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ABSTRACT ] =
Language models (LMs) have demonstrated superior performance £ ;E” y g
in fraud detection on Blockchains [17]. Nonetheless, the sheer vol- U " : //_/

ume of Blockchain data results in excessive memory and computa-
tional costs when training LMs from scratch, limiting their capabil-
ities to large-scale applications. In this paper, we present ZIPZAP, a
framework tailored to achieve both parameter and computational
efficiency when training LMs on large-scale transaction data. First,
with the frequency-aware compression, an LM can be compressed
down to a mere 7.5% of its initial size with an imperceptible perfor-
mance dip. This technique correlates the embedding dimension of
an address with its occurrence frequency in the dataset, motivated
by the observation that embeddings of low-frequency addresses are
insufficiently trained and thus negating the need for a uniformly
large dimension for knowledge representation. Second, Z1rpZap ac-
celerates the speed through the asymmetric training paradigm: It
performs transaction dropping and cross-layer parameter-sharing
to expedite the pre-training process, while revert to the standard
training paradigm for fine-tuning to strike a balance between ef-
ficiency and efficacy, motivated by the observation that the op-
timization goals of pre-training and fine-tuning are inconsistent.
Evaluations on real-world, large-scale datasets demonstrate that
Z1pZAP delivers notable parameter and computational efficiency
improvements for training LMs. Our implementation is available

at: https://github.com/git-disl/ZipZap.
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Figure 1: Cumulative numbers of transactions and addresses
on Ethereum across years.
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1 INTRODUCTION

Blockchain has given rise to a wide range of fraudulent activities [6,
15-17, 36]. The key to detecting such frauds lies in representing and
analyzing the behavioral patterns of fraudulent accounts, either to
differentiate them from legitimate ones [36] or to identify accounts
exhibiting similarities that are controlled by same fraudsters [17].

Previous studies [17, 23, 30, 36] have shown that representing
accounts in a latent space for fraud detection is a promising and
generalized solution. Recently, language models (LM), renowned for
their superior sequential modeling ability, have established a new
state-of-the-art [17] over existing graph-based methods [23, 30, 36]
for representing user behaviors. Although these approaches reach
good performance on small datasets, they fall short in large-scale
applications due the immense cost on memory and computation.
As illustrated in Figure 1, there are approximately 2.1 billion trans-
actions and 250 million addresses (accounts) recorded on Ethereum
(the second largest blockchain) as of October 2023 [9], and the
numbers keep increasing over time. Assigning a 128-dimension
embedding vector to each Ethereum address to represent its infor-
mation would lead to 32 billion parameters in total.

There are two motivating factors for establishing a speed- and
parameter-efficient solution for training LMs: First, it enhances
runtime efficiency for downstream tasks, as frequent updates to the
model are essential to capture new transactions and to learn repre-
sentations for newly emerged accounts [14, 40]. Second, training
requires approximately three times the memory resources com-
pared to inference [7], making it a bottleneck for LM applications.

Scope and Contributions: In this paper, we propose a frame-
work, coined as Z1pZAp, designed to enhance parameter efficiency
in language models and computational efficiency during their train-
ing. In our scenario, a language model serves as a sequence encoder
that extracts account representations from sequences, which are
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constructed from accounts’ historical transactions. LMs are initially
pre-trained to capture co-occurrence relationship of transactions
like BERT [8], GPT [26] and ELECTRA [5], and subsequently fine-
tuned with a cascaded MLP classifier for downstream tasks.

To realize parameter-efficiency, we first identify that the bot-
tleneck of parameter lies in the address embedding lookup table,
whose parameter number scales linearly to the number of addresses,
constituting 99% of the entire LM when the number of addresses
approaches the million-level. Fortunately, a characteristic that can
be exploited for streamlining is the observation that the frequency
of addresses follows a power-law distribution [22], which indicates
that the majority of parameters in the address embedding table are
trained infrequently, as an address embedding can only be trained
when its associated address appears in transactions. This suggests
that allocating a uniformly large dimension to every address em-
bedding is unnecessary. Instead, we propose the frequency-aware
compression technique that correlates the dimension of the address
embeddings with the occurrence frequency of their associated ad-
dresses through address space partitioning and dimension decay.
This approach yields a remarkable compression rate with a negli-
gible performance downgrade and accelerates training due to the
reduction in backward gradient calculations.

