
A Deep Prediction Framework for Multi-Source Information via
Heterogeneous GNN

Zhen Wu
School of Computer Science and

Technology
Soochow University

Suzhou, Jiangsu, China
School of Computer Science and

Engineering
Southeast University

Nanjing, Jiangsu, China
zwu1024@stu.suda.edu.cn

Jingya Zhou∗
School of Computer Science and

Technology
Engineering Lab. of Big Data and
Intelligence of Jiangsu Province

Soochow University
Suzhou, Jiangsu, China

State Key Lab. for Novel Software
Technology, Nanjing University

Nanjing, Jiangsu, China
jy_zhou@suda.edu.cn

Jinghui Zhang∗
School of Computer Science and

Engineering
Southeast University

Nanjing, Jiangsu, China
jhzhang@seu.edu.cn

Ling Liu
School of Computer Science

Georgia Institute of Technology
Atlanta, GA, USA

lingliu@cc.gatech.edu

Chizhou Huang
School of Computer Science and

Technology
Soochow University

Suzhou, Jiangsu, China
czhuang1016@stu.suda.edu.cn

Abstract
Predicting information diffusion is a fundamental task in online
social networks (OSNs). Recent studies mainly focus on the pop-
ularity prediction of specific content but ignore the correlation
between multiple pieces of information. The topic is often used to
correlate such information and can correspond to multi-source in-
formation. The popularity of a topic relies not only on information
diffusion time but also on users’ followership. Current solutions
concentrate on hard time partition, lacking versatility. Meanwhile,
the hop-based sampling adopted in state-of-the-art (SOTA) methods
encounters redundant user followership. Moreover, many SOTA
methods are not designed with good modularity and lack evalua-
tion for each functional module and enlightening discussion. This
paper presents a novel extensible framework, coined as HIF, for
effective popularity prediction in OSNs with four original contribu-
tions. First, HIF adopts a soft partition of users and time intervals
to better learn users’ behavioral preferences over time. Second,
HIF utilizes weighted sampling to optimize the construction of
heterogeneous graphs and reduce redundancy. Furthermore, HIF
supports multi-task collaborative optimization to improve its learn-
ing capability. Finally, as an extensible framework, HIF provides
generic module slots to combine different submodules (e.g., RNNs,
∗Corresponding author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
KDD ’24, August 25–29, 2024, Barcelona, Spain
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0490-1/24/08
https://doi.org/10.1145/3637528.3671966

Transformer encoders). Experiments show that HIF significantly
improves performance and interpretability compared to SOTAs.

CCS Concepts
• Information systems→Collaborative and social computing
systems and tools; Data mining.

Keywords
Social networks, deep Learning, popularity prediction, multi-source
information, heterogeneous graph

ACM Reference Format:
Zhen Wu, Jingya Zhou, Jinghui Zhang, Ling Liu, and Chizhou Huang. 2024.
A Deep Prediction Framework for Multi-Source Information via Heteroge-
neous GNN. In Proceedings of the 30th ACM SIGKDD Conference on Knowl-
edge Discovery and Data Mining (KDD ’24), August 25–29, 2024, Barcelona,
Spain. ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/3637528.
3671966

1 Introduction
Users often post content regarding their life and work in online
social networks (OSNs). After a user posts content, some other
users see and repost the content through platform recommendation
or their followership, arousing information diffusion. Information
diffuses among users in a cascading manner, called information
cascade, and its diffusion topological structure forms a directed
acyclic graph (DAG), called cascade graph, as the observed cascade
shown in Figure 1, where the original post is the source information
and the user sending it is the source user. Users may also mark their
post content with topic tags (i.e., hashtags), and the topic is a macro
form of information. There might be more than one source under
the same topic, i.e., the multi-source information. Posts without
topic tags can be simply treated as single-source information.

3460

https://orcid.org/0009-0003-6221-280X
https://orcid.org/0000-0003-0721-7424
https://orcid.org/0000-0002-9067-7896
https://orcid.org/0000-0002-4138-3082
https://orcid.org/0009-0003-0248-3253
https://doi.org/10.1145/3637528.3671966
https://doi.org/10.1145/3637528.3671966
https://doi.org/10.1145/3637528.3671966
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3637528.3671966&domain=pdf&date_stamp=2024-08-24

KDD ’24, August 25–29, 2024, Barcelona, Spain Zhen Wu, Jingya Zhou, Jinghui Zhang, Ling Liu, & Chizhou Huang

......

Observed Cascade Future Cascade

Timeline

Un-reposted User

Reposted User

Source User

......

Divider

Figure 1: A multi-source cascade graph. 𝑢0, 𝑢1 / 𝑢2-𝑢5 are
source / reposted users, the others are un-reposted users and
some of them (e.g., 𝑢9, 𝑢10) may repost in the future.

In this work, we take the number of users (e.g., users from 𝑢0 to
𝑢10 in Figure 1) involved in information diffusion to quantify the
popularity, which also measures how influential and widespread the
information is. Popularity prediction has been widely studied as a
fundamental task that can be applied to broad real-world scenarios,
such as online advertisement [11], social recommendation [30],
rumor detection [3], epidemiology [42], etc.

We categorize recent works into the following taxonomies: Dif-
fusion pattern-based models such as the independent cascade
(IC) model and the linear threshold (LT) model (e.g., [22, 31]),
estimate the diffusion result with the help of Monte Carlo Sim-
ulation; Feature-based approaches feed hand-crafted spatial-
temporal features (e.g., [8]), user features (e.g., [1]), and content
features (e.g., [45]) into machine learning models to make predic-
tions; Generation-based approaches suppose that the informa-
tion diffusion can be characterized by a generative probabilistic
model (e.g., [25]); Deep learning-based approaches are mainly
based on RNNs (e.g., [30]) and homogeneous/heterogeneous GNNs
(e.g, [3, 6]) to automatically learn the cascades’ spatial-temporal fea-
tures. Though there have been many related efforts in recent years,
we have noticed that most of them are based on less-expressive
data structures, such as sequence or homogeneous graph. This is
especially true for works proposed in the early stage, and only a few
recent works [36, 38] have begun to take advantage of the better
expressive capacity of heterogeneous graphs. Currently, existing
works still suffer from the following common challenges:

Hard time partition: An information cascade with length |𝑐 |
can generate |𝑇𝐸 | time interval(s) to learn temporal features, and
there are three mainstream partition and processing granularities:

1) Fine-grained methods (e.g., [5, 7]) map each (re)posted user
on the cascade to a unique time interval, i.e., |𝑐 | = |𝑇𝐸 |, and then
process them (e.g. feeding into RNN) separately, which is tricky on
sequence’s unequal length when using mini-batch training, and is
easy to suffer from bottlenecks if the cascade sequence is too long;

2) coarse-grained methods (e.g., [6, 38]) treat all timestamps as
one or even ignore temporal features, i.e., |𝑐 | ≤ 1, which may be
efficient but is hard to take full advantage of temporal features;

3) middle-grained methods (e.g., [36]) make a good trade-off on
efficiency and learning ability, where the timeline is partitioned
into several equal time intervals, i.e., 1 < |𝑐 | < |𝑇𝐸 |. For example,
there are only 5 time intervals in Figure 1, so that temporal features
can be captured without incurring more efficiency concerns.

The middle-grained partition simply maps users into different
individual intervals, neglecting whether the partition is reasonable.

For example, consider a scene where a piece of information is
originally posted at 23:25 and the 1 hour observation window is
partitioned into 6 time intervals (i.e., 23:25-23:34, 23:35-23:44, ...,
00:15-00:24), and a user is used to browse social networks for 15
minutes before sleep at 23:40, and this user reposts the information
at 23:35. In the case of hard-time partition, the user is mapped
to the second interval, but actually, the first interval is covered
by the users’ behavior preferences, and the second is only half
overlapped, indicating that the first interval represents the user
behavior preferences better than the second interval. It would be
great if the different matching degrees of these two intervals could
be considered at one time.

Redundant followership network: The followership is neces-
sary for many social networks to construct a heterogeneous graph
based on a cascade graph, existing heterogeneous graph construc-
tion methods (e.g., [36]) mainly utilize the hop-based sampling. For
a sampled followership network with 𝑁𝑓 total followers and 𝑁𝑝

potential followers (𝑁𝑝 ≪ 𝑁𝑓 in most cases), we denote its redun-
dancy as 𝑝𝑟 = 𝑁𝑝/𝑁𝑓 . In practice, 𝑝𝑟 ’s value is usually very low,
e.g., as illustrated in our case study, the 𝑝𝑟 of hop-based sampling
is 0.059, demonstrating that there are only about 1/20 of sampled
followers are beneficial.

Lacking of expansive discussion and enlightenment: Var-
ious approaches have been proposed in recent works, and each
of them has almost completely different strategies or components,
which contributes to the prosperity of popularity prediction re-
search. For example, HERI-GCN and CoupledGNN [6] employ dy-
namic features and hand-crafted features as initialization node
features, respectively. Upon reading these works, researchers might
be curious about the following questions: what motivated the au-
thors to select such distinct initialization strategies? How will it
perform if replaced with another strategy, and why? It is impera-
tive to discuss the above questions as the discussion can provide
valuable insights for future studies.

In this paper, we propose a novel Heterogeneous GNN-driven
Information prediction Framework (HIF) to solve the above chal-
lenges. The major contributions of our work are summarized below:

Soft time partition: We inventively propose a more elastic time
interval partition method named Soft-Partition, which connects
users and time intervals by multiple links with learnable weights,
improving the flexibility, rationality, and accuracy of time partition.

Weighted dynamic sampling: We design weighted dynamic
sampling, which is a more efficient followership sampling method
than current hop-based sampling. Our sampling method samples
followers step by step. At each step, we select a batch of the most
meaningful followers via an elaborate weighted strategy until the
number of sampled followers reaches the threshold.

