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Abstract

The in-context learning (ICL) capability of pre-trained models based on the trans-
former architecture has received growing interest in recent years. While theoretical
understanding has been obtained for ICL in reinforcement learning (RL), the pre-
vious results are largely confined to the single-agent setting. This work proposes
to further explore the in-context learning capabilities of pre-trained transformer
models in competitive multi-agent games, i.e., in-context game-playing (ICGP).
Focusing on the classical two-player zero-sum games, theoretical guarantees are
provided to demonstrate that pre-trained transformers can provably learn to ap-
proximate Nash equilibrium in an in-context manner for both decentralized and
centralized learning settings. As a key part of the proof, constructional results are
established to demonstrate that the transformer architecture is sufficiently rich to
realize celebrated multi-agent game-playing algorithms, in particular, decentralized
V-learning and centralized VI-ULCB.

1 Introduction

Since proposed in Vaswani et al. [57], the transformer architecture has received significant interest.
It has powered many recent breakthroughs in artificial intelligence [11, 12, 21, 23], including the
extremely powerful large language models such as GPT [42] and Llama [55, 56]. One of the most
striking observations from the research of these transformer-powered models is that they demonstrate
remarkable in-context learning (ICL) capabilities. In particular, after appropriate pre-training, the
models can handle new tasks when prompted by a few descriptions or demonstrations without any
parameter updates, e.g., Brown et al. [11], Chowdhery et al. [15], Liu et al. [39].

ICL is practically attractive as it provides strong generalization capabilities across different down-
stream tasks without requiring further training or a large amount of task-specific data. These appealing
properties have motivated many empirical studies to better understand ICL [18, 26, 59]; see the
survey by Dong et al. [22] for key findings and results. In addition to the empirical investigations,
recent years have witnessed growing efforts in gaining deeper theoretical insights into ICL, e.g., Ahn
et al. [2], Akyürek et al. [3], Bai et al. [7], Cheng et al. [14], Li et al. [37], Raventós et al. [44], Wu
et al. [64], Xie et al. [66], Zhang et al. [71].

Among these empirical and theoretical studies, one emerging direction focuses on the capability of pre-
trained transformer models to perform in-context reinforcement learning (ICRL) [28, 34, 35, 50, 73].
In particular, the transformer is pre-trained with interaction data from diverse environments, modeling
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the interaction as a sequential prediction task. During inference, the pre-trained transformer is
prompted via the interaction trajectory in the current environment for it to select actions. The work
by Lin et al. [38] provides some theoretical understanding of ICRL, including both a general pre-
training guarantee and specific constructions of transformers to realize some well-known designs in
multi-armed bandits and RL (especially, LinUCB [1], Thompson sampling [54], and UCB-VI [6]).
Wang et al. [62] further provides understandings on the capability of transformers learning temporal
difference (TD) methods [52] via an in-context fashion. A detailed literature review can be found in
Sec. 6.

The insights from Lin et al. [38], Wang et al. [62] are largely confined to the single-agent scenario, i.e.,
a single-agent multi-armed bandit or Markov decision process (MDP). The power of RL, however,
extends to the much broader multi-agent scenario, especially the multi-player competitive games such
as GO [49], Starcraft [58], and Dota 2 [10]. To provide a more comprehensive understanding of ICRL,
this work targets further studying the in-context game-playing (ICGP) capabilities of transformers
in multi-agent competitive settings. To the best of our knowledge, this is the first work providing
theoretical analyses and empirical pieces of evidence on the ICGP capabilities of transformers. The
contributions of this work are further summarized as follows.

• A general framework is proposed to model in-context game-playing via transformers, where we
focus on the representative two-player zero-sum Markov games and target learning Nash equilibrium
(NE). Compared with the single-agent scenario [38], the multi-agent setting considered in this work
broadens the ICRL research scope while it is also more complicated due to its game-theoretic nature.

• The challenging decentralized learning setting is first studied, where two distinct transformers
are trained to learn NE, one for each player, without observing the opponent’s actions. A general
realizability-conditioned guarantee is first derived that characterizes the generalization error of the
pre-trained transformers. Then, the capability of the transformer architecture is demonstrated by
providing a concrete construction so that the famous V-learning algorithm [8] can be exactly realized.
Lastly, a finite-sample upper bound on the approximation error of NE is proved to establish the ICGP
capability of transformers. As a further implication, the result of realizing V-learning demonstrates
the capability of pre-trained transformers to perform model-free RL designs, in addition to the
model-based ones (e.g., UCB-VI [6] as studied in Lin et al. [38]).

• To obtain a complete understanding, the centralized learning setting is also investigated, where
one transformer is pre-trained to control both players’ actions. A similar set of results is provided: a
general pre-training guarantee, a constructional result to demonstrate realizability, and a finite-sample
upper bound on the approximation error of NE. Distinctly, the transformer construction is presented
as a specific parameterization to implement the renowned centralized VI-ULCB algorithm [8].

• Furthermore, experiments are also performed to practically test the ICGP capabilities of the pre-
trained transformers. The obtained results not only corroborate the derived theoretical claims, but
also empirically motivate this and further studies on the interesting direction of pre-trained models in
game-theoretic settings.

2 A Theoretical Framework for In-Context Game Playing

2.1 The Basic Setup of Environments

To demonstrate the ICGP capability of transformers, we focus on one of the most basic game-
theoretic settings: two-player zero-sum Markov games [47], while the discussions provided later
conceivably extend to more general games. An illustration of the different settings (i.e., decentralized
and centralized) considered in this work (with details explained later) is given in Fig. 1. The overall
framework is introduced in the following, which extends Lin et al. [38] from the single-agent
decision-making setting to the competitive multi-agent domain.

Considering a set of two-player zero-sum Markov games denoted asM. Each environment M ∈M
shares the number of episodes G, the number of steps H in each episode, the state space S (with
|S| = S), the action spaces {A,B} (with |A| = A and |B| = B), and the reward spaceR. Here A
and B denote the action spaces of two players, respectively, which are referred to as the max-player
and the min-player for convenience.
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Figure 1: An overall view of the framework, where the in-context game-playing (ICGP) capabilities of
transformers are studied in both decentralized and centralized learning settings. The orange arrows denote the
supervised pre-training procedure and the blue arrows mark the inference procedure.

Each environment M = {Th−1
M ,Rh

M : h ∈ [H]} has its transition model Th
M : S × A× B → ∆(S)

and reward functions R
h
M : A × B → ∆(R), where T

0
M (·) denotes the initial state distribution.

Particularly, overall G episodes of H steps happen in each environment M , with each episode starting
at sg,1 ∼ T

0
M (·). If the action pair (ag,h, bg,h) is taken upon state sg,h at step h in episode g, the state

is transited to sg,h+1 ∼ T
h
M (·|sg,h, ag,h, bg,h), and reward rg,h ∼ R

h
M (sg,h, ag,h, bg,h) (respectively,

−rg,h) is collected by the max-player (respectively, the min-player). For simplicity, we assume that
the max-player rewards are bounded in [0, 1] and deterministic, i.e., for each (s, a, b, h), there exists

r ∈ [0, 1] such that R
g,h
M (r|s, a, b) = 1. Also, the initial state sg,1 is assumed to be a fixed one s1,

i.e., T0
M (s1) = 1.

We further leverage the notation T := GH , while using time t and episode-step pair (g, h) in an
interleaving manner with t := (g − 1)H + h. The partial interaction trajectory up to time t is
then denoted as Dt := {(sÄ , aÄ , bÄ , rÄ ) : Ä ∈ [t]) and we use the abbreviated notation D := DT .
Individually, for the max-player, we denote her observed interaction trajectory up to time t by
Dt

+ := {(sÄ , aÄ , rÄ ) : Ä ∈ [t]) and write D+ := DT
+ for short. Similarly, for the min-player, we

denote Dt
− := {(sÄ , bÄ , rÄ ) : Ä ∈ [t]) and D− := DT

−.

2.2 Game-playing Algorithms and Nash Equilibrium

A game-playing algorithm Alg can map a partial trajectory Dt−1 and state st to a distribution
over the actions, i.e., Alg(·, ·|Dt−1, st) ∈ ∆(A × B). If one algorithm Alg is decoupled for the
two players (as in the later decentralized setting), we denote it as Alg = (Alg+, Alg−), where

Alg+(·|Dt−1
+ , st) ∈ ∆(A) and Alg−(·|Dt−1

− , st) ∈ ∆(B). Given an environment M and an algo-
rithm Alg, the distribution over a full trajectory D can be expressed as

P
Alg

M (D) =
∏

t∈[T ]
T
t−1
M (st|st−1, at−1, bt−1) · Alg(at, bt|Dt−1, st) · Rt

M (rt).

If further considering an environment prior distribution Λ ∈ ∆(M) such that M ∼ Λ, the joint

distribution of (M,D) is denoted as P
Alg

Λ (D), where M ∼ Λ(·) and D ∼ P
Alg

M (·).
For environment M and a game-playing algorithm Ã, we define its value function over one episode
as V Ã

M (s1) = EDH∼P
π
M
[
∑

t∈[H] r
t]. With the marginalized policies of Ã denoted as (µ, ¿), we define

their best responses as

¿ (µ) := argmin¿′ V
µ,¿′

M (s1), µ (¿) := argmaxµ′ V
µ′,¿
M (s1),

whose corresponding values are

V µ, 
M (s1) := V

µ,¿ (µ)
M (s1), V  ,¿

M (s1) := V
µ (¿),¿
M (s1).

With the notion of best responses, the following classical definition of approximate Nash equilibrium
(NE) can be introduced [8, 32, 40, 47].

Definition 2.1 (Approximate Nash equilibrium). A decoupled policy pair (µ̂, ¿̂) is an ε-approximate

Nash equilibrium for environment M if V µ̂, 
M (s1) + ε g V µ̂,¿̂

M (s1) g V  ,¿̂
M (s1) − ε, i.e., the Nash

equilibrium gap V  ,¿̂
M (s1)− V µ̂, 

M (s1) f 2ε.
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For each environment, our learning goal is to approximate its NE policy pair. In other words, we
target outputting a policy pair (µ̂, ¿̂) that is ε-approximate NE with an error ε that is as small as
possible, after interacting with the environment for an overall T rounds.

2.3 The Transformer Architecture

With the basics of the game-playing environment and the learning target established, we now introduce
the transformer architecture [57], which has demonstrated great potential in processing sequential
inputs. First, for an input vector x ∈ R

d, we denote Ãr(x) := ReLU(x) := max{x, 0} ∈ R
d as

the entry-wise ReLU activation function and Ãs(x) := softmax(x) ∈ R
d as the softmax activation

function, while using Ã(·) to refer to a non-specified activation function (i.e., both ReLU and softmax
may be used). Then, the masked attention layer and the MLP layer can be defined as follows.

Definition 2.2 (Masked Attention Layer). A masked attention layer with M heads is denoted as
Attnθ(·) with parameters θ = {(Vm,Qm,Km)}m∈[M ] ¢ R

d×d. On any input sequence H =

[h1, · · · ,hN ] ∈ R
d×N , we have H = Attnθ(H) = [h1, · · · ,hN ] ∈ R

d×N , where

hi = hi +
∑

m∈[M ]

1

i

∑
j∈[i]

Ãr(ïQmhi,Kmhjð) · Vmhj .

Definition 2.3 (MLP Layer). An MLP layer with hidden dimension d′ is denoted as MLPθ with

parameters θ = (W1,W2) ∈ R
d′×d ×R

d×d′ . On any input sequence H = [h1, · · · ,hN ] ∈ R
d×N ,

we have H = MLPθ(H) = [h1, · · · ,hN ] ∈ R
d×N , where

hi = hi +W2 · Ã(W1 · hi).

The combination of masked attention layers and MLP layers leads to the overall decoder-based
transformer architecture studied in this work, as defined in the following.

Definition 2.4 (Decoder-based Transformer). An L-layer decoder-based transformer, denoted as
TFθ(·), is a composition of L masked attention layers, each followed by an MLP layer and a clip

operation: TFθ(H) = H(L) ∈ R
d×N , where H(L) is defined iteratively by taking H(0) = H ∈

R
d×N and for l ∈ [L],

H(l) = MLP
θ
(l)
mlp

(
Attn

θ
(l)
mattn

(
H(l−1)

))
∈ R

d×N ,

where parameter θ = {(θ(l)
mattn,θ

(l)
mlp) : l ∈ [L]} consists of θ

(l)
mattn = {(V (l)

m ,Q
(l)
m ,K

(l)
m ) : m ∈

[M ]} ¢ R
d×d and θ

(l)
mlp = (W

(l)
1 ,W

(l)
2 ) ∈ R

d′×d × R
d×d′ .

We further define the parameter class of transformers as Θd,L,M,d′,F := {θ = (θ
(1:L)
mattn ,θ

(1:L)
mlp ) :

∥θ∥ f F}, where the norm of a transformer TFθ is denoted as

∥θ∥ :=max
l∈[L]

{
max
m∈[M ]

{
∥Q(l)

m ∥op, ∥K(l)
m ∥op

}
+
∑

m∈[M ]
∥V (l)

m ∥op + ∥W (l)
1 ∥op + ∥W (l)

2 ∥op

}
.

Other Notations. The total variation distance between two algorithms {Ã, Ã′} upon Dt−1 ∪ {s}
is denoted as TV(Ã, Ã′|Dt−1, s) := TV(Ã(·|Dt−1, s), Ã′(·|Dt−1, s)). Also, the notation x ≲ y

indicates that x is a lower or equivalent order term compared with y, i.e., x = O(y), Õ(·) hides
poly-logarithmic terms in H,G, S,A,B, and poly(·) compactly denotes a polynomial term with
respect to the input.

3 Decentralized Learning

First, we study the decentralized learning setting, i.e., each player takes actions following her own
model independently without observing the opponent’s actions, as it better captures the unique
game-playing scenario considering in this work. This setting is aligned with the canonical study of
normal-form games [20, 53], and has been extended to Markov games in recent years [32, 41, 51]. In
the following, we start by introducing the basic setup of supervised pre-training and provide a general
performance guarantee relying on a realizability assumption. Then, we provide a constructional result
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to demonstrate that the algorithms induced by transformers are rich enough to realize the celebrated
V-learning algorithm [32]. With these results, we finally establish that with V-learning providing
training data, the pre-trained transformer can effectively approximate NE when interacting with
different environments in an in-context fashion.

3.1 Supervised Pre-training Results

3.1.1 Basic Setups

Training Dataset. In the supervised pre-training, we use a context algorithm Alg0 to collect the
offline trajectories. For the decentralized setting, the context algorithm Alg0 used for data collection is
assumed to be consisted of two decoupled algorithms (Alg+,0, Alg−,0) for the max- and min-players,

respectively. With the context algorithm, we consider N i.i.d. offline trajectories {Di : i ∈ [N ]} are

collected, where Di := Di ∪D′
i with

Di := {(sti, ati, bti, rti) : t ∈ [T ]} ∼ P
Alg0
Λ (·);

D′
i := {(ati,s, bti,s) ∼ Alg0(·, ·|Dt−1

i , s) : t ∈ [T ], s ∈ S}.
It can be observed that Di is the commonly considered offline interaction trajectory of Alg0, while D′

i

is the sampled actions of each state s at each step t with Alg0. Compared with Lin et al. [38], D′
i is

an augmented component. We first note that collecting D′
i is relatively easy in practical applications,

as it only needs to additionally sample from the distribution Alg0(·, ·|Dt−1
i , s) for each s ∈ S

(i.e., no additional interactions with the environment). Moreover, the reason to incorporate such an
augmentation is to provide additional diverse pre-training data due to the unique game-theoretic
environment, with further discussions provided after the later Lemma 3.6. It has also been recognized
previously [16, 72] that the data requirement for learning Markov games is typically much stronger
than that for single-agent RL.