To further expedite the training, another characteristic that can
be harnessed is the inconsistencies between optimization goals
and computation costs of pre-training and fine-tuning. We design
acceleration strategies specifically for pre-training to achieve com-
putational efficiency as it accounts the majority time of training,
while revert to the standard training paradigm during fine-tuning
to preserve the effectiveness in downstream tasks. For example, we
propose transaction dropping strategy for the pre-training stage,
motivated by the observation that dropping repetitive transactions
has no effect on transaction co-occurrence captured by the pre-
training task, yet offers considerable computational conservation
since the length of sequence exhibits a quadratic relationship to
the time complexity of Transformer computation. Conversely, fine-
tuning is conducted on recovered transaction sequences to fully
capture the temporal patterns inherent in transactions, prioritiz-
ing effectiveness over efficiency. This strategy, named asymmetric
training, allows Z1pZAP to enjoy efficiency during training without
compromising effectiveness in downstream tasks.

Experiments on large-scale Ethereum datasets demonstrate that
Z1pZAP represents a remarkable advancement over the state-of-the-
art in both terms of parameter and computational efficiency: ZipZap
streamline the original LM down to mere 7.5% with a marginal
performance loss, and delivers up to 3 times speed during pre-
training on large-scale real-world datasets.

In summary, this paper makes three original contributions:

o We present Z1PZAP, a framework that offers both parameter effi-
ciency and computational efficiency for training LMs.

Z1pZAP enhances parameter efficiency in LMs by frequency-
aware compression, which reduces 92% of parameters of the
original LM with an imperceptible performance dip.

Z1rZAP strikes a well balance between efficiency of pre-training
and efficacy on the downstream tasks via the asymmetric training
paradigm. Along with reduced parameter, ZipZap offers up to 3
times speed up on large-scale datasets.
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2 BACKGROUND AND RELATED WORK

2.1 Efficient Transformer Training

To realize computational efficiency, the most straightforward way
is to employ efficient Transformers, such as Performer [4], Lin-
former [35], Longformer [2], and Big Bird [39]. Another method is
Progressive Stacking [11, 37], which takes advantage of the high
similarity of cross-layer attention distribution to progressively stack
shallow BERT models to generate deeper ones. Token dropping
techniques [13, 27] can also improve computational efficiency by
discarding or bypassing unimportant tokens, however, determining
which tokens to drop without hurting performance can be challeng-
ing. Some learning-based methods[13, 19, 38] inevitably introduce
extra computation, making them less efficient for training, or only
suitable for inference.

To achieve parameter-efficiency, various techniques have been
proposed. For example, ALBERT [21] factorizes the embedding
layer and shares parameters across layers, resulting in a reduction
in memory consumption. GroupReduce [3] partitions the language
vocabulary into disjoint blocks and applies weighted SVD to achieve
a low-rank approximation. Additionally, several works [10, 18, 24,
42, 43] from the recommendation field utilize neural architecture
search (NAS) and reinforcement learning (RL) to learn variable
embedding sizes. Among these, Learnable Embedding [24] shows
the best performance with learnable soft-threshold pruning tech-
nique. Nevertheless, learning-based methods require the initiation
of a large model at the start of training and entail considerable
additional computation to determine the optimal configuration.

2.2 Terminology of the Ethereum Blockchain

Externally owned account (EOA): An EOA refers to an Ethereum
account that is controlled by a user who has access to the account’s
private key. An EOA represents an individual user, and only EOAs
can initiate transactions.

Contract account: A contract account represents a smart contract
program deployed on Ethereum, which can be triggered by trans-
actions issued by EOAs to achieve functionalities pre-defined in its
code. Both EOAs and contract accounts are identified by an address,
which is a 42-character hexadecimal string.