Collaborative optimization: We present the Timeline Error,
which constrains the variability and continuity of temporal embed-
ding. We minimize the Timeline Error as an additional optimization
task to collaboratively optimize temporal feature learning.

Extensive experiments and discussions: We evaluate HIF
via extensive experiments on three real-world datasets and present
comprehensive discussions. The results show excellent performance
and provide enlightening significance.

3461

A Deep Prediction Framework for Multi-Source Information via Heterogeneous GNN KDD ’24, August 25–29, 2024, Barcelona, Spain

2 Related Work
We summarize recent research from the following four categories:

Diffusion pattern-based models: The famous models in this
category are the IC-based model [17, 20, 26, 28, 29, 31] and the
LT-based model [17, 20, 22], and they both assume that a user will
be influenced to involve in the information diffusion process when
the predefined conditions are satisfied. Specifically, the IC-based
models assume that each user has a probability to be influenced
once at least one of his/her neighbors has been influenced, while
the LT-based models suppose that a user will be influenced once
the accumulated weights from his/her influenced neighbors reach
the threshold. Both IC-based models and LT-based models heavily
rely on predefined diffusion patterns (e.g., the conditions for users
to be influenced), which require prior knowledge and are easy to
get extremely complicated as pattern complexity increases. These
models also have defects in time handling, such as hardly simulating
users being influenced at different times and the time decay effect.

Feature-based approaches: The following hand-crafted fea-
tures were once widely used by feature-based approaches: content
features such as the TF-IDF and LDA [45]; temporal features such
as the observation time and the time delta [8]; spatial features such
as the page ranking [6, 18], edge density [2, 43]; user features such
as the number of followers [1, 16], profiles [39]; These approaches
heavily rely on the quality of features and lack generality across
different domains, such as academic networks.

Generation-based approaches: These approaches assume that
all data are "generated" by the underlying model, and the point pro-
cess is one of thesemodels and is often used tomodel real-world phe-
nomena and user preferences. The most representative generation-
based approaches rely on the point process. DeepHawkes [5] is a
typical approach that employs the Hawkes point process to model
self-activation and time decay. Literature [25, 33] model the influ-
ence diffusion via the Poison point process.

Deep learning-based approaches: Most approaches in this
category are designed in an end-to-end way, and they automati-
cally learn user embeddings or information embeddings. We further
categorize them into three groups: 1) RNN-based approaches: Deep-
Cas [19] is an end-to-end model that firstly leverages DeepWalk
[23] to sample paths from the cascade graph and feed them into a
Bi-directional Gated Recurrent Unit (Bi-GRU) for prediction. Topo-
LSTM [34] adapts LSTM [14] cell to the topological structure by
pooling multiple inputs for each cell. TempCas [30] combines at-
tention mechanism with Path Sampling, RNNs, and CNNs to learn
spatial-temporal embeddings. TCAN [27] explicitly encodes the
linear, the nonlinear, and the periodic features of time, and uses
them as initial features of user nodes for cascade graph and cascade
sequence feature learning. Nowadays, it is still strenuous for RNN-
based approaches to handle graphs. 2) Homogeneous GNN-based
approaches: DeepInf [24] utilizes GNN and attention mechanism
to predict the center user through a sampled ego network. Cou-
pledGNN [6] combines two GNNs to learn the states of information
and user alternatively, reinforcing the importance of structure in
information diffusion. BiGCN [3] considers the bidirectional influ-
ence in OSNs and models it by means of a top-down GNN and a
bottom-up GNN. CasCN [7] conducts convolution on each cascade

snapshot and then learns temporal features by feeding the convo-
luted spatial features into an RNN. It is the first GNN-based model
incorporated with RNN to learn the temporal feature. CasFlow
[37] not only utilizes GNNs and RNNs to learn spatial-temporal
embeddings but also takes advantage of variational auto-encoders
(VAE) to model the uncertainty of information diffusion. 3) Het-
erogeneous GNN-based approaches: DyHGCN [38], and HERI-GCN
[36] firstly apply heterogeneous GNNs to learn cascade embeddings
to predict the next (re)post user and the popularity, respectively.
Specifically, DyHGCN simply treats the heterogeneous graph learn-
ing as multiple homogeneous graph learning and aggregates the
learned embeddings via a heuristic method; HERI-GCN designs a
heterogeneous convolution kernel and integrates RNNs into GNNs
to learn temporal embeddings.

In summary, the temporal and spatial features are both critical for
popularity prediction, but only a few works, including HERI-GCN,
CasFlow, and CasCN, have conducted preliminary exploration. In
addition, compared to single-source information, multi-source in-
formation diffusion is a more general way of information diffusion,
especially in social networks, which is rarely explored by current
works except HERI-GCN.

3 Preliminaries
In this section, we present the definitions of fundamental concepts
and formally define the popularity prediction problem.

We use 𝑁 𝑠
𝑐 to denote the number of source users in information

cascade 𝑐 . For multi-source cascades, we have 𝑁 𝑠
𝑐 > 1, e.g., there are

two source users (𝑢0 and 𝑢1) in Figure 1. A single-source cascade is
a special case of a multi-source cascade such that 𝑁 𝑠

𝑐 = 1.
Multi-source cascade is a general form of information diffusion.

As illustrated in Figure 1, the example cascade is a 2-source cascade
with two source users (𝑢0 and 𝑢1). A single-source cascade can be
considered a special case of a multi-source cascade. For each posted
information, we record the (re)post actions in a cascading format,
i.e., a sequence of triples.

Definition 1 (Information Cascade). Given an information 𝑐 , the
cascade sequentially describes the information’s diffusion process.
We use 𝑐 directly to represent the message and its cascade, formu-
lated by 𝑐 = [(𝑢0, 𝑣0, 𝑡𝑠0), (𝑢1, 𝑣1, 𝑡𝑠1), . . .], where triple (𝑢𝑖 , 𝑣𝑖 , 𝑡𝑠𝑖)
indicates user 𝑣𝑖 reposts from user 𝑢𝑖 at timestamp 𝑡𝑠𝑖 .

We connect all users involved in a cascade 𝑐 in terms of the repost-
ing relationship and obtain the cascade graph 𝐺𝑟,𝑐 = (𝑉 𝑐

𝑢𝑠𝑒𝑟 , 𝐸
𝑟,𝑐),

where 𝑉 𝑐
𝑢𝑠𝑒𝑟 is the node set and 𝐸𝑟,𝑐 is the edge set. Superscript 𝑟

indicates the cascade is formed by repost actions. In the cascade
shown in Figure 1, we have 𝑢0 to 𝑢5 in𝑉 𝑐

𝑢𝑠𝑒𝑟 and four edges in 𝐸𝑟,𝑐 .
Besides the reposting relationship, there are multiple relation-

ships between users. For example, followership is widely adopted
in many OSNs (e.g., Twitter, Sina Weibo), The followership net-
work is denoted by a directed graph𝐺 𝑓 = (𝑉𝑢𝑠𝑒𝑟 , 𝐸 𝑓), where 𝑉𝑢𝑠𝑒𝑟
contains all users, and 𝐸 𝑓 is the set of all followership edges, and
we have 𝑉 𝑐

𝑢𝑠𝑒𝑟 ⊂ 𝑉𝑢𝑠𝑒𝑟 . Followership network provides a global
graph that connects all users. This work is based on the hetero-
geneous graph, and we adopt the conception of meta-edge and
heterogeneous graph in [36]:

3462

KDD ’24, August 25–29, 2024, Barcelona, Spain Zhen Wu, Jingya Zhou, Jinghui Zhang, Ling Liu, & Chizhou Huang

Definition 2 (Meta-Edge). The meta-edge is a simplification of a
meta-path whose length is exactly 1, and it is denoted by a triple
containing both node types and edge type, i.e., (head node type, edge
type, tail node type), abbreviated as (𝑇𝑢 ,𝑇𝑒 ,𝑇𝑣).

Each meta-edge illustrates the topological relationship of the
same species by giving the types of both head/tail nodes and edge.
It is the abstraction of a kind of edge in the heterogeneous graph.

Definition 3 (Heterogeneous Graph). A heterogeneous graph is
denoted by G = (V, E), whereV is the collection of different types
of node sets and E is the edge set. For each meta-edge (𝑇𝑢 ,𝑇𝑒 ,𝑇𝑣)
of G, we have 𝑇𝑢 ,𝑇𝑣 ∈ V and 𝑇𝑒 ∈ E. For example, for a graph
that contains repost edges and follow edges between users, it has
V = {𝑉𝑢𝑠𝑒𝑟 } and E = {𝐸𝑟𝑒𝑝𝑜𝑠𝑡 , 𝐸𝑓 𝑜𝑙𝑙𝑜𝑤}, and its meta-edges are
(𝑢𝑠𝑒𝑟, 𝑟𝑒𝑝𝑜𝑠𝑡,𝑢𝑠𝑒𝑟) and (𝑢𝑠𝑒𝑟, 𝑓 𝑜𝑙𝑙𝑜𝑤,𝑢𝑠𝑒𝑟).

Finally, we define the popularity prediction problem as follows:

Definition 4 (Popularity Prediction). For a certain observation
time window T (e.g., 1 hour), our target is to anticipate the final
popularity |𝑐 | (the size of the cascade) through the cascade observed
during T , 𝑐T = {(𝑢, 𝑣, 𝑡𝑠) |∀𝑡𝑠 ≤ T }. For example, in Figure 1, we
observe the cascade in the light blue area, which contains 5 users,
and the final popularity is 11, i.e., the total quantity of involved
users from 𝑢0 to 𝑢10.

