
ZipZap: Efficient Training of Language Models for Large-Scale
Fraud Detection on Blockchain

Sihao Hu
Georgia Institute of Technology

sihaohu@gatech.edu

Tiansheng Huang
Georgia Institute of Technology

thuang@gatech.edu

Ka-Ho Chow
Georgia Institute of Technology

khchow@gatech.edu

Wenqi Wei
Georgia Institute of Technology

wwei23@fordham.edu

Yanzhao Wu
Georgia Institute of Technology

yawu@fiu.edu

Ling Liu
Georgia Institute of Technology

ling.liu@cc.gatech.edu

ABSTRACT

Language models (LMs) have demonstrated superior performance
in fraud detection on Blockchains [17]. Nonetheless, the sheer vol-
ume of Blockchain data results in excessive memory and computa-
tional costs when training LMs from scratch, limiting their capabil-
ities to large-scale applications. In this paper, we present ZipZap, a
framework tailored to achieve both parameter and computational
efficiency when training LMs on large-scale transaction data. First,
with the frequency-aware compression, an LM can be compressed
down to a mere 7.5% of its initial size with an imperceptible perfor-
mance dip. This technique correlates the embedding dimension of
an address with its occurrence frequency in the dataset, motivated
by the observation that embeddings of low-frequency addresses are
insufficiently trained and thus negating the need for a uniformly
large dimension for knowledge representation. Second, ZipZap ac-
celerates the speed through the asymmetric training paradigm: It
performs transaction dropping and cross-layer parameter-sharing
to expedite the pre-training process, while revert to the standard
training paradigm for fine-tuning to strike a balance between ef-
ficiency and efficacy, motivated by the observation that the op-
timization goals of pre-training and fine-tuning are inconsistent.
Evaluations on real-world, large-scale datasets demonstrate that
ZipZap delivers notable parameter and computational efficiency
improvements for training LMs. Our implementation is available
at: https://github.com/git-disl/ZipZap.

CCS CONCEPTS

• Computing methodologies → Natural language processing;
Learning paradigms; • Security and privacy→Web application
security.

KEYWORDS

Language Models, Efficient Computation, Blockchain, Ethereum

ACM Reference Format:

SihaoHu, TianshengHuang, Ka-HoChow,WenqiWei, YanzhaoWu, and Ling
Liu. 2024. ZipZap: Efficient Training of Language Models for Large-Scale
Fraud Detection on Blockchain. In Proceedings of the ACM Web Conference

This work is licensed under a Creative Commons Attribution
International 4.0 License.

WWW ’24, May 13–17, 2024, Singapore, Singapore
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0171-9/24/05.
https://doi.org/10.1145/3589334.3645352

Figure 1: Cumulative numbers of transactions and addresses

on Ethereum across years.

2024 (WWW ’24), May 13–17, 2024, Singapore, Singapore. ACM, New York,
NY, USA, 10 pages. https://doi.org/10.1145/3589334.3645352

1 INTRODUCTION

Blockchain has given rise to a wide range of fraudulent activities [6,
15–17, 36]. The key to detecting such frauds lies in representing and
analyzing the behavioral patterns of fraudulent accounts, either to
differentiate them from legitimate ones [36] or to identify accounts
exhibiting similarities that are controlled by same fraudsters [17].

Previous studies [17, 23, 30, 36] have shown that representing
accounts in a latent space for fraud detection is a promising and
generalized solution. Recently, language models (LM), renowned for
their superior sequential modeling ability, have established a new
state-of-the-art [17] over existing graph-based methods [23, 30, 36]
for representing user behaviors. Although these approaches reach
good performance on small datasets, they fall short in large-scale
applications due the immense cost on memory and computation.
As illustrated in Figure 1, there are approximately 2.1 billion trans-
actions and 250 million addresses (accounts) recorded on Ethereum
(the second largest blockchain) as of October 2023 [9], and the
numbers keep increasing over time. Assigning a 128-dimension
embedding vector to each Ethereum address to represent its infor-
mation would lead to 32 billion parameters in total.

There are two motivating factors for establishing a speed- and
parameter-efficient solution for training LMs: First, it enhances
runtime efficiency for downstream tasks, as frequent updates to the
model are essential to capture new transactions and to learn repre-
sentations for newly emerged accounts [14, 40]. Second, training
requires approximately three times the memory resources com-
pared to inference [7], making it a bottleneck for LM applications.

Scope and Contributions: In this paper, we propose a frame-
work, coined as ZipZap, designed to enhance parameter efficiency
in language models and computational efficiency during their train-
ing. In our scenario, a language model serves as a sequence encoder
that extracts account representations from sequences, which are

2807

https://github.com/git-disl/ZipZap
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3589334.3645352
https://doi.org/10.1145/3589334.3645352
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3589334.3645352&domain=pdf&date_stamp=2024-05-13

WWW ’24, May 13–17, 2024, Singapore, Singapore Sihao Hu et al.

constructed from accounts’ historical transactions. LMs are initially
pre-trained to capture co-occurrence relationship of transactions
like BERT [8], GPT [26] and ELECTRA [5], and subsequently fine-
tuned with a cascaded MLP classifier for downstream tasks.

To realize parameter-efficiency, we first identify that the bot-
tleneck of parameter lies in the address embedding lookup table,
whose parameter number scales linearly to the number of addresses,
constituting 99% of the entire LM when the number of addresses
approaches the million-level. Fortunately, a characteristic that can
be exploited for streamlining is the observation that the frequency
of addresses follows a power-law distribution [22], which indicates
that the majority of parameters in the address embedding table are
trained infrequently, as an address embedding can only be trained
when its associated address appears in transactions. This suggests
that allocating a uniformly large dimension to every address em-
bedding is unnecessary. Instead, we propose the frequency-aware
compression technique that correlates the dimension of the address
embeddings with the occurrence frequency of their associated ad-
dresses through address space partitioning and dimension decay.
This approach yields a remarkable compression rate with a negli-
gible performance downgrade and accelerates training due to the
reduction in backward gradient calculations.

To further expedite the training, another characteristic that can
be harnessed is the inconsistencies between optimization goals
and computation costs of pre-training and fine-tuning. We design
acceleration strategies specifically for pre-training to achieve com-
putational efficiency as it accounts the majority time of training,
while revert to the standard training paradigm during fine-tuning
to preserve the effectiveness in downstream tasks. For example, we
propose transaction dropping strategy for the pre-training stage,
motivated by the observation that dropping repetitive transactions
has no effect on transaction co-occurrence captured by the pre-
training task, yet offers considerable computational conservation
since the length of sequence exhibits a quadratic relationship to
the time complexity of Transformer computation. Conversely, fine-
tuning is conducted on recovered transaction sequences to fully
capture the temporal patterns inherent in transactions, prioritiz-
ing effectiveness over efficiency. This strategy, named asymmetric
training, allows ZipZap to enjoy efficiency during training without
compromising effectiveness in downstream tasks.

Experiments on large-scale Ethereum datasets demonstrate that
ZipZap represents a remarkable advancement over the state-of-the-
art in both terms of parameter and computational efficiency: ZipZap
streamline the original LM down to mere 7.5% with a marginal
performance loss, and delivers up to 3 times speed during pre-
training on large-scale real-world datasets.

