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SERRE WEIGHTS, GALOIS DEFORMATION RINGS, AND LOCAL MODELS

DANIEL LE AND BAO V. LE HUNG

ABSTRACT. We survey some recent progress on generalizations of conjectures of Serre concerning
the cohomology of arithmetic groups, focusing primarily on the “weight” aspect. This is intimately
related to (generalizations of ) a conjecture of Breuil and Mézard relating the geometry of potentially
semistable deformation rings to modular representation theory. Recently, B. Levin, S. Morra,
and the authors established these conjectures in tame generic contexts by constructing projective
varieties (local models) in mixed characteristic whose singularities model, in generic cases, those of
tamely potentially crystalline Galois deformation rings for unramified extensions of Q, with small
regular Hodge—Tate weights.

1. INTRODUCTION

The study of congruences between automorphic forms has a long and rich tradition. A paradigm
shift occurred when Deligne’s construction of Galois representations attached to classical holomor-
phic Hecke eigenforms opened the door to the study of congruences of automorphic forms through
congruences of Galois representations. In fact, conjectures of Fontaine-Mazur—Langlands and Serre
suggest that these are really two sides of the same coin.

Let p be a prime. Recall that Serre’s conjecture asserts that every continuous, odd, and irre-
ducible Galois representation p : Gg — GLg(Fp) of the absolute Galois group of Q is modular,
i.e. arises from the reduction of a Galois representation attached to a classical modular form. It
furthermore asserts a refinement which specifies the minimal weight and level at which one may
find such a modular form in terms of local properties of p. Turning the perspective around, if one
begins with a modular p, then the refinement predicts congruences between modular forms of many
different levels and weights.

While the level part generalizes quite naturally, the weight part is subtler, because it turns out
to be inextricably linked to integral p-adic Hodge theory. The goal of this survey is to describe the
circle of ideas surrounding recent developments on the weight part of Serre’s conjecture.

1.1. Overview. In §2] we articulate the main questions of interest in the context of cohomological
automorphic forms, especially motivating the representation theoretic perspective on congruences.

In §3] and @, we briefly discuss background on modular representation theory and Galois rep-
resentations. This will be necessary to state the higher dimensional generalizations of the weight
part of Serre’s conjecture.

In §5l we state generalizations of Serre’s conjecture due to Ash, Gee, Herzig, and Savitt among
many others which provide conjectural answers to these questions in many cases. In §5.3] we narrow
our focus to two cases, definite unitary groups in joint work with B. Levin and S. Morra and GL,,
over CM fields, where we established some conjectures of [GHS18| when p is tame and sufficiently
generic at p. In the proofs, the Kisin—Taylor—Wiles method plays a vital role in reducing a global
problem to a local one. As the internal details of the Kisin—Taylor—Wiles method are orthogonal
to our goals, we have chosen to axiomatize its essential output and explain how it is used.

Finally, §6l summarizes the key results on local models for local deformation rings which are the
essential ingredients to prove the results on the weight part of Serre’s conjecture.
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2. COHOMOLOGY OF ARITHMETIC MANIFOLDS

Let G be a connected reductive group over Q. Let A2 be the connected component of the group
of R-points of a maximal Q-split torus in the center of G, and let K3 be a maximal connected
compact subgroup of G(R). For a compact open subgroup Ky C G(A), consider the adelic double
quotient

Y (Kjp) € GQ\G(A)/ALKSLK

In various places, we require technical properties of Ky that can always be attained by passing
to a finite index subgroup. Furthermore, these required properties are preserved under passing
to a finite index subgroup (away from a finite set of places). We assume throughout that Ky is
sufficiently small (cf. [LLHLM20al, §9.1]). In particular, Ky is neat so that Y (Ky) is naturally
a real manifold. Moreover, Y (Kf) can be rewritten as a finite disjoint union of quotients of the
symmetric space G(R)/AS K2, by subgroups of G(Q) which are discrete and of finite covolume in
G(R). Finally, Y (Ky) is homotopy equivalent to its Borel-Serre compactification (cf. [BS73]), a
compact real manifold with corners and, in particular, a finite CW complex.

2.1. Rational cohomology. Let V' be an algebraic representation of G over Q. Then let Vg be
the Q-local system

G(Q)\ (G(A)/ALKLKp) x V(Q),

where G(Q) acts diagonally. Then the (finite-dimensional) sheaf cohomology groups H*(Y (K ), Vo)
have a convolution action by the double coset (Hecke) algebra Q[K s\G(Af)/K¢]. (We will consider
sequences of cohomology groups as objects in appropriate bounded derived categories. In most
instances, little is lost if H*(Y (Ky), Vy) is replaced by @;czH (Y (Kf),Vqg).) The significance of
these cohomology groups stems from the fact that the Hecke module H*(Y (Ky),Vg) ®g C can
be computed by automorphic forms by work of Matsushima and Franke [Mat67, [Fra98]. This is
essentially Hodge theory for the locally symmetric manifolds Y (Ky). Suppose that A2, acts on
V(C) through a character. If we let A(K ) denote the space of automorphic forms on Y (K), then

(2.1) H*(Y(Ky), Vo) ®q C = H*(g, b, (A(K) ©c V(C))"'>),

where g is the Lie algebra of the group of real points of the intersection of all kernels of rational
characters of G. Let V¢ be the local system

(GQ\G(A)/K)) x V(C) [ ALK,

where the right action of A K is diagonal with the inverse of the left action on V(C). Then the
bijection

(2.2) G(A) x V(C) - G(A) x V(C)
(2.3) (g,v) — (9,95 v)

induces an isomorphism Vg ®g C = Vc. This is the first step in establishing (Z.).
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We will assume that we can write Ky as Ky K > where ¥ is a finite set of finite places and
K> = HMZ K, where for all ¢ ¢ ¥, K, is a hyperspecial subgroup of G(Qy) (in particular, we

assume that G is unramified at places ¢ ¢ 3). Then Té L QIKE\G(AY)/K¥] is commutative (see

§4.2). Since H*(Y (Ky), Vg) are finite dimensional Q-vector spaces, the eigenvalues of the T 6—acti0n
on the part of A(K ) which contributes to H*(Y (Ky),Vc) (the cohomological automorphic forms)
are algebraic numbers.

2.2. Classical modular forms. If G = GLy, then Y(K/) is a modular curve and has the addi-
tional structure of a variety defined over Q. Any irreducible algebraic representation of GLg is of
the form V(a,b) % Sym®*(Q?) ®q det’. Let T; € Q[GLy(Z¢)\GL2(Q;)/GL2(Z)] be the double
coset operator

GLa(Z) <§ ‘f) GLs(Z)).

A well-known incarnation of (2] is that there is a normalized Hecke eigenform
o
flz) = Z anq", with ¢ = ¥
n=0

(i.e. @y = 1) of weight k > 2 and level Ky (or Ky N SLy(Z)) if and only if there is a T(S—eigenvector
in HY(Y (K;),V(b+ k — 2,b)) such that T} acts by ®a, for all £ ¢ .

It is well-known that the space of modular forms has a basis with integral g-expansions whose
Z-span is Hecke stable. In particular, (ag), are not just algebraic numbers, but are in fact algebraic
integers. This gives one way to make the notion of congruences between eigenforms precise: one
asks for a congruence between the (integral) Fourier coefficients.

It turns out that there are a lot of congruences between g-expansions of integral Hecke eigenforms.
A basic example comes from the Eisenstein series

ef B
Gr(z) & —2—2 +Y or-1(n)g®, k>4 even,

n>1

where By, is the k-th Bernoulli coefficient. Fixing a (rational) prime p, the mod p g¢-series Gy
(mod p) depends only on k& (mod p — 1). Another well-known example is the congruence

(24) A)ZqJa-g* =] -¢)*Q-¢")? (mod11)
m=1 m=1

between the unique normalized cuspforms of level I'(1) and weight 12 and of level I'y(11) and weight
2, respectively.

The above notion of congruences between eigenforms is essentially equivalent to congruences
between the system of Hecke eigenvalues on rational cohomology, and thus can also be detected by
contemplating the action of (suitably integral) Hecke operators on cohomology with integral coeffi-
cients. It turns out that this shift of perspective from g-expansion to integral cohomology (initiated
by Ash—Stevens) will give a systematic mechanism to explain congruences between automorphic
forms via representation theory.