Our goal is to learn a mapping function Θ that maps the input
to a predicted value 𝑦 such that 𝑦 is as close as possible to the
ground-truth popularity 𝑦, i.e., minimize the metricM:

argmin
Θ

M (𝑦,𝑦) = argmin
Θ

M
(
Θ
(
𝑐T ,𝐺 𝑓

)
, |𝑐 |

)
(1)

4 Proposed Framework
HIF consists of three phases: heterogeneous graph construction, het-
erogeneous GNN-driven inference, and optimization. The overview
of HIF is shown in Figure 2.

4.1 Heterogeneous Graph Construction
In this paper, we denote each type of heterogeneous edge in an
adjacent matrix form.

4.1.1 Meta-Edges Between Users. The meta-edge (user, repost, user)
means the users and edges in𝐺𝑟,𝑐 , i.e., 𝐸𝑟𝑒𝑝𝑜𝑠𝑡 (𝑢, 𝑣) = 1 if (𝑢, 𝑣) ∈ 𝑐 ,
otherwise, 𝐸𝑟𝑒𝑝𝑜𝑠𝑡 (𝑢, 𝑣) = 0.

The followership may contain the potential paths for informa-
tion diffusion [36]. We use meta-edge (user, follow, user) to repre-
sent these relationships. For each cascade 𝑐 , instead of using the
global followership network 𝐺 𝑓 , which is liable to lead to mas-
sive computation, we sample a subgraph whose edge set is 𝐸 𝑓 ,𝑐

selected from 𝐺 𝑓 . The meta-edge (user, follow, user) is formulated
as: 𝐸𝑓 𝑜𝑙𝑙𝑜𝑤 (𝑢, 𝑣) = 1 if (𝑢, 𝑣) ∈ 𝐸 𝑓 ,𝑐 , otherwise, 𝐸𝑓 𝑜𝑙𝑙𝑜𝑤 (𝑢, 𝑣) = 0.

The sampling method used in [36] is hop-based, i.e., sampling
𝐻 -hop followerships for all users in a cascade where𝐻 is a hyperpa-
rameter. However, this sampling method suffers from the efficiency
problem as mentioned in Sec. 1, and more details are discussed in
Sec. 5.

In this paper, we propose a new method to efficiently sample
more potential followers, i.e., Dynamic Weighted Sampling. Note

that nodes in different positions in 𝐺𝑟,𝑐 may have different contri-
butions to information diffusion:
• The source nodes have only outgoing edges (no incoming edges)
and act as the most influential nodes that contribute most to the
diffusion of information in the future;
• The leaf nodes have only incoming edges and are no longer
reposted in observation, so theymight have tremendous potential
to contribute to future information diffusion;
• The intermediate nodes repost some nodes and have also been
reposted by others in observation, i.e., they have both incom-
ing and outgoing edges. These intermediate nodes in common
sense are observed to be reposted for diffusion by consuming a
portion of their influence so that they might have relatively low
contributions compared to nodes in other positions.
As sampling initialization, we assign different weights to sub-

cascades, and users on the above positions, then begin multistep
sampling. In each step, for all unsampled followers, we first ac-
cumulate the weights from their followed users and correlated
sub-cascades, and then we select a batch of followers with the high-
est weight. We repeat the step until all followers are sampled, or
the number of sampled followers reaches the given threshold. The
pseudo-code and detailed descriptions are presented in A.2.

4.1.2 Meta-Edges With Time. We partition the time series in cas-
cade 𝑐 into𝑇 time intervals equally and treat them as a group of time
nodes 𝑉 𝑐

𝑡𝑖𝑚𝑒
= {𝑡0, . . . , 𝑡𝑇−1}. Then, we connect the adjacent time

nodes (corresponding to the adjacent intervals) to get meta-edge
(time, past to, time): 𝐸𝑝𝑎𝑠𝑡𝑡𝑜 (𝑡𝑖 , 𝑡 𝑗) = 1 if 𝑖 = 𝑗 − 1, else 0.

Compared with a single connection for each user towards a time
node (corresponds to the time interval that the user (re)posts in)
[36], the first step of the innovative soft partition is additionally
considering at most 2𝑆 links to adjacent time nodes (𝑆 time nodes
earlier than it and 𝑆 time nodes later than it), which can be regarded
as a subsequent operation after hard partition (the second step is
the attentive GCN mentioned in Sec. 4.2.2). These additional links
connect each user with multiple candidate time intervals and make
the time interval partition learnable by adding learnable weights
to these links. The meta-edge (user, post at, time) is formalized by:
𝐸𝑝𝑜𝑠𝑡𝑎𝑡 (𝑢, 𝑡 𝑗) = 1 if 0 ≤ 𝑗 ≤ 𝑇 and | 𝑗 − 𝑘 | ≤ 𝑆 , else 0. Afterwards,
the meta-edge (time, contain, user) can be obtained by 𝐸𝑐𝑜𝑛𝑡𝑎𝑖𝑛 =

𝐸⊤𝑝𝑜𝑠𝑡𝑎𝑡 , where ⊤ indicates the matrix transpose.
In this way, we construct a heterogeneous graph G𝑐 for cascade

𝑐 that contains 2 types of nodes (i.e., user and time) and 5 types of
edges (i.e., repost, follow, past to, post at and contains), as shown in
Figure 3.

4.2 Heterogeneous GNN Driven Inference
As shown in Figure 2, the heterogeneous GNN-driven inference
phase consists of multiple procedures: Firstly, we obtain initial
embeddings of the input; Then, we feed these embeddings into the
stacked GNNs and time embedding layers; Finally, we read out the
predicted value from the learned embeddings. Here, we introduce
the forward inference under mini-batch training.

4.2.1 Embedding Initialization. The first phase is to acquire initial
embeddings for items inG𝑐 , and this phase invokes at the beginning
of each forward inference (i.e., after feeding a batch of data to

3463

A Deep Prediction Framework for Multi-Source Information via Heterogeneous GNN KDD ’24, August 25–29, 2024, Barcelona, Spain

Heterogeneous Graph Construction

1. Construct

Cascade Graph

2. Add Time Nodes

3. Sample Followership

IE

Heterogeneous GNN Driven Inference

HGNN TD
RNN

/ TR
HGNN TD

RNN

/ TR

Embdd-

ings

4. Get Init-

Embedding

5. Multi-Layer

Graph&Time Embed

6. Predict

Readout

Multi-Task Optimization

TE

MSLE
Loss

7. Optimize

CE

Figure 2: The overview of HIF that includes three phases (total 7 procedures): the heterogeneous graph construction, the
heterogeneous GNN-driven inference, and the multi-task optimization. In procedures 2 and 3, the green and gray nodes are
time nodes and sampled followers, respectively.

Source User

Time Node

Reposted User

Sampled Follower

Postat / Contain

Follow

Repost

Pastto

Figure 3: The constructed heterogeneous graph G𝑐 .
the model in the training, validation, or test stage). The acquired
initial embeddings can be formulated as X𝑖𝑡𝑒𝑚 = IE(G𝑐) (e.g.,
X𝑢𝑠𝑒𝑟 for user nodes or X𝑡𝑖𝑚𝑒 for time nodes), where IE(·) refers
to initializing item embeddings. We design two different strategies
to implement IE(·). Firstly, for any type of item (user node or time
node), we assume that there are 𝑛 items in a batch and 𝑁 items in
the entire dataset. Then, the initial 𝑑-dimensional embeddings are
generated optionally by:
• Learnable embedding strategy (Ln) randomly generates a
global embedding matrix E ∈ R𝑁×𝑑 and saves it. It will return
the corresponding embedding rows X ∈ R𝑛×𝑑 from E for each
item in the batch when invoked. In this strategy, the embedding
matrix E is learnable.
• Dynamic embedding strategy (Dy) generates a random matrix
X ∈ R𝑛×𝑑 as the initial embedding when invoked, which allows
an item to get a different embedding at each invoking.
Based on the above strategies, we acquire the node embedding

set X𝑛𝑜𝑑𝑒 = {X𝑢𝑠𝑒𝑟 ,X𝑡𝑖𝑚𝑒 }, and compare the performance for
different node embedding initialization strategies in Sec. 5.4. We
utilize the dynamic embedding strategy for edges for the purpose of
memory saving and uncertainty modeling, then we have X𝑒𝑑𝑔𝑒 =

{X𝑟𝑒𝑝𝑜𝑠𝑡 ,X𝑓 𝑜𝑙𝑙𝑜𝑤 ,X𝑝𝑎𝑠𝑡𝑡𝑜 ,X𝑝𝑜𝑠𝑡𝑎𝑡 ,X𝑐𝑜𝑛𝑡𝑎𝑖𝑛}.

4.2.2 Heterogeneous Graph Convolution. The forward inference of
𝑙-th GCN layer can be formulated in a message-passing manner for
each (head node, edge, tail node) triple (𝑢, 𝑒, 𝑣). We use x and X to
denote the embeddings of a single node/edge and all nodes/edges
(distinguished by upper and lower case), respectively, and we use (·)
to represent the embedding triples of (𝑢, 𝑒, 𝑣) (e.g., (x𝑙−1𝑢 , x𝑙−1𝑒 , x𝑙−1𝑣)
or (X𝑙−1

𝑇𝑢
,X𝑙−1

𝑇𝑒
,X𝑙−1

𝑇𝑣
)) in corresponding GCN layer for simplicity.

Firstly, we generate a message based on (𝑢, 𝑒, 𝑣), i.e., MSG(·),
and then pass it by edge 𝑒 ; Subsequently, the tail node 𝑣 aggregates
all messages from its in-coming neighbor nodes, and this process
can be formatted as AGG({MSG(·) |∀(𝑢, 𝑒) ∈ N𝑣}), where N𝑣 is
the set of all in-coming node-edge pairs for 𝑣 ; Afterwards, each tail

node 𝑣 ’s embedding will be updated by X𝑙
𝑣 = UPD𝑁 (·); Finally, we

also update edges’ embeddings, i.e., X𝑙
𝑒 = UPD𝐸 (·).