To facilitate the decentralized training, the overall dataset is further split into two parts: {D+,i : i ∈
[N ]} and {D−,i : i ∈ [N ]}, where

D+,i := D+,i ∪D′
+,i, D+,i := {(sti, ati, rti) : t ∈ [T ]}, D′

+,i := {ati,s : t ∈ [T ], s ∈ S};
D−,i := D−,i ∪D′

−,i, D−,i := {(sti, bti, rti) : t ∈ [T ]}, D′
−,i := {bti,s : t ∈ [T ], s ∈ S}.

In other words, Di,+ denotes the observations of the max-player, while Di,− those of the min-layer.
Note that neither player can observe the opponent’s actions.

Algorithm Induced by Transformers. Due to the decentralized nature, two embedding mappings of
d+ and d− dimensions are considered as h+ : S ∪ (A×R)→ R

d+ and h− : S ∪ (B ×R)→ R
d− ,

together with two transformers TFθ+ and TFθ−
. Taking the max-player’s transformer as representa-

tive, for trajectory (Dt−1
+ , st), let H+ = h+(D

t−1
+ , st) = [h+(s

1), h+(a
1, r1), · · · , h+(st)] be the

input to TFθ+
, and the obtained output is H+ = TFθ+

(H+) = [h+,1,h+,2, · · · ,h+,−2,h+,−1],
which has the same shape as H+. Similarly, the mapping h− is used for the min-player’s transformer

TFθ−
to embed trajectory (Dt−1

− , st).

We further assume that two fixed linear extraction mappings, A ∈ R
A×d+ and B ∈ R

B×d− , are used
to induce algorithms Alg

θ+
and Alg

θ−
over the action spaces A and B of the max- and min-players,

respectively, as

Alg
θ+

(·|Dt−1
+ , st) = proj∆

(
A · TFθ+

(
h+(D

t−1
+ , st)

)
−1

)
,

Alg
θ−

(·|Dt−1
− , st) = proj∆

(
B · TFθ−

(
h−(D

t−1
− , st)

)
−1

)
,

(1)

where proj∆ denotes the projection to a probability simplex.

Training Scheme. We consider the standard supervised pre-training to maximize the log-likelihood

of observing training datasets D+ (resp., D−) over algorithms {Alg
θ+

: θ+ ∈ Θ+} (resp., {Alg
θ−

:

θ− ∈ Θ−}) with Θ+ := Θd+,L+,M+,d′+,F+
(resp., Θ− := Θd−,L−,M−,d′−,F−

). In particular, the

pre-training outputs θ̂+ and θ̂− are determined as

θ̂+ = argmaxθ+∈Θ+

1

N

∑
i∈[N ]

∑
t∈[T ]

∑
s∈S

log
(
Alg

θ+
(ati,s|Dt−1

+,i , s)
)
;
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θ̂− = argmaxθ−∈Θ−

1

N

∑
i∈[N ]

∑
t∈[T ]

∑
s∈S

log
(
Alg

θ−
(bti,s|Dt−1

−,i , s)
)
.

3.1.2 Theoretical Guarantees

In this section, we provide a generalization guarantee of the algorithms Alg
θ̂+

and Alg
θ̂−

pre-trained

following the scheme introduced above. First, the standard definition regarding the covering number
and an assumption of approximate realizability are introduced to facilitate the analysis, which are
also leveraged in Lin et al. [38].

Definition 3.1 (Decentralized Covering Number). For a class of algorithms {Alg
θ+

: θ+ ∈ Θ+},
we say Θ̃+ ¦ Θ+ is a Ä+-cover of Θ+, if Θ̃+ is a finite set such that for any θ+ ∈ Θ+, there exists

θ̃+ ∈ Θ̃+ such that for all Dt−1
+ , s ∈ S, t ∈ [T ], it holds that

∥∥∥log Alg
θ̃+

(·|Dt−1
+ , s)− log Alg

θ+
(·|Dt−1

+ , s)
∥∥∥
∞
f Ä+.

The covering number NΘ+(Ä+) is the minimal cardinality of Θ̃+ such that Θ̃+ is a Ä+-cover of Θ+.
Similarly, we can define the Ä−-cover of Θ− and the covering number NΘ−

(Ä−).

Assumption 3.2 (Decentralized Approximate Realizability). There exist θ∗
+ ∈ Θ+ and ε+,real > 0

such that for all t ∈ [T ], s ∈ S, a ∈ A, it holds that

log

(
E
D∼P

Alg0
Λ

[
Alg+,0(a|Dt−1

+ , s)

Alg
θ∗+

(a|Dt−1
+ , s)

])
f ε+,real.

We also similarly assume ε−,real-approximate realizability of Alg−,0 via Alg
θ∗−

with θ∗
− ∈ Θ−.

Then, we can establish the following generalization guarantee on the TV distance between
(Alg

θ̂+
, Alg

θ̂−
) and Alg0 = (Alg0,+, Alg0,−), capturing their similarities.

Theorem 3.3 (Decentralized Pre-training Guarantee). Let θ̂+ be the max-player’s pre-training output
defined in Sec. 3.1.1. Take NΘ+

= NΘ+
(1/N) as in Def. 3.1. Then, under Assumption 3.2, with

probability at least 1− ¶, it holds that1

E
D∼P

Alg0
Λ

[∑
t∈[T ],s∈S

TV
(
Alg+,0, Algθ̂+

|Dt−1
+ , s

)]
≲ TS

√
ε+,real + TS

√
log
(
NΘ+

TS/¶
)

N
.

A similar result holds for the min-players’ pre-training output θ̂−.

Theorem 3.3 demonstrates that in expectation of the pre-training data distribution, i.e., P
Alg0
Λ (D),

the TV distance between the pre-trained algorithm Alg
θ̂+

(resp, Alg
θ̂−

) and the context algorithm

Alg+,0 (resp, Alg−,0) can be bounded via two terms: one from the approximate realizability, i.e.,
ε+,real (resp, ε−,real), and the other from the limited amount of pre-training trajectories, i.e., finite N .
While we can diminish the second term via a large pre-training dataset (i.e., sufficient pre-training
games), the key question is whether the transformer structure is sufficiently expressive to realize
the context algorithm, i.e., having a small ε+,real, which we affirmatively answer via an example of
realizing V-learning [32] in the next subsection.

3.2 Realizing V-learning

To demonstrate the capability of transformers in the decentralized game-playing setting, we choose
to prove that they can realize the renowned V-learning algorithm [32], the first design that breaks the
curse of multiple agents in learning Markov games. Particularly, V-learning leverages techniques
from adversarial bandits [5] to perform policy updates without observing the opponent’s actions. The
details of V-learning are provided in Appendix G.1, where its unique output rule is also elaborated.

In the following theorem, we demonstrate that a transformer can be constructed to exactly perform
V-learning with a suitable parameterization. One additional Assumption G.2 on the existence of

1The covering number NΘ+ in Theorem 3.3 (and also the later Theorem C.3) is not concretely discussed in
the main paper to ease the presentation. A detailed illustration is provided in Appendix I.
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a transformer parameterized by the class of Θd,LD,MD,dD,FD
to perform exact division is adopted

for the convenience of the proof, while in Appendix G.2, we further demonstrate that the required
division operation can be approximated to any arbitrary precision.

Theorem 3.4. With embedding mapping h+ and extraction mapping A defined in Appendix G.3,
under Assumption G.2, there exists a transformer TFθ+

with

d ≲HSA, L ≲ GHLD, max
l∈[L]

M (l) ≲ HS2 +HSA+MD,

d′ ≲ G+A+ dD, ∥θ∥ ≲ GH2S +G3 + FD,

which satisfies that for all Dt−1
+ , s ∈ S, t ∈ [T ], Alg

θ+
(·|Dt−1

+ , s) = AlgV-learning(·|Dt−1
+ , s). A

similar construction TFθ−
exists for the min-player’s transformer such that for all Dt−1

− , s ∈ S, t ∈
[T ], Alg

θ−
(·|Dt−1

− , s) = AlgV-learning(·|Dt−1
− , s).

The proof of Theorem 3.4 (presented in Appendix G.3) is challenging because V-learning is a model-
free design, while UCB-VI [6] studied in Lin et al. [38] and VI-ULCB [8] later presented in Sec. 4.2
are both model-based ones. We believe this result deepens our understanding of the capability of
pre-trained transformers in decision-making, i.e., they can realize both model-based and model-free
designs, showcasing their further potentials.

More specifically, with the embedded trajectory as the input, the model-based philosophy is natural
for the masked attention mechanism, i.e., the value computation at each step is directly over all
raw inputs in previous steps. Thus, the construction procedure is straightforward as (input1, input2,
..., inputt) → (value1, value2, ..., valuet). However, the model-free designs are different, where
value computation at one step requires previous values (instead of raw inputs). In other words,
the construction procedure is a recursive one as (input1, input2, ..., inputt)→ (value1, input2, ...,
inputt)→ (value1, value2, ..., inputt)→ ... → (value1, value2, ..., valuet), whose realization requires
carefully crafted constructions.

3.3 The Overall ICGP Capablity

Finally, built upon the obtained results, the following theorem demonstrates the ICGP capability of
pre-trained transformers in the decentralized setting.

Theorem 3.5. Let Θ+ and Θ− be the classes of transformers satisfying the requirements in Theo-
rem 3.4 and (Alg+,0, Alg−,0) both be V-learning. Let (µ̂, ¿̂) be the output policies via the output

rule of V-learning. Denoting Alg
θ̂
= (Alg

θ̂+
, Alg

θ̂−
) and NΘ = NΘ+NΘ−

. Then, with probability

at least 1− ¶, it holds that

E
D∼P

Alg
θ̂

Λ

[
V  ,¿̂
M (s1)− V µ̂, 

M (s1)
]
≲

√
H5S(A (B) log(SABT )

G
+ THS

√
log (TSNΘ/¶)

N
.

With the obtained upper bound on the approximation error of NE, Theorem 3.5 demonstrates the
ICGP capability of pre-trained transformers as the algorithms Alg

θ̂+
and Alg

θ̂−
are fixed during

interactions with varying inference games (i.e., no parameter updates). When prompted by the
interaction trajectory in the current game, they are capable of deciding the future interaction strategy
and finally provide policy pairs that are approximate NE. We further note that during both pre-training
and inference, each player’s transformer takes inputs of its own observed trajectories, but not the
opponent’s actions, which reflects the decentralized requirement. Moreover, the approximation error
in Theorem 3.5 depends on A (B instead of AB as in the later Theorem 4.2, evidencing the benefits
of decentralized learning.

Proof Sketch. The proof of Theorem 3.5 (presented in Appendix H) rely on the following, decompo-

sition, where E0[·] and E
θ̂
[·] are with respect to P

Alg0
Λ and P

Alg
θ̂

Λ , respectively:

E
θ̂

[
V  ,¿̂
M (s1)− V µ̂, 

M (s1)
]
= E0

[
V  ,¿̂
M (s1)− V µ̂, 

M (s1)
]

(2)

+ E
θ̂

[
V  ,¿̂
M (s1)

]
− E0

[
V  ,¿̂
M (s1)

]
+ E0

[
V µ̂, 
M (s1)

]
− E

θ̂

[
V µ̂, 
M (s1)

]
, .

It can be observed that the first decomposed term is the performance of the considered V-learning,
which can be obtained following Jin et al. [32] as in Theorem G.1.
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Then, the remaining terms concern the performance of the policy pair (µ̂, ¿̂) learned from Alg0
and Alg

θ̂
against their own best responses, respectively. This is drastically different from the

consideration in Lin et al. [38], which only bounds the performance of the learned policies, i.e.,

E0

[
V µ̂,¿̂
M (s1)

]
− E

θ̂

[
V µ̂,¿̂
M (s1)

]
.

The involvement of best responses complicates the analysis. After careful treatments in Appendix H,
we obtain the following lemma to characterize these terms.

Lemma 3.6. For any two decentralized algorithms Alg³ and Alg´ , we denote their performed

policies for episode g are (µg
³, ¿

g
³) and (µg

´ , ¿
g
´), and their final output policies via the output rule of

V-learning (see Appendix G.1) are (µ̂³, ¿̂³) and (µ̂´ , ¿̂´). For {µ̂³, µ̂´}, it holds that

E³

[
V µ̂α, 
M (s1)

]
− E´

[
V

µ̂β , 
M (s1)

]
≲H ·

∑
t∈[T ],s∈S

E³

[
TV
(
µt
³, µ

t
´ |Dt−1

+ , s
)]

+H ·
∑

t∈[T ],s∈S
E³

[
TV
(
¿t³, ¿

t
´ |Dt−1

− , s
)]

,

where E³[·] and E´ [·] are with respect to P
Algα
Λ and P

Algβ
Λ . A similar result holds for {¿̂³, ¿̂´}.

With Lemma 3.6, we can incorporate Theorem 3.3 to upper bound the TV distance between Alg0
and Alg

θ̂
, which together with Theorem 3.4 establish εreal,+ = εreal,− = 0 in this case, leading to

the desired performance guarantee in Theorem 3.5. We here further note that the effectiveness of
Theorem 3.3 in capturing the bound in Lemma 3.6 over all s ∈ S credits to the augmented dataset
D′, which provides diverse data of all s ∈ S .

4 Centralized Learning

In this section, we discuss the scenario of centralized learning, i.e., training one joint model to control
both players’ interactions. This is also known as the self-play setting [8, 9, 33, 40, 67]. Following a
similar procedure as the decentralized discussions, we first provide supervised pre-training guarantees
and then demonstrate that transformers are capable of realizing the renowned VI-ULCB algorithm
[8]. It is thus established that in a centralized learning setting, the pre-trained transformer can still
effectively perform ICGP and approximate NE.

4.1 Supervised Pre-training Results

The same training dataset {Di : i ∈ [N ]} as in Section 3.1.1 is considered. As the centralized
setting is studied here, no further split of the dataset is needed. Moreover, one d-dimensional
mapping h : S ∪ (A× B ×R) → R

d can be designed to embed the trajectories, and the induced
algorithm Alg

θ
(·, ·|Dt, st) from the transformer TFθ can be obtained via a fixed linear extraction

mapping E similarly as Eqn. (1). Finally, the MLE training is performed with Θ := Θd,L,M,d′,F as

θ̂ = argmaxθ∈Θ
1
N

∑
i∈[N ]

∑
t∈[T ]

∑
s∈S log

(
Alg

θ
(ati,s, b

t
i,s|Dt−1

i , s)
)
.

Then, a generalization guarantee of Alg
θ̂

can be provided similarly as Theorem 3.3, which is deferred
to Theorem C.3. This centralized result also implies that the pre-trained centralized algorithm
performs similarly as the context algorithm, with errors caused by the approximate realizability and
the finite pre-training data.

4.2 Realizing VI-ULCB

The VI-ULCB algorithm [8] is one of the first provably efficient centralized learning designs for
Markov games. It extends the key idea of using confidence bounds to incorporate uncertainties from
stochastic bandits and MDPs [4, 6] to handle competitive environments, and has further inspired
many extensions in Markov games [9, 30, 33, 40, 65]. As VI-ULCB is highly representative, we
choose it as the example for realization in the centralized setting to demonstrate the capability of
transformers.

To make VI-ULCB practically implementable, we adopt an approximate CCE solver powered by
multiplicative weight update (MWU) in the place of its originally required general-sum NE solver

8



(which is computationally demanding). This modification is demonstrated as provably efficient in
later works [9, 40, 65]. Then, the following result illustrates that a transformer can be constructed to
exactly perform the MWU-version of VI-ULCB.

Theorem 4.1. With embedding mapping h and extraction mapping E defined in Appendix D.2, there
exists a transformer TFθ with

d ≲ HS2AB, L ≲ GHS, maxl∈[L] M
(l) ≲ HS2AB,

d′ ≲ G2HS2AB, ∥θ∥ ≲ HS2AB +G3 +GH,

which satisfies that for all Dt−1, s ∈ S, t ∈ [T ], Alg
θ
(·, ·|Dt−1, s) = AlgVI-ULCB(·, ·|Dt−1, s).