2.3. Integral structure. Fix a prime p and suppose that K factors as the product K ?Kp. We
fix an algebraic closure @p of Q, and let E be a subfield of @p of finite degree over Q,. By replacing
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FE if necessary, we will assume that E is sufficiently large. Let O be the ring of integers of E with
uniformizer w and F be the residue field. We define Vg to be the nonarchimedean analogue

(GQ\G(A)/ALKLKD) x V(E) [ K,
of V¢ in §20] where K, acts diagonally (using the natural right action on G(Q)\G(A)/AS K K ]’Z
and the inverse of the natural left action on V(E)). Then as before, the map
(2.5) G(A) x V(E) —» G(A) x V(E)
(2.6) (g,v) = (9,9, '0)

induces an isomorphism Vg ®g E — Vg. As K, is a compact group, there exists a Kj-stable
O-lattice W in V(E). If we let

(2.7) W = (GQ\G(A) /AL KK x W)/ Ky,
then the map
(2.8) H*(Y (K;),W) = H*(Y (K;),Vg) = H*(Y (Kf), Vo) ®g E

gives a natural integral structure on H*(Y (Ky),Vg) ®g E. In fact, the definition (Z7)) makes sense
for any O[K,[-module and defines a functor from O[K)]-modules to local systems on Y (Ky). We
caution that (Z8) may not be injective in any given degree. Indeed, H*(Y (Ky),W) may contain
torsion, and in fact this torsion is expected to be abundant and to play an important role in
connecting cohomological automorphic forms and Galois representations.

2.4. Congruences between Hecke eigensystems. Let T be the Hecke algebra O[K*\G(A*)/K*],
which acts naturally on H*(Y (Kf),W). As H*(Y(Ky),W) is a finite O-module, there are only
finitely many maximal ideals m C T3 for which the localization H*(Y (K ), W) is nonzero. These
localized modules record congruences between systems of Hecke eigenvalues: a Hecke eigenclass
H*(Y (Ky), W)[%] survives in the localization H*(Y (Kjy), W)m[}%] if and only if its (automatically
integral) system of Hecke eigenvalues lifts the mod p system given by m.

However, for a fixed m, there may be various local systems W for which H*(Y (K¢), W) is
nonzero. Indeed, we saw in §2.2] that if mg, corresponds to (the system of Hecke eigenvalues
of) the Eisenstein series Gj (mod p) for 4 < k < p+ 1 and W(a,b) corresponds to the lattice

W(a,b) % Sym®? 72 ® det® for a > b, then H*(Y (GLy(Z)), W(K' — 2,0))mg, is nonzero for all

k' =k (mod p—1). (Since GLQ(Z) is not neat, these cohomology groups should be interpreted as
the cohomology groups of an orbifold.) Furthermore, if ma corresponds to the Ramanujan Delta
function mod 11, then both H*(Y (Ky),Zp)m, and H* (Y(GLo(Z)), W(10, 0))m, are nonzero where
K corresponds to the congruence subgroup I'g(11).

The upshot of our discussion above is that congruences between eigenforms can be thought as
the non-vanishing of localized cohomology for many different coefficient sheaves. Thus a complete
classification of such congruences is equivalent to the following question:

Question 2.4.1. Given a mod p Hecke eigensystem m, for which O-local systems W on Y (Ky) is
H*(Y (Kf), W) nonzero?

Serre studied this question extensively in the case of GLy [Ser87]. This perspective of cohomology
actually gives a natural explanation for the congruences for GLo in §2.21 We explain how it naturally

leads to considerations in modular representation theory. From the short exact sequence 0 — W R
W — W ®z, Fp — 0, we see that H*(Y (Kj),W)n is nonzero if and only if H*(Y (Ky), W ®z, Fp)m
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is. While W (a, b) ®z, Q, is an irreducible GL2(Zj)-module, W (a, b) ®z, F, is irreducible if and only

def

if a—b < p—1, in which case, we let F'(a,b) = W(a,b)®z,F,. All (absolutely) irreducible GLa(%Z,)-
modules over F, arise in this way, and F'(a,b) = F(c,d) if and only if a —c =b—d € (p — 1)Z. Let
F(a,b) be the corresponding local system.

Let us first revisit the congruences between Eisenstein series. For any a’ > b, the submodule of
W (a',b) ®z, F) generated by a (nonzero) highest weight vector is isomorphic to F(a,b) where a is
the unique integer such that 0 <a —b < p and a =a’ (mod p — 1). This gives a map

H*(Y(GL2(Z)), W(k — 2,0) @z, Fp)mg, — H*(Y(GL2A(Z)), W(K - 2,0) @z, Fp)ng,

where 2 < k < p+ 2 and k' > 2 with ¥ = k (mod p — 1). It can be shown (for example by
applying Hida’s ordinary projector) that these maps are injective in each degree. This illustrates
how modular representation theory can be used to produce infinite families of congruences between
Hecke eigensystems.

The congruence (2.4]) between cuspforms is simpler. Recall that here p = 11 and that G = GLs.
Then the fact that ma is non-FEisenstein implies that for all local systems W, H*(Y (Ky), W)m, is

zero unless * = 1. First, Shapiro’s lemma now implies that H*(Y (Kf), W)m, = H* (Y(GLQ(Z)), Wi nas

where W' corresponds to the principal series representation Indglag(?” )W. Second, the functor
P

W — HY(Y (GLy(Z)), W)m, is an exact functor from the category of finite Z;;[GL2(Z11)]-modules
GLQ(FU)
B(F11)

[F11-valued functions on P!(IF1;) and decomposes as Sym*? 2, © 1. Then the injection

H*(Y(GLa(Z)), F(10,0))my = H* (Y (Ky),Fp)ms

to the category of finite Zii-modules. Now Ind 1 is naturally identified with the space of

provides the desired congruence. This example illustrates the important phenomenon of how the
weight and level of modular forms can interact mod p.

With these representation theoretic arguments in mind, Ash, Stevens, and others have suggested
that one should narrow the focus of Question 2. 4.Tto when K, is a maximal compact open subgroup
and W is an irreducible F-local system.

Question 2.4.2 (The weight part of Serre’s conjecture). Suppose that K, is a maximal compact
open subgroup. Given a mod p Hecke eigensystem m, for which irreducible F-local systems VW on
Y (Ky)is H*(Y(K¢), W)m nonzero?

While this is a substantial reduction since there are only finitely many such F-local systems up to
isomorphism, little is expected to be lost as we now explain. The following proposition is immediate.

Proposition 2.4.3. If H*(Y(Ky),W)n is nonzero, then H*(Y (Ky), F)m is nonzero for some ir-
reducible subquotient F of W @0 F.

The converse to Proposition [2.4.3] holds in non-Eisenstein cases for G a Weil restriction of GL,, if
expected vanishing conjectures hold (see §4.0)). These vanishing conjectures generalize the vanishing
outside of degree 1 for G = GLs.

Question turns out to be quite subtle. Nonisomorphic irreducible F-local systems may con-
tain the same Hecke eigensystems, i.e. not all congruences arise from modular representation theory.
For example, with p = 23, both H*(Y (GLy(Z)), F(10,0))m, and H*(Y (GLy(Z)), F(21,11))m, are

nonzero. If we write

AG) =Y rne,

n=1
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then Ty acts on H*(Y (GLy(Z)), F(21, 11))m, by €H7(€) for all primes ¢ # 23 by (Z)) (see §2.2).
This implies that

(2.9) T(n) = (%)T(n) (mod 23)

for all n coprime to 23. In other words, 23 | 7(n) if (35) = —1.

3. AN INTERLUDE ON REPRESENTATION THEORY

3.1. Serre weights. In order to explore Question 2.42] the natural first step is to ask for a
classification of simple F[K,]-modules. If K,(1) C K, is a normal finite index pro-p subgroup and
W is a finite F[K,]-module, then W»(1) is an F[K,[-submodule of W which is nonzero (since the
action of a p-group on a finite-dimensional F-vector space must have a nonzero fixed vector). Then
the action of K, on a simple F[K,]-module factors through the finite quotient K,/K,(1), which
can often be arranged to be a finite group of Lie type. In this section, we discuss the (modular)
representation theory of these groups.

Let G be a connected reductive group over [, which splits over F. (We will eventually take G
to be the mod p reduction of an integral model of G.) An isomorphism class of a simple F[G(F))]-
module is known as a Serre weight for G(Fp). Our goal now is to describe the (finite) set of Serre
weights for G(F,).

Let B be an IF)-rational Borel subgroup in G' with Levi subgroup 7". We denote by W the Weyl
group N(T')/T, which has a Bruhat partial order with a unique longest element wy. We write X (7")
for the character group of T', which has an action of W and an induced action from the relative
Frobenius F' acting on T'. This group has a subset

X((T)E{Ae X(T):0< (\a") <p-—1, for all simple a}
which plays an important role in the modular representation theory of G. We let

X%(T)

def

= {Ae X(T): (N aY)=0 for all roots a}.

