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Abstract

Recent works have demonstrated the effective-

ness of self-alignment in which a large lan-

guage model is aligned to follow general in-

structions using instructional data generated

from the model itself starting from a hand-

ful of human-written seeds. Instead of gen-

eral alignment, in this work, we focus on

self-alignment for expert domain specializa-

tion (e.g., biomedicine, finance). As a pre-

liminary, we quantitively show the marginal

effect that generic instruction-following train-

ing has on downstream expert domains’ per-

formance. To remedy this, we propose self-

specialization - allowing for effective model

specialization while achieving cross-task gen-

eralization by leveraging only a few labeled

seeds. Self-specialization offers a data- and

parameter-efficient way of “carving out” an ex-

pert model out of a generalist pre-trained LLM.

Exploring a variety of popular open large mod-

els as a base for specialization, our experimen-

tal results in both biomedical and financial do-

mains show that our self-specialized models

outperform their base models by a large mar-

gin, and even larger models that are generally

instruction-tuned or that have been adapted to

the target domain by other means.

1 Introduction

Instruction-tuning (Ouyang et al., 2022; Wei et al.,

2022; Mishra et al., 2022; Su et al., 2022) of

large language models (LLMs) offers a mechanism

to adeptly guide models using specific directives,

thereby enhancing their versatility across diverse

tasks. However, as promising as this concept might

seem, it poses an inherent challenge: the substan-

tial need for quality data (Chung et al., 2022; Wan

et al., 2023; Köpf et al., 2023). The very premise

of instruction-tuning hinges on the availability of

well-crafted, human-annotated data, a resource that
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Figure 1: Self-specialization concept. Expertise in vari-

ous domains is mixed and latent within base LLMs, and

can be carved out through self-specialization.

is both time-consuming and challenging to scale ef-

ficiently (Honovich et al., 2022; Kang et al., 2023).

When it comes to specialized domains, such as

biomedicine, it is more challenging to acquire hu-

man labels, due to the need for expert annotators

(Wang et al., 2023b). While adaptation through

in-domain pre-training (Gururangan et al., 2020;

Wu et al., 2023) has been shown to be effective,

this approach requires extensive (unlabeled) target-

domain data, in addition to significant computa-

tional resources. Moreover, prior work has shown

the benefits of adaptive pre-training can be less than

those achieved by moderate amounts of fine-tuning

data from the target domain (Bai et al., 2021).

Emerging as a promising solution to this data-

intensive challenge in the context of instruction-

tuning is the approach of self-alignment (Wang

et al., 2022a; Sun et al., 2023). By allowing LLMs

to automatically generate instructional data from

minimal human-authored seeds, self-alignment

presents a means to harness the internal general

knowledge of models, which results from exten-

sive pre-training on internet corpora (Devlin et al.,

2019; Raffel et al., 2020; Brown et al., 2020), with-

out extensive human annotations.

However, a pertinent question remains: How ef-

fective are the self-aligned models when applied to

more niche domains, such as biomedicine? Given
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that both the initial pre-training and subsequent self-

alignment are general, the knowledge embedded

in LLM parameters may be a mixture of semantics

and various domains. This raises questions about

their effectiveness in specialized domains, despite

the aims of instruction-tuning and self-alignment

for cross-task generalization. In our preliminary

study, however, we find that existing models such

as Alpaca (Taori et al., 2023) and Dromedary (Sun

et al., 2023), although aligned, exhibit only a mod-

est degree of improvement within the specialized

domains. These observations underline the need for

focused approaches that can leverage the domain

expertise existing in the base models, to ensure the

self-generated instruction-tuning data remains both

contextually appropriate and accurate.

In this work, we explore the possibility of self-

specialization (Fig. 1). Drawing inspiration from

the foundational principles of self-alignment, self-

specialization goes a step further by incorporating

domain-specific seed instructions and is further bol-

stered by parameter-efficient fine-tuning, as well as

optional iterative refinement and retrieval compo-

nents. Our goal is to guide models beyond generic

alignment, directing them to generate data that are

not just contextually fitting for a specialized do-

main but also maintain high accuracy.

We evaluate our self-specialized models within

the biomedical and finance domains (20 datasets

in total), and across a variety of base models that

we specialize. Surprisingly, despite the simplic-

ity of our approach, our results present a com-

pelling case for self-specialization significantly

outperforming the base models, and even larger

models that are generally instruction-tuned or

specifically pre-trained on the target domain. No-

tably, our self-specialized one based on MPT-30B

(Team, 2023) for biomedicine even surpasses larger

models (based on LLaMA-65B (Touvron et al.,

2023a)), including the ones improved through self-

alignment by leading methods (Wang et al., 2022a;

Sun et al., 2023).

2 Preliminaries: Benchmarking Existing

Aligned Models

To motivate our exploration of self-specialization,

we first begin by addressing a fundamental ques-

tion: How well do generally aligned models per-

form on specialized domains? While popular

models, such as Alpaca (Taori et al., 2023) and

Dromedary (Sun et al., 2023), have demonstrated

BASE ALIGNED

Model LLaMA-65B Alpaca-65B Dromedary-65B

Averaged
43.87

46.39 45.10

F1-SCORE (+2.52) (+1.23)

Table 1: Benchmarking results of a base LLaMA-65B

and its aligned variants in a biomedical domain. The

evaluation covers various NLP tasks such as question

answering, information extraction, and classification.

5-shot results averaged across 10 datasets are presented.

effectiveness in following general instructions, it re-

mains unclear whether general alignment can also

elicit expertise for a certain domain.

Investigating this, we assess the capabilities of

Alpaca and Dromedary against their base model,

LLaMA-65B (Touvron et al., 2023a), on a collec-

tion of benchmarks within the biomedical domain.

We evaluate Alpaca as an upper bound, due to its

reliance on GPT-3.5-generated datasets (Ouyang

et al., 2022) via the self-instruct process (Wang

et al., 2022a), unlike Dromedary, which generates

instructional data from its base model. We use 10

biomedical NLP datasets (see Section 4 for details),

covering a diverse set of tasks to ensure a com-

prehensive mix of content and also to look at the

cross-task generalization, the core of instruction-

tuning. Table 1 summarizes the result.

We find that both Alpaca and Dromedary have

only a slight (1.2 - 2.5) advantage over LLaMA

in biomedicine. While they are aligned to handle

a broad set of instructions, they do not seem to

effectively improve their specialized domain exper-

tise; intuitively trading their expertise for generality

given finite parameters. In light of these findings,

it becomes evident that for cases where we are

only interested in expert domains for all our down-

stream tasks, there remains a large potential for

improvement beyond the generic alignment. This

underscores the need for a model or approach, like

self-specialization, that could potentially uncover

specialization while maintaining cross-task gener-

alizability with minimal supervision.

3 Self-Specialization

In this section, we describe our method called self-

specialization illustrated in Figure 2.

3.1 Seed Demonstrations

Initially, we utilize a curated set of seed demonstra-

tions S, consisting of a triplet (i, c, y), comprised
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Figure 2: Self-Specialization overview. (a) We start with a small set of human-authored domain-specific seed

instructions. The base model crafts synthetic instructions and corresponding input contexts tailored to that particular

domain. Subsequently, during the response generation phase, responses are curated given the generated instruction

and input pairs, optionally enhanced by infusing domain-relevant knowledge obtained via a retrieval component or

iterative re-generation via our previous self-specialized model. Finally, in the specialization phase, the base model is

tuned for specialization (w/ QLoRA) to uncover its target domain expertise. (b) Conceptually speaking, this process

can be described as uncovering latent expertise within LLMs.

of instruction i, a context c (e.g., passage), and a

response y, respectively. Recognizing the difficulty

of acquiring domain-specific data in real-world sce-

narios (Bai et al., 2021), we aim for a very mini-

mal number of seeds: only 80 for the biomedical

domain and 90 for the financial domain1. We lever-

age established datasets such as Box (Parmar et al.,

2022) for seed construction to fairly ensure quality

(detailed in Section 4). These seeds capture essen-

tial domain concepts but are insufficient to cover

the entirety of domain knowledge. We posit that

domain-relevant information, intermingled with the

vast array of other information acquired during pre-

training, can be effectively accessed and better uti-

lized through our self-specialization approach, en-

abling these models to enhance their performance

in specialized domains. Seeds provide the primary

scaffold upon which subsequent domain-specific

1While manual annotation of seed data is an assumed pre-
requisite for this initial step in self-alignment, we consider
those numbers to be reasonable to annotate.

instructions are built.

