

Implementation Details. To keep consistency with CEIL [57] and EPR [34], we primarily use
GPT-Neo [4], a 2.7-billion-parameter language model trained on The Pile [10], which is an 825GB
text corpus collected from various high-quality resources. In Sec. 4.5, we additionally consider three
models: GPT2-XL [31] with 1.5 billion parameters, LLaMA-7B [44] with 7 billion parameters, and
GPT3.5 [5] with a significantly larger parameter size. The number of in-context demonstrations
in our experiments is set as 50, while we truncate this number when the combined length exceeds
the maximum context size of LLMs for each task. The ultimate average number of in-context
demonstrations used in each task is provided in Table 1. We provide details of the settings in
Appendix B.3.

4.2 Comparative Results

In Table 2, we report the results of our framework MoD and other baselines on two sets of datasets:
six classification datasets and six generation datasets, covering seven tasks. From the results, we
could obtain the following observations: (1) Superior Performance. MoD demonstrates superior
performance across a diverse set of tasks, both in classification and generation, as evidenced by
the highest average score (58.63%) compared to competitive baselines CEIL (56.76%) and EPR
(53.37%). This indicates that MoD is more effective in leveraging in-context demonstrations to
enhance task performance. (2) Better on Classification. Compared with CEIL, MoD generally
achieves higher performance gain on classification tasks than on generation tasks (Average ∆ Gain
2.10 on classification tasks v.s. Average ∆ Gain 1.64 on generation tasks). This is because our
design of the mixture-of-expert architecture enables the selection of demonstrations with a large
distance in the embedding space to the query. As classification tasks could be more easily affected by
several demonstrations, these selected demonstrations could potentially carry helpful information for
inference on the query, while not necessarily being similar to the query in the embedding space. (3)
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Table 3: Performance of our framework and various baselines on processed compositional datasets GeoQuery
and SMCalFlow-CS. S refers to a non-compositional test set and C refers to a compositional set with additional
cross-domain examples as demonstrations.

Model
GeoQuery SMCalFlow-CS

Standard Template TMCD Length S C

TopK-BERT 66.79 30.75 41.82 31.59 31.94 0.28

EPR 68.57 38.95 44.09 32.27 57.78 0.00

CEIL 73.21 40.77 44.09 32.73 60.27 0.28

MoD 77.38 41.84 44.55 33.19 62.95 0.39

∆ Performance +4.17 +1.07 +0.46 +0.46 +2.68 +0.11

Require Less Data. MoD’s consistent performance from large-scale datasets like MNLI (392,568
training samples) to smaller datasets like GeoQuery (404 training samples) suggests that it effectively
generalizes across datasets with varying sizes. The superior performance of MoD on smaller datasets
like GeoQuery and NL2Bash demonstrates its ability to learn effectively even with limited labeled
data for demonstration selection.

4.3 Results on Compositional Datasets

A critical advantage of MoD is its capability to collaboratively select demonstrations from multiple
experts, such that these demonstrations are maximally helpful when the other demonstrations in the
selected set are also optimal. To evaluate whether the demonstrations retrieved from various experts
could be entirely helpful for ICL, we conduct experiments on two semantic parsing datasets derived
from the original SMCalFlow and GeoQuery datasets and processed by CEIL [57]. Specifically, the
inference on queries in these datasets requires the precise retrieval of multiple specific demonstrations.
In other words, without precise retrieval, it is particularly difficult to answer these queries. We provide
more details of the dataset settings in Appendix B.1. Following CEIL, we utilize the same trained
retriever models of experts as used in Sec. 4.2. From the results presented in Table 3, we could obtain
the following observations: (1) The performance of MoD is consistently superior compared to other
baselines across datasets. Notably, these tasks require the retrieval of compositional demonstrations
that are all important but may not necessarily be similar to each other. In this regard, our proposed
MoD framework directly retrieves a diverse set of demonstrations, which significantly enhances the
efficacy of few-shot ICL, compared to other basins in this scenario. (2) MoD demonstrates notable
improvements on the cross-domain splits (C) of the SMCalFlow-CS dataset. Specifically, MoD
achieves gains of +0.11% over CEIL on the cross-domain split. This performance indicates MoD’s
ability to handle complex, multi-domain tasks by effectively selecting and utilizing diverse in-context
examples from multiple experts.

4.4 Reduction of ICL Demonstrations

4 8 16 32 48
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Figure 2: The results of MoD performance over CEIL
on various datasets with different numbers of demonstra-
tions. We report the absolute gain of the results.

In this subsection, we aim to explore the ca-
pability of our MoD framework in scenarios
where the number of ICL demonstrations se-
lected from the training set is decreased. This
is critical for evaluating the practicality of MoD,
as it could be challenging to leverage sufficient
demonstrations, due to the lack of data or limita-
tion of model sizes. Particularly, we conduct ex-
periments with different numbers of in-context
demonstrations on two classification datasets
SST-5 and CMSQA, and two generation datasets
GeoQuery and MTOP. We present the perfor-
mance of MoD over the state-of-the-art baseline
CEIL in Fig. 2. From the results, we could ob-
serve that particularly on classification datasets
SST-5 and CMSQA, our performance improve-
ments over CEIL are more significant. This indicates that for classification tasks that require diverse
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knowledge, our strategy using multiple experts could effectively retrieve crucial demonstrations,
which could provide sufficient knowledge even with a limited context length. The performance im-
provements are relatively consistent on the two generation datasets, i.e., GeoQuery and MTOP. This
is because the generation tasks are generally more difficult, and thus require a larger demonstration
set. As a result, the advantage of MoD in retrieving diverse knowledge becomes less substantial for
model performance.

4.5 Robustness Study

Table 4: Performance improvements over TopK-BERT
when transferring learned retriever models in MoD to
other LLMs on four datasets.

Model SST-5 CMSQA GeoQ MTOP

Trained on GPT-Neo

GPT-Neo 10.88 7.86 6.96 17.19

GPT2-XL 8.39 8.57 6.10 15.34

LLaMA-7B 4.28 5.63 6.27 9.80

GPT3.5 3.24 6.58 4.97 7.98

Trained on LLaMA-7B

GPT-Neo 9.67 6.92 7.34 16.05

GPT2-XL 7.48 7.83 6.45 14.89

LLaMA-7B 4.12 5.47 5.10 10.27

GPT3.5 2.98 6.22 5.02 8.45

In this subsection, we aim to evaluate the robust-
ness, especially the generalizability and trans-
ferability of our method MoD to various LLMs.
Particularly, our experiments are designed to
test whether the retriever models in our MoD
framework trained on one LLM could be trans-
ferred to other LLMs. Conducting experiments
to answer this question could help investigate the
applicability of MoD when deployed in realis-
tic scenarios, where LLMs could have different
architectures and parameter sizes. Specifically,
we use the retriever models trained on GPT-Neo
to select demonstrations for the other two mod-
els: GPT2-XL with a slightly smaller parameter
size and GPT3.5 with a significantly larger pa-
rameter size. We present the results of MoD
over TopK-BERT in Table 4. From the results,
we could observe that (1) The retriever models
trained on GPT-Neo exhibit competitive performance when transferred to other LLMs across various
datasets. This indicates the transferability of MoD, especially its scalability to large black-box models
like GPT3.5. (2) The performance improvements on GPT3.5 are less competitive. This is because due
to the powerfulness of GPT3.5, simple methods like TopK-BERT already perform well. Nevertheless,
MoD could still improve performance by retrieving better demonstrations. (3) When transferring the
retriever models trained on LLaMA-7B to smaller models, the performance improvements are less
obvious, probably due to the discrepancy between LLMs in understanding demonstrations.

4.6 Ablation Study
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Figure 3: The ablation study result.

In this subsection, we aim to evaluate the spe-
cific benefits to performance brought by differ-
ent modules and designs in our MoD framework.
In particular, we evaluate the performance of our
MoD framework on four datasets: SST-5, CM-
SQA, GeoQuery, and MTOP, distinctly covering
two classification tasks and two generation tasks.
As presented in Fig. 3, we investigate the impact
of two key components of our framework: the
mixture-of-experts design (MoD w/o E) and the
expert-wise training (MoD w/o C). The first vari-
ant of our ablation study involves removing the
mixture-of-experts design, which results in a sig-
nificant drop in performance across all datasets,
highlighting the importance of leveraging mul-
tiple experts for robust prediction. The second variant excludes the expert-wise training process,
which leads to a moderate decrease in performance, indicating its role in improving the model’s
performance. Moreover, the results demonstrate that removing the mixture-of-experts design is partic-
ularly detrimental for classification tasks, such as SST-5 and CMSQA. Therefore, this underscores its
critical contribution to retrieving more diverse and complex demonstrations, which are more crucial
for classification tasks.

9



5 Conclusion

In this work, we propose to divide the demonstration retrieval process for in-context learning into
multiple parts, each governed by an expert to select from its own sample pool. Our proposed
MoD framework further performs expert-wise training to filter out unhelpful demonstrations when
optimizing each candidate demonstration. We conduct extensive experiments across a variety of
datasets and tasks, and the results validate the superiority of MoD over other baselines.
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A Algorithm

We provide the detailed process of expert-wise training in our MoD framework as follows.

Algorithm 1 Expert-wise training

1: Input: The demonstration pool D = {ei}
n
i=1 = {(xi, yi)}

n
i=1, Experts’ data {Ci}

C
i=1, large

language modelM;
2: Output: Experts’ retriever models {gi}

C
i=1;

3: Initialize {g
(0)
j }

C
j=1 with BERT-base model, initialize experts’ training data {Dtrain

j }Cj=1 ←

{∅}Cj=1;
4: for t = 1 to T do
5: ================== Phase 1: Sampling =====================

6: Batch data sampling d(t) ∈ D;

7: for (x
(t)
i , y

(t)
i ) ∈ d(t) do

8: Compute the expert scores {h(Cj , x
(t)
i )}Cj=1;

9: Retrieve the demonstration subset S−(x
(t)
i ) =

⋃C

j=1 Ŝ
t
j− with retriever models {gt−1

j }Cj=1;

10: for expert j ∈ {1, 2, . . . , C} and |Ŝtj−| > 0 do

11: Retrieve the candidate set {e1j , e
2
j , ..., e

K
j } with top-K score gt−1

j (x
(t)
i , e);

12: Query LLMM and get the feedback s(ekj ) = L(y
(t)
i , x

(t)
i , {ekj } ∪ S−(x

(t)
i )), k ∈ [K];

13: Dtrain
j ← Dtrain

j ∪ {(x
(t)
i , {ekj }

K
k=1, {s(e

k
j )}

K
k=1)};

14: end for
15: end for
16: ================== Phase 2: Updating =====================
17: for j = 1 to C do
18: Update the retriever model gtj with training data Dtrain

j according to Eq. (11);

19: Empty experts’ training data Dtrain
j ← ∅.

20: end for
21: end for

B Experimental Settings

B.1 Datasets

In this work, we evaluate our framework and other baselines on 12 classification and generation tasks.
Details for each dataset are summarized below and examples are presented in Table 5.

• SST-5 [40]: A fine-grained sentiment classification benchmark with five classes: ‘very positive’,
‘positive’, ‘neutral’, ‘negative’, and ‘very negative’.

• MRPC [9]: Determine if two sentences are paraphrases from one another or not.

• MNLI [51]: A collection of sentence pairs with textual entailment annotations, where the task is
to determine if a sentence entails, contradicts, or is unrelated to a given hypothesis.

• QNLI [46]: A NLP inference dataset consists of question-paragraph pairs. The dataset was
converted into sentence pair classification by pairing each question with each sentence in the
context, then filtering out pairs with low lexical overlap. The task is to determine if the context
sentence contains the answer to the question.

• CMSQA [42]: Also referred to as CommonsenseQA, this dataset involves multiple-choice
questions and necessitates various types of commonsense knowledge to determine the correct
answer.

• HellaSwag [61]: HellaSwag is a dataset for studying grounded commonsense inference. Each
question comes with four answer choices predicting what might happen next in a given scene. The
correct answer is the actual subsequent event, while the three incorrect answers are adversarially
generated and verified by humans.
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• WebQs [3]: Also known as WebQuestions, this dataset comprises question-answer pairs sourced
from the web. Questions are selected using the Google Suggest API, and the benchmark uses
Freebase as the knowledge base.