One observation from the proof of Theorem 4.1 (presented in Appendix D.2) is that transformer
layers can perform MWU so that an approximate CCE can be found, which is not reported in Lin
et al. [38] and further demonstrates the in-context learning capability of transformers in playing
normal-form games (since MWU is one of the most basic designs).

4.3 The Overall ICGP Capability

With Theorem 4.1 showing VI-ULCB can be exactly realized (i.e., εreal = 0 in Assumption C.2), we
can further prove an overall upper bound of the approximation error of NE by Alg

θ̂
via the following

theorem, demonstrating the ICGP capability of transformers.

Theorem 4.2. Let Θ be the class of transformers satisfying the requirements in Theorem 4.1 and
Alg0 be VI-ULCB. For all (g, h, s) ∈ [G]× [H]× S, let (µg,h(·|s), ¿g,h(·|s)) be the marginalized
policies of Alg

θ̂
(·, ·|Dt−1, s). Then, with probability at least 1− ¶, it holds that

E
P
Alg

θ̂

Λ ,µ̂,¿̂

[
V  ,¿̂
M (s1)− V µ̂, 

M (s1)
]
≲

√
H4S2AB log(SABT )

G
+ THS

√
log(TSNΘ)/¶)

N
,

where µ̂ and ¿̂ are uniformly sampled as µ̂ ∼ Unif{µ1, · · · , µG} and ¿̂ ∼ Unif{¿1, · · · , ¿G}, with

µg := {µg,h(·|s) : (h, s) ∈ [H] × S} and ¿g := {¿g,h(·|s) : (h, s) ∈ [H] × S}, and Eµ̂,¿̂ is with
respect to the process of policy sampling.

This result demonstrates the ICGP capability of pre-trained transformers in the centralized setting,
complementing the discussions in the decentralized results.

5 Empirical Experiments

Experiments are performed on two-player zero-sum normal-form games (H = 1) and Markov games
(H = 2), with the decentralized EXP3 [5] (which can be viewed as a one-step V-learning) and
the centralized VI-ULCB being the context algorithms as demonstrations, respectively. Additional
experimental setups and details can be found in Appendix J. It can be first observed from Fig. 2
that, the transformers pre-trained with N = 20 games performs better on the inference tasks than
the ones pre-trained with N = 10 games. This observation empirically validates the theoretical
result that more pre-training games benefit the final game-playing performance during inference

(i.e., the
√
1/N -dependencies established in Theorems 3.5 and 4.2). Moreover, when the number of

pre-training games is sufficient (i.e., N = 20 in Fig. 2), the obtained transformers can indeed learn to
approximate NE in an in-context manner (i.e., having a gradually decaying NE gap), and also the
obtained performance is similar to the context algorithm, i.e., EXP3 or VI-ULCB. These observations
provide empirical pieces of evidence to support the ICGP capabilities of pre-trained transformers,
motivating and validating the theoretical analyses performed in this work.

6 Related Works

In-context Learning. Since GPT-3 [11] demonstrates the ICL capability of pre-trained transformers,
growing attention has been paid to this direction. In particular, an emerging line of work targets
providing a deeper understanding of the fundamental mechanism behind the ICL capability [3, 24,
29, 31, 37, 44, 59, 60, 64, 66, 68], where many interesting results have been obtained. In particular,
transformers have been shown to be capable of performing in-context gradient descent so that
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Figure 2: Comparisons of Nash equilibrium (NE) gaps over episodes in both decentralized and
centralized learning scenarios, averaged over 10 inference games.

varying optimization-based algorithms can be realized [2, 3, 7, 26, 59]. Also, Giannou et al. [27]
demonstrates that looped transformers can emulate basic computing blocks, whose combinations can
lead to complex operations.

This work is more focused on the in-context reinforcement learning (ICRL) capability of pre-trained
transformers, as demonstrated in Grigsby et al. [28], Laskin et al. [34], Lee et al. [35], Wang et al. [62].
The recent work by Lin et al. [38] initiates the theoretical investigation of this topic. In particular, Lin
et al. [38] provides generalization guarantees after pre-training in the single-agent RL scenario, and
further constructs transformers to realize provably efficient single-agent bandits and RL algorithms
(in particular, LinUCB [1], Thompson sampling [54], UCB-VI [6]). This work extends Lin et al. [38]
to the domain of competitive multi-agent RL by studying the in-context game-playing setting. A
recent concurrent work [36] also touches upon the in-context game-playing capability of pre-trained
transformers, while focusing on practical aspects and exploiting different opponents.

Competitive Multi-agent RL. The study of RL in the competitive multi-agent domain has a long
and fruitful history [10, 47, 49, 58, 70]. In recent years, researchers have gained a deeper theoretical
understanding of this topic. The centralized setting (also known as self-play) has been investigated in
Bai and Jin [8], Bai et al. [9], Cui et al. [17], Huang et al. [30], Jin et al. [33], Liu et al. [40], Wang
et al. [63], Xiong et al. [67], Zhang et al. [69], and this work focuses on the representative VI-ULCB
design [9]. On the other hand, decentralized learning is more challenging, and the major breakthrough
is made by V-learning [9, 32, 41, 51], which is thus adopted as the target algorithm in this work.

7 Conclusions

This work investigated the in-context game-playing (ICGP) capabilities of pre-trained transformers,
broadening the research scope of in-context RL from the single-agent scenario to the more challenging
multi-agent competitive games. Focusing on the classical two-player zero-sum Markov games, a
general learning framework was first introduced, laying down a solid ground for this and later studies.
Through concrete theoretical results, this work further demonstrated that in both decentralized and
centralized learning settings, properly pre-trained transformers are capable of approximating Nash
equilibrium in an in-context manner. As a key part of the proof, concrete sets of parameterization
were provided to demonstrate that the transformer architecture can realize two famous designs,
decentralized V-learning and centralized VI-ULCB. Empirical experiments further validate the
theoretical results (especially that pre-trained transformers can indeed approximate NE in an in-
context manner) and motivate future studies on this under-explored research direction.
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A An Overview of the Appendix

In this section, an overview of the appendix is provided. First, additional discussions are presented in
Appendix B, which cover broader impacts of this work and our thoughts on the future directions.

Then, the proof details omitted in this main paper are provided. While the decentralized learning
setting is the major focus in the main paper, the discussions and proofs for the centralized learning
setting are first provided to facilitate the presentation and understanding as the decentralized learning
setting is more challenging.

• The supervised pre-training guarantee (i.e., Theorem C.3) for the centralized learning setting is
proved in Appendix C. The details and realization of VI-ULCB (i.e., Theorem 4.1) are presented in
Appendix D. The proofs for the overall performance guarantee (i.e., Theorem 4.2) can be found in
Appendix E.

• Subsequently, the proofs for the supervised pre-training guarantee (i.e., Theorem 3.3) in the
decentralized learning setting are provided in Appendix F. Appendix G contains the details and
realization of V-learning (i.e., Theorem 3.4). The overall performance guarantee (i.e., Theorem 3.5)
is proved in Appendix H.

• A detailed discussion of the covering number is provided in Appendix I.

Finally, the setups and details of the experiments presented in Sec. 5 are reported in Appendix J.

B Additional Discussions

B.1 Broader Impacts

This work mainly provides a theoretical understanding of the in-context game-playing capabilities of
pre-trained transformers, broadening the research scope of in-context reinforcement learning from
single-agent settings to multi-agent competitive games. Due to its theoretical nature, we do not
foresee major negative societal impacts; however, we still would like to acknowledge the need for
responsible usage of the practical implementation of the proposed game-playing transformers due to
their high capability in various environments.

B.2 Limitations and Future Works

The research direction of in-context game-playing is currently under-explored, and we believe that
there are many interesting topics to be further investigated.

• Different game forms and game-solving algorithms. This work mainly studies the classical two-
player zero-sum Markov games, which can be viewed as the most basic form of competitive games,
and has particular focuses on constructing transformers to realize V-learning [32] and VI-ULCB [8].
The cooperative games, on the other hand, are conceptually more similar to the single-agent setting
[38]. There are more complicated game forms [46, 48], e.g., the mixed cooperative-competitive
games, which requires different game-solving algorithms. We believe the framework built in this work
is beneficial to further explore the capabilities of pre-trained models in game-theoretical scenarios.

• Pre-training dataset construction. This work considering the pre-training dataset is collected from
the context algorithm with an additional augmentation. First, while the current proofs rely on the
augmentation, it will be an interesting topic to understand whether it is necessary. As mentioned
Sec. 3.1.1, learning in Markov games typically require more diverse data than learning in single-
agent settings; however, the minimum requirement to perform effective pre-training is worth further
exploring. Moreover, in the study of single-agent RL [35], it is shown that pre-training with the
data from the optimal policy is more efficient, which is further theoretically investigated in Lin et al.
[38]. In multi-agent competitive games, it is currently unclear whether similar strategies can be
incorporated, e.g., pre-training with data collected by Nash equilibrium policies or best responses for
certain other policies.

• Large-scale empirical evaluations. Due to the limited computation resources, the experiments
reported in Sec. 5 are relatively small-scale compared with the current size of practically adopted
transformers. It would be an important and interesting direction to further evaluate the ICGP
capabilities of pre-trained transformers in large-scale experiments and practical game-theoretic
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applications. Also, the training dynamics are also worth further investigation, e.g., the sudden shifts
in learning effectiveness reported by Reddy [45].

Besides these directions, from the theoretical perspective, we believe it would be valuable to investi-
gate how to extend the current study on the tabular setting to incorporate function approximation,
where we conjecture it is sufficient for the pre-training dataset to cover information of certain rep-
resentative states and actions (e.g., a well-coverage of the feature space) [72]. Another attractive
theoretical question is how to learn from a dataset collected by multiple context algorithms. From
the practical perspective, a future study on the impact of the practical training recipe (e.g., model
structure, training hyperparameters, etc.) would be desirable to bring additional insights.

C Proofs for the Centralized Supervised Pre-training Guarantees

First, the definition of the centralized covering number and an assumption of centralized approximate
realizability are introduced to facilitate the analysis, which are also leveraged in Lin et al. [38].

Definition C.1 (Centralized Covering Number). For a class of algorithms {Alg
θ
: θ ∈ Θ}, we say

Θ̃ ¦ Θ is a Ä-cover of Θ, if Θ̃ is a finite set such that for any θ ∈ Θ, there exists θ̃ ∈ Θ̃ such that for
all Dt−1, s ∈ S, t ∈ [T ], it holds that

∥∥log Alg
θ̃
(·, ·|Dt−1, s)− log Alg

θ
(·, ·|Dt−1, s)

∥∥
∞
f Ä.

The covering number NΘ(Ä) is the minimal cardinality of Θ̃ such that Θ̃ is a Ä-cover of Θ.

Assumption C.2 (Centralized Approximate Realizability). There exist θ∗ ∈ Θ and εreal > 0 such
that for all s ∈ S, t ∈ [T ], (a, b) ∈ A× B, it holds that

log

(
E
D∼P

Alg0
Λ

[
Alg0(a, b|Dt−1, s)

Alg
θ∗
(a, b|Dt−1, s)

])
f εreal.

Then, the following pre-training guarantee can be established.

Theorem C.3 (Centralized Pre-training Guarantee). Let θ̂ be the maximum likelihood pre-training
output. Take NΘ = NΘ(1/N) as in Definition C.1. Then, under Assumption C.2, with probability at
least 1− ¶, it holds that

E
D∼P

Alg0
Λ

[∑
t∈[T ],s∈S

TV(Alg0, Algθ̂|Dt−1, s)

]
≲ TS

√
εreal + TS

√
log (NΘTS/¶)

N
.

Proof of Theorem C.3. This proof extends that of Theorem 6 in Lin et al. [38] to the multi-agent

scenario. Let Θ̃ be a Ä-covering set of Θ with covering number NΘ = NΘ(Ä) as defined in
Definition C.1. With Lemma 15 in Lin et al. [38], we can obtain that for any θ ∈ Θ, there exists

θ̃ ∈ Θ̃ such that for all Dt−1, t ∈ [T ] and s ∈ S ,

TV
(
Alg

θ̃
, Alg

θ
|Dt−1, s)

)
f Ä

For m ∈ [NΘ], t ∈ [T ], i ∈ [N ], s ∈ S , we define that

ℓti,m(s) := log

(
Alg0

(
ati,s, b

t
i,s|Dt−1

i , s
)

Alg
θm

(
ati,s, b

t
i,s|Dt−1

i , s
)
)
.

According to Lemma 14 in Lin et al. [38], with probability at least 1 − ¶, for all m ∈ [NΘ], t ∈
[T ], s ∈ S , it holds that

1

2

∑

i∈[N ]

ℓti,m(s) + log(NΘTS/¶) g
∑

i∈[N ]

− log

(
E

[
exp

(
−
ℓti,m(s)

2

)])
.

Furthermore, it can be established that

E

[
exp

(
−
ℓti,m(s)

2

)
|Dt−1

i

]
= E




√√√√Alg
θm

(
ati,s, b

t
i,s|Dt−1

i , s
)

Alg0
(
ati,s, b

t
i,s|Dt−1

i , s
) |Dt−1

i



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=
∑

(a,b)∈A×B

√
Alg

θm

(
a, b|Dt−1

i , s
)
Alg0

(
a, b|Dt−1

i , s
)
,

which implies that

E

[
exp

(
−
ℓti,m(s)

2

)]
= 1− 1

2
· E


 ∑

(a,b)∈A×B

(√
Alg

θm

(
a, b|Dt−1

i , s
)
−
√
Alg0

(
a, b|Dt−1

i , s
))2




f 1− 1

2
· E
[
TV
(
Alg

θm
, Alg0|Dt−1

i , s
)2]

,

where the inequality is from the fact that the Hellinger distance is smaller than the TV distance.

Then, we can obtain that for any θ covered by θm, it holds that

(
ED

[
TV
(
Alg0, Algθ|Dt−1, s

)])2

f
(
ED

[
TV
(
Alg0, Algθm

|Dt−1, s
)]

+ ED

[
TV
(
Alg

θm
, Alg

θ
|Dt−1, s

)])2

f 2
(
ED

[
TV
(
Alg0, Algθm

|Dt−1, s
)])2

+ 2
(
ED

[
TV
(
Alg

θm
, Alg

θ
|Dt−1, s

)])2

f 2ED

[
TV
(
Alg0, Algθ|Dt−1, s

)2]
+ 2Ä2

f 4− 4E

[
exp

(
−
ℓti,m(s)

2

)]
+ 2Ä2

f −4 log
(
E

[
exp

(
−
ℓti,m(s)

2

)])
+ 2Ä2,

which further implies that

N
∑

s∈S

∑

t∈[T ]

(
ED

[
TV
(
Alg0, Algθ|Dt−1, s

)])2

f −4
∑

s∈S

∑

t∈[T ]

∑

i∈[N ]

log

(
E

[
exp

(
−
ℓti,m(s)

2

)])
+ 2NSTÄ2

f 2
∑

s∈S

∑

t∈[T ]

∑

i∈[N ]

ℓti,m(s) + 2NSTÄ2 + 4ST log(NΘTS/¶)

= 2
∑

s∈S

∑

t∈[T ]

∑

i∈[N ]

log

(
Alg0

(
ati,s, b

t
i,s|Dt−1

i , s
)

Alg
θm

(
ati,s, b

t
i,s|Dt−1

i , s
)
)

+ 2NSTÄ2 + 4ST log(NΘTS/¶)

f 2
∑

s∈S

∑

t∈[T ]

∑

i∈[N ]

log

(
Alg0

(
ati,s, b

t
i,s|Dt−1

i , s
)

Alg
θ

(
ati,s, b

t
i,s|Dt−1

i , s
)
)

+ 2NSTÄ2 + 2NSTÄ+ 4ST log(NΘTS/¶).