3.2 Domain-Specific Instruction Generation

With the seed instructions in place, we move to gen-

erating domain-specific instructions. While these

new instructions are grounded in the initial seeds,

they grow to cover a comprehensive scope of the

domain. Specifically, a base model Mbase, such

as MPT-30B (Team, 2023) which is large enough,

is prompted to produce new combinations of (i, c)
given a handful of seed demonstrations which are

randomly sampled from the initial seeds pool. The

newly formed instructions i, coupled with their cor-

responding input contexts c, shape a blueprint that

the model utilizes in the following stages.

3.3 Domain-Specific Response Generation

In this phase, it is crucial for the responses not

only to be correct but also to be well-aligned with

the target domain. Intuitively, as this phase is

conditioned on domain-specific instructions {i}
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and corresponding contexts {c}, derived from

domain-specific seeds, it may be sufficient to

rely on the base model itself to generate domain-

specific responses. As an additional effort, we ex-

plore whether leveraging external domain-relevant

knowledge would be beneficial for this case, in-

spired by Frisoni et al. (2022). Therefore, we op-

tionally allow Mbase to incorporate external knowl-

edge via a retrieval component Mret. Specifically,

forming the query x as a concatenation of i and c,

Mret fetches top-k relevant documents d1:k.

d1:k = Mret(x = i⊕ c)

Then, each document dj is independently paired

with the query x to form a prompt to Mbase, and

the final domain-specific responses y are produced

from the final distribution computed by marginal-

izing over the probabilities of each of these k-

combinations at each generation step.

p(y|x) =
t∏

i

k∑

j

pret(dj |x;Mret) plm(yi|x, dj , y1:i−1;Mbase)

where pret is a relevance score (similarity) from a

retriever module and plm represents the language

model distribution. By integrating such external

information, while domain-relevant knowledge is

deemed latent within LLMs, this step further en-

courages the generated target responses to be more

nuanced and domain-specific, leading to additional

improvements (Section 5.2).

3.4 Triggering Specialization

Upon establishing a set of domain-specific instruc-

tions/responses, Mbase undergoes tuning using the

self-generated data, adjusting its internal parame-

ters to cater specifically to the domain’s nuances.

This step is crucial, marking the model’s trans-

formation from being generally competent to be-

ing domain-specialized while preserving cross-task

generalizability, thus resulting in the final self-

aligned domain-specialized model: Maligned.

3.5 Iterative Self-Specialization

In the spirit of continuous improvement, our

approach optionally supports iterative self-

specialization via re-generating instructions and

responses with the better-aligned model Maligned.

This process has the potential of refining the

model’s domain expertise with each iteration (of

considering the previous iteration Maligned as base

each time), iteratively improving its responses.

4 Experimental Settings

Datasets. For our primary evaluation, we employ

various biomedical NLP datasets, most of which

are curated in BIGBIO (Fries et al., 2022). A to-

tal of 10 different datasets are adopted to encom-

pass a wide range of NLP tasks: Question Answer-

ing (QA), Named Entity Recognition (NER), Re-

lation Extraction (RE), Sentiment Analysis (SA),

and Document Classification (DC). Following a

prior work (Parmar et al., 2022), all datasets are

transformed into instructional data. Additionally,

we validate our method in the financial domain to

showcase its generalizability. We adopt a total of

10 diverse datasets, covering numerous NLP tasks:

Summarization (SUM), QA, NER, RE, SA, and

Classification (CLS), detailed in Appendix A.

Models. We employ MPT-30B (Team, 2023) as

a base model for main experiments. For the re-

triever, we use simple yet effective BM25 (Robert-

son et al., 1994), assuming human-labeled data

is not sufficient. For benchmarking of general-

purpose aligned models, we evaluate Alpaca-65B

(Taori et al., 2023) and Dromedary-65B (Sun et al.,

2023) that are both based on LLaMA (Touvron

et al., 2023a). In addition to MPT-30B, we adopt

LLaMA-2 7B (Touvron et al., 2023b) and Falcon-

40B (Almazrouei et al., 2023) to further validate

the general applicability of self-specialization with

different scales and base models. We addition-

ally evaluate existing domain-specific models (Wu

et al., 2023): MedLLaMA and PMC-LLaMA (De-

tails are in Section 5.2).

Metrics. In our study, all tasks are approached

as a unified text generation problem, aiming to as-

sess the capabilities of generative models. In align-

ment with an established convention (Parmar et al.,

2022), we adopt F1-SCORE as our main evaluation

metric, given an early observation that ROUGE-

L (Lin, 2004), as shown in Table 6 in Appendix,

exhibits a strong correlation with F1-SCORE.

Implementation Details. For biomedical seeds,

we use data sampled from BoX (Parmar et al.,

2022), encompassing 32 tasks, up to 5 instances for

each dataset, resulting in a compact yet representa-

tive 80 seed samples in total, which are also used

as demonstrations at inference. For optional exter-

nal corpus, we leverage PubMed preprocessed in

(Phan et al., 2021), which contains ≈30M abstracts.

In the financial domain, based on our finding from
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BIOMEDICINE k=0 k=1 k=5

Task Dataset Base Self-Specialized Base Self-Specialized Base Self-Specialized

QA

BioASQ-Factoid 30.90 37.35 47.56 55.04 51.96 57.61

BioASQ-List 46.06 46.99 47.57 44.55 35.09 42.17

BioASQ-Yesno3 21.20 85.27 10.80 94.00 8.80 95.20

PubMedQA 11.98 24.16 28.89 24.87 31.69 31.31

NER

AnatEM 9.63 11.99 7.57 15.76 6.59 21.25

BioNLP13CG 24.79 24.93 21.76 31.80 26.03 41.16

NCBI 18.46 14.35 27.88 43.11 17.99 46.54

RE DDI 51.00 49.40 49.20 51.60 49.38 53.40

SA Medical Drugs 35.00 65.80 11.40 54.60 11.40 32.80

DC HoC 2.44 6.01 13.91 7.61 62.84 62.65

Average 25.15 36.63 26.65 42.29 30.18 48.41

FINANCE k=0 k=1 k=5

Task Dataset Base Self-Specialized Base Self-Specialized Base Self-Specialized

SUM EDT-Summarization 6.40 21.90 13.97 24.00 13.87 23.56

QA
InsuranceQA 3.03 19.87 6.55 23.79 9.96 24.36

ConvFinQA 15.74 5.25 21.69 11.84 28.77 20.88

NER
Fin3 9.94 23.93 7.53 26.95 6.80 43.87

FiNER_139 10.24 14.84 36.78 25.81 44.34 35.63

RE KPI-EDGER 11.22 31.02 43.28 53.56 49.46 63.90

SA

EarningsCall 46.80 48.80 50.80 48.00 49.03 47.74

Financial_Phrasebank 23.60 73.20 9.40 47.60 29.20 68.80

FIQA-SA 44.44 56.84 58.55 61.54 61.54 70.09

CLS Gold Commodity News 21.95 43.03 61.93 55.08 38.42 61.20

Average 19.34 33.87 31.05 37.82 33.14 46.00

Table 2: Comparative results (F1-SCORE) of the base LM and self-specialized one on biomedical (top) and financial

(bottom) domains. The base model is MPT-30B for biomedicine and LLaMA-2 7B for finance. Self-specialized

ones have the same parameters as the counterpart base ones. k indicates the number of demonstrations in a prompt.

biomedical experiments that showed surprising ef-

fectiveness of self-specialization relying on internal

knowledge of LLMs without the external corpus,

we opt not to employ an optional retrieval com-

ponent to further validate the self-sufficiency of

LLMs. We leverage a total of 90 seeds sampled

from the 10 train sets in our corresponding bench-

mark datasets. We use a total of 5K synthetic data

generated through our self-specialization for all

experiments, unless otherwise specified. Being

equipped with QLoRA (Dettmers et al., 2023) and

4-bit quantization, the model is trained using a sim-

ple Alpaca-style template (Taori et al., 2023) on a

single A100, taking only a few hours for 3 epochs,

resulting in a light-weight specialization module.