Transaction: Transactions are cryptographically signed data mes-
sages that contain a set of instructions, which can be interpreted to
sending Ether between accounts or triggering a smart contract. A
transaction consists of several elements:

o Sender: Address of the EOA that initiates the transaction.
Recipient: Address of the account that receives the transaction.
Amount: Amount of Ether being sent or received in the transac-
tion.

Data: Data used to specify the function of a smart contract to be
called or the arguments to be passed.

Timestamp: Timestamp of when the transaction was logged on

the blockchain.

3 TRAINING LANGUAGE MODELS

To provide some backgrounds, we introduce a standard paradigm of
pre-training a BERT-like LM [8, 17] on Ethereum data from scratch,
and fine-tuning it for downstream fraud detection tasks.
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Figure 2: Model architecture and pre-training task of a BERT-
like LM.

3.1 Sequence Construction

As illustrated in Figure 2, an EOA has its own transaction sequence,
which is constructed from the transactions the account has involved
either as the sender or the recipient, with transactions sorted by
timestamp. A dummy self-transaction is placed at the head of the
sequence, its address feature set to the EOA’s own address. This
serves the dual purposes of incorporating self-address information
into the model and facilitating the gathering of global information
during self-attention computation. Each transaction has several
features such as address, timestamp, position, amount, etc.

3.2 Model Architecture

321 Embedding Layer: Transaction features are encoded into
embedding vectors via embedding lookup tables. As illustrated in
Figure 3, we convert a 42-character hexadecimal address into an
index i using a string-to-integer mapping, then retrieve the i-th
embedding from the address embedding lookup table, which is a
d-dimension address embedding vector that represents the address.
Each type of features has its own embedding lookup table with V - d
parameters, where V is the total number of possible discrete values
for that specific feature. For the address feature, V can be in the
hundreds of millions.

For a transaction, its features are encoded into embedding vectors
and summed together to generate a transaction embedding. The
embeddings of transactions within a sequence are stacked to form
a matrix Hy € RN*4_ where N is the length of the transaction
sequence.

3.2.2 Transformer: As shown in Figure 2, the Transformer [32]
architecture consists of L transformer layers, which can be formal-
ized as:

H, = Attention (HW2, Hwf, HW,') (1)

-
Attention(Q, K, V) = softmax (QK ) \% 2)

Vd

Hyyq = [FEN(R)); - - s FEN(h))] (3)

FFN(x) = GELU(xW]' + b} )W} + b’ 4)
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Figure 3: Encode features into embedding vectors via embed-
ding lookup tables.

where the projection matrices we, VVIK , VVIV, VVll, VVI2 e R™d and

1
1
I-th Transformer layer. Here we omit the multi-head mechanism to

facilitate description.

The time complexity for L-layer Transformer computations is
O(L - N2.h. d), where L, N, h, and d represent the number of
Transformer layers, the length of sequence, the number of heads in
self-attention, and the hidden dimension, correspondingly.

bias vectors b; and b12 € R are trainable parameters for the

3.3 Pre-training

There are several well-known tasks to pre-train LMs in NLP, such
as next token prediction of GPT [26], masked token prediction of
BERT [21], replaced token detection of ELECTRA [5], etc. Here we
adopt a task named masked address prediction [17] to pre-train a
BERT-like LM.

As illustrated in Figure 2, given a transaction sequence, r% of
transactions are randomly selected. The address features of selected
transactions are replaced with a special token [MASK], and the
sequence is passed through the LM to generate transaction rep-
resentations. For a transaction whose address is masked, we use
hy € R to denote the representation produced by Transformer,
which includes its bidirectional context information and is utilized
to predict its masked address. Specifically, a contrastive loss is
adopted as the objective function:

exp(h?n-ap)
exp(hy-ap)+ X pewexp(hy,-an)

1
L=—— lo 5

where M is the masked address set in sequences, ay, is its address
embedding (positive address), N is the negative address set and a,
is the address embedding of a different address (negative address).
Optimizing Eq. 5 essentially entails encouraging hy, to be close to
its address embedding a,, and distant from @, in the latent space.