Thus, for the obtained θ̂, with probability at least 1− ¶, it holds that

N
∑

s∈S

∑

t∈[T ]

(
ED

[
TV
(
Alg0, Algθ̂|Dt−1, s

)])2

f 2
∑

s∈S

∑

t∈[T ]

∑

i∈[N ]

log

(
Alg0

(
ati,s, b

t
i,s|Dt−1

i , s
)

Alg
θ̂

(
ati,s, b

t
i,s|Dt−1

i , s
)
)

+ 2NSTÄ2 + 2NSTÄ+ 4ST log(NΘTS/¶)

f 2
∑

s∈S

∑

t∈[T ]

∑

i∈[N ]

log

(
Alg0

(
ati,s, b

t
i,s|Dt−1

i , s
)

Alg
θ∗

(
ati,s, b

t
i,s|Dt−1

i , s
)
)

+ 2NSTÄ2 + 2NSTÄ+ 4ST log(NΘTS/¶)

f 2
∑

s∈S

∑

t∈[T ]

∑

i∈[N ]

log

(
E

[
Alg0

(
ati,s, b

t
i,s|Dt−1

i , s
)

Alg
θ∗

(
ati,s, b

t
i,s|Dt−1

i , s
)
])

+ ST log(TS/¶)

+ 2NSTÄ2 + 2NSTÄ+ 4ST log(NΘTS/¶)
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f 2NSTεreal + ST log(TS/¶) + 2NSTÄ2 + 2NSTÄ+ 4ST log(NΘTS/¶),

Further by Cauchy-Schwarz inequality, we can obtain that
∑

s∈S

∑

t∈[T ]

(
ED

[
TV
(
Alg0, Algθ̂|Dt−1, s

)])

f
√

ST
∑

s∈S

∑

t∈[T ]

(
ED

[
TV
(
Alg0, Algθ̂|Dt−1, s

)])2

= O

(
ST
√
εreal + ST

√
log(NΘST )

N
+ ST

√
Ä+ STÄ

)

Taking Ä = 1/N concludes the proof.

D Proofs for Realizing VI-ULCB

D.1 Details of MWU VI-ULCB

We here note one distinction from the VI-ULCB design considered in this work from its vanilla
version proposed in Bai and Jin [8], which makes VI-ULCB practically implementable. Especially,
Bai and Jin [8] requires an oracle solver that can provide the exact NE policy pair (µ∗, ¿∗) from any

two general input payoff matrices (Q,Q) ∈ R
A×B×RA×B . However, it is known that approximating

such a general-sum NE is computationally hard (specifically, PPAD-complete) [19], which makes
this vanilla version impractical. Luckily, later studies [9, 40, 65] have demonstrated that a solver
finding one weaker notation of equilibrium, i.e., coarse correlated equilibrium (CCE), is already
sufficient. Following these recent results, we replace the NE solver with an approximate CCE solver
in VI-ULCB. Moreover, we consider finding such CCEs via no-regret learning.2 In particular, both
players virtually run multiplicative weight update (MWU) (which is also known as Hedge), a classical

no-regret algorithm, with payoff matrices (Q,Q) for several rounds; then, an aggregated policy can
be generated as an approximate CCE. The details of the VI-ULCB algorithm are provided in Alg. 1.

More specifically, we consider that an approximate CCE solver is adopted such that with each pair

of inputs (Q
h
(s, ·, ·), Qh(s, ·, ·)), we can obtain an εCCE-approximate CCE policy Ãh(·, ·|s) which

satisfies that

E(a,b)∼Ãh(·,·|s)

[
Q(s, a, b)

]
g max

a∗∈S
E(a,b)∼Ãh(·,·|s)

[
Q(s, a∗, b)

]
− εCCE

E(a,b)∼Ãh(·,·|s)

[
Q(s, a, b)

]
f min

b∗∈S
E(a,b)∼Ãh(·,·|s)

[
Q(s, a, b∗)

]
+ εCCE.

We also specifically choose to obtain such approximate CCEs by having both players (virtually)
perform MWU against each other. The details of MWU are included in Alg. 2, where we use the
following notations to denote normalized losses:

L
h
(s, a, b) :=

H −Q
h
(s, a, b)

H
, Lh(s, a, b) :=

H −Qh(s, a, b)

H
.

Standard online learning results [13] guarantee that using learning rates ¸A =
√
log(A)/NMWU and

¸B =
√
log(B)/NMWU, after NMWU rounds of MWU, the policy

Ãh(·, ·|s) = 1

NMWU

∑

n∈[N ]

µh
n(·|s)¿hn(·|s)

is an εCCE-approximate CCE policy, with

εCCE = H

√
log(A+B)

NMWU

.

2Another common method to find CCEs is through linear programming (LP). It will be an interesting direction
to investigate whether transformers can be LP solvers, which is however out of the scope of this paper.
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Algorithm 1 VI-ULCB

1: Initialize: for any (s, a, b, h), Q
h
(s, a, b) ← H , Qh(s, a, b) ← 0, Nh(s, a, b) ← 0,

Nh(s, a, b, s′)← 0
2: for episode g = 1, · · · , G do
3: for (s, a, b) ∈ S ×A× B do

4: Compute Q
h
(s, a, b)← min

{
r̂h(s, a, b) +

[
P̂
hV

h+1
]
(s, a, b) + c

√
H2Sº

Nh(sh,ah,bh)
, H
}

5: Compute Qh(s, a, b)← max
{
r̂h(s, a, b) +

[
P̂
hV h+1

]
(s, a, b)− c

√
H2Sº

Nh(sh,ah,bh)
, 0
}

6: end for
7: for s ∈ S do

8: Update Ãh(·, ·|s) ← εN -approximate CCE
(
Q

h
(s, ·, ·), Qh(s, ·, ·)

)
solved by N -round

MWU

9: Compute V
h
(s)←∑

a,b Ã
h(a, b|s)Qh

(s, a, b)

10: Compute V h(s)←∑
a,b Ã

h(a, b|s)Qh(s, a, b)
11: end for
12: for step h = 1, · · · , H do
13: Take action (ah, bh) ∼ Ãh(·, ·|sh)
14: Observe reward rh and next state sh+1

15: Update Nh(s
h, ah, bh) and Nh(sh, ah, bh, sh+1)

16: Update P̂
h(·|sh, ah, bh) and r̂h(sh, ah, bh)

17: end for
18: end for

Algorithm 2 MWU

1: Input: learning rates ¸A =
√
log(A)/N and ¸B =

√
log(B)/N , action sets A and B with size

A and B, loss matrices L
h
(s, ·, ·) and Lh(s, ·, ·)

2: Initialize: cumulative loss O+ ← 0A and O− ← 0A

3: for n = 1, · · · , N do
4: Compute µh

n(·|s)← Ãs(−¸AO+) ∈ ∆(A)
5: Compute ¿hn(·|s)← Ãs(−¸BO−) ∈ ∆(B)
6: Observe vectors o+,n ∈ R

A with o+,n(a) = ¿hn(·|s) · L
h
(s, a, ·)

7: Observe vectors o−,n ∈ R
B with o−,n(b) = µh

n(·|s) · Lh(s, ·, b)
8: Update O+ = O+ + o+,n and O− = O− + o−,n

9: end for
10: Output: policy

∑
n∈[N ] µ

h
n(·|s)¿hn(·|s)/N

Furthermore, for a certain bounded εCCE, Xie et al. [65] demonstrated that the performance degra-
dation can still be controlled. Following the results therein, the following theorem can be easily
established.

Theorem D.1 (Modified from Theorem 2 from Bai and Jin [8]). With probability at least 1− ¶, in
any environment M , the output policies {(µg, ¿g) : g ∈ [G]} from the MWU-version of VI-ULCB
satisfy that

∑
g∈[G]

V  ,¿g

M (s1)− V µg, 
M (s1) = O

(√
H3S2ABT log(SABT/¶) + TεCCE

)
.

With ¶ = 1/T , to have a non-dominant loss caused by the approximate CCE solver, we can choose
NMWU = G. Then, for any environment M , it holds that

ED∼P
VI-ULCB
M

[∑
g∈[G]

V  ,¿g

M (s1)− V µg, 
M (s1)

]
= O

(√
H3S2ABT log(SABT )

)
.
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D.2 Proof of Theorem 4.1: The Realization Construction

D.2.1 Embeddings and Extraction Mapping

We consider each episode of observations to be embedded in 2H tokens. In particular, for each
t ∈ [T ], we construct that

h2t−1 = h(sg,h) =




0A

0B

0
sg,h

0AB

0

pos2t−1




=:




h
pre,a
2t−1

h
pre,b
2t−1

h
pre,c
2t−1

h
pre,d
2t−1


 ,

h2t = h(ag,h, bg,h, rg,h) =




ag,h

bg,h

rg,h

0S

0AB

0

pos2t




=:




h
pre,a
2t

h
pre,b
2t

h
pre,c
2t

h
pre,d
2t


 ,

where sg,h, ag,h, bg,h are represented via one-hot embedding. The positional embedding posi is
defined as

posi :=




g
h
t
eh
vi
i
i2

1




,

where eh is a one-hot vector with the h-th element being 1 and vi := 1{ha
i = 0} denote the tokens

that do not embed actions and rewards.

In summary, for observations Dt−1 ∪ {st}, we obtain the following tokens of length 2t− 1:

H := h(Dt−1, st) = [h1,h2, · · · ,h2t−1] = [h(s1), h(a1, b1, r1), · · · , h(st)].

With the above input H , the transformer outputs H = TFθ+
(H) of the same size as H . The

extraction mapping E is directly set to satisfy the following

E · h−1 = E · h2t−1 = h
c

2t−1 ∈ R
AB ,

i.e., the part c of the output tokens is used to store the learned policy.

D.2.2 An Overview of the Proof

In the following, for the convenience of notations, we will consider step t+ 1, i.e., with observations
Dt ∪ {st+1}. Given an input token matrix

H = h(Dt, st+1) = [h1,h2, · · · ,h2t+1],

we construct a transformer to perform the following steps




h
pre,a
2t+1

h
pre,b
2t+1

h
pre,c
2t+1

h
pre,d
2t+1




step 1−−−→




h
pre,{a,b,c}
2t+1

Nh(s, a, b)
Nh(s, a, b, s′)

Nh(s, a, b)rh(s, a, b)
⋆
0

pos2t+1




step 2−−−→




h
pre,{a,b,c}
2t+1

P̂
h(s′|s, a, b)
r̂h(s, a, b)

⋆
0

pos2t+1




step 3−−−→




h
pre,{a,b,c}
2t+1

Q
h
(s, a, b)

Qh(s, a, b)
⋆
0

pos2t+1



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step 4−−−→




h
pre,{a,b,c}
2t+1

Ãh(a, b|s)
⋆
0

pos2t+1




step 5−−−→




h
pre,{a,b,c}
2t+1

V
h
(s)

V h(s)
⋆
0

pos2t+1




step 6−−−→




h
pre,{a,b}
2t+1

Ãh+1(·, ·|sh+1)

h
post,d
2t+1


 :=




h
post,a
2t+1

h
post,b
2t+1

h
post,c
2t+1

h
post,d
2t+1


 ,

where we use Nh(s, a, b), Nh(s, a, b, s′), Nh(s, a, b)rh(s, a, b), P̂
h(s′|s, a, b), r̂h(s, a, b),

Q
h
(s, a, b), Qh(s, a, b) and Ãh(a, b|s) to denote their entire vectors over h ∈ [H], s ∈ S, a ∈

A, b ∈ B, s′ ∈ S . The notation ⋆ denotes other quantities in hd
2(t+1).

The following provides a sketch of the proof.

Step 1 There exists an attention-only transformer TFθ to complete Step 1 with

L = O(1), max
l∈[L]

M (l) = O(HS2AB), ∥θ∥ = O(HG+HS2AB).

Step 2 There exists a transformer TFθ to complete Step 2 with

L = O(1), max
l∈[L]

M (l) = O(HS2AB), d′ = O(G2HS2AB)

∥θ∥ = O(HS2AB +G3 +GH).

Step 3 There exists a transformer TFθ to complete Step 3 with

L = O(H), max
l∈[L]

M (l) = O(SAB), d′(l) = O(SAB), ∥θ∥ = O(H + SAB).

Step 4 There exists a transformer TFθ to complete Step 4 with

L = O(GHS), max
l∈[L]

M (l) = O(AB), d′(l) = O(AB), ∥θ∥ = O(H +AB).

Step 5 There exists an attention-only transformer TFθ to complete Step 5 with

L = O(1), max
l∈[L]

M (l) = O(HS), ∥θ∥ = O(HS).

Step 6 There exists an attention-only transformer TFθ to complete Step 6 with

L = O(1), max
l∈[L]

M (l) = O(HS), ∥θ∥ = O(HS +GH).

Thus, the overall transformer TFθ can be summarized as

L = O(GHS), max
l∈[L]

M (l) = O(HS2AB), d′ = O(G2HS2AB),

∥θ∥ = O(HS2AB +G3 +GH).

Also, from the later construction, we can observe that log(R) = Õ(1).

D.2.3 Proof of Step 1: Update Nh(s, a, b), Nh(s, a, b, s′) and Nh(s, a, b)rh(s, a, b)

This can be similarly completed by an attention-only transformer constructed in Step 1 of realizing
UCB-VI in Lin et al. [38].

D.2.4 Proof of Step 2: Update P̂(s′|s, a, b) and r̂(s, a, b)

This can be similarly completed by a transformer constructed in Step 2 of realizing UCB-VI in Lin
et al. [38].

D.2.5 Proof of Step 3: Compute Q
h
(s′|s, a, b) and Qh(s′|s, a, b)

The computation of Q
h
(s′|s, a, b) can be similarly completed by a transformer constructed in Step

3 of realizing UCB-VI in Lin et al. [38]. The Q part can also be obtained by modifying a few plus
signs to minuses.
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D.2.6 Proof of Step 4: Compute CCE

This is the most challenging part of realizing the VI-ULCB design, which distinguishes it from the
single-agent algorithms, e.g., UCB-VI [6]. As mentioned in Appendix D.1, we obtain an approximate
CCE via virtually playing MWU. In the following, for one tuple (s, h), we prove that one transformer
can be constructed to perform a one-step MWU update with that

L = O(1), max
l∈[L]

M (l) = O(AB), d′ = O(AB), ∥θ∥ = O(H +AB).

To obtain this result, we construct a transformer to perform the following computation from inputs to
output for all t′ f t:

h2t = [ 0 ] , h2t+1 =




L
h
(s, ·, ·)

Lh(s, ·, ·)∑
Ä<n o+,Ä∑
Ä<n o−,Ä

µn(·|s)
¿n(·|s)∑

Äfn µÄ (·)¿Ä (·)
0




compute−−−−→ h2t = [ 0 ] , h2t+1 =




L
h
(s, ·, ·)

Lh(s, ·, ·)∑
Ä<n+1 o+,Ä∑
Ä<n+1 o−,Ä

µn+1(·|s)
¿n+1(·|s)∑

Äfn+1 µÄ (·)¿Ä (·)
0




.

Note that here we again use the notations L
h
(s, ·, ·) = H−Q

h
(s,·,·)

H
and Lh(s, ·, ·) = H−Qh(s,·,·)

H
to

denote the normalized losses. It can be seen that this computation can be performed via one ReLU
MLP layer.

Step 4.1: Get o+,n and o−,n.

First, we can construct that for all t′ f t

Q
(1)
a,1h2t′ =




v2t′ − 1
0

t′

H


 , Q

(1)
a,1h2t′+1 =




v2t′+1 − 1
¿n(·|s)
t′ + 1
H


 ;

K
(1)
a,1h2t′ =




H
0

−H
t′


 , K

(1)
a,1h2t′+1 =




H

L
h
(a, ·|s)
−H
t′ + 1


 ,

V
(1)
a,1 h2t′ = 2t′, V

(1)
a,1 h2t′+1 = 2t′ + 1.