5 Results and Analyses

Here, we provide a set of experimental results and

analyses to address relevant research questions.

5.1 Comparison with Baselines

How effective is the self-specialization of base

models? In Table 2, we present the comparative

results of our self-specialized model against its base

counterpart across 10 distinct biomedical NLP and

10 financial NLP datasets. The evaluation is con-

ducted with varying numbers of in-context demon-

strations, k.

Our findings reveal that the self-specialized

model exhibits remarkable progress in the majority

of tasks across all configurations in both domains,

yielding a substantial (up to 18 points) improve-

ment in average scores. Specifically, the average

scores (F1) in biomedicine rise from 30.18 to 48.41

in a 5-shot setting.2 In finance, the improvements

2Even excluding BioASQ-Yesno as an outlier due to the
base model’s low performance, self-specialization still shows
significant gain over the base model: 32.55 to 43.21 (5-shot).
Appendix C.3 includes the detailed discussion.
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Figure 3: Comparing (with F1-SCORE, 5-shot) our self-specialized MPT-30B model to 65B models in biomedicine.

are 14.53 (0-shot), 6.77 (1-shot), and 12.86 (5-

shot), respectively. These advancements in both

domains underscore the self-specialization’s gen-

eralizability in addressing a wide array of tasks

across different specialized domains.

Imact on ICL capability. A potential concern

on self-specialization tuning is its impact on

the base LLM’s in-context learning capabilities,

as we did not tune the model with demonstra-

tions. Comparing the capabilities before and after

self-specialization, the improvement after adding

demonstrations (from 0 to 5) of our self-specialized

model on biomedicine in Table 2 is 36.63 to 48.41

(∆=11.78), while that of the base model is 25.15

to 30.18 (∆=5.03), indicating even better ICL ca-

pability with in-domain knowledge acquisition.

Performance drop on some tasks. Our analysis

does identify a few instances where performance

drops as shown in Table 2. This indicates room for

further refinement, especially for tasks like Con-

vFinQA that require a set of specific capabilities

beyond mere domain knowledge. We evidenced

that a minor proportion (≤ 2%) of generated data

partially resembles ConvFinQA, due to our genera-

tion’s nature involving creative brainstorming for

diversity. The specific demands of ConvFinQA, in-

cluding numerical reasoning, structured tables, and

conversations extend beyond basic domain knowl-

edge and were insufficiently covered within our

dataset. This gap likely contributes to the observed

performance trade-offs.

However, we re-emphasize that there are signifi-

cantly bigger gains in many of the cases (e.g., 45

out of 60 experiments across datasets and k), out-

weighing the regression overall. Acknowledging

the inherent variability of in-context learning (Min

et al., 2022), we present the variances with 5 dif-

ferent sets of demonstrations in Figure 4 based on

LLaMA-2-7B in biomedicine, showing significant

average improvements of 8.25 (p = 0.003, k = 1)

and of 14.42 (p ≤ 0.001, k = 5).

How does self-specialization compare against

larger/generally aligned baselines? In Figure 3,

we compare our self-specialized MPT-30B model

with 65B models, including LLaMA-65B, and its

general instruction aligned variants (e.g., Alpaca

based on Self-Instruct) in the biomedical domain.

Interestingly, the results reveal that our model, with-

out extensive data, surpasses all baselines, includ-

ing 65B models, despite its ≈2.2x smaller size.

This not only highlights the lower expert domain

performance trade-offs of the “generalist” models

in terms of encoding vast general knowledge into

a finite set of parameters, but also underscores the

effectiveness of our parameter-efficient approach

to model specialization. We also show that our

self-specialized model outperforms the supervised

general-purpose model, MPT-30B-instruct in all

tasks, which highlights the benefits of in-domain

instruction data. Moreover, as a reference point,

we present a comparison with a fully-supervised

SOTA model that is fine-tuned on the biomedical

datasets in Table 7, contextualizing our progress

to better understand practical utility, discussed in

Appendix C.4. Notably, the data efficiency of our

simple self-specialization is further reinforced by

the fact that the model is trained using only 5K3

instruction data self-produced with minimal (only

80) seeds.4 This training process, facilitated by the

incorporation of QLoRA, adding only 0.28% train-

able parameters to an otherwise frozen model, only

takes a few hours on a single GPU (A100 80GB).

352K for Alpaca and 360K for Dromedary.
4175 for Alpaca and 195 for Dromedary.
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Model F1-SCORE ROUGE-L

w/ Top-5 Docs 34.57 32.88

w/ Top-1 Docs 29.65 27.90

w/o Retrieval 33.72 32.14

Base MPT-30B 25.15 23.75

Table 3: Ablation of self-specialization with retrieval

from unlabeled domain-specific documents. Zero-shot

average performance over 10 biomedical tasks.

Model F1-SCORE ROUGE-L

w/ Iterative Process 36.63 34.79

Self-Specialization 34.57 32.88

Base MPT-30B 25.15 23.75

Table 4: Ablation of iterative self-specialization. Zero-

shot average performance over 10 biomedical tasks.

5.2 Ablations & Analyses

Effect of external knowledge. We investigate

the influence of incorporating a domain-specific

corpus like PubMed in the response generation

phase. Table 3 shows optimal results with the top-5

documents, while using just the top-1 document

decreases performance, likely due to noise from an

imperfect retrieval process, aligned with findings

from previous work (Yoran et al., 2023) that adding

irrelevant (i.e., random) context dramatically de-

creases performances. Conversely, employing the

top-5 documents with probability marginalization

(eq. 3.3) seems to mitigate this issue, enabling the

model to exploit informative knowledge. Interest-

ingly, we observe that self-specialization demon-

strates strong performance even without retrieval,

suggesting domain-relevant knowledge is intermin-

gled with other information acquired during pre-

training, which self-specialization uncovers to bet-

ter utilize. Given this, the added complexity of

retrieval mechanisms, though potentially advanta-

geous, emerges as optional within our framework.

Effect of iterative self-specialization. In Section

3.5, we discussed the potential of employing an

iterative process by leveraging the self-specialized

model instead of the base model throughout the

generation process. Table 4 shows the ablation

study, where each iteration involved generating 5K

samples, and final results were obtained using 5K

samples from the last iteration for a fair comparison.

We observe that the iterative process leads to further

Figure 4: Results in biomedicine using LLaMA-2 7B

as a base model, and comparisons with other baselines

including the one pre-trained on a huge domain-specific

corpus. Scores are averaged over 10 datasets, and when

in-context examples are involved, we use 5 different

sets of demonstrations to report macro-averaged results

and variances (SD) with error bars.

20

25

30

35

0 2000 4000 6000 8000 10000
15

20

25

30

35

0 2000 4000 6000 8000 10000

Figure 5: Analysis with the varied number of self-

generated data for specialization. 0-shot averaged re-

sults with # generated data = {0, 100, 500, 1000, 5000,

10000} are shown.

performance enhancements, compared to the one

w/o iteration. In our preliminary tests, we rarely

find meaningful improvements with the subsequent

iteration, which we leave for future work to refine.

Self-specialization vs. domain pre-training.

We compare our model based on LLaMA-2-

7B with existing baselines (Wu et al., 2023):

MedLLaMA-13B and PMC-LLaMA-7B/-13B.