Specifically, the message is generated by:

MSG(·) = 𝛼𝑇𝑒X
𝑙−1
𝑇𝑢

,

𝛼𝑇𝑒 =

(
𝑊

𝑀,𝑙
𝑇𝑢

X𝑀,𝑙−1
𝑇𝑢

+𝑊𝑀,𝑙
𝑇𝑣

X𝑙−1
𝑇𝑣

)
𝑊 𝑙
𝑇𝑒
X𝑙−1
𝑇𝑒

,
(2)

where 𝛼𝑇𝑒 is the message weight that combines the correlation of 𝑢
and 𝑣 , and scales by 𝑒 , and𝑊𝑀,𝑙

𝑇𝑢
,𝑊

𝑀,𝑙
𝑇𝑒

and𝑊𝑀,𝑙
𝑇𝑣

are parameters.
Especially for meta-edges containing both time node and user

node, we apply a softmax for 𝛼𝑇𝑒 to normalize the message weights
to help GCN learn the soft partition of time intervals.

Due to the graph’s heterogeneity, we firstly collect messages on
meta-edges for each node, then utilize sum pooling to aggregate
messages passed through meta-edge (𝑇𝑢 ,𝑇𝑒 ,𝑇𝑣), i.e.,

AGG𝑇𝑒 (·) = SUM
(
𝑀

𝑇𝑒
𝑣

)
,

𝑀
𝑇𝑒
𝑣 =

{
MSG(·) |∀(𝑢, 𝑒) ∈ N𝑇𝑒

𝑣

}
,

(3)

where AGG𝑇𝑒 is the aggregation on 𝑇𝑒 ,𝑀T𝑒𝑣 refers to the set of all
messages, and N𝑇𝑒

𝑣 refers to the in-coming node-edge pairs for 𝑣
in meta-edge (𝑇𝑢 ,𝑇𝑒 ,𝑇𝑣). After aggregation, we use the attention
mechanism to update node embeddings:

UPD𝑁 (·) =
𝑇𝑒∑︁
𝑇N𝑣

𝛽𝑇𝑒AGG𝑇𝑒 (·),

𝛽𝑇𝑒 =
exp

(
𝑎𝑇𝑒

)∑𝑇𝑒
𝑇N𝑣

exp
(
𝑎𝑇𝑒

) , 𝑎𝑇𝑒 =𝑊
𝑁1
𝑇𝑒

tanh
(
𝑊

𝑁2
𝑇𝑒

AGG𝑇𝑒 (·)
)
,

(4)

where𝑊 𝑁1
𝑇𝑒

and𝑊 𝑁2
𝑇𝑒

are learnable parameters, 𝑎𝑇𝑒 is the atten-
tion score and 𝛽𝑇𝑒 is the attended weight after softmax. For edges’
update, we simply concatenate the learned embeddings of (𝑢, 𝑒, 𝑣)
in 𝑙-th layer: UPD𝐸 =𝑊

𝐸,𝑙
𝑇𝑒
(X𝑙

𝑢 | |X𝑙
𝑒 | |X𝑙

𝑣), where𝑊
𝐸,𝑙
𝑇𝑒
∈ R3𝑑,𝑑 is a

learnable parameter, and | | refers to concatenation.

4.2.3 Integrated Time Embedding. We add slots between GCN lay-
ers to integrate the time embedding module for temporal feature
learning via time nodes. We have the following time embedding
modules to integrate:

Time Decay (TD) models the decay effect of source informa-
tion’s influence with the increase of time. The formulation of param-
eterized time decay is given by TD(X𝑙

𝑡𝑖𝑚𝑒
) = 𝑊 𝑙

𝑇𝐷
X𝑙
𝑡𝑖𝑚𝑒

, where
𝑊 𝑙
𝑇𝐷

is a learnable time decay factor.

3464

KDD ’24, August 25–29, 2024, Barcelona, Spain Zhen Wu, Jingya Zhou, Jinghui Zhang, Ling Liu, & Chizhou Huang

RNN and Transformer (TR) [32] are devoted to sequential data
learning (e.g., word sequences) and can also be applied to time nodes
in the heterogeneous graph to enhance temporal feature learning.
Bi-GRU [9] is used as the instance of RNN in HIF. For Transformer,
HIF mainly stacks its encoder layers [32] as the transformer in-
stance. Each Transformer encoder layer learns embeddings via
the multi-head attention and then adds the attended embeddings
with positional encoding to make up for the shortcoming that the
attention mechanism in Transformer ignores the order in input.

4.2.4 Readout. Motivated by [46], after 𝐿 layers of GNN and time
embedding module, we combine the classification task with the pre-
diction task to handle the long-tail cascade distribution. Specifically,
for a cascade 𝑐 , we classify its popularity into maximum 𝐿𝑣 levels by
the power of 2, and the level of 𝑐 is 𝐿𝑣𝑐 = min(𝐿𝑣, ⌊log2 |𝑐 |⌋). Then,
we utilize the learned embeddings to train a classifier Cls to pre-
dict the level of 𝑐 , i.e., 𝑝 = softmax (Cls(·)) and 𝐿𝑣 = argmax𝑖 (𝑝𝑖),
where 𝑝 is the logits output by Cls, and 𝐿𝑣 is the predicted level.
We also train 𝐿𝑣 regressors that output the predicted popularity at
each level and combine them by the sum pooling weighted by 𝑝:
𝑦 =

∑𝐿𝑣
𝑖 𝑝𝑖Reg𝑖 (·), where Reg𝑖 is the regressor for level 𝑖 with a

reduced value space for easier prediction. In particular, the Cls and
all Reg𝑖 are constructed by MLPs with the same number of layers.

In this way, our readout module combines and solves a multi-
class classification task and a multi-regression task, which dis-
cretizes the long-tailed distribution into several intervals (i.e., the
popularity levels) and then predicts the popularity by multiple re-
gressors in the corresponding intervals. As a result, the model is
capable of learning a more extensive output value range and thus
better handles the problem of data imbalance under the long-tailed
distribution, which is hard to fit by traditional regressors.

4.3 Multi-Task Optimization
We use the mean squared logarithmic error (MSLE) as the metric
to evaluate performance for the same reasons stated in [36] (𝐵 is
the batch size):𝑀𝑆𝐿𝐸 = 1

𝐵

∑𝐵
𝑖 (log(𝑦 + 1) − log(𝑦 + 1))

2.
To better optimize the readout layer that consists of both re-

gression and classification tasks, we take the cross entropy as the
loss of popularity level classification task for each sample in batch:
𝐶𝐸 = −∑𝐿𝑣

𝑖 𝐿𝑣𝑖 log𝑝𝑖 + (1 − 𝐿𝑣𝑖)log(1 − 𝑝𝑖), where 𝐿𝑣𝑖 can be re-
garded as the 𝑖-th value of the one-hot encoded label of the actual
level, e.g., we set 𝐿𝑣 to 3 (starts from 0) and 𝐿𝑣𝑐 to 1, then we have
the one-hot encoded label [0, 1, 0], and in this case, the 𝐿𝑣0, 𝐿𝑣1,
𝐿𝑣2 are 0, 1 and 0, respectively.

Besides, we also present a novel Timeline Error (TE) to con-
strain the learned time embeddings for each sample in batch. For
TE, we mainly use cosine similarity (CS) to measure the difference
between two specific time nodes. For 𝑇 time nodes, the goal of TE
is to maximize the difference between the first and the last time
nodes and minimize the difference between adjacent time nodes.
For optimization purposes, we rewrite it as a minimization problem:

𝑇𝐸 =

𝑇−2∑︁
𝑖=0

CS(X𝐿
𝑡𝑖𝑚𝑒 [𝑖], X

𝐿
𝑡𝑖𝑚𝑒 [𝑖+1])−CS(X

𝐿
𝑡𝑖𝑚𝑒 [0], X

𝐿
𝑡𝑖𝑚𝑒 [𝑇−1]) .

(5)
Finally, we combine metrics and errors from multiple tasks (e.g.,

the TE, CE, and L2 regularization) in a weighted manner as our loss

to optimize our framework:

𝐿𝑜𝑠𝑠 = 𝑀𝑆𝐿𝐸 +
𝐵∑︁
𝑖

(𝛼1𝑇𝐸𝑖 + 𝛼2𝐶𝐸𝑖) + 𝛼3𝐿2, (6)

where 𝛼1, 𝛼2, and 𝛼3 are hyperparameters that weight the metrics
of other tasks, and 𝐿2 is the widely used L2 parameter regularization
to avoid overfitting.

5 Experiments
5.1 Datasets
We conduct experiments on three real-world datasets: SSC, MSC,
and Twitter, and the code is open at https://github.com/Les1ie/HIF.
Dataset Twitter [10, 15, 21, 40] collects tweets, and followership
from some famous users on Twitter, and it contains single-source
cascades. Datasets SSC and MSC [36, 44] are collected from Sina
Weibo, where SSC is a single-source dataset that ignores the topic,
while MSC is a multi-source dataset. Table 1 shows the statistics
of datasets. We can observe: 1) Both MSC and SSC contain more
users than Twitter; 2) The followership network and cascades in
MSC and SSC exhibit a broader scale compared to those observed in
Twitter, making the task on datasets SSC andMSCmore meaningful
and challenging. Furthermore, we analyze the cascade size of each
dataset in A.3. For the experiment, we select 0.5 h (hour) and 1 h
(hour) as the observation time, respectively.