With ReLU activation, this constructed transformer leads to updates that hd
2t′ = 0 and hd

2t′+1 =
o+,n(a). With another A− 1 paralleling heads, the whole vector o+,n can be computed. Similarly,
with B more paralleling heads, the whole vector o−,n can be computed.

Then, with one ReLU MLP layer, we can obtain that

hd
2t′ = 0, hd

2t′+1 =

[ ∑
Ä<n o+,Ä∑
Ä<n o−,Ä

]
+W

(1)
2 Ãr

(
W

(1)
1 h2t′+1

)
=

[ ∑
Ä<n+1 o+,Ä∑
Ä<n+1 o−,Ä

]
.

The required transformer can be summarized as

L = 1, M (1) = O(A+B), d′ = O(A+B), ∥θ∥ = O(H).
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Step 4.2: Get µn+1(·|s) and ¿n+1(·|s).
We can construct a softmax MLP layer such that

W
(1)
1 h2t′ = 0A, Ãs(W

(1)
1 h2t′) =

1

A
· 1A

W
(1)
1 h2t′+1 =

[
−¸A

∑
Ä<n+1 o

t′

+,n

]
, Ãs(W

(1)
1 h2t′+1) = [ µn+1(·|s) ] ,

where ¸A =
√
log(A)/G. Thus, µn+1(·|s) can be provided. Similarly, another MLP layer

{W (2)
1 ,W

(2)
2 } with softmax activation can provide ¿n+1(·|s). The current output can be expressed as

hd
2t′ =




0
1
A
· 1A

1
B
· 1B


 , hd

2t′+1 =




µn(·|s)
¿n(·|s)

µn+1(·|s)
¿n+1(·|s)


 .

We can further construct one more attention layer as

Q
(4)
1 h2t′ =

[
1− v2t′

t′

1

]
, Q

(3)
1 h2t′+1 =

[
1− v2t′+1

t′ + 1
1

]
;

K
(3)
1 h2t′ =

[
1
−1
t′

]
, K

(3)
1 h2t′+1 =

[
1
−1

t′ + 1

]
;

V
(3)
1 h2t′ = 2t′ ·

[
− 1

A
· 1A

− 1
B
· 1B

]
, V

(3)
1 h2t′+1 = (2t′ + 1) ·

[
− 1

A
· 1A

− 1
B
· 1B

]
.

With ReLU activation, this construction would result in that

h2t′ =

[
1
A
· 1A

1
B
· 1B

]
+

[
− 1

A
· 1A

− 1
B
· 1B

]
= 0, h2t′+1 =

[
µn+1(·|s)
¿n+1(·|s)

]
+ 0 =

[
µn+1(·|s)
¿n+1(·|s)

]
.

At last, one ReLU MLP layer {W (3)
1 ,W

(3)
2 } can be constructed to replace µn(·|s) and ¿n(·|s) with

µn+1(·|s) and ¿n+1(·|s):

W
(3)
2 Ãr

(
W

(3)
1 h2t′

)
= 0, W

(3)
2 Ãr

(
W

(3)
1 h2t′+1

)
=

[
µn+1(·|s)− µn(·|s)
¿n+1(·|s)− ¿n(·|s)

]
.

The required transformer can be summarized as

L = 3, max
l∈[L]

M (l) = O(1), d′ = O(A+B), ∥θ∥ = O(
√

log(A)/G+
√
log(B)/G+ 1).

Step 4.3: Get
∑

Äfn+1 µÄ (·|s)¿Ä (·|s)/N .

We can construct

Q
(1)
1 h2t′ =

[
0
t′

1

]
, Q

(1)
1 h2t′+1 =

[
µn+1(a|s)
t′ + 1
1

]
;

K
(1)
1 h2t′ =

[
0
−1
t′

]
, K

(1)
1 h2t′+1 =

[
¿n+1(b|s)
−1

t′ + 1

]
;

V
(5)
1 h2t′ = 2t′, V

(5)
1 h2t′+1 = 2t′ + 1.

With ReLU activation, this construction can update that

h2t′ = 0, h2t′+1 = µn+1(a|s)¿n+1(b|s).
Using an overall AB paralleling heads, we can then obtain µn+1(·|s)¿n+1(·|s). Then, with a ReLU

MLP layer {W (5)
1 ,W

(5)
2 }, we can obtain

∑
Äfn+1 µÄ (·|s)¿Ä (·|s)/N .

The required transformer can be summarized as

L = 1, M (1) = O(AB), d′ = O(AB), ∥θ∥ = O(AB).

Combining all the sub-steps provides proof of a one-step MWU update. The same transformer can be
stacked for G times, which completes the G-step MWU.
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D.2.7 Proof of Step 5: Compute V
h
(s) and V h(s)

We can construct that

Q
(1)
1 h2t′ =

[
0
t′

H

]
, Q

(1)
1 h2t′+1 =




Ãh(·, ·|s)
t′ + 1
H


 ;

K
(1)
1 h2t′ =

[
0
−H
t′

]
, K

(1)
1 h2t′+1 =


 Q

h
(s, ·, ·)
−H
t′ + 1


 ;

V
(1)
1 h2t′ = 2t′, V

(1)
1 h2t′+1 = 2t′ + 1.

With ReLU activation, this construction leads to that

h2t′ = 0, h2t′+1 = Ãh(·, ·|s) ·Qh
(s, ·, ·) = V

h
(s).

Thus, with overall 2HS paralleling heads, the values of {V h
(s), V h(s) : h ∈ [H], s ∈ S} can be

computed.

The required transformer can be summarized as

L = 1, M (1) = O(HS), ∥θ∥ = O(HS).

D.2.8 Proof of Step 6: Obtain Ãh+1(·, ·|sh+1)

We can construct one HS-head transformer that for all (s, h) ∈ S × [H]

Q
(1)
h,sh2t′ =




0

eh′

t′

1
1


 , Q

(1)
h,sh2t′+1 =




st
′+1

eh′+1

t′ + 1
1
1


 ;

K
(1)
h,sh2t′ =




es
eh
−1
t′

−1


 , K

(1)
h,sh2t′+1 =




es
eh
−1

t′ + 1
−1


 ;

V
(1)
h,s h2t′ = 0, V

(1)
h,s h2t′+1 = Ãh(·, ·|s).

With ReLU activation, this construction leads to the update that

h2t′ = 0, h2t′+1 =
1

2t′ + 1
· Ãh′+1(·, ·|st′+1).

Then, we can construct that

Q
(1)
1 h2t′ =

[
2t′

2GHt′

1

]
, Q

(1)
1 h2t′+1 =

[
2t′ + 1

2GH(t′ + 1)
1

]
;

K
(1)
1 h2t′ =

[
1
−1

2GHt′

]
, K

(1)
1 h2t′+1 =

[
1
−1

2GH(t′ + 1)

]
;

V
(1)
1 h2t′ = 0, V

(1)
h,s h2t′+1 =

1

2t′ + 1
· Ãh′+1(·, ·|st′+1).

With ReLU activation, this construction leads to the update that

h2t′ = 0, h2t′+1 = Ãh′+1(·, ·|st′+1).

The required transformer can be summarized as

L = 2, max
l∈[L]

M (l) = O(HS), ∥θ∥ = O(HS +GH).
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E Proofs for the Centralized Overall Performance

Proof of Theorem 4.2. First, we can obtain the decomposition that

E
M∼Λ,D∼P

Alg
θ̂

M


∑

g∈[G]

V  ,¿g

M (s1)− V µg, 
M (s1)




= E
M∼Λ,D∼P

Alg0
M


∑

g∈[G]

V  ,¿g

M (s1)− V µg, 
M (s1)




+ E
M∼Λ,D∼P

Alg
θ̂

M


∑

g∈[G]

V  ,¿g

M (s1)


− E

M∼Λ,D∼P
Alg0
M


∑

g∈[G]

V  ,¿g

M (s1)




+ E
M∼Λ,D∼P

Alg0
M


∑

g∈[G]

V µg, 
M (s1)


− E

M∼Λ,D∼P
Alg

θ̂

M


∑

g∈[G]

V µg, 
M (s1)


 .

Via Theorem D.1, it holds that

E
M∼Λ,D∼P

Alg0
M


∑

g∈[G]

V  ,¿g

M (s1)− V µg, 
M (s1)


 = O

(√
H3S2ABT log(SABT )

)
.

Then, via Lemma E.1 and Theorem C.3, we can obtain that

E
M∼Λ,D∼P

Alg0
M


∑

g∈[G]

V µg, 
M (s1)


− E

M∼Λ,D∼P
Alg

θ̂

M


∑

g∈[G]

V µg, 
M (s1)




= O


T · E

M∼Λ,D∼P
Alg0
M


∑

t∈[T ]

∑

s∈S

[
TV
(
Alg0, Algθ̂|Dt−1, s

)]





= O

(
T 2S
√
εreal + T 2S

√
log (NΘTS/¶)

N

)
,

and similarly,

E
M∼Λ,D∼P

Alg
θ̂

M


∑

g∈[G]

V  ,¿g

M (s1)


− E

M∼Λ,D∼P
Alg0
M


∑

g∈[G]

V  ,¿g

M (s1)




= O

(
T 2S
√
εreal + T 2S

√
log (NΘTS/¶)

N

)
.

With Theorem 4.1 providing that εreal = 0, combining the above terms completes the proof of the
regret bound. The bound on the covering number, i.e., log(NΘ) can be obtained via Lemma I.4.

Lemma E.1. For any two centralized algorithms Alg³ and Alg´ , we denote their performed policies

for episode g are (Ãg
³, Ã

g
´), whose marginal policies are (µg

³, ¿
g
³) and (µg

´ , ¿
g
´). For {µg

³, ¿
g
´}, it

holds that

E³

[∑
g∈[G]

V
µg
α, 

M (s1)

]
−E´

[∑
g∈[G]

V
µ
g

β
, 

M (s1)

]
≲ T ·E³

[∑
t∈[T ],s∈S

TV
(
Ãt
³, Ã

t
´ |Dt−1, s

)]
,

where E³[·] and E´ [·] are with respect to P
Algα
Λ and P

Algβ
Λ . A similar result holds for {¿g³, ¿g´}.

Proof of Lemma E.1. It holds that

E
D∼P

Algα
M


∑

g∈[G]

V
µg
α, 

M (s1)


− E

D∼P
Algβ
M


∑

g∈[G]

V
µ
g

β
, 

M (s1)



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= E
D∼P

Algα
M


∑

g∈[G]

V
µg
α, 

M (s1)−
∑

g∈[G]

V
µ
g

β
, 

M (s1)




︸ ︷︷ ︸
:=(term I)

+ E
D∼P

Algα
M


∑

g∈[G]

V
µ
g

β
, 

M (s1)


− E

D∼P
Algβ
M


∑

g∈[G]

V
µ
g

β
, 

M (s1)




︸ ︷︷ ︸
:=(term II)

Denoting DH := D(g−1)H+1:gH and f(DH) =
∑

h∈[H] r
g,h, we can further obtain that

V
µg
α, 

M (s1)− V
µ
g

β
, 

M (s1)

(a)

f V
µg
α,¿ (µ

g

β
)

M (s1)− V
µ
g

β
,¿ (µ

g

β
)

M (s1)

= E
DH∼P

µ
g
α,ν (µ

g
β
)

M

[
f(DH)

]
− E

DH∼P

µ
g
β
,ν (µ

g
β
)

M

[
f(DH)

]

=
∑

h∈[H]

E
D1:h∼P

µ
g
α,ν (µ

g
β
)

M
,Dh+1:H∼P

µ
g
β
,ν (µ

g
β
)

M

[
f(DH)

]

−
∑

h∈[H]

E
D1:h−1∼P

µ
g
α,ν (µ

g
β
)

M
,Dh:H∼P

µ
g
β
,ν (µ

g
β
)

M

[
f(DH)

]

(b)

f 2H
∑

h∈[H]

E
D1:h−1∼P

µ
g
α,ν (µ

g
β
)

M
,sg,h

[
TV
(
µg,h
³ × ¿h (µ

g
´)(·, ·|sg,h), µ

g,h
´ × ¿h (µ

g
´)(·, ·|sg,h)

)]

(c)
= 2H

∑

h∈[H]

E
D1:h−1∼P

µ
g
α,ν (µ

g
β
)

M
,sg,h

[
TV
(
µg,h
³ (·|sg,h), µg,h

´ (·|sg,h)
)]

(d)

f 2H
∑

h∈[H]

∑

s∈S

TV
(
Ãg,h
³ (·, ·|s), Ãg,h

´ (·, ·|s)
)
,

where (a) is from the definition of best responses, (b) is from the variational representation of the
TV distance, (c) is from the fact that TV(µ× ¿, µ′ × ¿) = TV(µ, µ′), and (d) is from the fact that
TV(

∑
b Ã(·, b),

∑
b Ã

′(·, b)) f TV(Ã(·, ·), Ã′(·, ·)). The above relationship further leads to that

(term I) := E
D∼P

Algα
M


∑

g∈[G]

V
µg
α, 

M (s1)−
∑

g∈[G]

V
µ
g

β
, 

M (s1)




f 2H · E
D∼P

Algα
M


∑

t∈[T ]

∑

s∈S

TV
(
Ãt
³, Ã

t
´ |Dt−1, s

)

 .

Also, denoting g(D) =
∑

g∈[G] V
µ
g

β
, (s1), it holds that

(term II) := E
D∼P

Algα
M


∑

g∈[G]

V µ
g

β
, (s1)


− E

D∼P
Algβ
M


∑

g∈[G]

V µ
g

β
, (s1)




=
∑

t∈[T ]

E
Dt∼P

Algα
M

,Dt+1:T∼P
Algβ
M

[g(D)]−
∑

t∈[T ]

E
Dt−1∼P

Algα
M

,Dt:T∼P
Algβ
M

[g(D)]

f 2T
∑

t∈[T ]

E
Dt−1∼P

Algα
M

,st

[
TV
(
Alg³, Alg´ |Dt−1, st

)]

f 2T · E
D∼P

Algα
M


∑

t∈[T ]

∑

s∈S

TV
(
Ãt
³, Ã

t
´ |Dt−1, s

)

 .

Combining (term I) and (term II) finishes the proof.
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F Proofs for the Decentralized Supervised Pre-training Guarantees

Definition F.1 (The Complete Version of Definition 3.1). For a class of algorithms {Alg
θ+

: θ+ ∈
Θ+}, we say Θ̃+ ¦ Θ+ is a Ä+-cover of Θ+, if Θ̃+ is a finite set such that for any θ+ ∈ Θ+, there

exists θ̃+ ∈ Θ̃+ such that for all Dt−1
+ , s ∈ S, t ∈ [T ], it holds that

∥∥∥log Alg
θ̃+

(·, ·|Dt−1
+ , s)− log Alg

θ+
(·|Dt−1

+ , s)
∥∥∥
∞
f Ä+.

The covering number NΘ+
(Ä+) is the minimal cardinality of Θ̃+ such that Θ̃+ is a Ä+-cover of Θ+.

Similarly, for a class of algorithms {Alg
θ−

: θ− ∈ Θ−}, we say Θ̃− ¦ Θ− is a Ä−-cover of

Θ−, if Θ̃− is a finite set such that for any θ− ∈ Θ−, there exists θ̃− ∈ Θ̃− such that for all

Dt−1
− , s ∈ S, t ∈ [T ], it holds that

∥∥∥log Alg
θ̃−

(·, ·|Dt−1
− , s)− log Alg

θ−
(·|Dt−1

− , s)
∥∥∥
∞
f Ä−.

The covering number NΘ−
(Ä−) is the minimal cardinality of Θ̃− such that Θ̃− is a Ä−-cover of Θ−.