In summary, this paper makes three original contributions:

• We present ZipZap, a framework that offers both parameter effi-
ciency and computational efficiency for training LMs.

• ZipZap enhances parameter efficiency in LMs by frequency-
aware compression, which reduces 92% of parameters of the
original LM with an imperceptible performance dip.

• ZipZap strikes a well balance between efficiency of pre-training
and efficacy on the downstream tasks via the asymmetric training
paradigm. Along with reduced parameter, ZipZap offers up to 3

times speed up on large-scale datasets.

2 BACKGROUND AND RELATED WORK

2.1 Efficient Transformer Training

To realize computational efficiency, the most straightforward way
is to employ efficient Transformers, such as Performer [4], Lin-
former [35], Longformer [2], and Big Bird [39]. Another method is
Progressive Stacking [11, 37], which takes advantage of the high
similarity of cross-layer attention distribution to progressively stack
shallow BERT models to generate deeper ones. Token dropping
techniques [13, 27] can also improve computational efficiency by
discarding or bypassing unimportant tokens, however, determining
which tokens to drop without hurting performance can be challeng-
ing. Some learning-based methods[13, 19, 38] inevitably introduce
extra computation, making them less efficient for training, or only
suitable for inference.

To achieve parameter-efficiency, various techniques have been
proposed. For example, ALBERT [21] factorizes the embedding
layer and shares parameters across layers, resulting in a reduction
in memory consumption. GroupReduce [3] partitions the language
vocabulary into disjoint blocks and applies weighted SVD to achieve
a low-rank approximation. Additionally, several works [10, 18, 24,
42, 43] from the recommendation field utilize neural architecture
search (NAS) and reinforcement learning (RL) to learn variable
embedding sizes. Among these, Learnable Embedding [24] shows
the best performance with learnable soft-threshold pruning tech-
nique. Nevertheless, learning-based methods require the initiation
of a large model at the start of training and entail considerable
additional computation to determine the optimal configuration.

2.2 Terminology of the Ethereum Blockchain

Externally owned account (EOA): An EOA refers to an Ethereum
account that is controlled by a user who has access to the account’s
private key. An EOA represents an individual user, and only EOAs
can initiate transactions.
Contract account: A contract account represents a smart contract
program deployed on Ethereum, which can be triggered by trans-
actions issued by EOAs to achieve functionalities pre-defined in its
code. Both EOAs and contract accounts are identified by an address,
which is a 42-character hexadecimal string.
Transaction: Transactions are cryptographically signed data mes-
sages that contain a set of instructions, which can be interpreted to
sending Ether between accounts or triggering a smart contract. A
transaction consists of several elements:

• Sender : Address of the EOA that initiates the transaction.
• Recipient: Address of the account that receives the transaction.
• Amount: Amount of Ether being sent or received in the transac-
tion.

• Data: Data used to specify the function of a smart contract to be
called or the arguments to be passed.

• Timestamp: Timestamp of when the transaction was logged on
the blockchain.

3 TRAINING LANGUAGE MODELS

To provide some backgrounds, we introduce a standard paradigm of
pre-training a BERT-like LM [8, 17] on Ethereum data from scratch,
and fine-tuning it for downstream fraud detection tasks.

2808

ZipZap: Efficient Training of Language Models for Large-Scale Fraud Detection on Blockchain WWW ’24, May 13–17, 2024, Singapore, Singapore

loss

A0

Trm

Trm

Trm Trm Trm

Trm

…

…Trm Trm

Self Tx2

T0 …

…

…

A1

T1 T2

A3

T3 T4 Tn

Tx1 Tx3 Tx3 Txn

… … …

mask

… … …

mask

Transaction sequence

Transaction
Features

Transformer

mask

Embedding
projection

loss

Figure 2: Model architecture and pre-training task of a BERT-

like LM.

3.1 Sequence Construction

As illustrated in Figure 2, an EOA has its own transaction sequence,
which is constructed from the transactions the account has involved
either as the sender or the recipient, with transactions sorted by
timestamp. A dummy self-transaction is placed at the head of the
sequence, its address feature set to the EOA’s own address. This
serves the dual purposes of incorporating self-address information
into the model and facilitating the gathering of global information
during self-attention computation. Each transaction has several
features such as address, timestamp, position, amount, etc.

3.2 Model Architecture

3.2.1 Embedding Layer: Transaction features are encoded into
embedding vectors via embedding lookup tables. As illustrated in
Figure 3, we convert a 42-character hexadecimal address into an
index 𝑖 using a string-to-integer mapping, then retrieve the 𝑖-th
embedding from the address embedding lookup table, which is a
𝑑-dimension address embedding vector that represents the address.
Each type of features has its own embedding lookup table with𝑉 ·𝑑
parameters, where𝑉 is the total number of possible discrete values
for that specific feature. For the address feature, 𝑉 can be in the
hundreds of millions.

For a transaction, its features are encoded into embedding vectors
and summed together to generate a transaction embedding. The
embeddings of transactions within a sequence are stacked to form
a matrix 𝑯0 ∈ R𝑁×𝑑 , where 𝑁 is the length of the transaction
sequence.

3.2.2 Transformer: As shown in Figure 2, the Transformer [32]
architecture consists of 𝐿 transformer layers, which can be formal-
ized as:

𝑯
′

𝑙
= Attention

(
𝑯𝑙𝑾

𝑄

𝑙
,𝑯𝑙𝑾

𝐾
𝑙
,𝑯𝑙𝑾

𝑉
𝑙

)
(1)

Attention(𝑄,𝐾,𝑉) = softmax
(
𝑄𝐾⊤
√
𝑑

)
𝑉 (2)

𝑯𝑙+1 = [FFN(𝒉1
𝑙
); · · · ; FFN(𝒉𝑡

𝑙
)] (3)

FFN(𝒙) = GELU(𝒙𝑾1
𝑙
+ 𝒃1

𝑙
)𝑾2

𝑙
+ 𝒃2

𝑙
(4)

Embedding
lookup tables

Transaction
Addr:0x7C..a8
Time:20220405
Position: 5
Type:contract

...

...

Feature
embeddings

Transaction
embedding

O(V*d)

Figure 3: Encode features into embedding vectors via embed-

ding lookup tables.

where the projection matrices𝑾𝑄

𝑙
,𝑾𝐾

𝑙
,𝑾𝑉

𝑙
,𝑾1

𝑙
,𝑾2

𝑙
∈ R𝑑×𝑑 , and

bias vectors 𝒃1
𝑙
and 𝒃2

𝑙
∈ R𝑑×1 are trainable parameters for the

𝑙-th Transformer layer. Here we omit the multi-head mechanism to
facilitate description.

The time complexity for 𝐿-layer Transformer computations is
O(𝐿 · 𝑁 2 · ℎ · 𝑑), where 𝐿, 𝑁 , ℎ, and 𝑑 represent the number of
Transformer layers, the length of sequence, the number of heads in
self-attention, and the hidden dimension, correspondingly.

3.3 Pre-training

There are several well-known tasks to pre-train LMs in NLP, such
as next token prediction of GPT [26], masked token prediction of
BERT [21], replaced token detection of ELECTRA [5], etc. Here we
adopt a task named masked address prediction [17] to pre-train a
BERT-like LM.