3.4 Fine-tuning

For an account-level classification task, such as phishing account
detection or identity inference, we cascade the pre-trained LM
with a MLP classifier, which takes the representation of the self-
transaction hg as input. hg represents the entire sequence and the
EOA. The predicted probability § of the EOA being a fraud account
is given by:

§ = Sigmoid (MLP (hs)) )
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efficiency through two strategies: frequency-aware compression and
asymmetric training. Figure 6: Frequency-aware compression.

(a) Frequency-aware compression (b) Dimension decay functions

Space Partitioning;: First, we sort the addresses based on fre-
quency in descending order and index them within the range [0,
max). Second, we divide the address space into K partitions. The
principle for determining the upper and lower bounds of each par-
tition is to keep the sums of address frequencies across different
partitions equal, which guarantees that the training times for each
partition are equal:

4.1 Frequency-aware Compression

4.1.1 Motivation: Figure 4 illustrates the parameter proportion
of the address embedding lookup table in the entire model. Clearly,
the lookup table constitutes 99% of parameters when the number of
address approaches million-level. Consequently, compressing the
LM essentially entails compressing the address embedding lookup

table.
Previous studies [17, 22, 41] have demonstrated that the distri- 1 KX
bution of frequency of address occurred in transactions follows a Fie = Z fi= K Z Fi ®)
power-law distribution. As shown in Figure 5(a), a small number JePy 1
of addresses occurs frequently, whereas the majority of addresses where Py is the k-th partition, Fy is the total frequency of addresses
occurs only a few times. As described in Section 3.2.1, the param- in Py, and fj is the frequency of address j within Py. In this case,
eters of an address embedding can only be retrieved and trained given an address, the probability of it being selected from different
when the associated address appears at transactions. This indicates buckets is all the same. We plot an 4-partition division example in
that the embedding parameters for Ethereum addresses with low Figure 6(c), where a partition with a larger index covers a much
occurrence frequencies, which constitute the majority of Ethereum larger range of addresses due to the characteristic of power-law
addresses, are trained only a few times in one epoch. distribution, i.e., the partition range increases exponentially as the
Limited training times result in the majority of address embed- partition index increases.
dings being located close to their initialization points in the hidden Dimension Decay: As illustrated in Figure 6(a), our goal is to
space. In Figures 5(b) we plot the I; norm of address embeddings allocate smaller dimensions to partitions as their indices increase.
after pre-training. It is evident that the /; norm decreases as the To determine the optimal relationship between the embedding
frequency decreases as well, suggesting that the embeddings of low- dimension and the partition index, we propose three dimension
frequency addresses remain closer to their initial locations. This decay functions w.r.t. the partition index x:
observation further implies that low-frequency addresses, which e Linear decay:
make up the majority of the address space, cannot fully exploit
the capability of high-dimensional embeddings to represent their d = ax (x = 1) +dy,a = (d —du) /(K= 1) ©)
knowledge as high-frequency addresses do. e Exponential decay:
4.1.2 Frequency-aware Compression: We approach the com- dy=dy+a* La= (dl/du)l/(K‘l) (10)
Sresswr% by talflng fr.equenhcy as a signal to assign address emb‘ed- « Power decay:
ings with various dimensions. The compression method consists
of two phases: space partitioning and dimension decay. dy = dy * x% a = logg (d;/dy) (11)
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Table 1: Performance of frequency-aware compression w.r.t.
three decay strategies. F; is evaluated on the downstream
phishing account detection task. Time denotes the (pre-
training) time cost for every 500 batches.

Strategy F; Param.# Comp. Rate Time Speedup
Original  0.6552  153M 100.0% 42.82 1.0
Linear 0.6521 15M 9.15% 31.65  1.353x
Exp. 0.6486  11.5M 7.52% 31.58  1.356x
Power 0.6415 10M 6.53% 3094  1.384x

where dy is the dimension of the x-th partition Py, x € [1,2, ..., K],
dy (upper) is the original (largest) dimension, and the d; (lower)
is the smallest dimension. When d;, = d; and B = 1, it degrades
into a uniform embedding dimension. In Figure 6(b) we plot their
corresponding figures to demonstrate the varying degrees of decay
(dy=64, d;=3). Given the same d,, and dj, we observe that the power
decay strategy reaches the lowest compression rate.

