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Abstract

A tuple of NP statements (G1, . . . , G: ) satis�es a monotone policy % : {0, 1}: → {0, 1} if % (11, . . . , 1: ) = 1, where

18 = 1 if and only if G8 is in the NP language. A monotone-policy batch argument (monotone-policy BARG) for NP is a

natural extension of regular batch arguments (BARGs) that allows a prover to prove that G1, . . . , G: satisfy a monotone

policy % with a proof of size poly(_, |R |, log:), where |R | is the size of the Boolean circuit computing the NP relationR.

Previously, Brakerski, Brodsky, Kalai, Lombardi, and Paneth (CRYPTO 2023) and Nassar, Waters, and Wu (TCC

2024) showed how to construct monotone-policy BARGs from (somewhere-extractable) BARGs for NP together with

a leveled homomorphic encryption scheme (Brakerski et al.) or an additively homomorphic encryption scheme over

a su�ciently-large group (Nassar et al.). In this work, we improve upon both works by showing that BARGs together

with additively homomorphic encryption over any group su�ces (e.g., over Z2). For instance, we can instantiate the

additively homomorphic encryption with the classic Goldwasser-Micali encryption scheme based on the quadratic

residuosity (QR) assumption. Then, by appealing to existing compilers, we also obtain a monotone-policy aggregate

signature scheme from any somewhere extractable BARG and the QR assumption.

1 Introduction

A non-interactive batch argument (BARG) for NP allows a prover to construct a short proof attesting that a col-
lection of NP statements (G1, . . . , G: ) are all true with a proof whose length scales sublinearly with : . BARGs
have proven useful beyond the direct application of minimizing the communication cost of NP veri�cation; they
have been used to construct aggregate signatures [WW22, DGKV22, BCJP24, NWW24], delegation for RAM pro-
grams [KVZ21, CJJ21b, KLVW23], as well as non-interactive zero-knowledge proofs (NIZKs) [CW23, BKP+24, BWW24].
In recent years, a number of works have shown how to construct BARGs frommany standard number-theoretic assump-
tions, such as the learning with errors (LWE) assumption [CJJ21b], the :-Lin assumption in pairing groups [WW22],
the (sub-exponential) decisional Di�e-Hellman (DDH) assumption in pairing-free groups [CGJ+23], or a combination
of quadratic residuosity (QR) and LWE or sub-exponential DDH [CJJ21a].

Monotone-policy batch arguments. In a batch argument, the prover’s goal is to prove that all : statements
G1, . . . , G: are true. Suppose instead that a prover wants to publish a proof attesting that a majority of the statements
are true, or more generally, that the true statements satisfy somemonotone policy such as a (weighted) threshold policy
or a monotone Boolean formula. This is the notion of a monotone-policy BARG. Previous works [BCJP24, NWW24]
show how to use monotone-policy BARGs to construct monotone-policy aggregate signatures, where an aggregator
wants to produce a short proof attesting that an authorized quorum of parties have signed a certain message.

A trivial way to build a monotone-policy BARG from a vanilla BARG is to have the prover specify a subset � ¦ [C]
that satisfy the policy and then give a vanilla BARG proof that all of the statements {G8 }8∈� are true. The veri�er then
checks that the subset � satis�es the policy and that the BARG proof veri�es. In this case, however, the size of the
proof potentially scales linearly with the number of statements (it needs to contain the description of the set � ). In a
monotone policy BARG [BBK+23], we require that the size of the proof be sublinear in the number of statements, just
as in a vanilla BARG. If we specialize a monotone-policy BARG to the special case of conjunction policies, then we
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recover the standard notion of a BARG. Thus, monotone-policy BARGs are a strict generalization of vanilla BARGs.
A natural question to ask is whether we can construct monotone-policy BARGs from vanilla BARGs. A recent line
of work has shown how to compile a BARG into a monotone-policy BARG using other cryptographic primitives:

• The �rst work by Brakerski, Brodsky, Kalai, Lombardi and Paneth [BBK+23] relied on BARGs in conjunction
with (leveled) homomorphic encryption (which in turn relies either on LWE [Gen09, BV11] or strong tools
like indistinguishability obfuscation [CLTV15]).

• Subsequently, Nassar, Waters, and Wu [NWW24] showed that BARGs along with an additively homomor-
phic encryption scheme su�ce. Notably, this enabled new instantiations of monotone policy BARGs from
pairing-based assumptions and from sub-exponential DDH.

A major caveat in [NWW24] is that the plaintext group for the additively homomorphic encryption must be su�-
ciently large (e.g., at least : + 1 where : is the batch size). Unfortunately, this falls short of supporting any additively
homomorphic encryption. An important example is the classic Goldwasser-Micali encryption scheme [GM82] based
on the QR problem. The Goldwasser-Micali scheme is additively homomorphic over Z2, which is too small to be able
to invoke the [NWW24] compiler. Another example is the Benaloh [Ben94] encryption scheme which is additively
homomorphic over small groups Z= . This motivates the question of whether we can reduce the gap between BARGs
and monotone-policy BARGs: namely, can we use any additively-homomorphic encryption scheme to compile BARGs
into monotone-policy BARGs?

1.1 Our Results

In this work, we show how to construct a general monotone-policy BARG from a standard (somewhere-extractable)
BARG and any additively-homomorphic encryption. In particular, assuming QR and a somewhere-extractable BARG,
we obtain a monotone-policy BARG. Our main result can be summarized in the following theorem:

Theorem 1.1 (Informal). Suppose there exists a somewhere-extractable BARG and an additively homomorphic encryption

over any group of size = > 1. Then there exists a monotone policy BARG for general monotone policies with non-adaptive

soundness.

Monotone-policy aggregate signatures. The work of [NWW24] also shows how to construct monotone-policy
aggregate signatures with static unforgeability from any monotone-policy BARGs with non-adaptive soundness
together with a puncturable signature scheme. In a monotone-policy aggregate signature [BCJP24], the aggregator can
take a collection of tuples (vk1,<1, f1), . . . , (vk: ,<: , f: ) of veri�cation key/message/signature triples and aggregate
the signatures into a single short signature fagg with respect to some monotone policy % . The aggregate signature
a�rms that the aggregator possesses signatures for a subset of the messages that satis�es % .

Corollary 1.2 (Informal). Suppose there exists a somewhere-extractable BARG, an additively homomorphic encryption

over any group of size = > 1, and a puncturable signature scheme. Then there exists a monotone-policy aggregate

signature scheme satisfying static unforgeability.

Thework of [ADM+24] show how to construct puncturable signatures from any (simulation-sound) non-interactive
zero-knowledge (NIZK) proof, which can be built from a wide range of assumptions, including the QR assump-
tion [BFM88, Sah99, DDO+01].1 In Appendix B, we also show an alternative route to building puncturable signatures
from a unique signature scheme (i.e., a signature scheme where every message has exactly one signature), or more
generally, from an invariant signature [GO92].2

1Note that the recent implications from BARGs to NIZKs [CW23, BKP+24, BWW24] only yield computationally-sound arguments, which do
not seem to directly imply puncturable signatures via the [ADM+24] approach.

2The construction of invariant signatures from QR from [GO92] also relies on NIZK proofs, so this approach does not provide an advantage
over the approach of [ADM+24]. We present it primarily to illustrate another approach for building puncturable signatures.
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2 Technical Overview

In this section, we explain our techniques for getting amonotone policy BARG from an additively homomorphic encryp-
tion over a small group. For ease of exposition, we focus on additively homomorphic bit encryptions similar to [GM82].

Zero-�xing hash functions. The work of [NWW24] shows how to compile BARGs to monotone-policy BARGs
using a zero-�xing hash (ZFH). For an overview of how a ZFH can be used to construct monotone-policy BARGs, we
refer the reader to [NWW24]. In this work, we focus on constructing a ZFH, so we start by recalling the de�nition.
In a nutshell, a ZFH is a succinct binding commitment with succinct local openings, similar to a Merkle hash [Mer87],
but with an additional property: there is a secret trapdoor that can be used to decide whether a hash value is zero on a
predetermined subset of indices. Zero-�xing hash functions can also be viewed as a special case of a function-binding
hash function [FWW23] (for substring matching). We start by describing the syntax of a zero-�xing hash function:

• The setup algorithm of the ZFH takes as input a subset ( ¦ [=], and outputs a hash key hk and a secret trapdoor
td.

• The hash algorithmworks like a regular Merkle hash algorithm: it takes the hash key hk and an input G ∈ {0, 1}=

and outputs a succinct digest dig and = succinct local openings c1, . . . , c= .

• There exists a digest-validation algorithm ValidateDigest that takes as input a digest dig and the hash key hk

and outputs 1 if the digest was computed honestly using the hash key hk.

• There exists an extraction algorithm Extract that given the trapdoor td and a digest dig, outputs eitherMatching

or NotMatching.

Next, the zero-�xing hash function should satisfy the following properties:

• Opening correctness: The opening correctness property states that any honestly generated digest and
openings are valid.

• Succinctness: Similarly, succinctness is also standard and states the digest and the openings are polylog(=)
bits each.

• Digest correctness: The digest correctness property states that for any digest dig and any hash key hk that is
zero-�xing on the empty set, if ValidateDigest(hk, dig) = 1 then Extract(td, dig) = Matching.

• Zero-�xing: The (computational) zero-�xing property requires that for any digest dig, if Extract(td, dig) =
Matching, then it is computationally hard to �nd an opening c∗8 for some 8 ∈ ( to the value 1. In other words,
if the adversary can open a digest dig on some index 8 ∈ ( to a 1, then the extraction algorithm should declare
dig to be NotMatching.

• Set hiding: The set-hiding property says that for any two subsets (0, (1 ¦ [=], an adversary that is only given
access to hk (sampled to be zero-�xing on either (0 or (1) cannot distinguish if hk is zero-�xing on (0 or (1.

We remark here that one could also consider the following stronger requirement on Extract: instead of outputting
NotMatching, it should output a speci�c index 8 ∈ ( for which it is feasible (for the adversary) to �nd an opening c∗8
to the value 1. Indeed, the work of [BBK+23] goes down this route, however implementing such a primitive seems to
require fully-homomorphic encryption. On the other hand, [NWW24] notices that this stronger notion of extraction
is unnecessary if we require an additional set-hiding property called index hiding with extraction. We elaborate on
this property later on.
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ZFH from homomorphic encryption. The conceptual idea of [NWW24] to build a ZFH from an additively homo-
morphic encryption is simple. If we want to hash=-bit inputs, the hash key consists of= ciphertexts ct1, . . . , ct= , one for
each index. To hash a string G ∈ {0, 1}= , we �rst view it as a subset- ¦ [=] in the natural way (G8 = 1 if and only if 8 ∈
- ), and take the digest digG to be an encryption of

∑
8∈- ct8 , which can be computed homomorphically from ct1, . . . , ct= .

The idea is now as follows: if we want the hash key to be zero-�xing on the set ( ¦ [=], then we sample ct8 as
an encryption of 1 if 8 ∈ ( , and as an encryption of 0 if 8 ∉ ( . If G8 = 0 for all 8 ∈ ( , then - ∩ ( = ∅, and if there exists
some 8 ∈ ( such that G8 = 1, then - ∩ ( ≠ ∅. This means digG decrypts to 0 if and only if G is all 0 on the set ( . In
this case, the secret decryption key is the extraction trapdoor.

This simpli�ed construction already satis�es some key properties of a ZFH. First, the digest is succinct as it
consists of the encryption of a single group element. Second, we have set hiding by the CPA security of the encryption.

The problem with XOR. However, we note that this simple idea already fails if the homomorphic encryption
scheme only supports additive homomorphism over a small group. Take Z2 for example: if G has exactly two non-zero
indices in ( , then their corresponding ciphertexts will “cancel each other out.” In fact, for this idea to work, [NWW24]
required a group of size at least = + 1. Taking a step back, the homomorphic property with respect to addition is
useful in the previous construction because of the fact that there is no going back once 1 is added, and the whole
sum would be strictly greater than 0. Once we limit ourselves to a binary XOR operation, it is not clear where the
“irreversible” operation would come from. It is worth noting that for multiplicatively homomorphic encryption, the
previous idea would still work even with small groups: the irreversible operation in this case would be multiplying
by 0, and, unlike addition, there is no way to cancel the 0 out using multiplication.

Substituting group elements with vectors. Our �rst idea is to simulate the irreversible operation by associating
each index with a vector of ciphertexts instead of a single ciphertext. The digest now would be the (homomorphic)
bitwise XOR of all of the vectors. Namely, imagine that each index 8 ∈ [=] is associated with a binary vector v8 ∈ Z

ℓ
2

such that the vectors v1, . . . , v= are linearly independent. In this case, once a vector is XORed in, there is no way to
remove it since it is linearly independent of the other vectors. Unfortunately, getting = linearly independent vectors
over Zℓ2, requires ℓ g =. This violates succinctness.

Reducing the vector dimension. Our second idea is to leverage the hiding property of the encryption scheme.
In the simpli�ed version of the [NWW24] construction we described above, CPA security is only used for set-hiding.
Namely, once the adversary knows the zero-�xing set ( , it knows that ct8 is an encryption of 1 for each 8 ∈ ( . But if
we use binary vectors instead of a �xed scalar, we can assign a random vector v8

r
← Z_2 to each 8 ∈ ( , and never reveal

the vector. Recall that in the previous construction, the hash key only contained encryptions of the elements, not the
elements themselves (in order to satisfy set hiding). Intuitively, if we sample random vectors and only publish their
encryptions, then these vectors should be computationally hidden from the view of the adversary. While these vectors
are no longer linearly independent (in general, = > _), the adversary should not be able to e�ciently �nd a non-trivial
linear combination of the non-zero vectors that maps to the zero vector. In more detail, we make the following changes:

• When sampling the hash key, each ciphertext ct8 is replaced with a ciphertext vector ct8 . For each 8 ∈ ( , the
Setup algorithm samples a uniform v8

r
← Z_2 \{0}, where 0 is the zero vector, and samples ct8 to be an encryption

of v8 . For each 8 ∉ ( , the algorithm samples ct8 as an encryption of 0. The trapdoor is still the secret key.

• When hashing a string G , the digest digG is an encryption of
⊕

8∈- v8 . This can be computed by homomor-
phically evaluating the XOR function on a subset of the encrypted vectors ct1, . . . , ct= .

• The Extract algorithm outputs Matching if and only if digG decrypts to 0.

Set hiding follows similarly to before. Digest succinctness also still holds since we have _ ciphertexts, which is
independent of =.
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Succinct openings. The next question is how to support local openings (i.e., open digG in position 8 to some value).
The naïve way is to provide the list of the ciphertexts used to compute the digest digG (or equivalently, provide the
entire hashed string G ). Of course, this is not succinct. The works of [BBK+23, NWW24] used the standard technique of
computing the digest via a Merkle-tree structure [Mer87]. Namely, the hash key includes a new ciphertext ctzero which
is an encryption of 0. Given an input G ∈ {0, 1}= , the hashing algorithm constructs a complete binary tree with= leaves,
where each leaf corresponds to an index 8 ∈ [=]. Each node 8 in the tree is associated with a ciphertext ĉt8 as follows:

• For a leaf 8 ∈ [=], if G8 = 1 then ĉt8 = ct8 and if G8 = 0 then ĉt8 = ctzero.

• For an internal node 8 , ĉt8 is obtained by homomorphically XOR-ing the ciphertexts associated with its children.

By construction, the root ciphertext ĉtroot is the homomorphic XOR of all of the leaf ciphertexts, which is by de�nition
digG . This way, one only needs to provide the ciphertexts along the path to a leaf 8 in order to open the index 8 . Note
that by construction, ctzero does not a�ect the decrypted value of ĉtroot.

Validating the hash. To certify that a particular digest digG (consisting of a ciphertext ĉtroot) is correctly computed,
we follow the blueprint of [NWW24, BBK+23] and use a “hash-and-BARG technique” [CJJ21a]. Namely, the hashing
algorithm now also computes a commitment comdig to the evaluation tree described above, and attaches a BARG
proof that each node was computed honestly, alongside the root ciphertext ĉtroot. In more detail, we de�ne an NP
relation parameterized by ĉtroot, comdig and the ciphertexts ct1, . . . , ct=, ctzero. Each statement of the relation is an
index of a node. The relation checks the following:

• Leaf nodes: For a leaf node 8 , we want to check that the associated ciphertext ĉt8 is either equal to ct8 or ctzero.
Since the relation does not have access to ĉt8 , and instead only has access to the commitment comdig, it actually
checks that comdig opens in positions 8 to such a ĉt8 . In this case, the NP witness consists of an opening in
comdig to position 8 .

• Non-leaf nodes: For a non-leaf node 8 with children 8l, 8r, the relation checks that comdig opens in positions
8, 8l, 8r to ciphertexts ĉt8 , ĉtl, ĉtr respectively, where ĉt8 is the ciphertext obtained by homomorphically XORing
ĉtl and ĉtr. In this case, the NP witness consists of the 3 openings in comdig.

• Root node: For the root node, the relation additionally checks that comdig opens in the appropriate position
to the given ciphertext ĉtroot.

To keep the BARG proof short, we modify the hash key to include a commitment comhk of the ciphertexts ct1, . . . , ct= ,
and modify the relation to depend on comhk instead of ct1, . . . , ct= . The NP witness for a leaf node 8 now would need
to also include the opening of comhk in position 8 (to the ciphertext ct8 ). With these modi�cations, the digest digG
for an input G ∈ {0, 1}ℓ contains the root ciphertext ĉtroot, the commitment comdig, and the BARG proof c .

The honest opening to an index 8∗ ∈ [=] with a value 1 ∈ {0, 1} is yet another BARG proof copen, where the BARG
statements are indices of the ciphertext evaluation tree. The NP relation is almost identical to the hashing relation
described above, but is additionally parameterized by a pair (8∗, 1) ∈ [=] × {0, 1}. The only di�erence is that for the
leaf node 8∗, the relation now additionally checks that if 1 = 0 then ĉt8 = ctzero and if 1 = 1 then ĉt8 = ct8 .

Zero-�xing: �rst attempt. To argue zero-�xing security, suppose we have an adversary that outputs a digest
dig together with an opening of some 8∗ ∈ ( to the value 1 and moreover, the Extract function declares dig to be
Matching (i.e., dig decrypts to 0). By somewhere extractability of the BARG, this means that the ciphertext associated
with leaf node 8∗ is an encryption of a non-zero vector v8∗ . Since all of the vectors are encrypted, the hope is that the
adversary cannot �nd a linear combination of other vectors v8 where v8∗ ·

⊕
8≠8∗ v8 = 0. Indeed, any adversary that

does so must seemingly know something about the vectors v8 , which of course, would violate CPA security of the
encryption scheme. The challenge is in setting up the reduction to CPA security. Namely, in the zero-�xing security
game, the adversary is only deemed successful if it produces a digest dig where Extract outputs Matching. However,
evaluating the Extract algorithm requires knowledge of the secret key (to decrypt dig and compare the decrypted
vector to 0). Yet, the reduction algorithm for the CPA security game cannot know the secret key, and thus, cannot
determine whether the zero-�xing adversary outputted a valid digest or not.
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Naor-Yung to the rescue. To get out of this conundrum, we adopt a Naor-Yung style strategy [NY90] and encrypt
twice. Within each pair, we refer to one ciphertext as the “main” one and the other as a “shadow” copy.

• The setup algorithm samples two encryption key pairs: (pkmain, skmain) and (pkshadow, skshadow). For every
index 8 ∈ [=], we associate two ciphertext vectors: ctmain

8 and ct
shadow
8 under the encryption keys pkmain and

pkshadow respectively. Similarly, we also have two encryptions of the zero vector ctmain
zero and ct

shadow
zero . The

hash key is now de�ned analogously: it contains both public keys, both collections of encrypted vectors, and
commitments (and openings) to both collections. The trapdoor is the main secret key skmain only.

• The hashing algorithm now computes two evaluation trees, and commits to both. The NP relation additionally
requires that the evaluation trees are consistent with one another: for each leaf 8 , if the commitment of the
main tree in position 8 opens to ct

main
8 then the commitment of the shadow tree also opens to ct

shadow
8 , and

if the main commitment in position 8 opens to ct
main
zero then the commitment of the shadow tree also opens to

ct
main
zero . The digest is the commitments and the roots for both trees, as well as the BARG proof chash.

• The extraction algorithm only checks that the root of the main tree decrypts to the all zero vector using skmain.

• The opening is a BARG proof, where the NP relation is the same as the one used for hashing but, similar to
before, is parameterized by (8∗, 1) and requires that if 1 = 0 then the nodes 8∗ in both trees should use ctmain

zero

and ct
shadow
zero respectively, and if 1 = 1 then the nodes should use ctmain

8∗ and ct
shadow
8∗ respectively.

We now argue our zero-�xing property through a series of hybrids:

1. The �rst hybrid is the original zero-�xing game where the adversary declares a set ( ¦ [=] and an index 8∗ ∈ ( .
The challenger samples hk as described above and sends it to the adversary. The extraction trapdoor is the

secret key skmain. The adversary outputs dig = (ĉt
main
root , ĉt

shadow
root , commain

dig
, comshadow

dig
, chash) and an opening c∗

of position 8∗ to value 1, and wins if Dec(skmain, ĉt
main
root ) = 0 and c∗ is a valid BARG proof for the NP relation

with the pair (8∗, 1).

2. In the second hybrid, we substitute the ciphertext associated with leaf 8∗ in the shadow copy only with an
encryption of 0. Namely, ctshadow8∗ ← Enc(pkshadow, 0). By CPA security (applied to the shadow copy), we
can argue that the adversary behaves the same on this hybrid as it does in the previous one. Note that the
challenger in this experiment only needs to know skmain (to implement Extract) and not skshadow. As such, we
can rely on CPA security for the shadow copy to conclude that the output of this experiment is computationally
indistinguishable from the previous one.

3. In the third hybrid, we change the extraction algorithm to use the shadow tree root instead of the main root.

Namely, we check Dec(skshadow, ĉt
shadow
root ) = v8∗ instead of Dec(skmain, ĉt

main
root ) = 0. Here, we appeal to the

consistency that is guaranteed by the BARG: for each leaf 8 , the adversary has to use both ct
main
8 and ct

shadow
8

for the main and shadow copy, or use ctmain
zero and ct

shadow
zero for both copies. Since the opening to 1 on position

8∗ guarantees the commitments commain
dig

and comshadow
dig

open on position 8∗ to ct
main
8∗ and ct

shadow
8∗ respectively,

and the values encrypted by those ciphertexts di�er by exactly v8∗ , then

Pr
[
Dec(skshadow, ĉt

shadow
root ) = v8∗

]
≈ Pr

[
Dec(skmain, ĉt

main
root ) = 0

]
.

Thus, the output of this experiment is computationally indistinguishable from the previous one.

4. For the �nal hybrid, similar to what we did in the second hybrid, we substitute the ciphertext associated with
8∗ in the main copy with an encryption of 0 (i.e., set ct8∗ ← Enc(pkmain, 0)). In this experiment, the challenger’s
behavior only needs to know skshadow and not skmain, so the claim follows by CPA security applied to the main
ciphertext.

In the �nal hybrid, the adversary wins if it outputs ĉt
shadow
root that encrypts v8∗ . However, its view is actually independent

of v8∗ , since we removed v8∗ from both the main and shadow copies. Finally, because the challenger samples v8∗
r
← Z_2 ,

the adversary can successfully guess v8∗ only with probability 2−_ , thus completing the proof.
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Index-hiding with extracted guess. The zero-�xing hash function of [NWW24] must satisfy an additional
security property called index-hiding with extracted guess. Intuitively, this property states that the set on which
the hash key is zero-�xing remains hidden, even if we give the adversary oracle access to Extract(td, ·), as long as
the queries made by the adversary do not help it to trivially distinguish between the binding sets. More formally,
the game is de�ned as follows:

1. The adversary chooses a set ( ¦ [=] and an index 8∗ ∈ ( .

2. The challenger samples a random bit 1 r
← {0, 1}. If 1 = 0, the challenger samples hk to be zero-�xing on ( \ {8∗}

and if 1 = 1, the challenger samples hk to be zero-�xing on ( . The challenger gives hk to the adversary.

3. The adversary now outputs a digest dig and an opening f .

4. The output is 1 if and only if f is an opening of dig to the value 0 at index 8∗ and moreover, Extract(td, dig) =
Matching.

We say the scheme satis�es index-hiding with extracted guess if for any e�cient adversary, the output of the ex-
periment when 1 = 0 is negligibly close to the output when 1 = 1. We can view the output as being extracted from
dig, but the adversary is forced to provide an opening f for dig at index 8∗ to the value 0. This rules out the trivial
strategy of hashing a string x that is 1 in index 8∗ and 0 elsewhere. Such a string would be consideredMatching if
the hash key was binding on ( \ {8∗} and NotMatching if the hash key was binding on ( .

The construction we provided already satis�es this property. Our argument is similar to that of [NWW24], and
follows a Naor-Yung strategy similar to what we used to argue zero-�xing. The only di�erence between the game
with 1 = 0 and 1 = 1 are the ciphertexts ctmain

8∗ and ct
shadow
8∗ . When 1 = 0, these are encryptions of 0, and when 1 = 1,

these are encryptions of a random vector v8∗ .
We de�ne the following series of hybrids, which follows the same templates as the series of hybrids used to argue

zero-�xing:

1. The �rst hybrid is the index-hiding with extracted guess game with 1 = 0. Namely, ctmain8∗ ← Enc(pkmain, 0)

and ct
shadow8∗ ← Enc(pkshadow, 0).

2. The second hybrid is the same as before, except ctshadow8∗ ← Enc(pkshadow, v8∗ ). Since the security game does

not use the secret key skshadow, we can use the CPA security of the shadow instance to argue that these two
hybrids are computationally close.

3. The third hybrid is the same as before, except the extraction algorithm now uses the shadow instance to extract

the guess. Namely, the extraction algorithm outputsMatching if and only if Dec(skshadow, ĉt
shadow
root ) = 0 instead

of Dec(skmain, ĉt
main
root ) = 0. The two hybrids are computationally close by the consistency that is guaranteed by

the BARG (similar to the zero-�xing argument) and the additional requirement that the hashed string has value 0
on index 8∗. Notably, this is where we use the fact that the adversary must produce an opening f to 0 at index 8∗.

4. The fourth hybrid is the same as before, except ctmain
8∗ ← Enc(pkmain, v8∗ ). Since the security game does not use

the secret key skmain anymore, we can use CPA security of the main instance to argue that these two hybrids
are computationally close.

5. The �nal hybrid is the same as before, except we change back the extraction algorithm to check the main

instance. Namely, the extraction algorithm outputsMatching if and only if Dec(skmain, ĉt
main
root ) = 0. This hybrid

is computationally close to the previous one by the same argument we used to justify the third hybrid. We
note that this is the index-hiding game with 1 = 1 and thus we are done.

3 Preliminaries

Throughout this work, we write _ to denote the security parameter. For = ∈ N, we write [=] to denote the set
{1, . . . , =}. For any< > =, we write [=,<] to denote the set {=, . . . ,<}. We write poly(_) to denote a function that
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is bounded by a �xed polynomial in _, and negl(_) to denote a function that is > (_−2 ) for all 2 ∈ N. For a �nite set
( , we write G r

← ( to denote that G is a uniformly random element of ( . For a distribution D we write G ← D to
denote that G is a random drawn from D.

We say an algorithm is e�cient if it runs in probabilistic polynomial time in the length of its input. A non-uniform
algorithm A consists of a pair of algorithms (A1,A2) where A1 is a (possibly-unbounded) algorithm that takes as
input 1_ and outputs an advice string d_ of poly(_) size. Algorithm A2 is an e�cient algorithm. The output of A on
an input G ∈ {0, 1}_ is de�ned as �rst computing the advice string d_ ← A1 (1

_) and then outputting A2 (G, d_). We
say two ensembles of distributions D1 =

{
D1,_

}
_∈N

and D2 =
{
D2,_

}
_∈N

are computationally indistinguishable if no
e�cient adversary can distinguish them with non-negligible probability. We say they are statistically indistinguishable
if their statistical distance is bounded by negl(_).

3.1 Cryptographic Building Blocks

In this section, we recall the de�nition of a few standard cryptographic building blocks we use in this work.

Additively-homomorphic encryption over Z? . We start by reviewing the notion of additively homomorphic
encryption over Z? .

De�nition 3.1 (Additively Homomorphic Encryption over Z? ). An additively homomorphic encryption scheme
over Z? is a tuple of polynomial-time algorithms ΠHE = (Gen, Enc,Dec,Add) with the following syntax:

• Gen(1_) → (sk, pk): On input a security parameter _ ∈ N, the key-generation algorithm outputs a secret key
sk and a public key pk.

• Enc(pk,msg) → ct: On input a public key pk and a message msg ∈ Zℓ? of length ℓ ∈ N, the encryption
algorithm outputs a ciphertext vector ct = (ct1, . . . , ctℓ ) of length ℓ .

• Dec(sk, ct) → msg: On input a secret key sk and a ciphertext vector ct = (ct1, . . . , ctℓ ) of length ℓ ∈ N, the
decryption algorithm either outputs a plaintext msg ∈ Zℓ? , or a special symbol msg = §. The decryption
algorithm is deterministic.

• Add(pk, ct1, ct2) → ct
′: On input a public key pk and two ciphertext vectors ct1, ct2 of the same length ℓ , the

homomorphic addition algorithm outputs a new ciphertext vector ct′ of length ℓ . The addition algorithm is
deterministic.

We require the following properties:

• Correctness: For all _, ℓ ∈ N and all messages msg ∈ Zℓ? , it holds that:

Pr

[
Dec(sk, ct) = msg :

(sk, pk) ← Gen(1_, 1=)

ct← Enc(pk,msg)

]
= 1.

• Evaluation correctness: For all _, ℓ ∈ N, all (sk, pk) in the support of Gen(1_) and all ciphertext vectors
ct1, ct2 of the same length ℓ , where Dec(sk, ct1) ≠ § and Dec(sk, ct2) ≠ §, it holds that

Dec(sk,Add(pk, ct1, ct2)) = Dec(sk, ct1) + Dec(sk, ct2).

• Compactness: There exists a polynomial poly(·) such that for all _, ℓ ∈ N, all (sk, pk) in the support ofGen(1_),
all messagesmsg1,msg2 ∈ Z

ℓ
? , all ciphertexts ct1, ct2 in the support of Enc(pk,msg1) and Enc(pk,msg2) respec-

tively, it holds that

|ct1 |, |ct2 | f ℓ · poly(_) and |Add(pk, ct1, ct2) | f ℓ · poly(_).

• CPA-security: For an adversary A and a bit 1 ∈ {0, 1}, de�ne the CPA-security experiment ExptSSA (_,1)
as follows:
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1. On input the security parameter 1_ , the challenger samples a key pair (sk, pk) ← Gen(1_) and sends pk
to the adversary.

2. The adversary can now make (arbitrarily many) queries on pairs of messages (msg0,msg1) (where msg0
and msg1 are vectors with the same dimension). On each query, the challenger replies with a ciphertext
ct← Enc(pk,msg1).

3. After the adversary A is done making queries, it outputs a guess 1′ ∈ {0, 1}.

We say that ΠHE is semantically secure if for every e�cient adversary A, there exists a negligible function
negl(·) such that

��Pr[ExptSSA (_, 1) = 1] − Pr[ExptSSA (_, 0) = 1]
�� = negl(_).

Fact 3.2 (Additively Homomorphic Encryption over Z? [GM82, Ben94]). Under the QR assumption, there exists
an additively homomorphic encryption scheme over Z2. For any constant ? > 2, under the ? th-order residuosity
assumption, there exists an additively homomorphic encryption scheme over Z? .

The remaining de�nitions are copied mostly verbatim from [NWW24].

Vector commitments. Next, we recall the notion of a vector commitment scheme with succinct local openings.
Such commitments can be built from any collision-resistant hash function [Mer87].

De�nition 3.3 (Vector Commitment). A vector commitment (VC) with local openings is a tuple of e�cient algorithms
ΠCom = (Setup,Commit,Verify) with the following properties:

• Setup(1_, 1=, 1ℓ ) → crs: On input the security parameter _ ∈ N, the block length = ∈ N, and the vector length
ℓ ∈ N, the setup algorithm outputs a common reference string crs. We assume the common reference string
implicitly contains the parameters 1= and 1ℓ .

• Commit(crs, (G1, . . . , GC )) → (com, f1, . . . , fC ): On input the common reference string crs and a vector of C f ℓ

messages G1, . . . , GC ∈ {0, 1}
= , the commit algorithm outputs a commitment com and openings f1, . . . , fC .

• Verify(crs, com, 8, ~, f) → 1′: On input the common reference string crs, the commitment com, an index 8 ∈ [ℓ],
a message ~ ∈ {0, 1}= , and an opening f , the veri�cation algorithm outputs a bit 1′ ∈ {0, 1}.

Moreover, ΠCom should satisfy the following properties:

• Correctness: For all _, =, ℓ ∈ N, and all positive C f ℓ , all x = (G1, . . . , GC ) ∈ {0, 1}
C= , and indices 8 ∈ [C],

Pr

[
Verify(crs, com, 8, G8 , f8 ) = 1 :

crs← Setup(1_, 1=, 1ℓ ),

(com, f1, . . . , fC ) ← Commit(crs, x)

]
= 1.

• Computational binding: For an adversary A, de�ne the computational binding experiment as follows:

1. On input the security parameter 1_ , algorithm A starts by outputting the block length 1= and vector
length 1ℓ .

2. The challenger responds with crs← Setup(1_, 1=, 1ℓ ).

3. Algorithm A outputs a commitment com, an index 8 ∈ [ℓ], and openings (~0, f0) and (~1, f1).

4. The output of the experiment is 1 = 1 if Verify(crs, com, 8, ~0, f0) = 1 = Verify(crs, com, 8, ~1, f1) and
~0 ≠ ~1. Otherwise, the output is 1 = 0.

The commitment scheme is binding if for all e�cient adversaries A, there exists a negligible function negl(·)

such that Pr[1 = 1] = negl(_) in the binding experiment.

• Succinctness: There exists a universal polynomial poly(·) such that for all _, =, ℓ ∈ N, all crs in the support
of Setup(1_, ℓ), and all (com, f1, . . . , fℓ ) in the support of Commit(crs, ·), the following holds:

– Succinct CRS: |crs| = poly(_ + log= + log ℓ).

9



– Succinct commitment: |com| = poly(_ + log= + log ℓ).

– Succinct local opening: For all 8 ∈ [ℓ], |f8 | = poly(_ + log= + log ℓ).

Fact 3.4 (Vector Commitments from Homomorphic Encryption [Mer87, IKO05]). If any homomorphic encryption
exists, then there exists a vector commitment scheme with local openings.

3.2 Batch Arguments for NP

In this section, we recall the notion of a non-interactive batch argument (BARG) for NP, the special case of a BARG
for index languages [CJJ21b] and the notion of a BARG for monotone policy batch NP [BBK+23, NWW24].

Batch arguments for NP. We begin with the notion of a somewhere extractable batch argument for NP. Our pre-
sentation follows that of [NWW24], with the syntax where the batch arguments support extraction on up to ℓ indices.

De�nition 3.5 (Boolean Circuit Satis�ability). We de�ne the circuit satis�ability language LCSAT as

LCSAT =

{
(�, G)

���
� : {0, 1}= × {0, 1}ℎ → {0, 1}, G ∈ {0, 1}=

∃F ∈ {0, 1}∗ : � (G,F) = 1

}
.

De�nition 3.6 (BARG). A somewhere-extractable non-interactive batch argument (BARG) for Boolean circuit sat-
is�ability is a tuple of e�cient algorithms ΠBARG = (Gen, Prove,Verify, TrapGen, Extract) with the following syntax:

• Gen(1_, 1: , 1=, 1B , 1ℓ ) → (crs, vk): On input the security parameter _ ∈ N, the number of instances : ∈ N,
instance size = ∈ N, a bound on the size of the Boolean circuit B ∈ N, and a bound on the size of the extraction
set ℓ ∈ N, the generator algorithm outputs a common reference string crs and a veri�cation key vk.

• Prove(crs,�, (G1, . . . , G: ), (F1, . . . ,F: )) → c : On input the common reference string crs, a Boolean circuit
� : {0, 1}= × {0, 1}ℎ → {0, 1}, statements G1, . . . , G: ∈ {0, 1}

: , and witnesses F1, . . . ,F: ∈ {0, 1}
ℎ , the prove

algorithm outputs a proof c .

• Verify(vk,�, (G1, . . . , G: ), c) → 1: On input the veri�cation key vk, a Boolean circuit� : {0, 1}=×{0, 1}ℎ → {0, 1},
statements G1, . . . , G: ∈ {0, 1}

= and a proof c , the veri�cation algorithm outputs a bit 1 ∈ {0, 1}.

• TrapGen(1_, 1: , 1=, 1B , 1ℓ , () → (crs, vk, td): On input the security parameter _ ∈ N, the number of instances
: ∈ N, instance size = ∈ N, a bound on the size of the Boolean circuit B ∈ N, a bound on the size of the extraction
set ℓ ∈ N, and a set ( ¦ [:] of size at most ℓ , the trapdoor generator algorithm outputs a common reference
string crs, a veri�cation key vk and an extraction trapdoor td.

• Extract(td,�, (G1, . . . , G: ), c, 8) → F . On input the trapdoor td, a Boolean circuit � : {0, 1}= × {0, 1}ℎ → {0, 1},
a collection of statements G1, . . . , G: ∈ {0, 1}

= , a proof c and an index 8 ∈ [:], the extraction algorithm outputs
a witnessF .

Moreover, ΠBARG should satisfy the following properties:

• Completeness: For all _, :, =, B, ℓ ∈ N, all Boolean circuits� : {0, 1}=×{0, 1}ℎ → {0, 1} of size at most B , all state-
ments x = (G1, . . . , G: ) ∈ {0, 1}

:= and witnesses w = (F1, . . . ,F: ) ∈ {0, 1}
:ℎ where � (G8 ,F8 ) = 1 for all 8 ∈ [:],

Pr

[
Verify(vk,�, x, c) = 1 :

(crs, vk) ← Gen(1_, 1: , 1=, 1B , 1ℓ ),

c ← Prove(crs,�, x,w)

]
= 1.

• Set hiding: For an adversary A and a bit 1 ∈ {0, 1}, de�ne the set hiding experiment ExptSHBARG
A
(_,1) as

follows:

1. Algorithm A(1_) starts by outputting the number of instances 1: , the instance size 1= , the bound on the
circuit size 1B , the bound on the size of the extraction set 1ℓ , and a set ( ¦ [:] of size at most ℓ .
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2. If 1 = 0, the challenger gives (crs, vk) ← Gen(1_, 1: , 1=, 1B , 1ℓ ) to A. If 1 = 1, the challenger samples
(crs, vk, td) ← TrapGen(1_, 1: , 1=, 1B , 1ℓ , () and gives (crs, vk) to A.

3. Algorithm A outputs a bit 1′ ∈ {0, 1}, which is the output of the experiment.

Then, ΠBARG satis�es set hiding if for every e�cient adversary A, there exists a negligible function negl(·)

such that ��Pr[ExptSHBARG
A (_, 0) = 1] − Pr[ExptSHBARG

A (_, 1) = 1]
�� = negl(_).

• Somewhere extractable in trapdoor mode: For an adversary A, de�ne the somewhere extractable security
game as follows:

1. Algorithm A(1_) starts by outputting the number of instances 1: , the instance size 1= , the bound on the
circuit size 1B , a bound on the size of the extraction set 1ℓ , and a nonempty set ( ¦ [:] of size at most ℓ .

2. The challenger samples (crs, vk, td) ← TrapGen(1_, 1: , 1=, 1B , 1ℓ , () and gives (crs, vk) to A.

3. Algorithm A outputs a Boolean circuit � : {0, 1}= × {0, 1}ℎ → {0, 1} of size at most B , statements
G1, . . . , G< ∈ {0, 1}

= , and a proof c .

4. The output of the game is 1 = 1 if Verify(vk,�, (G1, . . . , G<), c) = 1 and there exists an index 8 ∈ ( for
which � (G8 ,F8 ) ≠ 1 whereF8 ← Extract(td,�, (G1, . . . , G: ), c, 8). Otherwise, the output is 1 = 0.

Then ΠBARG is somewhere extractable in trapdoor mode if for every adversary A, there exists a negligible
function negl(·) such that Pr[1 = 1] = negl(_) in the somewhere extractable game.

• Succinctness: There exists a �xed polynomial poly(·) such that for all _, :, =, B, ℓ ∈ N, all crs in the support
of Gen(1_, 1: , 1=, 1B , 1ℓ ), and all Boolean circuits � : {0, 1}= × {0, 1}ℎ → {0, 1} of size at most B , the following
properties hold:

– Succinct proofs: The proof c output by Prove(crs,�, ·, ·) satis�es |c | f poly(_ + log: + B + ℓ).

– Succinct CRS: |crs| f poly(_ + : + = + ℓ) + poly(_ + log: + B + ℓ).

– Succinct veri�cation key: |vk| f poly(_ + log: + B + ℓ).

Set hiding with extraction. Following the work of [NWW24], we also require the BARG to satisfy property of
set hiding with extraction, which we de�ne below. As shown in [NWW24], any somewhere extractable BARG can
be modi�ed to satisfy set hiding with extraction.

De�nition 3.7 (Set Hiding with Extraction). Let ΠBARG = (Gen, Prove,Verify, TrapGen, Extract) be a somewhere
extractable batch argument for Boolean circuit satis�ability (De�nition 3.6). For an adversary A and a bit 1 ∈ {0, 1},
de�ne the set hiding with extraction experiment ExptSHwE(_,1) as follows:

1. AlgorithmA(1_) starts by outputting the number of instances 1: , the instance size 1= , the bound on the circuit
size 1B , the bound on the extraction set 1ℓ , a set ( ¦ [:] of size at most ℓ , and an index 8∗ ∈ ( .

2. If 1 = 0, the challenger samples (crs, vk, td) ← TrapGen(1_, 1: , 1=, 1B , 1ℓ , (). If 1 = 1, the challenger samples
(crs, vk, td) ← TrapGen(1_, 1: , 1=, 1B , 1ℓ , {8∗}). The challenger replies to A with (crs, vk).

3. Algorithm A outputs a Boolean circuit � : {0, 1}= × {0, 1}ℎ → {0, 1}, statements G1, . . . , G: ∈ {0, 1}
= , and a

proof c .

4. If Verify(vk,�, (G1, . . . , G: ), c) ≠ 1, then the experiment halts with output 0. Otherwise, the challenger replies
withF∗ ← Extract(td,�, (G1, . . . , G: ), c, 8

∗).

5. Algorithm A outputs a bit 1′ ∈ {0, 1}, which is the output of the experiment.

Then, ΠBARG satis�es set hiding with extraction if for every e�cient adversary A, there exists a negligible function
negl(·) such that for all _ ∈ N,

��Pr[ExptSHwEA (_, 0) = 1] − Pr[ExptSHwEA (_, 1) = 1]
�� = negl(_).
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Index BARGs. An index BARG [CJJ21b] is a batch argument for the batch index language where the instance is
always the tuple (1, . . . , :). Since the statements are the integers, they have a succinct description, so we can impose
a stronger requirement on the running time of the Verify algorithm. We de�ne this below:

De�nition 3.8 (Index BARG [CJJ21b]). An index BARG is a special case of a BARG where the instances (G1, . . . , G: )
are restricted to the integers (1, . . . , :). In this setting, the Gen algorithm to the index BARG does not separately take
in the instance length = as a separate input. Moreover, instead of providing G1, . . . , G: as input to the Prove, Verify,
and Extract algorithms, we just give the single index : (in binary). Moreover, we require the additional succinctness
property on the running time of Verify:

• Succinct veri�cation time: There exists a �xed polynomial poly(·) such that for all _, :, =, B, ℓ ∈ N, all (crs, vk)
in the support of Gen(1_, 1: , 1B , 1ℓ ) and all Boolean circuits � : [:] × {0, 1}ℎ → {0, 1} of size at most B , the
running time of Verify(vk,�, :, ·) is bounded by poly(_ + log: + B + ℓ).

3.3 Zero-Fixing Hash Functions

In this section, we recall the notion of a zero-�xing hash function [NWW24]. As shown in [NWW24], a zero-�xing
hash function can be combined with any vanilla BARG to obtain a monotone policy BARG. Recall that a zero-�xing
hash function is a keyed hash function that supports succinct local openings. Moreover, the hash key is associated
with a set of indices ( ¦ [=], where = is the input length. Moreover, there is a trapdoor td associated with the hash
key hk that can be used to decide whether a hash digest dig isMatching or NotMatching on the set ( . The zero-�xing
security requirement then says that if the extractor outputsMatching for a digest dig, it must be computationally
hard to open dig to a 1 on any index 8 ∈ ( . We now give the formal de�nition:

De�nition 3.9 (Zero-Fixing Hash Function). A zero-�xing hash function is a tuple of polynomial-time algorithms
ΠH = (Setup,Hash, ProveOpen,VerOpen, Extract,ValidateDigest) with the following syntax:

• Setup(1_, 1=, () → (hk, vk, td): On input a security parameter _, an input length =, and a set ( ¦ [=], the setup
algorithm outputs a hash key hk, a veri�cation key vk and a trapdoor td. We implicitly assume that hk includes
_ and =.

• Hash(hk, G) → dig: On input a hash key hk and a string G ∈ {0, 1}= , the hash algorithm outputs a digest dig.
This algorithm is deterministic.

• ValidateDigest(vk, dig) → 1: On input a hash key vk and a digest dig, the digest validation algorithm outputs
a bit 1 ∈ {0, 1}. This algorithm is deterministic.

• ProveOpen(hk, G, 8) → f : On input a hash key hk, a string G ∈ {0, 1}= and an index 8 ∈ [=], the prove algorithm
outputs an opening f .

• VerOpen(vk, dig, 8, 1, f) → 1′: On input a hash key vk, a digest dig, an index 8 ∈ [=], a bit 1 ∈ {0, 1} and an
opening f , the veri�cation algorithm outputs a bit 1′ ∈ {0, 1}. The veri�cation algorithm is deterministic.

• Extract(td, dig) → <: On input a trapdoor td and a digest dig, the extraction algorithm outputs a value
< ∈ {Matching,NotMatching}. This algorithm is deterministic.

We require ΠH satisfy the following e�ciency and correctness properties:

• Succinctness: There exists a universal polynomial poly(·) such that for all parameters _, = ∈ N, all (hk, vk, td)
in the support of Setup(1_, 1=, ·), all inputs G ∈ {0, 1}= and all indices 8 ∈ [=], the following properties hold:

– Succinct veri�cation key: |vk| f poly(_ + log=).

– Succinct digest: The digest dig output by Hash(hk, G) satis�es |dig| f poly(_ + log=).

– Succinct openings: The opening f output by ProveOpen(hk, G, 8) satis�es |f | f poly(_ + log=).

– Succinct veri�cation: The running time of VerOpen(vk, ·) is poly(_ + log=).
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• Correctness: For all _, = ∈ N, every G ∈ {0, 1}= , and every 8 ∈ [=], the following properties hold:

– Opening correctness:

Pr


VerOpen(vk, dig, 8, G8 , f) = 1 :

(hk, vk, td) ← Setup(1_, 1=,∅)

dig← Hash(hk, G)

f ← ProveOpen(hk, G, 8)


= 1.

– Digest correctness:

Pr

[
ValidateDigest(vk, dig) = 1 :

(hk, vk) ← Setup(1_, 1=,∅)

dig← Hash(hk, G)

]
= 1.

We additionally require the following security properties:

• Set hiding: For a bit 1 ∈ {0, 1} and an adversary A, we de�ne the set hiding game ExptSHA (_,1) as follows:

1. On input 1_ , the adversary A outputs 1= and a set ( ¦ [=].

2. If 1 = 0, the challenger samples (hk, vk, td) ← Setup(1_, 1=,∅) and if 1 = 1, the challenger samples
(hk, vk, td) ← Setup(1_, 1=, (). It gives (hk, vk) to A.

3. Algorithm A outputs a bit 1′ which is the output of the experiment.

The hash function satis�es set binding if for all e�cient adversariesA, there exists a negligible function negl(·)

such that ��Pr[ExptSHA (_, 0) = 1] − Pr[ExptSHA (_, 1) = 1]
�� = negl(_).

• Index hiding with extracted guess: For an adversary A and a bit 1 ∈ {0, 1}, we de�ne the index hiding with
extracted guess game ExptIHEA (_,1) as follows:

1. On input 1_ , algorithm A outputs 1= , a set ( ¦ [=], and an index 8∗ ∈ ( .

2. If 1 = 0, the challenger samples (hk, vk, td) ← Setup(1_, 1=, ( \ {8∗}). Otherwise, it samples (hk, vk, td) ←
Setup(1_, 1=, (). The challenger sends (hk, vk) to A.

3. Algorithm A outputs a digest dig and an opening f .

4. The output of the experiment is 1 if VerOpen(hk, dig, 8∗, 0, f) = 1 and Extract(td, dig) outputsMatching.
Otherwise, the output is 0.

The hash function satis�es index hiding with extracted guess if for all e�cient adversaries A, there exists a
negligible function negl(·) such that

��Pr[ExptIHEA (_, 0) = 1] − Pr[ExptIHEA (_, 1) = 1]
�� = negl(_).

• Selective zero �xing: For an adversary A, we de�ne the adaptive zero-�xing game ExptZFA (_) as follows:

1. On input 1_ , algorithm A outputs 1= , a set ( ¦ [=] and an index 8 ∈ ( .

2. The challenger samples (hk, vk, td) ← Setup(1_, 1=, () and gives (hk, vk) to A.

3. Algorithm A outputs a digest dig and an opening f .

4. The output of the experiment is 1 if Extract(td, dig) outputsMatching and VerOpen(hk, dig, 8, 1, f) = 1.
Otherwise, the output is 0.

The hash function satis�es zero-�xing if for all e�cient adversariesA, there exists a negligible function negl(·)

such that Pr[ExptZFA (_) = 1] = negl(_).

• Extractor validity: For an adversary A, we de�ne the extractor validity game ExptEVA (_) as follows:
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1. On input 1_ , the adversary A outputs 1= .

2. The challenger samples (hk, vk, td) ← Setup(1_, 1=,∅) and sends hk to the adversary.

3. Algorithm A outputs a digest dig.

4. The output of the experiment is 1 if ValidateDigest(hk, dig) = 1 and Extract(td, dig) = NotMatching.
Otherwise, the output is 0.

The hash function satis�es extractor validity if for every e�cient adversaryA, there exists a negligible function
negl(·) such that Pr[ExptEVA (_) = 1] = negl(_).

Remark 3.10 (Adaptive Zero-Fixing Security). We can de�ne a stronger adaptive notion of zero-�xing security where
the adversary outputs the index 8 ∈ ( with the digest and the opening, instead of at the beginning of the security
game (i.e., after seeing hk and vk). As argued in [NWW24], those two notions are equivalent. When constructing
zero-�xing hash (as in Construction 4.2), it is easier to work with the simpler selective de�nition.

One-sided index hiding. For our application, it su�ces to consider a weaker notion of “one-sided” index hiding
where we only require that the adversary’s advantage cannot increase (but could decrease). Proving one-sided security
is often easier than proving two-sided security, so we de�ne the simpler notion here:

De�nition 3.11 (One-Sided Index-Hiding with Extracted Guess). We say a zero-�xing hash function ΠH satis�es
one-sided index-hiding with extracted guess security if for all e�cient adversariesA, there exists a negligible function
negl(·) such that

Pr[ExptIHEA (_, 1) = 1] g Pr[ExptIHEA (_, 0) = 1] − negl(_).

4 Construction of Zero-Fixing Hash Functions

In this section, we show how to construct a zero-�xing hash function by combining an index BARG (De�nition 3.8),
an additively homomorphic encryption scheme over Z? (De�nition 3.1), and a vector commitment scheme with
succinct local openings (De�nition 3.3).

Binary tree indexing. Similar to [NWW24], we will work with complete binary trees. Following [NWW24], we
use the following procedure to associate a unique index with each node in the binary tree:

De�nition 4.1 (Binary Tree Indexing). Let T be a complete binary tree with = = 2: leaves. Then T contains exactly
2= − 1 nodes. We associate a unique index 8 ∈ [2= − 1] via the following procedure:

• First, associate the value E = 1 to the root node.

• If E is the value associated with a node, then associate values 2E and 2E+1with its left and right child. Recursively
apply this process to assign a value to every node in the tree.

• The index 8 associated with a node is de�ned to be 2= − E , where E is the value associated with the node.

By design, De�nition 4.1 has the following properties:

• The leaf nodes are indexed 1 through = and the root node is indexed 2= − 1.

• The index of every non-leaf node is greater than the index of its children.

• Given the index of any non-leaf node, we can e�ciently compute the indices of its left and right child.

Construction 4.2 (Zero-Fixing Hash Function). Our construction will rely on the following building blocks:

• Let ΠBARG = (BARG.Gen,BARG.Prove,BARG.Verify,BARG.TrapGen,BARG.Extract) be a somewhere ex-
tractable index BARG (De�nition 3.8).
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• Take any constant ? ∈ N. Let ΠHE = (HE.Gen,HE.Enc,HE.Dec,HE.Add) be an additively homomorphic en-
cryption scheme over Z? (De�nition 3.1). For a security parameter _, let ℓct (_) be a bound on the length of the
ciphertexts output by either HE.Enc(pk, ·) or HE.Add(pk, ·, ·) for any (sk, pk) in the support of HE.Gen(1_).

• Let ΠCom = (Com.Setup,Com.Commit,Com.Verify) be a vector commitment scheme with succinct local
openings (De�nition 3.3).

We construct a zero-�xing hash ΠH = (Setup,Hash, ProveOpen,VerOpen, Extract,ValidateDigest). In the following
description, we assume without loss of generality that the bound on the input length = ∈ N is a power of two (i.e.,
= = 2: for some integer : ∈ N). Next, we de�ne the following NP relation which we will be using in our construction.
In what follows, all of the ciphertext vectors have length _.

Statement: index 8 ∈ [=]

Witness: ciphertext vectors ĉt
(0)
, ĉt
(1)

, openings f (0) , f (1) , and an auxiliary witness F̃
Hardcoded: the common reference string crsCom for ΠCom, an index 8∗ ∈ [=] ∪ {§}, a value ~ ∈ {0, 1,§}, and for

each 1 ∈ {0, 1}, a public key pk1 for ΠHE, commitments com
(1 )

hk
and com(1 ) and two ciphertext vectors ct

(1 )
zero, ct

(1 )
root

On input a statement 8 ∈ [=] and a witness
(
ĉt
(0)
, ĉt
(1)
, f (0) , f (1) , F̃

)
:

• If 8 ∈ [=], then parse F̃ =
(
c̃t
(0)
, c̃t
(1)
, f
(0)

hk
, f
(1)

hk

)
. Output 1 if the following conditions hold:

1. Opening to ciphertext: for 1 ∈ {0, 1}, Com.Verify
(
crsCom, com1, 8, ĉt

(1 )
, f (1 )

)
= 1.

2. Opening to ciphertext in hk: for 1 ∈ {0, 1}, Com.Verify
(
crsCom, com

(1 )

hk
, 8, c̃t

(1 )
, f
(1 )

hk

)
= 1.

3. Consistent choice of ciphertexts:
(
ĉt
(0)

= ct
(0)
zero ' ĉt

(1)
= ct

(1)
zero

)
or

(
ĉt
(0)

= c̃t
(0)
' ĉt

(1)
= c̃t

(1) )
.

4. Validity of ciphertext at target index: If 8 = 8∗, then additionally check that:

ĉt
(1 )

=

{
ct
(1 )
zero if ~ = 0

c̃t
(1 )

if ~ = 1.

If any of these conditions are not satis�ed, output 0.

• If 8 ∈ [= + 1, 2= − 1], then parse F̃ = (F̃l, F̃r), where F̃3 =
(
ĉt
(0)

3 , ĉt
(1)

3 , f
(0)

3
, f
(1)

3

)
for 3 ∈ {l, r}. Output

1 if all of the following conditions hold for all 1 ∈ {0, 1}.

1. Opening to ciphertext: Com.Verify
(
crsCom, com1, 8, ĉt

(1 )
, f (1 )

)
= 1.

2. Opening to child ciphertexts: Com.Verify(crsCom, com1, 8l, ĉt
(1 )
l , f

(1 )
l ) = 1 and

Com.Verify(crsCom, com1, 8r, ĉt
(1 )
r , f

(1 )
r ) = 1, where 8l and 8r are the indices of the left and

right child of 8 (according to the indexing scheme from De�nition 4.1).

3. Correctness of evaluation: ĉt
(1 )

= Add
(
pk1, ĉt

(1 )
l , ĉt

(1 )
r

)
.

4. Validity of root: If 8 = 2= − 1 then ĉt
(1 )

= ct
(1 )
root.

If any of these conditions are not satis�ed, output 0.

Figure 1: The relation R
[
crsCom,

{
pk1, com

(1 )

hk
, com1, ct

(1 )
zero, ct

(1 )
root

}
1∈{main,shadow}

, 8∗, ~
]
.

We describe our construction below:

• Setup(1_, 1=, (): On input a security parameter _, the input length = = 2: and a set ( ¦ [=], the setup algorithm
start by sampling the following:
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– Sample two key pairs: (skmain, pkmain) ← HE.Gen(1_, 1=) and (skshadow, pkshadow) ← HE.Gen(1_, 1=).

– Sample the CRS for the commitment scheme with block length _ · ℓct (_) and up to 2= − 1 blocks:
crsCom ← Com.Setup(1_, 1_ ·ℓct (_) , 12=−1).

– Sample the CRS for an index BARG (that supports extractability on up to 3 positions): (crsBARG, vkBARG) ←
BARG.Gen(1_, 12=−1, 1B , 13), where B is a bound on the size of the circuit computing the index relation
from Fig. 1.

Next, for each 1 ∈ {main, shadow}, construct an encryption of 0: ct
(1 )
zero ← HE.Enc(pk1, 0) where 0 is a zero

vector of length _. For all 8 ∈ [=], sample a random v8
r
← {0, 1}_ \{0}. For each 8 ∈ [=] and 1 ∈ {main, shadow},

compute the following:

– If 8 ∈ ( , compute ct
(1 )
8 ← HE.Enc(pk1, v8 ).

– If 8 ∉ ( , compute ct
(1 )
8 ← HE.Enc(pk1, 0).

Next, the setup algorithm constructs a commitment to the ciphertexts associated with the hash key. Speci�cally,
for each 1 ∈ {main, shadow}, it computes

(
com

(1 )

hk
, f
(1 )

hk,1
, . . . , f

(1 )

hk,=

)
← Com.Commit

(
crsCom, (ct

(1 )
1 , . . . , ct

(1 )
=

)
.

Finally, the setup algorithm constructs the hash key hk, the veri�cation key vk, and the trapdoor td as follows:

hk =

(
crsCom, crsBARG,

{
pk1, ct

(1 )
zero, ct

(1 )
1 , . . . , ct

(1 )
= , f

(1 )

hk,1
, . . . , f

(1 )

hk,=

}
1∈{main,shadow}

)
(4.1)

vk =

(
crsCom, vkBARG,

{
pk1, ct

(1 )
zero, com

(1 )

hk

}
1∈{main,shadow}

)
(4.2)

td = skmain . (4.3)

• Hash(hk, G): On input a hash key hk (parsed as in Eq. (4.1)) and a string G ∈ {0, 1}= , the hashing algorithm
proceeds as follows:

– Construct two complete binary trees Tmain,Tshadow, each with = leaves. For each tree T1 , we assign a

ciphertext vector ĉt
(1 )
8 to each node 8 ∈ [2B − 1] in the tree as follows (where the nodes are indexed using

De�nition 4.1):

∗ If 8 ∈ [=], let ĉt
(1 )
8 ← ct

(1 )
zero if G8 = 0 and ĉt

(1 )
8 ← ct

(1 )
8 if G8 = 1.

∗ For each internal node 8 ∈ [=, 2= − 1], let ĉt
(1 )
8 = HE.Add

(
pk1, ĉt

(1 )
8l

, ĉt
(1 )
8r

)
, where 8l and 8r are the

indices associated with the left and right child of node 8 under the canonical tree indexing scheme
(De�nition 4.1).

– For 1 ∈ {main, shadow}, construct commitments to the ciphertexts associated with T1 :

(com1, f
(1 )
1 , . . . , f

(1 )
2=−1) ← Com.Commit(crsCom, (ĉt

(1 )
1 , . . . , ĉt

(1 )
2=−1))

– For 1 ∈ {main, shadow}, let ct
(1 )
root = ĉt

(1 )
2=−1 (i.e., the ciphertext vector associated with the root of T1 ). Let

�§ be the circuit that computes the following instantiation of the relation from Fig. 1:

R
[
crsCom,

{
pk1, com

(1 )

hk
, com1, ct

(1 )
zero, ct

(1 )
root

}
1∈{main,shadow}

,§,§
]
.

– For each 8 ∈ [2= − 1], let g8 =
(
ĉt

main
8 , ĉt

shadow
8 , fmain

8 , fshadow
8

)
be the opening for the ciphertext vectors

associated with node 8 in Tmain and Tshadow. Then, for each 8 ∈ [2B−1], de�ne the auxiliary witness F̃8 to be

∗ If 8 ∈ [=] then F̃8 =
(
ct

main
8 , ctshadow8 , fmain

hk,8
, fshadow

hk,8

)
.
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∗ If 8 ∈ [= + 1, 2= − 1] then F̃8 = (g8l , g8r ) where 8l, 8r are the indices of the left and right child of node
8 , respectively.

Finally,∀8 ∈ [2=−1] let F̂8 = (g8 , F̃8 ). ComputecBARG ← BARG.Prove(crsBARG,�§, 2=−1, (F̂1, . . . , F̂2=−1)) .

– Output the digest

dig =

(
ct

main
root , ct

shadow
root , commain, comshadow, cBARG

)
.

• ProveOpen(hk, G, 8∗): On input a hash key hk (parsed as in Eq. (4.1)), a string G ∈ {0, 1}= and an index 8∗ ∈ [=],
the opening algorithm proceeds as follows:

– Let �8∗,Gğ∗ be the circuit the following instantiation of the relation from Fig. 1:

R
[
crsCom,

{
pk1, com

(1 )

hk
, com1, ct

(1 )
zero, ct

(1 )
root

}
1∈{main,shadow}

, 8∗, G8∗
]
.

– Compute the witnesses F̂8 for each 8 ∈ [2= − 1] using the same procedure as in the Hash algorithm.

– Output the opening f ← BARG.Prove(crsBARG,�8∗,Gğ∗ , 2= − 1, (F̂1, . . . , F̂2=−1))

• VerOpen(vk, dig, 8, V, f): On input the veri�cation key vk (parsed according to Eq. (4.2)), a digest dig =(
ct
(0)
root, ct

(1)
root, com0, com1, cBARG

)
, an index 8∗ ∈ [=], a bit V ∈ {0, 1} and an opening f , the veri�cation algorithm

outputs BARG.Verify(crsBARG,�8∗,V , 2= − 1, f) where �8∗,V is the circuit computing the following relation from
Fig. 1:

R
[
crsCom,

{
pk1, com

(1 )

hk
, com1, ct

(1 )
zero, ct

(1 )
root

}
1∈{main,shadow}

, 8∗, V
]
.

• Extract(td, dig): On input a trapdoor td = skmain and a digest dig =
(
ct

main
root , ct

shadow
root , commain, comshadow, cBARG

)
,

the extraction algorithm outputsMatching if HE.Dec(skmain, ct
main
root ) = 0. Otherwise, it outputs NotMatching.

• ValidateDigest(vk, dig): On input the veri�cation key vk (parsed according to Eq. (4.2)) and a digest dig =(
ct

main
root , ct

shadow
root , commain, comshadow, cBARG

)
, the digest-validation algorithm outputs

BARG.Verify(vkBARG,�§, 2= − 1, cBARG),

where �§ is the circuit computing the following relation from Fig. 1:

R
[
crsCom,

{
pk1, com

(1 )

hk
, com1, ct

(1 )
zero, ct

(1 )
root

}
1∈{main,shadow}

,§,§
]
.

Theorem 4.3 (Correctness). Construction 4.2 is correct.

Proof. Take any _, = ∈ N and G ∈ {0, 1}= . Suppose (hk, vk, td) ← Setup(1_, 1=,∅). Parse

hk =

(
crsCom, crsBARG,

{
pk1, ct

(1 )
zero, ct

(1 )
1 , . . . , ct

(1 )
= , f

(1 )

hk,1
, . . . , f

(1 )

hk,=

}
1∈{main,shadow}

)

vk =
(
crsCom, vkBARG,

{
pk1, ct

(1 )
zero, com

(1 )

hk

}
1∈{main,shadow}

)

td = skmain.

We show each property individually.

Digest validity. Let dig← Hash(hk, G). By construction, dig = (ctmain
root , ct

shadow
root , commain, comshadow, cBARG) where

cBARG ← BARG.Prove(crsBARG,�§, 2= − 1, (F̂1, . . . , F̂2=−1)) and �§ is the circuit computing the relation

R
[
crsCom,

{
pk1, com

(1 )

hk
, com1, ct

(1 )
zero, ct

(1 )
root

}
1∈{main,shadow}

,§,§
]

from Fig. 1. Parse F̂8 = (g8 , F̃8 ) where g8 = (ĉt
main
8 , ĉt

shadow
8 , fmain

8 , fshadow
8 ). We prove that �§ (8, F̂8 ) = 1 for each

8 ∈ [2= − 1]:
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• Leaf nodes: Suppose 8 ∈ [=]. Then by construction of Hash, we have ĉt
main
8 = ct

main
8 and ĉt

shadow
8 = ct

shadow
8

and F̃8 = (ct
main
8 , ctshadow8 , fmain

hk,8
, fshadow

hk,8
). Consider each of the checks:

1. Opening to ciphertext: by construction of Hash, for each 1 ∈ {main, shadow}, the commitment com1

for each 1 ∈ {main, shadow} is a vector commitment to (ct
(1 )
1 , . . . , ct

(1 )
2=−1) and the opening f

(1 )
8 is a valid

opening for position 8 . Therefore the check passes.

2. Opening to ciphertext in hk: By construction of Setup, for each 1 ∈ {main, shadow}, the commitment

com
(1 )

hk
is a vector commitment to (ct

(1 )
1 , . . . , ct

(1 )
= ) and the opening f

(1 )

hk,8
is a valid opening for position

8 . Therefore the check passes.

3. Consistent choice of ciphertexts: By construction of Hash, we have that for each 1 ∈ {main, shadow},

it holds that v
(1 )
8 is either ct

(1 )
8 or ct

(1 )
zero depending on the value of G8 . Therefore they are consistent and

the check passes.

4. Validity of ciphertext at target index: Since the hash relation does not de�ne a target index, the check
passes trivially.

• Non-leaf nodes: Suppose 8 ∈ [= + 1, 2= − 1]. Then F̃8 = (g8l , g8r ), Consider each of the checks:

1. Opening to ciphertext: This follows by the same reason as above.

2. Opening to child ciphertexts: This follows similarly from the fact that for each 1 ∈ {main, shadow},

the commitment com1 is a vector commitment to (ct
(1 )
1 , . . . , ct

(1 )
2=−1) with openings f

(1 )
1 , . . . , f

(1 )
2=−1.

3. Correctness of evaluation: By construction of Hash, for all 1 ∈ {main, shadow}, and all non-leaf nodes,

we have that ct
(1 )
8 = HE.Add

(
pk1, ct

(1 )
8l

, ct
(1 )
8r

)
, and so the checks pass (since HE.Add is deterministic).

4. Validity of root: By construction of Hash, for each 1 ∈ {main, shadow} we have that ct
(1 )
root = ct

(1 )
2=−1, so

the check trivially passes.

Since �§ (8, F̂8 ) = 1 for each 8 ∈ [2= − 1], then all of the witnesses are correct and cBARG cause BARG.Verify (and by
correspondence ValidateDigest) to accept by the completeness of Π′BARG.

Opening correctness. Let 8∗ ∈ [=], and supposef ← ProveOpen(hk, G, 8∗). We show thatVerOpen(vk, dig, 8, G8∗ , f)
accepts. This follows by an analogous argument, with the one di�erence being that the BARG proof f is now computed
with respect to the circuit �8∗,Gğ∗ that computes the relation

R
[
crsCom,

{
pk1, com

(1 )

hk
, com1, ct

(1 )
zero, ct

(1 )
root

}
1∈{main,shadow}

, 8∗, G8∗
]

from Fig. 1. In other words, the only di�erence now is that the veri�cation algorithm additionally checks validity
at target index. Consider F̂8∗ = (g8∗ , F̃8∗ ), where g8∗ and F̃8∗ are de�ned as before. By construction of ProveOpen, for

each 1 ∈ {main, shadow}, it holds that ĉt
(1 )
8∗ = ct

(1 )
zero if G8∗ = 0 and ĉt

(1 )
8∗ = ct

(1 )
8∗ if G8∗ = 1, therefore the validity at

target index check passes as well. The claim now follows by the completeness of Π′BARG similar to before.
□

Theorem 4.4 (Succinctness). Construction 4.2 is succinct.

Proof. Take any _, = ∈ N and G ∈ {0, 1}= . Let B ∈ N be a bound on the size of the circuits computing the relation in Fig. 1.
Let 8 ∈ [=] be an index. Suppose (hk, vk, td) ← Setup(1_, 1=,∅), dig← Hash(hk, G) and copen ← ProveOpen(hk, G, 8).
Parse

hk =

(
crsCom, crsBARG,

{
pk1, ct

(1 )
zero, ct

(1 )
1 , . . . , ct

(1 )
= , f

(1 )

hk,1
, . . . , f

(1 )

hk,=

}
1∈{main,shadow}

)

vk =

(
crsCom, vkBARG,

{
pk1, ct

(1 )
zero, com

(1 )

hk

}
1∈{main,shadow}

)

td = skmain

dig =

(
ct

main
root , ct

shadow
root , commain, comshadow, cdig

)
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All ciphertexts are encryptions of vectors of dimension _. By the compactness of ΠHE, the size of the ciphertexts
and the public keys is poly(_). By the succinctness of ΠCom, it holds that crsCom, com

main
hk

, comshadow
hk

, commain and
comshadow all have length poly(_ + log=). It remains to bound the parameters of the BARG. To do so, we bound B . The
relation in Fig. 1 requires a constant number of openings for the ciphertext checks. Each of these can be implemented
by a circuit of size poly(_). Similarly, the correctness of the homomorphic evaluation check and the constant number
of ciphertext comparisons also require a circuit of size poly(_ + log=). Thus, the size B of the circuit in Fig. 1 is
bounded by poly(_ + log=). By succinctness of Π′BARG, it holds that the length of the veri�cation key vkBARG and
the proofs cdig and copen have size poly(_ + log=). In total, everything is polynomial in poly(_ + log=) and therefore
all of the succinctness requirements are satis�ed by Construction 4.2. □

Security. In the subsequent sections, we prove each of the required security properties on Construction 4.2. Instan-
tiating the underlying additively homomorphic encryption scheme with the Goldwasser-Micali construction [GM82]
over Z2, we obtain the following corollary:

Corollary 4.5 (Zero-Fixing Hash Functions). Assuming the quadratic residuosity assumption and a somewhere ex-

tractable BARG, there exists a zero-�xing hash function.

In combination with the compiler from [NWW24], this yields Theorem 1.1.

4.1 Set Hiding

We start by showing Construction 4.2 satis�es set hiding. This follows immediately from CPA-security of the underly-
ing encryption scheme. Recall that in Construction 4.2, the only di�erence between a hash key that binds to the empty
set ∅ versus the set ( is that some of the ciphertexts in the hash key switch from encryptions of zero vectors (when
binding to the empty set) to an encryptions of non-zero vectors (when binding to the set (). We formalize this below:

Theorem 4.6 (Set Hiding). If ΠHE is CPA-secure, then Construction 4.2 satis�es set hiding.

Proof. Let A be an e�cient adversary for the set hiding game. For ease of exposition, we treat main and shadow

from Construction 4.2 as 0 and 1 respectively. De�ne the games HybV for each V ∈ {0, 1, 2} as follows:

1. On input 1_ , algorithm A outputs the input length 1= and a set ( ¦ [=].

2. The challenger samples the following quantities:

• (sk0, pk0) ← HE.Gen(1_) and (sk1, pk1) ← HE.Gen(1_).

• (crsBARG, vkBARG) ← Gen(1_, 12=, 1B , 13).

• crsCom ← Com.Setup(1_, 1_ ·ℓct (_) , 2= − 1).

• ct
(1 )
zero ← HE.Enc(pk1, 0) for all 1 ∈ {0, 1}.

• For all 8 ∈ [=], sample a random v8
r
← {0, 1}_ \ {0}.

• For all 8 ∈ [=], 1 ∈ {0, 1}, if 8 ∈ ( and 1 < V , the challenger samples ct
(1 )
8 ← HE.Enc(pk1, v8 ). Otherwise,

if 8 ∉ ( or 1 g V , the challenger samples ct
(1 )
8 ← HE.Enc(pk1, 0).

• For each 1 ∈ {0, 1} let
(
com

(1 )

hk
, f
(1 )

hk,1
, . . . , f

(1 )

hk,=

)
← Com.Commit

(
crsCom, (ct

(1 )
1 , . . . , ct

(1 )
= )

)
.

3. The challenger constructs the hash key hk and the veri�cation vk as de�ned in Eqs. (4.1) and (4.2):

hk =

(
crsCom, crsBARG,

{
pk1, ct

(1 )
zero, ct

(1 )
1 , . . . , ct

(1 )
= , f

(1 )

hk,1
, . . . , f

(1 )

hk,=

}
1∈{0,1}

)

vk =

(
crsCom, vkBARG,

{
pk1, ct

(1 )
zero, com

(1 )

hk

}
1∈{0,1}

)

and gives (hk, vk) to A.
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4. Algorithm A outputs a bit 1′ which is the output of the experiment.

Let HybV (A) be the output of HybV with adversary A. Note that by construction ExptSHA (_, 0) ≡ Hyb0 (A) and
ExptSHA (_, 1) ≡ Hyb2 (A). We now argue that each adjacent pair of hybrid distributions are computationally
indistinguishable.

Claim 4.7. If ΠHE is CPA-secure, then there exists a negligible function negl(·) such that

��Pr[Hyb1 (A) = 1] − Pr[Hyb0 (A) = 1]
�� = negl(_).

Proof. Suppose that
��Pr[Hyb1 (A) = 1] − Pr[Hyb0 (A) = 1]

�� g Y for some non-negligible Y. We use A to construct
an e�cient CPA-security adversary B against ΠHE as follows:

1. On input 1_ , algorithm B runs A to obtain the input length 1= and the set ( ¦ [=]. Denote ( = {81, . . . , 88 },
where C = |( |.

2. The challenger sends the public key pk0 to B.

3. Algorithm B samples the following:

• (sk1, pk1) ← HE.Gen(1_), crsCom ← Com.Setup(1_, 1_ ·ℓct (_) , 2= − 1).

• (crsBARG, vkBARG) ← BARG.Gen(1_, 12=−1, 1B , 13).

• crsCom ← Com.Setup(1_, 1_ ·ℓct (_) , 2= − 1).

• For all 8 ∈ [=], sample a random v8
r
← {0, 1}_ \ {0}.

4. Then, for each 8 ∈ [=], algorithm B does the following:

• If 8 ∈ ( , then make an encryption query on the pair (0, v8 ) and receive the ciphertext ct∗8 . Set ct
(0)
8 = ct∗8 .

• If 8 ∉ ( , set ct
(0)
8 ← HE.Enc(pk1, 0).

• Compute ct
(1)
8 ← HE.Enc(pk1, 0).

5. For 1 ∈ {0, 1}, algorithm B computes
(
com

(1 )

hk
, f
(1 )

hk,1
, . . . , f

(1 )

hk,=

)
← Com.Commit

(
crsCom, (ct

(1 )
1 , . . . , ct

(1 )
=

) )
.

6. Algorithm B constructs hk and vk according to Eqs. (4.1) and (4.2):

hk =

(
crsCom, crsBARG,

{
pk1, ct

(1 )
zero, ct

(1 )
1 , . . . , ct

(1 )
= , f

(1 )

hk,1
, . . . , f

(1 )

hk,=

}
1∈{0,1}

)

vk =

(
crsCom, vkBARG,

{
pk1, ct

(1 )
zero, com

(1 )

hk

}
1∈{0,1}

)

and give (hk, vk) to A.

7. Algorithm A outputs a bit 1′ ∈ {0, 1}, which B also outputs.

Observe that if the ct∗8 are encryptions of 0 then B perfectly simulates Hyb0. If ct
∗
8 are encryptions of v8 , then B

perfectly simulates Hyb1 for A. We conclude that the advantage of B is Y. In addition, if A is e�cient then so is
B, therefore Y is negligible by the CPA security of ΠHE. □

Claim 4.8. If ΠHE is CPA-secure, then there exists a negligible function negl(·) such that

��Pr[Hyb2 (A) = 1] − Pr[Hyb1 (A) = 1]
�� = negl(_).

Proof. Follows by an analogous argument as the proof of Claim 4.7. The only di�erence is the reduction algorithm

B sets pk1 and the ciphertexts ct
(1)
8 for 8 ∈ ( to be the public key and challenge ciphertexts it receives for the CPA

challenger, whereas ct
(0)
8 is set to be an encryption of v8 if 8 ∈ ( , or an encryption of 0 if 8 ∉ ( . □

Theorem 4.6 now follows by combining Claims 4.7 and 4.8. □
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4.2 Additive Invariants on Ciphertexts

Similar to [NWW24], the remaining security properties of the zero-�xing hash function (zero �xing, extractor validity,
and index hiding with extracted guess) will rely on reasoning about various properties on the ciphertext vector
associated with the root node in our tree of ciphertexts (i.e., the hash digest). The general strategy to prove these
properties is similar. We �rst establish a certain invariant on the leaf ciphertexts by relying on the fact that they are
honestly generated by the setup algorithm. Then, we appeal to the security of the BARG and the vector commitment
to “propagate” the invariant to the root ciphertext.

We start by recalling the invariants introduced by [NWW24] and extend them in two ways: (1) we de�ne the
invariants with respect to a vector of ciphertexts (as opposed to a single ciphertext); and (2) we pass auxiliary input
which corresponds to the view of the challenger in the security games.

De�nition 4.9 (Tree-Based Additive Invariant on Ciphertext Vectors). Let = be a power of two and let ΠHE = (Gen,

Enc,Dec,Add) be an additively homomorphic encryption scheme over Z? . We say that an e�ciently-computable predi-
cate % : {0, 1}∗ → {0, 1} is a tree-based additive invariant forΠHE if for all _, = ∈ N, all key-pairs (sk0, pk0), (sk1, pk1) in
the support of Gen(1_, 1=), all indices 9, 9l, 9r ∈ [2=−1] where 9l and 9r are the children of 9 according to the indexing

scheme in De�nition 4.1, all ciphertext vectors
(
ct
(0)
l , ct

(1)
l

)
,
(
ct
(0)
r , ct

(1)
r

)
, and all auxiliary input I ∈ {0, 1}∗ where

%
(
ct
(0)
l , ct

(1)
l , sk0, sk1, 9l, I

)
= 1 and %

(
ct
(0)
r , ct

(1)
r , sk0, sk1, 9r, I

)
= 1,

it holds that
%
(
ct
(0)
sum, ct

(1)
sum, sk0, sk1, 9, I

)
= 1,

where ct
(0)
sum = Add

(
pk0, ct

(0)
l , ct

(0)
r

)
and ct

(1)
sum = Add

(
pk1, ct

(1)
l , ct

(1)
r

)
. This implies that if % holds for the two children

of a node, then it also holds for the parent node.

One way to view the tree-based invariant is that if an adversary can “break” the invariant on some non-leaf node,
then the adversary can also break the invariant on one of children of that node.

Predicate propagation experiment. We now recall the de�nition of the general predicate propagation experiment
from [NWW24], which we use in the analysis of Construction 4.2. This is a general experiment speci�cation that
captures the structure of the security de�nitions for a zero-�xing hash function.

De�nition 4.10 (Predicate Propagation Experiment). The predicate propagation experiment for Construction 4.2
is parameterized by the following two components:

• A tree-based additive invariant % (De�nition 4.9) for the homomorphic encryption scheme ΠHE.

• An e�ciently-computable “challenge-derivation” function DeriveChal((, 8) that takes as input a set ( ¦ [=]
and an index 8 ∈ [=] and outputs two sets (0, (1 ¦ [=] and an index idx that is either a pair (8∗, ~∗) or §. In the
predicate propagation experiment, the sets (0 and (1 will determine the distribution of the ciphertexts in the
common reference string. The index idx will determine the veri�cation check. Each of the security properties
(i.e., zero �xing, extractor validity, and index hiding with extracted guess) will induce a di�erent choice of
DeriveChal (to be speci�ed in their respective proofs).

We now de�ne the predicate propagation experiment Expt[%,DeriveChal] between a challenger and an adversary A:

1. On input the security parameter 1_ , algorithm A1 outputs the input length 1= , a set ( ¦ [=], and an index
8∗ ∈ ( (or a special symbol §).

2. The challenger computes ((main, (shadow, idx) ← DeriveChal((, 8∗).

3. The challenger samples the following quantities as in Setup:

• (skmain, pkmain) ← HE.Gen(1_, 1=) , (skshadow, pkshadow) ← HE.Gen(1_, 1=).

• (crsBARG, vkBARG) ← BARG.Gen(1_, 12=, 1B , 13).
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• crsCom ← Com.Setup(1_, 1_ ·ℓct (_) , 2= − 1).

• ct
(1 )
zero ← HE.Enc(pk1, 0) for all 1 ∈ {main, shadow}.

• For all 8 ∈ [=], sample a random v8
r
← {0, 1}_ \ {0}.

• For all 8 ∈ [=], 1 ∈ {main, shadow}, if 8 ∈ (1 then sample ct
(1 )
8 ← HE.Enc(pk1, v8 ). Otherwise, sample

ct
(1 )
8 ← HE.Enc(pk1, 0).

• For all 1 ∈ {main, shadow},
(
com

(1 )

hk
, f
(1 )

hk,1
, . . . , f

(1 )

hk,=

)
← Com.Commit

(
crsCom, (ct

(1 )
1 , . . . , ct

(1 )
= )

)
.

4. The challenger constructs hk and vk as de�ned in Eqs. (4.1) and (4.2):

hk =

(
crsCom, crsBARG,

{
pk1, ct

(1 )
zero, ct

(1 )
1 , . . . , ct

(1 )
= , f

(1 )

hk,1
, . . . , f

(1 )

hk,=

}
1∈{main,shadow}

)

vk =

(
crsCom, vkBARG,

{
pk1, ct

(1 )
zero, com

(1 )

hk

}
1∈{main,shadow}

)

The challenger gives (hk, vk) to A.

5. Algorithm A outputs a digest dig = (ctmain
root , ct

shadow
root , commain, comshadow, cdig) and a proof c .

6. The output of the experiment is 1 if all of the following conditions hold, and 0 otherwise:

(a) BARG.Verify(crsBARG,�idx, (1, . . . , 2= − 1), c) = 1.

(b) % (ctmain
root , ct

shadow
root , skmain, skshadow, 2= − 1, (v1, . . . , v=, idx)) = 0.

Here, the circuit �idx computes the relation from Fig. 1:

• If idx = (8, ~), then �idx computes the relation

R
[
crsCom,

{
pk1, com

(1 )

hk
, com1, ct

(1 )
zero, ct

(1 )
root

}
1∈{main,shadow}

, 8, ~
]
.

• If idx = §, then �idx computes the relation

R
[
crsCom,

{
pk1, com

(1 )

hk
, com1, ct

(1 )
zero, ct

(1 )
root

}
1∈{main,shadow}

,§,§
]
.

In words, the adversary “wins” the game if it produces a proof c that veri�es, but the digest does not satisfy
the tree-based additive invariant % .

The goal now is to show that if speci�c “pre-conditions” are met, then for all e�cient adversaries A, the probability
that Expt[%,DeriveChal] outputs 1 is negligible. These pre-conditions capture properties of the leaf nodes of the tree.
To that end, we now de�ne the predicate propagation hybrid experiment Expt9 [%,DeriveChal] between a challenger
and an adversary A:

De�nition 4.11 (Predicate Propagation Hybrid Experiment). Let 9 ∈ N be an index. For a tree-based additive
invariant % and a challenge-derivation function DeriveChal, we de�ne the predicate propagation hybrid experiment
between a challenger and an adversary A, which we denote by Expt9 [%,DeriveChal], as follows:

1. On input the security parameter 1_ , algorithm A1 outputs the input length 1= , a set ( ¦ [=], and an index
8∗ ∈ ( (or a special symbol §).

2. The challenger computes ((main, (shadow, idx) ← DeriveChal((, 8∗).

3. The challenger samples the following quantities as in Setup:

• (skmain, pkmain) ← HE.Gen(1_, 1=), (skshadow, pkshadow) ← HE.Gen(1_, 1=).

• (crsBARG, vkBARG, tdBARG) ← TrapGen(1_, 12=, 1B , 13, { 9}).
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• crsCom ← Com.Setup(1_, 1_ ·ℓct (_) , 2= − 1).

• ct
(1 )
zero ← HE.Enc(pk1, 0) for all 1 ∈ {main, shadow}.

• For all 8 ∈ [=], sample a random v8
r
← {0, 1}_ \ {0}.

• For all 8 ∈ [=], 1 ∈ {main, shadow}, if 8 ∈ (1 then sample ct
(1 )
8 ← HE.Enc(pk1, v8 ). Otherwise, sample

ct
(1 )
8 ← HE.Enc(pk1, 0).

•
(
com

(1 )

hk
, f
(1 )

hk,1
, . . . , f

(1 )

hk,=

)
← Com.Commit

(
crsCom, (ct

(1 )
1 , . . . , ct

(1 )
= )

)
for all 1 ∈ {main, shadow}.

4. The challenger constructs hk and vk as de�ned in Eqs. (4.1) and (4.2):

hk =

(
crsCom, crsBARG,

{
pk1, ct

(1 )
zero, ct

(1 )
1 , . . . , ct

(1 )
= , f

(1 )

hk,1
, . . . , f

(1 )

hk,=

}
1∈{main,shadow}

)

vk =

(
crsCom, vkBARG,

{
pk1, ct

(1 )
zero, com

(1 )

hk

}
1∈{main,shadow}

)

The challenger gives (hk, vk) to A.

5. Algorithm A outputs a digest dig = (ctmain
root , ct

shadow
root , commain, comshadow, cdig) and a proof c .

6. The challenger computes (ĉt
main
9 , ĉt

shadow
9 , fmain

9 , fshadow
9 , F̃ 9 ) ← BARG.Extract(tdBARG, c, 9).

7. The output of the experiment is 1 if all of the following conditions hold, and 0 otherwise:

(a) BARG.Verify(crsBARG,�idx, (1, . . . , 2= − 1), c) = 1.

(b) �idx ( 9, (ĉt
main
9 , ĉt

shadow
9 , fmain

9 , fshadow
9 , F̃ 9 )) = 1.

(c) % (ĉt
main
9 , ĉt

shadow
9 , skmain, skshadow, 9, (v1, . . . , v=, idx)) = 0.

Here, the circuit �idx computes the relation from Fig. 1:

• If idx = (8, ~), then �idx computes the relation

R
[
crsCom,

{
pk1, com

(1 )

hk
, com1, ct

(1 )
zero, ct

(1 )
root

}
1∈{main,shadow}

, 8, ~
]
.

• If idx = §, then �idx computes the relation

R
[
crsCom,

{
pk1, com

(1 )

hk
, com1, ct

(1 )
zero, ct

(1 )
root

}
1∈{main,shadow}

,§,§
]
.

In words, the adversary “wins” the game if it produces a proof c that veri�es, the challenger extracts a correct
witness for instance 9 but the extracted witness does not satisfy the tree-based additive invariant % .

Theorem 4.12 (Predicate Propagation). Let % be a tree-based additive invariant and let DeriveChal be a challenge-

derivation function. Suppose ΠCom satis�es computational binding and ΠBARG satis�es set hiding with extraction, set hid-

ing, and somewhere extractability. LetA be any e�cient adversary for the predicate propagation experiment. Suppose that

for every index 9 ∈ [=] (where = = =(_) is the input length chosen byA), there exists a negligible function Y 9 (·) such that

Pr[Expt9 [%,DeriveChal] (A) = 1] = Y 9 (_).

Then there exists a negligible function negl(·) such that

Pr[Expt[%,DeriveChal] (A) = 1] = negl(_).

Remark 4.13 (Comparison with [NWW24, Theorem 5.9]). Despite the similarities between Theorem 4.12 and
[NWW24, Theorem 5.9], there are two reasons we cannot use [NWW24, Theorem 5.9] as a black box. First, while
they use additive homomorphic encryption (which captures the scheme ΠHE) on a single element, we apply the
homomorphic operation on a vector of elements rather. Second, we allow the invariant % to depend on the view of
the challenger, by giving it auxiliary input. We give the formal proof of Theorem 4.12 in Appendix A (which shares
the same structure as the corresponding proof from [NWW24]).
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4.3 Zero Fixing

In this section, we show that Construction 4.2 satis�es zero-�xing security. In the selective zero-�xing game, the
adversary chooses a set ( ¦ [=] and an index 8∗ ∈ ( . Then the hash key in Construction 4.2 is chosen to bind to a set ( .
Thismeans that the ciphertexts in the hash key associatedwith the set ( are replaced by encryptions of non-zero vectors.
The adversary is then required to produce a digest dig that is Matching together with an opening of the index 8∗ to 1.

Intuitively, the BARG in Construction 4.2 guarantees that the digest and opening are computed honestly for some
string, so we assume this to be the case in the following discussion. If the size of ( is su�ciently large, then there exists
a subset ( ′ ¦ ( for which the corresponding vectors are linearly dependent (i.e., they sum to 0), and moreover, 8∗ ∈ ( ′

with non-negligible probability. Thus, if the adversary knows ( ′, then it can easily construct an “honest” digest and
opening that would win the zero-�xing game: choose G = G1 . . . G= such that G8 = 1 whenever 8 ∈ ( ′ (and set G8 = 0

otherwise). The adversary can then compute dig← Hash(hk, G) and f ← ProveOpen(hk, G, 8∗). It is easy to see that
Extract(vk, dig) = Matching since the vectors in ( ′ sum to 0 by construction. However, if the vectors v8∗ corresponding
to 8∗ are computationally hidden from the adversary, then it should be infeasible for the adversary to identify a
non-trivial set of linearly-dependent vectors. Thus, we show this by relying on CPA-security of the underlying
encryption scheme. As noted in Section 2, we use a Naor-Yung approach (with double encryption) for the analysis.

Speci�cally, starting from the selective zero-�xing game, we �rst switch to a hybrid where ctshadow8∗ is an encryption
of 0 instead of v8∗ . Recall that the extraction algorithm ignores the shadow ciphertexts, so these two experiment are
computationally indistinguishable. Next, we observe that this erasure of v8∗ gives us an additive invariant: for all
nodes in the evaluation tree that do not include 8∗ in their sub-tree, the main and shadow ciphertexts encrypt the
same vector, but for all nodes in the evaluation tree that include 8∗, the di�erence between the vectors encrypted
by the main and shadow ciphertexts is v8∗ . The consistency condition in the relation guarantees the invariant holds
for the leaves, and using Theorem 4.12, we can propagate this invariant to the root node, which includes 8∗ in its
sub-tree. Therefore we can move to another hybrid in which the extraction algorithm outputs Matching if and only
if Dec(skshadow, ct

shadow
root ) = v8∗ . Finally, we again use the security of the encryption scheme this time to switch ct

main
8∗

to be an encryption of 0. In the �nal experiment, the adversary’s view is independent of v8∗ , but in order to win, it
is required to produce a ciphertext that decrypts to v8∗ . The claim holds information theoretically at this point over
the random choice of v8∗ . We now give the formal proof:

Theorem 4.14 (Zero-Fixing Security). Suppose ΠCom is binding, ΠBARG satis�es set hiding with extraction, set hiding

and is somewhere extractable, and ΠHE is CPA-secure. Then Construction 4.2 satis�es selective zero-�xing.

Proof. Let A be an e�cient adversary for the zero-�xing game. We de�ne the following hybrid sequence:

• Hyb0: This is the selective zero-�xing game

1. On input 1_ , algorithm A1 outputs 1
= , a set ( ¦ [=], an index 8∗ ∈ ( and a state stA .

2. The challenger samples the following quantities as in Setup:

– (skmain, pkmain) ← HE.Gen(1_, 1=) and (skshadow, pkshadow) ← HE.Gen(1_, 1=).

– (crsBARG, vkBARG) ← Gen(1_, 12=, 1B , 13).

– crsCom ← Com.Setup(1_, 1_ ·ℓct (_) , 2= − 1).

– ct
(1 )
zero ← HE.Enc(pk1, 0) for all 1 ∈ {main, shadow}.

– For all 8 ∈ [=], sample a random v8
r
← {0, 1}_ \ {0}.

– For all 8 ∈ [=], if 8 ∈ ( then sample ct
main
8 ← HE.Enc(pkmain, v8 ). Otherwise sample ct

main
8 ←

HE.Enc(pkmain, 0).

– For all 8 ∈ [=], if 8 ∈ ( then sample ctshadow8 ← HE.Enc(pkshadow, v8 ). Otherwise sample ctshadow8 ←

HE.Enc(pkshadow, 0).

–
(
com

(1 )

hk
, f
(1 )

hk,1
, . . . , f

(1 )

hk,=

)
← Com.Commit

(
crsCom, (ct

(1 )
1 , . . . , ct

(1 )
= )

)
for all 1 ∈ {main, shadow}.

3. The challenger constructs the hash key hk and the veri�cation vk as de�ned in Eqs. (4.1) and (4.2):

hk =

(
crsCom, crsBARG,

{
pk1, ct

(1 )
zero, ct

(1 )
1 , . . . , ct

(1 )
= , f

(1 )

hk,1
, . . . , f

(1 )

hk,=

}
1∈{main,shadow}

)

vk =

(
crsCom, vkBARG,

{
pk1, ct

(1 )
zero, com

(1 )

hk

}
1∈{main,shadow}

)
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and gives (hk, vk) to A.

4. Algorithm A outputs a digest dig = (ctmain
root , ct

shadow
root , commain, comshadow, cdig) and a proof c .

5. The output of the experiment is 1 if all of the following conditions hold, and 0 otherwise:

– BARG.Verify(crsBARG,�8∗,1, (1, . . . , 2= − 1), c) = 1.

– HE.Dec(skmain, ct
main
root ) = 0.

Here, the circuit �8∗,1 computes the relation from Fig. 1:

R
[
crsCom,

{
pk1, com

(1 )

hk
, com1, ct

(1 )
zero, ct

(1 )
root

}
1∈{main,shadow}

, 8∗, 1
]
.

• Hyb1: Same as Hyb0, except the challenger replaces the encryption of v8∗ in the shadow branch with an
encryption of 0. Speci�cally, during setup, the challenger instead samples ctshadow8∗ ← HE.Enc(pkshadow, 0).

• Hyb2: Same as Hyb1 except the challenger implements extraction by decrypting on the shadow branch instead
of the main branch. Speci�cally, the output of this experiment is 1 if all of the following conditions hold:

– BARG.Verify(crsBARG,�8∗,1, (1, . . . , 2= − 1), c) = 1.

– HE.Dec(skshadow, ct
shadow
root ) = v8∗ .

• Hyb3: Same as Hyb2, except the challenger switches the encryption of v8∗ in the main branch to an encryption
of 0. Speci�cally, during setup, the challenger samples ctmain

8∗ ← HE.Enc(pkmain, 0).

Lemma 4.15. If ΠHE is CPA-secure, then
��Pr[Hyb0 (A) = 1] − Pr[Hyb1 (A) = 1]

�� = negl(_).

Proof. Suppose
��Pr[Hyb0 (A) = 1] − Pr[Hyb1 (A) = 1]

�� = Y. We use A to construct an e�cient attacker B for the
CPA security game as follows:

1. On input 1_ , algorithm B runs A to obtain the input length 1= , a set ( ¦ [=], and an index 8∗.

2. The challenger sends the public key pkshadow to B.

3. Algorithm B samples a random v8
r
← {0, 1}_ \ {0} for each 8 ∈ [=].

4. Algorithm B sends the challenge (0, v8∗ ) to the challenger and gets a ciphertext ct∗.

5. Algorithm B samples the following:

• (skmain, pkmain) ← HE.Gen(1_).

• (crsBARG, vkBARG) ← Gen(1_, 12=, 1B , 13).

• crsCom ← Com.Setup(1_, 1_ ·ℓct (_) , 2= − 1).

• ct
(1 )
zero ← HE.Enc(pk1, 0) for all 1 ∈ {main, shadow}.

• For all 8 ∈ [=], 1 ∈ {main, shadow}, if 8 ∈ ( then sample ct
(1 )
8 ← HE.Enc(pk1, v8 ). Otherwise, sample

ct
(1 )
8 ← HE.Enc(pk1, 0).

• Set ctshadow8∗ = ct∗.

•
(
com

(1 )

hk
, f
(1 )

hk,1
, . . . , f

(1 )

hk,=

)
← Com.Commit

(
crsCom, (ct

(1 )
1 , . . . , ct

(1 )
= )

)
for all 1 ∈ {main, shadow}.

6. Algorithm B constructs the hash key hk and the veri�cation vk as de�ned in Eqs. (4.1) and (4.2) and runs A
on (hk, vk) to get (dig, c).

7. Algorithm B parses dig = (ctmain
root , ct

shadow
root , commain, comshadow, cdig), and outputs 1 if all of the following

conditions hold, and 0 otherwise:

(a) BARG.Verify(crsBARG,�8∗,1, (1, . . . , 2= − 1), c) = 1.
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(b) HE.Dec(skmain, ct
main
root ) = 0.

By construction, if ct∗ is an encryption of v8∗ then algorithm B simulatesHyb0 with attackerA and if ct∗ is an encryp-
tion of 0 then attacker B simulatesHyb1 with attackerA. Furthermore, attacker B outputs the guess 1 if and only ifA
wins the simulated game, therefore the advantage of B is exactly

��Pr[Hyb0 (A) = 1] − Pr[Hyb1 (A) = 1]
��. In addition,

ifA is e�cient then so isB, therefore by the security of ΠHE, we conclude that Y is negligible and the claim follows. □

Lemma 4.16. If ΠCom is binding and ΠBARG satis�es set hiding with extraction, set hiding and is somewhere extractable,

then
��Pr[Hyb1 (A) = 1] − Pr[Hyb2 (A) = 1]

�� = negl(_).

Proof. We will leverage Theorem 4.12. To do so, we start by de�ning a mapping DeriveChal as follows:

DeriveChal((, 8∗) := ((, 8∗) ↦→ ((, ( \ {8∗} , (8∗, 1)) .

Secondly, we de�ne the additive invariant % . Recall the tree-indexing de�nition from De�nition 4.1. For any
9 ∈ [2= − 1], we de�ne the set )9 to be the set of nodes in the sub-tree of node 9 . We start by de�ning a predicate
% (ct0, ct1, sk0, sk1, 9, (v1, . . . , v=, idx)) as follows:

• On input ciphertexts ct0, ct1, decryption keys sk0, sk1, a sub-tree index 9 , vectors v1, . . . , v= of the same length
_, and an index idx = (8∗, ~) where 8∗ ∈ [=], compute the di�erence vector

d = HE.Dec(sk0, ct0) − HE.Dec(sk1, ct1).

• Compute the target vector t = v8∗ if 8
∗ ∈ )9 and t = 0 otherwise.

• If t = d then output 1. Otherwise, output 0.

In words, the predicate requires the following:

• If 8∗ is in the sub-tree of node 9 , then the di�erence between the encrypted vectors is v8∗ .

• If 8∗ is not in the sub-tree of node 9 , then the ciphertexts should encrypt identical vectors.

For convenience, we write % (ct0, ct1, sk0, sk1, 9, (v8∗ , 8
∗)) := % (ct0, ct1, sk0, sk1, 9, (v1, . . . , v=, idx)) since % does not

depended on v8 for all 8 ≠ 8∗. Let Expt := Expt[%,DeriveChal] be the predicate propagation experiment from Def-
inition 4.10. First, we claim that the di�erence between A winning Hyb1 and Hyb2 is bounded by the probability
that A wins Expt.

Claim 4.17.
��Pr[Hyb1 (A) = 1] − Pr[Hyb2 (A) = 1]

�� f Pr[Expt(A) = 1].

Proof. De�ne the event � in Hyb2 to be:

BARG.Verify(crsBARG,�8∗,1, (1, . . . , 2= − 1), c) = 1 and HE.Dec(skmain, ct
main
root ) = 0.

Observe that the view of A in Hyb1 is identical to its view in Hyb2. Furthermore, event � is exactly the condition
in which Hyb1 outputs 1, therefore Pr[Hyb1 (A) = 1] = Pr[�]. Then, we have

��Pr[Hyb1 (A) = 1] − Pr[Hyb2 (A) = 1]
�� =

��Pr[�] − Pr[Hyb2 (A) = 1]
��

=
��Pr[� ' Hyb2 (A) = 0] − Pr[¬� ' Hyb2 (A) = 1]

��

f max
{
Pr[� ' Hyb2 (A) = 0], Pr[¬� ' Hyb2 (A) = 1]

}

where the second equality follows from the law of total probability and the last inequality follows from the fact
that probabilities are non-negative. Now observe that the view of A in Expt is also identical to its view in Hyb1 and
Hyb2 by the choice of DeriveChal. Moreover, note that the event � implies HE.Dec(skmain, ct

main
root ) = 0 and the event

Hyb2 (A) = 1 implies HE.Dec(skshadow, ct
shadow
root ) = v8∗ . If exactly one of those events hold, then

HE.Dec(skmain, ct
main
root ) − HE.Dec(skshadow, ct

shadow
root ) ≠ v8∗ .

Further, both events � andHyb2 (A) = 1 imply BARG.Verify(crsBARG,�8∗,1, (1, . . . , 2=−1), c) = 1. In total, both events
� ' Hyb2 (A) = 0 and ¬� ' Hyb2 (A) = 1 imply
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• BARG.Verify(crsBARG,�8∗,1, (1, . . . , 2= − 1), c) = 1.

• HE.Dec(skmain, ct
main
root ) − HE.Dec(skshadow, ct

shadow
root ) ≠ v8∗ .

In this case, Expt(A) = 1 by de�nition of the additive invariant % and the fact that 8∗ is always in the “sub-tree” of
root. Therefore, we conclude that

max
{
Pr[� ' Hyb2 (A) = 0], Pr[¬� ' Hyb2 (A) = 1]

}
f Pr[Expt(A) = 1]

and the claim follows. □

Next, we show that Pr[Expt(A) = 1] = negl(_). The strategy is to use Theorem 4.12. We start by proving that
% is a tree-based additive invariant.

Claim 4.18. If ΠHE satis�es evaluation correctness, then the predicate % is a tree-based additive invariant.

Proof. Let = ∈ N be a power of 2 and _ ∈ N. Fix the following quantities:

• any key pairs (sk0, pk0), (sk1, pk1) in the support of HE.Gen(1_);

• any triple of indices 9, 9l, 9r ∈ [2= − 1] where 9l, 9r are the children of 9 according to De�nition 4.1;

• and set of ciphertext vectors (ct
(0)
l , ct

(1)
l ), (ct

(0)
r , ct

(1)
r ) each of length _;

• any index 8∗ ∈ [=];

• any vector v := v8∗ ∈ {0, 1}
_ .

Let ct(0) = HE.Add(pk0, ct
(0)
l , ct

(0)
r ) and ct

(1)
= HE.Add(pk1, ct

(1)
l , ct

(1)
r ), and suppose

% (ct
(0)
l , ct

(1)
l , sk0, sk1, 9l, (v, 8

∗)) = 1 and % (ct
(0)
r , ct

(1)
r , sk0, sk1, 9r, (v, 8

∗)) = 1.

We consider the following cases:

• If 8∗ ∉ )9 then 8∗ ∉ )9l and 8
∗
∉ )9r . By de�nition of the predicate % , it holds that

HE.Dec(sk0, ct
(0)
l ) − HE.Dec(sk1, ct

(1)
l ) = 0 and HE.Dec(sk0, ct

(0)
r ) − HE.Dec(sk1, ct

(1)
r ) = 0.

By the correctness of ΠHE, it holds that HE.Dec(sk0, ct
(0) ) − HE.Dec(sk1, ct

(1) ) = 0 and therefore by de�nition
of % , it holds that % (ct(0) , ct(1) , sk0, sk1, 9, v, 8

∗) = 1.

• Suppose 8∗ ∈ )9 . Without loss of generality, suppose 8∗ ∈ )9l and 8
∗
∉ )9r ; the other case is analogous. Then,

by de�nition of % , it holds that

HE.Dec(sk0, ct
(0)
l ) − HE.Dec(sk1, ct

(1)
l ) = v and HE.Dec(sk0, ct

(0)
r ) − HE.Dec(sk1, ct

(1)
r ) = 0.

By the correctness of ΠHE, it holds that HE.Dec(sk0, ct
(0) ) − HE.Dec(sk1, ct

(1) ) = v and therefore by de�nition
of % , it holds that % (ct(0) , ct(1) , sk0, sk1, 9, v, 8

∗) = 1.

In any case, % (ct(0) , ct(1) , sk0, sk1, 9, v, 8
∗) = 1 and therefore % is a tree-based additive invariant by de�nition. □

For each 9 ∈ [=], let Expt9 := Expt9 [%,DeriveChal] be the predicate propagation hybrid experiment from Def-
inition 4.11. The �nal ingredient needed to invoke Theorem 4.12 is to show that A wins each of the experiments
Expt9 with negligible probability.

Lemma 4.19. If ΠCom is binding against e�cient non-uniform adversaries, then for any 9 ∈ [=], it holds that

Pr[Expt9 (A) = 1] = negl(_) .
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Proof. Suppose Pr[Expt9 (A) = 1] = Y. We use A to construct an e�cient adversary B for the binding security game
of ΠCom as follows:

1. On input 1_ , algorithm B runs A to obtain the input length 1= , a set ( ¦ [=] and an index 8∗ ∈ [=].

2. Algorithm B sends 12=−1 to the challenger and gets a CRS crsCom.

3. Algorithm B samples the following:

• (skmain, pkmain) ← HE.Gen(1_, 1=) and (skshadow, pkshadow) ← HE.Gen(1_, 1=)

• (crsBARG, vkBARG, tdBARG) ← Gen(1_, 12=, 1B , 13).

• ct
(1 )
zero ← HE.Enc(pk1, 0) for all 1 ∈ {main, shadow}.

• For all 8 ∈ [=], sample a random v8
r
← {0, 1}_ \ {0}.

• For all 8 ∈ [=], 1 ∈ {main, shadow}, if 8 ∈ ( then sample ct
(1 )
8 ← HE.Enc(pk1, v8 ), otherwise sample

ct
(1 )
8 ← HE.Enc(pk1, 0).

• Overwrite ctshadow8∗ ← HE.Enc(pkshadow, 0).

•
(
com

(1 )

hk
, f
(1 )

hk,1
, . . . , f

(1 )

hk,=

)
← Com.Commit

(
crsCom, (ct

(1 )
1 , . . . , ct

(1 )
= )

)
for all 1 ∈ {main, shadow}.

4. Algorithm B computes hk and vk as de�ned in Eqs. (4.1) and (4.2), and passes (hk, vk) to get (dig, c).

5. Algorithm B parses dig = (ctmain
root , ct

shadow
root , commain, comshadow, cdig).

6. Algorithm B extracts (ĉt
main

, ĉt
shadow

, fmain, fshadow, F̃) ← BARG.Extract(tdBARG, c, 9).

7. If any of the following conditions do not hold, algorithm B aborts:

(a) BARG.Verify(crsBARG,�8∗,1, (1, . . . , 2= − 1), c) = 1.

(b) �8∗,1 ( 9, (ĉt
main

, ĉt
shadow

, fmain, fshadow, F̃)) = 1.

(c) % (ĉt
main

, ĉt
shadow

, skmain, skshadow, 9, v8∗ , 8
∗) = 0.

8. Algorithm B parses F̃ = (c̃t
main

, c̃t
shadow

, fmain
hk

, fshadow
hk

).

9. If HE.Dec(skmain, ct
main
hk, 9
) ≠ HE.Dec(skmain, c̃t

main
) then algorithm B sets 1 ← main, otherwise 1 ← shadow.

10. Algorithm B outputs the commitment com
(1 )

hk
, the index 9 and the openings (ct

(1 )
9 , f

(1 )

hk, 9
), (c̃t

(1 )
, f
(1 )

hk
).

Let d = v8∗ if 9 = 8∗ and d = 0 otherwise. At a high level, algorithm B simulates Expt9 with algorithm A, hoping that
A wins the experiment. By construction of hk, vk, the di�erence between the main and shadow vectors encrypted
in position 9 should match d, whereas by de�nition of the invariant % , the extracted encryptions do not satisfy the
condition (since % outputs 0). Therefore, it must be the cast that A produced a di�erent encryption for position 9 for
either the main or shadow copy. Moreover, algorithm A produced a valid opening for that value. Together with the
valid opening produced by B, this contradicts the binding property of commitment. We now give the formal argument:

By construction, algorithm B perfectly simulates Expt9 with attacker A and aborts if and only if A loses the
simulated game. Assume A wins the simulated game. This implies all of the following:

• Since �8∗,1 ( 9, (ĉt
main

, ĉt
shadow

, fmain, fshadow, F̃)) = 1, then Com.Verify(crsCom, com
(1 )

hk
, 9, ĉt

(1 )
, f (1 ) ) = 1 for

each 1 ∈ {main, shadow}.

• Since % (ĉt
main

, ĉt
shadow

, skmain, skshadow, 9, v8∗ , 8
∗) = 0, then by de�nition

HE.Dec(skmain, ĉt
main
) − HE.Dec(skshadow, ĉt

shadow
) ≠ d.
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However, by the construction of hk, vk, it holds that:

• Com.Verify(crsCom, com
(1 )

hk
, 9, ct

(1 )
9 , f (1 ) ) = 1 for each 1 ∈ {main, shadow}.

• HE.Dec(skmain, ct
main
9 ) − HE.Dec(skshadow, ct

shadow
9 ) = d.

Since

HE.Dec(skmain, ĉt
main
) − HE.Dec(skshadow, ĉt

shadow
) ≠ HE.Dec(skmain, ct

main
9 ) − HE.Dec(skshadow, ct

shadow
9 ),

there exists 1 ∈ {main, shadow} such that ĉt
(1 )

≠ ct
(1 )
9 by correctness of ΠHE. Furthermore, algorithm B �nds that

1 and outputs com
(1 )

hk
, the index 9 and the openings (ct

(1 )
9 , f

(1 )

hk, 9
), (c̃t

(1 )
, f
(1 )

hk
). Thus, algorithm B wins the binding

game with the same probability Y, so Y is negligible by the binding property of ΠCom. The lemma follows. □

By Lemma 4.19 and Claim 4.18, we can apply Theorem 4.12 and conclude that Pr[Expt(A) = 1] = negl(_). By
Claim 4.17, we conclude that

��Pr[Hyb1 (A) = 1] − Pr[Hyb2 (A) = 1]
�� f negl(_) and Lemma 4.16 follows. □

Lemma 4.20. If ΠHE is CPA-secure, then
��Pr[Hyb2 (A) = 1] − Pr[Hyb3 (A) = 1]

�� = negl(_).

Proof. Follow by the analogous argument as in the proof of Lemma 4.15. □

Claim 4.21. Pr[Hyb3 (A) = 1] = negl(_).

Proof. The view of A in Hyb3 is entirely independent of v8∗ . Thus, in Hyb3, the challenger can defer the sampling
v8∗ to after the adversary outputs ctshadowroot . In order for A to win the game, it needs to output ctshadowroot such that
HE.Dec(skshadow, ct

shadow
root ) = v8∗ . Since v8∗

r
← {0, 1}_ \ {0}, this holds with probability 1/(2_ − 1) = negl(_). □

Theorem 4.14 now follows from Lemmas 4.15, 4.16 and 4.20 and Claim 4.21 and a standard hybrid argument. □

4.4 Extractor Validity

In this section, we show that Construction 4.2 satis�es extractor validity. In the extractor validity game, the hash key
is sampled to be zero-�xing on the empty set ∅, and the goal of the adversary is to produce a valid, but non-matching

digest. In this setting, the ciphertexts in the hash key are all encryptions of 0. In order to break the extractor validity
property, the adversary needs to produce a root ciphertext that encrypts a non-zero value, and yet, still argue that
the root ciphertext was derived by summing a collection of ciphertexts that each encrypt 0. The latter is ensured
by security of the BARG, and speci�cally the predicate propagation theorem (Theorem 4.12). We give the formal
theorem statement and proof below:

Theorem 4.22. If ΠCom is binding and ΠBARG satis�es set hiding, set hiding with extraction and is somewhere extractable,

then ΠH satis�es the extractor validity.

Proof. Let A be an e�cient adversary for the extractor validity. For any _ ∈ N, denote 1= ← A1 (1
_). We start by

de�ning the mapping DeriveChal∅ as follows:

DeriveChal((, 8∗) := ((, 8∗) ↦→ (∅,∅,§).

Secondly, we de�ne the predicate %
Matching

main
as follows:

%
Matching

main
(ctmain, ctshadow, skmain, skshadow, 9, I) =

{
1 HE.Dec(skmain, cmain) = 0

0 HE.Dec(skmain, ctmain) ≠ 0

Since %
Matching

main
does not depend on ctshadow, skshadow, 9 and I, we omit these quantities in the following exposition

(i.e., implicitly set them to §). We start by showing that %
Matching

main
is a tree-based additive invariant.
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Claim 4.23. If ΠHE satis�es correctness, then the predicate %
Matching

main
is a tree-based additive invariant.

Proof. Let = ∈ N be a power of 2 and _ ∈ N. Fix the following quantities:

• a key pair (sk, pk) in the support of HE.Gen(1_);

• a set of ciphertext vectors ctl and ctr each of length _;

• ct = HE.Add(pk, ctl, ctr).

Suppose %
Matching

main
(ctl, sk) = 1 and %

Matching

main
(ctr, sk) = 1. This implies that Dec(sk, ctl) = Dec(sk, ctl) = 0 by de�ni-

tion of %
Matching

main
. By the correctness of ΠHE, we have Dec(sk, ctl) = 0, and again by de�nition of %

Matching

main
, we get

%
Matching

main
(ct, sk) = 1 and the claim follows. □

Let Expt := Expt[%
Matching

main
,DeriveChal∅] be the predicate propagation experiment from De�nition 4.10. We �rst

claim that we can use A to construct an adversary A′ such that

Pr[ExptEVA (_) = 1] f Pr[Expt(A′) = 1] . (4.4)

Algorithm A′ works as follows:

1. On input the security parameter 1_ , algorithm A′ runs A on the same security parameter. Algorithm A
outputs an input length 1= . Algorithm A′ outputs the input length 1= , the set ( = ∅, and the index 8∗ = §.

2. The challenger replies with (hk, vk) which A′ forwards to A.

3. AlgorithmA outputs a digest dig =
(
ct

main
root , ct

shadow
root , commain, comshadow, cdig

)
. AlgorithmA′ outputs the same

digest dig and c = cdig.

We now show that Eq. (4.4) holds. By construction, the pair (hk, vk) sampled by the challenger are distributed accord-
ing to the real setup algorithm. Thus, algorithm A perfectly simulates an execution of ExptEVA for adversary A.
Thus, with probability Pr[ExptEVA (_) = 1], algorithmA outputs a digest digwhere Extract(td, dig) = NotMatching

and ValidateDigest(hk, dig) = 1. This means the following:

• By construction, Extract(td, dig) outputs NotMatching if HE.Dec(skmain, ct
main
root ) ≠ 0. By construction of

%
Matching

main
, this means %

Matching

main
(ctmain

root , skmain) = 0.

• Next, ValidateDigest outputs 1 if BARG.Verify(vkBARG,�§, 2= − 1, cdig) = 1. By construction of DeriveChal, we
have that idx = § in the execution of Expt(A), so this means that BARG.Verify(vkBARG,�idx, 2= − 1, cdig) = 1.

Since %
Matching

main
(ctmain

root , skmain) = 0 and BARG.Verify(vkBARG,�idx, 2= − 1, cdig) = 1, the predicate propagation exper-
iment Expt(A′) also outputs 1. Hence, we conclude that Pr[Expt(A′) = 1] g Pr[ExptEVA (_) = 1]. To complete the
proof, we now show using Theorem 4.12 that Pr[Expt(A′) = 1] f negl(_). To leverage Theorem 4.12, we analyze

the predicate propagation hybrid experiment Expt9 := Expt9 [%
Matching

main
,DeriveChal] from De�nition 4.11.

Claim 4.24. If ΠCom satis�es binding against e�cient non-uniform adversaries then for any 9 ∈ [=], it holds that

Pr[Expt9 (A
′) = 1] = negl(_).

Proof. Suppose Pr[Expt9 (A
′) = 1] = Y. We use A′ to construct an e�cient adversary B for the binding security

game of ΠCom as follows:

1. On input 1_ , algorithm B runs A′ to obtain 1= , the set ( = ∅ and the index 8∗ = §.

2. Algorithm B outputs the block length _ · ℓct (_) and the vector length 2= − 1 to the challenger. The challenger
responds with crsCom.
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3. Algorithm B samples the following quantities as Setup:

• (skmain, pkmain) ← HE.Gen(1_, 1=) and (skshadow, pkshadow) ← HE.Gen(1_, 1=).

• (crsBARG, vkBARG, tdBARG) ← BARG.TrapGen(1_, 12=, 1B , 13, { 9}).

• ct
(1 )
zero ← HE.Enc(pk1, 0) for all 1 ∈ {main, shadow}.

• For all 8 ∈ [=], 1 ∈ {main, shadow} : ct
(1 )
8 ← HE.Enc(pk1, 0).

• For each 1 ∈ {main, shadow}, let
(
com

(1 )

hk
, f
(1 )

hk,1
, . . . , f

(1 )

hk,=

)
← Com.Commit

(
crsCom, (ct

(1 )
1 , . . . , ct

(1 )
= )

)
.

4. Algorithm B computes hk and vk as de�ned in Eqs. (4.1) and (4.2), and runs A′ on (hk, vk) to obtain (dig, c).

5. Algorithm B parses dig = (ctmain
root , ct

shadow
root , commain, comshadow, cdig).

6. Algorithm B extracts F̂ = (ĉt
main

, ĉt
(shadow)

, fmain, fshadow, F̃) ← BARG.Extract(tdBARG, c, 9) and parses

F̃ = (c̃t
main

, c̃t
shadow

, fmain
hk

, fshadow
hk

).

7. Algorithm B outputs the commitment commain
hk

, the index 9 and the openings (ctmain
9 , fmain

hk, 9
) and (c̃t

main
, fmain

hk
).

By construction, the challenger samples crsCom ← Com.Setup(1_, 1_ ·ℓct (_,=) , 2= − 1), which matches the speci�cation
in Expt9 . Thus, algorithm B perfectly simulates an execution of Expt9 for A

′. By assumption, with probability Y,
algorithm A′ outputs dig and c such that the experiment outputs 1. This means the following conditions hold:

�§
(
9,
(
ĉt

main
, ĉt
(shadow)

, fmain, fshadow, F̃
) )

= 1 and %
Matching

main
(ĉt

main
, skmain) = 0.

By de�nition of �§ and using the fact that 9 ∈ [=], this means

Com.Verify
(
crscom, com

main
hk , 9, c̃t

main
, fmain

hk

)
= 1 and ĉt

main
∈
{
ct

main
zero , c̃t

main}
.

Next, by correctness of ΠCom,

Com.Verify
(
crscom, com

(0)

hk
, 9, ctmain

9 , fmain
hk, 9

)
= 1.

Therefore, it su�ces to argue that ctmain
9 ≠ c̃t

main
. Since %

Matching

main
(ĉt

main
, skmain) = 0, this means

HE.Dec(skmain, ĉt
main
) ≠ 0.

Since ctmain
zero is an encryption of 0, we can appeal to perfect correctness of ΠHE to conclude that ĉt

main
≠ ctmain

zero .

Therefore it must be that ĉt
main

= c̃t
main

. Moreover, ctmain
9 is also an encryption of 0, so again by perfect correctness

of the encryption scheme, we can conclude that ctmain
9 ≠ ĉt

main
= c̃t

main
. In this case, algorithm B successfully opens

commain
hk

to two distinct values ctmain
9 ≠ c̃t

main
. Thus algorithm B breaks binding with the same advantage Y. □

By Claims 4.23 and 4.24, we can invoke Theorem 4.12 to conclude that Pr[Expt(A′) = 1] f negl(_). Extractor-validity
security now follows via Eq. (4.4). □

4.4.1 Index Hiding with Extracted Guess

In this section, we show that Construction 4.2 satis�es the index hiding with extracted guess property. The challenge
in this reduction is we need to switch from an encryption of 0 to an encryption of 1 (in the hash key) while retaining
the ability to decide whether the digest is “Matching” or not (which in the real scheme, requires knowledge of the
secret key for the underlying encryption scheme). Similar to the proof of Theorem 4.14 and as described in Section 2,
we leverage a Naor-Yung proof strategy for the analysis here.
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Theorem 4.25. If ΠHE satis�es perfect correctness, evaluation correctness, and CPA-security, ΠCom is computationally

binding and ΠBARG satis�es set hiding with extraction, set hiding, and is somewhere extractable, then Construction 4.2

satis�es index hiding with extracted guess.

Proof. Let A be an e�cient adversary for the index hiding with extracted guess security game. We de�ne a sequence
of hybrid experiments:

• Hyb0: This is ExptIHEA (_, 0). Speci�cally, the game proceeds as follows:

1. On input the security parameter 1_ , algorithm A outputs the input length 1= , a set ( ¦ [=], and an index
8∗ ∈ ( .

2. The challenger now samples the following quantities as in Setup:

– Sample (skmain, pkmain) ← HE.Gen(1_, 1=) and (skshadow, pkshadow) ← HE.Gen(1_, 1=).

– Sample crsCom ← Com.Setup(1_, 1_ ·ℓct (_,=) , 2= − 1).

– Sample (crsBARG, vkBARG) ← BARG.Gen(1_, 12=−1, 1B , 13), where B is a bound on the size of the circuit
computing the index relation from Fig. 1.

– For each 1 ∈ {main, shadow}, sample ct
(1 )
zero ← HE.Enc(pk1, 0).

– For all 8 ∈ [=], sample a random v8
r
← {0, 1}_ \ {0}.

– For each 8 ∈ [=] and 1 ∈ {main, shadow}, if 8 ∈ ( \ {8∗}, sample ct
(1 )
8 ← HE.Enc(pk1, v8 ); otherwise

sample ct
(1 )
8 ← HE.Enc(pk1, 0).

– For each1 ∈ {main, shadow}, let
(
com

(1 )

hk
, f
(1 )

hk,1
, . . . , f

(1 )

hk,=

)
← Com.Commit

(
crsCom, (ct

(1 )
1 , . . . , ct

(1 )
= )

)
.

3. The challenger constructs hk and vk according to Eqs. (4.1) and (4.2):

hk =

(
crsCom, crsBARG,

{
pk1, ct

(1 )
zero, ct

(1 )
1 , . . . , ct

(1 )
= , f

(1 )

hk,1
, . . . , f

(1 )

hk,=

}
1∈{main,shadow}

)

vk =

(
crsCom, vkBARG,

{
pk1, ct

(1 )
zero, com

(1 )

hk

}
1∈{main,shadow}

)

The challenger gives (hk, vk) to A.

4. Algorithm A outputs a digest dig =
(
ct

main
root , ct

shadow
root , commain, comshadow, cdig

)
and an opening c .

5. The output of the experiment is 1 if

BARG.Verify(vkBARG,�8∗,0, 2= − 1, c) = 1 and HE.Dec
(
skmain, ct

main
root

)
= 0.

Otherwise, the output is 0.

• Hyb1: Same as Hyb0, except the challenger samples ctshadow8∗ ← HE.Enc(pkshadow, v8∗ ).

• Hyb2: Same as Hyb1, except the output of the experiment is 1 if

BARG.Verify(vkBARG,�8∗,0, 2= − 1, c) = 1 and HE.Dec
(
skshadow, ct

shadow
root

)
= 0.

Notably, the challenger’s behavior in this experiment does not depend on skmain.

• Hyb3: Same as Hyb2, except the challenger samples ctmain
8∗ ← HE.Enc(pkmain, v8∗ ).

• Hyb4: Same as Hyb3, except the output of the experiment is 1 if

BARG.Verify(vkBARG,�8∗,0, 2= − 1, c) = 1 and HE.Dec
(
skmain, ct

main
root

)
= 0.

This is experiment ExptIHEA (_, 1).

We write Hyb8 (A) to denote the output of experiment of Hyb8 with adversary A. We now analyze each pair of
hybrid experiments.
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Claim 4.26. If ΠHE is CPA-secure, then there exists a negligible function negl(·) such that

��Pr[Hyb1 (A) = 1] − Pr[Hyb0 (A) = 1]
�� = negl(_).

Proof. Suppose
��Pr[Hyb0 (A) = 1] − Pr[Hyb1 (A) = 1]

�� = Y. We use A to construct an e�cient attacker B for the
CPA security game as follows:

1. On input 1_ , algorithm B runs A to obtain the input length 1= , a set ( ¦ [=], and an index 8∗ ∈ ( .

2. The challenger sends the public key pkshadow to B.

3. Algorithm B samples a random v8
r
← {0, 1}_ \ {0} for each 8 ∈ [=].

4. Algorithm B sends the challenge (0, v8∗ ) to the challenger and gets an encryption ct
∗.

5. Algorithm B samples the following:

• (skmain, pkmain) ← HE.Gen(1_).

• (crsBARG, vkBARG) ← Gen(1_, 12=, 1B , 13).

• crsCom ← Com.Setup(1_, 1_ ·ℓct (_) , 2= − 1).

• ct
(1 )
zero ← HE.Enc(pk1, 0) for all 1 ∈ {main, shadow}.

• For all 8 ∈ [=], 1 ∈ {main, shadow}, if 8 ∈ ( \ {8∗} then sample ct
(1 )
8 ← HE.Enc(pk1, v8 ). Otherwise

sample ct
(1 )
8 ← HE.Enc(pk1, 0).

• Let ctshadow8∗ ← ct∗.

•
(
com

(1 )

hk
, f
(1 )

hk,1
, . . . , f

(1 )

hk,=

)
← Com.Commit

(
crsCom, (ct

(1 )
1 , . . . , ct

(1 )
= )

)
for all 1 ∈ {main, shadow}.

6. The challenger constructs hk and vk according to Eqs. (4.1) and (4.2):

hk =

(
crsCom, crsBARG,

{
pk1, ct

(1 )
zero, ct

(1 )
1 , . . . , ct

(1 )
= , f

(1 )

hk,1
, . . . , f

(1 )

hk,=

}
1∈{main,shadow}

)

vk =

(
crsCom, vkBARG,

{
pk1, ct

(1 )
zero, com

(1 )

hk

}
1∈{main,shadow}

)

The challenger gives (hk, vk) to A.

7. Algorithm A outputs a digest dig =
(
ct

main
root , ct

shadow
root , commain, comshadow, cdig

)
and an opening c .

8. Algorithm B parses outputs 1 if all of the following conditions hold, and 0 otherwise:

(a) BARG.Verify(crsBARG,�8∗,1, (1, . . . , 2= − 1), c) = 1.

(b) HE.Dec(skmain, ct
main
root ) = 0.

By construction, if ct∗ is an encryption of 0 then algorithmB simulatesHyb0 with attackerA and if ct∗ is an encryption
of v8∗ then attacker B simulates Hyb1 with attacker A. Furthermore, attacker B outputs the guess 1 if and only if A
wins the simulated game, therefore the advantage of B is exactly

��Pr[Hyb0 (A) = 1] − Pr[Hyb1 (A) = 1]
��. In addition,

ifA is e�cient then so isB, therefore by the security of ΠHE, we conclude that Y is negligible and the claim follows. □

Claim 4.27. If ΠHE is perfectly correct and satis�es evaluation correctness, ΠCom is computationally binding, ΠBARG

satis�es set hiding with extraction, set hiding, and is somewhere extractable, then there exists a negligible function negl(·)

such that | Pr[Hyb2 (A) = 1] − Pr[Hyb1 (A) = 1] | = negl(_).
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Proof. By construction, the only di�erence between the execution of Hyb1 and Hyb2 is the output condition. Let �
be the following event in an execution of Hyb1 and Hyb2:

BARG.Verify(vkBARG,�8∗,0, 2= − 1, c) = 1 and HE.Dec
(
skmain, ct

main
root

)
≠ HE.Dec

(
skshadow, ct

shadow
root

)
. (4.5)

Observe that if � does not occur, then the output of Hyb1 and Hyb2 is identical. This means that

| Pr[Hyb2 (A) = 1] − Pr[Hyb1 (A) = 1] | f Pr[�] .

We now leverage Theorem 4.12 to argue that Pr[�] = negl(_). To do so, we start by de�ning the mapping DeriveChal
as follows:

DeriveChal((, 8∗) := ((, 8∗) → ((, ( \ {8∗} , (8∗, 0)) .

Next, we de�ne the validity predicate %Valid : {0, 1}
∗ → {0, 1} as follows:

%Valid (ctmain, ctshadow, skmain, skshadow, 9, I) =

{
1 HE.Dec(skmain, ctmain) = HE.Dec(skshadow, ctshadow)

0 HE.Dec(skmain, ctmain) ≠ HE.Dec(skshadow, ctshadow)

Since %Valid does not use the index 9 and the auxiliary input I, we omit them in the following exposition. We now
show that %Valid is a tree-based additive invariant.

Lemma 4.28. If ΠHE satis�es evaluation correctness, then %Valid is a tree-based additive invariant.

Proof. Let _ ∈ N. Fix the following quantities:

• any two key pairs (skmain, pkmain), (skshadow, pkshadow) in the support of HE.Gen(1_, 1=);

• any tuple of ciphertext vectors
(
ct

main
l , ctshadowl

)
,
(
ct

main
r , ctshadowr

)
, where each vector has length _;

• for each 1 ∈ {main, shadow}, let ct
(1 )
sum = HE.Add

(
pk1, ct

(1 )
l , ct

(1 )
r

)
.

Suppose
%Valid (ct

main
l , ctshadowl , skmain, skshadow) = %Valid (ct

main
r , ctshadowr , skmain, skshadow) = 1.

This implies

HE.Dec(skmain, ct
main
l ) = HE.Dec(skshadow, ct

shadow
l )

HE.Dec(skmain, ct
main
r ) = HE.Dec(skshadow, ct

shadow
r ).

By the evaluation correctness of ΠHE, we conclude that

HE.Dec(skmain, ct
main
sum ) = HE.Dec(skmain, ct

main
l ) + HE.Dec(skmain, ct

main
r )

= HE.Dec(skshadow, ct
shadow
l ) + HE.Dec(skshadow, ct

shadow
r )

= HE.Dec(skshadow, ct
shadow
sum )

Therefore we conclude that %Valid (ct
main
sum , ctshadowsum , skmain, skshadow) = 1 and the claim follows. □

Let Expt := Expt[%Valid,DeriveChal] be the predicate propagation experiment from De�nition 4.10. We argue that

Pr[�] f Pr[Expt(A) = 1], (4.6)

where � is the event from Eq. (4.5). By construction, the adversary’s view in Hyb1 and Expt is identical. Suppose
� occurs in an execution of Hyb1. Then the following hold:

• BARG.Verify(vkBARG,�8∗,0, 2= − 1, c) = 1. By construction of DeriveChal, we have that idx = (8∗, 0) in the
execution of Expt(A). Hence, this means that BARG.Verify(vkBARG,�idx, 2= − 1, c) = 1.
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• HE.Dec
(
skmain, ct

main
root

)
≠ HE.Dec

(
skshadow, ct

shadow
root

)
. This means %Valid

(
ct

main
root , ct

shadow
root , skmain, skshadow

)
= 0.

Correspondingly, the output in Expt is also 1 in this case. Hence, we conclude that Pr[Expt(A) = 1] g Pr[�]. To
complete the proof, we analyze the predicate propagation hybrid experiment Expt9 := Expt9 [%Valid,DeriveChal].

Lemma 4.29. If ΠHE is perfectly correct and ΠCom satis�es computational binding, then there exists a negligible function

negl(·) such that for all 9 ∈ [=], it holds that Pr[Expt9 (A) = 1] = negl(_).

Proof. Suppose there exists some 9 ∈ [=] where Pr[Expt9 (A) = 1] g Y (_) for some non-negligible Y. We use A to
construct an adversary B that breaks computational binding of ΠCom.

1. On input the security parameter 1_ , algorithm B runs algorithm A to obtain the input length 1= , a set ( ¦ [=],
and an index 8∗ ∈ ( .

2. Algorithm B outputs the block length 1_ ·ℓct (_,=) and the vector length 2= − 1 to the challenger. The challenger
responds with crsCom.

3. Algorithm B computes (( \ {8∗} , (, (8∗, 0)) ← DeriveChal((, 8∗). It then samples the following components:

• (skmain, pkmain) ← HE.Gen(1_, 1=), (skshadow, pkshadow) ← HE.Gen(1_, 1=).

• (crsBARG, vkBARG, tdBARG) ← BARG.TrapGen(1_, 12=−1, 1B , 13, { 9}).

• Sample a random v8
r
← {0, 1}_ \ {0} for each 8 ∈ [=].

• For each 1 ∈ {main, shadow}, sample ct
(1 )
zero ← HE.Enc(pk1, 0).

• For each 8 ∈ [=] \ {8∗} and 1 ∈ {main, shadow}, if 8 ∈ ( , sample ct
(1 )
8 ← HE.Enc(pk1, v8 ). If 8 ∉ ( , sample

ct
(1 )
8 ← HE.Enc(pk1, 0).

• Sample ctmain
8∗ ← HE.Enc(pkmain, 0) and ct

shadow
8∗ ← HE.Enc(pkshadow, v8∗ ).

• For each 1 ∈ {main, shadow}, let
(
com

(1 )

hk
, f
(1 )

hk,1
, . . . , f

(1 )

hk,=

)
← Com.Commit

(
crsCom, (ct

(1 )
1 , . . . , ct

(1 )
= )

)
.

4. Algorithm B constructs hk and vk according to Eqs. (4.1) and (4.2):

hk =

(
crsCom, crsBARG,

{
pk1, ct

(1 )
zero, ct

(1 )
1 , . . . , ct

(1 )
= , f

(1 )

hk,1
, . . . , f

(1 )

hk,=

}
1∈{main,shadow}

)

vk =

(
crsCom, vkBARG,

{
pk1, ct

(1 )
zero, com

(1 )

hk

}
1∈{main,shadow}

)

Algorithm B gives (hk, vk) to A.

5. Algorithm A outputs a digest dig =
(
ct

main
root , ct

shadow
root , commain, comshadow, cdig

)
and a proof c .

6. Algorithm B extracts F̂ = (ĉt
main

, ĉt
(shadow)

, fmain, fshadow, F̃) ← BARG.Extract(tdBARG, c, 9) and parses

F̃ = (c̃t
main

, c̃t
shadow

, fmain
hk

, fshadow
hk

).

7. Algorithm B checks if there exists 1 ∈ {main, shadow} where Com.Verify
(
crsCom, com

(1 )

hk
, 9, c̃t

(1 )
, f
(1 )

hk

)
=

1 and c̃t
(1 )

≠ ct
(1 )
9 . If so, it outputs the commitment com

(1 )

hk
, the index 9 , and the value-opening pairs

(
ct
(1 )
9 , f

(1 )

hk, 9

)

and
(
c̃t
(1 )

, f
(1 )

hk

)
.

By construction, the challenger samples crsCom ← Com.Setup(1_, 1ℓct (_,=) , 2= − 1), which matches the speci�cation
in Expt9 . This, algorithm B perfectly simulates an execution of Expt9 for A. By assumption, with probability Y,
algorithm A outputs dig and c such that the experiment outputs 1. This means the following conditions hold:

�8∗,0

(
9, (ĉt

main
, ĉt
(shadow)

, fmain, fshadow, F̃)
)
= 1 and %Valid

(
ĉt

main
, ĉt

shadow
, skmain, skshadow,

)
= 0.

We consider two possibilities:
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• Suppose 9 = 8∗. By construction of�8∗,0 (see Fig. 1), this means ĉt
(1 )

= ct
(1 )
zero for 1 ∈ {0, 1}. By construction, ct

(1 )
zero

is an encryption of 0 under pk1 . In this case, %Valid
(
ĉt

main
, ĉt

shadow
, skmain, skshadow,

)
= 1, which contradicts the

premise.

• Suppose 9 ≠ 8∗. By construction of �8∗,0, there are now two more possibilities:

– Suppose for 1 ∈ {main, shadow}, ĉt
(1 )

= ct
(1 )
zero. As in the �rst case, this means ĉt

main
and ĉt

shadow
both de-

crypt to 0 under skmain and skshadow, respectively. In this case %Valid
(
ĉt

main
, ĉt

shadow
, skmain, skshadow,

)
= 1,

which again contradicts the premise.

– Suppose for 1 ∈ {main, shadow}, ĉt
(1 )

= c̃t
(1 )

. In this case, we also have

∗ Com.Verify
(
crsCom, com

main
hk

, 9, c̃t
main

, fmain
hk

)
= 1; and

∗ Com.Verify
(
crsCom, com

shadow
hk

, 9, c̃t
shadow

, fshadow
hk

)
= 1.

Suppose c̃t
(1 )

= ct
(1 )
9 for all 1 ∈ {0, 1}. In this case, since 9 ≠ 8∗, the ciphertexts ctmain

9 , ctshadow9 are either
both encryptions of 0 (if 9 ∉ () or both encryptions of v9 (if 9 ∈ (). This again contradicts the premise.

Thus, if %Valid is not satis�ed, we conclude that there exists some 1 ∈ {0, 1} such that c̃t
(1 )

≠ ct
(1 )
9 .

Thus, there exists some 1 ∈ {0, 1} such that the following holds:

c̃t
(1 )

≠ ct
(1 )
9 and Com.Verify

(
crsCom, com

(1 )

hk
, 9, c̃t

(1 )
, f
(1 )

hk

)
= 1.

Moreover, by correctness of ΠCom, we have that

Com.Verify
(
crsCom, com

(1 )

hk
, 9, ct

(1 )
9 , f

(1 )

hk, 9

)
= 1.

In this case, algorithm B successfully breaks the binding property of the commitment scheme. □

Since for all 9 ∈ [=], it holds that Pr[Expt9 (A) = 1] = negl(_), we can invoke Theorem 4.12 to conclude that
Pr[Expt(A) = 1] = negl(_). Claim 4.27 now follows via Eqs. (4.5) and (4.6). □

Claim 4.30. If ΠHE is CPA-secure, then there exists a negligible function negl(·) such that
��Pr[Hyb3 (A) = 1] − Pr[Hyb2 (A) = 1]

�� = negl(_).

Proof. This follows by an analogous argument as the proof of Claim 4.26. In particular, the reduction obtains pkmain

and ctmain
8∗ from the challenger. It samples (pkshadow, skshadow) itself which it can use to compute the output (according

to the speci�cation in Hyb2 and Hyb3). □

Claim 4.31. If ΠHE is perfectly correct and satis�es evaluation correctness, ΠCom is computationally binding, and ΠBARG

satis�es set hiding with extraction, set hiding, and is somewhere extractable, then there exists a negligible function negl(·)

such that | Pr[Hyb4 (A) = 1] − Pr[Hyb3 (A) = 1] | = negl(_).

Proof. This follows by an analogous argument as the proof of Claim 4.27. The only di�erence is that we take the
mapping DeriveChal to be

DeriveChal((, 8) := ((, 8) ↦→ ((, (, (8, 0)).

The rest of the analysis proceeds exactly as before. □

Theorem 4.25 now follows by combining Claims 4.26, 4.27, 4.30 and 4.31. □
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A Proof of Theorem 4.12 (Predicate Propagation)

Our proof follows a very similar structure as the corresponding proof from [NWW24, Theorem 5.9]. As noted in
Remark 4.13, we cannot use the proof from [NWW24] as a black box. For this reason, we reproduce the analysis
here. Some parts of the description are taken verbatim from [NWW24, Theorem 5.9]. To simplify notation, we write
Expt := Expt[%,DeriveChal] and Expt9 := Expt9 [%,DeriveChal] in the following proof. Fix an adversary A and let
= be the input length chosen by A. We proceed by induction on the index 9 ∈ [2= − 1]. In the following, we will
view the index 9 as an index of a node in a (complete) binary tree with = leaves (indexed according to De�nition 4.1).
As such, we can refer to the “height” of an index 9 . Then, we show the following lemma:

Lemma A.1. Suppose the conditions of Theorem 4.12 hold. Take any index 9 ∈ [2= − 1] and let ℎ be the height of node

9 (where the leaf nodes have height 0). Then, there exists a negligible function Y 9 (_) such that

Pr[Expt9 (A) = 1] = 2ℎ · Y 9 (_).

Proof. Suppose the conditions of Theorem 4.12 hold. We prove the lemma by induction on the height ℎ of the index
9 ∈ [2= − 1].

Base case. For the indices 9 ∈ [=] of height 0 (i.e., the leaves of the tree), the lemma follows by assumption.
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Inductive step. Suppose the inductive hypothesis holds for every index 9 ′ ∈ [2= − 1] of height ℎ. Let 9 ∈ [2= − 1]
be an index with height ℎ + 1. Let 9l, 9r ∈ [2= − 1] be the indices of the left and right child of node 9 (as de�ned in
De�nition 4.1). By construction, 9l and 9r have height ℎ. The inductive hypothesis now asserts that for 9∗ ∈ { 9l, 9r},

Pr
[
Expt9∗ (A) = 1

]
= 2ℎ · Y 9∗ (_), (A.1)

for some negligible function Y 9∗ (_). We now de�ne an intermediate experiment Expt′9 for each node 9 of height ℎ > 0:

1. On input the security parameter 1_ , algorithmA outputs the input length 1= , a set ( ¦ [=], and an index 8∗ ∈ (
(or a special symbol §).

2. The challenger computes ((main, (shadow, idx) ← DeriveChal((, 8∗).

3. The challenger samples the following quantities as in Setup:

• (skmain, pkmain) ← HE.Gen(1_, 1=) and (skshadow, pkshadow) ← HE.Gen(1_, 1=)

• (crsBARG, vkBARG, tdBARG) ← TrapGen(1_, 12=, 1B , 13, { 9, 9l, 9r}).

• crsCom ← Com.Setup(1_, 1_ ·ℓct (_) , 2= − 1).

• ct
(1 )
zero ← HE.Enc(pk1, 0) for all 1 ∈ {main, shadow}.

• For all 8 ∈ [=], sample a random v8
r
← {0, 1}_ \ {0}.

• For all 8 ∈ [=], 1 ∈ {main, shadow}, if 8 ∈ (1 then sample ct
(1 )
8 ← HE.Enc(pk1, v8 ), otherwise sample

ct
(1 )
8 ← HE.Enc(pk1, 0).

•
(
com

(1 )

hk
, f
(1 )

hk,1
, . . . , f

(1 )

hk,=

)
← Com.Commit

(
crsCom, (ct

(1 )
1 , . . . , ct

(1 )
= )

)
for all 1 ∈ {main, shadow}.

4. The challenger constructs hk and vk as de�ned in Eqs. (4.1) and (4.2):

hk =

(
crsCom, crsBARG,

{
pk1, ct

(1 )
zero, ct

(1 )
1 , . . . , ct

(1 )
= , f

(1 )

hk,1
, . . . , f

(1 )

hk,=

}
1∈{main,shadow}

)

vk =

(
crsCom, vkBARG,

{
pk1, ct

(1 )
zero, com

(1 )

hk

}
1∈{main,shadow}

)

The challenger gives (hk, vk) to A.

5. Algorithm A outputs a digest dig = (ctmain
root , ct

shadow
root , commain, comshadow, cdig) and a proof c .

6. The challenger computes (ĉt
main
9 , ĉt

shadow
9 , fmain

9 , fshadow
9 , F̃ 9 ) ← BARG.Extract(tdBARG, c, 9).

7. The output of the experiment is 1 if all of the following conditions hold, and 0 otherwise:

(a) BARG.Verify(crsBARG,�idx, (1, . . . , 2= − 1), c) = 1.

(b) �idx ( 9, (ĉt
main
9 , ĉt

shadow
9 , fmain

9 , fshadow
9 , F̃ 9 )) = 1.

(c) % (ĉt
main
9 , ĉt

shadow
9 , skmain, skshadow, 9, (v1, . . . , v=, idx)) = 0.

In our analysis below, we de�ne an additional set of events in an execution of Expt′9 withA. First, de�ne the following
two quantities:

• (ĉt
main
9l

, ĉt
shadow
9l

, fmain
9l

, fshadow
9l

, F̃ 9l ) ← BARG.Extract(tdBARG, c, 9l).

• (ĉt
main
9r

, ĉt
shadow
9r

, fmain
9r

, fshadow
9r

, F̃ 9r ) ← BARG.Extract(tdBARG, c, 9r).

Now, de�ne the following events:

• �
( 9 )

Verify
: This is the event that BARG.Verify(vkBARG,�idx, 2= − 1, c) = 1.
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• �
( 9 )
%,9∗

for each 9∗ ∈ { 9, 9l, 9r}: This is the event where %
(
ĉt

main
9∗ , ĉt

shadow
9∗ , skmain, skshadow, 9

∗, (v1, . . . , v=, idx)
)
= 1.

• �
( 9 )

ValidCom, 9∗
for each 9∗ ∈ { 9l, 9r}: This is the event

Com.Verify
(
crsCom, commain, 9

∗, ĉt
main
9∗ , fmain

9∗
)
= 1 = Com.Verify

(
crsCom, comshadow, 9

∗, ĉt
shadow
9∗ , fshadow

9∗
)
.

• �
( 9 )
CorrectWit, 9∗

for each 9∗ ∈ { 9, 9l, 9r}: This is the event �idx

(
9∗, (ĉt

main
9∗ , ĉt

shadow
9∗ , fmain

9∗ , fshadow
9∗ , F̃ 9∗ )

)
= 1.

We now relate the probability that Expt9 (A) outputs 1 to the probability that Expt9l (A) and Expt9r (A) outputs 1. To
do so, we �rst program the BARG to be extracting on the set { 9, 9l, 9r}. We then argue via somewhere extractability
of the BARG and computational binding of the commitment scheme that if the values associated with the nodes 9l
and 9r satisfy the predicate % and the proof veri�es, then the value associated with 9 must also satisfy the predicate
% . In this case, the output of Expt9 (A) is guaranteed to be 0.

Claim A.2. If ΠBARG satis�es set hiding with extraction, then there exists a negligible function negl(·) such that for

all 9∗ ∈ { 9, 9l, 9r}, it holds that

���Pr[Expt9∗ (A) = 1] − Pr
[
�
( 9 )

Verify
' �

( 9 )
CorrectWit, 9∗

' ¬�
( 9 )
%,9∗

] ��� = negl(_).

Proof. Take any 9∗ ∈ { 9, 9l, 9r} and suppose

���Pr[Expt9∗ (A) = 1] − Pr
[
�
( 9 )

Verify
' �

( 9 )
CorrectWit, 9∗

' ¬�
( 9 )
%,9∗

] ��� = Y

for some non-negligible Y. Importantly, note that the events �
( 9 )

Verify
, �
( 9 )
CorrectWit, 9∗

, and �
( 9 )
%,9∗

are de�ned for Expt′9 and

not Expt9∗ . We use A to construct an adversary B for the set hiding with extraction game of ΠBARG:

1. On input the security parameter 1_ , algorithm B runs algorithmA to obtain the input length 1= , the set ( ¦ [=],
and an index 8∗ ∈ ( .

2. Algorithm B outputs 12=−1, 1B , 13, the challenge set � = { 9, 9l, 9r}, and the challenge index 9∗ ∈ � to the chal-
lenger, where B is the bound on the size of the circuit in Fig. 1. The challenger responds with (crsBARG, vkBARG).

3. Algorithm B computes ((0, (1, idx) ← DeriveChal((, 8∗). It then samples the following components:

• (skmain, pkmain) ← HE.Gen(1_, 1=), (skshadow, pkshadow) ← HE.Gen(1_, 1=).

• crsCom ← Com.Setup(1_, 1_ ·ℓct (_,=) , 2= − 1).

• For all 8 ∈ [=], sample a random v8
r
← {0, 1}_ \ {0}.

• For each 1 ∈ {main, shadow}, sample ct
(1 )
zero ← HE.Enc(pk1, 0). Then, for each 8 ∈ [=] and 1 ∈

{main, shadow}, if 8 ∈ (1 , sample ct
(1 )
8 ← HE.Enc(pk1, v8 ); otherwise, if 8 ∉ (1 , sample ct

(1 )
8 ←

HE.Enc(pk1, 0).

• For each 1 ∈ {main, shadow}, let
(
com

(1 )

hk
, f
(1 )

hk,1
, . . . , f

(1 )

hk,=

)
← Com.Commit

(
crsCom, (ct

(1 )
1 , . . . , ct

(1 )
= )

)
.

4. Algorithm B constructs hk and vk according to Eqs. (4.1) and (4.2):

hk =

(
crsCom, crsBARG,

{
pk1, ct

(1 )
zero, ct

(1 )
1 , . . . , ct

(1 )
= , f

(1 )

hk,1
, . . . , f

(1 )

hk,=

}
1∈{main,shadow}

)

vk =

(
crsCom, vkBARG,

{
pk1, ct

(1 )
zero, com

(1 )

hk

}
1∈{main,shadow}

)

Algorithm B gives (hk, vk) to A.

5. Algorithm A outputs a digest dig =
(
ct

main
root , ct

shadow
root , commain, comshadow, cdig

)
and a proof c .
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6. Let �idx be the circuit as de�ned in De�nition 4.10. Algorithm B �rst checks

BARG.Verify(vkBARG,�idx, 2= − 1, c) = 1.

If the check fails, algorithm B aborts with output §. Otherwise, algorithm B sends the circuit�idx, the instance
number 2= − 1, and the proof c to the challenger. The challenger replies with a string which B parses as

(ĉt
main
9∗ , ĉt

shadow
9∗ , fmain

9∗ , fshadow
9∗ , F̃ 9∗ ).

7. Algorithm B outputs 1 all of the following conditions hold:

• �idx

(
9∗, (ĉt

main
9∗ , ĉt

shadow
9∗ , fmain

9∗ , fshadow
9∗ , F̃ 9∗ )

)
= 1.

• %
(
ĉt

main
9∗ , ĉt

shadow
9∗ , skmain, skshadow, 9

∗, (v1, . . . , v=, idx)
)
= 0.

Otherwise, algorithm B outputs 0.

Let (crsBARG, vkBARG, tdBARG) be the parameters sampled by the challenger in the set hiding with extraction game.
In the game, after B outputs (�idx, 2= − 1, c), the challenger checks BARG.Verify(vkBARG,�idx, 2= − 1, c) = 1. If the

check passes, it replies with (ĉt
main
9∗ , ĉt

shadow
9∗ , fmain

9∗ , fshadow
9∗ , F̃ 9∗ ). We now consider the two possibilities:

• Suppose the challenger responds according to the speci�cation of ExptIHEA (_, 0). In this case, the chal-
lenger samples (crsBARG, vkBARG, tdBARG) ← BARG.TrapGen(1_, 12=−1, 1B , 13, { 9, 9l, 9r}). Thus, algorithm B
perfectly simulates for A an execution of Expt′9 . We claim that algorithm B outputs 1 if and only if the event

�
( 9 )

Verify
'�
( 9 )
CorrectWit, 9∗

'¬�
( 9 )
%,9∗

occurs. This event corresponds to the conjunction of the following set of conditions:

– BARG.Verify(vkBARG,�idx, 2= − 1, c) = 1.

– BARG.Verify(vkBARG,�idx, 2= − 1, c) = 1 and �idx

(
9∗, (ĉt

main
9∗ , ĉt

shadow
9∗ , fmain

9∗ , fshadow
9∗ , F̃ 9∗ )

)
= 1.

– %
(
ĉt

main
9∗ , ĉt

shadow
9∗ , skmain, skshadow, 9

∗, (v1, . . . , v=, idx)
)
= 0.

where (ĉt
main
9∗ , ĉt

shadow
9∗ , fmain

9∗ , fshadow
9∗ , F̃ 9∗ ) ← BARG.Extract(tdBARG, c, 9

∗). This is the same set of conditions

that algorithmB checks, so algorithmB outputs 1with probability Pr
[
�
( 9 )

Verify
'�
( 9 )
CorrectWit, 9∗

'¬�
( 9 )
%,9∗

]
in this case.

• Suppose the challenger responds according to the speci�cation of ExptIHEA (_, 1). In this case, the challenger
samples (crsBARG, vkBARG, tdBARG) ← BARG.TrapGen(1_, 12=−1, 1B , 13, { 9∗}). Thus, algorithm B simulates for
A an execution of Expt9∗ . We claim that algorithm B outputs 1 if and only if Expt9∗ (A) outputs 1. The latter
corresponds to the conjunction of the following set of conditions:

– BARG.Verify(vkBARG,�idx, 2= − 1, c) = 1.

– BARG.Verify(vkBARG,�idx, 2= − 1, c) = 1 and �idx

(
9∗, (ĉt

main
9∗ , ĉt

shadow
9∗ , fmain

9∗ , fshadow
9∗ , F̃ 9∗ )

)
= 1.

– %
(
ĉt

main
9∗ , ĉt

shadow
9∗ , skmain, skshadow, 9

∗, (v1, . . . , v=, idx)
)
= 0.

where (ĉt
main
9∗ , ĉt

shadow
9∗ , fmain

9∗ , fshadow
9∗ , F̃ 9∗ ) ← BARG.Extract(tdBARG, c, 9

∗). Once again, this is the same set of
conditions that B checks. Thus, in this case algorithm B outputs 1 with probability Pr[Expt9∗ (A) = 1].

We conclude that the distinguishing advantage of B is precisely

���Pr[Expt9∗ (A) = 1] − Pr
[
�
( 9 )

Verify
' �

( 9 )
CorrectWit, 9∗

' ¬�
( 9 )
%,9∗

] ��� = Y,

which completes the proof. □

Claim A.3. If ΠBARG is somewhere extractable then there exists a negligible function negl(·) such that for all 9∗ ∈

{ 9, 9l, 9r}, it holds that Pr
[
�
( 9 )

Verify
' ¬�

( 9 )
CorrectWit, 9∗

]
= negl(_).
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Proof. Take any 9∗ ∈ { 9, 9l, 9r} and suppose Pr
[
�
( 9 )

Verify
' ¬�

( 9 )
CorrectWit, 9∗

]
g Y. We use A to construct an adversary B

for the somewhere extractability game of ΠBARG:

1. On input the security parameter 1_ , algorithm B runs algorithmA to obtain the input length 1= , the set ( ¦ [=],
and an index 8∗ ∈ ( .

2. Algorithm B outputs 12=−1, 1B , 13, the challenge set � = { 9, 9l, 9r}, and the challenge index 9∗ ∈ � to the chal-
lenger, where B is the bound on the size of the circuit in Fig. 1. The challenger responds with (crsBARG, vkBARG).

3. Algorithm B computes ((0, (1, idx) ← DeriveChal((, 8∗). It then samples the following components:

• (skmain, pkmain) ← HE.Gen(1_, 1=), (skshadow, pkshadow) ← HE.Gen(1_, 1=).

• crsCom ← Com.Setup(1_, 1_ ·ℓct (_,=) , 2= − 1).

• For all 8 ∈ [=], sample a random v8
r
← {0, 1}_ \ {0}.

• For each 1 ∈ {main, shadow}, sample ct
(1 )
zero ← HE.Enc(pk1, 0). Then, for each 8 ∈ [=] and 1 ∈

{main, shadow}, if 8 ∈ (1 , sample ct
(1 )
8 ← HE.Enc(pk1, v8 ); otherwise, if 8 ∉ (1 , sample ct

(1 )
8 ←

HE.Enc(pk1, 0).

• For each 1 ∈ {main, shadow}, let
(
com

(1 )

hk
, f
(1 )

hk,1
, . . . , f

(1 )

hk,=

)
← Com.Commit

(
crsCom, (ct

(1 )
1 , . . . , ct

(1 )
= )

)
.

4. Algorithm B constructs hk and vk according to Eqs. (4.1) and (4.2):

hk =

(
crsCom, crsBARG,

{
pk1, ct

(1 )
zero, ct

(1 )
1 , . . . , ct

(1 )
= , f

(1 )

hk,1
, . . . , f

(1 )

hk,=

}
1∈{main,shadow}

)

vk =

(
crsCom, vkBARG,

{
pk1, ct

(1 )
zero, com

(1 )

hk

}
1∈{main,shadow}

)

Algorithm B gives (hk, vk) to A.

5. Algorithm A outputs a digest dig =
(
ct

main
root , ct

shadow
root , commain, comshadow, cdig

)
and a proof c .

6. Let �idx be the circuit as de�ned in De�nition 4.10. Algorithm B outputs the circuit �idx, the instance number
2= − 1, and the proof c .

By construction, algorithm B perfectly simulates an execution of Expt9 . Thus, with probability at least Y, the digest

dig and proof c output by A satis�es �
( 9 )

Verify
but not �

( 9 )
CorrectWit, 9∗

. This means

BARG.Verify(vkBARG,�idx, 2= − 1, c) = 1 and �idx

(
9∗, (ĉt

main
9∗ , ĉt

shadow
9∗ , fmain

9∗ , fshadow
9∗ , F̃ 9∗ )

)
= 0.

This means algorithm B successfully wins the somewhere extractability game of ΠBARG with probability at least Y
and the claim follows. □

Claim A.4. Suppose the conditions in Claims A.2 and A.3 hold. Then, there exists a negligible function negl(·) such that

Pr
[
Expt′9 (A) = 1 '

(
¬�
( 9 )

ValidCom, 9l
( ¬�

( 9 )
%,9l
( ¬�

( 9 )

ValidCom, 9r
( ¬�

( 9 )
%,9r

) ]
f 2ℎ+1 · Y 9 (_) + negl(_),

where Y 9 (_) = max(Y 9l (_), Y 9r (_)).

Proof. By Claim A.2 there exists a negligible function negl1 (·) such that for all 9∗ ∈ { 9l, 9r}, it holds that:

���Pr[Expt9∗ (A) = 1] − Pr
[
�
( 9 )

Verify
' �

( 9 )
CorrectWit, 9∗

' ¬�
( 9 )
%,9∗

] ��� f negl1 (_). (A.2)

By Claim A.3 there exists a negligible function negl2 (·) such that for all 9∗ ∈ { 9l, 9r} it holds that

Pr
[
�
( 9 )

Verify
' ¬�

( 9 )
CorrectWit, 9∗

]
f negl2 (_). (A.3)
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By de�nition, if Expt′9 (A) = 1, then event �
( 9 )

Verify
also occurs. Thus, for all events �, it holds that

Pr[Expt′9 (A) = 1 ' �] f Pr
[
�
( 9 )

Verify
' �

]
. (A.4)

Similarly, by construction of the circuit �idx, the event ¬�
( 9 )

ValidCom, 9∗
implies event ¬�

( 9 )
CorrectWit, 9∗

. Thus, for any event

�, it holds that
Pr

[
¬�
( 9 )

ValidCom, 9∗
' �

]
f Pr

[
¬�
( 9 )
CorrectWit, 9∗

' �
]
. (A.5)

Take any 9∗ ∈ { 9l, 9r}. Since the height of 9
∗ isℎ, the inductive hypothesis applies and Eq. (A.1) holds. We �rst show that

Pr
[
Expt′9 (A) = 1 ' ¬�

( 9 )
%,9∗

]
f 2ℎ · Y 9∗ (_) + negl1 (_) + negl2 (_). (A.6)

This follows by the following sequence of calculations:

Pr
[
Expt′9 (A) = 1 ' ¬�

( 9 )
%,9∗

]
f Pr

[
�
( 9 )

Verify
' ¬�

( 9 )
%,9∗

]
by Eq. (A.4)

= Pr
[
�
( 9 )

Verify
' �

( 9 )
CorrectWit, 9∗

' ¬�
( 9 )
%,9∗

]
+ Pr

[
�
( 9 )

Verify
' ¬�

( 9 )
CorrectWit, 9∗

' ¬�
( 9 )
%,9∗

]

f Pr[�
( 9 )

Verify
' �

( 9 )
CorrectWit, 9∗

' ¬�
( 9 )
%,9∗
] + negl2 (_) by Eq. (A.3)

f Pr[Expt9∗ (A) = 1] + negl1 (_) + negl2 (_) by Eq. (A.2)

f 2ℎ · Y 9∗ (_) + negl1 (_) + negl2 (_) by Eq. (A.1).

Next, we have

Pr
[
Expt′9 (A) = 1 ' ¬�ValidCom, 9∗

]
f Pr

[
�
( 9 )

Verify
' ¬�ValidCom, 9∗

]
by Eq. (A.4)

f Pr
[
�
( 9 )

Verify
' ¬�CorrectWit, 9∗

]
by Eq. (A.5)

f negl2 (_) by Eq. (A.3).

Combined with Eq. (A.6) and applying a union bound, we have

Pr
[
Expt′9 (A) = 1 '

(
¬�
( 9 )

ValidCom, 9l
( ¬�

( 9 )
%,9l
( ¬�

( 9 )

ValidCom, 9r
( ¬�

( 9 )
%,9r

) ]
f 2ℎ ·

(
Y 9l (_) + Y 9r (_)

)
+ X (_)

f 2ℎ+1 · Y 9 (_) + X (_),

where X (_) = 2negl1 (_) + 4negl2 (_) = negl(_) and Y 9 (_) = max(Y 9l (_), Y 9r (_)). □

Claim A.5. If % is a tree-based additive invariant and ΠCom is computationally binding, then there exists a negligible

function negl(·) such that

Pr
[
Expt′9 (A) = 1 ' �

( 9 )

ValidCom, 9l
' �

( 9 )
%,9l
' �

( 9 )

ValidCom, 9r
' �

( 9 )
%,9r

]
f negl(_).

Proof. Suppose

Pr
[
Expt′9 (A) = 1 ' �

( 9 )

ValidCom, 9l
' �

( 9 )
%,9l
' �

( 9 )

ValidCom, 9r
' �

( 9 )
%,9r

]
g Y.

We use A to construct an adversary B for the binding game for ΠCom as follows:

1. On input the security parameter 1_ , algorithm B runs algorithmA to obtain the input length 1= , the set ( ¦ [=],
and an index 8∗ ∈ ( .

2. Algorithm B outputs the block length 1_ ·ℓct (_,=) and the vector length 2= − 1 to the challenger. The challenger
responds with crsCom.

3. Algorithm B computes ((0, (1, idx) ← DeriveChal((, 8∗). It then samples the following components:

• (skmain, pkmain) ← HE.Gen(1_, 1=) and (skshadow, pkshadow) ← HE.Gen(1_, 1=).
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• (crsBARG, vkBARG, tdBARG) ← BARG.TrapGen(1_, 12=−1, 1B , 13, { 9, 9l, 9r}).

• For all 8 ∈ [=], sample a random v8
r
← {0, 1}_ \ {0}.

• For each 1 ∈ {main, shadow}, sample ct
(1 )
zero ← HE.Enc(pk1, 0). Then, for each 8 ∈ [=] and 1 ∈

{main, shadow}, if 8 ∈ (1 , sample ct
(1 )
8 ← HE.Enc(pk1, v8 ); otherwise, if 8 ∉ (1 , sample ct

(1 )
8 ←

HE.Enc(pk1, 0).

• For each 1 ∈ {main, shadow}, let
(
com

(1 )

hk
, f
(1 )

hk,1
, . . . , f

(1 )

hk,=

)
← Com.Commit

(
crsCom, (ct

(1 )
1 , . . . , ct

(1 )
= )

)
.

4. Algorithm B constructs hk and vk according to Eqs. (4.1) and (4.2):

hk =

(
crsCom, crsBARG,

{
pk1, ct

(1 )
zero, ct

(1 )
1 , . . . , ct

(1 )
= , f

(1 )

hk,1
, . . . , f

(1 )

hk,=

}
1∈{main,shadow}

)

vk =

(
crsCom, vkBARG,

{
pk1, ct

(1 )
zero, com

(1 )

hk

}
1∈{main,shadow}

)

Algorithm B gives (hk, vk) to A.

5. Algorithm A outputs a digest dig =
(
ct

main
root , ct

shadow
root , commain, comshadow, cdig

)
and a proof c .

6. Algorithm B computes the following:

• (ĉt
main
9 , ĉt

shadow
9 , fmain

9 , fshadow
9 , F̃ 9 ) ← BARG.Extract(tdBARG, c, 9).

• (ĉt
main
l , ĉt

shadow
l , fmain

l , fshadow
l , F̃l) ← BARG.Extract(tdBARG, c, 9l).

• (ĉt
main
r , ĉt

shadow
r , fmain

r , fshadow
r , F̃r) ← BARG.Extract(tdBARG, c, 9r).

In addition, it parses F̃ 9 = (F̃ 9,l, F̃ 9,r) and the internal witnesses F̃ 9,l =
(
ĉt

main
9,l , ĉt

shadow
9,l , fmain

9,l , fshadow
9,l

)
and

F̃ 9,r =
(
ĉt

main
9,r , ĉt

shadow
9,r , fmain

9,r , fshadow
9,r

)
.

7. Algorithm B checks if there exists 1 ∈ {main, shadow} and 3 ∈ {l, r} such that ĉt
(1 )

3 ≠ ĉt
(1 )

9,3 and

Com.Verify
(
crsCom, com1, 93 , ĉt

(1 )

9,3 , f
(1 )

9,3

)
= 1 and Com.Verify

(
crsCom, com1, 93 , ĉt

(1 )

3 , f
(1 )

3

)
= 1.

If so, it outputs the commitment com1 , the index 93 ∈ [2= − 1], and the value-opening pairs
(
ĉt
(1 )

9,3 , f
(1 )

9,3

)
and

(
ĉt
(1 )

3 , f
(1 )

3

)
. Otherwise, algorithm B aborts with output §.

By construction, algorithm B perfectly simulates an execution of Expt′9 for adversary A. By assumption, with
probability at least Y, algorithm A will output a digest dig and a proof c such that the following conditions hold:

• Expt′9 (A) = 1: ThismeansBARG.Verify(vkBARG,�idx, 2=−1, c) = 1,�idx

(
9, (ĉt

main
9 , ĉt

shadow
9 , fmain

9 , fshadow
9 , F̃ 9 )

)
=

1, and %
(
ĉt

main
9 , ĉt

shadow
9 , skmain, skshadow, 9, (v1, . . . , v=, idx)

)
= 0.

• �
( 9 )

ValidCom, 9Ě
for 3 ∈ {l, r}: This means

Com.Verify
(
crsCom, commain, 93 , ĉt

main
3 , fmain

3

)
= 1 = Com.Verify

(
crsCom, comshadow, 93 , ĉt

shadow
3 , fshadow

3

)
.

• �
( 9 )
%,9Ě

for 3 ∈ {l, r}: This means %
(
ĉt

main
3 , ĉt

shadow
3 , skmain, skshadow, 93 , (v1, . . . , v=, idx)

)
= 1.

We consider two possibilities:
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• Suppose for all 1 ∈ {main, shadow}, we have ĉt
(1 )
l = ĉt

(1 )
9,l and ĉt

(1 )
r = ĉt

(1 )
9,r . By the third condition, we get

%
(
ĉt

main
9,l , ĉt

shadow
9,l , skmain, skshadow, 9l, (v1, . . . , v=, idx)

)
= 1

%
(
ĉt

main
9,r , ĉt

shadow
9,r , skmain, skshadow, 9r, (v1, . . . , v=, idx)

)
= 1.

By the �rst condition, we also have �8∗,~

(
9, (ĉt

main
9 , ĉt

shadow
9 , fmain

9 , fshadow
9 , F̃ 9 )

)
= 1, this means that ĉt

(1 )
9 =

HE.Add
(
pk1, ĉt

(1 )
9,l , ĉt

(1 )
9,r

)
for all 1 ∈ {main, shadow}. Since % is a tree-based additive invariant, we get that

%
(
ĉt

main
9 , ĉt

shadow
9 , skmain, skshadow, 9, (v1, . . . , v=, idx)

)
= 1.

However, this contradicts the condition that %
(
ĉt

main
9 , ĉt

shadow
9 , skmain, skshadow, 9, (v1, . . . , v=, idx)

)
= 0, so this

case does not occur.

• Suppose there exists 1 ∈ {main, shadow} and 3 ∈ {l, r} where ĉt
(1 )

3 ≠ ĉt
(1 )

9,3 . By the �rst condition, we have

�8∗,~

(
9, (ĉt

main
9 , ĉt

shadow
9 , fmain

9 , fshadow
9 , F̃ 9 )

)
= 1, this means that Com.Verify

(
crsCom, com1, 93 , ĉt

(1 )

9,3 , f
(1 )

9,3

)
= 1.

By the second condition, we also have

Com.Verify
(
crsCom, com1, 93 , ĉt

(1 )

3 , f
(1 )

3

)
= 1.

In this case, algorithm B outputs the commitment com1 , the index 93 , and the value-opening pairs
(
ĉt
(1 )

9,3 , f
(1 )

9,3

)

and
(
ĉt
(1 )

3 , f
(1 )

3

)
. This is a pair of valid openings for com1 so algorithm B wins the binding game.

We conclude that algorithm B succeeds with the same advantage Y and the claim follows. □

Claim A.6. Suppose the conditions of Claims A.4 and A.5 hold. Then there exists a negligible function negl(·) such that

Pr[Expt′9 (A) = 1] f 2ℎ+1 · Y 9 (_) + negl(_),

where Y 9 (_) = max(Y 9l (_), Y 9r (_)).

Proof. By the law of total probability, we have

Pr[Expt′9 (A) = 1] f Pr
[
Expt′9 (A) = 1 ' �

( 9 )

ValidCom, 9l
' �

( 9 )
%,9l
' �

( 9 )

ValidCom, 9r
' �

( 9 )
%,9r

]
+

Pr
[
Expt′9 (A) = 1 '

(
¬�
( 9 )

ValidCom, 9l
( ¬�

( 9 )
%,9l
( ¬�

( 9 )

ValidCom, 9r
( ¬�

( 9 )
%,9r

) ]
.

By Claims A.4 and A.5, there exist negligible functions negl1 (·) and negl2 (·) such that:

Pr
[
Expt′9 (A) = 1 '

(
¬�
( 9 )

ValidCom, 9l
( ¬�

( 9 )
%,9l
( ¬�

( 9 )

ValidCom, 9r
( ¬�

( 9 )
%,9r

) ]
f 2ℎ+1 · Y 9 (_) + negl1 (_)

Pr
[
Expt′9 (A) = 1 ' �

( 9 )

ValidCom, 9l
' �

( 9 )
%,9l
' �

( 9 )

ValidCom, 9r
' �

( 9 )
%,9r

]
f negl2 (_).

where Y 9 (_) = max(Y 9l (_), Y 9r (_)). The claim follows. □

Completing the proof of Lemma A.1. To complete the proof of the inductive step (for Lemma A.1), we �rst
appeal to Claim A.6 to conclude that there exists negligible function negl1 (·) such that

Pr[Expt′9 (A) = 1] f 2ℎ+1 · Y 9 (_) + negl1 (_),

where Y 9 (_) = max(Y 9l (_), Y 9r (_)). From the inductive hypothesis, Y 9l (_) and Y 9r (_) are both negligible functions. By
de�nition of Expt′9 , we have that

Pr[Expt′9 (A) = 1] = Pr
[
�
( 9 )

Verify
' �

( 9 )
CorrectWit, 9

' ¬�
( 9 )
%,9

]
.
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By Claim A.2, there exists a negligible function negl2 (·) such that

���Pr[Expt9 (A) = 1] − Pr[Expt′9 (A) = 1]
��� f negl2 (_).

We conclude that
Pr[Expt9 (A) = 1] f 2ℎ+1 · Y 9 (_) + negl1 (_) + negl2 (_).

Setting Y′9 (_) = max
(
Y 9 (_), (negl1 (_) + negl2 (_))/2

ℎ+1
)
, we have that Pr[Expt9 (A) = 1] f 2ℎ+1 · Y′9 (_), where Y

′
9 (_)

is a negligible function. Lemma A.1 now follows by induction on the height ℎ. □

Completing the proof of Theorem 4.12. We now use Lemma A.1 to complete the proof of Theorem 4.12. Suppose
the conditions of Theorem 4.12 hold. Noting that the index 2= − 1 has height ℎ = log= in a complete binary tree with
= leaves, we appeal to Lemma A.1 and conclude that there exists a negligible function negl(·) such that

Pr[Expt2=−1 (A) = 1] f = · negl(_). (A.7)

To complete the proof, we de�ne a sequence of hybrid experiments:

• Hyb0: This is the experiment Expt2=−1 [%,DeriveChal] with adversary A.

• Hyb1: Same as Hyb0, except the output of the experiment is 1 if the following properties hold:

– BARG.Verify(vkBARG,�idx, 2= − 1, c) = 1;

– �idx

(
2= − 1, (ĉt

main
2=−1, ĉt

shadow
2=−1 , fmain

2=−1, f
shadow
2=−1 , F̃2=−1)

)
= 1; and

– %
(
ct

main
root , ct

shadow
root , skmain, skshadow, 2= − 1, (v1, . . . , v=, idx)

)
= 1.

• Hyb2: Same as Hyb1, except the output of the experiment is 1 if the following properties hold:

– BARG.Verify(vkBARG,�idx, 2= − 1, c) = 1; and

– %
(
ct

main
root , ct

shadow
root , skmain, skshadow, 2= − 1, (v1, . . . , v=, idx)

)
= 1.

In particular, the challenger no longer checks the value of �idx. Note that in this experiment, the challenger’s
behavior no longer depends on the BARG trapdoor tdBARG.

• Hyb3: Same as Hyb2, except when sampling the BARG parameters at the beginning of the experiment, the
challenger now samples (crsBARG, vkBARG) ← BARG.Gen(1_, 12=−1, 1B , 13). This corresponds to the experiment
Expt[%,DeriveChal] with adversary A.

For an adversary A, we write Hyb8 (A) = 1 to denote the output of Hyb8 with adversary A. We now analyze each
pair of adjacent experiments.

Claim A.7. It holds that Pr[Hyb1 (A) = 1] = Pr[Hyb0 (A) = 1].

Proof. These experiments are identical. Speci�cally, by de�nition of �idx (and speci�cally, the relation in Fig. 1), if

�idx

(
2= − 1, (ĉt

main
2=−1, ĉt

shadow
2=−1 , fmain

2=−1, f
shadow
2=−1 , F̃2=−1)

)
= 1, then ĉt

(1 )
2=−1 = ct

(1 )
root for 1 ∈ {main, shadow}. This means that

%
(
ĉt

main
2=−1, ĉt

shadow
2=−1 , skmain, skshadow, 2=−1, (v1, . . . , v=, idx)

)
= %

(
ct

main
root , ct

shadow
root , skmain, skshadow, 2=−1, (v1, . . . , v=, idx)

)
.

Thus, the output of Hyb0 (A) is identical to that of Hyb1 (A). □

Claim A.8. If ΠBARG is somewhere extractable, then there exists a negligible function negl(·) such that

��Pr[Hyb2 (A) = 1] − Pr[Hyb1 (A) = 1]
�� = negl(_).
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Proof. Suppose Pr[Hyb2 (A) = 1] − Pr[Hyb1 (A) = 1] = Y. Since the only di�erence between Hyb1 and Hyb2 is the
conditions the challenger checks at the very end of the experiment, this means that with probability at least Y, the
adversary in Hyb1 will output a digest dig and a proof c such that the following conditions hold:

• BARG.Verify(vkBARG,�idx, 2= − 1, c) = 1.

• %
(
ct

main
root , ct

shadow
root , skmain, skshadow, 2= − 1, (v1, . . . , v=, idx)

)
= 1.

• �idx

(
2= − 1, (ĉt

main
2=−1, ĉt

shadow
2=−1 , fmain

2=−1, f
shadow
2=−1 , F̃2=−1)

)
= 0.

In all other settings, the output of the two experiments are identical. We use A to construct an adversary B that
for the somewhere extractability game of ΠBARG (similar to the proof of Claim A.3):

1. On input the security parameter 1_ , algorithm B runs algorithmA to obtain the input length 1= , the set ( ¦ [=],
and an index 8∗ ∈ ( .

2. Let 9 = 2=−1 and 9l, 9r be the indices of the input wires that determine the value of the output wire 9 . Algorithm
B outputs 12=−1, 1B , 13, the challenge set � = { 9, 9r, 9l}, and the challenge index 9 = 2= − 1 to the challenger.
Here, B is the bound on the size of the circuit in Fig. 1. The challenger responds with (crsBARG, vkBARG).

3. Algorithm B computes ((0, (1, idx) ← DeriveChal((, 8∗). It then samples the following components:

• Sample (skmain, pkmain) ← HE.Gen(1_, 1=) and (skshadow, pkshadow) ← HE.Gen(1_, 1=).

• Sample crsCom ← Com.Setup(1_, 1_ ·ℓct (_,=) , 2= − 1).

• For all 8 ∈ [=], sample a random v8
r
← {0, 1}_ \ {0}.

• For each 1 ∈ {main, shadow}, sample ct
(1 )
zero ← HE.Enc(pk1, 0). Then, for each 8 ∈ [=] and 1 ∈

{main, shadow}, if 8 ∈ (1 , sample ct
(1 )
8 ← HE.Enc(pk1, v8 ); otherwise, if 8 ∉ (1 , sample ct

(1 )
8 ←

HE.Enc(pk1, 0).

• For each 1 ∈ {main, shadow}, let
(
com

(1 )

hk
, f
(1 )

hk,1
, . . . , f

(1 )

hk,=

)
← Com.Commit

(
crsCom, (ct

(1 )
1 , . . . , ct

(1 )
= )

)

4. Algorithm B constructs hk and vk according to Eqs. (4.1) and (4.2):

hk =

(
crsCom, crsBARG,

{
pk1, ct

(1 )
zero, ct

(1 )
1 , . . . , ct

(1 )
= , f

(1 )

hk,1
, . . . , f

(1 )

hk,=

}
1∈{main,shadow}

)

vk =

(
crsCom, vkBARG,

{
pk1, ct

(1 )
zero, com

(1 )

hk

}
1∈{main,shadow}

)

Algorithm B gives (hk, vk) to A.

5. Algorithm A outputs a digest dig =
(
ct

main
root , ct

shadow
root , commain, comshadow, cdig

)
and a proof c .

6. Let �idx be the circuit as de�ned in De�nition 4.10. Algorithm B outputs the circuit �idx, the instance number
2= − 1, and the proof c .

By de�nition, the challenger samples (crsBARG, vkBARG, tdBARG) ← BARG.TrapGen(1_, 12=−1, 1B , 13, { 9, 9l, 9r}). This
means algorithm B perfectly simulates an execution of Hyb1. Thus, with probability at least Y, the digest dig and
proof c output by A satis�es

BARG.Verify(vkBARG,�idx, 2= − 1, c) = 1 and �idx

(
2= − 1, (ĉt

main
2=−1, ĉt

shadow
2=−1 , fmain

2=−1, f
shadow
2=−1 , F̃2=−1)

)
= 0,

where (ĉt
main
2=−1, ĉt

shadow
2=−1 , fmain

2=−1, f
shadow
2=−1 , F̃2=−1) ← BARG.Extract(tdBARG, c, 2= − 1). This means algorithm B success-

fully breaks somewhere extractability of ΠBARG and the claim holds. □

Claim A.9. If ΠBARG satis�es set hiding then there exists a negligible function negl(·) such that

��Pr[Hyb3 (A) = 1] − Pr[Hyb2 (A) = 1]
�� = negl(_).
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Proof. Suppose
��Pr[Hyb3 (A) = 1] − Pr[Hyb2 (A) = 1]

�� g Y (_) for some non-negligible Y. We use A to construct an
adversary B that breaks set hiding of ΠBARG:

1. On input the security parameter 1_ , algorithm B runs algorithmA to obtain the input length 1= , the set ( ¦ [=],
and an index 8∗ ∈ ( .

2. Let 9 = 2=−1 and 9l, 9r be the indices of the input wires that determine the value of the output wire 9 . Algorithm
B outputs 12=−1, 1B , 13 and the challenge set � = { 9, 9l, 9r} to the challenger. Here, B is the bound on the size
of the circuit in Fig. 1. The challenger responds with (crsBARG, vkBARG).

3. Algorithm B computes ((0, (1) ← DeriveChal((, 8̂). It then samples the following components:

• Sample (skmain, pkmain) ← HE.Gen(1_, 1=) and (skshadow, pkshadow) ← HE.Gen(1_, 1=).

• Sample crsCom ← Com.Setup(1_, 1_ ·ℓct (_,=) , 2= − 1).

• For all 8 ∈ [=], sample a random v8
r
← {0, 1}_ \ {0}.

• For each 1 ∈ {main, shadow}, sample ct
(1 )
zero ← HE.Enc(pk1, 0). Then, for each 8 ∈ [=] and 1 ∈

{main, shadow}, if 8 ∈ (1 , sample ct
(1 )
8 ← HE.Enc(pk1, v8 ); otherwise, if 8 ∉ (1 , sample ct

(1 )
8 ←

HE.Enc(pk1, 0).

• For each 1 ∈ {main, shadow}, let
(
com

(1 )

hk
, f
(1 )

hk,1
, . . . , f

(1 )

hk,=

)
← Com.Commit

(
crsCom, (ct

(1 )
1 , . . . , ct

(1 )
= )

)

4. Algorithm B constructs hk and vk according to Eqs. (4.1) and (4.2):

hk =

(
crsCom, crsBARG,

{
pk1, ct

(1 )
zero, ct

(1 )
1 , . . . , ct

(1 )
= , f

(1 )

hk,1
, . . . , f

(1 )

hk,=

}
1∈{main,shadow}

)

vk =

(
crsCom, vkBARG,

{
pk1, ct

(1 )
zero, com

(1 )

hk

}
1∈{main,shadow}

)

Algorithm B gives (hk, vk) to A.

5. Algorithm A outputs a digest dig =
(
ct

main
root , ct

shadow
root , commain, comshadow, cdig

)
and a proof c .

6. Let �8∗,Gğ∗ be the circuit as de�ned in De�nition 4.10. Algorithm B outputs 1 if

BARG.Verify(vkBARG,�idx, 2= − 1, c) = 1 and %
(
ct

main
root , ct

shadow
root , skmain, skshadow, 2= − 1, (v1, . . . , v=, idx)

)
= 1

Otherwise, algorithm B outputs 0.

We now consider the two possibilities:

• Suppose the challenger responds according to the speci�cation of ExptSHA (_, 0). In this case, the challenger
samples (crsBARG, vkBARG) ← BARG.Gen(1_, 12=−1, 1B , 13). In this case, algorithm B perfectly simulates an
execution of Hyb3 for A. Moreover, algorithm B computes the outputs according to the same speci�cation
of Hyb3, so we conclude that algorithm B outputs 1 with Pr[Hyb3 (A) = 1].

• Suppose the challenger responds according to the speci�cation of ExptSHA (_, 1). In this case, the challenger
samples (crsBARG, vkBARG, tdBARG) ← BARG.TrapGen(1_, 12=−1, 1B , 13, { 9, 9l, 9r}). In this case, algorithm B per-
fectly simulates an execution of Hyb2 for A, and correspondingly, algorithm B outputs 1 with probability
Pr[Hyb2 (A) = 1].

We conclude that the distinguishing advantage of B is exactly Y, which concludes the proof. □

Combining Claims A.7 to A.9, we conclude that
��Pr[Hyb0 (A) = 1] − Pr[Hyb3 (A) = 1]

�� = negl(_). By construction,
Hyb0 (A) ≡ Expt2=−1 (A) and Hyb3 (A) ≡ Expt(A). From Eq. (A.7), we have that Pr[Expt2=−1 (A) = 1] = negl(_)

and Theorem 4.12 follows. □
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B Puncturable Signatures from Unique Signatures

In this section, we show how to construct puncturable signatures from unique signatures. As shown in [NWW24]
(Corollary 1.2), puncturable signatures can be combined with (non-adaptively-sound) monotone-policy BARGs to
obtain statically-secure monotone-policy aggregate signatures. The work of [ADM+24] show how to construct
puncturable signatures from any simulation-sound non-interactive zero-knowledge proof for NP. This is known from
most standard number-theoretic assumptions, including QR [BFM88, Sah99, DDO+01]. Here, we describe another
simple approach to constructing puncturable signatures based on a unique signature (or more generally, an invariant
signature; see Remark B.10). The construction is a standard application of hard-core predicates.

B.1 Preliminaries Signatures

We �rst recall the de�nition of a unique signature.

De�nition B.1 (Unique Digital Signatures). A unique digital signature scheme with message spaceM is a tuple
of e�cient algorithms ΠSig = (Gen, Sign,Verify) with the following syntax:

• Gen(1_) → (vk, sk): On input the security parameter _, the key-generation algorithm outputs a key pair (vk, sk).

• Sign(sk,<) → f : On input a signing key sk and a message< ∈ M, the signing algorithm outputs a signature f .

• Verify(vk,<, f) → 1: On input a veri�cation key vk, a message< ∈ M, and a signature f , the veri�cation
algorithm outputs a bit 1 ∈ {0, 1}.

Moreover, the signature scheme should satisfy the following properties:

• Correctness: For all _ ∈ N and all< ∈ M, it holds that

Pr

[
Verify(vk,<, f) = 1 :

(vk, sk) ← Gen(1_)

f ← Sign(sk,<)

]
= 1.

• Unforgeability: For all e�cient and admissible adversaries A, there exists a negligible function negl(·) such
that

Pr

[
Verify(vk,<∗, f∗) = 1 :

(vk, sk) ← Gen(1_)

(<∗, f∗) ← ASign(sk,· ) (1_, vk)

]
= negl(_),

where we sayA is admissible if it does not query the signing oracle Sign(sk, ·) on the message<∗ in the above
security game.

• Uniqueness: For all _ ∈ N, all< ∈ M, all (vk, sk) in the support of Gen(1_) and all signatures f1, f2 ∈ {0, 1}
∗,

it holds that
Verify(vk,<, f1) = Verify(vk,<, f2) = 1⇒ f1 = f2.

Puncturable signatures. Next, we recall the de�nition of puncturable signatures, �rst introduced by [GVW19]
(under the name all-but-one signature).

De�nition B.2 (Puncturable Signature [GVW19, adapted]). An puncturable (or all-but-one) signature scheme with
message spaceM is a tuple of e�cient algorithms ΠPunctSig = (Gen,GenPunc, Sign,Verify) with the following syntax:

• Gen(1_) → (vk, sk): On input the security parameter _, the key-generation algorithm outputs a key pair (vk, sk).

• GenPunc(1_,<∗) → (vk, sk): On input a security parameter _ and a message<∗ ∈ M, the punctured key
generation algorithm outputs a key pair (vk, sk).

• Sign(sk,<) → f : On input a signing key sk and a message< ∈ M, the signing algorithm outputs a signature f .
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• Verify(vk,<, f) → 1: On input a veri�cation key vk, a message< ∈ M, and a signature f , the veri�cation
algorithm outputs a bit 1 ∈ {0, 1}.

Moreover, the puncturable signature scheme should satisfy the following properties:

• Correctness: For all _ ∈ N and all< ∈ M, it holds that

Pr

[
Verify(vk,<, f) = 1 :

(vk, sk) ← Gen(1_)

f ← Sign(sk,<)

]
= 1 − negl(_).

Note that we allow a negligible correctness error.

• Punctured correctness: For all _ ∈ N, all<∗ ∈ M, and all f∗ ∈ {0, 1}∗, it holds that

Pr
[
Verify(vk,<∗, f∗) = 1 : (vk, sk) ← GenPunc(1_,<∗)

]
= 0.

• Veri�cation key indistinguishability: For any adversary A and any 1 ∈ {0, 1}, we de�ne the veri�cation
key indistinguishability experiment ExptVKIA (_,1) as follows:

1. On input a security parameter _, the adversaryA outputs a message<∗ ∈ M and sends it to the challenger.

2. The challenger samples key pairs (vk0, sk0) ← Gen(1_) and (vk1, sk1) ← GenPunc(1_,<∗) and gives vk1
to the adversary.

3. Next, the adversary can make signing queries on messages< ∈ M \ {<∗}. On each signing query, the
challenger replies with f ← Sign(sk1,<).

4. The adversary outputs a bit 1′ ∈ {0, 1}, which is the output of the experiment.

We say that ΠPunctSig satis�es veri�cation key indistinguishability if for any e�cient adversary A there exists
a negligible function negl(·) such that

��Pr[ExptVKIA (_, 0) = 1] − Pr[ExptVKIA (_, 1) = 1]
�� = negl(_).

Goldreich-Levin hardcore predicate. Our construction will use the Goldreich-Levin hardcore predicate [GL89].
Speci�cally, we de�ne a hardcore predicate for a unique signature scheme as follows:

De�nitionB.3 (Hardcore Predicate for Unique Signature). Let _ be a security parameter. LetΠSig = (Gen, Sign,Verify)

be a unique signature scheme with signatures of length ℓ . Let ℎ : {0, 1}ℓ × {0, 1}I → {0, 1} be a binary function. We
say that ℎ is a hardcore predicate for ΠSig if for all e�cient and admissible algorithm A and any message<∗ ∈ M,
it holds that ��������

Pr



1 = ℎ(f∗, r) :

r
r
← {0, 1}I

(vk, sk) ← Gen(1_)

f∗ ← Sign(sk,<∗)

1 ← ASign(sk,· ) (1_, vk,<∗, r)



−
1

2

��������
= negl(_),

where we say A is admissible if it does not query the signing oracle Sign(sk, ·) on the message<∗.

We can construct a hardcore predicate for a unique signature scheme using the classic Goldreich-Levin construc-
tion [GL89, HLR07]. Speci�cally, we state the theorem below (which can be formally obtained by using the fact
that unforgeability for a unique signature implies that the signature f∗ for any message <∗ is computationally
unpredictable and then invoking [HLR07] with the [GL89] hard-core predicate):

Lemma B.4 (Hardcore Predicate for Unique Signature). Let ΠSig = (Gen, Sign,Verify) be a unique signature scheme

with signatures of length ℓ := ℓ (_). Then, the function ℎ : {0, 1}ℓ × {0, 1}ℓ → {0, 1} de�ned as ℎ(f, r) = ïf, rð is a

hardcore predicate for ΠSig.
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B.2 Puncturable Signature from Unique Signature

Suppose ΠSig is a unique signature scheme with signatures of length ℓ . To construct a puncturable signature from
ΠSig, we use the hardcore predicate ℎ : {0, 1}

ℓ × {0, 1}ℓ → {0, 1} associated with ΠSig (Lemma B.4). Our puncturable
signature will use _ copies of the unique signature scheme:

• The veri�cation key for the puncturable signature scheme contains _ triples (vk8 , r8 , 18 ) for 8 ∈ [_], where vk8
is a veri�cation key for the unique signature scheme, r8

r
← {0, 1}ℓ is a seed for the hard-core predicate, and

18
r
← {0, 1} is a random bit.

• A signature on a message< consists of _ signatures f1, . . . , f_ on< with respect to vk1, . . . , vk_ , respectively.
The signature is valid if for all 8 ∈ [_], f8 is a valid signature on< with respect to vk8 , and moreover, there
exists some 9 ∈ [_], where ℎ(f 9 , r9 ) ≠ 1 9 .

Since the bits 11, . . . , 1_
r
← {0, 1} are uniform, for any �xed message<, correctness holds with probability 1 − 1/2_ ,

as required. To puncture the veri�cation key at a particular message<∗, we simply set 18 = ℎ(f∗8 , r8 ) where f
∗
8 is the

(unique) signature on<∗ with respect to vk8 . Pseudorandomness of the hard-core bits ensures that this veri�cation
key is computationally indistinguishable from the real veri�cation key. Moreover, by construction, there does not
exist a signature on< with respect to the punctured key. We now give the formal description:

Construction B.5 (Puncturable Signature). Let ΠSig = (Gen, Sign,Verify) be a unique digital signature scheme
with message spaceM and signatures of length ℓ (_). We construct a puncturable signature scheme ΠPunctSig =

(Gen′,GenPunc′, Sign′,Verify′) as follows:

• Gen′ (1_): On input a security parameter _, the algorithm samples (vk8 , sk8 ) ← Gen(1_), r8
r
← {0, 1}ℓ , and

18
r
← {0, 1} for each 8 ∈ [_]. The algorithm outputs

vk = {(8, vk8 , r8 , 18 )}8∈[_] and sk = (sk1, . . . , sk_).

• GenPunc′ (1_,<∗): On input a security parameter _ and a message<∗ ∈ M, the algorithm samples (vk8 , sk8 ) ←
Gen(1_), r8

r
← {0, 1}ℓ , f∗8 ← Sign(sk8 ,<

∗), and 18 ← ïf
∗
8 , r8ð for each 8 ∈ [_]. Then it outputs

vk = {(8, vk8 , r8 , 18 )}8∈[_] and sk = (sk1, . . . , sk_).

• Sign′ (sk,<): On input a signing key sk = (sk1, . . . , sk_) and a message< ∈ M, the signing algorithm computes
f8 ← Sign(sk8 ,<) for all 8 ∈ [_] and outputs f = (f1, . . . , f_).

• Verify′ (vk,<, f): On input a veri�cation key vk = {(8, vk8 , r8 , 18 )}8∈[_] , a message < ∈ M, and a signature
f = (f1, . . . , f_), the veri�cation algorithm checks the following:

1. For all 8 ∈ [_], it holds that Verify(vk8 ,<, f8 ) = 1.

2. There exists 8 ∈ [_] such that 18 ≠ ïf8 , r8ð.

If both checks pass, then the veri�cation algorithm accepts with output 1. Otherwise, it rejects with output 0.

Theorem B.6 (Correctness). If ΠSig is correct, then Construction B.5 is correct.

Proof. Take any security parameter _ ∈ N and message< ∈ M. Let (vk, sk) ← Gen′ (1_). Then

vk = {(8, vk8 , r8 , 18 )}8∈[_] and sk = (sk1, . . . , sk_).

Let f ← Sign′ (sk,<). By construction, f = (f1, . . . , f_) where f8 ← Sign(sk8 ,<). Consider Verify
′ (vk,<, f). By

correctness of ΠSig, we have that Verify(vk8 ,<, f8 ) = 1 for all 8 ∈ [_]. Next, since Gen′ samples 11, . . . , 1_
r
← {0, 1},

with probability 1 − 2_ , there will exist some index 8 ∈ [_] where 18 ≠ ïf8 , r8ð. Thus Construction B.5 satis�es
statistical correctness. □
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Theorem B.7 (Punctured Correctness). If ΠSig satis�es uniqueness and correctness, then Construction B.5 satis�es

punctured correctness.

Proof. Fix a security parameter _ ∈ N and a message <∗ ∈ M. Let (vk, sk) be a key pair in the support of
GenPunc′ (1_,<∗) and parse

vk = {(8, vk8 , r8 , 18 )}8∈[_] and sk = (sk1, . . . , sk_).

By construction of the punctured key, for each 8 ∈ [_] there exists a signature f∗8 ← Sign(sk8 ,<
∗) such that

18 = ïf
∗
8 , r8ð. By correctness of ΠSig, it holds that Verify(vk8 ,<

∗, f∗8 ) = 1 for each such 8 . Assume towards a contradic-
tion that there exists f = (f1, . . . , f_) such that Verify′ (vk,<∗, f) = 1. By construction of Verify, there exists 8 ∈ [_]
such that 18 ≠ ïf8 , r8ð and Verify(vk8 ,<

∗, f8 ) = 1. However, by uniqueness of ΠSig, we conclude that f8 = f∗8 which
contradicts 18 = ïf

∗
8 , r8ð ≠ ïf8 , r8ð. The claim follows. □

Theorem B.8 (Veri�cation Key Indistinguishability). If ΠSig satis�es unforgeability, then Construction B.5 satis�es

veri�cation key indistinguishability.

Proof. LetA be an e�cient and admissible (non-uniform) adversary for the veri�cation key indistinguishability game.
We use a hybrid argument. For each 9 ∈ [0, _] we de�ne the experiment Hyb9 as follows:

1. On input a security parameter 1_ , the adversary A outputs a message<∗ ∈ M and sends it to the challenger.

2. For each 8 ∈ [_], the challenger samples (vk8 , sk8 ) ← Gen(1_), and r8
r
← {0, 1}ℓ , f∗8 ← Sign(sk8 ,<

∗). Next, it
samples the bit 18 as follows:

• If 8 f 9 it samples 18
r
← {0, 1}.

• If 8 > 9 , it sets 18 = ïf
∗
8 , r8ð.

The challenger gives vk = {(8, vk8 , r8 , 18 )}8∈[_] to A.

3. Adversary A can make signing queries on messages< ∈ M \ {<∗}. On each signing query, the challenger
replies with f = (f1, . . . , f_) where f8 ← Sign(sk8 ,<) for all 8 ∈ [_].

4. The adversary outputs a bit 1′ ∈ {0, 1}, which is the output of the experiment.

SinceA is non-uniform, we assume without loss of generality that the challenge message<∗ is �xed for each security
parameter _. We now prove that the advantage of A in any game will be negligibly close to the adjacent game.
Formally:

Lemma B.9. If ΠSig satis�es unforgeability then for all 9 ∈ [_] it holds that
���Pr[Hyb9 (A) = 1] − Pr[Hyb9−1 (A) = 1]

��� = negl(_).

Proof. Suppose for some index 9 ∈ [_] that | Pr[Hyb9 (A) = 1] − Pr[Hyb9−1 (A) = 1] | = Y for some non-negligible

Y. Observe that in Hyb9−1 if the random bit 1 9
r
← {0, 1} satis�es 1 9 = ïf

∗
9 , r9 ð, then the adversary’s view in Hyb9−1

is identical to the adversary’s view in Hyb9−1. This means

Pr[Hyb9−1 (A) = 1 | 1 9 = ïf
∗
9 , r9 ð] = Pr[Hyb9 (A) = 1] .

This event 1 9 = ïf
∗
9 , r9 ð happens with probability 1/2, therefore:

Pr[Hyb9−1 (A) = 1] =
1

2

(
Pr[Hyb9−1 (A) = 1 | 1 9 = ïf

∗
9 , r9 ð] + Pr[Hyb9−1 (A) = 1 | 1 9 ≠ ïf

∗
9 , r9 ð]

)

This means
Y = | Pr[Hyb9 (A) = 1] − Pr[Hyb9−1 (A) = 1] |

=
1

2
·

���Pr[Hyb9−1 (A) = 1 | 1 9 = ïf
∗
9 , r9 ð] − Pr[Hyb9−1 (A) = 1 | 1 9 ≠ ïf

∗
9 , r9 ð]

���
(B.1)

We now use A to construct an algorithm B for the hardcore predicate game (with message<∗):
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1. At the beginning of the game, algorithm B receives the security parameter 1_ , the seed r9
r
← {0, 1}ℓ , the

message<∗ and a veri�cation key vk9 from the challenger.

2. For all 8 ≠ 9 , algorithm B samples (vk8 , sk8 ) ← Gen(1_), r8
r
← {0, 1}ℓ , and f∗8 ← Sign(sk8 ,<

∗). Then, it
constructs 18 as follows:

• If 8 f 9 it samples 18
r
← {0, 1}.

• If 8 > 9 , it sets 18 = ïf
∗
8 , r8ð.

Algorithm B gives vk = {(8, vk8 , r8 , 18 )}8∈[_] to A.

3. Whenever algorithm A makes a signing query on a message< ∈ M \ {<∗}, algorithm B computes f8 ←
Sign(sk8 ,<) for all 8 ≠ 9 . Algorithm B then queries the signing oracle on message< to get f 9 . Algorithm B
responds with f = (f1, . . . , f_).

4. At the end of the game, algorithmA outputs a bit 1′ ∈ {0, 1}. If 1′ = 1 then B outputs 1 9 . Otherwise B outputs
1 − 1 9 .

By construction, B perfectly simulates Hyb9−1 (A). If A is admissible, that is it does not query the signing oracle
on the challenge message<∗. This means B is also admissible. Finally, let f∗9 ← Sign(sk9 ,<

∗). By construction,
algorithm B outputs the correct value of ℎ(f∗, r9 ) = ïf

∗, r9 ð in the following two cases:

• Algorithm A outputs 1′ = 1 and 1 9 = ïr, f
∗
9 ð.

• Algorithm A outputs 1′ = 0 and 1 9 ≠ ïr, f
∗
9 ð.

Therefore B wins the hardcore predicate game with probability:

Pr[Hyb9−1 (A) = 1 ' 1 9 = ïf
∗
9 , r9 ð] + Pr[Hyb9−1 (A) = 0 ' 1 9 ≠ ïf

∗
9 , r9 ð]

=
1

2

(
Pr[Hyb9−1 (A) = 1 | 1 9 = ïf

∗
9 , r9 ð] + Pr[Hyb9−1 (A) = 0 | 1 9 ≠ ïf

∗
9 , r9 ð]

)

=
1

2

(
Pr[Hyb9−1 (A) = 1 | 1 9 = ïf

∗
9 , r9 ð] + 1 − Pr[Hyb9−1 (A) = 1 | 1 9 ≠ ïf

∗
9 , r9 ð]

)

=
1

2
+
1

2

(
Pr[Hyb9−1 (A) = 1 | 1 9 = ïf

∗
9 , r9 ð] − Pr[Hyb9−1 (A) = 1 | 1 9 ≠ ïf

∗
9 , r9 ð]

)

Taking the absolute di�erence with 1/2, we appeal to Eq. (B.1) and conclude that algorithm B succeeds with advantage

1

2
·

���Pr[Hyb9−1 (A) = 1 | 1 9 = ïf
∗
9 , r9 ð] − Pr[Hyb9−1 (A) = 1 | 1 9 ≠ ïf

∗
9 , r9 ð]

��� = Y,

Thus, algorithm B breaks security of the hardcore predicate ℎ with the same non-negligible advantage Y. The claim
follows. □

By construction, Hyb0 (A) ≡ ExptVKIA (_, 0) and Hyb_ (A) ≡ ExptVKIA (_, 1). The proof of Theorem B.8 now
follows from a standard hybrid argument. □

Remark B.10 (Invariant Signatures). Although Construction B.5 relies on unique signatures, we can replace the
unique signature with an invariant signatures instead [GO92]. In an invariant signature, there can be many signatures
for each message, but all such signatures on a particular message share an invariant core (e.g., a common pre�x). One
way to obtain an invariant signature by composing a pseudorandom function (PRF) with a (simulation-sound) NIZK
proof: the veri�cation key contains a commitment to a PRF key and the signature on a message is the PRF evaluation
on the message together with a NIZK proof that the PRF value was computed correctly. In this construction, the PRF
evaluation on the message is the invariant part of the signature while the NIZK proof (which is randomized) is needed
for veri�cation. We can easily adapt Construction B.5 to work with invariant signatures instead of unique signatures by
simply taking the hard-core predicate over the invariant core associated with the message rather than the full signature.
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