Table 1: Statistics of datasets. (minimum | mean | maximum)

Properties MSC SSC Twitter

Users 2,977,573 887,608 8,510
Followers 9,071,666 3,693,057 80,070
Cascades 19,688 10,420 365,576

Sources per Cascade 2 | 8 | 316 1 | 1 | 1 1 | 1 | 1
Cascade Size 10 | 275 | 9,276 50 | 249 | 63,599 20 | 37 | 193

Cascades per User 1 | 3 | 1,847 1 | 1 | 462 1 | 2 | 412
Followers per User 1 | 5 | 15,654 1 | 4 | 5,719 1 | 5 | 94

5.2 Baselines
We select eight state-of-the-art methods as baselines:

FeatureBased simply feeds hand-crafted temporal and spatial
features into a multilayer perceptron (MLP) to make a prediction.
We extract effective features including: Temporal features such as
the average time delta of the first half and the last half of the
observed cascade [8]; Spatial features such as the number of leaf
nodes [13], triangles, nodes and edges [35] in the cascade graph,
the edge density [43] and clustering coefficient [35].

Node2Vec [12] is a typical node embedding approach, both
walking probabilities 𝑝 and 𝑞 are set to 1.0. We feed the learned
node embeddings to MLP to make predictions.

DeepCas [19] and DeepHawkes [5] are set to sample 100 paths
with length 10. The number of time intervals is 6, and probabilities
𝑝 and 𝑞 keep the same as Node2Vec.

TopoLSTM [34] innovatively extends the standard LSTM cell
to a multiple inputs case through mean pooling. We adapt it to the
popularity prediction task by replacing the output layer with MLP.

3465

A Deep Prediction Framework for Multi-Source Information via Heterogeneous GNN KDD ’24, August 25–29, 2024, Barcelona, Spain

CoupledGNN [6] models the information state and user state
by two GNNs that are coupled with each other. The number of
GNN layers is 3, and the original loss function is replaced by MSLE.

CasCN [7] presents a dynamic GCN kernel combined with RNN
to handle snapshot graphs. The order of the Chebyshev kernel is 2,
and the number of time intervals is 6.

HERI-GCN [36] integrates RNN into GNN and learns spatial-
temporal features from a heterogeneous graph that contains time
nodes. We set the number of heterogeneous GCN layers to 3, and
set the number of time nodes to 5.

TCAN [27] is built with a CGAT module with 3 layers and the
CSAT block with 2 layers of Bi-LSTM.

5.3 Performance Comparison
The comparison results between our proposed HIF and baselines
are shown in Table 2. We obtain the following performance-related
observations (POs):

Table 2: Prediction performance (MSLE) of HIF and baselines.

Method
SSC MSC Twitter

0.5 h 1 h 0.5 h 1 h 0.5 h 1 h

FeatureBased 0.737 0.686 1.147 0.942 0.973 0.848
Node2Vec 1.469 1.126 1.952 1.453 0.172 0.164
DeepCas 3.493 3.763 3.768 3.901 2.876 3.014
DeepHawkes 1.374 0.496 3.117 3.013 0.226 0.076
TopoLSTM 0.859 0.727 3.211 2.398 0.201 0.194
CoupledGNN 0.878 0.746 1.726 1.547 0.070 0.065
CasCN 1.213 1.148 3.084 2.555 0.138 0.100
HERI-GCN 0.464 0.398 1.291 0.881 0.096 0.085
TCAN 0.891 0.852 2.141 2.051 0.126 0.101

HIF 0.419 0.317 0.555 0.537 0.033 0.023

(PO 1): HIF outperforms all baselines, and meanwhile, HERI-GCN
also performs better than other baselines in most cases because
they not only model both temporal and spatial features but also
utilize followership to discover the potential diffusion paths.
(PO 2): DeepCas performs worst in most cases and even performs
worse under 1 hour of observation compared to 0.5 hours of obser-
vation. The reason is twofold: 1) From the perspective of the model:
the performance of DeepCas depends on the quality of the sampled
paths, but the structural features contained in the sampled paths are
weaker than that in the entire cascade graph (e.g., CoupledGNN).
Furthermore, the sampled paths with backtracking contain chaos
temporal information compared to using the complete time series
directly (e.g., DeepHawkes); 2) From the perspective of data: the ob-
servation times are set to 0.5 hours and 1 hour, and are much shorter
than the observation time settings in DeepCas’s experiments [19]
(1, 3, and 5 days for Twitter). It is challenging to extract helpful
information from the paths sampled in short-term observations to
represent the trend of information propagation.
(PO 3): Interestingly, the performance of all methods on the MSC
dataset is somewhat attenuated compared to the SSC dataset. As
evaluated in [36], the message propagation prediction in multi-
source cascade considers more potential factors (e.g., potential fol-
lowers who have followed users in several sub-cascades at the same

time) and obtains better results compared to prediction on the SSC
dataset. We conclude that different observation time settings cause
a difference in results. Concretely, the settings of short-term obser-
vation time (e.g., 0.5 h and 1 h) often indicate fewer data available,
and it is hard for models to discover these potential factors from
insufficient information. As a result, making predictions for multi-
source cascades with short-term observation time is challenging.

5.4 Ablation Study
In the ablation study, we compare the variants of HIF to explore
the contribution of different modules:
• For initial embedding strategies (IE), we have two options, i.e.,
the Dynamic strategy (Dy) and the Learnable strategy (Ln) as
mentioned in Sec. 4.
• For followership sampling (FS), we also have two options, i.e.,
the Hop-based sampling (Hp) [36] and the proposed Weighted
dynamic sampling (WD) as mentioned in Sec. 4.
• For time embedding (TE), we have two options of sequential-
input models to further combine with Time Decay, i.e., the Bi-GRU
(RNN) or the encoder of Transformer (TR).
From the results reported in Table 3, we have the following

ablation observations (AOs):

Table 3: Performance of HIF’s variants. IE: initial embedding,
FS: followership sampling, TE: time embedding, and ’-’ means
no corresponding module is used.

Modules SSC MSC Twitter

IE FS TE 0.5 h 1 h 0.5 h 1 h 0.5 h 1 h

Ln Hp - 1.056 0.742 1.031 0.795 0.056 0.048
Ln Hp RNN 0.785 0.613 0.982 0.753 0.047 0.040
Ln Hp TR 0.684 0.645 0.923 0.680 0.046 0.034

Ln WD - 0.617 0.476 0.887 0.813 0.086 0.069
Ln WD RNN 0.606 0.440 0.760 0.636 0.062 0.028
Ln WD TR 0.588 0.464 0.741 0.621 0.045 0.024

Dy Hp - 0.870 0.530 1.538 1.192 0.094 0.060
Dy Hp RNN 0.648 0.356 0.996 1.086 0.061 0.028
Dy Hp TR 0.644 0.519 0.885 0.957 0.087 0.058

Dy WD - 0.601 0.467 0.974 0.803 0.052 0.053
Dy WD RNN 0.419 0.317 0.879 0.756 0.048 0.023
Dy WD TR 0.442 0.452 0.809 0.632 0.033 0.032

(AO 1): For initial embedding strategies, dynamic initialization
achieves better results than the learnable initialization in some
cases (e.g., the results on SSC). We speculate the reason lies in that
the learnable initialization suffers from the unbalanced user distri-
bution, i.e., some users are in the validation set or test set only, and
their embeddings are not optimized during the training. Specifically,
as Table 1 shows, the mean number of cascades involved per user
is 1, 3, and 2 for SSC, MSC, and Twitter, respectively, indicating
that SSC is more likely to suffer from the unbalanced user distribu-
tion than the other two datasets. Besides, the performance is not
determined by the IE module only, even though we fix the other
modules. For example, for a hub-like cascade graph, the source user
is probably the only user that dominates the popularity, and then
the embeddings of reposted users are not crucial for prediction,

3466

KDD ’24, August 25–29, 2024, Barcelona, Spain Zhen Wu, Jingya Zhou, Jinghui Zhang, Ling Liu, & Chizhou Huang

source (11)
reposted (64)

follower (4e+2)
potential (118)

(a) Weighted Dynamic Sampling

source (11)
reposted (64)

follower (2e+3)
potential (118)

(b) 1-Hop Sampling

Figure 4: Heterogeneous user graphs obtained by conducting
two sampling methods on MSC. The legend shows the num-
ber of users in each type.

ultimately leading to a limited impact of IE strategy on performance.
This also explains why the correlation between performance and
IE on MSC and Twitter is less pronounced than that on SSC.
(AO 2): For the time embeddingmodule, both RNN and Transformer
improve the model performance for most cases. In other words, it is
still tricky to learn the temporal features comprehensively by using
only heterogeneous GNN even though the constructed heteroge-
neous graph already contains temporal information, so we have to
integrate the models such as RNN or Transformer to strengthen the
learning effect. Considering the short-term observation time (0.5 h
and 1 h), the number of time intervals that can be divided is limited;
otherwise, too many time intervals will lead to sparse connections
between time nodes and user nodes. As a result, given the short
input sequence of the temporal embedding module, it is difficult
to directly assert which is a better choice between Transformer
and RNN for all datasets and other modules. Nevertheless, for a
total of 24 cases with the same IE, FS, observation, dataset settings,
and different TE modules (except for the cases without TE mod-
ule), there are 16 cases in which HIF with Transformer achieves
better performance than RNN, so that Transformer is more likely
to deliver higher performance improvements than RNN.
(AO 3): For followership sampling, the proposed weighted dynamic
sampling is more likely to achieve a better performance in most
cases, because the sampled followership network keeps meaningful
nodes and edges and filters out more redundant nodes and edges
that may disturb the learning, see Sec. 5.5 for more details.