The former is an LLaMA variant further pre-trained

on a large domain-specific corpus (i.e., medicine),

and the latter is further instruction-tuned using an-

notated/synthetic datasets, including medical QA,

rationale for reasoning, and conversational dia-

logues. Notably, we find that our self-specialized

7B model is on par with or better than MedLLaMA-

13B (p = 0.006, k = 5) and PMC-LLaMA-13B

(p = 0.01, k = 5) despite their larger parame-

ters and extensive domain-specific tuning. Addi-

tionally, using our 7B-generated data to special-

ize MedLLaMA indicates that self-specialization

can enhance domain-specific pre-training (p =
0.001, k = 5), suggesting complementarity.
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Figure 6: Statistics for generated data through self-specialization. On the left, the inner circle illustrates prevalent

verbs in the instructions, with the outer ring revealing associated entities. Conversely, the right side showcases the

input context, highlighting the incorporation of diverse biomedical keywords. Best viewed in zoom and color.

Impact of the number of self-generated data.

In Figure 5, we analyze the impact of the number

of self-specialization data within biomedical and

financial domains. Starting from zero, a sharp in-

crease in F1 score is observed as we introduce the

first 100 instances which largely consist of seed

instructions, underlining the significant impact of

seeds not only as in-context demonstrations but

also as training data. The performance continues to

rise steadily with additional data, plateauing around

5K instances, supporting our decision on the use

of 5K data. Self-specialization’s success with rela-

tively small self-generated data highlights its data

efficiency and practicality.

How is the quality of synthetic self-specialization

data? In Figure 6, we showcase a qualitative vi-

sualization that analyzes the synthetic data gener-

ated through self-specialization, confirming that

self-specialization produces domain-focused data.

To quantitatively assess the quality, Figure 7 in

Appendix compares our model against a model

trained on labeled data, which shows a narrow per-

formance gap, implying the quality of generated

data. Additionally, some examples are provided

in Table 11 & 12 in Appendix, offering insights

into the quality of the self-generated specialization

data.

6 Related Work

The goal of instruction-tuning and alignment of

large language models (LLMs) is to achieve cross-

task generalization or to align with human pref-

erences. This can be accomplished by either

training LLMs directly with human-labeled data

(Ouyang et al., 2022; Wei et al., 2022; Mishra

et al., 2022; Wang et al., 2022b) or data gener-

ated by larger models (i.e., distillation) (Taori et al.,

2023; Chiang et al., 2023). Recent studies have

shown that LLMs are self-instructors. Wang et al.

(2022a) showed that with in-context prompts, GPT-

3 (Brown et al., 2020) can generate high-quality

instruction-responses pairs for its own alignment.

Sun et al. (2023) further suggests that using prin-

ciples can minimize human supervision while cov-

ering a broad spectrum of scenarios with the open-

source model, LLaMA-65B (Touvron et al., 2023a).

While enhancing general alignment, according to

our presented evidence, these approaches are un-

likely to induce specialization in expert domains,

leaving different domain expertise in superposition

inside the model. To the best of our knowledge, we

are the first to show the potential for expert domain

specialization through self-alignment, effectively

“uncovering” a domain expert out of the model in a

parameter- and data-efficient manner.

Recent studies highlight the benefits of em-

ploying instructions in different adaptation sce-

narios (Parmar et al., 2022). INSTRUCTOR

(Su et al., 2022) illustrated the adaptability of

instruction-based text embeddings to various tasks

and domains, while INSTRUCTE (Bai et al., 2023)

demonstrated that incorporating instructions with

a schema can yield robust results for table extrac-

tion across diverse domains. However, these re-

quire the use of costly human labels or extensively

tuned large models (e.g., 175B). Self-training has
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also been explored for different adaptation scenar-

ios. For domain knowledge adapation, Shakeri

et al. (2020) and Luo et al. (2022) proposed con-

structing synthetic data by generating in-domain

question-answering data, but these data generators

are trained with more than 80k human curated

QA pairs and do not involve instructional ones

that have the potential for cross-task generaliza-

tion. Instruction-tuning has been shown to adapt

pre-trained LLMs to different modalities, including

vision (Liu et al., 2023), audio (Gong et al., 2023),

and programs (Rozière et al., 2023), and enables

the use of APIs (Schick et al., 2023) and search

engines (Luo et al., 2023). Unlike these works, our

work focuses on uncovering target domain exper-

tise latent within LLMs while promoting cross-task

generalization with minimal supervision.

7 Conclusion

Our exploration into self-specialization aimed to

elucidate the latent expertise within large language

models (LLMs) with limited human supervision.

This scheme demonstrated promising results in spe-

cialized domains. The self-specialized model ex-

hibited remarkable performance, outperforming its

base model, MPT-30B, and even surpassing larger

generally aligned models (65B). This illuminates

the intrinsic challenges of encoding vast general

knowledge into limited parameters and underscores

the efficiency of self-specialization. Remarkably,

the model’s efficient training, marked by minimal

data usage and the integration of QLoRA (Dettmers

et al., 2023), adds another layer to its practicality

in terms of parameter and data efficiency. These

findings signify a promising pathway for leverag-

ing inherent expertise in LLMs and offering a large

variety of exciting opportunities for future work.

Limitations

While our study provides encouraging insights into

the capabilities of self-specialization, this is an ini-

tial step in opening up new opportunities. We ac-

knowledge the need for further exploration and

note some limitations and considerations.

Sensitivity of in-context learning. In Table 2,

we observed that performances sometimes dropped

with more in-context learning demonstrations.

While recognizing, the performance fluctuation is

not an issue stemming from our self-specialization

tuning, as it happens for the base LLM as well as

GPT-3 (Appendix C.2) , demonstrating an inherent

challenge in in-context learning. This phenomenon

is not unique to our self-specialization approach,

but a broader challenge in the field.

Training and generation strategies. We avoided

using demonstrations during training (Min et al.,

2022) to maintain flexibility in the number of exam-

ples available during inference. We aimed to ensure

that zero-shot performance remains unaffected by

tuning to rely on demonstrations.

Unlike previous work (Wang et al., 2023a)

that generates instructions first and then in-

puts/responses together, our approach simultane-

ously generates instructions and inputs, followed

by responses. This strategy, inspired by a more

recent work (Sun et al., 2023), enables the use

of inputs as queries for retrieval prior to response

generation. Despite the specific reasons outlined

above, we recognize the potential of the alternative

strategies as avenues for future exploration, which

can be orthogonal to our current approach.

Filtering. In our method, we opted not to imple-

ment an automatic filtering process for the gener-

ated data. In a preliminary study to assess feasi-

bility, we attempted to filter out low-quality data

manually, however we did not observe a noticeable

improvement. We hypothesized that incorporating

this seemingly unuseful data may even enhance

the model’s robustness by preventing overfitting

to those generated data. Despite this, we acknowl-

edge the importance of further investigating filter-

ing techniques for potential improvements.

Potential data contamination and bias propa-

gation. Being cautious with potential data con-

tamination from base language models during self-

specialization, we conducted stringent measures

following practices in GPT-3 (Brown et al., 2020)

and PaLM (Chowdhery et al., 2022). We adopted

n-gram overlap analysis (with n=8 and a thresh-

old of 70%) to scrutinize similarities between our

generated data and all the test sets, revealing no sig-

nificant overlaps. Moreover, a detailed manual in-

spection of 200 random instances corroborated this

finding. When concerned about retrieval sources,

one can apply the n-gram overlap filtering, though

our sources are PubMed abstracts without explicit

labels, which inherently ensures little risk of data

overlap. Meanwhile, we acknowledge the inher-

ent risk of propagating biases from the pre-trained

data.
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A Explanations of Evaluation Datasets

Below are brief descriptions for each dataset in

biomedical and financial domains. All datasets are

in English.

A.1 Biomedicine

BioASQ-8b (Nentidis et al., 2020). This is a

biomedical QA dataset that necessitates models to

produce answers from given questions and corre-

sponding contexts within the biomedical domain.

There are three distinct subsets that can be divided

according to question types: Factoid, List, and

Yesno. This dataset is publicly available upon a

data use agreement. The data are originally in-

tended to be used as training and development data,

and we use the small part of the training set as

seeds (i.e., 5 seeds), and the test set for evaluation

(500 for each question type). CC BY 2.5.

PubMedQA-Long (Jin et al., 2019). Pub-

MedQA is another biomedical QA dataset featuring

research questions along with their corresponding

abstracts and answers sourced from PubMed5. To

diversify the task types, we focus on a long-form

answer (i.e., conclusion). We use 5 labeled data for

seeds and 500 for evaluation. MIT license.