For address embedding a; retrieved from the i-the partition
Py, we multiply it with a partition-wise matrix Vi € R&Xdu to
transform its dimension to the original d;,:

(12)

Table 1 presents the results of applying three dimension decay
strategies to compress the language model with d, =64, d;=3, K=10,
where the F; score is evaluated on the downstream phishing ac-
count detection task. We note that very low compression rates
(6.5%) are achieved by the linear and exponential decay functions.
Among three strategies, the exponential decay function strikes
a good balance between the compression rate and the F; metric,
making it the default setting for Z1pZap.

Effect on training acceleration: Frequency-aware compres-
sion speeds up training, resulting in a 1.356x acceleration, because
the computation required for backward gradients is reduced due to
a significant decrease in the number of parameters.

aj=aj*Vy

4.2 Asymmetric Training

4.2.1 Motivation: The training of LMs comprises both pre-training
and fine-tuning stages. Pre-training is more time-consuming than
fine-tuning, as the different optimization goals of two stages: Pre-
training tasks [5, 8, 26] model the co-occurrence relationship among
transactions, leveraging the abundant self-supervised signals within
sequences. In comparison, fine-tuning tasks, such as phishing ac-
count detection, regard the transaction sequence as a whole, draw-
ing on supervised signals external to the sequences.

This inconsistency suggests that adopting training-accelerating
strategies for pre-training, while reverting to the standard training
paradigm for fine-tuning, might not significantly compromise the
overall effectiveness of the LM but yield considerable computational
savings.

4.22 Lightweight Pre-training: As shown in Figure 7, two tac-
tics are proposed and adopted only at pre-training for acceleration:
transaction dropping and cross-layer sharing.

Transaction Dropping: Dropping transactions to shorten in-
put sequences is intuitive based on the observation that sequence
length N has a quadratic relationship to the time complexity of
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Figure 7: Z1pZAP employs transaction dropping and cross-
layer sharing during pre-training to enhance computational
efficiency, while reverts to the standard training paradigm
during fine-tuning to ensure effectiveness.

Table 2: Transaction dropping w. asymmetric training.

Strategy RS Length F; Time Speedup
Original 0.372 33.78 0.6486 31.58 1.0
Drop. 0.0 10.78 0.6624  25.51s 1.238
Drop.(Asy.)) 0.0 10.78  0.6701 25.51s  1.238x

transformer computation, i.e.,, O(L-N?-h-d). Nonetheless, randomly
dropping transactions leads to performance decrease because less
co-occurrence between transactions could be modeled. An guidance
to drop transactions is the repetitiveness level of transaction within
sequences, which can be measured by the Repetitiveness Score
(RS) defined as the proportion of transactions whose addresses are
repetitive within the sequence:

# of unique addresses

RS(sequence) =1 — (13)

# of transactions
As shown in Table 2, for the original transaction sequences, we ob-
serve an average RS of 37.2%, which suggests that 37.2% transactions
share the same address within sequences in average, indicating the
presence of redundant information that could be filtered out to re-
duce computation. Specifically, for transactions that have the same
address within a sequence, we randomly pick one out of them to
keep, and drop out all the other repetitive transactions. This drop-
ping strategy squeezes the RS to 0, shortening the average length
from 33.78 to 10.78 and expediting the pre-training to 1.243x faster.
Furthermore, we observe a 1.38 AP gain of F; on the downstream
task, suggesting that reducing repetitiveness improves the effective-
ness of pre-training. This is because the masked address prediction
task that models transaction co-occurrence, is susceptible to label
leakage caused by high repetitiveness. An alternative solution is to
aggregate continuous repetitive transactions into one, which helps
reduce repetitiveness, yet cannot handle discontinuous repetitive
transactions.