For any character A € X(7T'), we can consider the algebraic induction W (\) & IndGwo\ (also

known as the dual Weyl module), which is nonzero if and only if A\ is dominant with respect to
B. We let L()\) denote the socle of W (), which is the simple submodule generated by a nonzero
highest weight vector. Then we have the following result about Serre weights for G(IF,).

Theorem 3.1.1. The map

X (T)
(F = 1)X%(T)
(3.2) A= L) (F)lee,)
s a bijection.
We denote L(A)(F)|gw,) by F'(A). (To avoid conflicts with the F-action on X(7'), we will write
this action without parentheses.)

(3.1) — {Serre weights for G(Fp)}

3.2. Deligne—Lusztig representations. While Question only involves F-local systems, we
will see that it is inextricably linked to O-torsion free local systems. It is then natural to ask
for a classification of irreducible G(F,)-representations in characteristic 0. We now recall such a
classification, provided by work of Deligne and Lusztig [DL76].

For an element w € W, there exists g, € G(F,) such that g, F(g,) € N(T)(F,) represents w.

Then we let T, be the F-stable torus g, T'g,;!. Let W denote the extended affine Weyl group which
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is the semidirect product X (7') x W. For an element w = (u,w) € W, we define 0 : Ty(F,) — EX
to be the restriction of the character

T,(F,) — Q,
9 (19" 99w)

to Ty (Fp) (here, [p] denotes the Teichmiiller lift of ).
To a character 03 of a maximal rational torus T, (F,) of G(IF,), Deligne and Lusztig associate

a virtual (Deligne-Lusztig) representation over E which they denote eGeTwR%”;. We will instead
denote this virtual representation by R(w) and say that w is a presentation for R(w). The map
w +— R(w) is not injective—two elements map to the same virtual representation if and only if they
lie in the same orbit of the action of W on itself given by

(v,8) - (1, w) = (sp+ Fv — swF(s) "' (v), swF(s)™").

The simplest case of the above construction occurs when w is the identity. Then T, =T, 03 is a
character of T'(F,) and by inflation a character of B(F),), and R(w) is the principal series represen-

tation Indggz ;9{5. Nonuniqueness of presentations can be seen from the existence of intertwiners
between princi’Ral series representations.

The group W acts on X (T') in the usual way—W acts on X (T') by group automorphisms and
X(T) acts on itself by translation. Let m be a nonnegative integer and let 0 € X(7") denote the
trivial character. We say that @ € W is (lowest alcove) m-generic if (@(0),a") > m for all simple
roots o and (w(0), ) < p —m for all roots o”. We say that a Deligne-Lusztig representation R
is m-generic if R = R(w) for some m-generic w. An m-generic w or R exists only if mh < p, where
h denotes the Coxeter number of G. [DL76, Proposition 10.10] implies that if R is O-generic, then
R is in fact a genuine representation.

Let R denote the semisimplification of the reduction of any G(F,)-stable O-lattice in a genuine
G(F,)-representation R over E (R does not depend on the choice of lattice). In relation to Question
47 it is important to have an understanding of R for Deligne-Lusztig representations R. This
is provided by Jantzen’s formula for the reductions of Deligne-Lusztig representations in terms of
virtual linear combinations of dual Weyl modules [Jan81]. If R is sufficiently generic, then the
Jordan-Holder factors of R admit the following description in terms of alcove geometry, which is in
a sense independent of p. For convenience, we assume that G admits a twisting element n € X (T),
defined up to X°(T'), which by definition has the property that (n,a") = 1 for all simple roots .
The existence of an 1 can always be arranged by passing to a central extension of G by G,, (see
[BG14, Proposition 5.3.1(a)]). We write - for the p-dot action so that (v, w)-A = w(A+n)—n+pv.
See [LLHLM20a, §2] for any unexplained notation below.

Proposition 3.2.1. [LLHLM20al, Proposition 2.3.6] Let h be the Coxeter number of G. If w € 1%
is 2h-generic, then the Jordan—Hélder factors of R(w) are precisely the Serre weights of the form

F(r= (@) - (wwy ' (0) —n))
with wy € W restricted and dominant, Wy € W dominant, and wy T (1, wg)ws.

Remark 3.2.2. Of course, the description in Proposition B2.1] does not depend on the choice of
twisting element 7 and could in fact be rephrased without any reference to 7.
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4. RELATIONS TO (GALOIS REPRESENTATIONS

In order to address Question (and to explain the congruence (2.9)), we introduce some
conjectures and results concerning the relationship between cohomological automorphic forms and
Galois representations. We follow the approach in [Gro99], which seems to be more standard when
G is a general linear group or a unitary group. For a more canonical approach to conjectures
concerning Galois representations attached to cohomological automorphic forms, see [BG14].

4.1. Twisting element. For a field F, let Gr denote the absolute Galois group Gal(F*?/F’)
where we fix some separable closure F®P. Fix a maximal torus T and Borel subgroup B in G Yook

We assume now that G has a twisting element 1 which is by definition an element of X (7)%@ such
that (n,a") =1 for all simple roots a.. If G is GL,,, we can take  to be (n —1,n —2,...,1,0). As
before, a twisting element always exists if we replace G by a central extension of G by G,,. The
effect of this on the constructions and questions in §2lis minimal. A twisting element is only unique
up to XO(T")%e.

4.2. Satake parameters. Fix a prime ¢ and suppose that there is a reductive model G over Z;
for G such that G(Zy) = Ky. Let T C B C G be a maximal torus and Borel subgroup, respectively.
We have the Satake isomorphism (see e.g. [Car79l §4.2])

S : Z[/A[KA\G(Qe)/Ke) = Z[1/Q[T(Zo)\T(Qe) /T (Z)]™
normalized using the choice of twisting element 7 as in [Gro98|, Proposition 3.6], where W is the
Weyl group of the maximal split torus in 7.
If T is split, then T(Zy)\T(Qy)/T(Z¢) = Y (T') (here Y (T') denotes the cocharacter group of T')
and E-valued characters of

Z[1/OIKNG(Qe)/ Ko = Z[1/Y (T)Y = O(T W)

are in bijection with semisimple conjugacy classes in the dual group @(E) for any coefficient field
E of characteristic not equal to ¢. In general, E-valued characters x of Z[1/¢][K,\G(Qy)/K/| are
in bijection with semisimple conjugacy classes C of LG(E), where “G denotes the Langlands dual
of G (see [Gro99, §16]).

4.3. Conjectures on Galois representations associated to cohomological automorphic
forms. We fix a prime p and a sufficiently large subfield E' C Q,, of finite degree over Q.

Conjecture 4.3.1. Let V(\)g denote the irreducible representation of G/g of highest weight A.
Suppose that p C Té ®q E is a mazimal ideal such that the p-torsion H*(Y (Ky), V(N)E)p] is
nonzero. Then there exists a continuous homomorphism
p:Gg— 'G(E)
such that
(1) the composition of p with the projection *G(E) — Gq is the identity on Gg;
(2) for £ ¢ ¥ and € # p, p is unramified at £ and p(Froby) is in C\, where x is the character
Z[1/OIKAG(Qo)/Kd) C Ty @ B — (Tg @0 B)/p = B
and Froby is an arithmetic Frobenius element at £;
(3) plcg, is de Rham with Hodge—Tate cocharacter A+ (see [BG14, §2.4]; in our normalization
the cyclotomic character corresponds to the cocharacter idg,,) and is moreover crystalline

ifp ¢ X; and
(4) p is odd in the sense of [Gro99, Conjecture 17.2(a)].
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There is an analogous conjecture with torsion coefficients. As before, let F denote the residue
field of E.

Conjecture 4.3.2. If W is a finite F[Kp]-module, let W denote the F-local system on Y (Ky).
Suppose that m C T is a mazimal ideal such that H*(Y (Kf), W) is nonzero. Then there exists
a continuous homomorphism
7:Gg — “G(F)
such that
(1) the composition of p with the projection YG(F) — Gq is the identity on Gg;
(2) for £ ¢ ¥ and £ # p, p is unramified at £ and p(Froby) is in C, where x is the character

Z1/0[KN\G(Qp) /K¢ = Tg @ F = Ty ®g F/m = F

and Froby is an arithmetic Frobenius element at £; and
(3) P is odd in the sense of [Gro99, Conjecture 17.2(a)].

Remark 4.3.3. (1) One also expects that p satisfies a compatibility with the conjectural local

Langlands correspondence at places in .

(2) Comparing the two conjectures, observe that there is no property at p for p. Such a property
would be closely related to Questions 2.4.1] and

(3) It is clear that p and p determine p and m, respectively. On the other hand, the properties
of p described in Conjectures [£.3.1] and do not characterize p in general. When G is a
Weil restriction of GL,,, the first two properties characterize the isomorphism class of the
semisimplification of p by the Chebotarev density theorem and the Brauer—Nesbitt theorem.
But even for tori, these properties do not characterize p (see [BG14] Remark 3.2.4]).

(4) The existence of torsion cohomology classes means that Conjecture [4.3.1] does not imme-
diately imply Conjecture A version of Conjecture for all torsion coefficients
implies Conjecture [1.3.1] (except for the third property) by taking a limit.

There are two cases, relevant to what follows, when both conjectures are known:

(1) the Weil restriction of a definite unitary group relative to a CM extension of a totally real
field not equal to Q [Kot92, [HT01), Lab99l [Shilll [CH13], and

(2) the Weil restriction of GL,, over a CM field [Sch15].

In these cases, the attached Galois representations are determined up to semisimplification by
Remark [A33|[B]). We say that p (or m) is non-Eisenstein if p does not factor through a proper
parabolic subgroup after any finite extension of F.

4.4. Modular Serre weights. Fix p and F as before, and let F be the residue field of E. Suppose
from now on that G/,g, has an integral model Gz, . Having classified irreducible representations of
G(Z,) and introduced Galois representations, we now revisit Question through that lens. We
let K, be G(Zp). An irreducible G(Z,)-representation over F factors through the reduction map
G(Z,) - G(F,) (whose kernel is pro-p), i.e. is the inflation of a Serre weight for G(IF,). For a Serre
weight o, let F, denote the corresponding F-local system on Y (K7y).

Fix an F-valued Hecke eigensystem m. To understand Question is to understand the
following (finite) set.

Definition 4.4.1. Let W (m) be the set of isomorphism classes of Serre weights o for G(IF,) for
which H*(Y (K ), Fs)m is nonzero. If o € W(m), then we say that o is a modular Serre weight (for
m).
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If there is a Galois representation p : Gg — LG(F) satisfying the properties in Conjecture A3.2
for m, then we also write W (p) for W (m) and say that o is a modular Serre weight for p when
o€ W(p).

4.5. The case of GLs. Fix p and E as before. The first result on Conjecture A3.1] for nonabelian
G was work of Deligne [Del71] in the case of G = GLg (building on work of Eichler and Shimura).
In this case there is no torsion in cohomology, and so Conjecture A3l implies Conjecture
Deligne constructed p satisfying all the properties of Conjectured3Tlexcept the third, which follows
from subsequent work of Faltings on p-adic comparison theorems. (We set n = (1,0) here.)

Let K, = GLy(Z,). Fix a mod p Hecke eigensystem m. Assume that m is non-Eisenstein,
i.e. that the attached Galois representation p: Gg — GLy(F) is absolutely irreducible. (The data
of m is equivalent to that of the isomorphism class of p by Remark A33I[3]).) Since cohomology
groups outside degree 1 do not admit non-Eisenstein mod p Hecke eigensystems, the functor W —
HYY (Kf),W)m is exact, as explained in §241 In particular, Question 24Tl reduces to Question
242] namely an investigation of W (p).

If HY(Y(Ky),F(a,b))m is nonzero, then so is H' (Y (K),W(a,b))m. A necessary condition for
F(a,b) to be in W (p) is that 5 is the reduction of a representation p : Gg — GL2(E) which is
unramified outside of 3 and p and is crystalline at p of Hodge—Tate weights a + 1 and b. (Since p
is irreducible, a Gg-invariant O-lattice in p is unique up to scaling.) In particular, the restriction
Plcg, is the reduction of (a lattice in) a crystalline representation pj, : Gg, — GL2(E) of Hodge-
Tate weights a + 1 and b. The following result, known as the weight part of Serre’s conjecture, is
a local-global principle (i.e. W(p) only depends on plc,, ) that asserts that the necessary condition
is in fact sufficient.

Theorem 4.5.1 ([Gro99, [Edi92] [CV92]). Suppose that m is non-FEisenstein. Then F(a,b) € W (p)
if and only z'fﬁ|GQp is the reduction of a crystalline representation of Hodge—Tate weights a+1 and
b.

Remark 4.5.2. (1) The above formulation is slightly different, albeit equivalent, from Serre’s
original formulation in [Ser87]. In loc.cit., the recipe for W (p) is completely explicit in terms
of the “inertial weights” of ﬁ\g@p when ﬁ\g@p is semisimple, with additional modfications
in terms of ramification properties of an extension class in general. In particular, in the
semisimple case, there is a simple combinatorial formula for a and b solely in terms of the
inertial weights. Early generalizations of Serre’s conjecture beyond GLy/q, e.g. [ADP02,
Conjecture 3.1], involved similar formulas (see [GHS18, §7] for more recent formulas for a
larger list of Serre weights). On the other hand, while [BD.J10] also contains formulas & la
Serre, it emphasizes the above “crystalline lifts” perspective.

(2) Theorem [.5.1] was generalized to (the Weil restriction of) the unit groups in quaternion
algebras over totally real fields split at no more than one archimedean place and definite
unitary groups over a totally real field when p > 2 (and under mild additional hypotheses)
in a series of works by Gee, Newton, Kisin, Liu, and Savitt [New14] (GK14l I(GLS14]. Some
of these build on earlier work of Gee that introduced the Taylor—Wiles method to produce
proofs rather different from the original proofs of Theorem [A.5.11

We now revisit the mod 23 congruence for the Ramanujan Delta function. Let p : Gg — GLg(Fa3)
be the associated Galois representation. In this case, p| Iy, = w' @1, where w denotes the reduction
of the 23-adic cyclotomic character x and Ig,; C Gg,, denotes the inertial subgroup. Then p|¢q, .
is the reduction of both x'' @ 1 and x!' @ x?? (up to unramified twists). Theorem E5.1] implies
that {F(10,0), F(21,11)} € W(p). In fact, this is an equality.
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The behavior of the Ramanujan Delta function modulo 23 illustrates a rare phenomenon. For
example, if we instead take p = 19 and p : Gg — GLg2(F19) the corresponding representation,
then p| Ig,, 1S @ nontrivial extension of 1 by w'!. Moreover, ﬁ|Gng is the reduction of a crystalline
representation which after restriction to inertia is a nontrivial extension of 1 by y'!. However,
any nontrivial extension of y!® by any unramified twist of x'! is not crystalline. In fact, we have
{£(10,0)} = W(p) in this case. One expects more generally that W(p) is larger when plg,, is
semisimple. Indeed, if p|q, is the reduction of an O-lattice in r : Gg, — GL2(E), then there is
another O-lattice (possibly after enlarging F) whose reduction is the semisimplification of ﬁ|GQp.

One approach to Theorem [£.5.T]is as follows. If ﬁ|GQp admits a local crystalline lift of Hodge—Tate
weights a + 1 and b, show that p admits a global lift p which is crystalline (at p) of Hodge-Tate
weights a + 1 and b. Then show that p comes from a modular form as predicted by the Fontaine—
Mazur conjecture [FMO95]. These steps can be executed using a combination of tools in the Taylor—
Wiles method independently discovered by Khare-Wintenberger and Gee [KW09, [Geel1].

4.6. Vanishing conjectures for cohomology. In the previous section, we were in the advan-
tageous situation where H*(Y (Ky), W)n vanished outside of degree one for all O-local systems
W when m is non-Eisenstein. While this is not true in general, this property does neverther-

less admit a conjectural generalization. Let dy be the dimension of Y (Ky). Define the integers

0o ' rk G(R) —rk AS K3, and qp = %(dy —lp). (The group G admits discrete series if and only of

lo =0.)

Conjecture 4.6.1 ([CGI8|). Suppose that m is non-Eisenstein. If H'(Y (Kf),W)m # 0, then
i € [q0, g0 + o).

[GN] shows that if Conjecture .6.T1holds, then so does the converse to Proposition 2.4.3] when G is
a Weil restriction of GL,,, so that, as in our discussion above, it suffices to analyze Question 2.4.1]
for irreducible mod p local systems (note that this is far from obvious in general, as it is a priori
possible for the cohomology complex of irreducible local system to cancel each other out when they
spread to several cohomological degrees). More seriously, Conjecture [£.6.1] plays a prominent role
in the Taylor-Wiles patching method, which is the main tool to attack Question [2.4.1] in general,
cf. Remark below.

Unfortunately, there are few cases where Conjecture .61 is known. One trivial case is that of
groups which are anisotropic modulo their center, e.g. definite unitary groups, when Y (Ky) is a
finite set of points. [CS17] have shown that for certain unitary groups (/9 = 0) Conjecture [£.6.1]
holds under some additional hypotheses. The case of the Weil restriction of GL,, (for n > 1) over
a number field F' (even CM fields) is open beyond the case n = 2 and F' either totally real or
imaginary quadratic.

5. CONJECTURES AND RESULTS ON THE WEIGHT PART OF SERRE’S CONJECTURE

5.1. Taylor—Wiles patching. Suppose for the moment that we are in a context where ¢, = 0
and Conjectures [A.31] and [£.6.1] hold (e.g., definite unitary groups). We fix p and E as before. We
assume that a reductive integral model Gz, of G g, exists and continue to let K, = G(Zp). If
F(X\) € W(p), then H*(Y (K ), W(A))m is nonzero (where W(X) is an O-lattice in the irreducible
algebraic representation V())). In particular, p (attached to m) is the reduction of a crystalline
representation of Hodge—Tate cocharacter A 4+ 7. In light of Theorem 5] it is tempting to guess
that the converse holds. However, counterexamples to this have been found for definite unitary
groups in three variables [LLHLMIS, Proposition 7.18]. The reason is that in contrast to the case
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of GLg, W () may include many Jordan-Holder factors other than F'(X). In fact, () as a O[K,]-
module often does not lift to an O-torsion-free module, which makes it more difficult to use the
(expected) p-adic Hodge theoretic properties of Galois representations attached to automorphic
forms. However, F'(\) does lift virtually.

Suppose that [F(\)] = > ew [W] in the Grothendieck group of F[K,]-modules, where each W
in the sum lifts to characteristic 0 (for example, one can take W running over the reductions of
various O[G(F,)]-modules using [Ser77, Theorem 33]). Then exactness gives us

[H* (Y (K5), FO))m] = D ew[H* (Y (Kf), W)n].
w

Since the F-vector spaces on the right hand side lift, their dimensions can in principle be computed
in characteristic zero. However, they are of a global nature, and thus difficult to access. In contrast,
we still expect that W (p) depends only on ﬁ\g@p. The Taylor-Wiles method “patches” together
cohomology functors (or rather, the total cohomology complex computing) H*(Y (Ky), F_)m (for
varying K ) to obtain a functor M. (—) that plausibly depends (roughly speaking) only on ﬁ]GQp.
Moreover, a control theorem guarantees that M (o) is nonzero if and only if H*(Y (Ky), Fo)m is.

For a Galois representation 7 : Gg, — "G(F), let Ry denote the (framed) deformation ring
parametrizing lifts 7 : Gg, — “G(R) of 7 for complete local Noetherian O-algebras R with residue

field F. Building on work of Kisin [Kis08| in the case when G g, is a Weil restriction of GL,,, Balaji

[Ball2] in particular defined a family of (reduced) semistable deformation rings R?+77’T whose Q-
points correspond to potentially semistable Galois representations of Hodge—Tate cocharacter A+n

and Galois type 7. In certain contexts where (enough of) an inertial local Langlands correspondence

is known, one can define a finite dimensional locally algebraic E[K,]-module o (A, 7) & V(N@go(r).

For example, when 7 is tame, o(7) can be taken to be a certain combinatorially defined Deligne—
Lusztig representation. For a ring A, let A-mod® denote the full subcategory of A-mod of finitely
generated A-modules.

Axiom 5.1.1. There is an exact functor My, (—) : O[K,]-mod™® — R,

properties.

e -mod'® with the following
Qp

(1) For a Serre weight o, My (o) is a maximal Cohen-Macaulay module on R;+"’T ®o F for
some A and 7.

(2) My (o) is nonzero if and only if H*(Y (Ky), F,)m is nonzero.

(3) If o(A,7)° is an O-lattice in o(A,7), then My (o(A,7)°) is a maximal Cohen—Macaulay
R;‘JFU’T—module of generic rank at most 1.

(4) If o(\, 7)° is an O-lattice in o(\, 7), then M (o(\, 7)°)[1/p] is a generically free R;‘JF"’T[l/p]—
module of rank 1.

Remark 5.1.2. (1) It may be impossible to arrange for the stringent rank conditions in Axiom
E.IT] but the ranks can still be controlled and many arguments below can be successfully
modified.

(2) If Conjecture A.6.1] holds, then it is often possible to use the Taylor-Wiles method to
construct a functor Muo(—) satisfying the first three items of Axiom BT with 7 & Plcg,
ICEG™16,[GN], at least after adding formal variables to R;JFU’T which we ignore. In general,
the total (localized) cohomology complex may have non-vanishing cohomology groups in

several degrees. The role of Conjecture [L6.1]is to guarantee that after Taylor-Wiles patch-
ing, these complexes becomes concentrated into a single cohomological degree, i.e. they turn
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into usual modules. This concentration effect relies on the “numerical coincidence” that
powers the Taylor-Wiles method.

(3) It seems to be difficult to guarantee the last item (for all choices of (A, 7)) except when
G = GL3 [Kis09]. Indeed, it is essentially equivalent to a modularity lifting result with very
general p-adic Hodge theoretic hypotheses. However, there are some instances of specific
(A, 7) where the final item follows from the third: when R;‘HW is zero and when R;‘JF"’T is
a domain and My, (o (A, 7)°) is nonzero for some O-lattice o(\,7)° C o (A, 7).

Admitting Axiom [B.I.T] for the moment, there is the following strategy for determining W (p).
Let d = dimg G g + dimg G/p/B/g where By C G /g is a Borel subgroup. By a result of Kisin

(see Theorem [6.1.1]), d is the dimension of R;‘JFU’T over O for any A and 7. For each Serre weight
o, we write a presentation

(5'1) [J] = Z C)\,T[O-()\7T)]
(A7)

in the Grothendieck group of F[K,]-modules. Then Axiom 5. 1.1l guarantees that

(5.2) Z(Ms(0)) = Y exsZ(R)" @0 F),
(A7)

where Z(—) corresponds to taking the d-dimensional support cycle of the Rz-module (note that all
modules involved have support of dimension < d). Since the right hand side of (5.2]) only depends
onT d:°fﬁ|GQp, so does the left hand side. In particular, this implies W (p), being the set of o with
Z(Mx (o)) # 0 by the Cohen-Macaulay property, depends only on 7 as expected.

Another feature of the situation is that there are many possible choices of expressions (5.1]),
even if we restrict to the case when ¢y, = 0 for all A # 0. Since the left hand side of (5.2)
involves only o, we get the surprising conclusion that the right hand side must be independent of
the choice of expressions (B.I]). In other words, there are many non-trivial relations between cycles
of special fibers of potentially crystalline deformation rings. We summarize the above arguments
as the following conjecture.

Conjecture 5.1.3. (1) [ BM02, [EG14] The left hand side of (5.2)) is independent of the pre-
sentation in (B.1).
(2) |GHS18] For any presentation as in (51)), o € W (p) if and only if the right hand side of

(2) is nonzero.

Remark 5.1.4. Conjecture E.I3|() is purely local in the sense that it only involves G /0, and 7 while
() is global since it involves p. However, both follow from Axiom G111

5.2. Herzig’s recipe. The complexity of Conjecture B.1.3] suggests that Question does not
admit a simple answer. Indeed, the case of GLy is perhaps misleading because of the simplicity of
the geometry and representation theory involved. However, the class of semisimple representations
G — G(F) admits an essentially combinatorial classification, and so one could ask for a combi-
natorial description of W () when ﬁ\g@p is semisimple which generalizes Serre’s recipe (see Remark
[4.5.2)). Herzig’s recipe gives such a (conjectural) description.

We assume in this section that G g, is unramified, with reductive integral model G 7, . We let
K, be G(Z,). As before, we fix a twisting element 1 of G. A regular Serre weight is a Serre weight
F(\) with 0 < (\,aY) < p — 1 for all simple roots «. We define an involution R on the set of
regular Serre weights F'(A) by the formula

R(F(A) = F((=wo(n), wo) - A)-
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If 7 : Gg, — “G(F) is semisimple, then the restriction 7| Iy, to the inertial subgroup factors
through a torus. Its Teichmiiller lift [F|z, | : Go, — LG(E) is then a tame inertial type. Recall
that to a tame inertial type 7 (defined over E), one can attach through a tame inertial local
Langlands a Deligne-Lusztig representation o(7) of G(F,) (defined over E). Then K, acts on
o(7) by inflation, and we let &(7) denote the semisimplification of the reduction of any K,-stable
O-lattice in (7). We have the following conjecture.

Conjecture 5.2.1 ([Her09,[GHS18]). The subset of reqular Serre weights in W (p) is R(JH(o'([pl1g,])))-

Conjectures 5.1.3] and [5.2.1] are of a rather different nature. For one thing, Conjecture [5.2.1] only
applies to p which are semisimple locally at p, which is when one expects W (p) is largest. However,
Conjecture [5.2.1] is rather more explicit than Conjecture [5.1.3] when combined with Proposition

B21

5.3. Results on the weight part of Serre’s conjecture. Conjecture (.2.1] and a weakened
version of Conjecture [5.1.3] is known when G is GLs, the Weil restriction of the unit group in
a quaternion algebra which is indefinite at no more than one archimedean place, or the Weil
restriction of a definite unitary group in two variables under mild hypotheses (see Remark E.5.2]).
Similar results [LLHLMI8|, [LLHLM20b, LHLM22] are known for the Weil restrictions of definite
unitary groups in three variables that are unramified at p under an additional genericity hypothesis.

Suppose now that G, is a product of GL;, over a finite set J. For w € W, w(0) is a tuple
of elements in Z" indexed by J. We write w(0); € Z"™ for the element corresponding to j € J.
We say that a semisimple 7 : Gg, — “G(F) is sufficiently generic at p if o([F| Ip,)) = R(w)
where 0 < (w(0),") < p for all simple roots o and p t P(w(0);) for an implicit polynomial
P € Z[X;,...,X,] which depends only on n (and not on p or j). If T is not semisimple, we say
that it is sufficiently generic if its semisimplification is. In a precise sense, most 7’s are sufficiently
generic as p — o0.

Theorem 5.3.1. (1) [LLHLM20al Corollary 8.5.2] Suppose that G,q, is an unramified Weil
restriction of GL,. Then Conjecture [T 1.3(), restricted to presentations coming from
Deligne—Lusztig representations, holds for sufficiently generic 7.

(2) [LLHLM20a, Theorem 9.1.6] Suppose that G is the Weil restriction of a definite unitary
(over a nontrivial totally real extension of Q) and that ﬁ|GQp is sufficiently generic and
semisimple. Then under mild Taylor—Wiles hypotheses, Conjectures [.T.32) (for the re-
stricted presentations in the previous item) and [5.2]] hold.

(5) [LLH] Suppose that G is the Weil restriction of GLy over a CM field and that plg,, is
sufficiently generic and semisimple. Suppose moreover that H*(Y (K¢), W)n®oE is nonzero
for some W corresponding to a Deligne—Lusztig representation. Then under mild Taylor—
Wiles hypotheses, Conjectures[B . A[2) (for the restricted presentations in the previous item)

and [5.21] hold.
A critical tool to prove Theorem [5.3.1]is the following.

Theorem 5.3.2. Suppose that 7 : Gg, — “G(F) is semisimple.

(1) [LLHLM20al, Theorem 7.3.2(2)] If 7 is a sufficiently generic tame inertial type, then RI"
is an integral domain (if it is nonzero).

(2) [LLHLM20al Proposition 6.2.7] There exists a functor My, (up to adding formal variables)
satisfying Aziom [ ITI[)-@), with G a Weil restriction of a definite unitary group, such
that Moo (o(7)°) is nonzero if R¥™ is nonzero for a sufficiently generic tame inertial type 7.
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Remark 5.3.3. (1) Theorem [5.3.2/[2]) combines the modularity of obvious weights [LLHL19] and
the coherence conjecture for local models of Shimura varieties [Zhul4].
(2) In fact, Theorem also holds for any A 4+ n with A dominant, though the implicit
polynomial defining genericity depends on A. See Theorem [6.1.31

As alluded to in Remark 5.1.2|[3]), Theorem implies the existence of a functor M, satisfying
Axiom B.ITI()- @) restricted to cases when A\ = 0 and 7 is a generic tame inertial type. The
argument from §5.1] shows that Theorem implies Theorem B3TI[) for sufficiently generic
semisimple 7. The nonsemisimple case follows from a simple argument using the global geometry
of the Emerton—Gee stack relying on the fact that there is a semisimple 7 on every component (see

Remark [6.23|(1)). Moreover, Theorem BE3TJ[2) follows from Axiom BITTIZ).

Remark 5.3.4. The final part of Theorem [5.3.1] is a bit more subtle. When ¢; = 0, one expects
H*(Y(K¢),W)n to have little torsion. In contrast when ¢y > 0, one expects cohomology to be
dominated by torsion and characteristic 0 classes to be rare. This means that the lifting hypothesis,
i.e. that H*(Y(Kf),W)m ®o E is nonzero in Theorem [5.3.TI[3]), is quite restrictive. This condition
could be removed if one knew Conjecture 6.1 (see Remark [B.1.2]). In lieu of this, the lifting
hypothesis can be used to make an argument with Euler characteristics of the functor M., whose
image is a priori an object in D°(R —modfg), adopting Taylor’s Thara avoidance trick to this

p|GQp
setting [ACCT18].

6. LOCAL MODELS FOR POTENTIALLY CRYSTALLINE DEFORMATION RINGS

The heart of the proof of Theorem B3] reduces, via the Taylor-Wiles method, to understanding
the support of the patched modules My, (o) in Axiom [5.1.7] and ultimately to geometric properties
of the potentially crystalline deformation rings R;"T. We achieve this by introducing and analyzing
certain (finite type) group-theoretic moduli spaces which algebraize these deformation rings.

Fix a prime p. In this section, we will restrict to the case G g, = Resg/q,GLy, for an unramified
extension K = Qs of Q). In particular, we have a reductive integral model Gz, = Resp, /z, GLn,
of G. Recall from §2.3] that E is a sufficiently large finite extension of @, with ring of integers O,
uniformizer w, and residue field F.

6.1. Potentially crystalline deformation rings. Let 7 : Gx — GL,(FF) be a mod p local Galois
representation. Recall that we have Ry the (framed) deformation ring that classifies lifts of 7, and
the @p—points of Ry correspond to p-adic Galois representations of G (lifting 7). Given a Hodge—
Tate cocharacter A and inertial type 7, one has the potentially crystalline deformation ring R;"T
which is characterized as the unique reduced p-flat quotient of R whose @p—points correspond to
lifts 7 : Gx — GL,(Q,) which are potentially crystalline of type (X, 7) (i.e. the Hodge-Tate weights
of r are given by A and WD(r) induces the inertial type 7). In the setting of GL,,, these rings were
first constructed by Kisin, who also established their basic properties [Kis0§].

o« . )\77— 1 .
Theorem 6.1.1 (Kisin). (1) R[] is regular.
(2) dimp R;"T = dimg G/p+dimg G/p/Py/g, where Py is the parabolic subgroup corresponding
to X. In particular dimp RN is a constant d as X\ varies over reqular dominant cocharacters.

When M\ is reqular dominant, the rings R;"T play a pivotal role in the Taylor-Wiles method:
they act on patched spaces of automorphic forms My, (o(A — n, 7)), which govern questions about
modularity and congruences (cf. Axiom [L.TTI[3])). Even better, they are maximal Cohen—Macaulay
modules, and hence must be supported on a union of irreducible components.
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For global applications, it is essential to understand global properties of R;"T such as irreducibil-
ity. This turns out to be a notoriously difficult problem. There are roughly two reasons for this.

e Outside some special cases, R;"T, being characterized by its @p—points, has no known moduli
interpretation. This is related to the fact that integral p-adic Hodge theory is much less
well understood than rational p-adic Hodge theory.

e The internal structure of R;"T is intrinsically complicated in general. Thus, one can not
expect to have completely explicit descriptions for all A and 7.

The second point is best illustrated by the Breuil-Mézard conjecture, which quantifies the com-
plexity of the special fibers of R;+"’T as A and 7 vary in terms of the mod p representation theory of
GL,,(Ok) (we shift from A to A+ n for the rest of this subsection to be consistent with §5.1]). We let
Z(RXT7 /z5) denote the d-dimensional cycle of R\ /a7, which counts the irreducible components
with appropriate multiplicities. For a GL, (Of )-representation V over E, recall that V denotes the
GL,,(Ok )-representation over IF which is the semisimplification of the reduction modulo w of any
GL,, (Ok)-stable O-lattice in V. The following is a reformulation of Conjecture [5.1.3|(I).

Conjecture 6.1.2 (Breuil-Mézard, Emerton-Gee). There exist d-dimensional cycles Z,(T) in
Spec Ry/w for each irreducible GL,, (O )-representation o over F (i.e. a Serre weight for G(FF}))

such that for all T and X,
Z(RXT [ = th (),

where my (o) denotes the multiplicity of o in J(A,T).