AnatEM (Pyysalo and Ananiadou, 2013). This

is a Named Entity Recognition (NER) task for

anatomical entities in biomedical texts. Models

are tasked with identifying all anatomy-named en-

tities and their corresponding types from given a

small paragraph. Non-commercial purposes only.

404 test data are used for evaluation and 5 training

instances are used for seeds. CC BY-SA 3.0.

BioNLP13CG (Pyysalo et al., 2013). The Can-

cer Genetics (CG) is an information extraction task

targeting the recognition of events in text, encom-

passing multiple levels of biological organization,

from molecular to whole organisms. 5 training data

are used for seeds, and the number of evaluation

data is 200. CC BY-SA 3.0.

NCBI (Dogan et al., 2014). The NCBI dis-

ease corpus, derived from the National Center for

Biotechnology Information, focuses on disease

name recognition. According to the annotation

guideline of this dataset, organism names such as

humans, and also gender are excluded for annota-

tion. We use 5 training instances for seeds, and 100

5https://www.ncbi.nlm.nih.gov/pubmed

for evaluation. The data is freely available to the

public for use. CC0 1.0 license.

DDI (Herrero-Zazo et al., 2013). The Drug-

Drug Interaction (DDI) dataset is tailored for iden-

tifying interactions between different drugs in

biomedical texts. Following Parmar et al. (2022),

this work considers only binary Relation Extrac-

tion (RE), determining whether there is an effect of

given two drugs. The data cannot be used for any

commercial purposes. We use 5 data for seeds, and

500 for evaluation. CC BY-NC 4.0.

Medical Drugs (Khan, 2019). This is a Senti-

ment Analysis (SA) dataset that is required to pre-

dict the sentiment of individuals towards medical

drugs. Specifically, given a text and a drug, a model

determines the effect of the drug as “positive", “neg-

ative", or “neutral". 5 training instances are used

for the seed construction, and 500 test set for eval-

uation. The license is unknown.

HoC (Baker et al., 2015). The Hallmarks of Can-

cer (HoC) dataset is curated for classifying (zero

to many) biomedical texts related to cancer into

categories representing different hallmarks of can-

cer. In particular, these hallmarks include “sustain-

ing proliferative signaling", “resisting cell death",

“genomic instability and mutation", “activating in-

vasion and metastasis", “tumor promoting inflam-

mation", “evading growth suppressors", “inducing

angiogenesis", “enabling replicative immortality",

“avoiding immune destruction" and “cellular ener-

getics". The number of evaluation data is 200 and

5 training data are used for seed demonstrations.

GPL-3.0 license.

A.2 Finance

EDT-Summarization (Zhou et al., 2021). This

dataset challenges models to perform abstractive

summarization on financial news articles, condens-

ing detailed information into succinct summaries.

8 training instances are used for seeds, and 500

instances for evaluation. This data is publicly avail-

able.

InsuranceQA (Feng et al., 2015). This is an

open-book question-answering task about insur-

ance, demanding models to extract and provide spe-

cific insurance-related information. Seed demon-

strations include 8 training data and the number

of evaluation instances is 500. This dataset is pro-

vided as is and for research purposes only.
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ConvFinQA (Chen et al., 2022). This is a

dataset for conversational question-answering over

financial report tables, testing a model’s ability to

reason and respond within a conversational context.

We use 8 training data for the seed construction,

and evaluation uses 500 test instances. MIT license.

Fin3 (Salinas Alvarado et al., 2015). This is

a financial NER dataset based on financial agree-

ments to aid credit risk assessments. 8 training data

are used for seeds and 100 test data for evaluation.

CC-BY 3.0.

FiNER_139 (Loukas et al., 2022). This NER

task focuses on financial texts, where models iden-

tify and classify financial-related entities like num-

bers. This dataset includes a much larger label set

of 139 entity types. Seed data encompass 8 training

instances and the number of test data is 500. MIT

license.

KPI-EDGAR (Deußer et al., 2022). Models

are tasked with extracting key performance indica-

tors (KPIs) from financial documents. Categories

for KPIs include current and previous year val-

ues, annual changes, subordinate and descriptive

attributes, co-references, and false-positive. We

use 212 test instances for evaluation and 8 training

instances for seed demonstrations. MIT license.

EarningsCall (Roozen and Lelli, 2021). This is

a binary sentiment analysis task where models eval-

uate sentiments from stock values and transcripts

of earnings calls, reflecting the financial sentiments

expressed. 8 training instances are used for seeds,

and 500 test set for evaluation. CC0 1.0 license.

Financial_Phrasebank (Malo et al., 2014). This

dataset involves (3-way) sentiment analysis of fi-

nancial news headlines, assessing the underlying

sentiment conveyed by the language used. Com-

mercial uses of this data may be allowed upon con-

tacting the authors. 8 training data and 500 test

data used for seeds, and evaluation, respectively.

CC BY-NC-SA 3.0.

FIQA-SA (Maia et al., 2018). It consists of

aspect-based sentiment analysis tasks within finan-

cial texts, requiring models to discern sentiment

regarding specific aspects mentioned. The number

of evaluation data is 234 and seed demonstrations

include 8 training instances.

Gold Commodity News (Sinha and Khandait,

2021). This dataset involves classifying financial

news headlines about gold commodities into cate-

gories such as market movement direction or type

of financial news (e.g., direction up, down, past-

price, futurenews, etc). The seed data includes 9

binary-class version and also 9 multi-class version

of training set, and evaluation uses 500 multi-class

version of test data. The license of this data indi-

cates data files © original authors.

B Details of Experiments

In Table 10, we show the prompts used for our

self-specialization. For instruction generation, we

leverage the prompt designed in self-instruct Wang

et al. (2022a) with minimal change to make it suit

to specialization. In particular, we ask a model

for instructions about a targeted domain, and force

it to generate input together with the instruction,

unlike in Wang et al. (2022a) that generates those

separately. In addition, we avoid using the specific

requirement in the prompt that asks to cover di-

verse topics, such as (quoting Wang et al. (2022a))

“daily routines, travel and tourism health and well-

ness, cooking and recipes, personal finance, en-

vironmental issues, history and historical events,

literature and literary analysis, politics and current

events, psychology and mental health, art and de-

sign, mathematics and problem-solving, physics

and astronomy, biology and life sciences, chemistry

and materials science, computer science and pro-

gramming, engineering and technology, robotics

and artificial intelligence, economics and business

management, philosophy and ethics, and more".

For response generation, we use a simple prompt

to let a model answer with a target domain in mind.

Both prompts can be further enhanced and opti-

mized for better self-specialization performance in

future work.

Regarding our evaluations, we use prompt tem-

plates that were designed and used to optimize

each Alpaca (Taori et al., 2023) and Dromedary

(Sun et al., 2023), but no specific template for base

models, as they were not optimized for it during

pre-training. Ours employs a simple Alpaca tem-

plate for training and evaluation. We leverage pub-

licly available delta weights that are supposed to

be attached to LLaMA (Touvron et al., 2023a) for

Dromedary, and use the ones reproduced for Al-

paca in our work.