5.5 Case Study
5.5.1 Case Study for Weighted Dynamic Sampling. We compare the
sampled followership network by our proposed weighted dynamic
sampling and 1-hop sampling and draw a specific case in Figure 4.
Figure 4 contains source (red), follower (gray), reposted (orange),
and potential follower (light blue) nodes, and also corresponding
edges (gray for followerships, light blue for followerships by po-
tential users and orange for reposting). These potential followers
follow users in different sub-cascades, so they are simultaneously
influenced by multiple sources, indicating that they are easily influ-
enced to be involved in information diffusion in the future [36].

Comparing subfigures in Figure 4, subfigure 4a has fewer fol-
lowers but the same number of potential nodes This is because we
accrue weights from different sub-cascades for each follower in
addition to considering weights from users in different positions

21:38
21:44

21:50
21:56

22:02
22:08

Time Node (Interval)

0

5

10N
o.

 (R
e)

Po
st

 U
se

r

(a) Head 0

21:38
21:44

21:50
21:56

22:02
22:08

Time Node (Interval)

0

5

10N
o.

 (R
e)

Po
st

 U
se

r

(b) Head 22

21:38
21:44

21:50
21:56

22:02
22:08

Time Node (Interval)

0

5

10N
o.

 (R
e)

Po
st

 U
se

r

(c) Head 26

21:38
21:44

21:50
21:56

22:02
22:08

Time Node (Interval)

0

5

10N
o.

 (R
e)

Po
st

 U
se

r

(d) Head 31

Figure 5: The learned weights of soft-partition edges. X-axis
is the timestamp of time node and Y-axis is user ID.

in the cascade graph when sampling. Therefore, it is easier to dis-
cover followers who have followed multiple users in the cascade
graph at the same time, especially when these followed users are in
different sub-cascades (i.e., these followers are potential followers).
This result demonstrates that the weighted dynamic sampling can
reduce redundancy without losing valuable data.

5.5.2 Case Study for Soft-partition. In Figure 5, we plot the learned
weights of soft-partition edges on the latest GCN layer on SSC
dataset with 0.5-hour observation. Each sub-figure shows a heatmap
of a head’s weights in the multi-head attention for (user, postat, time)
meta-edge. Each pixel represents the connection state of the user
on the Y-axis and the time node on the X-axis. A blank pixel means
no connection, and for a colored pixel, the darker the color, the
higher the attention weight. To better distinguish colored pixels
from blank pixels, we slightly darken the color of the pixels whose
weights are actually very close to zero.

In this case, the number of time nodes is 6, i.e., 𝑡0-𝑡5. In hard-
partition, users 𝑢0-𝑢4 (re)post at 18:29-18:33 (the 1st time interval),
and connect to time node 𝑡0; users 𝑢5-𝑢7 (re)post at the 2nd interval
and connect to 𝑡1; 𝑢8-𝑢11 (re)post at 3rd, 4th, 4th and 6th intervals,
and connect to 𝑡2, 𝑡3, 𝑡3 and 𝑡5, respectively. Here, the soft-partition
is set to 2, and thus each user in the cascade connects to at most
5 time nodes and at least 3 time nodes. As illustrated in Figure 5,
for each user in the cascade, head 0 pays more attention to the
time node(s) connecting most users; head 26 focuses on almost all
time nodes except one that has low weights; head 22 pays more
attention to the latest connected time nodes, while head 31 pays
more attention to the earliest time node. We interpret that the soft-
partition provides a broader user-wise interval to aggregate features
on the timeline. Specifically, we interpret the results on head 0 as
learning the mean (re)posting time interval of all observed users
that corresponds to the temporal feature of information. Head 26
focuses on filtering out unimportant time node(s) (e.g., 𝑡3 in this
case) in a global view. Furthermore, the results on heads 22 and 31
can be interpreted as learning the two ends of time intervals that
correspond to the observed users’ action preferences, reflecting

3467

A Deep Prediction Framework for Multi-Source Information via Heterogeneous GNN KDD ’24, August 25–29, 2024, Barcelona, Spain

users’ temporal features. The observation indicates that the soft-
partition enables HIF to learn more useful temporal features.

6 Conclusions
In this work, we proposed a novel frameworkHIF, to predict the pop-
ularity ofmulti-source cascade inOSNs. HIF utilizes soft-partition to
learn users’ behavioral preferences, and samples followers through
the efficient weighted dynamic sampling. Combining with multi-
task optimization further enhances HIF’s learning ability on both
long-tail distribution and spatial-temporal features. Through ex-
tensive experiments on real-world datasets, HIF shows excellent
performance against the state-of-the-art methods. In the future, we
intend to extend HIF by NLP models and graph databases to exploit
tweet content and improve efficiency.

Acknowledgments
This work is supported by the NSFC under grant 61972272, the
NSF of the Jiangsu Higher Education Institutions of China under
grant 21KJA520008, Qinlan Project of Jiangsu Province of China,
Project Funded by the Priority Academic Program Development
of Jiangsu Higher Education Institutions, the National Key R&D
Program for the 14th-Five-Year Plan of China (2023YFC3804104
in 2023YFC3804100), and the Fundamental Research Funds for the
Central Universities. Ling Liu acknowledges a partial support from
NSF CISE under grants 2302720, 2312758, 2038029, an IBM faculty
award, and a grant from CISCO Edge AI program.

References
[1] E. Bakshy, J. M. Hofman, W. A. Mason, and D. J. Watts. Everyone’s an influencer:

quantifying influence on twitter. InWSDM, 2011.
[2] P. Bao, H.-W. Shen, J. Huang, and X.-Q. Cheng. Popularity prediction in mi-

croblogging network: a case study on sina weibo. InWWW, 2013.
[3] T. Bian, X. Xiao, T. Xu, P. Zhao,W. Huang, Y. Rong, and J. Huang. Rumor detection

on social media with bi-directional graph convolutional networks. In AAAI, 2020.
[4] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre. Fast unfolding of

communities in large networks. JSTAT, 2008.
[5] Q. Cao, H. Shen, K. Cen, W. Ouyang, and X. Cheng. DeepHawkes: Bridging the

Gap between Prediction and Understanding of Information Cascades. In CIKM,
2017.

[6] Q. Cao, H. Shen, J. Gao, B. Wei, and X. Cheng. Popularity prediction on social
platforms with coupled graph neural networks. InWSDM, 2020.

[7] X. Chen, F. Zhou, K. Zhang, G. Trajcevski, T. Zhong, and F. Zhang. Information
diffusion prediction via recurrent cascades convolution. In ICDE, 2019.

[8] J. Cheng, L. Adamic, P. A. Dow, J. M. Kleinberg, and J. Leskovec. Can cascades
be predicted? InWWW, 2014.

[9] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk,
and Y. Bengio. Learning phrase representations using rnn encoder-decoder for
statistical machine translation. arXiv preprint arXiv:1406.1078, 2014.

[10] Y. Dong, J. Tang, S. Wu, J. Tian, N. V. Chawla, J. Rao, and H. Cao. Link prediction
and recommendation across heterogeneous social networks. In ICDM, 2012.

[11] H. Gao, D. Kong, M. Lu, X. Bai, and J. Yang. Attention convolutional neural
network for advertiser-level click-through rate forecasting. InWWW, 2018.

[12] A. Grover and J. Leskovec. node2vec: Scalable feature learning for networks. In
SIGKDD, 2016.

[13] A. Guille and H. Hacid. A predictive model for the temporal dynamics of infor-
mation diffusion in online social networks. InWWW, 2012.

[14] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural Comput.,
1997.

[15] J. Hopcroft, T. Lou, and J. Tang. Who will follow you back? reciprocal relationship
prediction. In CIKM, 2011.

[16] M. Jenders, G. Kasneci, and F. Naumann. Analyzing and predicting viral tweets.
In WWW, 2013.

[17] D. Kempe, J. Kleinberg, and É. Tardos. Maximizing the spread of influence through
a social network. In SIGKDD, 2003.

[18] H. Kwak, C. Lee, H. Park, and S. Moon. What is twitter, a social network or a
news media? InWWW, 2010.

[19] C. Li, J. Ma, X. Guo, and Q. Mei. DeepCas: An End-to-end Predictor of Information
Cascades. InWWW, 2017.

[20] Y. Li, J. Fan, Y. Wang, and K.-L. Tan. Influence maximization on social graphs: A
survey. TKDE, 2018.

[21] T. Lou, J. Tang, J. Hopcroft, Z. Fang, and X. Ding. Learning to predict reciprocity
and triadic closure in social networks. TKDD, 2013.

[22] H. T. Nguyen, T. N. Dinh, and M. T. Thaip. Cost-aware Targeted Viral Marketing
in billion-scale networks. In INFOCOM, 2016.

[23] B. Perozzi, R. Al-Rfou, and S. Skiena. Deepwalk: Online learning of social repre-
sentations. In SIGKDD, 2014.

[24] J. Qiu, J. Tang, H. Ma, Y. Dong, K. Wang, and J. Tang. Deepinf: Social influence
prediction with deep learning. In SIGKDD, 2018.

[25] H. Shen, D. Wang, C. Song, and A.-L. Barabási. Modeling and predicting popular-
ity dynamics via reinforced poisson processes. In AAAI, 2014.

[26] L. Sun, A. Chen, P. S. Yu, and W. Chen. Influence maximization with spontaneous
user adoption. InWSDM, 2020.

[27] X. Sun, J. Zhou, L. Liu, and W. Wei. Explicit time embedding based cascade
attention network for information popularity prediction. IPM, 2023.

[28] J. Tang, X. Tang, and J. Yuan. Profit maximization for viral marketing in Online
Social Networks. In ICNP, 2016.

[29] J. Tang, X. Tang, and J. Yuan. Towards profit maximization for online social
network providers. In INFOCOM, 2018.