Cross-layer Sharing: To further speed up pre-training, we force
all the Transformer layers to share parameters across layers dur-
ing pre-training as shown in Figure 7, i.e., trainable parameters in
Eq. 1 and Eq. 4 are shared across L Transformer layers. Cross-layer
parameter sharing reduces parameters in Transformer, and thus
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Table 3: Cross-layer sharing w. asymmetric training,.

Strategy F; Time Speedup
Original 0.6701 25.51s 1.0
Cross 0.6599 22.16s 1.151x
Cross(Asy.)  0.6696  22.16s 1.151x

accelerates the back-propagation computation. As demonstrated in
Table 3, it brings 1.151x speedup while in the cost of 1.02 AP of F;
drop due to limited model capacity.

4.23 Recovered Fine-tuning: Accelerating fine-tuning has min-
imal impact on the computational cost of the entire training. We
recover dropped sequences and lift the cross-sharing constraint to
avoid performance decline in fine-tuning.

Transaction Sequence Recovery: The optimization goal of
fine-tuning is not the same as the pre-training task, suggesting that
reducing repetitiveness can not bring improvement for fine-tuning,
yet downgrades its performance since those repetitive transactions
still carry valuable information for downstream tasks, such as the
temporal patterns of user behavior. As a result, we restore the
dropped sequences for fine-tuning, resulting in a 0.77 AP lift of F;
for the downstream task as presented in Table 2.

Unconstrained Transformer Layers: Adhering to the idea of
asymmetric training, we lift the constraint of cross-layer sharing by
fine-tuning L-Transformer layers independently. From Table 3 we
can observe that removing the constraint during fine-tuning brings
0.97 AP lift of F;, a considerable compensation for downgrade
caused by cross sharing.

5 EXPERIMENT
5.1 Experimental Setup

5.1.1 Dataset: We pre-train the LM on transaction datasets and
fine-tune it for detecting phishing scams (accounts), one of the most
pervasive frauds [31] on Ethereum. We collected 2,746 phishing
accounts (EOAs) from Etherescan that were identified and labeled
by users and security companies, serving as positive samples. For
negative samples (benign EOAs), we generate three datasets named
Ds, Dy, and Dxp, by randomly collecting three sets of EOAs and
the transactions in which these EOAs were involved from Jan. 2017
to Jan. 2023. Among them, Dg and Dy, is used for performance
comparison, while Dy, is used for large-scale experiments.

The statistics are reported in Table 4, where the "# of EOA"
column represents the number of EOAs for which we generate
transaction sequences. The "# of transaction" column represents the
total number of transactions collected. The "# of address" represents
the total number of addresses involved in these transactions, which
is equal to the size of the address embedding lookup table. The
"Length" column represents the average number of transactions in
transaction sequences. The "Neg./Pos." column represents the ratio
of benign accounts to phishing accounts.

5.1.2 Baselines: To measure effectiveness, three types of com-
petitors are compared: 1) Graph learning methods, including Deep-
Walk [25], Trans2Vec [36], Diff2Vec [29], Role2Vec [1]; 2) GNN
methods, including GCN [20], GAT [33], GraphSAGE [12]; 3) Lan-
guage models, including BERT (BERT4ETH [17]) and ALBERT [21].
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Table 4: Statistics of datasets

Dataset # of EOA # of trans. # of address Length Neg./pos.

Ds 314,256 10,422,570, 2,128,180 33.78 114:1
DL 938,176 35,894,143 6,104,218 38.26 342:1
Dx1, 3,127,997 110,591,442 19,004,544 35.42 -

To measure computational efficiency, two types of baselines
are involved: 1) Efficient pre-training methods, including ALBERT,
Progress Stack [11] and Token Bypass [13]; 2) Efficient Transform-
ers including Longformer [2], Linformer [35] and Performer [4].

To measure parameter efficiency, we compare ZIPZAP against
Learnable Embedding [24] and embedding factorization used by
ALBERT. For fairness of comparison, we apply them on the address
embedding layer only, with Z1pZAP as the backbone model.