We use three seed demonstrations in-context,

which are randomly sampled from our initial seeds,

and sampling with top-p being 0.98 and tempera-
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BIOMEDICINE Worst Average Best

Task Dataset Base Self-Specialized Base Self-Specialized Base Self-Specialized

QA

BioASQ-Factoid 30.90 37.35 43.47 50.00 51.96 57.61

BioASQ-List 35.09 42.17 42.91 44.57 47.57 46.99

BioASQ-Yesno 8.80 85.27 13.60 91.49 21.20 95.20

PubMedQA 11.98 24.16 24.19 26.78 31.69 31.31

NER

AnatEM 6.59 11.99 7.93 16.33 9.63 21.25

BioNLP13CG 21.76 24.93 24.19 32.63 26.03 41.16

NCBI 17.99 14.35 21.44 34.67 27.88 46.54

RE DDI 49.20 49.40 49.86 51.47 51.00 53.40

SA Medical Drugs 11.40 32.80 19.27 51.07 35.00 65.80

DC HoC 2.44 6.01 26.40 25.42 62.84 62.65

Average 19.62 32.84 27.33 42.44 36.48 52.19

FINANCE Worst Average Best

Task Dataset Base Self-Specialized Base Self-Specialized Base Self-Specialized

SUM EDT-Summarization 6.40 21.90 11.41 23.15 13.97 24.00

QA
InsuranceQA 3.03 19.87 6.51 22.67 9.96 24.36

ConvFinQA 15.74 5.25 22.07 12.66 28.77 20.88

NER
Fin3 6.80 23.93 8.09 31.58 9.94 43.87

FiNER_139 10.24 14.84 30.45 25.43 44.34 35.63

RE KPI-EDGER 11.22 31.02 34.65 49.49 49.46 63.90

SA

EarningsCall 46.80 47.74 48.88 48.18 50.08 48.80

Financial_Phrasebank 9.4 47.60 20.73 63.20 29.20 73.20

FIQA-SA 44.44 56.84 54.84 62.82 61.54 70.09

CLS Gold Commodity News 21.95 43.03 40.77 53.10 61.93 61.20

Average 17.60 31.20 27.84 39.23 35.99 46.59

Table 5: Comparative results of the base LM and self-specialized one on a biomedical domain (top) and on a financial

domain (bottom). The base model is MPT-30B for biomedicine and LLaMA-2 7B for finance. Self-specialized ones

have the same parameters as the counterpart base model. Performances are reported using F1-SCORE. The results

are presented using worst, average, and best across 0-, 1-, and 5-shot results for each dataset.

ture being 1.0 during instruction generation. For

response generation, we use no demonstrations in-

context since there is a high chance that the gener-

ated instruction task and the sampled one do not

match well. We believe further exploration of this

aspect would be valuable in future work. For fine-

tuning, we use a batch size of 32, a learning rate

of 3e-4, and epochs of 3. Low-rank adaptation

(LoRA) (Hu et al., 2022; Dettmers et al., 2023) is

applied to all modules and all layers with a rank of

8, and an alpha of 16. While we report single-run

results considering low-data settings where auto-

matic hyperparameter tuning might be infeasible,

we also report worst, average, and best across dif-

ferent k-shot configurations for each dataset to ad-

dress the concern of sensitivity (Appendix C.2) in

Table 5.

C Additioanl Results & Discussion

C.1 Qualitative Analyses

While our study primarily focuses on the biomed-

ical and finance domain, the applicability and ef-

fectiveness of self-specialization in another special-

ized domain whose knowledge is relatively limited,

such as sports, remain an open avenue for explo-

ration. As an initial effort, we present a case study

of a self-specialized model on sports in Table 13 &

14, along with the visualization of generated data in

Figure 8. We hope that this could offer insights into

the versatility of self-specialization, although the
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F1-SCORE / ROUGE-L

Task Dataset Base Self-Specialized

QA

BioASQ-Factoid 51.96 / 51.81 57.61 / 57.48

BioASQ-List 35.09 / 30.40 42.17 / 36.24

BioASQ-Yesno 8.80 / 8.80 95.20 / 95.20

PubMedQA 31.69 / 24.56 31.31 / 24.77

NER

AnatEM 6.59 / 6.07 21.25 / 19.24

BioNLP13CG 26.03 / 22.53 41.16 / 35.07

NCBI 17.99 / 16.60 46.54 / 41.55

RE DDI 49.38 / 49.38 53.40 / 53.40

SA Medical Drugs 11.40 / 11.40 32.80 / 32.80

DC HoC 62.84 / 62.84 62.65 / 62.65

Average 30.18 / 28.44 48.41 / 45.84

Table 6: Comparative results (F1-SCORE and ROUGE-L) of the base LM and self-specialized one in the biomedical

domain for k = 5. Scores are presented as F1 / ROUGE for each dataset. ROUGE-L exhibits the same trend with

F1-SCORE.

Task Dataset Base Self-Specialized SOTA

QA

BioASQ-Factoid 51.96 57.61 49.51

BioASQ-List 47.57 46.99 35.59

BioASQ-Yesno 21.20 95.20 68.25

PubMedQA 31.69 31.31 29.58

NER

AnatEM 9.63 21.25 84.61

BioNLP13CG 26.03 41.16 65.09

NCBI 27.88 46.54 80.91

RE DDI 51.00 53.40 89.35

SA Medical Drugs 35.00 65.80 47.37

DC HoC 62.84 62.65 82.53

Average 36.48 52.19 63.23

Table 7: Performance comparison (F1-SCORE) with a fully supervised state-of-the-art instruction-tuned model

(Parmar et al., 2022) in biomedicine, in which more than 140K training samples are involved.

model is not yet perfect, and thorough evaluations

are required in future work. Different domains in-

herently pose unique requirements and nuances,

and understanding how self-specialization adapts

to these variations is a valuable direction for future

work.

C.2 On the Sensitivity of Prompting

In Table 2, we observe the decreased performances

with increased demonstrations in certain cases such

as BioASQ and Medical Drugs. We conjecture

this can be attributed to the model’s sensitivity

(Zhao et al., 2021) or interference among demon-

strations (Chen et al., 2023) under in-context learn-
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BIOMEDICINE Dataset Base Self-Specialized AdaptLLM

QA

BioASQ-Factoid 39.21 52.17 51.79

BioASQ-List 32.45 43.99 49.74

BioASQ-Yesno 66.00 88.40 93.80

PubMedQA 23.59 31.04 24.06

NER

AnatEM 1.20 20.93 9.81

BioNLP13CG 22.16 31.46 18.58

NCBI 37.91 43.28 20.50

RE DDI 47.6 53.80 51.00

SA Medical Drugs 42.80 24.20 13.60

DC HoC 10.60 50.87 8.33

Average 32.35 44.01 34.12

FINANCE Dataset Base Self-Specialized AdaptLLM

SUM EDT-Summarization 13.87 23.56 35.95

QA
ConvFinQA 28.77 20.88 12.10

InsuranceQA 9.96 24.36 26.11

NER
Fin3 6.80 43.87 13.32

FiNER_139 44.34 35.63 11.10

RE KPI-EDGER 49.46 63.90 34.53

SA

EarningsCall 49.03 47.74 47.30

Financial_Phrasebank 29.20 68.80 34.80

FIQA-SA 61.54 70.09 69.66

CLS Gold Commodity News 38.42 61.20 71.61

Average 33.14 46.00 35.65

Table 8: Comparison with a concurrent work, AdaptLLM (Cheng et al., 2024).

Models # Labeled Data # Synthetic Data MMLU Score

Humpback-65B (General) 3200 500K 59.0

Ours-7B (Specialized) 100 5K 64.0

Table 9: Comparison with a concurrent work, Humpback (Li et al., 2024).

ing (ICL). In fact, it can even be noticed in the

original GPT-3 paper (Brown et al., 2020) that ad-

ditional demonstrations do not always lead to better

performance and can indeed sometimes result in a

notable decrease, demonstrating an inherent chal-

lenge in ICL. Taking the worst, average, and the

best across different k-shot (0, 1, 5) configurations

for each dataset to address the concern of sensitiv-

ity, we still notice the significant gaps between our

self-specialization and the base model, presented

in Table 5.

C.3 On Evaluation Designs

In our study, as described in Section 4, we treat

all tasks as a unified text generation problem, aim-

ing to assess the realistic capabilities of following

instructions, consistent with established practices

in biomedical instruction tuning literature (Parmar

et al., 2022). As briefly discussed in Section 5.1,

we observe that in Table 2, the base model’s per-

formance on BioASQ-Yesno is very low (below

random), often failing to follow instructions and

generating text that is not confined to the label

space. We therefore treat this dataset as an outlier

and exclude it from our average calculations. Even

after removing this outlier, self-specialization still

has substantial gains over the base model: 25.58 to

31.22 (0-shot), 28.42 to 36.55 (1-shot), and 32.55

to 43.21 (5-shot). However, we believe that our

current evaluation is fairer and preferable, because

in a realistic scenario where a user prompts a model

to solve a certain task (e.g., classification) without

the assumption about a task type, and gets a totally

wrong response out of the label space, evaluating

such a response as correct would not make sense.