[30] X. Tang, D. Liao, W. Huang, J. Xu, L. Zhu, and M. Shen. Fully exploiting cascade
graphs for real-time forwarding prediction. In AAAI, 2021.

[31] G. Tong, W. Wu, S. Tang, and D.-Z. Du. Adaptive Influence Maximization in
Dynamic Social Networks. TON, 2017.

[32] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser,
and I. Polosukhin. Attention is all you need. In NeuIPS, 2017.

[33] D. Wang, C. Song, and A.-L. Barabási. Quantifying long-term scientific impact.
Science, 2013.

[34] J. Wang, V. W. Zheng, Z. Liu, and K. C.-C. Chang. Topological recurrent neural
network for diffusion prediction. In ICDM. IEEE, 2017.

[35] L. Weng, F. Menczer, and Y.-Y. Ahn. Predicting successful memes using network
and community structure. In AAAI, 2014.

[36] Z. Wu, J. Zhou, L. Liu, C. Li, and F. Gu. Deep popularity prediction in multi-source
cascade with heri-gcn. In ICDE, 2022.

[37] X. Xu, F. Zhou, K. Zhang, S. Liu, and G. Trajcevski. Casflow: Exploring hierarchical
structures and propagation uncertainty for cascade prediction. TKDE, 2021.

[38] C. Yuan, J. Li, W. Zhou, Y. Lu, X. Zhang, and S. Hu. Dyhgcn: A dynamic hetero-
geneous graph convolutional network to learn users’ dynamic preferences for
information diffusion prediction. arXiv preprint arXiv:2006.05169, 2020.

[39] N. J. Yuan, Y. Zhong, F. Zhang, X. Xie, C.-Y. Lin, and Y. Rui. Who will reply
to/retweet this tweet? the dynamics of intimacy from online social interactions.
In WSDM, 2016.

[40] J. Zhang, Z. Fang, W. Chen, and J. Tang. Diffusion of “following” links in mi-
croblogging networks. TKDE, 2015.

[41] X. Zhang, A. Aravamudan, and G. C. Anagnostopoulos. Anytime information
cascade popularity prediction via self-exciting processes. In ICML, 2022.

[42] L. Zhao, J. Chen, F. Chen, F. Jin, W. Wang, C.-T. Lu, and N. Ramakrishnan. Online
flu epidemiological deep modeling on disease contact network. GeoInformatica,
2020.

[43] Q. Zhao, M. A. Erdogdu, H. Y. He, A. Rajaraman, and J. Leskovec. Seismic: A
self-exciting point process model for predicting tweet popularity. In SIGKDD,
2015.

[44] W. Zhen, Z. Jingya, W. Jie, and S. Xigang. Wb-msf: A large-scale multi-source
information diffusion dataset for social information diffusion prediction. In CBD,
2022.

[45] F. Zhou, X. Xu, G. Trajcevski, and K. Zhang. A Survey of Information Cascade
Analysis: Models, Predictions and Recent Advances. arXiv:2005.11041 [cs], 2020.

[46] F. Zhou, L. Yu, X. Xu, and G. Trajcevski. Decoupling representation and regressor
for long-tailed information cascade prediction. In SIGIR, 2021.

A Appendix
A.1 Performance on 𝑅2 and MAPE
We further measure the performance of HIF and baselines on the
𝑅2 and MAPE, which are widely used in regression tasks, and the
results are shown in Figure 6. The 𝑅2 of some methods are negative,
which are not plotted. Since the extreme values contribute differ-
ently to different metrics, some order changes in the performance
of the baselines are observed, but the overall performance of HIF
is still the best. Moreover, we can see that the performances are
consistent with the MSLE that we analyzed in PO1, PO2 and PO3.

3468

KDD ’24, August 25–29, 2024, Barcelona, Spain Zhen Wu, Jingya Zhou, Jinghui Zhang, Ling Liu, & Chizhou Huang

SSC-0.5h SSC-1h MSC-0.5h MSC-1h Twitter-0.5hTwitter-1h0.0

0.5

1.0

1.5

2.0

M
A

PE

DeepCas
Node2Vec

DeepHawkes
TopoLSTM

CoupledGNN
FeatureBased

CasCN
TCAN

HERI-GCN
HIF

0.2

0.4

0.6

R
² (

ha
tc

he
d

by
 li

ne
s)

Figure 6: Performance of HIF and baselines on 𝑅2 (right Y-
axis, hatched by lines) and MAPE (left Y-axis) metrics, each
bar is stacked by difference.

A.2 Details of Weighted Dynamic Sampling
The weighted dynamic sampling is designed to take advantage of
differentiated contributions to sample followership. Accordingly,
we firstly assign different weight bases 𝜙𝑠 , 𝜙𝑟 , 𝜙𝑙 for nodes in dif-
ferent positions in a cascade graph and assign a weight 𝜙𝑐 to all
sub-cascades. Let 𝛼 and 𝛽 be the scale factors that limit the number
Γ of sampled users, i.e., Γ = 𝛼 |𝑉 𝑐T

𝑢𝑠𝑒𝑟 | + 𝛽 . In Algorithm 1, lines 1-6
are set for initialization, where S is the collection of node sets for
sub-cascades, H is the set of candidate followers, and N𝑖 is the
follower set for each user 𝑖 in cascade 𝑐 .

We sample step by step until no more followers inH to sample
or |𝐸 𝑓 ,𝑐 | reaches Γ. We select only a batch of followers in each
sampling step. At the beginning of each step, we first update the
weights for users in the cascade (lines 8-12) according to their
positions and the number of unsampled followers. Then, we update
the weights of the users’ followers in each sub-cascade 𝑠 (lines
13-18) and build a set 𝑓𝑐 to collect all followers for users in 𝑠 (line
14). Line 16 shows two weight accumulations: one is to accumulate
the weight for every user in 𝑠 to his/her followers’ weights (the
summation term in line 16); the other is to further add weight 𝜙𝑐
to the weights for all followers of 𝑠 . Let Π denote the maximum
number of sampled followers in the current step, and we then select
Π followers according to their weights to set B. Finally, we remove
B fromH and merge B into 𝐸 𝑓 ,𝑐 .

We provide an example in Figure 7 to illustrate the weighted dy-
namic sampling step by step. This cascade contains 2 sub-cascades,
and we set 𝜙𝑠 = 3, 𝜙𝑟 = 1, 𝜙𝑙 = 2, 𝜙𝑐 = 3, 𝜋 = 2, Γ = 5 for simplicity,
i.e., at most two followers are sampled at each step, with a total of
five followers. Specifically, at step 0, we get the weights for users
and followers via lines 8-18 in Algorithm 1, and select the 𝑓2 and 𝑓0
with the largest weights. For instance, the intermediate user 𝑢2 has
3 followers, and its weight is𝑤2 = 𝜙𝑟 + ln(1 + 3) − ln(1 + 0) ≈ 2.4;
𝑓2 follows 𝑢2 and 𝑢5 from two unioque sub-cascades, so 𝑓2’s weight
is 𝑤 𝑓2 = 𝑤2 + 𝑤5 + 2𝑤𝑐 = 11.1, which is the largest and results
the selection of 𝑓2 at step 0. Similarly, we update the weights and
select 𝑓1 and 𝑓6 at step 1. Following the update of weights and the
selection of 𝑓3 at step 2, the value of |𝐸 𝑓 ,𝑐 | reaches Γ, so we stop
sampling with the final state shown at step 3.

A.3 Dataset Analysis
The observed cascade sizes are shown in Figure 8a. The longer
line on X-axis indicates that the corresponding dataset has more

Algorithm 1 Weighted Dynamic Sampling
Input: Position weights 𝜙𝑠 , 𝜙𝑟 , 𝜙𝑙 , 𝜙𝑐 , scale factors 𝛼, 𝛽 , sampling-batch

size 𝜋 , cascade graph 𝐺𝑟,𝑐 = (𝑉 𝑐
𝑢𝑠𝑒𝑟 , 𝐸

𝑟,𝑐) , and followership graph
𝐺 𝑓 = (𝑉𝑢𝑠𝑒𝑟 , 𝐸 𝑓) .

1: 𝐸 𝑓 ,𝑐 ← ∅, Γ ← 𝛼 |𝑉 𝑐T
𝑢𝑠𝑒𝑟 | + 𝛽

2: S ← collection of node sets for sub-cascades
3: H ← set of all followers for users in 𝑐
4: for each user 𝑖 in𝑉 𝑐T

𝑢𝑠𝑒𝑟 do
5: N𝑖 ← follower set of 𝑖 in𝐺 𝑓

6: end for
7: while |𝐸 𝑓 ,𝑐 | < Γ and |𝐻 | > 0 do
8: for each user 𝑖 in𝑉 𝑐T

𝑢𝑠𝑒𝑟 do
9: 𝑝𝑖 ← position of 𝑖 in𝐺𝑟,𝑐

10: 𝑓𝑖 ← number of sampled followers in N𝑖

11: 𝑤𝑖 ← 𝜙𝑝𝑖 + lg(1 + |N𝑖 |) − lg(1 + 𝑓𝑖)
12: end for
13: for each sub-cascade 𝑠 in S do
14: 𝑓𝑐 =

⋃{N𝑖 |∀ user 𝑖 ∈ 𝑠 }
15: for each follower 𝑗 in 𝑓𝑐 do
16: 𝑤𝑗 ←

∑{𝑤𝑖 |∀ (𝑗, 𝑖) ∈ 𝐸 𝑓 } + 𝜙𝑐
17: end for
18: end for
19: Π ← min(|H |, 𝜋, Γ − |𝐸 𝑓 ,𝑐 |)
20: B ← select at most Π followers by 𝑤𝑗 from H
21: H ← H \ B, 𝐸 𝑓 ,𝑐 ← 𝐸 𝑓 ,𝑐 ⋃ B
22: end while
Output: Sampled follow edge set 𝐸 𝑓 ,𝑐 .

cascades, and the solid lines illustrate the final cascade size (the
ground-truth), which follows a long-tail distribution.