As illustrated in Figure 2, given a transaction sequence, 𝑟% of
transactions are randomly selected. The address features of selected
transactions are replaced with a special token [MASK], and the
sequence is passed through the LM to generate transaction rep-
resentations. For a transaction whose address is masked, we use
𝒉𝑚 ∈ R𝑑 to denote the representation produced by Transformer,
which includes its bidirectional context information and is utilized
to predict its masked address. Specifically, a contrastive loss is
adopted as the objective function:

𝐿= − 1
|M|

∑︁
𝑚∈M

log

(
exp(𝒉T𝑚 ·𝒂𝑝)

exp(𝒉T𝑚 ·𝒂𝑝)+
∑
𝑛∈Nexp(𝒉T𝑚 ·𝒂𝑛)

)
(5)

whereM is the masked address set in sequences, 𝒂𝑝 is its address
embedding (positive address), N is the negative address set and 𝒂𝑛
is the address embedding of a different address (negative address).
Optimizing Eq. 5 essentially entails encouraging 𝒉𝑚 to be close to
its address embedding 𝒂𝑝 , and distant from 𝒂𝑛 in the latent space.

3.4 Fine-tuning

For an account-level classification task, such as phishing account
detection or identity inference, we cascade the pre-trained LM
with a MLP classifier, which takes the representation of the self-
transaction 𝒉𝒔 as input. 𝒉𝒔 represents the entire sequence and the
EOA. The predicted probability 𝑦 of the EOA being a fraud account
is given by:

𝑦 = Sigmoid (MLP (𝒉𝑠)) (6)

2809

WWW ’24, May 13–17, 2024, Singapore, Singapore Sihao Hu et al.

Figure 4: The parameter proportion of the address embed-

ding lookup table in the entire LM reaches 99% when the

address number approaches million-level. The total parame-

ter number scales linearly to the address number.

The objective loss is the negative log-likelihood function as:

𝐿 = − 1
|D|

∑︁
(𝑦̂,𝑦) ∈D

(𝑦 log𝑦 + (1 − 𝑦) log(1 − 𝑦)) (7)

where D is the training dataset, and 𝑦 ∈ {1, 0} is the ground-truth
label.

4 ZIPZAP

ZipZap is a framework that offers parameter and computational
efficiency through two strategies: frequency-aware compression and
asymmetric training.

4.1 Frequency-aware Compression

4.1.1 Motivation: Figure 4 illustrates the parameter proportion
of the address embedding lookup table in the entire model. Clearly,
the lookup table constitutes 99% of parameters when the number of
address approaches million-level. Consequently, compressing the
LM essentially entails compressing the address embedding lookup
table.

Previous studies [17, 22, 41] have demonstrated that the distri-
bution of frequency of address occurred in transactions follows a
power-law distribution. As shown in Figure 5(a), a small number
of addresses occurs frequently, whereas the majority of addresses
occurs only a few times. As described in Section 3.2.1, the param-
eters of an address embedding can only be retrieved and trained
when the associated address appears at transactions. This indicates
that the embedding parameters for Ethereum addresses with low
occurrence frequencies, which constitute the majority of Ethereum
addresses, are trained only a few times in one epoch.

Limited training times result in the majority of address embed-
dings being located close to their initialization points in the hidden
space. In Figures 5(b) we plot the 𝑙1 norm of address embeddings
after pre-training. It is evident that the 𝑙1 norm decreases as the
frequency decreases as well, suggesting that the embeddings of low-
frequency addresses remain closer to their initial locations. This
observation further implies that low-frequency addresses, which
make up the majority of the address space, cannot fully exploit
the capability of high-dimensional embeddings to represent their
knowledge as high-frequency addresses do.

4.1.2 Frequency-aware Compression: We approach the com-
pression by taking frequency as a signal to assign address embed-
dings with various dimensions. The compression method consists
of two phases: space partitioning and dimension decay.

Address index (log)Address index

Fr
eq

ue
nc

y

L1
 n

or
m

(a) Power-law distribution (b) L1 norm decay

Figure 5: Addresses are indexed by frequency in descending

order. (a) Address frequency follows a power-law distribution.

(b) The l1 norm of pre-trained address embeddings decays.

Partition 1
Partition 2

Partition 3

Partition 4Ad
dr

es
s

in
de

x
1.Partitioning 2.Dimension decay

Address embedding lookup table

(a) Frequency-aware compression (b) Dimension decay functions

Figure 6: Frequency-aware compression.

Space Partitioning: First, we sort the addresses based on fre-
quency in descending order and index them within the range [0,
max). Second, we divide the address space into 𝐾 partitions. The
principle for determining the upper and lower bounds of each par-
tition is to keep the sums of address frequencies across different
partitions equal, which guarantees that the training times for each
partition are equal:

𝐹𝑘 =
∑︁
𝑗∈𝑃𝑘

𝑓𝑗 =
1
𝐾

·
𝐾∑︁
1
𝐹𝑖 (8)

where 𝑃𝑘 is the k-th partition, 𝐹𝑘 is the total frequency of addresses
in 𝑃𝑘 , and 𝑓𝑗 is the frequency of address 𝑗 within 𝑃𝑘 . In this case,
given an address, the probability of it being selected from different
buckets is all the same. We plot an 4-partition division example in
Figure 6(c), where a partition with a larger index covers a much
larger range of addresses due to the characteristic of power-law
distribution, i.e., the partition range increases exponentially as the
partition index increases.

Dimension Decay: As illustrated in Figure 6(a), our goal is to
allocate smaller dimensions to partitions as their indices increase.
To determine the optimal relationship between the embedding
dimension and the partition index, we propose three dimension
decay functions w.r.t. the partition index 𝑥 :
• Linear decay:

𝑑𝑥 = 𝛼 ∗ (𝑥 − 1) + 𝑑𝑢 , 𝛼 = (𝑑𝑙 − 𝑑𝑢)/(𝐾 − 1) (9)

• Exponential decay:

𝑑𝑥 = 𝑑𝑢 ∗ 𝛼𝑥−1, 𝛼 = (𝑑𝑙/𝑑𝑢)1/(𝐾−1) (10)

• Power decay:

𝑑𝑥 = 𝑑𝑢 ∗ 𝑥𝛼 , 𝛼 = 𝑙𝑜𝑔𝐾 (𝑑𝑙/𝑑𝑢) (11)

2810

ZipZap: Efficient Training of Language Models for Large-Scale Fraud Detection on Blockchain WWW ’24, May 13–17, 2024, Singapore, Singapore

Table 1: Performance of frequency-aware compression w.r.t.
three decay strategies. 𝐹1 is evaluated on the downstream

phishing account detection task. Time denotes the (pre-

training) time cost for every 500 batches.

Strategy F1 Param.# Comp. Rate Time Speedup

Original 0.6552 153M 100.0% 42.82 1.0
Linear 0.6521 15M 9.15% 31.65 1.353x
Exp. 0.6486 11.5M 7.52% 31.58 1.356x
Power 0.6415 10M 6.53% 30.94 1.384x

where 𝑑𝑥 is the dimension of the 𝑥-th partition 𝑃𝑥 , 𝑥 ∈ [1, 2, ..., 𝐾],
𝑑𝑢 (upper) is the original (largest) dimension, and the 𝑑𝑙 (lower)
is the smallest dimension. When 𝑑𝑢 = 𝑑𝑙 and 𝐵 = 1, it degrades
into a uniform embedding dimension. In Figure 6(b) we plot their
corresponding figures to demonstrate the varying degrees of decay
(𝑑𝑢=64, 𝑑𝑙=3). Given the same 𝑑𝑢 and 𝑑𝑙 , we observe that the power
decay strategy reaches the lowest compression rate.