The primary objective of our work is to en-

hance the base model’s domain-specific capabilities

through self-specialization, a process inherently dif-

ferent from conventional fine-tuning approaches.

Although the process utilizes LoRA for specializa-

tion, it is important to note that our approach funda-

mentally relies on synthetic data generated by the

model itself. This unique aspect sets our method

apart, as it effectively starts from scratch, focus-

ing on self-generated, domain-specific instructional

data for low-data scenarios. Finally, the base model

and the base model improved through our Self-

Specialization (using synthetic self-generated data)

are compared fairly in the same zero-shot/few-shot

setting.

C.4 Comparison with State-of-the-art

In Table 7, we present the performances of a state-

of-the-art instruction-tuned model (Parmar et al.,

2022) in a biomedical domain, for a reference point.

It is important to clarify that our comparison should

not be considered direct. The SOTA model, unlike

ours which relies on a few seed samples, is fine-

tuned on a vast corpus of human-annotated data

(140K), and differences in test set splits may exist.

For the base MPT and self-specialized models, the

maximum performances by using up to 5 samples

are presented.

Despite significant improvements over its base
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model, our self-specialized model remains behind

SOTA benchmarks, which is not surprising due to

the nature of our method that is not supervised, un-

like the SOTA model. While expected, this possibly

implies the practical utility of our approach may

be limited yet in certain scenarios. From the table,

we especially note the substantial gap in Named

Entity Recognition (NER) tasks. This gap can be

attributed to the SOTA model’s training on a large

and diverse set of NER datasets (i.e., 80K sam-

ples). This suggests ample opportunity for further

exploration and enhancement in this area.

Additionally, we provide comparisons with con-

current works (Cheng et al., 2024; Li et al., 2024)

in Table 8 and 9. To make distinctions, those works

are, in principle, oriented toward different scenar-

ios from ours. Cheng et al. (2024) leverages a large

specialized corpus to transform them into reading

comprehension texts using pre-defined templates,

which are then used for training LLMs. Differently,

our work does not necessitate such a huge amount

of corpus that requires 768 GPU hours for training;

ours takes only a few GPU hours. Moreover, we

do not confine our method to specific tasks, aiming

for cross-task generalization as shown in Table 8,

unlike them focusing on constrained reading com-

prehension format.

Li et al. (2024) explores the augmentation of

instructional data through the use of a few thou-

sand labeled seed data to initialize their generation

pipeline relying on a web corpus. Unlike them

assuming huge amounts of seed/unlabeled data,

our method requires only a handful of seeds (e.g.,

<100). Furthermore, their focus is on general in-

structions, which have shown only marginal ef-

fects in specialized domains in our preliminary

results (Section 2). Given the infeasibility of

direct comparison, we reference their MMLU

result from the paper to contextualize and we

self-specialize Gemma-7B (Team et al., 2024) on

MMLU (Hendrycks et al., 2021). While acknowl-

edging their values in different scenarios from ours,

we believe this distinction provides an insight into

the unique value and impact of our work in enhanc-

ing model performance along with efficiency in

targeted domains.
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MPT-30B

Falcon-40B

Figure 7: 5-shot results based on Falcon-40B and MPT-30B, showcasing the self-specialization gains. “Multi-Task

Supervised" is a model trained on a large amount of human-labeled data in a multi-task setting and is provided for

reference as a (non-data-efficient, expensive) upper bound.
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Figure 8: Statistics for instructions (left) and input context (right) generated through self-specialization toward the

sports domain, with 40 seeds, 1st iteration only, and no retrieval component. On the left, the inner circle illustrates

prevalent verbs in the instructions, with the outer ring revealing associated entities. Conversely, the right side

showcases the input context, highlighting the diverse sports keywords generated by the model in the process of

self-specialization. Best viewed in zoom and color.
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Instruction Generation Prompt

You are asked to come up with a set of 20 diverse task instructions about a biomedical domain. These task

instructions will be given to a GPT model and we will evaluate the GPT model for completing the instructions.

Here are the requirements:

1. Try not to repeat the verb for each instruction to maximize diversity.

2. The language used for the instruction also should be diverse. For example, you should combine questions with

imperative instructions.

3. The type of instructions should be diverse. The list should include diverse types of tasks like open-ended

generation, classification, editing, etc.

4. A GPT language model should be able to complete the instruction. For example, do not ask the assistant to create

any visual or audio output. For another example, do not ask the assistant to wake you up at 5pm or set a reminder

because it cannot perform any action.

5. The instructions should be in English.

6. The instructions should be 1 to 2 sentences long. Either an imperative sentence or a question is permitted.

7. You should generate an appropriate input to the instruction. The input field should contain a specific example

provided for the instruction. It should involve realistic data and should not contain simple placeholders. The

input should provide substantial content to make the instruction challenging.

8. Ensure diverse tasks are covered in the instructions and inputs, while focusing on a biomedical domain.

List of 20 tasks:

Response Generation Prompt

You are a biomedical domain expert. Given an instruction and an input, generate the best response to solve the given

biomedical task.

Table 10: Prompts used for instruction generation and response generation.
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Instruction

The aim of this task is to identify the functional categories and chemical categories associated with a data record.

The record is given in a pre-defined form and followed by a set of supporting sentences that might be relevant. In

particular, for each data record, a triplet of functional categories, molecular categories and chemical categories

associated with the data record will be provided. The task is to find some relations between records and supporting

evidence that can support the given relations.

Input

Data record: Atom, CNA, NOC, NFT

Text: Cisplatin and carboplatin, two drugs that are used to treat testicular and ovarian cancers, are not effective

in treating breast cancer

Output

The functional category of cisplatin is CNA. The chemical category of cisplatin is NOC. The molecular category of

cisplatin is NFT.

Instruction

In this task, you are given a short article and question. Read the short article and answer the question.

Input

Short article: The extract from the opium poppy was tested on breast cancer cells and was found to inhibit the

migration and invasion of breast cancer cells.

Question: Was the extract more potent in its inhibitory effect on the migration of breast cancer cells than its

effect on the invasion of breast cancer cells?

Output

Yes.

Instruction

In this task, you are given a paragraph, and your task is to categorize the entities from the given input into two

types: Dyes and Protein Molecules. The defined types here is based on the medical specialty such that dyes are

typically for understanding human metabolism.

Input

Paragraph: Thus in an effort to improve the characterization of such compounds an alternative glycosylation labeling

strategy was implemented based on malonate attachment to glucosamine and sond glycosyltransferase inactivation.

Output

Dyes: malonate, Protein Molecules: glucosamine, sond glycosyltransferase.

Instruction

In this task, you are given a small paragraph, your task is to identify the relationship between the variables.

Find the most likely to be correct relationship of a gene with its characteristics. For example, if one entity is

pathway, then you need to find the type of relationship that specific gene is related to that pathway. Give the most

appropriate relationship type and tokens separating two variables. Given an input, determine the relationship type.

Input

COPD is a major cause of morbidity and mortality throughout the world, with over three million deaths per year

Pathway: respiratory system Pathway: stress Hsa-miR-30b-5p is a regulator of retinal ganglion cell apoptosis through

regulating the PTEN/AKT signaling pathway in glaucoma.

Output

Hsa-miR-30b-5p is a regulator of retinal ganglion cell apoptosis through regulating the PTEN/AKT signaling pathway

in glaucoma.

Instruction

In this task, you are given a question and a sentence as context. You need to find the answers to the question

in the given context. You can either answer the question or ask a question. Given the question, a context or a

question, this task must either answer the question or ask a question.

Input

Question: For what drugs can predict the effect of changing the dose

Context: Metoprolol is a commonly used beta-blocker, which competitively blocks beta-adrenergic receptors in the

myocardium. Adrenergic beta-blockers do not antagonize the presynaptic beta-1 receptors in the conduction system.

While they thus prolong the ventricular conduction time, they do not alter conduction velocity. Metoprolol is

therapeutically active over the heart rate range of 40 to 100 bpm, and may be particularly effective for the rate

control of atrial fibrillation. The beta-blocking action of metoprolol is accompanied by an increase in stroke

volume.

Output

The beta-blocking action of metoprolol is accompanied by an increase in stroke volume.

Table 11: A list of examples (#1) of generated data on biomedicine through self-specialization.
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Instruction

In this task, you are given a drug name, and the side effect caused due to this drug (e.g., nausea). Your job is to

generate other side effects in which this drug often causes.

Input

Drug_1: Phentermine Drug_2: Nausea

Output

Headache, insomnia, constipation, dry mouth, diarrhea, anorexia, increased blood pressure, increased heart rate,

increased appetite, dizziness, nervousness, restlessness, irritability, tremor, rash, itching, and urticaria.

Instruction

Given a premise and a hypothesis sentence, your task is to identify if the premise supports the hypothesis or the

premise contradicts the hypothesis sentence. Your task is to identify if the evidence in the premise supports or

contradicts the hypothesis. There is no other alternative. You can select two labels for this task: Support or

Contradict.

Input

Premise: If too much calcium enters the sea, if causes it to become more acidic in a process called "ocean

acidification". Hypothesis: The ocean will become acidic.

Output

The vitamin did not seem to work for malaria. It was noted that the protein has is able to contact the insulin-like

growth factor - 1 receptor, so an antagonist was made using a modified version of the protein.

Instruction

In this task, given the title of scientific study, your task is to generate a paper abstract or summary based on

the given information.

Input

Title of study "Type and impact of end-user requests for application programming interfaces in three health-related

internet services"

Output

The study found that the majority of end-user requests for application programming interfaces (APIs) in three

health-related internet services were for data access. The study also found that the most common type of request

was for data access, followed by data analysis and data visualization. The study also found that the most common

impact

Instruction

In this task, you are given a question as input, and your task is to give answer it by generating a list of drugs

which can be used for the treatment of the symptom. If the symptom is rare, the answer list should contain its

corresponding differential diagnosis. Given a question related to symptoms, generate a list of drugs and differential

diagnosis from open vocabulary.

Input

Question: What are the signs and symptoms of Leptospirosis?

Output

Fever, headache, muscle aches, nausea, vomiting, abdominal pain, diarrhea, cough, and red eyes. Differential

diagnosis: Leptospirosis, Lyme disease, Rocky Mountain spotted fever, and dengue fever.

Instruction

In this task, you are given a list of paragraphs. The list contains sentences related to a particular biomedical

concept and sentences not related to a particular biomedical concept. Classify these sentences as true or false.

Answer if the sentences in the input are true or false. True indicates that all the sentences of the list are true

for the given biomedical concept. False indicates that only one of the given sentences is false, while the rest of

them are true.

Input

Some of the complications associated with developing small molecules for FGFR1 and KRAS targetable therapeutic

compounds are revealed as the targets have low single amino acid sequence identity between species and both are,

at least partially, regulated by post-translational modifications. S. Kisor, S. Khankorn, "Drug discovery from big

data: past, present, and future.", Outline, January 2013.

Output

False

Table 12: A list of examples (#2) of generated data on biomedicine through self-specialization.
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Model Base MPT-30B Self-Specialized MPT-30B

Instruction Given a live commentary for a sports game, generate plausible sports news highlights.

Input Context

Commentary

1. Full-time at the Etihad. Manchester City JUST manage to claim all three points in this Premier

League clash as they overcome Swansea with a narrow 2-1 scoreline. The man of the match was Gabriel

Jesus, who netted two goals, including the dramatic winner in the 92nd minute, which will prove to

be a massive blow for the Swans.

2. GOOOOAAAALLLL! GOOOAAALLL FOR MANCHESTER CITY! ...

...

Response

A: I think you should try to use a pre-trained

model for the encoder and decoder.

...

News:

- Manchester City have come from behind to beat

Swansea 2-1 in a thrilling Premier League clash at

the Etihad Stadium.

...

Instruction
This task aims to predict the sentiment of a tweet about sports. Given a tweet about football

written by a real user, select an answer (polarity) among "Positive”, "Negative” and "Neutral”.

Input Context

@user1 @user2 @user3 @user4 @user5 Now, PSG is considered a weak team. Poor ignorant. When Barça

lost 3-0, it was because we faced PSG without Neymar. But now that Real Madrid eliminated them,

suddenly PSG is a weak team. ... ...

Response Positive Negative

Instruction
In this task, you are given a sentence related to sports. Your job is to determine whether the

provided sentence makes sense. You need to produce an answer as "plausible” or "implausible”.

Input Context Lionel Messi hit a three-run homer.

Response Plausible Implausible

Instruction
In this task, you are given a question and a context about sports, and you need to answer the

question based on the given context.

Input Context

Passage (Live Commentary):

As the match reaches a decisive point, Williams, the tennis star, finds herself engaged in a

fierce rally. Her opponent delivers a powerful cross-court forehand that seems destined for a

winner. However, Williams displays incredible reflexes and anticipation, executing a lightning-fast

backhand passing shot down the line that catches her opponent off guard and secures the point.

Question: What remarkable shot did the player execute to win the crucial point?

Answer Choices:

a) Williams delivered a drop shot to surprise her opponent.

b) Williams hit a powerful forehand winner cross-court.

c) Williams executed a precise backhand passing shot.

d) Williams served an ace to win the point.

Response
a) Williams delivered a drop shot to surprise her

opponent.

c) Williams executed a precise backhand passing

shot.

Instruction
In this task, you are given a question about sports. Answer the question based on your implicit

knowledge.

Input Context What does the term "love" mean in tennis scoring?

Response It means that the player has won the game. Love is a score of zero in tennis.

Table 13: Case study on sports domain. Self-Specialized model produces better responses given the same instruction

about sports.
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Model Base MPT-30B Self-Specialized MPT-30B

Instruction
In this task, you are given a set of attribute-value pairs about sports in the raw XML format.

Generate a natural language text describing the given data.

Input Context

<originaltripleset>

<otriple>batterName | Pujols</otriple>

<otriple>finalScore | 16-7</otriple>

<otriple>gameTally | 2-1</otriple>

<otriple>hasLostTeam | Texas_Rangers</otriple>

<otriple>hasWonTeam | St._Louis_Cardinals</otriple>

<otriple>hitNumber | five</otriple>

<otriple>homeRunNumber | three</otriple>

<otriple>matchDate | Saturday_night</otriple>

<otriple>pitchResult | homers</otriple>

<otriple>runNumber | six</otriple>

</originaltripleset>

Response

Albert Pujols hit three home runs and drove in

five runs as the St. Louis Cardinals beat the

Texas Rangers 16-7 on Saturday night.

Pujols hit five home runs and drove in six runs

as the St. Louis Cardinals beat the Texas Rangers

16-7 on Saturday night.

Instruction
In this task, you are given a sentence related to sports. Your job is to determine whether the

provided sentence makes sense. You need to produce an answer as "plausible” or "implausible”.

Input Context Mike Trout took ball four in the World Series.

Response Implausible Implausible

Instruction
In this task, you are given a question and a context about sports, and you need to answer the

question based on the given context.

Input Context

Passage (Live Commentary):

With two runners on base and a full count, Johnson, the opposing team’s batter, faced an intense

battle against the pitcher. The tension reached its peak as the pitcher delivered a devastating

curveball, catching Johnson off guard. He swung and missed, resulting in a resounding strikeout

that ended the inning and stranded the runners.

Question: When did the pitcher deliver a crucial strikeout to end the inning?

Answer Choices:

a) At the start of the inning, Johnson struck out.

b) After a series of foul balls, Johnson hit a double.

c) At the end of the inning, Johnson grounded out.

d) With a full count, Johnson struck out to end the inning.

Response
a) At the start of the inning, Johnson struck

out.

c) At the end of the inning, Johnson grounded

out.

Table 14: Case study on sports domain. Negative cases where both models produce wrong responses are presented.
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