Furthermore, we analyze the cascade spread size (in percentage)
in relation to the time of spread (in hours) in the MSC and SSC.
The results are depicted in Figure 9. Notably, we can observe a
restricted scale of information diffusion over short durations. For
instance, the average cascade sizes after 0.1 hours are a mere 0.017%
for SSC and 0.022% for MSC, indicating a limited utility of model
predictions during this early stage. The average time required for
information to reach 10% of its final size is found to be 38.2 hours
for SSC and 29.9 hours for MSC.

It is worth noting that previous studies, including [5, 19, 36, 41],
have consistently demonstrated that longer observation periods
contribute to more accurate predictions. Consequently, in Sec. 5,
we deliberately opt for the more challenging observation times of
0.5 and 1 hour to evaluate our proposed framework.

A.4 Efficiency Analysis
We further compare the number of followerships sampled by differ-
ent methods and the total time cost consumed by HIF and baselines.

A.4.1 Sampled Followership. We compare the followerships sam-
pled by hop-based sampling and weighted dynamic sampling, and
the results are shown in Figure 8b. In this case, the settings for
weighted dynamic sampling are the same as the settings in Sec.
5.5.1. For 1-hop sampling, it samples relatively few followerships
for short cascades on the Twitter dataset and samples a large fol-
lowership network for long cascades on datasets SSC and MSC,
which leads to either insufficiency or redundancy of followership
network for Twitter or SSC/MSC.

3469

A Deep Prediction Framework for Multi-Source Information via Heterogeneous GNN KDD ’24, August 25–29, 2024, Barcelona, Spain

Sampled / Unsampled / Potential Follower

Leaf / Intermediate / Source User

Sub-cascade / Selected Follower

Figure 7: A step-wise example of weighted dynamic sampling. The altered weights are encased in boxes, users in disparate
cascade positions are distinguished by different colors, and the potential followers and its followerships are highlighted in blue.

0 5000 10000 15000 20000
Cascade No

100

101

102

103

104

105

C
as

ca
de

 S
iz

e

MSC SSC Twitter 0.5h 1h ∞

(a) Observed cascade size

0 5000 10000 15000
Cascade No

101

103

105

Fo

llo
w

er
sh

ip

MSC SSC Twitter 1-Hop Weighted Dynamic

(b) Sampled followerships

Figure 8: The observed and final cascade size of datasets, and
the followership sampled by different methods.

10−1 100 101 102

Diffusion Time (hour)

10⁻¹

10⁰

10¹

10²

A
C

S
(%

)

MSC
SSC

(a) ACS

25 50 75 100
Cascade Size (%)

50

100

150

200

A
D

T
(h

ou
r)

MSC
SSC

(b) ADT

Figure 9: The average cascade size (ACS) after a specific diffu-
sion time and average diffusion time (ADT) to reach a specific
cascade size on the MSC and SSC.

In comparison, the proposed weighted dynamic sampling sam-
ples more followerships for short cascades to provide sufficient
beneficial information and also has a tighter upper bound for large
cascades to avoid the low efficiency of the framework’s inference.

A.4.2 Time Cost. We analyze the time cost of HIF and baselines
and plot the results of 1-hour observation in Figure 10. The time
cost for each model is mainly determined by both the time of the
training step (i.e., the time of forward inference and backward prop-
agation, depending on themodel’s complexity) and the convergence
capability (which determines the total number of training steps). It
implies that the simplest model is not necessarily the fastest one,
e.g., the FeatureBased and the Node2Vec are slower than DeepCas
on datasets SSC and MSC. It is worth mentioning that HIF is more
efficient than CasCN and HERI-GCN in most cases, though it is

Ca
sC
N

Co
up
led
GN
N

De
ep
Ca
s

De
ep
Ha
wk
es

Fe
atu
reB
ase
d

HE
RI
-G
CN HI

F

No
de
2V
ec
TC
AN

To
po
LS
TM

2−4

2−1

22
MSC SSC Twitter

Figure 10: The training time cost on each dataset for all ap-
proaches with 1-hour observation.

not the fastest one. Overall, HIF achieves a good trade-off between
efficiency and performance.

A.5 Sensitivity Analysis
Many notable hyperparameters might have impacts on the model
inference and data structure. We use the MSC dataset to investigate
the effect of these hyperparameters, including the number 𝑆 of soft-
partition edges per user, the number𝑇 of time nodes, the number 𝐿
of GCN layers, the timeline error weight 𝛼1 and the CE loss weight
𝛼2. As illustrated in Figure 11, we explain the observations below:
• The number of time nodes determines the private receptive field
of each time node, and the number of soft-partition edges deter-
mines the shared receptive field of each user. These two hyper-
parameters are complementary to each other, and determine the
total receptive field to users for each time node commonly.
• As the number of GCN layers increases from 1 up to 6, the perfor-
mance first improves and then falls since the shallow model has
limited learning ability, while the deep model is easy to suffers
from over-fitting.
• We selectmultiple representative values for theweight of timeline
loss, and the results demonstrate that timeline loss with a suitable
weight (e.g., 10−3 for 0.5-hour observation and 5×10−5 for 1-hour
observation) can benefit the prediction performance.
• With regard to the CE loss weight 𝛼2, the results show that the
best performance is achieved when 𝛼2 is set to 0.2 for 0.5-hour
observation and 0.15 for 1-hour observation.

3470

KDD ’24, August 25–29, 2024, Barcelona, Spain Zhen Wu, Jingya Zhou, Jinghui Zhang, Ling Liu, & Chizhou Huang

6 8 10
Time Nodes

0.6

0.7

0.8

0.9

1.0

M
SL

E

Ob. 0.5 h
Ob. 1 h

(a) number of time nodes𝑇

0 1 2 3
Soft-Partition Edges Per User

0.65

0.70

0.75

M
SL

E

Ob. 0.5 h
Ob. 1 h

(b) soft-partition per user 𝑆

2 4 6
GCN Layers

0.6

0.8

1.0

1.2

M
SL

E

Ob. 0.5 h
Ob. 1 h

(c) number of GCN layers 𝐿

0 10−4 10−3 10−2 10−1

Weight of Timeline Error

0.6

0.7

0.8

0.9

1.0

M
SL

E

Ob. 0.5 h
Ob. 1 h

(d) Timeline error weight 𝛼1

0.0 0.5 1.0 1.5 2.0
CE loss weight

0.6

0.7

0.8

0.9

M
SL

E

Ob. 0.5 h
Ob. 1 h

(e) CE loss weight 𝛼2

Figure 11: The sensitivity of 𝑇 , 𝑆 , 𝐿, 𝛼1 and 𝛼2 on the MSC dataset.

(a) Popularity-MSC (b) Density-MSC (c) Trans.-MSC (d) Kurtosis-MSC (e) Skew-MSC

(f) Popularity-SSC (g) Density-SSC (h) Trans.-SSC (i) Kurtosis-SSC (j) Skew-SSC

(k) Popularity-Twitter (l) Density-Twitter (m) Trans.-Twitter (n) Kurtosis-Twitter (o) Skew-Twitter

Figure 12: Visualization of learned information cascade embedding and manually extracted properties, for each point, the
darker the color, the higher the property value. "Trans." is the abbreviation of transitivity.

A.6 Interpretability Analysis
In this section, we visualize the learned information cascade embed-
ding by projecting the embeddings as 2D points via t-SNE[4] and
coloring these points by hand-crafted properties. The visualization
results are drawn in Figure 12 under 1-hour observation.

The properties to be visualized include the final popularity (i.e.,
the ground-truth of our task), the density of the cascade graph, the
transitivity of sampled followership network, the kurtosis, and the
skew of the time series. The former three are the spatial properties
coming from the cascade graph and the followership network. The
latter two temporal properties come from the (re)posting time series,
where the skewness reflects the stage of information diffusion. In a
complete diffusion process, the popularity is in the tendency of low
- high - low. The kurtosis coefficient demonstrates the explosion
of information diffusion. These two temporal coefficients jointly
reflect the state of the information diffusion process. We measure

the HIF’s learning ability of spatial-temporal features by the corre-
lation between the learned embeddings (the position of points) and
these manually extracted properties (the color of points).

We can observe a noticeable correlation between the color gra-
dient and the position of the points (e.g., in Figure 12(l) indicating
that the embeddings learned by our framework can better reflect
the spatial-temporal properties of the original data, i.e., HIF learns
spatial-temporal features well.

The multi-source cascade aggregates sub-cascades with different
kurtosises and skewnesses and released at different times, so the
distribution of the MSC temporal feature scatter is more uniform.
The observation duration in our settings (i.e., 0.5 h and 1 h) is too
short to observe a prominent diffusion process (as shown in Figure
8a), resulting in a uniform distribution of temporal property scatters
on SSC and Twitter datasets. However, we still observe that each
point has a similar skewness or kurtosis as its nearest neighbor.

3471

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Proposed Framework
	4.1 Heterogeneous Graph Construction
	4.2 Heterogeneous GNN Driven Inference
	4.3 Multi-Task Optimization

	5 Experiments
	5.1 Datasets
	5.2 Baselines
	5.3 Performance Comparison
	5.4 Ablation Study
	5.5 Case Study

	6 Conclusions
	Acknowledgments
	References
	A Appendix
	A.1 Performance on R2 and MAPE
	A.2 Details of Weighted Dynamic Sampling
	A.3 Dataset Analysis
	A.4 Efficiency Analysis
	A.5 Sensitivity Analysis
	A.6 Interpretability Analysis