For address embedding 𝒂 𝑗 retrieved from the 𝑖-the partition
𝑃𝑥 , we multiply it with a partition-wise matrix 𝑽𝑥 ∈ R𝑑𝑥×𝑑𝑢 to
transform its dimension to the original 𝑑𝑢 :

𝒂 𝑗 = 𝒂 𝑗 ∗ 𝑽𝑥 (12)

Table 1 presents the results of applying three dimension decay
strategies to compress the language model with 𝑑𝑢=64, 𝑑𝑙=3, 𝐾=10,
where the 𝐹1 score is evaluated on the downstream phishing ac-
count detection task. We note that very low compression rates
(6.5%) are achieved by the linear and exponential decay functions.
Among three strategies, the exponential decay function strikes
a good balance between the compression rate and the 𝐹1 metric,
making it the default setting for ZipZap.

Effect on training acceleration: Frequency-aware compres-
sion speeds up training, resulting in a 1.356x acceleration, because
the computation required for backward gradients is reduced due to
a significant decrease in the number of parameters.

4.2 Asymmetric Training

4.2.1 Motivation: The training of LMs comprises both pre-training
and fine-tuning stages. Pre-training is more time-consuming than
fine-tuning, as the different optimization goals of two stages: Pre-
training tasks [5, 8, 26] model the co-occurrence relationship among
transactions, leveraging the abundant self-supervised signals within
sequences. In comparison, fine-tuning tasks, such as phishing ac-
count detection, regard the transaction sequence as a whole, draw-
ing on supervised signals external to the sequences.

This inconsistency suggests that adopting training-accelerating
strategies for pre-training, while reverting to the standard training
paradigm for fine-tuning, might not significantly compromise the
overall effectiveness of the LM but yield considerable computational
savings.

4.2.2 Lightweight Pre-training: As shown in Figure 7, two tac-
tics are proposed and adopted only at pre-training for acceleration:
transaction dropping and cross-layer sharing.

Transaction Dropping: Dropping transactions to shorten in-
put sequences is intuitive based on the observation that sequence
length 𝑁 has a quadratic relationship to the time complexity of

Transformer
Layer

Transformer
Layer

Transformer
Layer

Transformer
Layer

Transformer
Layer

Transformer
Layer

Embedding Layer

Downstream
task loss

ŏ ŏ

Pre-training
task loss

Embedding Layer

Dropped sequence Original sequence

Cr
os

s-
la

ye
r

sh
ar

in
g

Pre-training Fine-tuning

Figure 7: ZipZap employs transaction dropping and cross-

layer sharing during pre-training to enhance computational

efficiency, while reverts to the standard training paradigm

during fine-tuning to ensure effectiveness.

Table 2: Transaction dropping w. asymmetric training.

Strategy RS Length F1 Time Speedup

Original 0.372 33.78 0.6486 31.58 1.0
Drop. 0.0 10.78 0.6624 25.51s 1.238
Drop.(Asy.) 0.0 10.78 0.6701 25.51s 1.238x

transformer computation, i.e.,O(𝐿 ·𝑁 2 ·ℎ·𝑑). Nonetheless, randomly
dropping transactions leads to performance decrease because less
co-occurrence between transactions could be modeled. An guidance
to drop transactions is the repetitiveness level of transaction within
sequences, which can be measured by the Repetitiveness Score
(RS) defined as the proportion of transactions whose addresses are
repetitive within the sequence:

𝑅𝑆 (𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒) = 1 − # of unique addresses
of transactions

(13)

As shown in Table 2, for the original transaction sequences, we ob-
serve an average RS of 37.2%, which suggests that 37.2% transactions
share the same address within sequences in average, indicating the
presence of redundant information that could be filtered out to re-
duce computation. Specifically, for transactions that have the same
address within a sequence, we randomly pick one out of them to
keep, and drop out all the other repetitive transactions. This drop-
ping strategy squeezes the RS to 0, shortening the average length
from 33.78 to 10.78 and expediting the pre-training to 1.243x faster.
Furthermore, we observe a 1.38 AP gain of 𝐹1 on the downstream
task, suggesting that reducing repetitiveness improves the effective-
ness of pre-training. This is because the masked address prediction
task that models transaction co-occurrence, is susceptible to label
leakage caused by high repetitiveness. An alternative solution is to
aggregate continuous repetitive transactions into one, which helps
reduce repetitiveness, yet cannot handle discontinuous repetitive
transactions.

Cross-layer Sharing: To further speed up pre-training, we force
all the Transformer layers to share parameters across layers dur-
ing pre-training as shown in Figure 7, i.e., trainable parameters in
Eq. 1 and Eq. 4 are shared across 𝐿 Transformer layers. Cross-layer
parameter sharing reduces parameters in Transformer, and thus

2811

WWW ’24, May 13–17, 2024, Singapore, Singapore Sihao Hu et al.

Table 3: Cross-layer sharing w. asymmetric training.

Strategy F1 Time Speedup

Original 0.6701 25.51s 1.0
Cross 0.6599 22.16s 1.151x
Cross(Asy.) 0.6696 22.16s 1.151x

accelerates the back-propagation computation. As demonstrated in
Table 3, it brings 1.151x speedup while in the cost of 1.02 AP of 𝐹1
drop due to limited model capacity.

4.2.3 Recovered Fine-tuning: Accelerating fine-tuning has min-
imal impact on the computational cost of the entire training. We
recover dropped sequences and lift the cross-sharing constraint to
avoid performance decline in fine-tuning.

Transaction Sequence Recovery: The optimization goal of
fine-tuning is not the same as the pre-training task, suggesting that
reducing repetitiveness can not bring improvement for fine-tuning,
yet downgrades its performance since those repetitive transactions
still carry valuable information for downstream tasks, such as the
temporal patterns of user behavior. As a result, we restore the
dropped sequences for fine-tuning, resulting in a 0.77 AP lift of 𝐹1
for the downstream task as presented in Table 2.

Unconstrained Transformer Layers: Adhering to the idea of
asymmetric training, we lift the constraint of cross-layer sharing by
fine-tuning 𝐿-Transformer layers independently. From Table 3 we
can observe that removing the constraint during fine-tuning brings
0.97 AP lift of 𝐹1, a considerable compensation for downgrade
caused by cross sharing.

5 EXPERIMENT

5.1 Experimental Setup

5.1.1 Dataset: We pre-train the LM on transaction datasets and
fine-tune it for detecting phishing scams (accounts), one of the most
pervasive frauds [31] on Ethereum. We collected 2,746 phishing
accounts (EOAs) from Etherescan that were identified and labeled
by users and security companies, serving as positive samples. For
negative samples (benign EOAs), we generate three datasets named
DS, DL, and DXL by randomly collecting three sets of EOAs and
the transactions in which these EOAs were involved from Jan. 2017
to Jan. 2023. Among them, DS and DL is used for performance
comparison, while DXL is used for large-scale experiments.