5.1.3 Implementation: For LM-based methods including ZipZap,
BERT, ALBERT, Progress Stack, Token Bypass, Longformer, Lin-
former and Performer, the number of Transformer layers is set to 8,
the number of heads for self-attention is set to 2 and the maximum
sequence length N is set to three times the average length of input
sequences. Masked address prediction (Section 3.3) is adopted as
the pre-training task for all these methods. During pre-training, the
masking ratio is set to 80% to prevent label leakage. During fine-
tuning, a 2-layer MLP with a hidden dimension of 128 is cascaded as
the classifier in Eq. 6. For frequency-aware compression of Z1pZap,
the number of partition K is set to 10, the maximum dimension d, is
set to 64 and minimum dimension d; is set to 3. A batch size of 256,
a dropout ratio of 20%, and a hidden dimension of 64 are used for all
approaches. More details on implementation and hyper-parameter
settings can be found in Appendices A. Experiments are conducted
on a standard NVIDIA RTX 3090 GPU with 24GB memory.

5.2 Effectiveness Comparison

All baselines are self-supervisedly pre-trained on Ds and Dy, and
evaluated for phishing account detection w.r.t. two strategies, fixed
training and fine-tuning. For fixed training, the pre-trained model is
utilized as a feature extractor to generate account representations,
followed by individually training a MLP classifier for classification.
For fine-tuning, the model is trained with a cascaded MLP classifier
together. Each experiment is repeated five times and the best F;
score is reported. The threshold is set between 0.2 to 0.4.

Table 5 presents the results of the fixed training strategy. As
there is no fine-tuning involved, Z1pZAp takes dropped sequences
as input for fixed-training to maintain the consistency. From the
table, the first observation is that LMs outperform graph-based
approaches by a large margin, indicating the superior modeling
capabilities of the Transformer and the importance of capturing
sequential and transaction-level information. The second observa-
tion is that Z1pZap slightly outperforms its original LM, BERT. The
improvement primarily comes from addressing the label leakage
problem via transaction dropping.

Table 6 presents the results after fine-tuning. The first three rows
show the results of fine-tuning with pre-training, which demon-
strate that pre-training can bring huge improvements over com-
petitors compared to results in Table 5. Additionally, Z1pZAap still
outperforms BERT model with 1.44 and 1.47 AP on both datasets,
yet the performance gap is decreased compared to fixed-training,
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Table 5: Performance comparison for fixed training.

Dataset | Ds | DL

Method | Pre. Rec. F; | Pre Rec. F;
DeepWalk 0.2486 0.1778 0.2074 0.1499 0.1253 0.1365
Trans2Vec 0.1495 0.1391 0.1441 0.0839 0.0824 0.0831
Diff2Vec 0.2556 0.1713 0.2051 0.1566 0.1110 0.1299
Role2Vec 0.2770 0.2113 0.2398 0.1890 0.1323 0.1557
GCN 0.3152 0.2219 0.2605 0.2077 0.1424 0.1690
GSAGE 0.2817 0.2404 0.2594 0.1988 0.1554 0.1744
GAT 0.3215 0.2519 0.2825 0.2284 0.1663 0.1917
BERT 0.5447 0.3632 0.4458 0.3808 0.3140 0.3542
ALBERT 0.5322 0.3430 0.4271 0.3662 0.2851 0.3306
Z1pZAP 0.5694 0.3870 0.4608 | 0.4239 0.3303 0.3713

Table 6: Performance comparison for fine-tuning,.

Dataset | Ds | DL

Method | Pre. Rec. F; | Pre Rec. F;
BERT 0.7191 0.6017 0.6552 0.6260 0.4867 0.5476
ALBERT 0.6823 0.5805 0.6273 0.5750 0.4613 0.5119
Z1PZAP 0.7374 0.6132 0.6696 0.6406 0.5011 0.5623

w/o pre-training

BERT 0.5559 0.4482 0.4919 0.3728 0.2940 0.3287
ALBERT 0.5310 0.4275 0.4737 0.3387 0.2831 0.3084
Z1PZAP 0.5355 0.4410 0.4837 0.3508 0.3043 0.3259
Z1PZAPp 0.5177 0.4325 0.4713 0.3508 0.2872 0.3159

suggesting that fine-tuning narrows the performance gap caused
by pre-training. