Monotone-Policy BARGs and More
from BARGs and Quadratic Residuosity

Shafik Nassar Brent Waters David J. Wu
UT Austin UT Austin and NTT Research UT Austin
shafik@cs.utexas.edu bwaters@cs.utexas.edu dwud@cs.utexas.edu
Abstract

A tuple of NP statements (x1, ..., x;) satisfies a monotone policy P: {0, l}k — {0,1} if P(by,...,by) = 1, where
b; = 1if and only if x; is in the NP language. A monotone-policy batch argument (monotone-policy BARG) for NP is a
natural extension of regular batch arguments (BARGs) that allows a prover to prove that x1, . . ., xi satisfy a monotone
policy P with a proof of size poly(4, |R|, log k), where |R] is the size of the Boolean circuit computing the NP relation R.

Previously, Brakerski, Brodsky, Kalai, Lombardi, and Paneth (CRYPTO 2023) and Nassar, Waters, and Wu (TCC
2024) showed how to construct monotone-policy BARGs from (somewhere-extractable) BARGs for NP together with
a leveled homomorphic encryption scheme (Brakerski et al.) or an additively homomorphic encryption scheme over
a sufficiently-large group (Nassar et al.). In this work, we improve upon both works by showing that BARGs together
with additively homomorphic encryption over any group suffices (e.g., over Zy). For instance, we can instantiate the
additively homomorphic encryption with the classic Goldwasser-Micali encryption scheme based on the quadratic
residuosity (QR) assumption. Then, by appealing to existing compilers, we also obtain a monotone-policy aggregate
signature scheme from any somewhere extractable BARG and the QR assumption.

1 Introduction

A non-interactive batch argument (BARG) for NP allows a prover to construct a short proof attesting that a col-
lection of NP statements (x,...,xx) are all true with a proof whose length scales sublinearly with k. BARGs
have proven useful beyond the direct application of minimizing the communication cost of NP verification; they
have been used to construct aggregate signatures [WW22, DGKV22, BCJP24, NWW24], delegation for RAM pro-
grams [KVZ21, CJJ21b, KLVW23], as well as non-interactive zero-knowledge proofs (NIZKs) [CW23, BKP*24, BWW24].
In recent years, a number of works have shown how to construct BARGs from many standard number-theoretic assump-
tions, such as the learning with errors (LWE) assumption [C]JJ21b], the k-Lin assumption in pairing groups [WW22],
the (sub-exponential) decisional Diffie-Hellman (DDH) assumption in pairing-free groups [CGJ*23], or a combination
of quadratic residuosity (QR) and LWE or sub-exponential DDH [CJJ21a].

Monotone-policy batch arguments. In a batch argument, the prover’s goal is to prove that all k statements
X1, ..., Xg are true. Suppose instead that a prover wants to publish a proof attesting that a majority of the statements
are true, or more generally, that the true statements satisfy some monotone policy such as a (weighted) threshold policy
or a monotone Boolean formula. This is the notion of a monotone-policy BARG. Previous works [BCJP24, NWW24]
show how to use monotone-policy BARGs to construct monotone-policy aggregate signatures, where an aggregator
wants to produce a short proof attesting that an authorized quorum of parties have signed a certain message.

A trivial way to build a monotone-policy BARG from a vanilla BARG is to have the prover specify a subset I C (]
that satisfy the policy and then give a vanilla BARG proof that all of the statements {x;},c; are true. The verifier then
checks that the subset I satisfies the policy and that the BARG proof verifies. In this case, however, the size of the
proof potentially scales linearly with the number of statements (it needs to contain the description of the set I). In a
monotone policy BARG [BBK*23], we require that the size of the proof be sublinear in the number of statements, just
as in a vanilla BARG. If we specialize a monotone-policy BARG to the special case of conjunction policies, then we

recover the standard notion of a BARG. Thus, monotone-policy BARGs are a strict generalization of vanilla BARGs.
A natural question to ask is whether we can construct monotone-policy BARGs from vanilla BARGs. A recent line
of work has shown how to compile a BARG into a monotone-policy BARG using other cryptographic primitives:

« The first work by Brakerski, Brodsky, Kalai, Lombardi and Paneth [BBK*23] relied on BARGs in conjunction
with (leveled) homomorphic encryption (which in turn relies either on LWE [Gen09, BV11] or strong tools
like indistinguishability obfuscation [CLTV15]).

« Subsequently, Nassar, Waters, and Wu [NWW24] showed that BARGs along with an additively homomor-
phic encryption scheme suffice. Notably, this enabled new instantiations of monotone policy BARGs from
pairing-based assumptions and from sub-exponential DDH.

A major caveat in [NWW24] is that the plaintext group for the additively homomorphic encryption must be suffi-
ciently large (e.g., at least k + 1 where k is the batch size). Unfortunately, this falls short of supporting any additively
homomorphic encryption. An important example is the classic Goldwasser-Micali encryption scheme [GM82] based
on the QR problem. The Goldwasser-Micali scheme is additively homomorphic over Z;, which is too small to be able
to invoke the [NWW24] compiler. Another example is the Benaloh [Ben94] encryption scheme which is additively
homomorphic over small groups Z,. This motivates the question of whether we can reduce the gap between BARGs
and monotone-policy BARGs: namely, can we use any additively-homomorphic encryption scheme to compile BARGs
into monotone-policy BARGs?

1.1 Our Results

In this work, we show how to construct a general monotone-policy BARG from a standard (somewhere-extractable)
BARG and any additively-homomorphic encryption. In particular, assuming QR and a somewhere-extractable BARG,
we obtain a monotone-policy BARG. Our main result can be summarized in the following theorem:

Theorem 1.1 (Informal). Suppose there exists a somewhere-extractable BARG and an additively homomorphic encryption
over any group of size n > 1. Then there exists a monotone policy BARG for general monotone policies with non-adaptive
soundness.

Monotone-policy aggregate signatures. The work of [NWW24] also shows how to construct monotone-policy
aggregate signatures with static unforgeability from any monotone-policy BARGs with non-adaptive soundness
together with a puncturable signature scheme. In a monotone-policy aggregate signature [BCJP24], the aggregator can
take a collection of tuples (vky, my, o1), ..., (Vkg, mg, o) of verification key/message/signature triples and aggregate
the signatures into a single short signature 0,4, With respect to some monotone policy P. The aggregate signature
affirms that the aggregator possesses signatures for a subset of the messages that satisfies P.

Corollary 1.2 (Informal). Suppose there exists a somewhere-extractable BARG, an additively homomorphic encryption
over any group of size n > 1, and a puncturable signature scheme. Then there exists a monotone-policy aggregate
signature scheme satisfying static unforgeability.

The work of [ADM*24] show how to construct puncturable signatures from any (simulation-sound) non-interactive
zero-knowledge (NIZK) proof, which can be built from a wide range of assumptions, including the QR assump-
tion [BFM88, Sah99, DDO*01].! In Appendix B, we also show an alternative route to building puncturable signatures
from a unique signature scheme (i.e., a signature scheme where every message has exactly one signature), or more
generally, from an invariant signature [GO92].?

INote that the recent implications from BARGs to NIZKs [CW23, BKP*24, BWW24] only yield computationally-sound arguments, which do
not seem to directly imply puncturable signatures via the [ADM*24] approach.

2The construction of invariant signatures from QR from [GO92] also relies on NIZK proofs, so this approach does not provide an advantage
over the approach of [ADM*24]. We present it primarily to illustrate another approach for building puncturable signatures.

2 Technical Overview

In this section, we explain our techniques for getting a monotone policy BARG from an additively homomorphic encryp-
tion over a small group. For ease of exposition, we focus on additively homomorphic bit encryptions similar to [GM82].

Zero-fixing hash functions. The work of [NWW24] shows how to compile BARGs to monotone-policy BARGs
using a zero-fixing hash (ZFH). For an overview of how a ZFH can be used to construct monotone-policy BARGs, we
refer the reader to [NWW24]. In this work, we focus on constructing a ZFH, so we start by recalling the definition.
In a nutshell, a ZFH is a succinct binding commitment with succinct local openings, similar to a Merkle hash [Mer87],
but with an additional property: there is a secret trapdoor that can be used to decide whether a hash value is zero on a
predetermined subset of indices. Zero-fixing hash functions can also be viewed as a special case of a function-binding
hash function [FWW23] (for substring matching). We start by describing the syntax of a zero-fixing hash function:

« The setup algorithm of the ZFH takes as input a subset S C [n], and outputs a hash key hk and a secret trapdoor
td.

The hash algorithm works like a regular Merkle hash algorithm: it takes the hash key hk and an input x € {0, 1}"
and outputs a succinct digest dig and n succinct local openings 7, . . ., 7,.

« There exists a digest-validation algorithm ValidateDigest that takes as input a digest dig and the hash key hk
and outputs 1 if the digest was computed honestly using the hash key hk.

« There exists an extraction algorithm Extract that given the trapdoor td and a digest dig, outputs either Matching
or NotMatching.

Next, the zero-fixing hash function should satisfy the following properties:

« Opening correctness: The opening correctness property states that any honestly generated digest and
openings are valid.

+ Succinctness: Similarly, succinctness is also standard and states the digest and the openings are polylog(n)
bits each.

« Digest correctness: The digest correctness property states that for any digest dig and any hash key hk that is
zero-fixing on the empty set, if ValidateDigest(hk, dig) = 1 then Extract(td, dig) = Matching.

« Zero-fixing: The (computational) zero-fixing property requires that for any digest dig, if Extract(td, dig) =
Matching, then it is computationally hard to find an opening 7} for some i € S to the value 1. In other words,
if the adversary can open a digest dig on some index i € S to a 1, then the extraction algorithm should declare
dig to be NotMatching.

« Set hiding: The set-hiding property says that for any two subsets Sy, S; C [n], an adversary that is only given

access to hk (sampled to be zero-fixing on either Sy or ;) cannot distinguish if hk is zero-fixing on Sy or Sj.

We remark here that one could also consider the following stronger requirement on Extract: instead of outputting
NotMatching, it should output a specific index i € S for which it is feasible (for the adversary) to find an opening 7}
to the value 1. Indeed, the work of [BBK*23] goes down this route, however implementing such a primitive seems to
require fully-homomorphic encryption. On the other hand, [NWW24] notices that this stronger notion of extraction
is unnecessary if we require an additional set-hiding property called index hiding with extraction. We elaborate on
this property later on.

ZFH from homomorphic encryption. The conceptual idea of [NWW24] to build a ZFH from an additively homo-
morphic encryption is simple. If we want to hash n-bit inputs, the hash key consists of n ciphertexts cty, . . ., ct,, one for
each index. To hash a string x € {0, 1}", we first view it as a subset X C [n] in the natural way (x; = 1 ifand only if i €
X), and take the digest dig,. to be an encryption of }};cx ct;, which can be computed homomorphically fromcty, .. ., ctp,.

The idea is now as follows: if we want the hash key to be zero-fixing on the set S C [n], then we sample ct; as
an encryption of 1if i € S, and as an encryption of 0if i ¢ S. If x; = 0 for all i € S, then X N S = @, and if there exists
some i € S such that x; = 1, then X N S # @. This means dig, decrypts to 0 if and only if x is all 0 on the set S. In
this case, the secret decryption key is the extraction trapdoor.

This simplified construction already satisfies some key properties of a ZFH. First, the digest is succinct as it
consists of the encryption of a single group element. Second, we have set hiding by the CPA security of the encryption.

The problem with XOR. However, we note that this simple idea already fails if the homomorphic encryption
scheme only supports additive homomorphism over a small group. Take Z, for example: if x has exactly two non-zero
indices in S, then their corresponding ciphertexts will “cancel each other out” In fact, for this idea to work, [NWW24]
required a group of size at least n + 1. Taking a step back, the homomorphic property with respect to addition is
useful in the previous construction because of the fact that there is no going back once 1 is added, and the whole
sum would be strictly greater than 0. Once we limit ourselves to a binary XOR operation, it is not clear where the
“irreversible” operation would come from. It is worth noting that for multiplicatively homomorphic encryption, the
previous idea would still work even with small groups: the irreversible operation in this case would be multiplying
by 0, and, unlike addition, there is no way to cancel the 0 out using multiplication.

Substituting group elements with vectors. Our first idea is to simulate the irreversible operation by associating
each index with a vector of ciphertexts instead of a single ciphertext. The digest now would be the (homomorphic)
bitwise XOR of all of the vectors. Namely, imagine that each index i € [n] is associated with a binary vector v; € Z}
such that the vectors vy, ..., v, are linearly independent. In this case, once a vector is XORed in, there is no way to
remove it since it is linearly independent of the other vectors. Unfortunately, getting n linearly independent vectors
over Zg, requires ¢ > n. This violates succinctness.

Reducing the vector dimension. Our second idea is to leverage the hiding property of the encryption scheme.
In the simplified version of the [NWW24] construction we described above, CPA security is only used for set-hiding.
Namely, once the adversary knows the zero-fixing set S, it knows that ct; is an encryption of 1 for each i € S. But if
we use binary vectors instead of a fixed scalar, we can assign a random vector v; & Zg to each i € S, and never reveal
the vector. Recall that in the previous construction, the hash key only contained encryptions of the elements, not the
elements themselves (in order to satisfy set hiding). Intuitively, if we sample random vectors and only publish their
encryptions, then these vectors should be computationally hidden from the view of the adversary. While these vectors
are no longer linearly independent (in general, n > 1), the adversary should not be able to efficiently find a non-trivial
linear combination of the non-zero vectors that maps to the zero vector. In more detail, we make the following changes:

« When sampling the hash key, each ciphertext ct; is replaced with a ciphertext vector ct;. For each i € S, the
Setup algorithm samples a uniform v; <- Zg \ {0}, where 0 is the zero vector, and samples ct; to be an encryption
of v;. For each i ¢ S, the algorithm samples ct; as an encryption of 0. The trapdoor is still the secret key.

« When hashing a string x, the digest dig, is an encryption of €, y vi. This can be computed by homomor-
phically evaluating the XOR function on a subset of the encrypted vectors cty, . . ., ctp,.

« The Extract algorithm outputs Matching if and only if dig decrypts to 0.

Set hiding follows similarly to before. Digest succinctness also still holds since we have A ciphertexts, which is
independent of n.

Succinct openings. The next question is how to support local openings (i.e., open dig, in position i to some value).
The naive way is to provide the list of the ciphertexts used to compute the digest dig,. (or equivalently, provide the
entire hashed string x). Of course, this is not succinct. The works of [BBK*23, NWW24] used the standard technique of
computing the digest via a Merkle-tree structure [Mer87]. Namely, the hash key includes a new ciphertext ct,ero which
is an encryption of 0. Given an input x € {0, 1}", the hashing algorithm constructs a complete binary tree with n leaves,
where each leaf corresponds to an index i € [n]. Each node i in the tree is associated with a ciphertext ct; as follows:

« Foraleafi € [n],if x; = 1 then ct; = ct; and if x; = 0 then ct; = ctyero.
« For an internal node i, ct; is obtained by homomorphically XOR-ing the ciphertexts associated with its children.

By construction, the root ciphertext ct,oo; is the homomorphic XOR of all of the leaf ciphertexts, which is by definition
dig,.. This way, one only needs to provide the ciphertexts along the path to a leaf i in order to open the index i. Note
that by construction, ct,er, does not affect the decrypted value of Clroot-

Validating the hash. To certify that a particular digest dig,. (consisting of a ciphertext ctyoot) is correctly computed,
we follow the blueprint of [NWW24, BBK*23] and use a “hash-and-BARG technique” [CJJ21a]. Namely, the hashing
algorithm now also computes a commitment comyg;s to the evaluation tree described above, and attaches a BARG
proof that each node was computed honestly, alongside the root ciphertext ct,oot. In more detail, we define an NP
relation parameterized by Clroots comgjg and the ciphertexts cty, .. ., cty, Ctyero. Each statement of the relation is an
index of a node. The relation checks the following:

« Leaf nodes: For a leaf node i, we want to check that the associated ciphertext ct; is either equal to ct; or ctyero.
Since the relation does not have access to ct;, and inftead only has access to the commitment comyjg, it actually
checks that comg;s opens in positions i to such a ct;. In this case, the NP witness consists of an opening in
comy;g to position i.

+ Non-leaf nodes: For a non-leaf node i with children i, iy, the relation checks that comgi opens in positions
i, iy, iy to ciphertexts ct;, ct,, cty respectively, where ct; is the ciphertext obtained by homomorphically XORing
¢t, and ¢ty In this case, the NP witness consists of the 3 openings in comgjg.

+ Root node: For the root node, the relation additionally checks that comgig opens in the appropriate position
to the given ciphertext ct,oor.

To keep the BARG proof short, we modify the hash key to include a commitment comp of the ciphertexts cty, . . ., ctp,
and modify the relation to depend on comy instead of cty, . . ., ct,. The NP witness for a leaf node i now would need
to also include the opening of comyy in position i (to the ciphertext ct;). With these modifications, the digest dig,
for an input x € {0, 1} contains the root ciphertext Ctyoot, the commitment comygjg, and the BARG proof 7.

The honest opening to an index i* € [n] with a value b € {0, 1} is yet another BARG proof 7,pen, where the BARG
statements are indices of the ciphertext evaluation tree. The NP relation is almost identical to the hashing relation
described above, but is additionally parameterized by a pair (i*, b) € [n] x {0, 1}. The only difference is that for the
leaf node i*, the relation now additionally checks that if b = 0 then Ct; = ctyero and if b = 1 then ¢&; = ct;.

Zero-fixing: first attempt. To argue zero-fixing security, suppose we have an adversary that outputs a digest
dig together with an opening of some i* € S to the value 1 and moreover, the Extract function declares dig to be
Matching (i.e., dig decrypts to 0). By somewhere extractability of the BARG, this means that the ciphertext associated
with leaf node i* is an encryption of a non-zero vector v;«. Since all of the vectors are encrypted, the hope is that the
adversary cannot find a linear combination of other vectors v; where v;- & €B,;. vi = 0. Indeed, any adversary that
does so must seemingly know something about the vectors v;, which of course, would violate CPA security of the
encryption scheme. The challenge is in setting up the reduction to CPA security. Namely, in the zero-fixing security
game, the adversary is only deemed successful if it produces a digest dig where Extract outputs Matching. However,
evaluating the Extract algorithm requires knowledge of the secret key (to decrypt dig and compare the decrypted
vector to 0). Yet, the reduction algorithm for the CPA security game cannot know the secret key, and thus, cannot
determine whether the zero-fixing adversary outputted a valid digest or not.

Naor-Yung to the rescue. To get out of this conundrum, we adopt a Naor-Yung style strategy [NY90] and encrypt
twice. Within each pair, we refer to one ciphertext as the “main” one and the other as a “shadow” copy.

« The setup algorithm samples two encryption key pairs: (pk™", sk™") and (pkshadow skshadow) “For every
index i € [n], we associate two ciphertext vectors: ct{™" and ct?had"“’ under the encryption keys pk™" and
pkshadoW respectively. Similarly, we also have two encryptions of the zero vector ¢t " and ctshadow, The

hash key is now defined analogously: it contains both public keys, both collections of encrypted vectors, and

commitments (and openings) to both collections. The trapdoor is the main secret key sk™" only.

« The hashing algorithm now computes two evaluation trees, and commits to both. The NP relation additionally
requires that the evaluation trees are consistent with one another: for each leaf i, if the commitment of the
main tree in position i opens to ct™" then the commitment of the shadow tree also opens to ct?had"“’, and
if the main commitment in position i opens to cthpe then the commitment of the shadow tree also opens to

! zero
ctl2". The digest is the commitments and the roots for both trees, as well as the BARG proof mhash.

« The extraction algorithm only checks that the root of the main tree decrypts to the all zero vector using sk™".
+ The opening is a BARG proof, where the NP relation is the same as the one used for hashing but, similar to
before, is parameterized by (i*, b) and requires that if b = 0 then the nodes i* in both trees should use ctla"

. zero
and ctshadow respectively, and if b = 1 then the nodes should use ct?¥" and ct?,]?ado“’ respectively.

We now argue our zero-fixing property through a series of hybrids:

1. The first hybrid is the original zero-fixing game where the adversary declares a set S C [n] and an index i* € S.
The challenger samples hk as described above and sends it to the adversary. The extraction trapdoor is the

i . ~ main ~ shadow i .
secret key sk™". The adversary outputs dig = (ct,yo; » Ctyoo ,comget, comfj?gad"‘”, Thash) and an opening z*
~ main

of position i* to value 1, and wins if Dec(sk™", ¢ty) = 0 and 7* is a valid BARG proof for the NP relation
with the pair (i*, 1).

2. In the second hybrid, we substitute the ciphertext associated with leaf i* in the shadow copy only with an
encryption of 0. Namely, ct;‘?had"“’ — Enc(pks"2d°¥ 0). By CPA security (applied to the shadow copy), we
can argue that the adversary behaves the same on this hybrid as it does in the previous one. Note that the
challenger in this experiment only needs to know sk™" (to implement Extract) and not sk*'*4°% . As such, we
can rely on CPA security for the shadow copy to conclude that the output of this experiment is computationally
indistinguishable from the previous one.

3. In the third hybrid, we change the extraction algorithm to use the shadow tree root instead of the main root.

~ shad . in A i
Namely, we check Dec(skShadow el OW) = v;+ instead of Dec(skma'”,ctzzltn) = 0. Here, we appeal to the

> root
consistency that is guaranteed by the BARG: for each leaf i, the adversary has to use both ct["*" and ct?hado“’
for the main and shadow copy, or use ct™" and ctsh2doW for both copies. Since the opening to 1 on position

Zero Zero
i* guarantees the commitments comg}g‘" and com®M24°% open on position i* to ct?®" and ctf.‘l‘adOW respectively,

dig
and the values encrypted by those ciphertexts differ by exactly v;-, then

~ main

Pr | Dec(sk*hadow, étShadow) = Vi*] ~ Pr [DGC(Skmam,Ctroot)=0].

root
Thus, the output of this experiment is computationally indistinguishable from the previous one.

4. For the final hybrid, similar to what we did in the second hybrid, we substitute the ciphertext associated with
i* in the main copy with an encryption of 0 (i.e., set ct;- < Enc(pk™ ", 0)). In this experiment, the challenger’s
behavior only needs to know sk®"24°V and not sk™", so the claim follows by CPA security applied to the main
ciphertext.

. o ~ shad P ;
In the final hybrid, the adversary wins if it outputs ct'oo - that encrypts v;-. However, its view is actually independent

of v;+, since we removed v;+ from both the main and shadow copies. Finally, because the challenger samples v;+ < Zg,
the adversary can successfully guess v;- only with probability 274, thus completing the proof.

Index-hiding with extracted guess. The zero-fixing hash function of [NWW24] must satisfy an additional
security property called index-hiding with extracted guess. Intuitively, this property states that the set on which
the hash key is zero-fixing remains hidden, even if we give the adversary oracle access to Extract(td,), as long as
the queries made by the adversary do not help it to trivially distinguish between the binding sets. More formally,
the game is defined as follows:

1. The adversary chooses a set S C [n] and an index i* € S.

2. The challenger samples a random bit b <~ {0, 1}. If b = 0, the challenger samples hk to be zero-fixing on S \ {i*}
and if b = 1, the challenger samples hk to be zero-fixing on S. The challenger gives hk to the adversary.

3. The adversary now outputs a digest dig and an opening o.

4. The output is 1 if and only if o is an opening of dig to the value 0 at index i* and moreover, Extract(td, dig) =
Matching.

We say the scheme satisfies index-hiding with extracted guess if for any efficient adversary, the output of the ex-
periment when b = 0 is negligibly close to the output when b = 1. We can view the output as being extracted from
dig, but the adversary is forced to provide an opening o for dig at index i* to the value 0. This rules out the trivial
strategy of hashing a string x that is 1 in index i* and 0 elsewhere. Such a string would be considered Matching if
the hash key was binding on S \ {i*} and NotMatching if the hash key was binding on S.

The construction we provided already satisfies this property. Our argument is similar to that of [NWW24], and
follows a Naor-Yung strategy similar to what we used to argue zero-fixing. The only difference between the game
with b = 0 and b = 1 are the ciphertexts ct?jai“ and ctls.bad"“’. When b = 0, these are encryptions of 0, and when b = 1,
these are encryptions of a random vector v;-.

We define the following series of hybrids, which follows the same templates as the series of hybrids used to argue
zero-fixing:

1. The first hybrid is the index-hiding with extracted guess game with b = 0. Namely, ct™"i* « Enc(pk™", 0)
and ctshadow;* Enc(kahadow, 0)'

2. The second hybrid is the same as before, except ctj"?ad"w — Enc(pk*Md°¥ v..). Since the security game does
not use the secret key sk*"24°¥ we can use the CPA security of the shadow instance to argue that these two
hybrids are computationally close.

3. The third hybrid is the same as before, except the extraction algorithm now uses the shadow instance to extract

. ~ shad .
the guess. Namely, the extraction algorithm outputs Matching if and only if Dec(sk*"24°% ¢t* %" = 0 instead

of Dec(sk™", 6t:;2itn) = 0. The two hybrids are computationally close by the consistency that is guaranteed by
the BARG (similar to the zero-fixing argument) and the additional requirement that the hashed string has value 0
on index i*. Notably, this is where we use the fact that the adversary must produce an opening o to 0 at index i*.
4. The fourth hybrid is the same as before, except ct" « Enc(pk™" v;.). Since the security game does not use
the secret key sk™" anymore, we can use CPA security of the main instance to argue that these two hybrids

are computationally close.

5. The final hybrid is the same as before, except we change back the extraction algorithm to check the main
instance. Namely, the extraction algorithm outputs Matching if and only if Dec(sk™" ct">") = 0. This hybrid
is computationally close to the previous one by the same argument we used to justify the third hybrid. We

note that this is the index-hiding game with b = 1 and thus we are done.

3 Preliminaries

Throughout this work, we write A to denote the security parameter. For n € N, we write [n] to denote the set
{1,...,n}. For any m > n, we write [n, m] to denote the set {n, ..., m}. We write poly(1) to denote a function that

is bounded by a fixed polynomial in A, and negl(4) to denote a function that is 0(A7¢) for all ¢ € N. For a finite set
S, we write x < S to denote that x is a uniformly random element of S. For a distribution D we write x « D to
denote that x is a random drawn from D.

We say an algorithm is efficient if it runs in probabilistic polynomial time in the length of its input. A non-uniform
algorithm A consists of a pair of algorithms (A;, Az) where A, is a (possibly-unbounded) algorithm that takes as
input 1* and outputs an advice string p; of poly(A) size. Algorithm A, is an efficient algorithm. The output of A on
an input x € {0, 1}* is defined as first computing the advice string p; <« A;(1%) and then outputting A, (x, p;). We
say two ensembles of distributions Dy = {Z)l, ,1} Jey and Dy = {Dz, ,1} e are computationally indistinguishable if no
efficient adversary can distinguish them with non-negligible probability. We say they are statistically indistinguishable
if their statistical distance is bounded by negl(2).

3.1 Cryptographic Building Blocks

In this section, we recall the definition of a few standard cryptographic building blocks we use in this work.
Additively-homomorphic encryption over Z,. We start by reviewing the notion of additively homomorphic
encryption over Z,.

Definition 3.1 (Additively Homomorphic Encryption over Z,). An additively homomorphic encryption scheme
over Z, is a tuple of polynomial-time algorithms IT4g = (Gen, Enc, Dec, Add) with the following syntax:

« Gen(1%) — (sk, pk): On input a security parameter A € N, the key-generation algorithm outputs a secret key
sk and a public key pk.

« Enc(pk,msg) — ct: On input a public key pk and a message msg € Zf, of length ¢ € N, the encryption
algorithm outputs a ciphertext vector ct = (cty, . .., ct;) of length ¢.

« Dec(sk,ct) — msg: On input a secret key sk and a ciphertext vector ct = (cty, ..., cty) of length ¢ € N, the
decryption algorithm either outputs a plaintext msg € Z{, or a special symbol msg = L. The decryption
algorithm is deterministic.

« Add(pk, cty, ctz) — ct’: On input a public key pk and two ciphertext vectors cty, ct; of the same length ¢, the
homomorphic addition algorithm outputs a new ciphertext vector ct’ of length ¢. The addition algorithm is
deterministic.

We require the following properties:

« Correctness: For all A, ¢ € N and all messages msg € Z¢ it holds that:

(sk, pk) « Gen(1%4,1") _q

Pr [Dec(sk, ct) = msg : ct «— Enc(pk, msg)

- Evaluation correctness: For all A, ¢ € N, all (sk, pk) in the support of Gen(1*) and all ciphertext vectors
cty, cty of the same length ¢, where Dec(sk, ct;) # L and Dec(sk, cty) # L, it holds that

Dec(sk, Add(pk, cty, cty)) = Dec(sk, cty) + Dec(sk, ctz).

. Compactness: There exists a polynomial poly(-) such that for all A, £ € N, all (sk, pk) in the support of Gen(1%),
all messages msg;, msg, € Z;;, all ciphertexts cty, ct, in the support of Enc(pk, msg;) and Enc(pk, msg,) respec-
tively, it holds that

[ety], |ctz] < € - poly(A) and |Add(pk, cty, ctz)| < £ - poly(A).

+ CPA-security: For an adversary A and a bit b € {0, 1}, define the CPA-security experiment ExptSS 4 (A, b)
as follows:

1. On input the security parameter 1%, the challenger samples a key pair (sk, pk) < Gen(1*) and sends pk
to the adversary.

2. The adversary can now make (arbitrarily many) queries on pairs of messages (msg,, msg,) (where msg,
and msg, are vectors with the same dimension). On each query, the challenger replies with a ciphertext
ct < Enc(pk, msgy).

3. After the adversary A is done making queries, it outputs a guess b’ € {0, 1}.
We say that I is semantically secure if for every efficient adversary A, there exists a negligible function

negl(-) such that |Pr[ExptSSﬂ(/1, 1) = 1] = Pr[ExptSS 4(4,0) = 1]| = negl(}).

Fact 3.2 (Additively Homomorphic Encryption over Z, [GM82, Ben94]). Under the QR assumption, there exists
an additively homomorphic encryption scheme over Z;,. For any constant p > 2, under the p™-order residuosity
assumption, there exists an additively homomorphic encryption scheme over Z,,.

The remaining definitions are copied mostly verbatim from [NWW24].

Vector commitments. Next, we recall the notion of a vector commitment scheme with succinct local openings.
Such commitments can be built from any collision-resistant hash function [Mer87].

Definition 3.3 (Vector Commitment). A vector commitment (VC) with local openings is a tuple of efficient algorithms
com = (Setup, Commit, Verify) with the following properties:

« Setup(1*,1",1%) — crs: On input the security parameter A € N, the block length n € N, and the vector length
¢ € N, the setup algorithm outputs a common reference string crs. We assume the common reference string
implicitly contains the parameters 1* and 1¢.

« Commit(crs, (x1,...,x:)) — (com, 01, ...,0:): On input the common reference string crs and a vector of t < ¢
messages xi, . . ., Xy € {0, 1}", the commit algorithm outputs a commitment com and openings oy, ..., 0;.

« Verify(crs,com, i,y,0) — b’: On input the common reference string crs, the commitment com, an index i € [£],
a message y € {0, 1}", and an opening o, the verification algorithm outputs a bit " € {0, 1}.

Moreover, IIcom should satisfy the following properties:
. Correctness: For all A, n, ¢ € N, and all positive ¢t < £, all x = (x1,...,x;) € {0,1}*", and indices i € [t],

crs « Setup(1%4,17,19), _

Pr | Verify(crs,com, i, x;,0;) =1 : . =
v no) (com, 01, ...,0;) < Commit(crs,x)

« Computational binding: For an adversary A, define the computational binding experiment as follows:
1. On input the security parameter 1%, algorithm A starts by outputting the block length 1" and vector
length 1¢.
2. The challenger responds with crs « Setup (14,17, 1¢).
3. Algorithm A outputs a commitment com, an index i € [¢], and openings (yo, 09) and (y1, 01).
4. The output of the experiment is b = 1 if Verify(crs, com, i, o, 09) = 1 = Verify(crs,com, i,y;,01) and

Yo # y;. Otherwise, the output is b = 0.

The commitment scheme is binding if for all efficient adversaries A, there exists a negligible function negl(-)
such that Pr[b = 1] = negl(4) in the binding experiment.

« Succinctness: There exists a universal polynomial poly(-) such that for all A, n, £ € N, all crs in the support
of Setup(l’l,), and all (com, 0y, . . ., 0¢) in the support of Commit(crs, -), the following holds:

— Succinct CRS: |crs| = poly(A +logn + log ?).

- Succinct commitment: [com| = poly(1 +logn + log ?).

- Succinct local opening: For all i € [¢], |o;| = poly(A + logn + log ¢).

Fact 3.4 (Vector Commitments from Homomorphic Encryption [Mer87, IKO05]). If any homomorphic encryption
exists, then there exists a vector commitment scheme with local openings.

3.2 Batch Arguments for NP

In this section, we recall the notion of a non-interactive batch argument (BARG) for NP, the special case of a BARG
for index languages [CJJ21b] and the notion of a BARG for monotone policy batch NP [BBK*23, NWW24].

Batch arguments for NP. We begin with the notion of a somewhere extractable batch argument for NP. Our pre-
sentation follows that of [NWW24], with the syntax where the batch arguments support extraction on up to ¢ indices.

Definition 3.5 (Boolean Circuit Satisfiability). We define the circuit satisfiability language Lcsar as

Lesar = {(C,x) C: {0,1}" x {0,1}" - {0,1},x € {0,1}" } |

dw e {0,1}* : C(x,w) =1

Definition 3.6 (BARG). A somewhere-extractable non-interactive batch argument (BARG) for Boolean circuit sat-
isfiability is a tuple of efficient algorithms IIgarc = (Gen, Prove, Verify, TrapGen, Extract) with the following syntax:

. Gen(lA, 1k 17 13, 1Y) — (crs, vk): On input the security parameter A € N, the number of instances k € N,
instance size n € N, a bound on the size of the Boolean circuit s € N, and a bound on the size of the extraction
set £ € N, the generator algorithm outputs a common reference string crs and a verification key vk.

« Prove(crs,C, (x1,...,%k), (W,...,wr)) — m: On input the common reference string crs, a Boolean circuit
C: {0, 1}" x {o, 1}h — {0, 1}, statements x1,...,xx € {0, 1}k, and witnesses wy, ..., wi € {0, 1}h, the prove
algorithm outputs a proof z.

o Verify(vk,C, (xy, ..., xx), t) — b: Oninput the verification key vk, a Boolean circuit C: {0, 1}"x{0, l}h — {0, 1},
statements xi, . .., xx € {0, 1}" and a proof 7, the verification algorithm outputs a bit b € {0, 1}.

. TrapGen(l’l, 1k 17 15,17, S) — (crs, vk, td): On input the security parameter A € N, the number of instances
k € N, instance size n € N, a bound on the size of the Boolean circuit s € N, a bound on the size of the extraction
set £ € N, and a set S C [k] of size at most ¢, the trapdoor generator algorithm outputs a common reference
string crs, a verification key vk and an extraction trapdoor td.

o Extract(td,C, (x1,...,xx%), 7, i) — w. On input the trapdoor td, a Boolean circuit C: {0, 1}" X {0, 1}h — {0,1},
a collection of statements xy, . .., xx € {0,1}", a proof 7 and an index i € [k], the extraction algorithm outputs
a witness w.

Moreover, ITgarc should satisfy the following properties:

« Completeness: Forall A, k, n, s, £ € N, all Boolean circuits C: {0, 1}"x{0, l}h — {0, 1} of size at most s, all state-
ments x = (xq,...,x¢) € {0,1}*" and witnesses w = (w1, ..., wr) € {0, 1}¥" where C(x;, w;) = 1 for all i € [k],

(crs, vk) « Gen(1%, 1%, 17,15, 1%),

Pr | Verify(vk, C.x,) = 1: 7« Prove(crs, C, x, w)

=1.

« Set hiding: For an adversary A and a bit b € {0, 1}, define the set hiding experiment ExptSHngARG (A, D) as
follows:

1. Algorithm A(1%) starts by outputting the number of instances 1%, the instance size 1*, the bound on the
circuit size 1°, the bound on the size of the extraction set 1, and a set S C [k] of size at most .

10

2. If b = 0, the challenger gives (crs, vk) « Gen(l’l, 1k 1718, 1%) to A. If b = 1, the challenger samples
(crs, vk, td) « TrapGen(1%, 15,1715, 1%, S) and gives (crs, vk) to A.

3. Algorithm A outputs a bit b’ € {0, 1}, which is the output of the experiment.
Then, IIgarc satisfies set hiding if for every efficient adversary A, there exists a negligible function negl(-)

such that
iPr[ExptSHij\RG(/L 0)=1] - Pr[ExptSHB;RG()L, 1) = 1]| = negl(4).

« Somewhere extractable in trapdoor mode: For an adversary A, define the somewhere extractable security
game as follows:

1. Algorithm ﬂ(la) starts by outputting the number of instances 1¥, the instance size 1", the bound on the
circuit size 1%, a bound on the size of the extraction set 1%, and a nonempty set S C [k] of size at most ?.
2. The challenger samples (crs, vk, td) « TrapGen(l’l, 1k 17 15,1, S) and gives (crs, vk) to A.

3. Algorithm A outputs a Boolean circuit C: {0,1}" x {0,1}* — {0,1} of size at most s, statements
X1, .- Xm € {0,1}", and a proof .

4. The output of the game is b = 1 if Verify(vk,C, (x3,..., %), r) = 1 and there exists an index i € S for
which C(x;, w;) # 1 where w; « Extract(td, C, (xy, ..., xx), 7, i). Otherwise, the outputis b = 0.

Then Ilgarc is somewhere extractable in trapdoor mode if for every adversary A, there exists a negligible
function negl(-) such that Pr[b = 1] = negl(A) in the somewhere extractable game.

« Succinctness: There exists a fixed polynomial poly(-) such that for all A, k, n, s, £ € N, all crs in the support
of Gen (14, 1%, 17, 1%, 1%), and all Boolean circuits C: {0, 1}" x {0, 1} — {0, 1} of size at most s, the following
properties hold:

— Succinct proofs: The proof 7 output by Prove(crs, C, -, -) satisfies || < poly(A +logk + s + £).
- Succinct CRS: |crs| < poly(A+k+n+¢) + poly(A+logk +s+1¢).
— Succinct verification key: |vk| < poly(A +logk + s + ¢).

Set hiding with extraction. Following the work of [NWW24], we also require the BARG to satisfy property of
set hiding with extraction, which we define below. As shown in [NWW24], any somewhere extractable BARG can
be modified to satisfy set hiding with extraction.

Definition 3.7 (Set Hiding with Extraction). Let IIgarc = (Gen, Prove, Verify, TrapGen, Extract) be a somewhere
extractable batch argument for Boolean circuit satisfiability (Definition 3.6). For an adversary A and a bit b € {0, 1},
define the set hiding with extraction experiment ExptSHwE (A, b) as follows:

1. Algorithm A(1%) starts by outputting the number of instances 1¥, the instance size 1, the bound on the circuit
size 1%, the bound on the extraction set 1°, a set S C [k] of size at most ¢, and an index i* € S.

2. If b = 0, the challenger samples (crs, vk, td) « TrapGen(lA, 1k 1m 15,17, S). If b = 1, the challenger samples
(crs, vk, td) « TrapGen(l’l, 1k 17 15,1, {i*}). The challenger replies to A with (crs, vk).

3. Algorithm A outputs a Boolean circuit C: {0,1}" x {0,1}"* — {0,1}, statements xi,...,x; € {0,1}", and a
proof =.

4. If Verify (vk, C, (x3, . . ., xx),) # 1, then the experiment halts with output 0. Otherwise, the challenger replies
with w* « Extract(td, C, (x1, ..., xx), 7, i*).

5. Algorithm A outputs a bit b* € {0, 1}, which is the output of the experiment.

Then, IIgarc satisfies set hiding with extraction if for every efficient adversary A, there exists a negligible function
negl(-) such that for all A € N,

|Pr[ExptSHwEﬂ(/l, 0) = 1] = Pr[ExptSHWE 5 (4,1) = 1]| = negl(}).

11

Index BARGs. An index BARG [C]]21b] is a batch argument for the batch index language where the instance is
always the tuple (1,..., k). Since the statements are the integers, they have a succinct description, so we can impose
a stronger requirement on the running time of the Verify algorithm. We define this below:

Definition 3.8 (Index BARG [CJ]21b]). An index BARG is a special case of a BARG where the instances (xi, .. ., xk)
are restricted to the integers (1,. .., k). In this setting, the Gen algorithm to the index BARG does not separately take
in the instance length n as a separate input. Moreover, instead of providing xi, . . ., xx as input to the Prove, Verify,
and Extract algorithms, we just give the single index k (in binary). Moreover, we require the additional succinctness
property on the running time of Verify:

« Succinct verification time: There exists a fixed polynomial poly(-) such that for all A, k, n, s, £ € N, all (crs, vk)
in the support of Gen(l’l, 1k 13, 1%) and all Boolean circuits C: [k] x {0, l}h — {0,1} of size at most s, the
running time of Verify(vk, C, k,) is bounded by poly(A +logk + s + £).

3.3 Zero-Fixing Hash Functions

In this section, we recall the notion of a zero-fixing hash function [NWW24]. As shown in [NWW24], a zero-fixing
hash function can be combined with any vanilla BARG to obtain a monotone policy BARG. Recall that a zero-fixing
hash function is a keyed hash function that supports succinct local openings. Moreover, the hash key is associated
with a set of indices S C [n], where n is the input length. Moreover, there is a trapdoor td associated with the hash
key hk that can be used to decide whether a hash digest dig is Matching or NotMatching on the set S. The zero-fixing
security requirement then says that if the extractor outputs Matching for a digest dig, it must be computationally
hard to open dig to a 1 on any index i € S. We now give the formal definition:

Definition 3.9 (Zero-Fixing Hash Function). A zero-fixing hash function is a tuple of polynomial-time algorithms
Iy = (Setup, Hash, ProveOpen, VerOpen, Extract, ValidateDigest) with the following syntax:

. Setup(l’l, 1",§) — (hk, vk, td): On input a security parameter A, an input length n, and a set S C [n], the setup
algorithm outputs a hash key hk, a verification key vk and a trapdoor td. We implicitly assume that hk includes
A and n.

« Hash(hk,x) — dig: On input a hash key hk and a string x € {0, 1}", the hash algorithm outputs a digest dig.
This algorithm is deterministic.

« ValidateDigest(vk, dig) — b: On input a hash key vk and a digest dig, the digest validation algorithm outputs
abit b € {0, 1}. This algorithm is deterministic.

+ ProveOpen(hk,x, i) — o: On input a hash key hk, a string x € {0, 1}" and an index i € [n], the prove algorithm
outputs an opening o.

« VerOpen(vk, dig, i, b,) — b’: On input a hash key vk, a digest dig, an index i € [n], abit b € {0,1} and an
opening o, the verification algorithm outputs a bit b” € {0, 1}. The verification algorithm is deterministic.

« Extract(td,dig) — m: On input a trapdoor td and a digest dig, the extraction algorithm outputs a value
m € {Matching, NotMatching}. This algorithm is deterministic.

We require Iy satisfy the following efficiency and correctness properties:

« Succinctness: There exists a universal polynomial poly(-) such that for all parameters A, n € N, all (hk, vk, td)
in the support of Setup(1%,17, -), all inputs x € {0,1}" and all indices i € [n], the following properties hold:

- Succinct verification key: |vk| < poly(A + logn).

Succinct digest: The digest dig output by Hash(hk, x) satisfies |dig| < poly(A + log n).

Succinct openings: The opening o output by ProveOpen(hk, x, i) satisfies |o| < poly(A + logn).

Succinct verification: The running time of VerOpen(vk, -) is poly(A + log n).

12

« Correctness: For all A,n € N, every x € {0,1}", and every i € [n], the following properties hold:
- Opening correctness:

(hk, vk, td) « Setup(14, 1", @)
Pr| VerOpen(vk,dig,i,x;,0) =1 : dig « Hash(hk, x) =1.
o « ProveOpen(hk, x, i)

- Digest correctness:

(hk,vk) « Setup(1*,1",2) | _

Pr [ValidateDigest(vk, dig) = 1: dig — Hash(hk, x) =1

We additionally require the following security properties:
+ Set hiding: For a bit b € {0, 1} and an adversary A, we define the set hiding game ExptSH 4 (4, b) as follows:

1. On input 14, the adversary A outputs 1" and a set S C [n].

2. If b = 0, the challenger samples (hk, vk, td) « Setup(l)‘, 1",@) and if b = 1, the challenger samples
(hk, vk, td) « Setup(ll, 17, S). It gives (hk, vk) to A.

3. Algorithm A outputs a bit b’ which is the output of the experiment.
The hash function satisfies set binding if for all efficient adversaries A, there exists a negligible function negl(-)

such that
|Pr[ExptSHﬂ(/L 0) = 1] — Pr[ExptSH 4(A,1) = l]i = negl(4).

+ Index hiding with extracted guess: For an adversary A and a bit b € {0, 1}, we define the index hiding with
extracted guess game ExptIHE 4 (A, b) as follows:
1. On input 14, algorithm A outputs 17, a set S C [n], and an index i* € S.

2. If b = 0, the challenger samples (hk, vk, td) < Setup (14,17, S\ {i*}). Otherwise, it samples (hk, vk, td) «
Setup(14, 17, S). The challenger sends (hk, vk) to A.

3. Algorithm A outputs a digest dig and an opening o.

4. The output of the experiment is 1 if VerOpen(hk, dig, i*, 0, o) = 1 and Extract(td, dig) outputs Matching.
Otherwise, the output is 0.

The hash function satisfies index hiding with extracted guess if for all efficient adversaries A, there exists a
negligible function negl(-) such that

[Pr[ExptIHE 4(A, 0) = 1] — Pr[ExptIHE 4 (4, 1) = 1]| = negl(2).

+ Selective zero fixing: For an adversary A, we define the adaptive zero-fixing game ExptZF 4 (4) as follows:

. On input 14, algorithm A outputs 1", a set S C [n] and an index i € S.
. The challenger samples (hk, vk, td) « Setup(1%,17,S) and gives (hk, vk) to A.
. Algorithm A outputs a digest dig and an opening o.

W N =

. The output of the experiment is 1 if Extract(td, dig) outputs Matching and VerOpen(hk, dig,i,1,0) = 1.
Otherwise, the output is 0.

The hash function satisfies zero-fixing if for all efficient adversaries A, there exists a negligible function negl(-)
such that Pr[ExptZF 4z (A) = 1] = negl(4).

+ Extractor validity: For an adversary A, we define the extractor validity game ExptEV 4 (1) as follows:

13

. On input 14, the adversary A outputs 1".
. The challenger samples (hk, vk, td) « Setup(l’l, 1", @) and sends hk to the adversary.
. Algorithm A outputs a digest dig.

B W N =

. The output of the experiment is 1 if ValidateDigest(hk, dig) = 1 and Extract(td, dig) = NotMatching.
Otherwise, the output is 0.

The hash function satisfies extractor validity if for every efficient adversary A, there exists a negligible function
negl(-) such that Pr[ExptEV 4(4) = 1] = negl(1).

Remark 3.10 (Adaptive Zero-Fixing Security). We can define a stronger adaptive notion of zero-fixing security where
the adversary outputs the index i € S with the digest and the opening, instead of at the beginning of the security
game (i.e., after seeing hk and vk). As argued in [NWW24], those two notions are equivalent. When constructing
zero-fixing hash (as in Construction 4.2), it is easier to work with the simpler selective definition.

One-sided index hiding. For our application, it suffices to consider a weaker notion of “one-sided” index hiding
where we only require that the adversary’s advantage cannot increase (but could decrease). Proving one-sided security
is often easier than proving two-sided security, so we define the simpler notion here:

Definition 3.11 (One-Sided Index-Hiding with Extracted Guess). We say a zero-fixing hash function ITy satisfies
one-sided index-hiding with extracted guess security if for all efficient adversaries A, there exists a negligible function
negl(-) such that

Pr[ExptIHE 4(4, 1) = 1] > Pr[ExptIHE 4(4, 0) = 1] — negl(A).

4 Construction of Zero-Fixing Hash Functions

In this section, we show how to construct a zero-fixing hash function by combining an index BARG (Definition 3.8),
an additively homomorphic encryption scheme over Z, (Definition 3.1), and a vector commitment scheme with
succinct local openings (Definition 3.3).

Binary tree indexing. Similar to [NWW24], we will work with complete binary trees. Following [NWW24], we
use the following procedure to associate a unique index with each node in the binary tree:

Definition 4.1 (Binary Tree Indexing). Let 7~ be a complete binary tree with n = 2¥ leaves. Then 7 contains exactly
2n — 1 nodes. We associate a unique index i € [2n — 1] via the following procedure:

« First, associate the value v = 1 to the root node.

« If v is the value associated with a node, then associate values 2v and 20+ 1 with its left and right child. Recursively
apply this process to assign a value to every node in the tree.

« The index i associated with a node is defined to be 2n — v, where v is the value associated with the node.
By design, Definition 4.1 has the following properties:

« The leaf nodes are indexed 1 through n and the root node is indexed 2n — 1.

« The index of every non-leaf node is greater than the index of its children.

« Given the index of any non-leaf node, we can efficiently compute the indices of its left and right child.
Construction 4.2 (Zero-Fixing Hash Function). Our construction will rely on the following building blocks:

« Let IIgarc = (BARG.Gen, BARG.Prove, BARG.Verify, BARG.TrapGen, BARG.Extract) be a somewhere ex-
tractable index BARG (Definition 3.8).

14

« Take any constant p € N. Let Iy = (HE.Gen, HE.Enc, HE.Dec, HE.Add) be an additively homomorphic en-
cryption scheme over Z,, (Definition 3.1). For a security parameter A, let £(1) be a bound on the length of the
ciphertexts output by either HE.Enc(pk, -) or HE.Add(pk, -, -) for any (sk, pk) in the support of HE.Gen(1%).

o Let lIcom = (Com.Setup, Com.Commit, Com.Verify) be a vector commitment scheme with succinct local
openings (Definition 3.3).

We construct a zero-fixing hash IT = (Setup, Hash, ProveOpen, VerOpen, Extract, ValidateDigest). In the following
description, we assume without loss of generality that the bound on the input length n € N is a power of two (i.e.,
n = 2K for some integer k € N). Next, we define the following NP relation which we will be using in our construction.
In what follows, all of the ciphertext vectors have length A.

Statement: index i € [n]

0) ~(1)

Witness: ciphertext vectors ct ¢t openings 7®. 61 and an auxiliary witness w

Hardcoded: the common reference string crscom for Ilcom, an index i* € [n] U{L}, avaluey € {0,1, L}, and for

) (b) (b)
ct

each b € {0, 1}, a public key pk, for ITyg, commitments com,,” and com®) and two ciphertext vectors ct,on, ¢ root

On input a statement i € [n] and a witness (ét(o), &, o) w):

« Ifi € [n], then parse w = (Et(o), a', éi) (1)) Output 1 if the following conditions hold:

1. Opening to ciphertext: for b € {0, 1}, Com.Verify(crscom, comp, i, a'® o<b)) =1.

2. Opening to ciphertext in hk: for b € {0, 1}, Com.Verify (crscom, com® i, ct(b) (b))

hk
3. Consistent choice of ciphertexts: () = ctiggo Aét = ctiézo) or (ct()

=1

(0)) _ (1))

ct Act
4. Validity of ciphertext at target index: If i = i*, then additionally check that:

b

) [ction ify=0
¢t =3k .

ct ify=1.

If any of these conditions are not satisfied, output 0.

« Ifi € [n+1,2n — 1], then parse w = (w,, wg), where wg = (ctt(io),ct((;), (0) (1)) for d € {1,r}. Output

d bl
1 if all of the following conditions hold for all b € {0, 1}.

1. Opening to ciphertext: Com.Verify(crscom, comp, i, ét(b),a(b)) =1

2. Opening to child ciphertexts Com.Verify(crscom, comp, i, ct() L(b)) = 1 and
Com.Verify(crscom, comp, ix, ctR ,O'Rb)) 1, where i; and iy are the indices of the left and
right child of i (according to the 1ndex1ng scheme from Definition 4.1).

3. Correctness of evaluation: ¢t = Add(pk,, ct(b) t<b))

4. Validity of root: If i = 2n — 1 then &' = ct®

root*

If any of these conditions are not satisfied, output 0.

. . b b .
Figure 1: The relation R [crscom, {pkb, com}(]k),comb, ctier)o, ctfogt be {main.shadow)” i y]

We describe our construction below:

« Setup(14,1",S): On input a security parameter 1, the input length n = 2€ and a set S C [n], the setup algorithm
start by sampling the following:

15

) « HE.Gen(1%,1") and (skshadow PKshadow) < HE.Gen(1%4,17).

— Sample the CRS for the commitment scheme with block length A - £4(A) and up to 2n — 1 blocks:
crscom < Com.Setup(14, 14&(D) 12n-1)

— Sample two key pairs: (skmain, pk

main

— Sample the CRS for an index BARG (that supports extractability on up to 3 positions): (crsgarc, VKsarg) <
BARG.Gen(l’l, 127115 1%), where s is a bound on the size of the circuit computing the index relation
from Fig. 1.

Next, for each b € {main, shadow}, construct an encryption of 0: ctii’r)o « HE.Enc(pk,, 0) where 0 is a zero

vector of length A. For all i € [n], sample a random v; < {0,1}*\ {0}. For each i € [n] and b € {main, shadow},
compute the following:

- Ifi € S, compute ctl{b) < HE.Enc(pky, v;).
- Ifi ¢ S, compute ctgb) « HE.Enc(pk,, 0).

Next, the setup algorithm constructs a commitment to the ciphertexts associated with the hash key. Specifically,
for each b € {main, shadow}, it computes

(b) _(b) (b)

hk > Fhis1’ "2 Ohion

com «— Com.Commit(crscom, ct(b) ct(b)
() ((

Finally, the setup algorithm constructs the hash key hk, the verification key vk, and the trapdoor td as follows:

b b b b b
hk = (Cr5C0m> CISBARG> {pkb’ tier)o’ t() t() P(lk)l’ T f(lk)n}be{mam shadow}) (4.1)
b b
vk= (CI’SCQm, vkeara, {pkb’ Ctier)o’ com()}bE{maln shadoW}) (42)
td = skmain- (4.3)

Hash(hk, x): On input a hash key hk (parsed as in Eq. (4.1)) and a string x € {0, 1}", the hashing algorithm
proceeds as follows:

— Construct two complete binary trees Tmain, Tshadow»> €ach with n leaves. For each tree 7;,, we assign a

ciphertext vector 6t§b)

Definition 4.1):
« Ifi € [n], let &

to each node i € [2s — 1] in the tree as follows (where the nodes are indexed using

) (b) (b)

— Ctyer if x; =0 and ct; ~ « ctgb) if x; = 1.
(&)

» For each internal node i € [n,2n — 1], let ct() = = HE. Add(pkb, ct tl-) where i, and i; are the
indices associated with the left and right child of node i under the canonlcal tree indexing scheme
(Definition 4.1).

()

— For b € {main, shadow}, construct commitments to the ciphertexts associated with 7:

(b)

b b b
®) g)1) «— Com.Commit(crscom, (ct(),. cty, 1))

(comp, 0,7, ..., 0,,
— For b € {main, shadow}, let ctffgt = ctgn) 1 (ie., the ciphertext vector associated with the root of 73). Let
C, be the circuit that computes the following instantiation of the relation from Fig. 1:
(b)

(b) ()
R [crsCOm, {pkb, com,,’, comp, Ctyer, €t oy be {main.shadow)” 1,1].

: » shad i . ,
- Foreachi€ [2n—1],let; = (ctmam ct; "V, gmain gshadow) he the opening for the ciphertext vectors

associated with node i in Tr,in and Tshadow- Then, for each i € [2s—1], define the auxiliary witness w; to be

» 1f i € [n] then w; = (ct™n, ctghadow, gmain, gahadow)

16

«» If i € [n+1,2n — 1] then w; = (7, 7;,) Where iy, iy are the indices of the left and right child of node
i, respectively.
Finally, Vi € [2n—1] letw; = (7;, w;). Compute mgarc < BARG.Prove(crsparc, Ci, 2n—1, (W1, ..., Wap_1)).
— Output the digest
dig = (ct’r‘;?,it”, ctﬁﬁ,‘gf‘”, COMmain, COMshadows ﬂBARg) .

« ProveOpen(hk, x,i*): On input a hash key hk (parsed as in Eq. (4.1)), a string x € {0, 1}" and an index i* € [n],
the opening algorithm proceeds as follows:

- Let Cy«,. be the circuit the following instantiation of the relation from Fig. 1:

(b) (b) _.(b) -
R [crscom, {pkb, comy,’, comMp, Ctzero, Ctroot}be{main,shadow}’l | X

— Compute the witnesses w; for each i € [2n — 1] using the same procedure as in the Hash algorithm.

- Output the opening o <~ BARG.Prove(crsgarc, Cit x;» 21 — 1, (W1, . .., Wap—_1))

« VerOpen(vk, dig, i, §,0): On input the verification key vk (parsed according to Eq. (4.2)), a digest dig =
(ctfg())t, ctf;gt, comy, comy, nBARg), an index i* € [n], abit § € {0, 1} and an opening o, the verification algorithm
outputs BARG.Verify(crsgarc, Ci+ g, 2n — 1, o) where C;« g is the circuit computing the following relation from
Fig. 1:

(b) (b) (b) ok
R [crsCom, {pkb, com,,’, COMp, Ctzero, CtFOOt}he{main,shadow}’l Bl
« Extract(td, dig): On input a trapdoor td = skmain and a digest dig = (ct?;f)it”, ctﬁz‘stdo“’, COMpmain, COMshadows ﬂBARG),

the extraction algorithm outputs Matching if HE.Dec(skmain, ctT2") = 0. Otherwise, it outputs NotMatching.

root

« ValidateDigest(vk, dig): On input the verification key vk (parsed according to Eq. (4.2)) and a digest dig =

(ct'r‘gf)it”, ctﬁggtd"“’, COMmain, COMshadows ﬂBARG), the digest-validation algorithm outputs

BARG.VeI’ify(VkBARG, CL, 2n —1, ”BARG),
where C, is the circuit computing the following relation from Fig. 1:

(b)) (b)
R [crsCOm, {pkb, com,,’, cOMp, Ctyero, ctmot}be{mam,shadow}, 1, J_] .

Theorem 4.3 (Correctness). Construction 4.2 is correct.

Proof. Take any A,n € N and x € {0, 1}". Suppose (hk, vk, td) « Setup(l’l, 1", @). Parse

b b b b b

hk = (crsCOm,crsBARG, {pkb,ctier)o, cti), . ..,ct,(l),Gr(]k’)l, . "’O-P(lk,)n}be{main,shadow})
b b

vk = (CI’SCom, VkBARG’ {pkb’ Ctier)"’ Com]:k) }be{main,shadow})

td = skmain.

We show each property individually.

main ctshadow

Digest validity. Let dig < Hash(hk, x). By construction, dig = (ct , COMmain, COMshadow» TBARG) Where

root > ~“root
ARG < BARG.Prove(crsparc, C1,2n — 1, (Wy, ..., Wap—1)) and C, is the circuit computing the relation
(b) (b) (D)
R [crsCOm, {pkb, com,,’, comp, Ctyefo, ctmot}be{mam’shadow}, 1,1
. ~ ~ ~ in ~ shad f .o
from Fig. 1. Parse w; = (7, w;) where 7; = (ct;,ct; ", g™, gshadowy We prove that C, (i,w;) = 1 for each
ie2n-1]:

17

« Leaf nodes: Suppose i € [n]. Then by construction of Hash, we have ét?ain

and w; = (ct;."ai", ct?hado“’, o]:‘?(al!”, crf]iaid"“’). Consider each of the checks:

i ~ shado
= ct"™" and ct; V= ct?hadOW

1. Opening to ciphertext: by construction of Hash, for each b € {main, shadow}, the commitment com;,

) (b)

for each b € {main, shadow} is a vector commitment to (ctib), ces ctéfl_l) and the opening o;" is a valid

opening for position i. Therefore the check passes.

2. Opening to ciphertext in hk: By construction of Setup, for each b € {main, shadow}, the commitment

(b)
t,”),.

com::;) is a vector commitment to (c . ct,(lb)) and the opening O'lgi,)i is a valid opening for position

i. Therefore the check passes.

3. Consistent choice of ciphertexts: By construction of Hash, we have that for each b € {main, shadow},
it holds that Vl(b) is either ctgb) or ctifr)o depending on the value of x;. Therefore they are consistent and
the check passes.

4. Validity of ciphertext at target index: Since the hash relation does not define a target index, the check
passes trivially.

+ Non-leaf nodes: Suppose i € [n+1,2n — 1]. Then w; = (7;,, 7;,), Consider each of the checks:

1. Opening to ciphertext: This follows by the same reason as above.

2. Opening to child ciphertexts: This follows similarly from the fact that for each b € {main, shadow},
b . . b b

ti),.)_1) with openings crl(), e, Uz(n)—r

3. Correctness of evaluation: By construction of Hash, for all b € {main, shadow}, and all non-leaf nodes,

we have that ctgb) = HE.Add(pkb, ctlgb), ctgf)), and so the checks pass (since HE.Add is deterministic).

. . . b
the commitment com,, is a vector commitment to (¢ RN ctg n

4. Validity of root: By construction of Hash, for each b € {main, shadow} we have that ctffgt = ctgﬁ)_l,)
the check trivially passes.

Since C, (i, w;) = 1 for each i € [2n — 1], then all of the witnesses are correct and ngarc cause BARG.Verify (and by
correspondence ValidateDigest) to accept by the completeness of I , -
Opening correctness. Leti* € [n], and suppose o < ProveOpen(hk, x, i*). We show that VerOpen(vk, dig, i, x;-, o)
accepts. This follows by an analogous argument, with the one difference being that the BARG proof ¢ is now computed
with respect to the circuit C;« . that computes the relation
b b b
R [crscom, {pkb, com}gk), comp, ctier)o, thogt}be{main,shadow}’ i, X

from Fig. 1. In other words, the only difference now is that the verification algorithm additionally checks validity
at target index. Consider w;» = (7;+, W), where 7;+ and w;- are defined as before. By construction of ProveOpen, for
each b € {main, shadow}, it holds that 6tff) = ctgfr)o if x;+ = 0 and cAtE*b) = ctlib) if x;= = 1, therefore the validity at
target index check passes as well. The claim now follows by the completeness of ITj, , ; similar to before.

O

Theorem 4.4 (Succinctness). Construction 4.2 is succinct.

Proof. Takeany A,n € Nandx € {0,1}". Lets € N be a bound on the size of the circuits computing the relation in Fig. 1.
Leti € [n] be anindex. Suppose (hk, vk, td) < Setup(1%,1", @), dig < Hash(hk, x) and Topen < ProveOpen(hk, x, i).
Parse

b b b b b

hk = (Crscom’ CISBARG» {pkb’ Ctier)o’ Cti)’ te Ctﬁl)’ Glgk,)l’ T O.I:k,)n}bE{main,shadow})
b b

vk = (Crscom’ vkearc, {pkb’ Ctﬁer)o’ Comfgk> be{main,shadow})

td = skmain

. main _;shadow
d'g = (Ctroot > Ctroot » COMmain, COMshadow> ”dig)

18

All ciphertexts are encryptions of vectors of dimension A. By the compactness of IIjjg, the size of the ciphertexts

and the public keys is poly(A1). By the succinctness of IIconm, it holds that crscom, comhmlfi”, com;iad°w, COMpmain and

COMghadow all have length poly (A +1log n). It remains to bound the parameters of the BARG. To do so, we bound s. The
relation in Fig. 1 requires a constant number of openings for the ciphertext checks. Each of these can be implemented
by a circuit of size poly(A). Similarly, the correctness of the homomorphic evaluation check and the constant number
of ciphertext comparisons also require a circuit of size poly(A + logn). Thus, the size s of the circuit in Fig. 1 is

bounded by poly(4 +1logn). By succinctness of ITj, ,p ., it holds that the length of the verification key vkgarg and

the proofs 74ig and 7open have size poly (4 +logn). In total, everything is polynomial in poly(A + log n) and therefore
all of the succinctness requirements are satisfied by Construction 4.2. O

Security. In the subsequent sections, we prove each of the required security properties on Construction 4.2. Instan-
tiating the underlying additively homomorphic encryption scheme with the Goldwasser-Micali construction [GM82]
over Z,, we obtain the following corollary:

Corollary 4.5 (Zero-Fixing Hash Functions). Assuming the quadratic residuosity assumption and a somewhere ex-
tractable BARG, there exists a zero-fixing hash function.

In combination with the compiler from [NWW24], this yields Theorem 1.1.

4.1 Set Hiding

We start by showing Construction 4.2 satisfies set hiding. This follows immediately from CPA-security of the underly-
ing encryption scheme. Recall that in Construction 4.2, the only difference between a hash key that binds to the empty
set @ versus the set S is that some of the ciphertexts in the hash key switch from encryptions of zero vectors (when
binding to the empty set) to an encryptions of non-zero vectors (when binding to the set S). We formalize this below:

Theorem 4.6 (Set Hiding). IfIlyg is CPA-secure, then Construction 4.2 satisfies set hiding.

Proof. Let A be an efficient adversary for the set hiding game. For ease of exposition, we treat main and shadow
from Construction 4.2 as 0 and 1 respectively. Define the games Hyb for each § € {0, 1, 2} as follows:

1. On input 14, algorithm A outputs the input length 1" and a set S C [n].
2. The challenger samples the following quantities:
« (sko, pky) «— HE.Gen(1%) and (sky, pk,) « HE.Gen(1%).
« (crspara, vkparg) «— Gen(1%,1%1,15,1%).
e CISCom Com.Setup(lA, 1AM op — 1).
. ct§§’20 < HE.Enc(pk,, 0) for all b € {0,1}.
« For all i € [n], sample a random v; & {0, 1}*\ {0}.
« Foralli e [n],b e {0,1},if i € Sand b < f3, the challenger samples ctgb) « HE.Enc(pky, v;). Otherwise,
ifi ¢ Sorb > f, the challenger samples ctl(h) < HE.Enc(pk,, 0).

+ For each b € {0, 1} let (comﬁi), a,ﬂﬁ)l, - '-,0'}(]?’1) «— Com.Commit(crscom, (ctib), : ..,ct,(lb))).

3. The challenger constructs the hash key hk and the verification vk as defined in Eqs. (4.1) and (4.2):

b b b b b
hk = (crscom, CI'SBARGs {pkb, ctier)o, ctg). ct,(l), O.l’(lk,)l’ cees UPEk,)n}be{o,l})

b b
vk = (crsCOm, vkgara, {pky, ctior, comﬁk)}be{o’l})

and gives (hk, vk) to A.

19

4. Algorithm A outputs a bit b’ which is the output of the experiment.

Let Hybﬂ(.?l) be the output of Hyb; with adversary A. Note that by construction ExptSH 4(4,0) = Hyb,(A) and
ExptSH 4(A,1) = Hyb,(A). We now argue that each adjacent pair of hybrid distributions are computationally
indistinguishable.

Claim 4.7. IfIIyg is CPA-secure, then there exists a negligible function negl(-) such that
|Pr[Hyb1(ﬂ) = 1] = Pr[Hyb,(A) = l]i = negl(4).

Proof. Suppose that |Pr[Hyb1(ﬂ) =1] = Pr[Hyb,(A) = l]\ > ¢ for some non-negligible e. We use A to construct
an efficient CPA-security adversary 8 against I as follows:

1. On input 14, algorithm B runs A to obtain the input length 1" and the set S C [n]. Denote S = {i1,...,i;},
where t = |S].

2. The challenger sends the public key pk, to 8.
3. Algorithm 8B samples the following:

o (skq, pky) « HE.Gen(1%), crscom <« Com.Setup(l’l, 4 op — 1),
« (crsgarG, Vkparg) < BARG.Gen(lA, 12n—1’ 1%, 13).
e CISCom — Com.Setup(lA, e op — 1),

« For all i € [n], sample a random v; & {0, 1}*\ {0}.

4. Then, for each i € [n], algorithm B does the following:

*
i

« If i € S, then make an encryption query on the pair (0, v;) and receive the ciphertext ct}. Set ctfo) =ct
« Ifigs,set ctgo) < HE.Enc(pk;, 0).
« Compute ctgl) « HE.Enc(pk;, 0).

5. For b € {0, 1}, algorithm B computes (comﬁi), O'}Ei)l, ces G:]i)n) «— Com.Commit(crscom, (ctib), . ct,(lb))).
6. Algorithm B constructs hk and vk according to Eqs. (4.1) and (4.2):

b b b b b
hk = (crscOm,crsBARG, {pkb, ctier)o, cti).. ..,ct,(l), O-P(1k,)1’ . "’O-P(uk,)n}be{o,l})

vk = (crscom, vkBARG, {pkb, ct§§’20, com}(f;) be{o,l})
and give (hk, vk) to A.
7. Algorithm A outputs a bit b" € {0, 1}, which 8B also outputs.

Observe that if the ct] are encryptions of 0 then 8 perfectly simulates Hyb,. If ct] are encryptions of v;, then 8
perfectly simulates Hyb, for A. We conclude that the advantage of 8 is ¢. In addition, if A is efficient then so is
B, therefore ¢ is negligible by the CPA security of ITjg. O

Claim 4.8. IfIIyg is CPA-secure, then there exists a negligible function negl(-) such that
[Pr[Hyb,(A) = 1] — Pr[Hyb, (A) = 1]| = negl(1).

Proof. Follows by an analogous argument as the proof of Claim 4.7. The only difference is the reduction algorithm
8 sets pk, and the ciphertexts ctgl) for i € S to be the public key and challenge ciphertexts it receives for the CPA

challenger, whereas ctgo) is set to be an encryption of v; if i € S, or an encryption of 0 if i ¢ S. O

Theorem 4.6 now follows by combining Claims 4.7 and 4.8. O

20

4.2 Additive Invariants on Ciphertexts

Similar to [NWW24], the remaining security properties of the zero-fixing hash function (zero fixing, extractor validity,
and index hiding with extracted guess) will rely on reasoning about various properties on the ciphertext vector
associated with the root node in our tree of ciphertexts (i.e., the hash digest). The general strategy to prove these
properties is similar. We first establish a certain invariant on the leaf ciphertexts by relying on the fact that they are
honestly generated by the setup algorithm. Then, we appeal to the security of the BARG and the vector commitment
to “propagate” the invariant to the root ciphertext.

We start by recalling the invariants introduced by [NWW24] and extend them in two ways: (1) we define the
invariants with respect to a vector of ciphertexts (as opposed to a single ciphertext); and (2) we pass auxiliary input
which corresponds to the view of the challenger in the security games.

Definition 4.9 (Tree-Based Additive Invariant on Ciphertext Vectors). Let n be a power of two and let ITje = (Gen,
Enc, Dec, Add) be an additively homomorphic encryption scheme over Z,,. We say that an efficiently-computable predi-
cate P: {0,1}" — {0, 1} is a tree-based additive invariant for ITyg if for all A, n € N, all key-pairs (sko, pk,), (sk1, pk;) in
the support of Gen(1%, 1), all indices j, ji, jz € [2n— 1] where j, and j; are the children of j according to the indexing
scheme in Definition 4.1, all ciphertext vectors (ctio), ctfl)), (ctgo), ct}(zl)), and all auxiliary input z € {0, 1}* where

P(ct!®, ctt”) sko,sky, ji,z) =1 and P(ctl”, ct"), sko, sky, ju 2) = 1,

it holds that
P(cts(ggn,ctg,)n,sko,skl,j, z) =1,

where ct'®). = Add (pko» ct!” et) and et = Add(pk,, ct'V, ctél)). This implies that if P holds for the two children
of a node, then it also holds for the parent node.

One way to view the tree-based invariant is that if an adversary can “break” the invariant on some non-leaf node,
then the adversary can also break the invariant on one of children of that node.

Predicate propagation experiment. We now recall the definition of the general predicate propagation experiment
from [NWW24], which we use in the analysis of Construction 4.2. This is a general experiment specification that
captures the structure of the security definitions for a zero-fixing hash function.

Definition 4.10 (Predicate Propagation Experiment). The predicate propagation experiment for Construction 4.2
is parameterized by the following two components:

« A tree-based additive invariant P (Definition 4.9) for the homomorphic encryption scheme ITyE.

« An efficiently-computable “challenge-derivation” function DeriveChal(S, i) that takes as input a set S C [n]
and an index i € [n] and outputs two sets Sy, S1 C [n] and an index idx that is either a pair (i*, y*) or L. In the
predicate propagation experiment, the sets Sp and S; will determine the distribution of the ciphertexts in the
common reference string. The index idx will determine the verification check. Each of the security properties
(i.e., zero fixing, extractor validity, and index hiding with extracted guess) will induce a different choice of
DeriveChal (to be specified in their respective proofs).

We now define the predicate propagation experiment Expt[P, DeriveChal] between a challenger and an adversary A:

1. On input the security parameter 1%, algorithm A; outputs the input length 17, a set S C [n], and an index
i* € S (or a special symbol L).

2. The challenger computes (Smain, Sshadow, idx) «— DeriveChal(S, i*).
3. The challenger samples the following quantities as in Setup:

* (skmains PKiain) < HE.Gen(1%,1") , (skshadow» pk) « HE.Gen(1%,1%).

« (crsparG, Vkparg) < BARG.Gen(lA, 12n’ 15, 13).

shadow

21

e crscom « Com.Setup(1%,14€@) 2pn — 1)

ct§520 « HE.Enc(pk,, 0) for all b € {main, shadow}.

« For all i € [n], sample a random v; & {0, 1}*\ {0}.

« Foralli € [n],b € {main,shadow}, if i € S}, then sample ctfb) < HE.Enc(pky, v;). Otherwise, sample
ctgb) « HE.Enc(pk,, 0).

« For all b € {main, shadow}, (comﬁi), G}Ei)v) "’Glgi)n) — Com.Commit(crscom, (ctgb),) ..,ctﬁlb))).

4. The challenger constructs hk and vk as defined in Eqs. (4.1) and (4.2):

ct?)

b b b b
hk = (crsCOm,crsBARG, {pkb, Jeros cti),...,ct,(l) o) (b)

> th,l’ e O.hk,n}be{main,shadow})

Vk = (CrsCOm’ VkBARG’ {pkb’ Ct§§20> Comlil;() be{main,shadow})
The challenger gives (hk, vk) to A.

5. Algorithm A outputs a digest dig = (ct;‘;f)it”, ctfg‘f)‘fo“’, COMmain, COMghadows 7Tdig) and a proof 7.

6. The output of the experiment is 1 if all of the following conditions hold, and 0 otherwise:

(a) BARG.Verify(crsgarags Cidxs (1,...,2n—1),7) = 1.

(b) P(Ct:’;zitn, thggtdow, Skmain, SKshadow» 211 — 1, (V1, . .., Vp, idx)) = 0.

Here, the circuit Cigx computes the relation from Fig. 1:
« Ifidx = (i,y), then Cj4x computes the relation

(b)

®)) ot ®

(b .
R[crs(;om,{pkb,com comyp, Ctyefos root}be{main,shadow}’l’y .

« Ifidx = L, then Cijgx computes the relation

(b) (b) 4(b)
hk > €OMb; Ctzeros Ctroot}be {main,shadow}’

R [crscom, {pkb, com 1, J_] .

In words, the adversary “wins” the game if it produces a proof 7 that verifies, but the digest does not satisfy
the tree-based additive invariant P.

The goal now is to show that if specific “pre-conditions” are met, then for all efficient adversaries A, the probability
that Expt[P, DeriveChal] outputs 1 is negligible. These pre-conditions capture properties of the leaf nodes of the tree.
To that end, we now define the predicate propagation hybrid experiment Expt; [P, DeriveChal] between a challenger
and an adversary A:

Definition 4.11 (Predicate Propagation Hybrid Experiment). Let j € N be an index. For a tree-based additive
invariant P and a challenge-derivation function DeriveChal, we define the predicate propagation hybrid experiment
between a challenger and an adversary A, which we denote by Expt; [P, DeriveChal], as follows:

1. On input the security parameter 1%, algorithm A; outputs the input length 1”7, a set S C [n], and an index
i* € S (or a special symbol).

2. The challenger computes (Smain, Sshadow, idx) «— DeriveChal(S, i*).
3. The challenger samples the following quantities as in Setup:

* (skmains PKiain) < HE.Gen(1%,1"), (skshadow, pk) « HE.Gen(14,1").

« (crsparG, VksarG, tdsarg) < TrapGen (14,127, 15,13, {j}).

shadow

22

e CISCom Com.Setup(lA, Ha) an — 1),
ct§520 « HE.Enc(pk,, 0) for all b € {main, shadow}.
« For all i € [n], sample a random v; & {0, 1}* \ {0}.

« Foralli € [n],b € {main,shadow}, if i € S}, then sample ctlgb) < HE.Enc(pky, v;). Otherwise, sample
ctgb) < HE.Enc(pk,, 0).

,(1?,0}2?1, . .,Jéfz)n) — Com.Commit(crscom, (ctib), . ..,ctﬁ,b))) for all b € {main, shadow}.

4. The challenger constructs hk and vk as defined in Eqs. (4.1) and (4.2):

. (com

b b b b b
k= (crscomcrsoas l ctt®, et 00, i)

b) b
Vk = (CrsCOma VkBARGa {pkb5 Ct§ero, Comlgk) be{main,shadow})

The challenger gives (hk, vk) to A.

main .¢shadow
troot > Ctroot

5. Algorithm A outputs a digest dig = (¢ » COMmain, COMghadow: 7dig) and a proof 7.

6. The challenger computes (cAtr]-nam, ¢ jhadow, O'Jmi”, Ujhad"“’, w;) < BARG.Extract(tdgarc, 7, j).
7. The output of the experiment is 1 if all of the following conditions hold, and 0 otherwise:

(a) BARG.Verify(crsgarags Cidx (1,-..,2n—1),7) = 1.

A main ~ shad i ~
(b) Cidx(j’ (Ct;nam, Ctj a OW’ O_;nam, Ujhadow, Wj)) =1.
~ main » shadow . .
(c) P(Ctj) Ctj , SKmain, SKshadows /> (V1, . . ., Vi, idx)) = 0.

Here, the circuit Cigx computes the relation from Fig. 1:
« Ifidx = (i, y), then Cjgx computes the relation

(b) (b) (b) .
R [CI’SCom, {pkb’ comy, -, comp, Ctzeros Ctroot}be{main,shadow}’ L y] :

« Ifidx = L, then Cigx computes the relation

(b) (b) (b)
R [crsCOm, {pkb, comy, ', COMp, Ctzeros Cligot f e (main shadow)”

1, J_] .
In words, the adversary “wins” the game if it produces a proof 7 that verifies, the challenger extracts a correct
witness for instance j but the extracted witness does not satisfy the tree-based additive invariant P.

Theorem 4.12 (Predicate Propagation). Let P be a tree-based additive invariant and let DeriveChal be a challenge-
derivation function. Suppose Ilcom satisfies computational binding and Ilgarc satisfies set hiding with extraction, set hid-
ing, and somewhere extractability. Let A be any efficient adversary for the predicate propagation experiment. Suppose that
for every index j € [n] (wheren = n(A) is the input length chosen by A), there exists a negligible function ¢;(-) such that

Pr[Expt; [P, DeriveChal](A) = 1] = ¢;(A).
Then there exists a negligible function negl(-) such that
Pr[Expt[P, DeriveChal](A) = 1] = negl(A).

Remark 4.13 (Comparison with [NWW24, Theorem 5.9]). Despite the similarities between Theorem 4.12 and
[NWW24, Theorem 5.9], there are two reasons we cannot use [NWW24, Theorem 5.9] as a black box. First, while
they use additive homomorphic encryption (which captures the scheme ITig) on a single element, we apply the
homomorphic operation on a vector of elements rather. Second, we allow the invariant P to depend on the view of
the challenger, by giving it auxiliary input. We give the formal proof of Theorem 4.12 in Appendix A (which shares
the same structure as the corresponding proof from [NWW24]).

23

4.3 Zero Fixing

In this section, we show that Construction 4.2 satisfies zero-fixing security. In the selective zero-fixing game, the
adversary chooses a set S C [n] and an index i* € S. Then the hash key in Construction 4.2 is chosen to bind to a set S.
This means that the ciphertexts in the hash key associated with the set S are replaced by encryptions of non-zero vectors.
The adversary is then required to produce a digest dig that is Matching together with an opening of the index i* to 1.

Intuitively, the BARG in Construction 4.2 guarantees that the digest and opening are computed honestly for some
string, so we assume this to be the case in the following discussion. If the size of S is sufficiently large, then there exists
a subset S C S for which the corresponding vectors are linearly dependent (i.e., they sum to 0), and moreover, i* € §’
with non-negligible probability. Thus, if the adversary knows S, then it can easily construct an “honest” digest and
opening that would win the zero-fixing game: choose x = xj ... x, such that x; = 1 whenever i € S’ (and set x; = 0
otherwise). The adversary can then compute dig < Hash(hk, x) and o < ProveOpen(hk, x, i*). It is easy to see that
Extract(vk, dig) = Matching since the vectors in S” sum to 0 by construction. However, if the vectors v;+ corresponding
to i* are computationally hidden from the adversary, then it should be infeasible for the adversary to identify a
non-trivial set of linearly-dependent vectors. Thus, we show this by relying on CPA-security of the underlying
encryption scheme. As noted in Section 2, we use a Naor-Yung approach (with double encryption) for the analysis.

Specifically, starting from the selective zero-fixing game, we first switch to a hybrid where ct?l‘ad"“’ is an encryption
of 0 instead of v;-. Recall that the extraction algorithm ignores the shadow ciphertexts, so these two experiment are
computationally indistinguishable. Next, we observe that this erasure of v;+ gives us an additive invariant: for all
nodes in the evaluation tree that do not include i* in their sub-tree, the main and shadow ciphertexts encrypt the
same vector, but for all nodes in the evaluation tree that include i*, the difference between the vectors encrypted
by the main and shadow ciphertexts is v;-. The consistency condition in the relation guarantees the invariant holds
for the leaves, and using Theorem 4.12, we can propagate this invariant to the root node, which includes i* in its
sub-tree. Therefore we can move to another hybrid in which the extraction algorithm outputs Matching if and only
if Dec(skshadows ctf(t'gfo“’) = v;-. Finally, we again use the security of the encryption scheme this time to switch ct;‘fai"
to be an encryption of 0. In the final experiment, the adversary’s view is independent of v;+, but in order to win, it
is required to produce a ciphertext that decrypts to v;-. The claim holds information theoretically at this point over
the random choice of v;. We now give the formal proof:

Theorem 4.14 (Zero-Fixing Security). Suppose lcom is binding, Ilgarc satisfies set hiding with extraction, set hiding
and is somewhere extractable, and Iy is CPA-secure. Then Construction 4.2 satisfies selective zero-fixing.

Proof. Let A be an efficient adversary for the zero-fixing game. We define the following hybrid sequence:

+ Hyb,: This is the selective zero-fixing game

1. On input 14, algorithm A; outputs 17, a set S C [n], an index i* € S and a state st 4.
2. The challenger samples the following quantities as in Setup:
— (skmains PKinain) < HE.Gen(1%,1") and (skshadow pk
— (crsparG, VKBARG) «— Gen(ll, 12n’ 15, 13).
— crscom — Com.Setup(1%4, 14 2n — 1),
- ctﬁfr)o < HE.Enc(pk,, 0) for all b € {main, shadow}.
— For all i € [n], sample a random v; & {0, 1}*\ {0}.
— Foralli € [n],if i € S then sample ct;“ai" «— HE.Enc(pk
HE.Enc(pK,in> 0)-
— Foralli € [n],if i € S then sample ctfI1adOW «— HE.Enc(pk
HE.Enc(pkqpadow- 0)-

f]i), Urﬁi)v) ..,U}Eﬁ)n) — Com.Commit(crscom, (ctgb),) ..,ctflb))) for all b € {main, shadow}.

3. The challenger constructs the hash key hk and the verification vk as defined in Eqs. (4.1) and (4.2):

hk = (crscom, CISBARG» {pkb, ctéfr)o, ctih), . ct,(ib) o ol

) « HE.Gen(1%,17).

shadow

main» Vi)- Otherwise sample ct]™'" «

v;). Otherwise sample ctfhado‘” —

shadow?

- (com

> “hk1 hk,n}be{main,shadow})

b b
Vk = (CrSComs VkBARG: {pkb= Ctﬁer)o: Com}(,‘k) }bE{main,shadow})

24

and gives (hk, vk) to A.
4. Algorithm A outputs a digest dig = (ct;‘;git", ctﬁé‘gtd"w, COMmain, COMghadow: 7dig) and a proof 7.
5. The output of the experiment is 1 if all of the following conditions hold, and 0 otherwise:
— BARG.Verify(crsgarc, Cir 1, (1,...,2n—1),m) = 1.
- HE.Dec(skmain, ct™") = 0.

Here, the circuit C;- ; computes the relation from Fig. 1:

() &) (D) .
R [CFSCom, {pkb’ comy, , comp, Ctzeros Ctroot}Iye{mzzxin,shadow}’ l*’ 1] :

+ Hyb,: Same as Hyb,, except the challenger replaces the encryption of v;+ in the shadow branch with an
encryption of 0. Specifically, during setup, the challenger instead samples ctl?ﬂbad"‘” «— HE.Enc(pkg,,gous 0)-

+ Hyb,: Same as Hyb, except the challenger implements extraction by decrypting on the shadow branch instead
of the main branch. Specifically, the output of this experiment is 1 if all of the following conditions hold:

- BARG.Verify(crsgarg, Ci+ 1, (1,...,2n — 1),) = 1.

shad —
- HE'DeC(Skshadow> Ctiogt OW) = Vi,

« Hyb,: Same as Hyb,, except the challenger switches the encryption of v;+ in the main branch to an encryption
of 0. Specifically, during setup, the challenger samples ct{**" « HE.Enc(pk, ;.. 0).

Lemma 4.15. IfTy is CPA-secure, then |Pr[Hyb0(ﬂ) =1] = Pr[Hyb,(A) = 1]| = negl(1).

Proof. Suppose |Pr[Hyb0(ﬂ) =1] —= Pr[Hyb,(A) = 1]\ = ¢. We use A to construct an efficient attacker B for the
CPA security game as follows:

1. On input 14, algorithm B runs A to obtain the input length 17, a set S C [n], and an index i*.

2. The challenger sends the public key pk to B.

shadow
3. Algorithm B samples a random v; & {0,1}*\ {0} for each i € [n].
4. Algorithm B sends the challenge (0, v;+) to the challenger and gets a ciphertext ct*.
5. Algorithm B samples the following:

* (Skmain, Pingin) <= HE.Gen(1%).

. (CI’SBAR(;, VkBARG) «— Gen(lA, 12n’ 15, 13).
e CISCom Com.Setup(lA, Ha) an — 1),

ct{2), < HE.Enc(pky, 0) for all b € {main, shadow}.

« Foralli € [n],b € {main,shadow}, if i € S then sample ctgb) « HE.Enc(pk,, v;). Otherwise, sample
ctgb) « HE.Enc(pky, 0).

« Set ct5doV = ct*.

. (com}(f;), 0'}(1!1:)1, e O.['(lll:)n) — Com.Commit(crscom, (ctib), el ct,(lh))) for all b € {main, shadow}.

6. Algorithm B constructs the hash key hk and the verification vk as defined in Egs. (4.1) and (4.2) and runs A
on (hk, vk) to get (dig,).

7. Algorithm 8B parses dig = (ct?;f)it“,ctfggfow, COMpmain, COMghadows Tdig), and outputs 1 if all of the following

conditions hold, and 0 otherwise:

(a) BARG.Verify(crsgarc, Cic1, (1,...,2n—1), 1) = 1.

25

(b) HE.Dec(skmain, ct™") = 0.

root

By construction, if ct* is an encryption of v;+ then algorithm 8B simulates Hyb, with attacker A and if ct* is an encryp-
tion of 0 then attacker 8B simulates Hyb, with attacker A. Furthermore, attacker 8 outputs the guess 1 if and only if A
wins the simulated game, therefore the advantage of B is exactly |Pr[Hyb0(ﬂ) =1] = Pr[Hyb,(A) = 1] \ In addition,
if A is efficient then so is B, therefore by the security of ITyg, we conclude that ¢ is negligible and the claim follows. O

Lemma 4.16. IfIlcom is binding and Ilgarc satisfies set hiding with extraction, set hiding and is somewhere extractable,
then |Pr[Hybl(ﬂ) =1] = Pr[Hyb,(A) = 1]| = negl(}).

Proof. We will leverage Theorem 4.12. To do so, we start by defining a mapping DeriveChal as follows:
DeriveChal(S,i*) := (S,i") — (5,5 \ {i"}, (i*,1)).

Secondly, we define the additive invariant P. Recall the tree-indexing definition from Definition 4.1. For any
Jj € [2n — 1], we define the set T; to be the set of nodes in the sub-tree of node j. We start by defining a predicate
P(cty, cty, sko, sky, j, (v, ..., Vp, idx)) as follows:

« On input ciphertexts cto, ct;, decryption keys sko, skj, a sub-tree index j, vectors vy, ..., v, of the same length
A, and an index idx = (i*, y) where i* € [n], compute the difference vector

d = HE.Dec(sko, ctg) — HE.Dec(sky, cty).

+ Compute the target vector t = v;- if i* € T; and t = 0 otherwise.
« Ift = d then output 1. Otherwise, output 0.
In words, the predicate requires the following:
« If i* is in the sub-tree of node j, then the difference between the encrypted vectors is v;+.
« If i* is not in the sub-tree of node j, then the ciphertexts should encrypt identical vectors.

For convenience, we write P(cty, cty, sk, sk, j, (v, i*)) = P(cto, cty, sko, sky, j, (v1,. .., vy, idx)) since P does not
depended on v; for all i # i*. Let Expt := Expt[P, DeriveChal] be the predicate propagation experiment from Def-
inition 4.10. First, we claim that the difference between A winning Hyb, and Hyb, is bounded by the probability
that A wins Expt.

Claim 4.17. [Pr[Hyb, (A) = 1] — Pr[Hyb,(A) = 1]| < Pr[Expt(A) = 1].
Proof. Define the event E in Hyb, to be:
BARG.Verify(crsgarc, Ci«.1, (1, ..., 2n — 1),) = 1 and HE.Dec(skmain, ct?;?,it“ =0.

Observe that the view of A in Hyb, is identical to its view in Hyb,. Furthermore, event E is exactly the condition
in which Hyb, outputs 1, therefore Pr[Hyb, (A) = 1] = Pr[E]. Then, we have

[Pr[Hyb, (A) = 1] = Pr[Hyb,(A) = 1] = [Pr[E] - Pr[Hyb,(A) = 1]|
= [Pr[E A Hyb,(A) = 0] — Pr[~E A Hyb,(A) = 1]|
< max {Pr[E A Hyb,(A) = 0],Pr[-E A Hyb,(A) = 1]}

where the second equality follows from the law of total probability and the last inequality follows from the fact
that probabilities are non-negative. Now observe that the view of A in Expt is also identical to its view in Hyb, and
Hyb, by the choice of DeriveChal. Moreover, note that the event E implies HE.Dec(skmain, Ctina') = 0 and the event

Hyb, (A) = 1 implies HE.Dec(skshadows ctShadO‘”) = v;-. If exactly one of those events hold, then

root

HE.Dec(skmain, ct™3") — HE.Dec(skshadows ctShadOW) # Vjr.

root root

Further, both events E and Hyb, (A) = 1 imply BARG.Verify(crsgarg, Ci1, (1, ..., 2n—1),) = 1. In total, both events
E A Hyb,(A) = 0 and —=E A Hyb,(A) = 1 imply

26

« BARG.Verify(crsgarc, Civ 1, (1,...,2n — 1), 7) = 1.
« HE.Dec(skmain, ct™") — HE.Dec (skshadow, €t29°%) # v;..

root root

In this case, Expt(A) = 1 by definition of the additive invariant P and the fact that i* is always in the “sub-tree” of
root. Therefore, we conclude that

max {Pr[E A Hyb,(A) = 0], Pr[=E A Hyb,(A) = 1]} < Pr[Expt(A) = 1]
and the claim follows. m]

Next, we show that Pr[Expt(A) = 1] = negl(A). The strategy is to use Theorem 4.12. We start by proving that
P is a tree-based additive invariant.

Claim 4.18. IfTIyg satisfies evaluation correctness, then the predicate P is a tree-based additive invariant.
Proof. Let n € N be a power of 2 and A € N. Fix the following quantities:
. any key pairs (sko, pk,), (sky, pk,) in the support of HE.Gen(1%);
« any triple of indices j, ji, jz € [2n — 1] where ji, j are the children of j according to Definition 4.1;
« and set of ciphertext vectors (ctEo), ctEl)), (ctlso), ct,ﬁl)) each of length A;
. any index i* € [n];
. any vector v = v; € {0, 1}4
Let ct(® = HE.Add(pk,, ctEO), ct,go)) and ct!) = HE.Add(pk,, ctEl), ct,&l)), and suppose
P(ct”, ct!”, sko, sky, ji, (v, i) = 1 and P(ct”, eti", sko, sy, ji, (v,i7)) = 1.
We consider the following cases:

« Ifi* ¢ T; then i* ¢ T}, and i* ¢ T;,. By definition of the predicate P, it holds that
(0)y _ My — 0)y _ 1)y
HE.Dec(sko, ct; ') — HE.Dec(sky,ct; ') =0 and HE.Dec(sko,cty ') — HE.Dec(sky,cty ') = 0.

By the correctness of Iy, it holds that HE.Dec(sk, ct(®)) — HE.Dec(sky, ct") = 0 and therefore by definition
of P, it holds that P(ct®, ct(), sko, sky, j, v, i*) = 1.

+ Suppose i* € T;. Without loss of generality, suppose i* € T;, and i* ¢ Tj,; the other case is analogous. Then,
by definition of P, it holds that

HE.Dec(skq, ctﬁo)) — HE.Dec(sk;, ctil)) =v and HE.Dec(sk, ctff)) — HE.Dec(sk;, ctlgl)) =0.

By the correctness of I, it holds that HE.Dec(skq, ct(®)) — HE.Dec(sky, ct")) = v and therefore by definition
of P, it holds that P(ct®, ¢t sko, sky, j, v, i*) = 1.

In any case, P(ct(o), ct®), sko, ski, j, v,i*) = 1 and therefore P is a tree-based additive invariant by definition. O

For each j € [n], let Expt; := Expt; [P, DeriveChal] be the predicate propagation hybrid experiment from Def-
inition 4.11. The final ingredient needed to invoke Theorem 4.12 is to show that A wins each of the experiments
Expt; with negligible probability.

Lemma 4.19. IfIlcom is binding against efficient non-uniform adversaries, then for any j € [n], it holds that

Pr[Expt;(A) = 1] = negl(4).

27

Proof. Suppose Pr[Expt;(A) = 1] = &. We use A to construct an efficient adversary B for the binding security game
of IIcom as follows:

1. On input 14, algorithm B runs A to obtain the input length 17, a set S C [n] and an index i* € [n].
2. Algorithm B sends 12*~! to the challenger and gets a CRS crscom.
3. Algorithm B samples the following:

o (skmains PKinain) < HE.Gen(lA, 1™) and (skshadows pk
+ (crsarc: Vkparc: tdsarg) «— Gen(1%,127, 15, 1%).

tifr)o « HE.Enc(pk,, 0) for all b € {main, shadow}.
For all i € [n], sample a random v; & {0,1}* \ {0}.

) « HE.Gen(1%,17)

shadow

« Foralli € [n],b € {main,shadow}, if i € S then sample ctgb) < HE.Enc(pk,, v;), otherwise sample
ctgb) « HE.Enc(pk,, 0).
- Overwrite cts"°% « HE.Enc(pk

(b) _(b) (b)

hk > Fhi1’ " 2 Ohkon

0).

shadow?

+ (com) « Com.Commit(crscom, (ctgb),) ..,ctgb))) for all b € {main, shadow}.

4. Algorithm 8B computes hk and vk as defined in Egs. (4.1) and (4.2), and passes (hk, vk) to get (dig,).

5. Algorithm 8B parses dig = (ctmiit", tﬁg‘gtdm” COMmajn, COMshadows Tdig)-

main » shadow

6. Algorithm B extracts (ct ct ,gmain_ gshadow 5y« BARG.Extract(tdgagc, 77, j)-
7. If any of the following conditions do not hold, algorithm 8 aborts:

(a) BARG.Verify(crsgarc, Ci*1, (1,...,2n—1),7) = 1.
(b) Ci* 1(] (cAtmain Atshadow’ O'main, O_shadow’ W)) =1
(c) P(c tmam AtShadow Skmains SKshadow J» Vi#, i*) = 0.

main ~shadow .in shadow)

8. Algorithm B parses w = (ct ct sopt, opp

9. If HE.Dec(skmain, ctE"ka‘]”) # HE.Dec(skmain, et) then algorithm B sets b < main, otherwise b « shadow.

(b))

the index j and the openings (ct() (b)) (ct e

10. Algorithm B outputs the commitment comhk ,

Letd = v;- if j = i* and d = 0 otherwise. At a high level, algorithm 8 simulates Expt; with algorithm A, hoping that
A wins the experiment. By construction of hk, vk, the difference between the main and shadow vectors encrypted
in position j should match d, whereas by definition of the invariant P, the extracted encryptions do not satisfy the
condition (since P outputs 0). Therefore, it must be the cast that A produced a different encryption for position j for
either the main or shadow copy. Moreover, algorithm A produced a valid opening for that value. Together with the
valid opening produced by 8, this contradicts the binding property of commitment. We now give the formal argument:

By construction, algorithm 8 perfectly simulates Expt; with attacker A and aborts if and only if A loses the
simulated game. Assume A wins the simulated game. This implies all of the following:

main » shadow

« Since Cp1(j, (ct ct ,omain gshadow o)y — 1 then Com.Verify(crsCom,comab),], ,a(b)) = 1 for
eachb e {mam,shadow}.

main » shadow

« Since P(ct , SKmain» SKshadows J» Vi, i*) = 0, then by definition

~ shadow

HE.Dec(skshadow, Ct

main
) —

HE.Dec(skmain, ct) #d.

28

However, by the construction of hk, vk, it holds that:
. Com.Verify(crscOm,com i s o ct(b) o?)) = 1 for each b € {main, shadow}.

« HE.Dec(skmain, ct;"ai”) — HE.Dec(skshadow» ctj.hado“’) =d

Since

~ shadow

HE.Dec(skmain, ¢t™") — HE.Dec(skshadows &€ ") # HE.Dec(skmain, ¢t7™) — HE.Dec(skshadows ctT24%),

(b)

there exists b € {main shadow} such that ¢t # ct(b> by correctness of IIe. Furthermore, algorithm 8 finds that

b and outputs comhk , the index j and the openings (ct(b> (b)) (c 17 (b) .)- Thus, algorithm 8 wins the binding
game with the same probability ¢, so ¢ is negligible by the blndmg property of IIcom- The lemma follows. O

By Lemma 4.19 and Claim 4.18, we can apply Theorem 4.12 and conclude that Pr[Expt(A) = 1] = negl(1). By
Claim 4.17, we conclude that |Pr[Hyb1(3{) =1] = Pr[Hyb,(A) = l]| < negl(1) and Lemma 4.16 follows. O

Lemma 4.20. IfIIyg is CPA-secure, then |Pr[Hyb2(ﬂ) =1] = Pr[Hyby(A) = 1]| = negl(1).
Proof. Follow by the analogous argument as in the proof of Lemma 4.15. O
Claim 4.21. Pr[Hyb,;(A) = 1] = negl(4).

Proof. The view of A in Hyb, is entirely independent of v;«. Thus, in Hyb,, the challenger can defer the sampling
v+ to after the adversary outputs ct';'g‘gf"’w In order for A to win the game, it needs to output ctf2§f°‘” such that

HE.Dec(sKshadow, ct3129°%) = v;.. Since v;» & {0,1}*\ {0}, this holds with probability 1/(2* — 1) = negl(}). o

root

Theorem 4.14 now follows from Lemmas 4.15, 4.16 and 4.20 and Claim 4.21 and a standard hybrid argument. O

4.4 Extractor Validity

In this section, we show that Construction 4.2 satisfies extractor validity. In the extractor validity game, the hash key
is sampled to be zero-fixing on the empty set @, and the goal of the adversary is to produce a valid, but non-matching
digest. In this setting, the ciphertexts in the hash key are all encryptions of 0. In order to break the extractor validity
property, the adversary needs to produce a root ciphertext that encrypts a non-zero value, and yet, still argue that
the root ciphertext was derived by summing a collection of ciphertexts that each encrypt 0. The latter is ensured
by security of the BARG, and specifically the predicate propagation theorem (Theorem 4.12). We give the formal
theorem statement and proof below:

Theorem 4.22. IfTlcom is binding and Ilgarc satisfies set hiding, set hiding with extraction and is somewhere extractable,
then Il satisfies the extractor validity.

Proof. Let A be an efficient adversary for the extractor validity. For any A € N, denote 1" « A;(1*). We start by
defining the mapping DeriveChaly as follows:

DeriveChal(S,i*) := (S,i") — (2,2, 1).

Secondly, we define the predicate pMatehing < follows:

main

Matching . 1 HE.Dec(skmains Cmain) = 0
p Ctimains Ctshadows SKmain> SKshadows J» 2) =

main (main Shadow main Shadow .]) O HEDeC(Skmaln, ctmam) i 0
Since Pnl\:‘;t:hmg does not depend on ctshadow, Skshadows j @and z, we omit these quantities in the following exposition
(i.e., implicitly set them to L). We start by showing that PMatChIng

a is a tree-based additive invariant.

29

Claim 4.23. IfIlyg satisfies correctness, then the predicate PMAPIg o g tree-based additive invariant.

main
Proof. Let n € N be a power of 2 and A € N. Fix the following quantities:
« akey pair (sk, pk) in the support of HE.Gen(1%);

« a set of ciphertext vectors ct, and cty each of length 4;

« ct = HE.Add(pk, cty, cty).

Suppose Pr/:?;t:hmg(ctb sk) = 1and Pm;::hing(ctm sk) = 1. This implies that Dec(sk, ct;) = Dec(sk, ct;) = 0 by defini-
tion of Pn/\:‘:it;hmg. By the correctness of IIjjg, we have Dec(sk, ct;) = 0, and again by definition of Pm:it;hmg, we get
Pm;t:hmg(ct, sk) = 1 and the claim follows. O

Let Expt := Expt [Pm;t;hing, DeriveChalg] be the predicate propagation experiment from Definition 4.10. We first

claim that we can use A to construct an adversary A’ such that
Pr[ExptEV 4 (1) = 1] < Pr[Expt(A’) = 1]. (4.4)
Algorithm A’ works as follows:

1. On input the security parameter 1%, algorithm A’ runs A on the same security parameter. Algorithm A
outputs an input length 1”. Algorithm A’ outputs the input length 17, the set S = @, and the index i* = L.

2. The challenger replies with (hk, vk) which A’ forwards to A.

3. Algorithm A outputs a digest dig = (ct;‘;iit", ctﬁg‘gtdo‘”, COMmain, COMshadows ndig). Algorithm A’ outputs the same
digest dig and 7 = 7gjg.

We now show that Eq. (4.4) holds. By construction, the pair (hk, vk) sampled by the challenger are distributed accord-
ing to the real setup algorithm. Thus, algorithm A perfectly simulates an execution of ExptEV 4 for adversary A.
Thus, with probability Pr[ExptEV 4(1) = 1], algorithm A outputs a digest dig where Extract(td, dig) = NotMatching
and ValidateDigest(hk, dig) = 1. This means the following:

« By construction, Extract(td,dig) outputs NotMatching if HE.Dec(skmain, ct™") # 0. By construction of

root
Matching . Matching ;. main _
Poin > thismeans P "= (ctTar, skimain) = 0.

+ Next, ValidateDigest outputs 1 if BARG.Verify(vkgarg, C., 2n — 1, 7r4ig) = 1. By construction of DeriveChal, we
have that idx = L in the execution of Expt(A), so this means that BARG.Verify (vkgarc, Cigx, 211 — 1, 7dig) = 1.

Since Pl\/‘atcmng(ctmain Skmain) = 0 and BARG.Verify(vkgarc, Cidx, 21 — 1, 7mgig) = 1, the predicate propagation exper-

main root

iment Expt(A’) also outputs 1. Hence, we conclude that Pr[Expt(A’) = 1] > Pr[ExptEV 4(4) = 1]. To complete the
proof, we now show using Theorem 4.12 that Pr[Expt(A”) = 1] < negl(A). To leverage Theorem 4.12, we analyze

PMatching’ DeriveChal] from Definition 4.11.

main

the predicate propagation hybrid experiment Expt; := Expt;[
Claim 4.24. Ifllcom satisfies binding against efficient non-uniform adversaries then for any j € [n], it holds that
Pr[Expt;(A’) = 1] = negl(4).

Proof. Suppose Pr[Expt;(A’) = 1] = e. We use A’ to construct an efficient adversary 8 for the binding security
game of II¢op, as follows:

1. On input 14, algorithm B runs A’ to obtain 17, the set S = @ and the index i* = L.

2. Algorithm B outputs the block length A - £(1) and the vector length 2n — 1 to the challenger. The challenger
responds with crscom.

30

3. Algorithm B samples the following quantities as Setup:

o (skmains PKinain) < HE.Gen(lA, 1") and (skshadow> PKshadow) < HE.Gen(lA, 1m).
. (crsBARG, vkBARG, tdBARG) “— BARG.TrapGen(lA, lzn, 15, 13, {_]})
. ctgr)0 « HE.Enc(pk,, 0) for all b € {main, shadow}.

« Foralli € [n],b € {main, shadow} : ctib) < HE.Enc(pk,, 0).

(b) _(b) (b)

hk > Chi,12 -+ 2 9]

hk n) < Com'Commit(CrSCOms (Ctib), ey Ct,(.lb)))

« For each b € {main, shadow}, let (com
4. Algorithm B computes hk and vk as defined in Egs. (4.1) and (4.2), and runs A’ on (hk, vk) to obtain (dig,).

5. Algorithm 8B parses dig = (ctfgf)‘t", tﬁsgfw COMmain, COMghadows Tdig)-

main » (shadow)

6. Algorithm B extracts w = (c t

main ~shadow ain shadow
w=(ct " ct som, opp)

gmain gshadow &)« BARG.Extract(tdgarc, 77, j) and parses

7. Algorithm B outputs the commitment com{}3", the index j and the openings (ctmain ma'”) and (ctmaln main),

By construction, the challenger samples crscom «— Com.Setup(lA, 1Alea(hn) op 1), which matches the specification
in Expt;. Thus, algorithm B perfectly simulates an execution of Expt; for A’. By assumption, with probability e,
algorithm A’ outputs dig and 7 such that the experiment outputs 1. This means the following conditions hold:

~ (shad : ~ A
Co(jy (™, ™™, gmain, ghadov) =1 and - PRAE(EA™™, skinain) = 0

By definition of C, and using the fact that j € [n], this means

main

Com. Verify (crscom, comi&™, j, Gmain. omain) = 1 main).

and ct € {ctma'n ct

zero

Next, by correctness of Ilcom,

(0) ctrpam maln) =1.

Com.Verlfy(crscom, comy, ', J, s Ohicj

main Matchi ~ main
Since P atc mg(

Therefore, it suffices to argue that ctmam #ct , SKmain) = 0, this means

main
HE.Dec(skmain, 6tmaln) # 0.
Since ct™" is an encryption of 0, we can appeal to perfect correctness of ITij¢ to conclude that ¢t # ctmain,

Therefore it must be that ct™ " =ct . Moreover, ctmai" is also an encryption of 0, so again by perfect correctness

of the encryption scheme, we can conclude that ctma'” # ™" = ™" In this case, algorithm 8B successfully opens

com?ka'n to two distinct values ct;?"a'” #ct" . Thus algorithm B breaks binding with the same advantage «. O

By Claims 4.23 and 4.24, we can invoke Theorem 4.12 to conclude that Pr[Expt(A’) = 1] < negl(A). Extractor-validity
security now follows via Eq. (4.4). O

4.4.1 Index Hiding with Extracted Guess

In this section, we show that Construction 4.2 satisfies the index hiding with extracted guess property. The challenge
in this reduction is we need to switch from an encryption of 0 to an encryption of 1 (in the hash key) while retaining
the ability to decide whether the digest is “Matching” or not (which in the real scheme, requires knowledge of the
secret key for the underlying encryption scheme). Similar to the proof of Theorem 4.14 and as described in Section 2,
we leverage a Naor-Yung proof strategy for the analysis here.

31

Theorem 4.25. IfIlyg satisfies perfect correctness, evaluation correctness, and CPA-security, llcom is computationally
binding and llgagG satisfies set hiding with extraction, set hiding, and is somewhere extractable, then Construction 4.2
satisfies index hiding with extracted guess.

Proof. Let A be an efficient adversary for the index hiding with extracted guess security game. We define a sequence
of hybrid experiments:

+ Hyb,: This is ExptIHE 4 (A, 0). Specifically, the game proceeds as follows:
1. On input the security parameter 14, algorithm A outputs the input length 17, a set S C [n], and an index
i*€s.
2. The challenger now samples the following quantities as in Setup:

) < HE.Gen(1%,1") and (skshadow, pk
— Sample crscom < Com.Setup(lA, Ata(dn) op — 7).

- Sample (skmain, PKmain shadow) < HE.Gen(1%4,17).
— Sample (crsparc, Vksarg) < BARG.Gen(1%4,12"1, 1%, 1%), where s is a bound on the size of the circuit

computing the index relation from Fig. 1.

— For each b € {main, shadow}, sample ctifr)o « HE.Enc(pk,, 0).

— Forall i € [n], sample a random v; & {0, 1} \ {0}.

— For each i € [n] and b € {main, shadow}, if i € S\ {i*}, sample ctgb) < HE.Enc(pk,, v;); otherwise
sample ctgb) «— HE.Enc(pky, 0).

I(fi(), Igi)l, . .,O'[Ei,)n) «— Com.Commit(crscom, (ctgb), . ..,ctf,b))).

3. The challenger constructs hk and vk according to Egs. (4.1) and (4.2):

- Foreachb € {main, shadow}, let (com

b b b b b
hk = (CI’SCom, CI'SBARG: {pkb’ Ctier)o’ Ct() Ct() l’(lk)l’ e ék)n}be{mam shadow})

b b
vk= (CFSCOm, vkearc, {pkb’ Ctier)o’ COm()}be{mam shadoW})

The challenger gives (hk, vk) to A.
4. Algorithm A outputs a digest dig = (c

tmam tshadow

!, et?02doY, COMmain, COMghadow 7dig) and an opening 7.

5. The output of the experiment is 1 if
BARG.Verify(vkparc, Ci+0,2n = 1,m) =1 and HE.Dec(skmain, ctiay’) = 0.
Otherwise, the output is 0.
+ Hyb,: Same as Hyb, except the challenger samples ct‘had"“’ «— HE.Enc(pKgpagows Vir)-
+ Hyb,: Same as Hyb,, except the output of the experiment is 1 if
BARG.Verify(vkparg, Ci 0,21 — 1,7) =1 and HE.Dec(skshadows ctines ™) = 0.
Notably, the challenger’s behavior in this experiment does not depend on skpain-
+ Hyb;: Same as Hyb,, except the challenger samples ctma'” — HE.Enc(pk i Vi)

» Hyb,: Same as Hyb,, except the output of the experiment is 1 if
BARG.Verify(vkparc, Ci+,2n = 1,m) =1 and HE.Dec(skiain, ctinay’) = 0.

This is experiment ExptIHE 4 (2, 1).

We write Hyb,(A) to denote the output of experiment of Hyb, with adversary A. We now analyze each pair of
hybrid experiments.

32

Claim 4.26. IfTyg is CPA-secure, then there exists a negligible function negl(-) such that

|Pr[Hyb1(ﬂ) = 1] = Pr[Hyb,(A) = l]i = negl(4).

Proof. Suppose |Pr[Hyb0(Jﬂ) =1] = Pr[Hyb,(A) = 1]\ = ¢. We use A to construct an efficient attacker B for the
CPA security game as follows:

1.

2.

On input 1%, algorithm B runs A to obtain the input length 1", a set S C [n], and an index i* € S.

The challenger sends the public key pkg,, 40w t0 B.

. Algorithm B samples a random v; & {0, 1} \ {0} for each i € [n].
. Algorithm 8 sends the challenge (0, v;-) to the challenger and gets an encryption ct*.

. Algorithm 8 samples the following:

+ (skmain: PKpain) < HE.Gen(1%).

« (crspara, vkparg) < Gen(1%,1%1,15,1%).

e CISCom Com.Setup(lA, 1) op 1).

. ct§£20 < HE.Enc(pk,, 0) for all b € {main, shadow}.

« Foralli € [n],b € {main,shadow}, if i € S\ {i*} then sample ctlgb) < HE.Enc(pk,, v;). Otherwise
sample ctgb) < HE.Enc(pk,, 0).

o Let ct}'?ad“‘” «— ct*.

. (com}(]bk), a}(]ﬁ)l, el aéﬁ)n) — Com.Commit(crscom, (ctib), e ct,gh))) for all b € {main, shadow}.

. The challenger constructs hk and vk according to Eqs. (4.1) and (4.2):

hk = (crscOm, CISBARG» {pkb, ctﬁfr)o, ctib), .. .,ct(b) o Pt

n > ¥ hk1 hk,n}be{main,shadow})
— (b) (b)
vk = (CI‘SCom, vkearG, {pkb’ Clzeros comy, be{main,shadow}

The challenger gives (hk, vk) to A.

. Algorithm A outputs a digest dig = (ct:‘;f)it“, ctfggfo‘”, COMpmain, COMshadows ﬂdig) and an opening 7.

. Algorithm 8 parses outputs 1 if all of the following conditions hold, and 0 otherwise:

(a) BARG.Verify(crsgarc, Cic1, (1,...,2n—1),7) = 1.
(b) HE.Dec(skmain, ct™i") = 0.

root

By construction, if ct* is an encryption of 0 then algorithm 8 simulates Hyb,, with attacker A and if ct* is an encryption
of v;+ then attacker 8 simulates Hyb, with attacker A. Furthermore, attacker 8 outputs the guess 1 if and only if A
wins the simulated game, therefore the advantage of 8 is exactly |Pr[Hyb0(ﬂ) =1] = Pr[Hyb,(A) = 1] \ In addition,
if A is efficient then so is B, therefore by the security of ITyjg, we conclude that ¢ is negligible and the claim follows. O

Claim 4.27. IfIyg is perfectly correct and satisfies evaluation correctness, Hcom is computationally binding, IIgarc
satisfies set hiding with extraction, set hiding, and is somewhere extractable, then there exists a negligible function neg|(-)

such that | Pr[Hyb,(A) = 1] — Pr[Hyb, (A) = 1]| = negl(A).

33

Proof. By construction, the only difference between the execution of Hyb; and Hyb, is the output condition. Let E
be the following event in an execution of Hyb, and Hyb,:

BARG.Verify (vkparc, Ci0,2n — 1,m) =1 and HE.Dec(skmain, ctmai”) # HE.Dec(skshadows ct§235'°w). (4.5)

root

Observe that if E does not occur, then the output of Hyb, and Hyb, is identical. This means that
| Pr[Hyb,(A) = 1] = Pr[Hyb, (A) = 1]| < Pr[E].

We now leverage Theorem 4.12 to argue that Pr[E] = negl(4). To do so, we start by defining the mapping DeriveChal
as follows:

DeriveChal(S,i*) := (S,i") — (5,5 \ {i*}, (i*,0)).
Next, we define the validity predicate Py,jiq: {0, 1}* — {0, 1} as follows:

1 HE.Dec(skmain, Ctmain) = HE.Dec(skshadows Ctshadow)

Pvatid (Ctmains Ctshadows SKmain, SKshadows J» Z2) =
va ld(main, “shadow main shadow: J) 0 HE~DeC(5kmain,Ctmain) # HE-DeC(Skshadow; Ctshadow)

Since Py,jiq does not use the index j and the auxiliary input z, we omit them in the following exposition. We now
show that Py,iq is a tree-based additive invariant.

Lemma 4.28. IfTlyg satisfies evaluation correctness, then Py,jiq is a tree-based additive invariant.
Proof. Let A € N. Fix the following quantities:
« any two key pairs (sKmains PKynain)> (SKshadows PKepadow) il the support of HE.Gen(1%4,1");

« any tuple of ciphertext vectors (ctMin, ctshadow) ' (egmain cgshadow) 'where each vector has length ;
« for each b € {main, shadow}, let ct§ﬂ’2n = HE.Add(pk,, ctEb), ct}(zb)).

Suppose
i had i had
Pyaiid (Ct;nam, Cti adow, SKmains skshadow) = PVaIid(Ctgmm’ Ct; adow, SKmains Skshadow) =1

This implies
HE.Dec(skmain, ct™™) = HE.Dec(skshadow ctihad"w)

HE.Dec(sKmain, ct™™) = HE.Dec(skshadow cts240%).
By the evaluation correctness of ITyg, we conclude that

HE.Dec(skmain, ctgﬂ“ = HE.Dec(skmain, ct{“ai") + HE.Dec(skmain, ct;‘ai“)
= HE.Dec(skshadows €t"29°%) + HE.Dec(skshadows ct34°%)

had
= HE.Dec(skshadow, CtZu?n o

tmain Ctshadow

oA etina%% skmain, Skshadow) = 1 and the claim follows. O

Therefore we conclude that Py,jiq(c

Let Expt := Expt[Pyajid, DeriveChal] be the predicate propagation experiment from Definition 4.10. We argue that
Pr[E] < Pr[Expt(A) = 1], (4.6)

where E is the event from Eq. (4.5). By construction, the adversary’s view in Hyb, and Expt is identical. Suppose
E occurs in an execution of Hyb,. Then the following hold:

« BARG.Verify(vkgarc, Cic0, 2n — 1,7) = 1. By construction of DeriveChal, we have that idx = (i*,0) in the
execution of Expt(.A). Hence, this means that BARG.Verify(vkgarc, Cidx, 2n — 1,) = 1.

34

« HE.Dec(skmain, ct™") # HE.Dec(skshadow €t129°%). This means Pyyjiq (ct™a", ctshadow sk .. skohadow) = 0.

Correspondingly, the output in Expt is also 1 in this case. Hence, we conclude that Pr[Expt(A) = 1] > Pr[E]. To
complete the proof, we analyze the predicate propagation hybrid experiment Expt; := Expt;[Pvalid, DeriveChal].

Lemma 4.29. IfTIy is perfectly correct and Ilcom satisfies computational binding, then there exists a negligible function
negl(-) such that for all j € [n], it holds that Pr[Expt;(A) = 1] = negl(4).

Proof. Suppose there exists some j € [n] where Pr[Expt;(A) = 1] > ¢(4) for some non-negligible . We use A to
construct an adversary 8B that breaks computational binding of IIcep,.

1. On input the security parameter 1%, algorithm B runs algorithm A to obtain the input length 17, a set S C [n],
and an index i* € S.

2. Algorithm B outputs the block length 14%(4") and the vector length 2n — 1 to the challenger. The challenger
responds with crscom.

3. Algorithm B computes (S \ {i*}, S, (i*,0)) « DeriveChal(S, i*). It then samples the following components:

* (skmains PKinain) < HE.Gen(lA, 1), (skshadows PKshadow) < HE.Gen(lA, 1m).
. (crsBARG, vKkBARG, tdBARG) “— BARG.TrapGen(lA, 12n—1’ 15, 13, {]})
« Sample a random v; & {0,1}* \ {0} for each i € [n].

« For each b € {main, shadow}, sample ctier)O < HE.Enc(pk,, 0).

« Foreachi € [n] \ {i*} and b € {main,shadow}, if i € S, sample ctgh) «— HE.Enc(pky, v;). If i ¢ S, sample
ctgb) < HE.Enc(pk,, 0).

- Sample ct™" « HE.Enc(pk,,in, 0) and cts"39%% « HE.Enc(pkgy,dows Vic)-
« For each b € {main, shadow}, let (com(b) ol® o®) < Com.Commit(crs (ct<b) ct(b)))
)) hk ? hk,l"”’ hk,n . Comy 1 EIRELE] n .
4. Algorithm B constructs hk and vk according to Eqs. (4.1) and (4.2):
b b b) (b b
hk = (CI‘SCom, CI'SBARG> {pkb’ ctﬁer)o’ Ct() Ct() ng)l’ T O—ng,)n}be{main,shadow})

b b
vk = (CrSCom, VKBARG, {th, Ctier)o, Comlik) }be{main,shadow})

Algorithm 8 gives (hk, vk) to A.

5. Algorithm A outputs a digest dig = (ct™a", ct$h34OW com,pin, COMshadows 7Tdig) and a proof 7.

(Atmain’ cAt(shadow)’ O_main, o.shadow

6. Algorithm B extracts w =

main ~shadow .in shadow

,w) « BARG.Extract(tdparc, 7, j) and parses

w = (ct ct »Ohk > Thi
7. Algorithm 8B checks if there exists b € {main,shadow} where Com. Verify(crs(;om,comffl’(),], &) O'(b)) =
1and &t # ctﬁ.b). If so, it outputs the commitment comhk), the index j, and the value-opening pairs (c t() lgﬁ)J)

and (ct() (b)).

By construction, the challenger samples crscom < Com.Setup(1%, 1% 2 — 1), which matches the specification
in Expt;. This, algorithm B perfectly simulates an execution of Expt; for A. By assumption, with probability ¢,
algorithm A outputs dig and 7 such that the experiment outputs 1. This means the following conditions hold:

main ~ shadow

main A(shado) i h ~
Y o™i o adow)) =1 and PVaIld(ct ,ct , SKmains Skshadow’) =0.

l 0(]’(Ct , O s 5

We consider two possibilities:

35

« Suppose j = i*. By construction of C; o (see Fig. 1), this means a® = ctg’r)0 for b € {0, 1}. By construction, ct§230

~ shad . .
is an encryption of 0 under pk,. In this case, Pyaliq (ctmaln Y skimains SKshadows) = 1, which contradicts the

premlse

+ Suppose j # i*. By construction of C;, there are now two more possibilities:

(b)

~ shadow

= ctigr)o As in the first case, this means ¢t " and ¢t both de-

main ~ shadow
ct » SKmain Skshadow’) =1,

— Suppose for b € {main, shadow}, ct

crypt to 0 under skp,in and skshadow, respectively. In this case Pyaig (ct
which again contradicts the premise.

®) _

— Suppose for b € {main, shadow}, ct &' In this case, we also have

* Com.Verlfy(crscom,comma'",j, mam o-m(a'“) =1;and
. . ~shado
« Com. Verlfy(crsCOm,comShad"W,], et o, aﬁtad"w) =1.

Suppose ct() = =ct'® forallb e {0, 1}. In this case, since j # i*, the ciphertexts ct;.“ai", ctj.had"“’ are either

both encryptions of 0 (if j ¢ S) or both encryptions of v; (if j € S). This again contradicts the premise.
Thus, if Py,jig is not satisfied, we conclude that there exists some b € {0, 1} such that ct(b) * ct;b).
Thus, there exists some b € {0, 1} such that the following holds:

~ (b) b . b () (b
ct £ ctﬁ.) and Com.Verlfy(crsCOm, comﬁk) Jj,c ,algk)) =1.

Moreover, by correctness of Il¢com, we have that

Com.Verify(crscom,comf]hk),], t(b) }Ei)])

In this case, algorithm B successfully breaks the binding property of the commitment scheme. O

Since for all j € [n], it holds that Pr[Expt;(A) = 1] = negl(1), we can invoke Theorem 4.12 to conclude that
Pr[Expt(A) = 1] = negl(A). Claim 4.27 now follows via Eqs. (4.5) and (4.6). O

Claim 4.30. IfTye is CPA-secure, then there exists a negligible function negl(-) such that
[Pr[Hyb,(A) = 1] — Pr[Hyb,(A) = 1]| = negl(1).

Proof. This follows by an analogous argument as the proof of Claim 4.26. In particular, the reduction obtains pk,.;,
and ct@" from the challenger. It samples (pkg;,qou» SKshadow) itself which it can use to compute the output (according
to the specification in Hyb, and Hyb,). O

Claim 4.31. IfIlyg is perfectly correct and satisfies evaluation correctness, Ilcom is computationally binding, and Ilgarc
satisfies set hiding with extraction, set hiding, and is somewhere extractable, then there exists a negligible function negl(-)
such that | Pr[Hyb,(A) = 1] — Pr[Hyb;(A) = 1]| = negl(A).

Proof. This follows by an analogous argument as the proof of Claim 4.27. The only difference is that we take the
mapping DeriveChal to be
DeriveChal(S, i) := (S,i) — (S, S, (i,0)).

The rest of the analysis proceeds exactly as before. O
Theorem 4.25 now follows by combining Claims 4.26, 4.27, 4.30 and 4.31. O
Acknowledgments

We would like to thank the PKC 2025 reviewers for their useful comments. Brent Waters is supported by NSF
CNS-1908611, CNS-2318701, and a Simons Investigator award. David J. Wu is supported by NSF CNS-2140975,
CNS-2318701, a Microsoft Research Faculty Fellowship, and a Google Research Scholar award.

36

References

[ADM*24]

[BBK*23]

[BCJP24]

[Ben94]

[BFMSS]

[BKP*24]

[BV11]

[BWW24]

[CGJ*23]

[CJJ21a]

[CJJ21b]

[CLTV15]

[CW23]

[DDO*01]

[DGKV22]

[FWW23]

[Gen09]

[GL89]

[GMS2]

[G092]

Gennaro Avitabile, Nico Déttling, Bernardo Magri, Christos Sakkas, and Stella Wohnig. Signature-based
witness encryption with compact ciphertext. In ASTACRYPT, pages 3-31, 2024.

Zvika Brakerski, Maya Farber Brodsky, Yael Tauman Kalai, Alex Lombardi, and Omer Paneth. SNARGs
for monotone policy batch NP. In CRYPTO, pages 252-283, 2023.

Maya Farber Brodsky, Arka Rai Choudhuri, Abhishek Jain, and Omer Paneth. Monotone-policy aggregate
signatures. In EUROCRYPT, pages 168-195, 2024.

Josh Benaloh. Dense probabilistic encryption. In SAC, pages 120-128, 1994.

Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-knowledge and its applications
(extended abstract). In STOC, pages 103-112, 1988.

Nir Bitansky, Chethan Kamath, Omer Paneth, Ron D. Rothblum, and Prashant Nalini Vasudevan. Batch
proofs are statistically hiding. In STOC, pages 435-443, 2024.

Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic encryption from (standard)
LWE. In FOCS, pages 97-106, 2011.

Eli Bradley, Brent Waters, and David J. Wu. Batch arguments to nizks from one-way functions. In TCC,
2024.

Arka Rai Choudhuri, Sanjam Garg, Abhishek Jain, Zhengzhong Jin, and Jiaheng Zhang. Correlation
intractability and snargs from sub-exponential DDH. In CRYPTO, pages 635-668, 2023.

Arka Rai Choudhuri, Abhishek Jain, and Zhengzhong Jin. Non-interactive batch arguments for NP from
standard assumptions. In CRYPTO, pages 394-423, 2021.

Arka Rai Choudhuri, Abhishek Jain, and Zhengzhong Jin. SNARGs for P from LWE. In FOCS, pages
68-79, 2021.

Ran Canetti, Huijia Lin, Stefano Tessaro, and Vinod Vaikuntanathan. Obfuscation of probabilistic circuits
and applications. In TCC, pages 468—497, 2015.

Jeffrey Champion and David J. Wu. Non-interactive zero-knowledge from non-interactive batch
arguments. In CRYPTO, pages 38-71, 2023.

Alfredo De Santis, Giovanni Di Crescenzo, Rafail Ostrovsky, Giuseppe Persiano, and Amit Sahai. Robust
non-interactive zero knowledge. In CRYPTO, pages 566-598, 2001.

Lalita Devadas, Rishab Goyal, Yael Kalai, and Vinod Vaikuntanathan. Rate-1 non-interactive arguments
for batch-NP and applications. In FOCS, pages 1057-1068, 2022.

Cody Freitag, Brent Waters, and David J. Wu. How to use (plain) witness encryption: Registered abe,
flexible broadcast, and more. In CRYPTO, pages 498-531, 2023.

Craig Gentry. Fully homomorphic encryption using ideal lattices. In STOC, pages 169-178, 2009.

Oded Goldreich and Leonid A. Levin. A hard-core predicate for all one-way functions. In STOC, pages
25-32, 1989.

Shafi Goldwasser and Silvio Micali. Probabilistic encryption and how to play mental poker keeping
secret all partial information. In STOC, pages 365-377, 1982.

Shafi Goldwasser and Rafail Ostrovsky. Invariant signatures and non-interactive zero-knowledge proofs
are equivalent (extended abstract). In CRYPTO, pages 228-245, 1992.

37

[GVW19] Rishab Goyal, Satyanarayana Vusirikala, and Brent Waters. Collusion resistant broadcast and trace from
positional witness encryption. In PKC, pages 3-33, 2019.

[HLR07] Chun-Yuan Hsiao, Chi-Jen Lu, and Leonid Reyzin. Conditional computational entropy, or toward
separating pseudoentropy from compressibility. In EUROCRYPT, pages 169-186, 2007.

[IKO05] Yuval Ishai, Eyal Kushilevitz, and Rafail Ostrovsky. Sufficient conditions for collision-resistant hashing.
In TCC, pages 445-456, 2005.

[KLVW23] Yael Kalai, Alex Lombardi, Vinod Vaikuntanathan, and Daniel Wichs. Boosting batch arguments and
RAM delegation. In STOC, pages 1545-1552, 2023.

[KVZ21] Yael Tauman Kalai, Vinod Vaikuntanathan, and Rachel Yun Zhang. Somewhere statistical soundness,
post-quantum security, and SNARGs. In TCC, pages 330-368, 2021.

[Mer87] Ralph C. Merkle. A digital signature based on a conventional encryption function. In CRYPTO, pages
369-378, 1987.

[NWW24] Shafik Nassar, Brent Waters, and David J. Wu. Monotone policy BARGs from BARGs and additively
homomorphic encryption. In TCC, 2024.

[NY90] Moni Naor and Moti Yung. Public-key cryptosystems provably secure against chosen ciphertext attacks.
In STOC, pages 427-437, 1990.

[Sah99] Amit Sahai. Non-malleable non-interactive zero knowledge and adaptive chosen-ciphertext security.
In FOCS, pages 543-553, 1999.

[WW22] Brent Waters and David J. Wu. Batch arguments for NP and more from standard bilinear group
assumptions. In CRYPTO, pages 433-463, 2022.

A Proof of Theorem 4.12 (Predicate Propagation)

Our proof follows a very similar structure as the corresponding proof from [NWW24, Theorem 5.9]. As noted in
Remark 4.13, we cannot use the proof from [NWW24] as a black box. For this reason, we reproduce the analysis
here. Some parts of the description are taken verbatim from [NWW24, Theorem 5.9]. To simplify notation, we write
Expt := Expt[P, DeriveChal] and Expt; := Expt; [P, DeriveChal] in the following proof. Fix an adversary A and let
n be the input length chosen by A. We proceed by induction on the index j € [2n — 1]. In the following, we will
view the index j as an index of a node in a (complete) binary tree with n leaves (indexed according to Definition 4.1).
As such, we can refer to the “height” of an index j. Then, we show the following lemma:

Lemma A.1. Suppose the conditions of Theorem 4.12 hold. Take any index j € [2n — 1] and let h be the height of node
J (where the leaf nodes have height 0). Then, there exists a negligible function ¢;(1) such that

Pr[Expt;(A) =1] = 2" - £;().

Proof. Suppose the conditions of Theorem 4.12 hold. We prove the lemma by induction on the height & of the index
je[2n-1].

Base case. For the indices j € [n] of height 0 (i.e., the leaves of the tree), the lemma follows by assumption.

38

Inductive step. Suppose the inductive hypothesis holds for every index j* € [2n — 1] of height h. Let j € [2n — 1]
be an index with height & + 1. Let j, jr € [2n — 1] be the indices of the left and right child of node j (as defined in
Definition 4.1). By construction, j; and jz have height h. The inductive hypothesis now asserts that for j* € {j, jr},

Pr[Expt;. (A) =1] = 2" - ;- (D), (A.1)
for some negligible function ¢;+ (1). We now define an intermediate experiment Expt for each node j of height h > 0:

1. On input the security parameter 14, algorithm A outputs the input length 17, a set S C [n], and an index i* € S
(or a special symbol L).

2. The challenger computes (Smain, Sshadow, idx) «— DeriveChal(S, i*).
3. The challenger samples the following quantities as in Setup:

o (skmains PKinain) < HE.Gen(1%,1") and (skshadow PKshadow) < HE.Gen(1%4,17)

« (crsparG» VkparG, tdparg) < TrapGen (14,127, 15,13, {, ji, ja})-

e CISCom Com.Setup(lA, Ha) an — 1),

ct§520 « HE.Enc(pk,, 0) for all b € {main, shadow}.

For all i € [n], sample a random v; < {0,1}* \ {0}.

« Foralli € [n],b € {main,shadow}, if i € S, then sample ctgb) « HE.Enc(pk,, v;), otherwise sample
ctgb) < HE.Enc(pk,, 0).

. (com:li),a}(li)l, .. .,créf:)n) — Com.Commit(crscom, (ctgb), . ..,ctflb))) for all b € {main, shadow}.

4. The challenger constructs hk and vk as defined in Eqs. (4.1) and (4.2):

ct?)

b b b b
hk = (Cl’Scom, CISBARG {pkb, zero> Cti), e, Ct,(,l) g (&)

»Ohir - "Uhk,n}be{main,shadow})

b b
Vk = (CrsCOma VkBARGa {pklﬂ Ct§er)o, Comlik) be{main,shadow})

The challenger gives (hk, vk) to A.

main Ctshadow

root s €t 30Y, COMmain, COMshadows 7Tdig) and a proof 7.

5. Algorithm A outputs a digest dig = (ct

~ main ~ shadow omain

6. The challenger computes (ctj ,ct; , 0} ,ajs.had"“’, w;) < BARG.Extract(tdgarg, 7, j).

7. The output of the experiment is 1 if all of the following conditions hold, and 0 otherwise:

(a) BARG.Verify(crsparags Cidxs (1,-..,2n—1),7) = 1.

. . ~main ~shadow i ~
(b) Ciax(Jy (ctj ety gain, gshadow) = 1.
~main ~shad . .
(c) P(ct;-nam, ctj- 9 SKmains SKshadows J» (V1, - - -» Vi, idX)) = 0.
In our analysis below, we define an additional set of events in an execution of Expt; with A. First, define the following
two quantities:

~main ~ shadow f had ~ .
. (ctjL .t ,O'Ea'",ajs.La % w;,) < BARG.Extract(tdgarc, 7, j)-

~ main » shadow i had ~ .
. (ctjR et ,o}:a'",ojs.ka %, w;,) < BARG.Extract(tdgarc, 7, jr)-

Now, define the following events:

. E\(/Qify: This is the event that BARG.Verify(vkgarc, Cidx, 2n — 1, 71) = 1.

39

~ main ~ shadow

. E;,j}* for each j* € {J, ji, jr}: This is the event where P(ctj* ,ctje , SKmains SKshadows J s (V1 + « + Vi, idx)) =1.

. E\(/Qidcom,j* for each j* € {ji, ja}: This is the event

i s ymain i . .« ~shadow
Com.Verify (crscom, COMmain, j*, ctje, 072*") = 1= Com.Verify (crscom, COMshadow j, €t ;- ,ajs.bado“’)

. E(CJ(.))rrectWit,j* for each j* € {J, ji, jn}: This is the event Cig (j*, (ctj ety

~main ~shadow | qin shadow
’ >

N ,ij*)) =1.

We now relate the probability that Expt ;(A) outputs 1 to the probability that Expt; (A) and Expt; (A) outputs 1. To
do so, we first program the BARG to be extracting on the set {J, j;, jr}. We then argue via somewhere extractability
of the BARG and computational binding of the commitment scheme that if the values associated with the nodes j;
and j, satisfy the predicate P and the proof verifies, then the value associated with j must also satisfy the predicate
P. In this case, the output of Expt;(A) is guaranteed to be 0.

Claim A.2. IfIlgarc satisfies set hiding with extraction, then there exists a negligible function negl(-) such that for
all j* € {J, ju, Ju} it holds that

- () () 1] =
Pr[EXpt}'*(ﬂ) - 1] —Pr [EVerify A ECorrectWit,j* A ﬁEP,j*]‘ - negl(/l)

Proof. Take any j* € {J, j., ja} and suppose

_ () () (] =
|Pr[EXpt}'* (ﬂ) - 1] —Pr [EVerify A ECOrrectWit,j* A ﬁEP,j*] =€
for some non-negligible ¢. Importantly, note that the events E\(/é 2ify’ Ego)rrectWit I and E;,j]).* are defined for Exptj. and

not Expt ;.. We use A to construct an adversary 8 for the set hiding with extraction game of IIgarg:

1. On input the security parameter 1, algorithm 8 runs algorithm A to obtain the input length 17, the set S C [n],
and an index i* € S.

2. Algorithm B outputs 1271 15 13, the challenge set J = {}, ji, jr}, and the challenge index j* € J to the chal-
lenger, where s is the bound on the size of the circuit in Fig. 1. The challenger responds with (crsgarc, Vksara)-

3. Algorithm B computes (S, Sy, idx) < DeriveChal(S, i*). It then samples the following components:

® (Skmains Pkmam) — HE.Gen(l’l, ln), (Skshadow; Pk
e CISCom Com.Setup(lA, A leldn) op 1).

hadow) & HE.Gen(14,1™).
« Foralli € [n], sample a random v; & {0,1}*\ {0}.

« For each b € {main,shadow}, sample ct§§’20 < HE.Enc(pk,0). Then, for each i € [n] and b €

{main, shadow}, if i € Sp, sample ctl(b) < HE.Enc(pk,,v;); otherwise, if i ¢ Sp, sample ctlfh) —
HE.Enc(pk,, 0).

() _(b) (b)

« For each b € {main, shadow}, let (comhk SOy "thn) — Com.Commit(crscom, (ctib), . .,ct,(lb))).

4. Algorithm B constructs hk and vk according to Eqs. (4.1) and (4.2):

by (b b (b b
hk = (crsCOm,crsBARG, {pky, et et et)’Ur(]k,)l’ . .,aﬁk))n}be{main’shadow})

vk = (CrSCom, VkBARGa {pkln Ctiggo, comai) bE{main,shadow})
Algorithm 8B gives (hk, vk) to A.

5. Algorithm A outputs a digest dig = (ct?;i‘)it", ctfggtd"‘”, COMpmain, COMshadows ﬂdig) and a proof 7.

40

6. Let Cigx be the circuit as defined in Definition 4.10. Algorithm 8 first checks
BARG.Verify(vkgara, Cidx, 20 — 1, 7) = 1.

If the check fails, algorithm B aborts with output L. Otherwise, algorithm B sends the circuit Ci4x, the instance

number 2n — 1, and the proof 7 to the challenger. The challenger replies with a string which 8 parses as

~ main Ashadow main _shadow .~
(ctj ety ,opih o S Wj).

7. Algorithm 8B outputs 1 all of the following conditions hold:

main shadow R ~
o Cidx (] (Ct j* ,Gjr.'}am, O.Jshadow Wje)) =1
~ main ~ shadow

. P(Ct tj* , Skmains SKshadows Jj* (Vi, ..y Vi, idX)) =

Otherwise, algorithm 8 outputs 0.

Let (crsgarc, Vkpara, tdparc) be the parameters sampled by the challenger in the set hiding with extraction game.
In the game, after B outputs (Cigy, 2n — 1,), the challenger checks BARG.Verify(vkgarc, Cidx, 21 — 1,) = 1. If the

check passes, it replies with (ctmam Atstadow, O';Eai”, G]S.bad"“’, wj+). We now consider the two possibilities:

+ Suppose the challenger responds according to the specification of ExptIHE (4, 0). In this case, the chal-
lenger samples (crsgarc, Vkarc, tdsarg) < BARG.TrapGen(14, 177115, 1%, {j, ju, ja}). Thus, algorithm B
perfectly simulates for A an execution of Expt. We claim that algorithm 8 outputs 1 if and only if the event

E(]) E(J)

verity NEcorrectwit j+ —|E[(,j]) occurs. This event corresponds to the conjunction of the following set of conditions:

- BARG.Verify(kaAR(;, Cidx,2n — 1, 1) = 1.

main Ashadow main _shadow

- BARG.Verify(vkgarc, Cidx, 2n — 1,) = 1 and Cigx (j* (ct ct. oM o

~ main ~ shadow

- P(Ct t]* , Skmains SKshadows j*> (Vls - Vi, IdX)) =0.

main ~shadow _oin shadow .~

where (ct ,etp T ot o W;+) < BARG.Extract(tdgagc, 7, j*). This is the same set of conditions
that algorithm 8B checks, so algorithm 8 outputs 1 with probability Pr [E\(/Je 3 ify E(Cjo)rrectwn A —E; (/)] in this case.

+ Suppose the challenger responds according to the specification of ExptIHE 4(4, 1). In this case, the challenger
samples (crsgarc, Vksarc, tdarg) < BARG.TrapGen(14, 12771, 1%, 1%, {j*}). Thus, algorithm B simulates for
A an execution of Expt ;.. We claim that algorithm 8 outputs 1 if and only if Expt ;. (A) outputs 1. The latter
corresponds to the conjunction of the following set of conditions:

- BARG.VeI‘ify(VkBARG, Cidx, 2n — 1,7m) = 1.

main Ashadow main __shadow

— BARG.Verify(vkara, Cidw 21 — 1,) = 1 and Cigy (J*, (ct}2 ety o, oo

o oo,) = 1.

~ main » shadow

- P(Ct t]* , Skmain» SKshadows J*> (V1, . .+, Vi, idX)) =0.

~ shad - .
where (ctmam ts*a o 0;'33'”, O'JShadOW wj+) < BARG.Extract(tdgarc, 7, j*). Once again, this is the same set of

condltlons that B checks. Thus, in this case algorithm B outputs 1 with probability Pr[Expt ;. (A) = 1].

We conclude that the distinguishing advantage of 8 is precisely

— () () D1l =
)Pr[EXptj* (ﬂ) - 1] Pr [EVenfy A ECorrecth] A _'EP,j*] =4
which completes the proof. O
Claim A.3. IfIlgarG is somewhere extractable then there exists a negligible function negl(-) such that for all j* €
{j, ju jx}, it holds that Pr [E{,glfy E(C]O)rrecthtj | = negl(2).

41

Proof. Take any j* € {J, ji, ja} and suppose Pr [E\(/Qify A _'Eg))rrectwn,j*] > ¢. We use A to construct an adversary 8

for the somewhere extractability game of IIgarG:

1. On input the security parameter 1%, algorithm B runs algorithm A to obtain the input length 17, the set S C [n],
and an index i* € S.

2. Algorithm 8 outputs 12n=1 15 13, the challenge set J = {J, j., ja}, and the challenge index j* € J to the chal-
lenger, where s is the bound on the size of the circuit in Fig. 1. The challenger responds with (crsgarc, VKsarc)-

3. Algorithm B computes (S, Sy, idx) < DeriveChal(S, i*). It then samples the following components:

* (skmains PKiain) < HE.Gen(lA, 1™), (skshadows Pk) «— HE.Gen(lA, 1m).

e CISCom Com.Setup(lA, Ata(dn) op — 7).

shadow

« For all i € [n], sample a random v; & {0, 1}* \ {0}.
« For each b € {main,shadow}, sample ctgfr)o < HE.Enc(pk,0). Then, for each i € [n] and b €
(b)
t.
13

main, shadow}, if i € S, sample ct; — .Enc ,V;i); otherwise, if i », sample ¢ “—
in, shadow}, if i € S ple ct'”) «— HE.Enc(pk, herwise, if i ¢ S pl

HE.Enc(pk,, 0).

« For each b € {main, shadow}, let (com(b) & (b)

. b b
b > Thiers - "th,n) — Com.Commit(crscom, (cti). .,ct,(1))).

4. Algorithm B constructs hk and vk according to Eqs. (4.1) and (4.2):

b b by (b b
hk = (crscc’m’chBARG’ {Pkb’ Ctier)w Cti . thﬁz)’Gtgk,)l’ : "’O.lgk,)n}be{main,shadoW})

b b
vk = (CI‘SCom, vkBARGs {pkb’ Ct§e")0’ Comigk) be{main,shadow})

Algorithm 8 gives (hk, vk) to A.

5. Algorithm A outputs a digest dig = (ct:‘;f)it”, ctfggtd"‘”, COMmain, COMghadows ﬂdig) and a proof 7.

6. Let Cigx be the circuit as defined in Definition 4.10. Algorithm 8 outputs the circuit Cigx, the instance number
2n — 1, and the proof =.

By construction, algorithm 8 perfectly simulates an execution of Expt;. Thus, with probability at least ¢, the digest

dig and proof 7 output by A satisfies E{,je :ify but not E((:J(-J)”ectwmj*. This means

BARG.Verify (vkarc, Cidx, 2n — 1) =1 and Cigy(j", (ét1", &5, gmain, gshadow 5,.)) = g,

This means algorithm B successfully wins the somewhere extractability game of Ilgarc with probability at least ¢
and the claim follows. o

Claim A.4. Suppose the conditions in Claims A.2 and A.3 hold. Then, there exists a negligible function negl(-) such that

Pr [EXptj(ﬂ) =1A (ﬁE\(/-;?idCom,j,, v ﬁEl(’{]),_ v ﬁE\(/Je;iidCom,jR v _|E1(3{])R)] < 2h+1 € (A) + negI(A),
where €;(A) = max(e;, (1), ¢;,(1)).

Proof. By Claim A.2 there exists a negligible function negl, () such that for all j* € {ji, j}, it holds that:

Pr[Expt;. (A) = 1] = Pr [EZ A B i A ﬂEISJJ)]| < negl, (A). (A2)

By Claim A.3 there exists a negligible function negl, (-) such that for all j* € {j, jz} it holds that

() ()
Pr [EVerify A ﬁECorrectWit,j*] < neglz (/1) (A?’)

42

By definition, if Expt}. (A) =1, then event EY) also occurs. Thus, for all events E, it holds that

Verify
Pr[Expt/(A) = 1 A E] < Pr [Ef/e'zify AE]. (A.4)
Similarly, by construction of the circuit Cigy, the event _'E\(/i ii dCom,j* implies event _'Eg))rrectwn o Thus, for any event
E, it holds that 0 0
J J
Pr [ﬁEVa]idCom,j* A E] < Pr [ﬁECOrrectWit,j* A E] . (AS)

Take any j* € {ji, jr}. Since the height of j* is h, the inductive hypothesis applies and Eq. (A.1) holds. We first show that
Pr [Expt)(A) = 1A -Ey).] < 2" - &) (1) + negl, (1) + negl, (). (A.6)

This follows by the following sequence of calculations:

Pr [Expt)(A) = 1 A ~Ey] < Pr By A~E). by Eq. (A4)
=Pr [E\(/Qify A E(cjgrrectwn, J* A _‘EI(JJJ)] +Pr [E\(/Qify A _‘E((:{))rrectwn, J* A _‘EI(JJJ)]
<PrlE) e A B cwie A Ep] +negly () by Eq. (A.3)
< Pr[Expt;. (A) = 1] + negl, (1) + negl, (1) by Eq. (A.2)
< 2" ¢ () + negl, (1) + negl, () by Eq. (A.1).
Next, we have
Pr [Expt(A) =1 A ~Evaiidcom - | < Pr [E\(,Qify A =Evaiidcom,j- | by Eq. (A.4)
<Pr[EJ Lfy A =Ecomectwit j*] by Eq. (A.5)
< negl, (1) by Eq. (A.3).

Combined with Eq. (A.6) and applying a union bound, we have
Pr [Expt) (A) = 1A (B ycom s ¥ 7ES) V ~Exhiacoms V¥ ~Epn)] < 2" (i, (1) + 2, (D) +8(1)
<2M g (1) +8(R),
where §(1) = 2negl, (1) + 4negl, (1) = negl(1) and ¢; (1) = max(ej (1), ¢, (A)). o

Claim A.5. IfP is a tree-based additive invariant and Uconm is computationally binding, then there exists a negligible
function negl(-) such that

- () () () ()
Pr [Expt/;(A) =1 A EVatiacom,j, ™ £ j, N Evatiacom,j, EP,jR] < negl(4).
Proof. Suppose
_ () () () ()
Pr [EXpt;’(ﬂ) =LA Eyiacoms, N Epj, N Evalidcom,j, EP,jR] Z £

We use A to construct an adversary 8 for the binding game for II¢com as follows:

1. On input the security parameter 1%, algorithm B runs algorithm A to obtain the input length 17, the set S C [n],
and an index i* € S.

2. Algorithm B outputs the block length 14% (") and the vector length 2n — 1 to the challenger. The challenger
responds with crscom.

3. Algorithm B computes (S, Sy, idx) < DeriveChal(S, i*). It then samples the following components:

o (skmains PKinain) < HE.Gen(lA, 1") and (skshadow> PKshadow) < HE.Gen(lA, 1m).

43

 (crsparG, VKBARG, tdparG) «— BARG.TrapGen(lA, 12n=115, 13, {J, jus Jr H)-
« For all i € [n], sample a random v; & {0, 1}* \ {0}.

« For each b € {main,shadow}, sample ctgfr)o < HE.Enc(pk,,0). Then, for each i € [n] and b €

{main, shadow}, if i € S, sample ctgb) < HE.Enc(pk,, v;); otherwise, if i ¢ S, sample ctgb) —
HE.Enc(pk,, 0).

I(11|7<), e I(flz)n) — Com_Commit(Crscom, (Ctib), L Ctﬁlb)))~

« For each b € {main, shadow}, let (com TR

4. Algorithm B constructs hk and vk according to Eqs. (4.1) and (4.2):

b b b b b
hk = (CI‘SCom, CrSBARG» {pkb’ Ctﬁer)o’ Ct() Ct() I-(nk)l’ T O—ng,)n}be{main,shadow})

vk = (crsCom, VkBARG, {Pkb, Ctgr)m COm(b) }be{mam shadow})
Algorithm 8 gives (hk, vk) to A.

5. Algorithm A outputs a digest dig = (t?;f)'t“, tfg‘gtd"‘” COMmain> COMshadows ﬂ'dig) and a proof 7.

6. Algorithm B computes the following:

A main shadow i had ~ .
(ct ct; ,G}m‘”, ajs. adoW 4y;) <= BARG.Extract(tdgarc, 7, j).
(Atmaln ~shadow ain

,ct; , 07 ,ofhad"‘”, wy) < BARG.Extract(tdgarc, 71, ji).

~ main ~ shad) . .
(g cti adow. o, cf;hado‘”, wg) «— BARG.Extract(tdgagrc, 7T, jr)-

A~ main A shadow :
In addition, it parses w; = (wj., W) and the internal witnesses w;, = (ctjL ety ,off‘”, Uj&ad"“’) and
~ main » shadow

Wj,R — (Ctj s tj . , jr?}?m’ O.;’P:Iadow)'
7. Algorithm B checks if there exists b € {main, shadow} and d € {r, r} such that ct;b) # ctﬁbd) and
Com. Verify 4% 6™)=1 and Com.Verify(0, ¢ty o) =1
om.Verify (crscom, COmp, jg, jd, id an om.Verify(crscom, comy, jg,ct;
If so, it outputs the commitment comy, the index j; € [2n — 1], and the value-opening pairs (ct j(l;)) and
(ct((ib), ;b)). Otherwise, algorithm B aborts with output L.

By construction, algorithm 8 perfectly simulates an execution of Expt;. for adversary A. By assumption, with
probability at least ¢, algorithm A will output a digest dig and a proof 7 such that the following conditions hold:

main ~shadow _.in

. Expt (A) = 1: This means BARG.Verify (vkgarc, Cidx, 2n—1,) = 1, Cigx (J, (ct ,ct; .0} ,ajs.had"“’, w;)) =

main shadow

1, and P(ct ct; , SKmains SKshadows J> (V15 « -+ Vi, |dx)) =0.

E(])

ValidCom, j, 10T d € {1, R}: This means

main ~ shadow
Com.Verify (crscoms COMmain, ja ¢ty > 072") = 1 = Com.Verify (crscom, COMshadows ja €ty - » 0524%)

main ~ shadow

. E}(,{}d for d € {1, r}: This means P(ctd ,cty , SKkmains SKshadows Jds (V1 -+ - Vi, idx)) =1.

We consider two possibilities:

44

(b) _ ~(b)

« Suppose for all b € {main, shadow}, we have ct, =ct;;)

and ct(b () . By the third condition, we get

~ main ~ shadow . .
P(Ctj,L s Ctj,L , Skmain, SKshadows Jus (Vls e Vg, IdX)) =

~ main » shadow

P(Ctj,R > Ctj’R , SKmains SkshadowajR» (Vl; - Vi, IdX)) =

By the first condltlon we also have C;- y(] (ctmaln ! ;hadow, ojmai”, JJShadOW w;)) = 1, this means that ct<) =
HE.Add(pk,, ctij),) for all b € {main, shadow}. Since P is a tree-based additive invariant, we get that

~ main ~ shadow . .
P(Ctj ,ct; » Skmain, SKshadows J» (V1 -+ -, Vi, ldX)) =

mam ~ shadow

,Ct; , SKmains SKshadows /> (V1, .. ., Vi, idX)) =0, so this

However, this contradicts the condition that P(.

case does not occur.

« Suppose there exists b € {main, shadow} and d € {1, R} where ctfib) # ctj(il) By the first condition, we have

(] (ctmam Atshadow O’mam shadow
Ci Y

; Lo, g3 ,w;)) = 1, this means that Com.Verify (crscom, comp, ja, ctjd, (.’b))

By the second condition, we also have

Com.Verify (crscom, comp, jg, ctd , (b))
In this case, algorithm 8B outputs the commitment comy, the index jy, and the value-opening pairs (ct(d) , (?)
and (ctéb), (b)) This is a pair of valid openings for com,, so algorithm 8B wins the binding game.
We conclude that algorithm B succeeds with the same advantage ¢ and the claim follows. O

Claim A.6. Suppose the conditions of Claims A.4 and A.5 hold. Then there exists a negligible function negl(-) such that
Pr[Expt;(A) =1] < 2" - £;() + negl(2),
where £; (1) = max(ej, (1), j,(1)).

Proof. By the law of total probability, we have

Pr[EXpt;‘ (A)=1] <Pr [Expt;-(ﬂ) =1A Eilja?ldCOmJ EI(J{) E\(/ﬁldCom g El(JjJ)']+
_ () (J) () ()
Pr [EXPtj (A)=1A (ﬁEVathomj v E Vo EVa]ldComJ Vo EP Ju)]

By Claims A.4 and A.5, there exist negligible functions negl, (-) and negl,(-) such that:

’ _ () (') () () h+1
Pr [Exptj(ﬂ) =1A (= EVélthOmj VvV —Ep J Evjathoij ﬁEP{jR)] < 2™ g (Q) + negly (1)
’ () (J) () ()
Pr [Exptj(ﬂ) = 1A Eyiacomi N Epj. A Evatidcom.j, EPJ.R] < negl,(1).
where ¢;(A) = max(¢j, (A), €, (4)). The claim follows. o

Completing the proof of Lemma A.1. To complete the proof of the inductive step (for Lemma A.1), we first
appeal to Claim A.6 to conclude that there exists negligible function negl, () such that

Pr[Expt;(A) =1] < 2" - £;(2) + negl, (1),

where ¢;(1) = max(ej, (1), €, (1)). From the inductive hypothesis, ¢}, (1) and ¢, (1) are both negligible functions. By
definition of Expt;., we have that

_11 = () () ()
PI‘[EXpt} (“7{) - 1] =Pr [EVerify A ECOrrectht] A E]

45

By Claim A.2, there exists a negligible function negl,(-) such that
|Pr[Exptj(ﬂ) = 1] = Pr[Expt)(A) = 1]| < negl, (A).
We conclude that
Pr[Expt;(A) =1] < ahtt. £j(A) + negl; (1) + negl, ().

Setting ¢/(1) = max (¢(2), (negl, (1) + negl,(1))/2*!), we have that Pr[Expt;(A) =1] < 2h+1 . €;(A), where ¢(1)
is a negligible function. Lemma A.1 now follows by induction on the height h. O

Completing the proof of Theorem 4.12. We now use Lemma A.1 to complete the proof of Theorem 4.12. Suppose
the conditions of Theorem 4.12 hold. Noting that the index 2n — 1 has height & = log n in a complete binary tree with
n leaves, we appeal to Lemma A.1 and conclude that there exists a negligible function negl(-) such that

Pr[Expt,,_;(A) =1] < n-negl(A). (A7)
To complete the proof, we define a sequence of hybrid experiments:
+ Hyb,: This is the experiment Expt,,_; [P, DeriveChal] with adversary A.
+ Hyb,;: Same as Hyb,, except the output of the experiment is 1 if the following properties hold:

- BARG.VCI’ify(VkBARG, Ciax, 2n— 1, 1) = 1;

~ main shadow i had ~
= Ciax(2n = 1, (Cty,_y, Ctyyy o3I gshadow 4, 1)) = 1; and

in _yshad :
= P(ctman ct129W sk iain, Skshadows 21 — 1, (V1 .. ., Vp, idx)) = 1.

+ Hyb,: Same as Hyb,, except the output of the experiment is 1 if the following properties hold:

- BARG.Verify(vkgarc, Cidx, 2n — 1, 1) = 1; and

- P(ct‘:;f)it”, ctﬁggtdo“’, SKmains SKshadow, 21 — 1, (V1, ..., Vp, idx)) =1

In particular, the challenger no longer checks the value of Ci4. Note that in this experiment, the challenger’s

behavior no longer depends on the BARG trapdoor tdgarc.

+ Hyb,: Same as Hyb,, except when sampling the BARG parameters at the beginning of the experiment, the
challenger now samples (crsgarc, vkparc) < BARG.Gen(14,12%7! 1°,1%). This corresponds to the experiment
Expt[P, DeriveChal] with adversary A.

For an adversary A, we write Hyb,(A) = 1 to denote the output of Hyb; with adversary A. We now analyze each
pair of adjacent experiments.

Claim A.7. It holds that Pr[Hyb, (A) = 1] = Pr[Hyb,(A) = 1].

Proof. These experiments are identical. Specifically, by definition of Cigx (and specifically, the relation in Fig. 1), if

smain ~shadow nain shadow () (b)

Cidx(2n = 1, (ctyyoy, Ctypy , ofnain, gshadow 5 1)) = 1, then ct,,” , = ct, ", for b € {main, shadow}. This means that
~main ~sh . i :

P(ct;:la,[q, ct;na,dfw, SKmain, SKshadow> 20—1, (V1, ..., Vp, |dx)) = P(ctﬁgz‘t”, ctfg'gfow, Skmains SKshadows 2n—1, (V1. .., Vp, idx)).

Thus, the output of Hyb,(A) is identical to that of Hyb, (A). O

Claim A.8. IfTlgarc is somewhere extractable, then there exists a negligible function negl(-) such that

[Pr[Hyb,(A) = 1] — Pr[Hyb, (A) = 1]| = negl().

46

Proof. Suppose Pr[Hyb,(A) = 1] — Pr[Hyb,(A) = 1] = . Since the only difference between Hyb, and Hyb, is the
conditions the challenger checks at the very end of the experiment, this means that with probability at least ¢, the
adversary in Hyb, will output a digest dig and a proof 7 such that the following conditions hold:

« BARG.Verify(vkgarc, Cidx, 2n — 1, 1) = 1.

i had R
o P(ctia, ct?pa®, skmain, Skshadows 211 = 1, (V1,.. ., Vi, idx)) = 1.

~main ~shadow | ain shadow .~
o Cigx(2n = 1, (Cty,_, €ty opidin gshadow), 1)) = 0.

In all other settings, the output of the two experiments are identical. We use A to construct an adversary 8 that
for the somewhere extractability game of IIgarg (similar to the proof of Claim A.3):

1. On input the security parameter 1%, algorithm B runs algorithm A to obtain the input length 17, the set S C [n],
and an index i* € S.

2. Let j = 2n—1and j,, ji be the indices of the input wires that determine the value of the output wire j. Algorithm
B outputs 12771, 15, 13, the challenge set J = {J, jr, j.}, and the challenge index j = 2n — 1 to the challenger.
Here, s is the bound on the size of the circuit in Fig. 1. The challenger responds with (crsgara, Vksara)-

3. Algorithm B computes (S, Sy, idx) < DeriveChal(S, i*). It then samples the following components:

) « HE.Gen(1%,1") and (skshadow, pk) « HE.Gen(1%,17).

« Sample crscom — Com.Setup(lA, Alea(dm) op — 7).

« Sample (skmain, pk

main shadow
« For all i € [n], sample a random v; & {0, 1}*\ {0}.

« For each b € {main,shadow}, sample ctgfr)o < HE.Enc(pk,0). Then, for each i € [n] and b €

{main, shadow}, if i € S, sample ctl(h) < HE.Enc(pky,v;); otherwise, if i ¢ Sp, sample ctgb) —
HE.Enc(pk,, 0).

}(]II’(), U}Ei)l, .. .,a}(]i)n) — Com.Commit(crscom, (ctib), e, ctﬁ,b)))

4. Algorithm B constructs hk and vk according to Eqs. (4.1) and (4.2):

« For each b € {main, shadow}, let (com

b b b b b
hk = (crscom, CISBARG» {pkb, Ct§61)0> cti). .,ctﬁl), G}(]k’)l, cees Gék,)n}be{main,shadow})

b b
vk = (CrSccm,VkBARG, {pks, ctiv, com}(]k) be{main,shadow})

Algorithm B gives (hk, vk) to A.

5. Algorithm A outputs a digest dig = (ct?;i‘)it", ctfgﬁtd“‘”, COMpmain, COMshadows ﬂdig) and a proof 7.

6. Let Cigx be the circuit as defined in Definition 4.10. Algorithm 8 outputs the circuit Cigx, the instance number
2n — 1, and the proof =.

By definition, the challenger samples (crsgara, Vksarc, tdparc) < BARG.TrapGen(l’l, 1277115 13, {j, ju, jz}). This
means algorithm 8B perfectly simulates an execution of Hyb,. Thus, with probability at least ¢, the digest dig and
proof & output by A satisfies

~main ~shadow main _shadow

BARG.Verify(vkgarag, Cidxs 2n — 1,1) =1 and CidX(Zn —1,(cty,_1,Ctyy g, Opt, Oy ,17\)2,,,1)) =0,

~ main ~ shad i ~ . .
where (ct;:la_ml, ctzna_low, oprat, 6;221‘11"“’, Wan—1) < BARG.Extract(tdgarc, 7, 2n — 1). This means algorithm 8 success-

fully breaks somewhere extractability of IIgarg and the claim holds. m]

Claim A.9. IfTIgarc satisfies set hiding then there exists a negligible function negl(-) such that

|Pr[Hyb3(3{) =1] = Pr[Hyb,(A) = 1]| = negl(}).

47

Proof. Suppose |Pr[Hyb3 (A) =1] = Pr[Hyb,(A) = 1]| > ¢(A) for some non-negligible e. We use A to construct an
adversary B that breaks set hiding of Ilgarc:

1. On input the security parameter 1, algorithm 8 runs algorithm A to obtain the input length 17, the set S C [n],
and an index i* € S.

2. Let j = 2n—1and j,, jg be the indices of the input wires that determine the value of the output wire j. Algorithm
B outputs 1271 15 1% and the challenge set J = {}J, ji, ja} to the challenger. Here, s is the bound on the size
of the circuit in Fig. 1. The challenger responds with (crsgarc, VKsarG)-

3. Algorithm B computes (Sy, S;) « DeriveChal(S, i). It then samples the following components:

) < HE.Gen(1%,1") and (skshadow- Pk

« Sample crscom — Com.Setup(l", Ale(hn) 2y 7).

« Sample (skmain, pk) « HE.Gen(1%,17).

main shadow
« Forall i € [n], sample a random v; & {0, 1}*\ {0}.

« For each b € {main,shadow}, sample ct§f§20 < HE.Enc(pk,0). Then, for each i € [n] and b €

{main, shadow}, if i € Sp, sample ctgb) < HE.Enc(pky, v;); otherwise, if i ¢ Sp, sample ctlfh) —
HE.Enc(pk,, 0).

« For each b € {main, shadow}, let (com}(j’(),oﬁﬁ)l, .. "Ulii)n) — Com.Commit(crscom, (ctib), . .,ct,(lb)))

4. Algorithm B constructs hk and vk according to Eqs. (4.1) and (4.2):

b
hk = (crsCOm, CISBARG» {pkb, ctier)o,

= () (b)
vk = (CI’SCom, VkBARG’ {pkb’ Ctzeros comy, bE{main,shadow})

(b) (b) _(b) (b)
Cty s Cly 0 "O_hk,n}be{main,shadow})

Algorithm 8B gives (hk, vk) to A.

5. Algorithm A outputs a digest dig = (ct:‘;i‘)it", ctfg‘gf"‘”, COMmain, COMshadows ﬂdig) and a proof 7.

6. Let Ci x,. be the circuit as defined in Definition 4.10. Algorithm $ outputs 1 if
BARG.Verify(vkgarg, Cidxs 2n—1,7) =1 and P(ctmf)it“,ctfsgfow,skmain,skshadow,zn— 1, (Vi,...,Vp, idx)) =1
Otherwise, algorithm 8 outputs 0.

We now consider the two possibilities:

« Suppose the challenger responds according to the specification of ExptSH 4 (4, 0). In this case, the challenger
samples (crsparc, Vkearg) < BARG.Gen(1%, 12771, 1%, 1%). In this case, algorithm B perfectly simulates an
execution of Hyb, for A. Moreover, algorithm 8 computes the outputs according to the same specification
of Hyb,, so we conclude that algorithm B outputs 1 with Pr[Hyb,(A) = 1].

+ Suppose the challenger responds according to the specification of ExptSH 4 (A, 1). In this case, the challenger
samples (crsgarc, VKBARG, tdparc) «— BARG.TrapGen(l’l, 127711513, {}, ji, ja}). In this case, algorithm B per-
fectly simulates an execution of Hyb, for A, and correspondingly, algorithm 8 outputs 1 with probability
Pr[Hyb,(A) =1].

We conclude that the distinguishing advantage of 8 is exactly ¢, which concludes the proof. O

Combining Claims A.7 to A.9, we conclude that \Pr[Hyb0 (A) =1] = Pr[Hyby(A) = 1]| = negl(1). By construction,
Hyb,(A) = Expt,,_;(A) and Hyb,(A) = Expt(A). From Eq. (A.7), we have that Pr[Expt,,_;(A) = 1] = negl(1)
and Theorem 4.12 follows. |

48

B Puncturable Signatures from Unique Signatures

In this section, we show how to construct puncturable signatures from unique signatures. As shown in [NWW24]
(Corollary 1.2), puncturable signatures can be combined with (non-adaptively-sound) monotone-policy BARGs to
obtain statically-secure monotone-policy aggregate signatures. The work of [ADM*24] show how to construct
puncturable signatures from any simulation-sound non-interactive zero-knowledge proof for NP. This is known from
most standard number-theoretic assumptions, including QR [BFM88, Sah99, DDO*01]. Here, we describe another
simple approach to constructing puncturable signatures based on a unique signature (or more generally, an invariant
signature; see Remark B.10). The construction is a standard application of hard-core predicates.

B.1 Preliminaries Signatures

We first recall the definition of a unique signature.

Definition B.1 (Unique Digital Signatures). A unique digital signature scheme with message space M is a tuple
of efficient algorithms Ilsig = (Gen, Sign, Verify) with the following syntax:

. Gen(1%) — (vk, sk): On input the security parameter A, the key-generation algorithm outputs a key pair (vk, sk).
« Sign(sk,m) — o: On input a signing key sk and a message m € M, the signing algorithm outputs a signature o.

« Verify(vk,m,o) — b: On input a verification key vk, a message m € M, and a signature o, the verification
algorithm outputs a bit b € {0, 1}.

Moreover, the signature scheme should satisfy the following properties:
« Correctness: For all A € N and all m € M, it holds that

A
Pr[Verify(vk,m,0) =1 : (vk;sk) « Gen(1%)] =1

o « Sign(sk, m)

+ Unforgeability: For all efficient and admissible adversaries A, there exists a negligible function negl(-) such

that
(vk, sk) « Gen(1%)

Pr [Verlfy(vk,m ,0')=1: (m*, 0" — ASiEN(k) (12, yk)] = negl(4),

where we say A is admissible if it does not query the signing oracle Sign(sk, -) on the message m* in the above
security game.

« Uniqueness: For all 1 € N, all m € M, all (vk, sk) in the support of Gen(l’l) and all signatures o1, 03 € {0, 1}%,
it holds that
Verify(vk, m, 1) = Verify(vk,m, 03) =1 = 01 = 3.

Puncturable signatures. Next, we recall the definition of puncturable signatures, first introduced by [GVW19]
(under the name all-but-one signature).

Definition B.2 (Puncturable Signature [GVW19, adapted]). An puncturable (or all-but-one) signature scheme with
message space M is a tuple of efficient algorithms IIpynctsig = (Gen, GenPunc, Sign, Verify) with the following syntax:

« Gen(1%) — (vk, sk): On input the security parameter A, the key-generation algorithm outputs a key pair (vk, sk).

« GenPunc(1%, m*) — (vk,sk): On input a security parameter A and a message m* € M, the punctured key
generation algorithm outputs a key pair (vk, sk).

« Sign(sk,m) — o: On input a signing key sk and a message m € M, the signing algorithm outputs a signature o.

49

« Verify(vk,m, o) — b: On input a verification key vk, a message m € M, and a signature o, the verification
algorithm outputs a bit b € {0, 1}.

Moreover, the puncturable signature scheme should satisfy the following properties:
« Correctness: For all A € N and all m € M, it holds that

(vk, sk) « Gen(1%)

Pr| Verify(vk,m,0) =1 & Sign(sk, m)

=1 - negl(4).

Note that we allow a negligible correctness error.

- Punctured correctness: For all A € N, all m* € M, and all 6" € {0, 1}*, it holds that

Pr[Verify(vk,m*,0%) =1 : (vk,sk) « GenPunc(1%, m*)] =0.

« Verification key indistinguishability: For any adversary A and any b € {0, 1}, we define the verification
key indistinguishability experiment ExptVKI 4 (4, b) as follows:

1. Oninput a security parameter A, the adversary A outputs a message m* € M and sends it to the challenger.

2. The challenger samples key pairs (vko, skg) < Gen(1*) and (vky, sky) « GenPunc(1%, m*) and gives vk,
to the adversary.

3. Next, the adversary can make signing queries on messages m € M \ {m*}. On each signing query, the
challenger replies with o « Sign(sky, m).

4. The adversary outputs a bit b € {0, 1}, which is the output of the experiment.

We say that Ilpuncsig satisfies verification key indistinguishability if for any efficient adversary A there exists
a negligible function negl(-) such that

[Pr[ExptVKI 4 (A, 0) = 1] — Pr[ExptVKI 4 (A, 1) = 1]| = negl(2).

Goldreich-Levin hardcore predicate. Our construction will use the Goldreich-Levin hardcore predicate [GL89].
Specifically, we define a hardcore predicate for a unique signature scheme as follows:

Definition B.3 (Hardcore Predicate for Unique Signature). Let A be a security parameter. Let ITsjg = (Gen, Sign, Verify)
be a unique signature scheme with signatures of length ¢. Let h: {0,1} x {0,1}* — {0, 1} be a binary function. We
say that h is a hardcore predicate for Ils;, if for all efficient and admissible algorithm A and any message m* € M,
it holds that
r & {0,1)
_ .oy (vk, sk) « Gen(1%) 1|
Pr|b=nh(c"1): o Sign(sk, m") 5= negl(1),
b — ﬂSign(sk,-) (l)L’ Vk, m*’ I‘)

where we say A is admissible if it does not query the signing oracle Sign(sk, -) on the message m®.

We can construct a hardcore predicate for a unique signature scheme using the classic Goldreich-Levin construc-
tion [GL89, HLRO7]. Specifically, we state the theorem below (which can be formally obtained by using the fact

that unforgeability for a unique signature implies that the signature ¢* for any message m* is computationally
unpredictable and then invoking [HLR07] with the [GL89] hard-core predicate):

Lemma B.4 (Hardcore Predicate for Unique Signature). Let IIsi; = (Gen, Sign, Verify) be a unique signature scheme
with signatures of length € := £(1). Then, the function h: {0,1}f x {0,1}Y — {0,1} defined as h(o,1) = {(o,1) isa
hardcore predicate for Ils;g.

50

B.2 Puncturable Signature from Unique Signature

Suppose IIsjg is a unique signature scheme with signatures of length ¢. To construct a puncturable signature from
Isig, we use the hardcore predicate h: {0, 1} x {0, 1}’ — {0, 1} associated with II5jz (Lemma B.4). Our puncturable
signature will use A copies of the unique signature scheme:

« The verification key for the puncturable signature scheme contains A triples (vk;, r;, b;) for i € [A], where vk;
is a verification key for the unique signature scheme, r; < {0, 1} is a seed for the hard-core predicate, and
b; & {0,1} is a random bit.

« A signature on a message m consists of A signatures o7y, ..., 0} on m with respect to vky, ..., vky, respectively.
The signature is valid if for all i € [1], o; is a valid signature on m with respect to vk;, and moreover, there
exists some j € [A], where h(oj,1;) # b;.

Since the bits by, ..., by & {0, 1} are uniform, for any fixed message m, correctness holds with probability 1 — 1/21,
as required. To puncture the verification key at a particular message m*, we simply set b; = h(o;, ;) where o7 is the
(unique) signature on m* with respect to vk;. Pseudorandomness of the hard-core bits ensures that this verification
key is computationally indistinguishable from the real verification key. Moreover, by construction, there does not
exist a signature on m with respect to the punctured key. We now give the formal description:

Construction B.5 (Puncturable Signature). Let Ils;; = (Gen, Sign, Verify) be a unique digital signature scheme
with message space M and signatures of length £(1). We construct a puncturable signature scheme Ipynctsig =
(Gen’, GenPunc’, Sign’, Verify’) as follows:

« Gen’(1%): On input a security parameter A, the algorithm samples (vk;, sk;) < Gen(1%), r; & {0,1}¢, and
b; < {0,1} for each i € [A]. The algorithm outputs

vk = {(i,vk;, 1, b)) }iepp) and sk = (sky,...,sky).
« GenPunc’ (14, m*): On input a security parameter A and a message m* € M, the algorithm samples (vk;, sk;) <
Gen(11), 1; & {0,1}, o7 « Sign(sk;,m"), and b; « (o7, 1;) for each i € [A]. Then it outputs

vk = {(i, vki, 13, bi) }ierpp and sk = (sky, ..., sky).
« Sign’(sk, m): On input a signing key sk = (sky, ..., sk;) and a message m € M, the signing algorithm computes
o; «— Sign(sk;, m) for all i € [A] and outputs o = (071, ...,0)).

« Verify’(vk, m, o): On input a verification key vk = {(i, vk;, r;, b,')}l-em, a message m € M, and a signature
o =(oy,...,0y), the verification algorithm checks the following:

1. For all i € [A], it holds that Verify(vk;, m, 0;) = 1.
2. There exists i € [A] such that b; # (o}, 1;).

If both checks pass, then the verification algorithm accepts with output 1. Otherwise, it rejects with output 0.
Theorem B.6 (Correctness). Ifsig is correct, then Construction B.5 is correct.
Proof. Take any security parameter A € N and message m € M. Let (vk, sk) < Gen’(1%). Then
vk = {(i, vki,1;,bi) };erp and sk = (sky, ..., sky).

Let o « Sign’(sk,m). By construction, o = (o7y,...,0;) where o; < Sign(sk;, m). Consider Verify’(vk, m, o). By
correctness of IIsjg, we have that Verify(vk;, m, 0;) = 1for all i € [A]. Next, since Gen’ samples by, ..., by & 0,1},
with probability 1 — 2%, there will exist some index i € [A] where b; # (o;,1;). Thus Construction B.5 satisfies
statistical correctness. m]

51

Theorem B.7 (Punctured Correctness). IfIls;s satisfies uniqueness and correctness, then Construction B.5 satisfies
punctured correctness.

Proof. Fix a security parameter A € N and a message m* € M. Let (vk,sk) be a key pair in the support of
GenPu nc'(ll, m*) and parse

vk = {(i, vki,1;,bi) }ierp) and sk = (sky, ..., sky).

By construction of the punctured key, for each i € [A] there exists a signature o « Sign(sk;, m*) such that
b; = (o}, 1;). By correctness of Ils;g, it holds that Verify(vk;, m*, o) = 1 for each such i. Assume towards a contradic-
tion that there exists ¢ = (o7, . .., o)) such that Verify’ (vk, m*, 6) = 1. By construction of Verify, there exists i € [A]
such that b; # {0y, 1;) and Verify(vk;, m*, 0;) = 1. However, by uniqueness of Ilsj;, we conclude that ¢; = o] which
contradicts b; = (o7, 1;) # (0, 1;). The claim follows. O

Theorem B.8 (Verification Key Indistinguishability). IfIlsis satisfies unforgeability, then Construction B.5 satisfies
verification key indistinguishability.

Proof. Let A be an efficient and admissible (non-uniform) adversary for the verification key indistinguishability game.
We use a hybrid argument. For each j € [0,4] we define the experiment Hyb; as follows:

1. On input a security parameter 1%, the adversary A outputs a message m* € M and sends it to the challenger.

2. For each i € [A], the challenger samples (vk;, sk;) « Gen(lx), andr; & {0,1}%, o} « Sign(sk;, m"). Next, it
samples the bit b; as follows:

« Ifi < j it samples b; < {0,1}.
« Ifi > j, it sets b; = (o}, 1;).
The challenger gives vk = {(i, vk;, 15, b;) } ;1) to A.

3. Adversary A can make signing queries on messages m € M \ {m*}. On each signing query, the challenger
replies with o = (o4, ..., o)) where o; « Sign(sk;, m) for alli € [A].
4. The adversary outputs a bit b’ € {0, 1}, which is the output of the experiment.

Since A is non-uniform, we assume without loss of generality that the challenge message m* is fixed for each security
parameter A. We now prove that the advantage of A in any game will be negligibly close to the adjacent game.
Formally:

Lemma B.9. IfTls;, satisfies unforgeability then for all j € [A] it holds that
Pr[Hyb;(A) = 1] — Pr[Hyb;_,(A) = 1]| = negl(A).

Proof. Suppose for some index j € [A] that | Pr[Hyb;(A) = 1] — Pr[Hyb;_,;(A) = 1]| = ¢ for some non-negligible
e. Observe that in Hyb,_, if the random bit b; ¢ {0, 1} satisfies b; = (0},1), then the adversary’s view in Hyb,_,
is identical to the adversary’s view in Hyb;_,. This means

Pr[Hyb; ((A)=1]0b; = (o7, tj)] = Pr[Hyb;(A) = 1].

This event bj = (o7}, 1;) happens with probability 1/2, therefore:

Pr[Hyb; ,(A) =1] =% (Pr[Hybj_l(ﬂ) =1]bj=(o},r;)] +Pr[Hyb, ,(A)=1]b; # (o7}, rj)])
This means
e = | Pr[Hyb,(A) = 1] — Pr[Hyb,_, (A) = 1]|
. (B.1)
Pr[Hyb,_,(A) = 1] b; = (¢, ;)] = Pr[Hyb,_,(A) = 1] b; # <a;f,r,->](

1
)

We now use A to construct an algorithm B for the hardcore predicate game (with message m”):

52

1. At the beginning of the game, algorithm B receives the security parameter 1%, the seed r; < {0,1}", the
message m” and a verification key vk; from the challenger.

2. For all i # j, algorithm B samples (vk;, sk;) « Gen(11), r; & {0,1}¢, and o} « Sign(sk;, m*). Then, it
constructs b; as follows:

« Ifi < j it samples b; < {0,1}.
« Ifi > j,it sets b; = (o}, ;).
Algorithm B gives vk = {(i,vk;, i, b;) };e [to A.

3. Whenever algorithm A makes a signing query on a message m € M \ {m*}, algorithm B computes g; «
Sign(sk;, m) for all i # j. Algorithm B then queries the signing oracle on message m to get ¢;. Algorithm 8
responds with o = (o1, ..., 03).

4. At the end of the game, algorithm A outputs a bit b’ € {0, 1}. If b’ = 1 then B outputs b;. Otherwise B outputs
1-b;.

By construction, 8 perfectly simulates Hyb;_, (A). If A is admissible, that is it does not query the signing oracle
on the challenge message m". This means 8 is also admissible. Finally, let o7 « Sign(sk;, m*). By construction,
algorithm B outputs the correct value of h(c*, r;) = (¢*, ;) in the following two cases:

+ Algorithm A outputs b’ = 1 and b; = (r, a;).
+ Algorithm A outputs b’ = 0 and b; # (r, 0}).
Therefore B wins the hardcore predicate game with probability:
Pr[Hyb; (A) =1Ab; = (0}, 1;)] +Pr[Hyb; ,(A) =0 Ab; # (0},1;)]
- % (Pr[Hybj_l(ﬂ) =11 by = (o}, 1;)] + Pr[Hyb,_,(A) = 0 | b; # (q, rj>])
- % (Pr[Hybj_l(ﬂ) =11by = (o}, 1;))] +1-Pr[Hyb, ,(A) =1 b; # <a;f,r,->])
=~ 2 (Brlyb,_ () = 11 b = (07, 1)1 ~ PrlHyb,_ () = 11 b; # (o711
Taking the absolute difference with 1/2, we appeal to Eq. (B.1) and conclude that algorithm 8B succeeds with advantage
% : (Pr[Hybj_l(ﬂ) = 11b; = (o, 1;)] = Pr[Hyb,_,(A) = 1| b; # <a;,rj>]| -
Thus, algorithm B breaks security of the hardcore predicate h with the same non-negligible advantage ¢. The claim

follows. O

By construction, Hyb,(A) = ExptVKI 4(4,0) and Hyb;(A) = ExptVKI4(A, 1). The proof of Theorem B.8 now
follows from a standard hybrid argument. O

Remark B.10 (Invariant Signatures). Although Construction B.5 relies on unique signatures, we can replace the
unique signature with an invariant signatures instead [GO92]. In an invariant signature, there can be many signatures
for each message, but all such signatures on a particular message share an invariant core (e.g., a common prefix). One
way to obtain an invariant signature by composing a pseudorandom function (PRF) with a (simulation-sound) NIZK
proof: the verification key contains a commitment to a PRF key and the signature on a message is the PRF evaluation
on the message together with a NIZK proof that the PRF value was computed correctly. In this construction, the PRF
evaluation on the message is the invariant part of the signature while the NIZK proof (which is randomized) is needed
for verification. We can easily adapt Construction B.5 to work with invariant signatures instead of unique signatures by
simply taking the hard-core predicate over the invariant core associated with the message rather than the full signature.

53

	Introduction
	Our Results

	Technical Overview
	Preliminaries
	Cryptographic Building Blocks
	Batch Arguments for NP
	Zero-Fixing Hash Functions

	Construction of Zero-Fixing Hash Functions
	Set Hiding
	Additive Invariants on Ciphertexts
	Zero Fixing
	Extractor Validity
	Index Hiding with Extracted Guess

	Proof of thm:zfhAbstractExp (Predicate Propagation)
	Puncturable Signatures from Unique Signatures
	Preliminaries Signatures
	Puncturable Signature from Unique Signature