The statistics are reported in Table 4, where the "# of EOA"
column represents the number of EOAs for which we generate
transaction sequences. The "# of transaction" column represents the
total number of transactions collected. The "# of address" represents
the total number of addresses involved in these transactions, which
is equal to the size of the address embedding lookup table. The
"Length" column represents the average number of transactions in
transaction sequences. The "Neg./Pos." column represents the ratio
of benign accounts to phishing accounts.

5.1.2 Baselines: To measure effectiveness, three types of com-
petitors are compared: 1) Graph learning methods, including Deep-
Walk [25], Trans2Vec [36], Diff2Vec [29], Role2Vec [1]; 2) GNN
methods, including GCN [20], GAT [33], GraphSAGE [12]; 3) Lan-
guage models, including BERT (BERT4ETH [17]) and ALBERT [21].

Table 4: Statistics of datasets

Dataset # of EOA # of trans. # of address Length Neg./pos.

DS 314,256 10,422,570, 2,128,180 33.78 114:1
DL 938,176 35,894,143 6,104,218 38.26 342:1
DXL 3,127,997 110,591,442 19,004,544 35.42 -

To measure computational efficiency, two types of baselines
are involved: 1) Efficient pre-training methods, including ALBERT,
Progress Stack [11] and Token Bypass [13]; 2) Efficient Transform-
ers including Longformer [2], Linformer [35] and Performer [4].

To measure parameter efficiency, we compare ZipZap against
Learnable Embedding [24] and embedding factorization used by
ALBERT. For fairness of comparison, we apply them on the address
embedding layer only, with ZipZap as the backbone model.

5.1.3 Implementation: For LM-basedmethods including ZipZap,
BERT, ALBERT, Progress Stack, Token Bypass, Longformer, Lin-
former and Performer, the number of Transformer layers is set to 8,
the number of heads for self-attention is set to 2 and the maximum
sequence length 𝑁 is set to three times the average length of input
sequences. Masked address prediction (Section 3.3) is adopted as
the pre-training task for all these methods. During pre-training, the
masking ratio is set to 80% to prevent label leakage. During fine-
tuning, a 2-layer MLP with a hidden dimension of 128 is cascaded as
the classifier in Eq. 6. For frequency-aware compression of ZipZap,
the number of partition𝐾 is set to 10, the maximum dimension 𝑑𝑢 is
set to 64 and minimum dimension 𝑑𝑙 is set to 3. A batch size of 256,
a dropout ratio of 20%, and a hidden dimension of 64 are used for all
approaches. More details on implementation and hyper-parameter
settings can be found in Appendices A. Experiments are conducted
on a standard NVIDIA RTX 3090 GPU with 24GB memory.

5.2 Effectiveness Comparison

All baselines are self-supervisedly pre-trained on DS and DL, and
evaluated for phishing account detection w.r.t. two strategies, fixed
training and fine-tuning. For fixed training, the pre-trained model is
utilized as a feature extractor to generate account representations,
followed by individually training a MLP classifier for classification.
For fine-tuning, the model is trained with a cascaded MLP classifier
together. Each experiment is repeated five times and the best 𝐹1
score is reported. The threshold is set between 0.2 to 0.4.

Table 5 presents the results of the fixed training strategy. As
there is no fine-tuning involved, ZipZap takes dropped sequences
as input for fixed-training to maintain the consistency. From the
table, the first observation is that LMs outperform graph-based
approaches by a large margin, indicating the superior modeling
capabilities of the Transformer and the importance of capturing
sequential and transaction-level information. The second observa-
tion is that ZipZap slightly outperforms its original LM, BERT. The
improvement primarily comes from addressing the label leakage
problem via transaction dropping.

Table 6 presents the results after fine-tuning. The first three rows
show the results of fine-tuning with pre-training, which demon-
strate that pre-training can bring huge improvements over com-
petitors compared to results in Table 5. Additionally, ZipZap still
outperforms BERT model with 1.44 and 1.47 AP on both datasets,
yet the performance gap is decreased compared to fixed-training,

2812

ZipZap: Efficient Training of Language Models for Large-Scale Fraud Detection on Blockchain WWW ’24, May 13–17, 2024, Singapore, Singapore

Table 5: Performance comparison for fixed training.

Dataset DS DL

Method Pre. Rec. F1 Pre. Rec. F1

DeepWalk 0.2486 0.1778 0.2074 0.1499 0.1253 0.1365
Trans2Vec 0.1495 0.1391 0.1441 0.0839 0.0824 0.0831
Diff2Vec 0.2556 0.1713 0.2051 0.1566 0.1110 0.1299
Role2Vec 0.2770 0.2113 0.2398 0.1890 0.1323 0.1557
GCN 0.3152 0.2219 0.2605 0.2077 0.1424 0.1690
GSAGE 0.2817 0.2404 0.2594 0.1988 0.1554 0.1744
GAT 0.3215 0.2519 0.2825 0.2284 0.1663 0.1917
BERT 0.5447 0.3632 0.4458 0.3808 0.3140 0.3542
ALBERT 0.5322 0.3430 0.4271 0.3662 0.2851 0.3306
ZipZap 0.5694 0.3870 0.4608 0.4239 0.3303 0.3713

Table 6: Performance comparison for fine-tuning.

Dataset DS DL

Method Pre. Rec. F1 Pre. Rec. F1

BERT 0.7191 0.6017 0.6552 0.6260 0.4867 0.5476
ALBERT 0.6823 0.5805 0.6273 0.5750 0.4613 0.5119
ZipZap 0.7374 0.6132 0.6696 0.6406 0.5011 0.5623

w/o pre-training

BERT 0.5559 0.4482 0.4919 0.3728 0.2940 0.3287

ALBERT 0.5310 0.4275 0.4737 0.3387 0.2831 0.3084
ZipZap 0.5355 0.4410 0.4837 0.3508 0.3043 0.3259
ZipZap𝐷 0.5177 0.4325 0.4713 0.3508 0.2872 0.3159

suggesting that fine-tuning narrows the performance gap caused
by pre-training. Moreover, we ablate the pre-training process and
presents the results of directly trained on the phishing detection
task in the last five rows of Table 5, where ZipZap𝐷 is trained on
dropped sequences and ZipZap is trained on recovered sequences.
The results show that the ZipZap performs worse than BERT due
to the frequency-aware embedding compression. Moreover, we
observe that transaction dropping decreases the performance by
comparing ZipZap with ZipZap𝐷 , suggesting that the same strat-
egy poses an opposite effect for the pre-training and fine-tuning
stages, which further justifies the idea of asymmetric training.

5.3 Efficiency Comparison

5.3.1 Computational Efficiency Comparison: In this experi-
ment we only compare the speed of pre-training, as the time cost
of fine-tuning is negligible contrasted with pre-training. Table 7
compares the speed efficiency and effectiveness, where Time is the
average (pre-training) time cost for 500 batches, 𝐹1 is the result after
fine-tuning. Our observations are as follows: (1) Efficient Trans-
formers are less efficient and effective compared to the methods
(ALBERT, ProgStack, and TokenBypass) designed for accelerating
pre-training. This is because the average sequence length in our
scenario is not very long, making the acceleration of self-attention
insignificant, and additional operations involved even lead to neg-
ative effects. (2) While ALBERT, ProgStack, and TokenBypass im-
prove efficiency, they also result in a decrease in the 𝐹1 score. (3)
ZipZap offers both efficiency and effectiveness, as it provides a
𝐹1 gain and 1.94x and 3.05x speedup on the two datasets. The im-
provement in computational efficiency comes from two factors:
(i) Reduction of backward gradient computation because 94% of
parameters are reduced by frequency-aware compression. (i) Reduc-
tion of Transformer computation because of transaction dropping
and cross-layer sharing.