Assumption F.2 (The Complete Version of Assumption 3.2). There exists θ∗
+ ∈ Θ+ such that there

exists ε+,real > 0, for all t ∈ [T ], s ∈ S , a ∈ A, it holds that

log

(
E
M∼Λ,D∼P

Alg0
M

[
Alg+,0(a|Dt−1

+ , s)

Alg
θ∗+

(a|Dt−1
+ , s)

])
f ε+,real.

Similarly, there exists θ∗
− ∈ Θ− such that there exists ε−,real > 0, for all t ∈ [T ], s ∈ S, b ∈ B, it

holds that

log

(
E
M∼Λ,D∼P

Alg0
M

[
Alg−,0(b|Dt−1

− , s)

Alg
θ∗−

(b|Dt−1
− , s)

])
f ε−,real.

Theorem F.3 (The Complete Version of Theorem 3.3). Let θ̂+ be the max-player’s pre-training output
defined in Section 3.1.1. Take NΘ+ = NΘ+(1/N) as in Definition F.1. Then, under Assumption F.2,
with probability at least 1− ¶, it holds that

E
M∼Λ,D∼P

Alg0
M


 ∑

t∈[T ],s∈S

TV
(
Alg+,0, Algθ̂+

|Dt−1
+ , s

)



= O


TS

√
ε+,real + TS

√
log
(
NΘ+

TS/¶
)

N


 .

Let θ̂− be the min-player’s pre-training output defined in Section 3.1.1. Take NΘ−
= NΘ−

(1/N) as
in Definition F.1. Then, under Assumption F.2, with probability at least 1− ¶, it holds that

E
M∼Λ,D∼P

Alg0
M


 ∑

t∈[T ],s∈S

TV
(
Alg−,0, Algθ̂− |D

t−1
+ , s

)



= O


TS

√
ε−,real + TS

√
log
(
NΘ−

TS/¶
)

N


 .

Proof of Theorem F.3. This theorem can be similarly proved as Theorem 3.3.

G Proofs for Realizing V-learning

In the following proof, we focus on the max-player’s perspective, which can be easily extended for
the min-player.
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G.1 Details of V-learning

The details of V-learning [32], discussed in Sec. 3.2, are presented in Alg. 3, where the following
notations are adopted

³n =
H + 1

H + n
, ´n = c ·

√
H3A log(HSAG/¶)

n
,

µn = ¸n =

√
H log(A)

An
, Én = ³n

(
n∏

Ä=2

(1− ³Ä )

)−1

.

After the learning process, V-learning requires an additional procedure to provide the output policy.
We include this procedure in Alg. 4, where the following notations are adopted

Ng,h(s) = the number of times s is visited at step h before episode g,

ghi (s) = the index of the episode s is visited at step h for the i-th time,

³n,i = ³i

n∏

j=i+1

(1− ³j).

Following the results in Jin et al. [32], we can obtain the following performance guarantee of
V-learning.

Theorem G.1 (Theorem 4 in Jin et al. [32]). With probability at least 1− ¶, in any environment M ,
the output policies (µ̂, ¿̂) from V-learning satisfy that

V  ,¿̂
M (s1)− V µ̂, 

M (s1) = O

(√
H5S(A+B) log(SABT/¶)

G

)
.

Thus, with ¶ = 1/T , we can obtain that

E
D∼P

V-learning

M

[
V  ,¿̂
M (s1)− V µ̂, 

M (s1)
]
= O

(√
H5S(A+B) log(SABT )

G

)
.

Algorithm 3 V-learning [32]

1: Initialize: for any (s, a, h) ∈ S ×A× [H], V h(s)← H +1−h, Nh(s)← 0, µh(a|s)← 1/A
2: for episode g = 1, · · · , G do
3: receive sg,1

4: for step h = 1, · · · , H do
5: Take action ag,h ∼ Ãh(·|sg,h), observe reward rg,h and next state sg,h+1

6: Update n = Nh(sg,h)← Nh(sg,h) + 1

7: Update Ṽ h(sg,h)← (1− ³n) Ṽ
h(sg,h) + ³n

(
rg,h + V h+1(sg,h+1) + ´n

)

8: Update V h(sg,h)← min
{
H + 1− h, Ṽ h(sg,h)

}

9: Compute ℓ̃hn(s
g,h, a)← H−rg,h−V h+1(sg,h+1)

H
· 1{a=ag,h}
µh(ag,h|sg,h)+µn

for all a ∈ A
10: Update µh(a|sg,h) ∝ exp

(
− ¸n

Én
·∑Ä∈[n] ÉÄ · ℓ̃hÄ (sg,h, a)

)
for all a ∈ A

11: end for
12: end for

G.2 An Additional Assumption About Transformers Performing Division

Before digging into the proof of Theorem 3.4, we first state the following assumption that there exists
one transformer that can perform the division operation.

Assumption G.2. There exists one transformer TFθ with

L = LD, max
l∈[L]

M (l) = MD, d′ = dD, ∥θ∥ = FD,
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Algorithm 4 V-learning Executing Output Policy µ̂ [32]

1: Sample g ∼ Unif(1, 2, · · · , G)
2: for step h = 1, · · · , H do
3: Observe sh and set n← Ng,h(sh)
4: Set g ← ghi (s

h) where i ∈ [n] is sampled with probability ³n,i

5: Take action ah ∼ µg,h(·|sh)
6: end for

such that for any x ∈ [0, 1], y ∈ [
√

log(A)/(AG),
√
log(A)/A + 1], φ > 0, with input H =

[h1, · · · ,he, · · · ], where

hi =

[
0
φ
0

]
, ∀i ̸= e; he =

[
x
y
0

]
,

the transformer can provide output H = [h1, · · · ,he, · · · ]

hi =




0
φ
0
0


 , ∀i ̸= e; he =




x
y

x/y
0


 .

We note that this assumption on performing exact division is only for the convenience of the proof
as one can approximate the division to any arbitrary precision only via one MLP layer with ReLU
activation.

In particular, let Ballk∞(R) = [−R,R]∞ denote the standard ℓ∞ ball in R
k with radius R > 0, we

introduce the following definitions and result.

Definition G.3 (Approximability by Sum of ReLUs, Definition 12 in Bai et al. [7]). A function
g : Rk → R is (εapprox, R,M,C)-approximable by sum of ReLUs, if there exists a “(M,C)-sum of
ReLUs” function

fM,C(z) =

M∑

m=1

cmÃ(a¦
m[z; 1])

with

M∑

m=1

|cm| f C, max
m∈[M ]

∥am∥1 f 1, am ∈ R
k+1, cm ∈ R

such that

sup
z∈Ballk∞(R)

|g(z)− fM,C(z)| f εapprox.

Definition G.4 (Sufficiently Smooth k-variable Function, Definition A.1 in Bai et al. [7]). We say a

function g : Rk → R is (R,Cℓ)-smooth if for s = +(k − 1)/2,+ 2, g is a Cs function on Ballk∞(R),
and

sup
z∈Ballk∞(R)

∥∇ig(z)∥∞ = sup
z∈Ballk∞(R)

max
j1,··· ,ji∈[k]

|∂zj1 ···zji g(z)| f Li

for all i ∈ {0, 1, · · · , s}, with

max
0fifs

LiR
i f Cℓ.

Proposition G.5 (Approximating Smooth k-variable Functions, Proposition A.1 in Bai et al. [7]). For
any εapprox > 0, R g 1, Cℓ > 0, we have the following: Any (R,Cℓ)-smooth function g : Rk → R

is (εapprox, R,M,C) approximable by sum of ReLUs with M f C(k)C2
ℓ log(1 + Cℓ/εapprox)/ε

2
approx

and C f C(k)Cℓ, where C(k) > 0 is a constant that depends only on k.
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Then, we can consider g(x, y) = (c1 + x)/(c2 + y) with c1 g 1, c2 g 1 + c′2 > 1, x ∈ [−1, 1] and
y ∈ [−1, 1]. It can be verified that

|g(x, y)| = c1 + x

c2 + y
f 1 + c1

c′2
; |∂xg(x, y)| =

1

c+ y
f 1

c′2
; |∂yg(x, y)| =

c1 + x

(c2 + y)2
f 1 + c1

(c′2)
2
;

|∂2
xg(x, y)| = 0; |∂2

yg(x, y)| =
2(c1 + x)

(c2 + y)3
f 2(1 + c1)

(c′2)
3

; |∂x∂yg(x, y)| =
1

(c+ y)2
f 1

(c′2)
2
;

|∂3
xg(x, y)| = 0; |∂3

yg(x, y)| =
6(c1 + x)

(c2 + y)4
f 6(1 + c1)

(c′2)
4

;

|∂2
x∂yg(x, y)| = 0; |∂x∂2

yg(x, y)| =
2

(c+ y)3
f 2

(c′2)
3
.

Then, from Definition G.4 there exists one Cl such that g(x, y) is (1, Cl)-smooth. Thus, by Proposi-
tion G.5, this function can be approximated by a sum of ReLUs (defined in Definition G.3). With this
observation, the division operation required in Assumption G.2 can be approximated.

G.3 Proof of Theorem 3.4: The Realization Construction

G.3.1 Embeddings and Extraction Mappings

We consider each episode of the max-player’s observations to be embedded in 2H tokens. In
particular, for each t ∈ [T ], we construct that

h2t−1 = h+(s
g,h) =




0A

0
sg,h

0A

0

pos2t−1



=:




h
pre,a
2t−1

h
pre,b
2t−1

h
pre,c
2t−1

h
pre,d
2t−1


 ,

h2t = h+(a
g,h, rg,h) =




ag,h

rg,h

0S

0A

0

pos2t



=:




h
pre,a
2t

h
pre,b
2t

h
pre,c
2t

h
pre,d
2t


 ,

where sg,h, ag,h are represented via one-hot embedding. The positional embedding posi is defined as

posi :=




g
h
t
eh
vi
i
i2

1




,

where vi := 1{ha
i = 0} denote the tokens that do not embed actions and rewards.

In summary, for observations Dt−1
+ ∪ {st}, we obtain the tokens of length 2t − 1 which can be

expressed as the following form:

H := h+(D
t−1
+ , st) = [h1,h2, · · · ,h2t−1] = [h+(s

1), h+(a
1, r1), · · · , h+(st)].

With the above input H , the transformer outputs H = TFθ+(H) of the same size as H . The
extraction mapping A is directly set to satisfy the following

A · h−1 = A · h2t−1 = h
c

2t−1 ∈ R
A,

i.e., the part c of the output tokens is used to store the learned policy.
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G.3.2 An Overview of the Proof

In the following, for the convenience of notations, we will consider step t+ 1, i.e., with observations
Dt

+ ∪ {st+1}. Given an input token matrix

H = h+(D
t
+, s

t+1) = [h1,h2, · · · ,h2t+1],

we construct a transformer to perform the following steps




h
pre,a
2t+1

h
pre,b
2t+1

h
pre,c
2t+1

h
pre,d
2t+1




step 1−−−→




h
pre,{a,b,c}
2t+1

N t(st)
⋆
0

pos2t+1




step 2−−−→




h
pre,{a,b,c}
2t+1

Ṽ t(st)
V t(st)

⋆
0

pos2t+1




step 3−−−→




h
pre,{a,b,c}
2t+1

ℓ̃n(s
t, ·)

µt(·|st)
⋆
0

pos2t+1




step 4−−−→




h
pre,{a,b}
2t+1

µt+1(·|st+1)
hd
2t+1


 :=




h
post,a
2t+1

h
post,b
2t+1

h
post,c
2t+1

h
post,d
2t+1


 ,

where n := Nh(sg,h).

To ease the notations, in the proof, we will slightly abuse TFθ as TFθ+
. The following provides a

sketch of the proof.

Step 1 There exists an attention-only transformer TFθ to complete Step 1 with

L = O(1), max
l∈[L]

M (l) = O(1), ∥θ∥ = O(HG)

Step 2 There exists a transformer TFθ to complete Step 2 with

L = O(HG), max
l∈[L]

M (l) = O(HS2), d′ = O(G), ∥θ∥ = O(G3 +GH),

Step 3 There exists a transformer TFθ to complete Step 3 with

L = O(GHLD), max
l∈[L]

M (l) = O(HSA+MD), d′ = O(dD +A+G),

∥θ∥ = O(GH2S + FD +G3),

Step 4 There exists a transformer TFθ to complete Step 4 with

L = O(1), max
l∈[L]

M (l) = O(HS), ∥θ∥ = O(HS +GH).

Thus, the overall transformer TFθ can be summarized as

L = O(GHLD), max
l∈[L]

M (l) = O(HS2 +HSA+MD), d′ = O(G+A+ dD),

∥θ∥ = O(GH2S +G3 + FD).

Also, from the later construction, we can observe that log(R) = Õ(1). The bound on the covering
number, i.e., log(NΘ+) can be obtained via Lemma I.4.

G.3.3 Proof of Step 1: Update Nh(sg,h).

From the proof of Step 1 in realizing UCB-VI in Lin et al. [38], we know that there exists a

transformer with 3 heads that for all t′ f t, can move st
′

, (at
′

, rt
′

) from ha
2t′−1 and hb

2t′ to hd
2t′+1

while maintaining hd
2t′ not updated. This constructed transformer is shown in Lin et al. [38] to be an

attention-only one with ReLU activation and

L = 2, max
l∈[L]

M (l) f 3, ∥θ∥ f O(HG).
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Then, still following Lin et al. [38], another attention-only transformer can be constructed so that
N t(st) can be computed in hd

2t+1. The constructed transformer has ReLU activation and

L = 2, max
l∈[L]

M (l) = O(1), ∥θ∥ = O(H).

In summary, at the end of Step 1, we can obtain that for all t′ f t,

hd
2t′ =

[
0

pos2t′

]
, hd

2t′+1 =




st
′

at
′

rt
′

N t′(st
′

)
0

pos2t′+1



,

with an attention-only transformer that uses ReLU activation and

L = 4, max
l∈[L]

M (l) = O(1), ∥θ∥ = O(HG).

G.3.4 Proof of Step 2: Compute Ṽ h(sg,h) and V h(sg,h)

In Step 2, let nt = N t(st), the following computations will be performed:

Ṽ t
new(s

t)← (1− ³nt)Ṽ t
old(s

t) + ³nt

(
rt + V t+1

old (st+1) + ´nt

)
,

V t
new(s

t)← min
{
H + 1− h, Ṽ t

new(s
t)
}
.

First, similar to Step 2 in realizing UCB-VI in Lin et al. [38], we can obtain ³nt′ and ´nt′ in each

hd
2t′+1 via a transformer with ReLU activation and

L = O(1), max
l∈[L]

M (l) = O(1), d′ = O(G), ∥θ∥ = O(G3).

Then, we can assume that the values of {Ṽ h
old(s), V

h
old(s) : h ∈ [H], s ∈ S} is already computed in

token hd
2Ä−1, and prove via induction to show that the set of new values can be computed in token

hd
2Ä+1, i.e.,

hd
2Ä−1 =




⋆
Ṽ 1:H

old (·)
V 1:H

old (·)
0

pos2Ä−1


 , hd

2Ä =

[
0

pos2Ä

]
, hd

2Ä+1 =

[
0

pos2Ä+1

]

compute−−−−→ hd
2Ä =

[
0

pos2Ä

]
, hd

2Ä+1 =




⋆
Ṽ 1:H

new (·)
V 1:H

new (·)
0

pos2Ä+1


 .

In the following, we will show that this one-step update can be completed via a transformer that
requires

L = O(1), max
l∈[L]

M (l) = O(HS2), d′ = O(G), ∥θ∥ = O(G3 +GH),

and the overall updates can be completed via stacking T similar transformers.