• NL2Bash [24]: The goal of this benchmark is to map sentences to formal Bash commands of
their underlying meaning.

• GeoQuery [60, 37]: It contains natural language questions about US geography. Shaw et al. [37]
further generate multiple splits focusing on compositional generalization. In addition to the
original Standard split, it contains three additional splits: (1) the Template split, where abstract
output templates in training and test data are disjoint; (2) the TMCD split, which makes the
distributions of compounds in training and test data as divergent as possible; and (3) the Length
split, where the test instances are longer than the training ones.

• Break [53]: Break is a question understanding dataset for complex questions reasoning. It
annotates NLP questions with their question decomposition meaning representations. We use the
low-level BREAK subset as in previous works [34, 57].

• MTOP [22]: A multilingual task-oriented semantic parsing dataset covering 6 languages and 11
domains, which contain compositional representations that allow complex nested queries. We use
the English subset of MTOP as in previous works [34, 57].

• SMCalFlow [2, 58]: features complex dialogues about events, weather, places, and people. Each
dialogue state is represented as a dataflow graph. Its dialog states also feature explicit functions for
references and revisions. The SMCalFlow-CS [58] subset consists of single-turn natural language
sentences pertaining to two domains: organization structure and event creation, each with its
own set of program symbols. The cross-domain (C) test set evaluates examples that incorporate
compositional abilities, while the single-domain (S) test set contains examples from a single
domain. Due to input length restrictions, we conduct 8-C experiments following CEIL [57], where
an additional 8 cross-domain examples are included in the training set to provide composition
symbols for evaluation.

B.2 Baselines

In this subsection, we introduce the details of the baselines used in our framework.

• RANDOM: This retriever randomly picks in-context examples from the training set without any
repetition.

• TopK-BM25: This method employs the classical sparse retrieval technique BM25 [33], an
extension of TF-IDF. It selects the top-K scored examples as in-context examples.

• TopK-BERT: A dense retriever based on BERT embeddings [8]. Following prevsioue works [57],
we use the bert-base-uncased model available in Huggingface Transformers [52].

• TopK-Contriver [17] and TopK-SimCSE [11]: These are advanced sentence embedding models
trained with contrastive learning.

• EPR [34]: A learning-based dense retriever trained to find the best singleton in-context example.
During the inference stage, it selects the top-K most similar examples.

• CEIL [57]: The state-of-the-art baseline instantiated by Determinantal Point Processes (DPPs) to
model interactions between the input and demonstrations for in-context learning. It is optimized
through a contrastive learning objective with supervision from LMs.

B.3 Implementation Details

Regarding the experiments in this work, we use a batch size of 128 and a learning rate of 10−5. We
set the size of the candidate demonstration set as K = 50. The size of the positive demonstration set

is K̃ = 10. We conduct experiments on two NVIDIA A100 GPUs, each with 80GB of memory. For
models that are available, we use the implementations provided in Huggingface Transformers [52].
We provide the code at https://github.com/SongW-SW/MoD.
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Table 5: Datasets with corresponding prompts and examples used in the experiments.

Dataset Prompt Example

SST-5 {input} It is {output} Input: The film equivalent of a toy chest whose contents
get scattered over the course of 80 minutes. Output:
Negative.

MRPC {input1} Can we say
"{input2}"? {output}

Input1: Gov. Bob Riley proposed the budget cuts after
Alabama voters rejected his $ 1.2 billion tax plan Sept
. 9. Input2: After Alabama voters rejected his $ 1.2
billion tax plan Sept . 9, Riley forecast significant cuts
in state programs. Output: Yes

MNLI {input1} Can we say
"{input2}"? {output}

Input1: At 8:34, the Boston Center controller received
a third transmission from American 11. Input2: The
Boston Center controller got a third transmission from
American 11. Output: Yes

QNLI {input1} Can we know
"{input2}"? {output}

Input1: Dell continues to remain secretive about their
motherboard pin-outs for peripherals (such as MMC
readers and power on/off switches and LEDs). Input2:
What part of their motherboards does Dell not reveal the
specifications of? Output: Yes

CMSQA {input} {output} Input: If someone laughs after surprising them they have
a good sense of what? Output: humor

HellaSwag {input} {output} Input: The topic is Cleaning sink. A middle-aged female
talks about a cleaning product. The female opens a
container of cleaner and puts it on a rag. the female,
Options: "then inflames a different cleaner to clean a
sock.", "uses the rag to spray down a wall.", "washes the
rug thoroughly and scratches it.", "then uses the rag to
rub the inside of the sink." Output: then uses the rag to
rub the inside of the sink

WebQs {input} {output} Input: what time zone am i in Cleveland, Ohio? Output:
North American Eastern Time Zone

GeoQuery {input}\t{output} Input: What is the area of California? Output: SELECT
state.area FROM state WHERE state.name
=’california’

NL2Bash {input}\t{output} Input: display the 5 largest files in the current directory
and its sub-directories. Output: find . -type f |
sort -nk 5,5 | tail -5

Break {input}\t{output} Input: What is the code of the city with the most stu-
dents? Output: 1) cities 2) students in #1 3) number of
#2 for each #1 4) #1 where #3 is highest 5) code of #4

MTOP {input}\t{output} Input: call Zoey’s wife. Output: [IN:CREATE_CALL
= [SL:CONTACT = [IN:GET_CONTACT
= [SL:CONTACT_RELATED = Zoey]
[SL:TYPE_RELATION = wife]]]]

SMCalFlow {input}\t{output} Input: Can you remind me to go to the airport
tomorrow morning at 8am? Output: createCom-
mitEventWrapper( createPreflightEventWrapper( Event-
Builder( subject=’go to the airport’, start=dateAtTime(
date=tomorrow(), time=numberAM(8)))))
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C Technical Details

C.1 Batch Sampling

At each epoch, our objective is to update all expert’s models; therefore, we adopt a stratified sampling
strategy to ensure Dtrain

j is not empty for any expert j. Specifically, given the sample fraction

r, we randomly sample max(1, +r ∗ |Cj |,) demonstrations from each expert j’s demonstration set

Cj and aggregate them to form d(t). This guarantees that each Cj contributes at least one sample

(xj , yj) ∈ Cj ∩ d(t), resulting in |Ŝtj−| > 0. Consequently, we add (xj , {e
k
j }

K
k=1, {s(e

k
j )}

K
k=1) to

Dtrain
j and make it nonempty.

D Complexity Analysis of MoD

We primarily compare the proposed MoD with the state-of-the-art CEIL method [57], focusing on
two aspects of complexity reduction: the number of demonstrations used and the efficiency of the
inference stage.

Efficiency of the Number of Demonstrations Since the attention mechanism in most LLMs
has quadratic complexity [57], fewer demonstrations result in shorter input lengths and reduced
computational cost. From Table 6, we observe that MoD generally outperforms CEIL using only 4
demonstrations compared to CEIL’s 16 demonstrations. This shows that MoD can achieve better
performance with fewer examples, thus reducing the computation complexity in the attention module
of LLMs.

Table 6: Performance under various numbers of in-context examples.

Method L MRPC SST-5 MTOP

CEIL 4 79.28 41.25 63.40

MoD 4 80.34 47.50 67.65

CEIL 16 79.57 46.28 65.75

MoD 16 80.72 48.20 68.29

Efficiency of the Inference Stage As for the inference stage, both MoD and CEIL need to compute
the similarity between the query and all N demonstrations, denoted by the complexity asO(T ). CEIL
uses a KNN retriever to select n candidates (nj N) to narrow the search space. The complexity of
selecting top-n candidates is O(N + n log n), where O(N) is to build a max-heap and O(n log n)
to extract the top-n elements. Then, CEIL uses a greedy algorithm with Cholesky decomposition to
reduce the selection complexity from O(nL4) to O(nL2), where L is the number of ICL examples.
Thus, the total complexity of CEIL at the inference stage is O(T +N + n log n+ nL2).

In MoD, in the worst case, we select the top L elements in one expert, with a complexity of
O(N + L logL). Thus, the total complexity of MoD at the inference stage is O(T +N + L logL).
Given L < N , MoD further reduces complexity compared to CEIL at the inference stage.

E Additional Experiments

E.1 Impact of Designs in Expert-wise Training

We conduct experiments focusing on the effect of specific designs in expert-wise training, and the
results are reported in Table 7. We consider the following variants: (i) The variant MoD w/o F
removes the few-shot scoring strategy, such that the supervision score of each sample is obtained
by individually using itself as context. (ii) The variant MoD w/o T alters the strategy of selecting
the demonstration set S−(x) to random selection, instead of selecting the L − 1 highest-scored
demonstrations. (iii) The variant MoD w/o N removes the negative demonstrations from other
samples in the contrastive learning loss. As a result, the contrastive learning loss only involves
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one hard negative sample. We could observe that removing the few-shot scoring strategy causes a
significant performance drop. This indicates that it is more suitable to use multiple demonstrations
together as input to correctly evaluate the benefit of any demonstration. The results of the other two
variants also indicate the importance of using the highest-scored samples as demonstrations and using
more negative samples for contrastive loss.

Table 7: Ablation study results of specific designs in the expert-wise training.

Variant

Dataset
SST-5 CMSQA GeoQ MTOP

MoD w/o F 44.07 41.65 71.35 64.36

MoD w/o T 46.42 42.69 72.77 66.89

MoD w/o N 45.11 43.59 72.07 67.23

MoD 48.12 43.24 73.75 69.32

E.2 Transferability of MoD Retriever

Regarding the transferability of the retriever in MoD across different tasks, we conduct additional
experiments to evaluate the performance of our retriever trained on one dataset and then applied
to other datasets. We report the absolute improvement over the baseline TopK-BERT. From the
results, we observe a strong pattern that, the performance experiences a reduction when the retriever
is transferred to other datasets, indicating that the knowledge in the training dataset is crucial for
selecting demonstrations. Moreover, when transferring the retriever from dataset MNLI to other
datasets, the performance is decreased greatly. This is potentially due to that the NLI task requires
two textual inputs instead of one in other datasets. As such, the learned knowledge in the retriever
can hardly be transferred. On the other hand, the performance of our work after transferring is still
generally better than TopK-BERT. This verifies the transferability of our work. Developing a retriever
that works effectively across all tasks is a challenging yet valuable research topic, which we leave for
future work.

Table 8: Results of transferring a retriever learned on one dataset (row) to others (column). We report the
absolute improvement over the baseline TopK-BERT.

Source

Target
SST-5 MNLI GeoQ MTOP

SST-5 10.88 7.42 -1.26 0.58

MNLI -4.79 31.09 -13.58 -31.91

GeoQ 1.42 5.98 6.96 3.46

MTOP 1.37 9.08 3.80 12.56

E.3 Effect of Embedding Models

In this subsection, we investigate the impact of Sentence-BERT on clustering performance, using two
variants of Arctic-Embed [28]: Arctic-xs and Arctic-m. We evaluate clustering quality using three
metrics: Silhouette Score, Davies-Bouldin Index, and Dunn Index.

As shown in Table 9, Sentence-BERT generally achieves superior clustering results. Notably, previous
ICL studies have also utilized Sentence-BERT as an embedding model [34, 7, 57]. Our results
demonstrate that MoD consistently outperforms other baselines when using the same embedding
model. Additionally, we observe that the Dunn Index is more closely correlated with the final
performance of ICL. Selecting the appropriate clustering criteria and optimal embedding model for
ICL is a challenging yet valuable problem, which we leave for future work.
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Table 9: Impact of different embedding models on clustering performance on dataset MRPC.

Metric Sentence-BERT Arctic-xs Arctic-m

Silhouette Score ↑ 0.15 0.11 0.01

Davies-Bouldin Index ³ 2.07 2.31 6.49

Dunn Index ↑ 0.12 0.04 0.19

Accuracy 81.53 77.26 81.87

E.4 Effect of Retriever Models

We conduct experiments to investigate the influence of different retriever model structures. Note that
EPR [34] can be seen as the implementation of DPR [20] for ICL tasks. In Table 10, we present
the results of MoD and EPR under different retriever models. The results indicate that replacing the
BERT-base model with RoBERTa [33] or DeBERTa [14] enhances the performance of both EPR and
MoD in most cases, with MoD consistently outperforming EPR across all retriever models. This
suggests that retriever performance can indeed benefit from the choice of encoder model.

Table 10: Impact of different retriever backbone models.

Method SST-5 CMSQA GeoQ MTOP

EPR 42.82 36.77 68.57 64.20

EPR w/ RoBERTa 43.65 36.62 69.52 66.80

EPR w/ DeBERTa 44.21 37.85 69.38 64.57

MoD 48.12 43.24 73.75 69.32

MoD w/ RoBERTa 49.41 44.12 74.52 70.61

MoD w/ DeBERTa 49.13 43.20 74.90 71.46

E.5 Effect of K and K̃

We present the results for different values of K and K̃ in Table 11. The results indicate that increasing
the value of K can slightly enhance performance but at the cost of significantly higher computational

overhead. Notably, for larger values of K, such as K = 100, increasing K̃ may inadvertently degrade
performance. This decline is likely due to the inclusion of positive demonstrations with relatively

lower scores as K̃ increases.

Table 11: Effect of K and K̃.

K

K̃
20 10 5

100 45.75 48.40 48.02

50 46.34 48.12 47.94

20 47.21 47.04 47.32

10 - 46.39 46.88

E.6 Effect of Hard Negative Sampling

We investigate the effect of hard negative sampling. In the original setting, we set #Hard = 1. In
Table 12, we present the results for four variants: #Hard = 1, 5, 10, and 20. Across all datasets, we
observe a general trend where performance initially improves with a slight increase in the number of
hard negatives, but then begins to decline as the number continues to increase. This pattern suggests
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that using a moderate number of hard negative samples strikes a balance between leveraging enough
information from negative samples and avoiding the inclusion of potentially irrelevant data.

Table 12: Effect of the number of hard negatives.

Variant

Dataset
SST-5 CMSQA GeoQ MTOP

MoD #Hard=1 48.12 43.24 73.75 69.32

MoD #Hard=5 48.45 43.79 74.12 69.53

MoD #Hard=10 47.98 43.27 73.91 68.93

MoD #Hard=50 47.02 42.42 72.37 67.57

F Limitation Discussion

Our framework MoD aims to select suitable demonstrations to improve the ICL performance of
LLMs. However, there still exist limitations to our framework. First, our MoD framework requires
the label of samples to provide supervision information to the LLMs. This drawback is also present
in recent works such as EPR [34] and CEIL [57]. In the future, it is potentially inspiring to develop
a framework that does not require the labels of the demonstrations, i.e., using unlabeled samples.
Second, the performance of our MoD framework is related to the assignment of experts. If an input
query has misinformation and is assigned to incorrect experts, the retrieved samples from these
experts may not be helpful and contribute to the performance.

G Broader Impacts

In this paper, we propose a demonstration selection approach MoD which aims to select the proper
demonstrations as in-context learning prompts to improve the performance of the large language
model. The proposed method sheds light on the future design of new and fancy demonstration
selection methods. While we emphasize the importance of responsible use, we do not anticipate any
major negative societal impacts from our work.
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NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We verify our claim with the experimental results.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss the limitations of our framework in Appendix D.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.

• The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: We do not include theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.

• All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

• All assumptions should be clearly stated or referenced in the statement of any theorems.

• The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide the details in Appendix B.3.

Guidelines:

• The answer NA means that the paper does not include experiments.

• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: We provide the code at https://github.com/SongW-SW/MoD.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide the details in Appendix B.3.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

• The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We provide the standard deviation in Sec. 4.8.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide details in Appendix B.3.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We follow Code Of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

• If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We provide the broader impacts in Appendix G

Guidelines:

• The answer NA means that there is no societal impact of the work performed.

• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to

24



generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We do not use original data and pose no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.

• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We use public code and data under the specific license.

Guidelines:

• The answer NA means that the paper does not use existing assets.

• The authors should cite the original paper that produced the code package or dataset.

• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.

• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer: [NA]

Justification: We do not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.

• Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: We do not use crowdsourcing.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: We do not use crowdsourcing.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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