(a) Testing performance curve on Ds (b) Testing performance curve on DL

Figure 8: Testing 𝐹1 on the phishing detection task w.r.t. the
pre-training time (checkpoints).

Furthermore, Figure 8 plots the 𝐹1 scores of ZipZap, BERT, AL-
BERT, and ProgStack w.r.t. pre-training time. For each pre-training
checkpoint, we fine-tune it on the downstream task to evaluate its
𝐹1 performance. It can be observed that ZipZap reaches a higher
𝐹1 score in a shorter pre-training time, and its advantage over the
other competitors becomes more pronounced as the dataset size
increases. The reason is because the address embedding lookup
table for DL is 2.7x larger than DS, resulting a better benefit from
reducing the backward gradient computation.

5.3.2 Parameter Efficiency Comparison: Factorization and
LearnEmbed are two representative approaches for embedding com-
pression. For fairness in comparison, we apply them to ZipZap by
replacing our frequency-aware compression with their compression
techniques, and all other conditions remain the same. LearnEmbed
and LearnEmbed∗ are initialized with different masking threshold
values (-5 and -4) that lead to varying levels of sparsity. Sparsity is
defined as the percentage of non-zero parameters in the embedding
layer.

Table 8 presents the results of parameter efficiency compari-
son. It can be observed that ZipZap outperforms existing methods,
yielding an improvement with a 3.18 AP increase over Factorization
and a much lower compression rate on DS. This enhancement is
solely attributed to the frequency-aware embedding compression,
highlighting the importance of considering address occurrence fre-
quency in embedding dimension. ALBERT also shows good param-
eter efficiency through its adoption of the factorization technique.
On the other hand, the performance of LearnEmbed is not satis-
factory. Although 87% of its parameters are pruned to zero, the
unstructured pruning is unfriendly to hardware and cannot truly
reduce memory usage. Moreover, the learnable thresholding in-
troduces extra parameters and computation overhead, resulting in
slower pre-training and requiring twice the parameters of BERT.
For this reason, it causes an out-of-memory (OOM) error on the
experimental hardware (24GB GPU memory).

5.4 Ablation Study

We investigate the impact of two strategies, i.e., frequency-aware
compression and asymmetric training in terms of computational
efficiency on larger-scale datasets. We create another two datasets,
DXL1, and DXL2, by filtering out EOAs with fewer than 10, and
20 transactions from DXL, respectively. The filtering rules lead to
two datasets with different statistics as presented in Table 9, where
DXL has the highest number of addresses, yet the shortest sequence
length andDXL has the lowest number of addresses, yet the longest

2813

WWW ’24, May 13–17, 2024, Singapore, Singapore Sihao Hu et al.

Table 7: Comparison with computation-efficient methods. Time is the average time cost (in seconds) for 500 batches.

Dataset DS DL

Method Precision Recall F1 Param.# Time Speedup Precision Recall F1 Param.# Time Speedup

BERT 0.7191 0.6017 0.6552 153M 42.82s 1.0 0.6260 0.4867 0.5476 409.6M 69.25s 1.0
ALBERT 0.6823 0.5805 0.6273 19.3M 27.40s 1.56x 0.5750 0.4613 0.5119 48.3M 33.45s 2.07x
ProgStack 0.7130 0.5969 0.6498 153M 33.88s 1.26x 0.6192 0.4768 0.5387 409.6M 56.76s 1.22x
TokenBypass 0.7145 0.5695 0.6338 153M 35.07s 1.22x 0.6003 0.4756 0.5307 409.6M 60.93s 1.17x
Longformer 0.6820 0.5883 0.6317 153M 42.78s 1.00x 0.5797 0.4769 0.5233 409.6M 69.74s 0.99x
Linformer 0.6780 0.5847 0.6279 153M 42.02s 1.02x 0.6085 0.4613 0.5247 409.6M 66.42s 1.04x
Performer 0.6602 0.5835 0.6205 153M 55.96s 0.77x 0.5711 0.4579 0.5083 409.6M 87.19s 0.79x

ZipZap 0.7374 0.6132 0.6696 11.5M 22.40s 1.92x 0.6406 0.5011 0.5623 29.8M 23.37s 2.96x

Table 8: Comparison with parameter-efficient methods. (-) denotes out-of-memory (OOM).

Dataset DS DL

Method Precision Recall F1 Sparsity Param.# Comp. Rate Precision Recall F1 Sparsity Param.# Comp. Rate

BERT 0.7191 0.6017 0.6552 0% 153M 100.0% 0.6260 0.4867 0.5476 0% 409.6M 100.0%
ALBERT 0.6823 0.5805 0.6273 0% 19.3M 12.61% 0.5750 0.4613 0.5119 0% 48.3M 11.79%
Factorization 0.7052 0.5822 0.6378 0% 19.3M 12.61% 0.6044 0.4811 0.5357 0% 48.3M 11.79%
LearnEmbed 0.6662 0.5447 0.5993 63.40% 307.2M 200.8% - - - - ∼ 820M -
LearnEmbed∗ 0.6398 0.5043 0.5640 87.27% 307.2M 200.8% - - - - ∼ 820M -

ZipZap 0.7374 0.6132 0.6696 0% 11.5M 7.52% 0.6406 0.5011 0.5623 0% 29.8M 7.28%

Table 9: Statistics of large-scale datasets derived from DXL
with different filtering rules.

Dataset # of address Length RS

DXL 19,004,544 35.42 0.372
DXL1 13,626,560 78.01 0.565
DXL2 11,649,431 143.35 0.652

sequence length. A desirable characteristic of Ethereum transac-
tion is that as the sequence length increases, the Repetitiveness
Score becomes higher, making ZipZap more advantageous from
transaction dropping. We evaluate four models, i.e., the base BERT,
ZipZap w/ compression only, ZipZap w/ asymmetric training only
and ZipZap. To prevent the base model encountering the OOM
error, the batch size and hidden dimension are set to half of the
original hyper-parameters.

In Figure 9, we report the time cost for 500 batches and speedup
for pre-training. By comparing ZipZapw/ compress. with BERT, we
observe that the improvement in computation-efficiency brought
by compression is the most significant for DXL, which owns the
largest address embedding layer. As the number of addresses de-
creases, the speedup also decreases. Additionally, we observe that
the contribution of asymmetric training increases as the sequence
length increases (DXL->DXL1->DXL2), and surpasses ZipZap w/
compress. on DXL2. Notably, under different settings, the time cost
of ZipZap remains relatively stable, which is a desired feature for
large-scale applications.

Table 10: Generalization to GPT model on DS.