Step 2.1: Obtain Ä − |t′ − 1− Ä |.
First, we obtain an auxiliary value Ä − |t′ − 1 − Ä | in each hd

2t′−1 and hd
2t′ for all

t′ f t. In particular, we can construct three MLP layers with ReLU activation, i.e.,

{W (1)
1 ,W

(1)
2 ,W

(2)
1 ,W

(2)
2 ,W

(3)
1 ,W

(3)
2 } to sequentially compute that

[ 0 ]→ Ãr ([ t′ − 1− Ä ]) ;
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Ãr ([ t′ − 1− Ä ])→ Ãr ([ t′ − 1− Ä ]) + Ãr ([ Ä − t′ + 1 ]) = [ |t′ − 1− Ä | ]
[ |t′ − 1− Ä | ]→ [ Ä − |t′ − 1− Ä | ] .

It can be observed that Ä − |t′ − 1− Ä | reaches its maximum Ä at t′ = Ä + 1.

The required transformer can be summarized as

d′ = 1, ∥θ∥ = O(GH).

Step 2.2: Move Ṽ 1:H
old (·) and V 1:H

old (·).
Then, we move Ṽ 1:H

old (·) and V 1:H
old (·) from h2Ä−1 to h2Ä+1. In particular, we can construct that

Q1h2t′ =




v2t′ − 1
Ä − |t′ − 1− Ä |

−1
t′

1


 , Q1h2t′+1 =




v2t′+1 − 1
Ä − |t′ − Ä |
−1

t′ + 1
1


 ;

K1h2t′ =




1
1
Ä
−1

t′ + 1


 , K1h2t′+1 =




1
1
Ä
−1

t′ + 2


 ;

V1h2Ä−1 = (2Ä + 1)

[
Ṽ 1:h

old (·)
V 1:H

old (·)

]
, V1h2Ä = 0, V1h2Ä+1 = 0.

With ReLU activation, this construction leads to that

h2t′ = h2t′ +
1

2t′

∑

if2t′

Ãr (−1− |t′ − 1− Ä | − t′ + t(i) + 1) · V1hi = 0, ∀t′ f t

h2t′+1 = h2t′+1 +
1

2t′ + 1

∑

if2t′+1

Ãr (−|t′ − Ä | − t′ + t(i) + 1) · V1hi

=





1
2t′+1 (V1h2t′−1 + V1h2t′ + 2V1h2t′+1) =

[
Ṽ 1:h

old (·)
V 1:H

old (·)

]
if t′ = Ä

0 otherwise

.

The transformer required in Step 2.3 can be summarized as

L = 1, M (1) = O(1), ∥θ∥ = O(GH).

Step 2.3: Compute Ṽ 1:H
new (·) and V 1:H

new (·).
Finally, we get to compute Ṽ 1:H

new (·) and V 1:H
new (·), where

Ṽ Ä
new(s

Ä ) = Ṽ Ä
old(s

Ä )− ³nτ Ṽ Ä
old(s

Ä ) + ³nτ

(
rÄ + V Ä+1

old (sÄ+1) + ´nτ

)
.

We can have a HS-head transformer that

Qh,sh2t′ =




v2t′ − 1
Ä − |t′ − 1− Ä |

−1
t′

1
0

eh′

1
0




, Qh,sh2t′+1 =




v2t′+1 − 1
Ä − |t′ − Ä |
−1

t′ + 1
1

st
′

eh′+1

1
³nt′




,
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Kh,sh2t′ =




1
1
Ä
−1
t′

es
eh+1

−2
1




, Kh,sh2t′+1 =




1
1
Ä
−1

t′ + 1
es

eh+1

−2
1




,

Vh,sh2Ä+1 = −(2Ä + 1) · V h
old(s) · [ eh,s ] .

It holds that for all t′ f t,

h2t′ = h2t′ +
1

2t′

∑

h,s

∑

if2t′

Ãr (−1− |t′ − 1− Ä | − t′ + t(i) + eh′ · eh+1 − 2)Vh,shi = 0

h2t′+1 = h2t′+1 +
1

2t′ + 1

∑

h,s

∑

if2t′+1

Ãr

(
−|t′ − Ä | − t′ − 1 + t(i) + st

′ · es + eh′+1 · eh + ³nt′ − 2
)
Vh,shi

=

{
V 1:H

old (·)− ³nt′V h′

old(s
t′) · eh′,st′ if t′ = Ä

0 otherwise
,

which completes the computation (1− ³nτ )Ṽ Ä
old(s

Ä ).

Two similar HS-head transformers can further perform (1− ³nτ )Ṽ Ä
old(s

Ä ) + ³nτ rÄ + ³nτ´nτ . and

a similar HS2-head transformer can finalize Ṽ Ä
new(s

Ä ) as (1− ³nτ )Ṽ Ä
old(s

Ä ) + ³nτ rÄ + ³nτ´nτ +

³nτV Ä+1
old (sÄ+1).

Finally, from the proof of Step 3 in realizing UCB-VI in Lin et al. [38], one MLP layer can perform

V Ä
old(s

Ä ) = min
{
Ṽ Ä

new(s
Ä ), H − h+ 1

}
.

The required transformer in step 2.4 can be summarized as

L = 4, max
l∈[L]

M (l) = O(HS2), d′ = O(1), ∥θ∥ = O(GH).

Thus, we can see that the update of h2Ä+1 can be done. Repeating the similar step for each Ä ∈ [T ]
would complete the overall updates.

G.3.5 Proof of Step 3: Compute ℓ̃nt(sg,h, a) and µh(a|sg,h)
In step 3, let nt = N t(st), for step t, we update

ℓ̃tnt(st, a)← H − rt − V t+1(st+1)

H
· 1{a = at}
µt

old(a
t|st) + µnt

;

µt
new(a|st) ∝ exp


− ¸nt

Ént

·
∑

i∈[nt]

Éi · ℓ̃ti(st, a)


 .

First, similar to Step 2, we can obtain Ént′ , ¸nt′ /Ént′ and µnt′ in each hd
2t′+1 via a transformer with

ReLU activation and

L = O(1), max
l∈[L]

M (l) = O(1), d′ = O(G), ∥θ∥ = O(G3).

Denoting vectors L ∈ R
HSA and µ ∈ R

HSA containing the cumulative losses and policies, i.e.,∑
i∈[n] Éiℓ̃

h
i (s, a) and µh(a|s). Similar to step 2, we will assume that the values of {Lold,µold},
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which are computed via information before time Ä , are already contained in token hd
2Ä−1, and prove

via induction to show that the set of new values can be computed in token hd
2Ä+1, i.e.,

hd
2Ä−1 =




⋆
Lold

µold

0

pos2Ä−1


 , hd

2Ä =

[
0

pos2Ä

]
, hd

2Ä+1 =

[
0

pos2Ä+1

]

compute−−−−→ hd
2Ä =

[
0

pos2Ä

]
, hd

2Ä+1 =




⋆
Lnew

µnew

0

pos2Ä+1


 .

In the following, we will show that this one-step update can be completed via a transformer that
requires

L = O(LD), max
l∈[L]

M (l) = O(HSA+MD), d′ = O(dD +A), ∥θ∥ = O(GH2S + FD),

and the overall updates can be completed via stacking T similar transformers.

Step 3.1: Obtain Ä − |t′ − 1− Ä |.
First, similar to step 2.1, we can have an auxiliary value Ä − |t′ − 1− Ä | in each hd

2t′−1 and hd
2t′ for

all t′ < t via three MLP layers. The required transformer can be summarized as

d′ = 1, ∥θ∥ = O(GH).

Step 3.2: Compute ℓ̃Änτ (sÄ , a).

First, similar to Step 2.2, we can move Lold and µold from hd
2Ä−1 to hd

2Ä+1 while keeping other tokens
unchanged. In particular, we can construct that

Q1h2t′ =




v2t′ − 1
Ä − |t′ − 1− Ä |

−1
t′

1


 , Q1h2t′+1 =




v2t′+1 − 1
Ä − |t′ − Ä |
−1

t′ + 1
1


 ;

K1h2t′ =




1
1
Ä
−1

t′ + 1


 , K1h2t′+1 =




1
1
Ä
−1

t′ + 2


 ;

V1h2Ä−1 = (2Ä + 1)

[
Lold

µold

]
, V1h2Ä = 0, V1h2Ä+1 = 0.

With ReLU activation, this construction leads to that

h2t′ = 0, ∀t′ f t; h2t′+1 =





[ Lold

µold

]
if t′ = Ä

0 otherwise

.

Then, using similar constructions as Step 2.3, we can specifically extract V Ä+1(sÄ+1) and µÄ
old(a

Ä |sÄ )
to hd

2Ä+1 while keeping other tokens unchanged. Following the extraction, one MLP layer can com-

pute the value
H−rτ−V τ+1(sτ+1)

H
and add it to hd

2Ä+1. The required transformer can be summarized
as

L = O(1), max
l∈[L]

M (l) = O(HSA), d′ = 1, ∥θ∥ = O(GH).
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With Assumption G.2, for token h2Ä+1, we can further have one transformer to compute

ℓ̃Änτ (sÄ , aÄ ) =
H − rÄ − V Ä+1(sÄ+1)

H
· 1

µÄ
old(a

Ä |sÄ ) + µnτ

.

The overall required transformer can be summarized as

L = O(LD), max
l∈[L]

M (l) = O(HSA+MD), d′ = O(dD), ∥θ∥ = O(GH + FD).

Step 3.3: Update µÄ (a|sÄ ).
First, one transformer can be constructed to update Lold to Lnew in hd

2Ä+1. In particular, we can have

Qh,sh2t′ =




v2t′ − 1
Ä − |t′ − 1− Ä |

1
t′

1
0

eh′

1




, Qh,sh2t′+1 =




v2t′+1 − 1
Ä − |t′ − Ä |

1
t′ + 1
1

st
′

eh′+1

1




,

Kh,sh2t′ =




1
1
−Ä
−1
t′

es
eh+1

−1




, Kh,sh2t′+1 =




1
1
−Ä
−1

t′ + 1
es

eh+1

−1




,

Vh,sh2Ä+1 = −(2Ä + 1) · Lold(h, s, ·).

With ReLU activation, this construction leads to that

h2t′ = 0, ∀t′ f t; h2t′+1 =

{Lold(h(Ä), s
Ä , ·) if t′ = Ä

0 otherwise
.

With a similar A-head transformer, we can add Énτ · ℓ̃Änτ (sÄ , aÄ ) to Lold(h(Ä), s
Ä , aÄ ) and thus obtain

the new values Lnew(h(Ä), s
Ä , ·). Furthermore, a one-head transformer can obtain

h2Ä+1 =
¸nτ

Énτ

· Lnew(h(Ä), s
Ä , ·)

Finally, with another softmax MLP layer, we can obtain µÄ
new(·|sÄ ).

The required transformer can be summarized as

L = O(1), max
l∈[L]

M (l) = O(HS +A), d′ = O(A), ∥θ∥ = O(GH2S).

G.3.6 Proof of Step 4: Obtain µh+1(·|sh+1)

This step is essentially the same as Step 6 in realizing VI-ULCB, which can be completed with a
transformer that

L = 1, M (1) = HS, ∥θ∥ = O(HS).

H Proofs for the Decentralized Overall Performance

Proof of Theorem 3.5. We use the decomposition that

E
M∼Λ,D∼P

Alg
θ̂

M

[
V  ,¿̂
M (s1)− V µ̂, 

M (s1)
]
= E

M∼Λ,D∼P
Alg0
M

[
V  ,¿̂
M (s1)− V µ̂, 

M (s1)
]
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+ E
M∼Λ,D∼P

Alg
θ̂

M

[
V  ,¿̂
M (s1)

]
− E

M∼Λ,D∼P
Alg0
M

[
V  ,¿̂
M (s1)

]

+ E
M∼Λ,D∼P

Alg0
M

[
V µ̂, 
M (s1)

]
− E

M∼Λ,D∼P
Alg

θ̂

M

[
V µ̂, 
M (s1)

]
.

First, via Theorem G.1, it holds that

E
M∼Λ,D∼P

Alg0
M

[
V  ,¿̂
M (s1)− V µ̂, 

M (s1)
]
= O

(√
H5S(A+B) log(SABT )

G

)
.

Then, via Lemma 3.6 and Theorem 3.3, we can obtain that

E
M∼Λ,D∼P

Alg0
M

[
V µ̂, 
M (s1)

]
− E

M∼Λ,D∼P
Alg

θ̂

M

[
V µ̂, 
M (s1)

]

= O


H ·

∑

t∈[T ],s∈S

E³

[
TV
(
µt
³, µ

t
´ |Dt−1

+ , s
)
+ TV

(
¿t³, ¿

t
´ |Dt−1

− , s
)]



= O


THS

√
ε+,real + THS

√
ε−,real + THS

√
log
(
NΘ+TS/¶

)

N
+ THS

√
log
(
NΘ−

TS/¶
)

N


 ,

and similarly,

E
M∼Λ,D∼P

Alg
θ̂

M

[
V  ,¿̂
M (s1)

]
− E

M∼Λ,D∼P
Alg0
M

[
V  ,¿̂
M (s1)

]

= O


THS

√
ε+,real + THS

√
ε−,real + THS

√
log
(
NΘ+

TS/¶
)

N
+ THS

√
log
(
NΘ−

TS/¶
)

N


 .

With Theorem 3.4 providing that ε+,real = ε−,real = 0, combining the above terms completes the
proof of the regret bound. The bound on the covering number, i.e., log(NΘ+) and log(NΘ−

) can be
obtained via Lemma I.4.

In the following, we provide the proof for the Lemma 3.6, which plays a key role in the above proof
of the overall performance.

Proof of Lemma 3.6. It holds that

E
D∼P

Algα
M

[
V µ̂α, 
M (s1)

]
− E

D∼P
Algβ
M

[
V

µ̂β , 
M (s1)

]

= E
D∼P

Algα
M

[
V µ̂α, 
M (s1)− V

µ̂β , 
M (s1)

]

︸ ︷︷ ︸
:=(term I)

+E
D∼P

Algα
M

[
V

µ̂β , 
M (s1)

]
− E

D∼P
Algβ
M

[
V

µ̂β , 
M (s1)

]

︸ ︷︷ ︸
:=(term II)

.

Denoting f(DH) =
∑

h∈[H] r
h, we can obtain that

V µ̂α, 
M (s1)− V

µ̂β , 
M (s1)

(a)

f V
µ̂α,¿ (µ̂β)
M (s1)− V

µ̂β ,¿ (µ̂β)
M (s1)

(b)
=

1

G

∑

g∈[G]

[
V

µ̂g
α,¿ (µ̂β)

M (s1)− V
µ̂
g

β
,¿ (µ̂β)

M (s1)
]

f 1

G

∑

g∈[G]

∑

h∈[H]

[
E
D1:h∼P

µ̂
g
α,ν (µ̂β)

M
,Dh+1:H∼P

µ̂
g
β
,ν (µ̂β)

M

[
f(DH)

]]

− 1

G

∑

g∈[G]

∑

h∈[H]

[
E
D1:h−1∼P

µ̂
g
α,ν (µ̂β)

M
,Dh:H∼P

µ̂
g
β
,ν (µ̂β)

M

[
f(DH)

]]

(c)

f 2H

G

∑

g∈[G]

∑

h∈[H]

E
D1:h−1∼P

µ̂
g
α,ν (µ̂β)

M
,sh

[
TV
(
µ̂g,h
³ × ¿h (µ̂´)(·, ·|sh), µ̂g,h

´ × ¿h (µ̂´)(·, ·|sh)
)]
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=
2H

G

∑

g∈[G]

∑

h∈[H]

E
D1:h−1∼P

µ̂
g
α,ν (µ̂β)

M
,sh

[
TV
(
µ̂g,h
³ (·|sh), µ̂g,h

´ (·|sh)
)]

(d)
=

2H

G

∑

g∈[G]

∑

h∈[H]

E
D1:h−1∼P

µ̂
g
α,ν (µ̂β)

M
,sh


TV


∑

i∈[n]

³n,iµ
gi,h
³ (·|sh),

∑

i∈[n]

³n,iµ
gi,h
´ (·|sh)






(e)

f 2H

G

∑

g∈[G]

∑

h∈[H]

E
D1:h−1∼P

µ̂
g
α,ν (µ̂β)

M
,sh


∑

i∈[n]

³n,iTV
(
µgi,h
³ (·|sh), µgi,h

´ (·|sh)
)



f 2H

G

∑

g∈[G]

∑

h∈[H]

∑

s∈S

∑

i∈[n]

³n,iTV
(
µgi,h
³ (·|s), µgi,h

´ (·|s)
)

(f)

f 2H
∑

g∈[G]

∑

h∈[H]

∑

s∈S

TV
(
µg,h
³ (·|s), µg,h

´ (·|s)
)
,

where (a) is from the definition of best responses, (b) uses the notation µ̂g to denote the output policy
from Alg. 4 with the initial random sampling result to be g, (c) uses the variational representation
of the TV distance, (d) uses the abbreviations n = Ng,h(sh) and gi = ghi (s

h), (e) leverages the
property of TV distance, and (f) uses the fact that ³n,i < 1.