In other words, the special fibers R?+"’T /oo are built out of a finite list of basic cycles Z,(7F),
with multiplicities governed by the purely representation theoretic quantities my -(c). Conjecture
is known when n = 2 and A = 0 by work of Gee and Kisin |[GK14]. When 7 is a generic tame
type, mo (o) =1 for 27 Serre weights ¢ and is zero otherwise. In general, the quantities my,; are
very complicated: if A = 0 and 7 is tame, m) (o) computes the multiplicities of a mod p Deligne—
Lusztig representation, which for generic 7 is given by periodic Kazhdan—Lusztig polynomials. In
particular, as the rank of G grows, the special fibers RAJF”’ /o tend to be highly non-reduced.

As explained in §5.0] to prove Theorem [5.3.1], one needs to establish Axiom .1l particularly
the main bottleneck (). We do this by proving Theorem

Theorem 6.1.3. [LLHLM20al Theorem 7.3.2(2)] Assume that T is semisimple and 7 is a tame

An,T

inertial type which is sufficiently generic relative to X (in the sense of §8.3). Then R s a

domain (or zero).

Remark 6.1.4. (1) Explicit computations that suggest that Theorem is false without the
tameness assumption on ¥ when n > 2 unless n = 3 and A = 0.

(2) If R;‘JFU’T # 0, then sufficient genericity of 7 implies that of 7 and vice versa (generally with
different choices of implicit polynomials). Because of this, the conclusion of Theorem
also holds if we let 7 be tame and sufficiently generic but impose no genericity hypothesis
on T.

6.2. The Emerton-Gee stack. In [EGa], Emerton-Gee constructed the moduli stack A, over
Spf O of rank n étale (p,I')-modules. By its construction, A, interpolates framed deformation
rings in the sense that the set X,,(F,) is in bijection with the set of continuous representations
T : Gk — GL,(F,), and framed deformation rings R; are versal rings (in the sense of [EGD,
Definition 2.2.9]) for X,,. Furthermore, for a Hodge—Tate cocharacter A and an inertial type 7, they
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construct a p-flat p-adic formal algebraic closed substack X7 which is characterized by the property

that its points over any finite flat O-algebra correspond to potentially crystalline representations r

of type (A, 7). Thus X7 interpolates the potentially crystalline deformation rings R;"T as T varies.
The basic properties of these stacks are as follows:

Theorem 6.2.1 (Emerton—Gee). (1) [EGal, Corollary 5.5.18] X,, is a Noetherian formal alge-
braic stack.
(2) [EGal, Theorem 4.8.12] XM is a p-flat p-adic formal algebraic stack of dimension dim G/g/PyE-
(3) [EGa), Theorem 6.5.1] The irreducible components of the underlying reduced stack X, eq are
in bijection with the Serre weights of G(Fp).

We let C, be the irreducible component labelled by o. Let Z), ,; denote the top dimensional
cycle of X7 /o5 which has dimension independent of A since A + 7 is regular dominant. One
has the following interpolation of the Breuil-Mézard conjecture over A,:

Conjecture 6.2.2 (Conjecture 8.2.2 [EGal). For each Serre weight o, there exists an effective
top-dimensional cycle Z, on X, req such that for all X and inertial types T, we have

AN Zm)\;r(a)ZU.
ag

Remark 6.2.3. (1) Conjecture recovers Conjecture by taking versal rings at 7. Con-

versely, knowledge of Conjecture at sufficiently many T would imply Conjecture
This gives a mechanism to deduce Conjecture for more general 7 from a few “basic
7. This allows us to reduce Theorem [5.3.TI([]) to the case of semisimple 7.

(2) In [LLHLM20a, §8], using Taylor-Wiles patching, we constructed cycles Z, for sufficiently
generic o, which satisfies a (finite) subset of the equations postulated in Conjecture
As the conjectural cycles in Conjecture[6.2.2lis expected to be compatible with Taylor-Wiles
patching, the cycles constructed in loc. cit. should be the “correct” ones.

(3) (cf. [LLHLM20al, Remark 1.4.11]) One expects Z, to contain the irreducible component C,
with multiplicity one. That is, one should have a decomposition

Zo‘ = Z bo’,crco’

with by » > 0 and by, = 1. This is indeed true in the cases studied in [LLHLM20al, §8] and
[GK14]. For example, in the setting of [GK14], the cycles Z, = C,, unless o is a twist of the
Steinberg weight (in particular such o would be non-generic), in which case Z, is Cy + Cor
for a suitable ¢’ (cf. [EGal Theorem 8.6.2]). For n > 3, it is quite difficult to compute by ,,
and one does not expect Z, = C, in general, even for generic o. This is analogous to the
situation of the locally analytic Breuil-Mézard conjecture studied in [BHS19|.

6.3. Local models and their geometric properties. Let LG be the loop group, which is the
ind-group scheme given by LG(R) = GL,,(R((v+p))) for any O-algebra R. Consider the positive loop
group scheme L*G over O sending an O-algebra R to the subgroup of GL,,(R[v + p]) consisting
of matrices that are upper triangular mod v. Note that when p is invertible in R, LTG(R) =
GL,,(R[v + p]) is the positive loop group for GL,,, whereas when p =0 in R, LYG(R) = Z(R), the
standard Iwahori group scheme.

The quotient LTG\LG is represented by an ind-proper O-ind-scheme Grg. This is a mixed
characteristic version of the degeneration of affine Grassmannians introduced by Gaitsgory: indeed
its generic fiber Grg g is isomorphic to an affine Grassmannian, while the special fiber Grgr is
isomorphic to the affine flag variety FI.
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The affine Grassmannian has the affine Schubert stratification Grg p = |J, LTGg\LTGg(v +
p)*LT G, where )\ runs over dominant coweights of GL,. Similarly, the affine flag variety Fl =
Uz Z\ZwZ, where w runs over the extended affine Weyl group W.

For dominant ), the Pappas—Zhu local model M (<)) is the Zariski closure of LTGp\LTGg(v +
p))LTGE in Grg, cf. [PZ13].

Let a € O™. We now consider the condition

dA 1
(%) v%A_l + ADiag(a)A™! € <m> Lie LTG
for A € LG(R). This is an approximation to the monodromy condition coming from p-adic Hodge
theory. This condition clearly descends to a closed condition on Grg.

Definition 6.3.1. The local model M (A, V) is the Zariski closure in M (<)) of the locus cut out
by &) in LTGp\LTGr(v+ p)*LTGE.

Note that right multiplication by the constant diagonal torus T preserves (®). (Here, TV is a
maximal torus in GL,, which is the dual group GV of the group G = GL,, which appeared in §3.11)
Thus, M (A, V,) inherits a TV-action compatible with the TV-action on M (<\).

By contemplating the interaction of condition (&) with the affine Schubert stratification, one
observes:

o |[LLHLM?20al, Proposition 4.1.1] M (), Va) /g is isomorphic to Py\\GLj, hence is smooth and
irreducible.

e [LLHLM20a, Theorem 4.2.4] Provided a mod p sufficiently regular, the locus cut out by (&)
in each open Schubert cell Z\ZwZ C Fl is an affine space, with dimension combinatorially
determined by w.

Thus M (A, V,) is a degeneration of a partial flag variety, and one has control over its reduced
special fiber.

Example 6.3.2. (1) For example, when n = 2 and A = (1,0), condition (&) is empty, and
M(X\,Va) = M(<)) is a degeneration of P! into a union of two P! crossing transversely at
a point. More generally, one has M (), V,) = M (<)) if and only if X is minuscule.

(2) Suppose n =3 and A = (2,1,0), and a mod p is sufficiently regular. Then dim M (<)) = 4,
whereas dim M(\, Va) = dim B\GL3 = 3. The special fiber M (), Va)r is reduced and
has 9 irreducible components, six of which are isomorphic to the flag variety B\GL3, while
the remaining three are more complicated rational smooth varieties. Already in this case,
the behavior of the intersections among the irreducible components is somewhat elaborate,
of. [LHLM22.

Remark 6.3.3. Around each point z € F1, one can write down an explicit open neighborhood U(%)
of Grg using the theory of the “big cell”. This allows us to in principle give explicit coordinate
charts for M (A, V,): the coordinate charts parametrize matrices A with polynomial entries whose
degrees are bounded in terms of Z, and one then imposes elementary divisor conditions dictated
by A together with the explicit equation (&) and takes the p-saturation of the result. It is the
p-saturation operation that makes this description rather difficult to work with.

In order to establish the connection between the above models to Galois deformation theory, we
have to understand the behavior of M (), V) under completion. The essential difficulty is that an
irreducible variety may break up into formal branches in some complicated way after completions:
its singularities may not be unibranch. Unfortunately, M (A, V,) fails to be unibranch in general,
and in such situations it is difficult to control the subset of the formal branches that are related
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to Galois deformation theory. Fortunately, it turns out there is supply of special points where this
difficulty does not manifest:

Theorem 6.3.4. ([LLHLMI8, Theorem 3.7.1]) There exists a nonzero polynomial P € Z[ X1, ..., Xy]
such that if P(a) # 0 mod p, then for any T-fized point x € M(\,Va)(F,), the completed local
ring (’)]@[()\ Va)e 18 @ domain (i.e., M(X\,Va) is unibranch at its T-fized points).

This key result, whose proof we now sketch, underlies everything else. One first observes that
the theorem holds (under a mild assumption on the characteristic) for the equal characteristic
analogues of M(\,V,) where E is replaced by F((¢)). In this function field setting, there is an
additional symmetry: there is an extra G,,-action given by “loop rotation” which scales ¢. This
implies that the T-fixed points look like cone points, i.e. the fixed point of an attracting torus
action, and one observes that cone points are unibranch. We then deduce the mixed characteristic
case by a spreading out argument. The essential point here is that unibranch can be phrased
in terms of connectedness of fibers of the normalization map, and normalization is preserved by
generic base change. This explains the occurence of the universal polynomial P: its vanishing locus
is the obstruction to certain properties being preserved under base change.

6.4. Local models and Emerton—Gee stacks. Recall that we fixed a finite unramified extension
K/Qp. Let k be the residue field of K. Let J be the set of embeddings Homg, (K, @p) which we
identify with Homg, (K, E) = Hom(k, F) using the inclusion E C Q,,.

To any tame inertial type 7 for I, one can associate a collection a, = (a,;)jcs, where a, ; € O"
records the inertial weights of 7.

In the “lowest alcove” principal series case, a, is defined so that 7 is the direct sum

DILiowi”

i=1 jeJ

where wg : Ix — k* is the reduction of the Lubin-Tate character Ix — Op. Set A = (}j)jes €
(Z")7 | a HodgeTate cocharacter. Define

MJ()\7 VaT) = H M()\]7 vaT,j)
JjeJ
where, for each j € J, the local models M(\;, Va, ;) are those appearing in Definition 6.3.11
The relationship between the local models and the Emerton—Gee stacks is given by the following;:

Theorem 6.4.1. ([LLHLMI1S8, Theorem 73 2]) If T is sufficiently generic (with respect to \),
then there exist Zariski open covers U rog ’T(z and LJUreg Z, <\, Va, )" of U N7 and

A<
A reg. dom.

U M(N,Va, )", respectively, such that for each z, there exists a local model diagram

A<
A reg. dom.

(6.1) XSNT(Z)

reg

/\

XSNT(2) Ureg (Z, <A, Va, )

reg

Remark 6.4.2. (1) In the above diagram, the T-fixed points of the local models have a simple
Galois theoretic interpretation: they correspond to semisimple 7.
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(2) When A =1, one has |J X NT = X7 Since potentially crystalline deformation rings
A<
Mreg. dom.

of type (n, 7) are versal rings to X7, we see that they appear (up to smooth modifications)
as the completion of local rings of M(n,Va.) at closed points. In particular, we deduce
the irreducibility of the potentially crystalline deformation rings of Theorem from the
unibranch property of the local models (at the appropriate points). This completes the
proof of Theorem E.3.T([I)) and the first half of Theorem BE3.1i[2) (see Remark 6.2.3|(])).

(3) Combining the theorem with Remark [6.3.3] we get an algorithm to write down explicit

presentations of (unions of) R;"T (for regular \).

We now give a slightly simplified outline of the proof of Theorem [6.4.1] The construction of the
stacks XM comes in two steps:

e Using integral p-adic Hodge theory, one can attach Breuil-Kisin modules to lattices in
(potentially) crystalline representations for G . Thus the first step is to construct a moduli
stack of Breuil-Kisin modules Y<»7 with tame descent data of type (X, 7).

e As not all Breuil-Kisin modules come from lattices in (potentially) crystalline representa-
tions, one needs cut down YN by appropriate conditions to get X7,

Accordingly, the proof is divided into two steps:

e In the first step, we show that Y=M is locally modelled by the Pappas-Zhu model M (<A).
This is not surprising, as Breuil-Kisin modules are a projective O [u]-modules with certain
semi-linear structures, and thus are closely related to points of Grg. Using the open cover
Grg = J;U(Z) (cf. Remark [6.3.3]), we get an analogue of the local model diagram (G.1) for
YSM and induced open affine covers on every object in sight.

e After the first step, we get two closed substacks of Y <7(2): the substack X<*7(%) and the
substack X'<M*(2) induced by the p-adic completion of | J,, .y M ()N, Va,) along the local

model diagram for Y<M7. They are genuinely different substacks, because condition () is
only the “first order term” of the condition cutting out X< inside Y <A,

However, the two substacks are p-adically close, and using the smoothness of the generic
fiber of M (), Va), one can produce a non-canonical embedding XM (2) < XSAT*(Z).
Since both stacks turn out to have the same dimension, the maximal dimensional part
Xr%é‘ T (Z) of XM (Z) embeds into the maximal dimension part of X<M7*(Z). Now, using the
results of [LLHLI19] (which ultimately uses Taylor-Wiles patching, and hence automorphic
forms), one obtains a lower bound on the number of irreducible components (of the spectrum
of the structure sheaf) of the former, while Theorem gives the same upper bound for
the number of irreducible components (of the spectrum of the structure sheaf) of the latter.
Thus the two maximal dimension parts are (non-canonically) isomorphic to each other,
which concludes the proof.

As the above outline suggests, the arrows in the local model diagram are produced by Hensel-type
lifting arguments, and thus are highly non-canonical. However, modulo p this issue disappears, and
the local model diagrams on the open cover produced by Theorem[6.4.T]glue together. Consequently,
the analysis of irreducible components of the special fibers of local models implies the following.

Theorem 6.4.3. For T sufficiently generic (with respect to \):

(1) Xr);i”” = U,C,, where the union runs over all Serre weights o € JH(o (X, T)).

(2) There is a natural bijection between the irreducible components of M(\ + 1,Va,) and the
Jordan—Hélder factors of o(\, 7).
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(8) For each o € JH(o(\, 7)), we have a mod p local model diagram:

(6.2)

Co \
Co’ M()\ + 7, Var)o'

where M(A+1,Va,)o is the irreducible component of M(\+n,Va.) labelled by o and both
arrows are torsors for the torus (Tv)j (with respect to different (Tv)j—actz'ons).

Remark 6.4.4. (1) The proof of Theorem does not go through Theorem Because

(2)

(3)

of that it holds under much milder genericity conditions compared to our other theorems:
if o(1) = R, we only require that R is m-generic for m sufficiently large depending on \
(larger than both 2(\,a") + 2 and 4n + (\, @) for all roots «).

Over IF, equation (&) becomes the equation cutting out a deformed affine Springer fiber in FI,
cf. [FZ10]. Thus the irreducible components M (XA + 7, Va, )o are irreducible components of
a (product of) deformed affine Springer fiber(s). (It is immediate from the aforementioned
[LLHLM20al, Theorem 4.2.4] that these irreducible components are rational varieties.) The-
orem then allows us to get a handle on the irreducible component C, of the reduced
Emerton—Gee stack for generic o. In particular, one can get a description of the semisim-
ple points on C,, and this is the critical ingredient for the verification of Herzig’s recipe
(Theorems B.3.TI2) and B3TI[).

The irreducible components M (XA + 1, Va. ), are fairly easy to implement on computer
algebra systems such as Macaulay2. For any given n, this allows us to probe the structure
of C, in a purely algorithmic manner.

Example 6.4.5. (1) (Fontaine-Laffaille components) For o in the lowest alcove, the corre-

sponding irreducible component of the deformed affine Springer fiber is isomorphic to a
product of flag varieties (B\GL,,)?. We deduce from this that

Cy = [(N\GL,)? /77

where N is the subgroup of unipotent upper triangular matrices, and TV acts via shifted
conjugation: (t;) - (Ng;) = (Nt; gjt;olgo), where op denotes pre-composition with Frobenius
on K. In particular, for n = 2, all components C, for generic o are of this form.

When n = 3, there are two types of irreducible components at each factor j € J: the flag
variety B\GL3 or a more complicated rational and smooth variety (this can be extracted,
for example, from the description of minimal primes in [LHLM22| Table 3]). In particular,
there are 2/ types of C, (for generic o) which correspond to the possible p-alcoves containing
the highest weight of o.

For n = 4, there are generic o for which C, is singular (e.g. for ¢ with highest weight
in the highest p-restricted alcove). Thus the smoothness of C, appears to be a low rank
coincidence.
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