Method F1 Param.# Comp. Rate Time Speedup

GPT 0.6102 153M 100% 50.53 1.0
ZipZap(GPT) 0.6201 11.5M 7.5% 34.36 1.76x

5.5 Generalization to GPT model

ZipZap works on the generic characteristics of LMs, therefore,
can be generalized to other types of LMs. We also implement the
GPT model with a pre-training task named next address prediction.
Specifically, we construct a transaction sequence for each account,

DXL DXL1 DXL2
Ti

m
e

co
st

 (s
)

Sp
ee

du
p

(ti
m

es
)

Figure 9: Ablation study on large-scale datasets. Frequency

compression contributes more than asymmetric training

when the sequence is shorter and number of address is larger.

sort the transactions according to the timestamp ascendingly, put
the self-transaction to the head, and use the mean vector of all the
transaction representations to represent the sequence. As shown in
Table 10, ZipZap can be generalized to GPT and obtain considerable
benefits for compression and training speed.

6 CONCLUSION

We present ZipZap, a framework for efficient and effective training
of LMs for blockchain transactions. Equipping with the frequency-
aware compression technique, ZipZap enjoys a 92% reduction in
parameters from the original LM by leveraging frequency as the
signal for dimension allocation. With the asymmetric training ap-
proach, ZipZap optimizes both the speed of pre-training and the
efficacy of fine-tuning. Coupled with two strategies, ZipZap expe-
dites the entire training process up to 3 times faster on large-scale
real world datasets. Our study sheds light on bridging language
models with large-scale fraud detection applications.

7 ACKNOWLEDGEMENT

This research is partially sponsored by the NSF CISE grants 2302720,
2312758, 2038029, a GTRI PhD Fellowship, an IBM faculty award,
and a grant from CISCO Edge AI program. Wenqi Wei and Yanzhao
Wu are currently assistant professors at Fordham University and
Florida International University, respectively.

2814

ZipZap: Efficient Training of Language Models for Large-Scale Fraud Detection on Blockchain WWW ’24, May 13–17, 2024, Singapore, Singapore

REFERENCES

[1] N. K. Ahmed, R. Rossi, J. B. Lee, T. L. Willke, R. Zhou, X. Kong, and H. Eldardiry.
Learning role-based graph embeddings. arXiv preprint arXiv:1802.02896, 2018.

[2] I. Beltagy, M. E. Peters, and A. Cohan. Longformer: The long-document trans-
former. arXiv preprint arXiv:2004.05150, 2020.

[3] P. Chen, S. Si, Y. Li, C. Chelba, and C.-J. Hsieh. Groupreduce: Block-wise low-
rank approximation for neural language model shrinking. Advances in Neural
Information Processing Systems, 31, 2018.

[4] K. Choromanski, V. Likhosherstov, D. Dohan, X. Song, A. Gane, T. Sarlos,
P. Hawkins, J. Davis, A. Mohiuddin, L. Kaiser, et al. Rethinking attention with
performers. arXiv preprint arXiv:2009.14794, 2020.

[5] K. Clark, M.-T. Luong, Q. V. Le, and C. D. Manning. Electra: Pre-training text
encoders as discriminators rather than generators. arXiv preprint arXiv:2003.10555,
2020.

[6] P. Daian, S. Goldfeder, T. Kell, Y. Li, X. Zhao, I. Bentov, L. Breidenbach, and
A. Juels. Flash boys 2.0: Frontrunning, transaction reordering, and consensus
instability in decentralized exchanges. arXiv preprint arXiv:1904.05234, 2019.

[7] F. Denneman. Training vs. inference: Memory consumption by neural net-
works. https://frankdenneman.nl/2022/07/15/training-vs-inference-memory-
consumption-by-neural-networks/, 2022.

[8] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert: Pre-training of
deep bidirectional transformers for language understanding. arXiv preprint
arXiv:1810.04805, 2018.

[9] Etherscan. Ethereum unique addresses chart, 2023. https://etherscan.io/chart/
address.

[10] A. A. Ginart, M. Naumov, D. Mudigere, J. Yang, and J. Zou. Mixed dimension
embeddings with application to memory-efficient recommendation systems. In
2021 IEEE International Symposium on Information Theory (ISIT), pages 2786–2791.
IEEE, 2021.

[11] L. Gong, D. He, Z. Li, T. Qin, L. Wang, and T. Liu. Efficient training of bert by
progressively stacking. In International conference on machine learning, pages
2337–2346. PMLR, 2019.

[12] W. Hamilton, Z. Ying, and J. Leskovec. Inductive representation learning on large
graphs. Advances in neural information processing systems, 30, 2017.

[13] L. Hou, R. Y. Pang, T. Zhou, Y. Wu, X. Song, X. Song, and D. Zhou. Token dropping
for efficient bert pretraining. arXiv preprint arXiv:2203.13240, 2022.

[14] S. Hu, Y. Cao, Y. Gong, Z. Li, Y. Yang, Q. Liu, W. Ou, and S. Ji. Gift: Graph-guided
feature transfer for cold-start video click-through rate prediction. arXiv preprint
arXiv:2202.11525, 2022.

[15] S. Hu, T. Huang, F. İlhan, S. F. Tekin, and L. Liu. Large language model-
powered smart contract vulnerability detection: New perspectives. arXiv preprint
arXiv:2310.01152, 2023.

[16] S. Hu, Z. Zhang, S. Lu, B. He, and Z. Li. Sequence-based target coin prediction
for cryptocurrency pump-and-dump. arXiv preprint arXiv:2204.12929, 2022.

[17] S. Hu, Z. Zhang, B. Luo, S. Lu, B. He, and L. Liu. Bert4eth: A pre-trained trans-
former for ethereum fraud detection. In Proceedings of the ACM Web Conference
2023, pages 2189–2197, 2023.

[18] M. R. Joglekar, C. Li, M. Chen, T. Xu, X. Wang, J. K. Adams, P. Khaitan, J. Liu,
and Q. V. Le. Neural input search for large scale recommendation models. In
Proceedings of the 26th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pages 2387–2397, 2020.

[19] G. Kim and K. Cho. Length-adaptive transformer: Train once with length drop,
use anytime with search. arXiv preprint arXiv:2010.07003, 2020.

[20] T. N. Kipf and M. Welling. Semi-supervised classification with graph convolu-
tional networks. arXiv preprint arXiv:1609.02907, 2016.

[21] Z. Lan, M. Chen, S. Goodman, K. Gimpel, P. Sharma, and R. Soricut. Albert: A
lite bert for self-supervised learning of language representations. arXiv preprint
arXiv:1909.11942, 2019.

[22] X. T. Lee, A. Khan, S. Sen Gupta, Y. H. Ong, and X. Liu. Measurements, analyses,
and insights on the entire ethereum blockchain network. In Proceedings of The
Web Conference 2020, pages 155–166, 2020.

[23] S. Li, G. Gou, C. Liu, C. Hou, Z. Li, and G. Xiong. Ttagn: Temporal transaction
aggregation graph network for ethereum phishing scams detection. In Proceedings
of the ACM Web Conference 2022, pages 661–669, 2022.

[24] S. Liu, C. Gao, Y. Chen, D. Jin, and Y. Li. Learnable embedding sizes for recom-
mender systems. arXiv preprint arXiv:2101.07577, 2021.

[25] B. Perozzi, R. Al-Rfou, and S. Skiena. Deepwalk: Online learning of social repre-
sentations. In Proceedings of the 20th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 701–710, 2014.