With the above result, we can further obtain that

(term I) := E
D∼P

Algα
M

[
V µ̂α, 
M (s1)− V

µ̂β , 
M (s1)

]
f E

D∼P
Algα
M


2H

∑

t∈[T ]

∑

s∈S

TV
(
µt
³(·|s), µt

´(·|s)
)

 .

Also, for term (II), denoting g(D) = V
µ̂β , 
M (s1), it holds that

(term II) := E
D∼P

Algα
M

[
V

µ̂β , 
M (s1)

]
− E

D∼P
Algβ
M

[
V

µ̂β , 
M (s1)

]

=
∑

t∈[T ]

E
Dt∼P

Algα
M

,Dt+1:T∼P
Algβ
M

[g(D)]−
∑

t∈[T ]

E
Dt−1∼P

Algα
M

,Dt:T∼P
Algβ
M

[g(D)]

f 2H
∑

t∈[T ]

E
Dt−1∼P

Algα
M

,st

[
TV
(
Alg³(·, ·|Dt−1, st), Alg´(·, ·|Dt−1, st)

)]

f 2H
∑

t∈[T ]

∑

s∈S

E
Dt−1∼P

Algα
M

[
TV
(
µt
³(·|Dt−1

+ , st), µt
´(·, ·|Dt−1

+ , sh)
)]

+ 2H
∑

t∈[T ]

∑

s∈S

E
Dt−1∼P

Algα
M

[
TV
(
¿t³(·|Dt−1

+ , s), ¿t´(·, ·|Dt−1
+ , s)

)]
.

Combining (term I) and (term II) concludes the proof.

I Discussions on the Covering Number

In the following, we characterize the covering number of algorithms induced by transformers parame-
terized by θ ∈ Θd,L,M,d′,F , i.e., {Alg

θ
: θ ∈ Θd,L,M,d′,F }. Here we will mainly take the perspective

of the centralized setting, while the extension to the decentralized setting is straightforward.

To facilitate the discussion, we introduce the following clipped transformer, where an additional clip
operator is adopted to bound the output of the transformer.

Definition I.1 (Clipped Decoder-based Transformer). An L-layer clipped decoder-based transformer,

denoted as TFR
θ (·), is a composition of L masked attention layers, each followed by an MLP layer

and a clip operation: TFR
θ (H) = H(L) ∈ R

d×N , where H(L) is defined iteratively by taking

H(0) = clipR(H) ∈ R
d×N and for l ∈ [L],

H
(l)

= clip
R

(

MLP
θ
(l)
mlp

(

Attn
θ
(l)
mattn

(

H
(l−1)

))

)

∈ R
d×N

,

where clipR(H) = [proj∥h∥2fR(hi) : i ∈ [N ]].
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Furthermore, for · ∈ (0, 1], we define the following ·-biased algorithm induced by transformer

TFR
θ (H) as

Alg
·
θ
(·, ·|Dt−1, st) = (1− ·) · proj∆

(
E · TFR

θ

(
h(Dt−1, st)

)
−1

)
+

·

AB
· 1AB ,

with 1AB denoting an all-one vector of dimension AB, which introduces a lower bound ·/AB for
the probably each pair (a, b) ∈ A× B to be sampled.

Finally, for any H = [h1, · · · ,hN ] ∈ R
d×N , we denote

∥H∥2,∞ := max
i∈[N ]

∥hi∥2.

Proposition I.2 (Modified from Proposition J.1 in Bai et al. [7]). For any θ1,θ2 ∈ Θd,L,M,d′,F , we
have

∥TFR
θ1
(H)− TFR

θ2
(H)∥2,∞ f LFL−1

H FΘ∥θ1 − θ2∥,
where FΘ := FR(2 + FR2 + F 3R2) and FH := (1 + F 2)(1 + F 2R3).

Proof. This proposition can be obtained similarly as Proposition J.1 in Bai et al. [7] with the following
Lemma I.3 in the place of Lemma J.1 in Bai et al. [7].

Lemma I.3 (Modified from Lemma J.1 in Bai et al. [7]). For a single MLP layer θmlp = (W1,W2),
we introduce its norm

∥θmlp∥ = ∥W1∥op + ∥W2∥op.

For any fixed hidden dimension D′, we consider

Θmlp,F := {θmlp : ∥θmlp∥ f F}.
Then, for any H ∈ HR,θmlp ∈ Θmlp,F , it holds that MLPθmlp

(H) is 2FR-Lipschitz in θmlp and

(1 + F 2)-Lipschitz in H .

Proof. It holds that

∥MLPθmlp
(H)−MLPθ′

mlp
(H)∥2,∞

= max
i
∥W2Ã(W1hi)−W ′

2Ã(W
′
1hi)∥2

f max
i
∥W2 −W ′

2∥op∥Ã(W ′
1hi)∥2 + ∥W ′

2∥op∥Ã(W1hi)− Ã(W ′
1hi)∥2

(a)

f max
i
∥W2 −W ′

2∥op max{1, ∥W1hi∥2}+ ∥W ′
2∥op∥W1hi −W ′

1hi∥2
f (1 + FR)∥W2 −W ′

2∥op + FR∥W1 −W ′
1∥2.

Inequality (a) is from that

∥Ãr(x)∥2 f ∥x∥2, ∥Ãs(x)∥2 f 1,

and

∥Ãr(x)− Ãr(y)∥2 f ∥x− y∥2, ∥Ãs(x)− Ãs(y)∥2 f ∥x− y∥2,
where the last result on the Lipschitzness of softmax is adopted from Gao and Pavel [25].

Similarly, we can obtain that

∥MLPθmlp
(H)−MLPθmlp

(H ′)∥2,∞
= max

i
∥hi +W1Ã(W2hi)− h′

i −W1Ã(W2h
′
i)∥

f ∥H −H ′∥2,∞ + ∥W1∥op max
i
∥Ã(W2hi)− Ã(W2h

′
i)∥2

f ∥H −H ′∥2,∞ + ∥W1∥op max
i
∥W2hi −W2h

′
i∥2

f ∥H −H ′∥2,∞ + F 2∥H −H ′∥2,∞,

which concludes the proof.
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Lemma I.4 (Modified from Lemma 16 in Lin et al. [38]). For the space of transformers {TFR
θ : θ ∈

Θd,L,M,d′,F }, the covering number of the induced algorithms {Alg·
θ
: θ ∈ Θd,L,M,d′,F } satisfies

that

logNΘd,L,M,d′,F
(Ä) = O

(
L2d(Md+ d′) log

(
1 +

max{F,R,L}
·Ä

))
.

Proof. First, similar to Lemma 16 in Lin et al. [38], we can use Example 5.8 in Wainwright [61]
to obtain that the ¶-covering number of the ball B∥·∥(F ) with radius F under norm ∥ · ∥, i.e.,

B∥·∥(F ) = {θ : ∥θ∥ f F}, can be bounded as

logN(¶;B∥·∥(F ), ∥ · ∥) f L(3Md2 + 2dd′) log(1 + 2F/¶).

Recall that the projection operation to a probability simplex is Lipschitz continuous, i.e.,

∥proj∆(x)− proj∆(y)∥2 f ∥x− y∥2.
Then, we can see that there exists a subset Θ̃ ¢ Θd,L,M,d′,F with size

log |Θd,L,M,d′,F | f L(3Md2 + 2dd′) log(1 + 2F/¶)

such that for any θ ∈ Θd,L,M,d′,F , there exists θ̃ ∈ Θ̃ with
∥∥∥log Alg·

θ̃
(·, ·|Dt−1, s)− log Alg·

θ
(·, ·|Dt−1, s)

∥∥∥
∞

f AB

·

∥∥∥Alg·
θ̃
(·, ·|Dt−1, s)− Alg

·
θ
(·, ·|Dt−1, s)

∥∥∥
∞

f AB

·

∥∥TFR

θ̃
(H)− TFR

θ (H)
∥∥
2,∞

f AB

·
· LFL−1

H FΘ · ∥θ − θ̃∥

f AB

·
LFL−1

H FΘ¶.

Let ¶ = ·Ä

ABLFL−1
H

FΘ
, we can obtain ∥ log Alg·

θ̃
(·, ·|Dt−1, s)− log Alg·

θ
(·, ·|Dt−1, s)∥∞ f Ä, which

proves that

log(NΘd,L,M,d′,F
(Ä))

f L(3Md2 + 2dd′) log(1 + 2F/¶)

= L(3Md2 + 2dd′) log

(
1 +

ABLFL−1
H FΘ

·Ä

)

= O

(
L(3Md2 + 2dd′) log

(
1 +

ABL(1 + F 2)L−1(1 + F 2R3)L−1FR(2 + FR2 + F 3R2)

·Ä

))

= O

(
L2(Md2 + dd′) log

(
1 +

max{A,B, F,R, L}
·Ä

))
,

which concludes the proof.

From the transformer construction in the proofs for Theorems 3.4 and 4.1, we can observe that it

is sufficient to specify one R with log(R) = Õ(1) without impacting the transformers’ operations.
Also, in Theorems 3.3 and C.3, Ä is taken to be 1/N .

Finally, for the introduced · parameter, it can be recognized that the induced algorithms discussed
in the main paper, i.e. Alg

θ
, can be interpreted as · = 0, which does not lead to a meaningful

log(NΘd,L,M,d′,F
(Ä)) provided in Lemma I.4. However, a non-zero · can tackle this situation by only

introducing an additional realization error. Especially, assuming Assumption C.2 can be achieved
with εreal = 0, i.e., exactly realizing the context algorithm (as in Theorem 4.1), we can obtain that

log

(
E
D∼P

Alg0
Λ

[
Alg0(a, b|Dt−1, s)

Alg
·
θ∗
(a, b|Dt−1, s)

])
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= log

(
E
D∼P

Alg0
Λ

[
Alg0(a, b|Dt−1, s)

Alg
θ∗
(a, b|Dt−1, s)

· Algθ∗(a, b|D
t−1, s)

Alg
·
θ∗
(a, b|Dt−1, s)

])

= log

(
E
D∼P

Alg0
Λ

[
Alg

θ∗
(a, b|Dt−1, s)

(1− ·) · Alg
θ∗
(a, b|Dt−1, s) + ·/(AB)

])

f log

(
1

(1− ·) + ·/(AB)

)

f log

(
1

1− ·

)
.

With · = O(1/N), an additional realization error εreal = O(1/N) occurs, whose impact
on the overall performance bound (i.e., Theorems 3.5 and 4.2) is non-dominating. As a re-
sult, for the parameterization provided in Theorem 4.1, a covering number satisfies log(NΘ) =

Õ(poly(GHSAB) log(N)) can be obtained. Similarly, the results can be extended to the decen-
tralized setting, where for the parameterization provided in Theorem 3.4, it holds that log(NΘ+

) =

Õ(poly(GHSALDMDdD) log(NFD)).

J Details of Experiments

J.1 Detail of Games

• The normal-form games for the decentralized setting. The normal-form games (i.e., matrix
games) used in decentralized experiments of Sec. 5 have A = B = 5 actions for both players and
G = 3000 episodes (i.e., a horizon of T = 3000 with H = 1), which can be interpreted as having
S = 1 state.

• The Markov games for the centralized setting. The Markov games used in centralized exper-
iments of Sec. 5 have A = B = 5 actions for both players, S = 4 states, H = 2 steps in each
episode and G = 300 episodes (i.e., a horizon of T = GH = 600). The transitions are fixed for
different games: when both players take the same actions, the state transits to the next one (i.e.,
1→ 2, · · · , 4→ 1); otherwise, the state stays the same.

At the start of each game (during both training and inference), a A × B reward matrix Rh(s, ·, ·)
is generated for each step h ∈ [H] and state s ∈ S with its elements independently sampled from
a standard Gaussian distribution truncated on [0, 1]. Then, the interactions proceed as follows: at
each time step h ∈ [H], the players select action a and b on state s based on their computed policy
distributions. After selecting their actions, the players receive rewards Rh(s, a, b) and −Rh(s, a, b),
respectively, while the state transits to the new one.

J.2 Collection of Pre-training Data

• The EXP3 algorithm for the decentralized setting. In the decentralized setting, both players
are equipped with the EXP3 algorithm [5] to collect pre-training data. Up to time step t, the
trajectory of the max-player is recorded as “a1, r1, · · · , at, rt”, and that of the min-player as “b1, 1−
r1, · · · , bt, 1− rt”,

• The VI-ULCB algorithm for the centralized setting. In the centralized setting, both players
jointly follow the VI-ULCB algorithm [8] to collect pre-training data. Up to time step t, the trajectory
is recorded as “s1, a1, b1, r1, 1− r1, · · · , st, at, bt, rt, 1− rt”.

We note that the decimal digits of the rewards are limited to two to facilitate tokenization, while
1 − ri instead of −ri is adopted for the min-player to avoid the additional complexity of negative
numbers.

J.3 Transformer Structure and Training

The transformer architecture employed in our experiments is primarily based on the well-known
GPT-2 model [43], and our implementation follows the miniGPT realization3 for simplicity. The

3https://github.com/karpathy/minGPT
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numbers of transformer layers and attention heads have been modified to make the entire transformer
much smaller. In particular, we utilize a transformer with 2 layers and 4 heads. Given that the
transformer is used to compute the policy, we modify the output layer of the transformer to make it
aligned with the action dimension. We focus solely on the last output from this layer to determine the
action according to the computed transformer policy.

For the training procedure, we use one Nvidia 6000 Ada to train the transformer with a batch size of
32, trained for 100 epochs, and we set the learning rate as 5 × 10−4. The experimental codes are
available at https://github.com/ShenGroup/ICGP.

J.4 Performance Measurement

To test the performance of the pre-trained transformer (in particular, how well it approximates EXP3
and VI-ULCB), we adopt the measurement of Nash equilibrium gap. In particular, for either the
transformer induced policy or EXP3, we denote the max-player’s policy at time step t as µt, and the
min-player’s policy at time step t as ¿t. Furthermore, the average policy is computed as

µ̄t =
1

t

∑

Ä∈[t]

µt, ¿̄t =
1

t

∑

Ä∈[t]

¿t.

The NE gap at step t is computed as

max
a∈A

R¿̄t −min
b∈B

(µ̄t)¦R.

For VI-ULCB, the process is similar except that µt and ¿t are taken as the marginalized policies
of the joint policy learned at step t while the NE gap is cumulated over one episode. The NE gaps
averaged over 10 randomly realized games at each step are plotted in Fig. 2.
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Guidelines:
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NA answer to this question will not be perceived well by the reviewers.
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2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
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violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.
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to make their results reproducible or verifiable.
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• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

44



(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
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Justification: The computer resources used to perform the experiments reported in this work
are described in Appendix J.
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Justification: We have included the URL of the adopted transformer model in Appendix J,
which is under a standard MIT license.
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• The authors should cite the original paper that produced the code package or dataset.

• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.

• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: No new assets have been released with this work.

Guidelines:

• The answer NA means that the paper does not release new assets.

• Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.
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Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
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and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
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