[26] A. Radford, K. Narasimhan, T. Salimans, I. Sutskever, et al. Improving language
understanding by generative pre-training. 2018.

[27] V. RANDOM. Efficient large-scale transformer training via random and layerwise
token dropping.

[28] R. Řehřek, P. Sojka, et al. Gensim—statistical semantics in python. Retrieved from
genism. org, 2011.

[29] B. Rozemberczki and R. Sarkar. Fast sequence-based embedding with diffusion
graphs. In International Workshop on Complex Networks, pages 99–107. Springer,

2018.
[30] J. Shen, J. Zhou, Y. Xie, S. Yu, and Q. Xuan. Identity inference on blockchain using

graph neural network. In International Conference on Blockchain and Trustworthy
Systems, pages 3–17. Springer, 2021.

[31] SlowMist. Blockchain security and aml analysis report, 2023.
https://www.slowmist.com/report/2022-Blockchain-Security-and-AML-
Analysis-Annual-Report(EN).pdf.

[32] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, et al. Attention is all you need.
arXiv:1706.03762, 2017.

[33] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Bengio. Graph
attention networks. arXiv preprint arXiv:1710.10903, 2017.

[34] M. Wang, D. Zheng, Z. Ye, Q. Gan, M. Li, X. Song, J. Zhou, C. Ma, L. Yu, Y. Gai,
et al. Deep graph library: A graph-centric, highly-performant package for graph
neural networks. arXiv preprint arXiv:1909.01315, 2019.

[35] S. Wang, B. Z. Li, M. Khabsa, H. Fang, and H. Ma. Linformer: Self-attention with
linear complexity. arXiv preprint arXiv:2006.04768, 2020.

[36] J. Wu, Q. Yuan, D. Lin, W. You, W. Chen, C. Chen, and Z. Zheng. Who are the
phishers? phishing scam detection on ethereum via network embedding. IEEE
Transactions on Systems, Man, and Cybernetics: Systems, 2020.

[37] C. Yang, S. Wang, C. Yang, Y. Li, R. He, and J. Zhang. Progressively stacking
2.0: A multi-stage layerwise training method for bert training speedup. arXiv
preprint arXiv:2011.13635, 2020.

[38] H. Yin, A. Vahdat, J. M. Alvarez, A. Mallya, J. Kautz, and P. Molchanov. A-vit:
Adaptive tokens for efficient vision transformer. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 10809–10818, 2022.

[39] M. Zaheer, G. Guruganesh, K. A. Dubey, J. Ainslie, C. Alberti, S. Ontanon, P. Pham,
A. Ravula, Q. Wang, L. Yang, et al. Big bird: Transformers for longer sequences.
Advances in Neural Information Processing Systems, 33:17283–17297, 2020.

[40] F. Zhang, Q. Liu, and A. Zeng. Timeliness in recommender systems. Expert
Systems with Applications, 85:270–278, 2017.

[41] L. Zhao, S. Sen Gupta, A. Khan, and R. Luo. Temporal analysis of the entire
ethereum blockchain network. In Proceedings of the Web Conference 2021, pages
2258–2269, 2021.

[42] X. Zhao, H. Liu, H. Liu, J. Tang, W. Guo, J. Shi, S. Wang, H. Gao, and B. Long.
Autodim: Field-aware embedding dimension searchin recommender systems. In
Proceedings of the Web Conference 2021, pages 3015–3022, 2021.

[43] X. Zhaok, H. Liu, W. Fan, H. Liu, J. Tang, C. Wang, M. Chen, X. Zheng, X. Liu, and
X. Yang. Autoemb: Automated embedding dimensionality search in streaming
recommendations. In 2021 IEEE International Conference on Data Mining (ICDM),
pages 896–905. IEEE, 2021.

Table 11: Hyper-parameters of ZipZap

Phase Hyper-parameter Value

Basic

Transformer layer 8
Head number 2
Hidden size (𝒅𝑢) 64
𝒅𝑙 3
Bucket number 10
Decay strategy Exp.

Pre-training

Learning rate 1e-4
Masking ratio 80%
Dropout ratio 20%
Data duplicate times 10
Epoch 5
Batch size (seqs) 256

Fine-tuning

MLP hidden size 128
Learning rate 3e-4
Dropout ratio 20%
Data duplicate times 1
Epoch 1
Batch size (seqs) 256

A IMPLEMENTATION DETAIL

For graph-based methods, we adopt the self-supervised task pro-
posed in DeepWalk [25]. We set the number of walks per node to 10,
the walk length to 20, and the context window size to 5. The number

2815

https://frankdenneman.nl/2022/07/15/training-vs-inference-memory-consumption-by-neural-networks/
https://frankdenneman.nl/2022/07/15/training-vs-inference-memory-consumption-by-neural-networks/
https://etherscan.io/chart/address
https://etherscan.io/chart/address
https://www.slowmist.com/report/2022-Blockchain-Security-and-AML-Analysis-Annual-Report(EN).pdf
https://www.slowmist.com/report/2022-Blockchain-Security-and-AML-Analysis-Annual-Report(EN).pdf

WWW ’24, May 13–17, 2024, Singapore, Singapore Sihao Hu et al.

of GNN layers is set to 2, with a neighbor sample size of 50. For all
methods, the batch size is set to 256, the dropout rate to 20%, and the
hidden dimension to 64, based on empirical hyperparameter tuning.
DeepWalk-based methods are implemented using Genism [28], and
GNN-based methods are implemented using DGL [34].

The hyper-parameter settings for LM-based methods are kept
consistent with ZipZap as outlined in Table 11, and the maximum
sequence length is set to three times the average sequence length,
as sequence length follows a power-law distribution. ALBERT,
ProgStack and TokenBypass speed up training from three aspects:
reducing the number of parameters, progressively copying pre-
trained parameters for initialization, and reducing computation for
trivial tokens. Another type of methods is adopting efficient Trans-
former as the backbone, which can accelerate the self-attention

calculation. Specifically, for ALBERT, the factorization size for the
embedding is set to 8. For Linformer, the factorization size for the
self-attention mechanism is set to 16. For Performer, the number of
multi-head self-attention is set to 8 to achieve accurate attention
estimation. The original TokenBypass selects 50% of tokens except
special tokens to bypass. For TokenBypass we follow its original
setting by only masking 15% of the tokens, and select the left 50%
of tokens to bypass.

For parameter-efficient methods including LearnEmbed and em-
bedding factorization, we adopt ZipZap as the backbone. In the
case of Embedding Factorization, the factorization size is set to
8, which is consistent with ALBERT. For LearnEmbed, we set the
initial masking threshold to -5 and -4, referred to as LearnEmbed
and LearnEmbed∗ respectively.

2816

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Efficient Transformer Training
	2.2 Terminology of the Ethereum Blockchain

	3 Training Language Models
	3.1 Sequence Construction
	3.2 Model Architecture
	3.3 Pre-training
	3.4 Fine-tuning

	4 ZipZap
	4.1 Frequency-aware Compression
	4.2 Asymmetric Training

	5 Experiment
	5.1 Experimental Setup
	5.2 Effectiveness Comparison
	5.3 Efficiency Comparison
	5.4 Ablation Study
	5.5 Generalization to GPT model

	6 Conclusion
	7 Acknowledgement
	References
	A Implementation Detail

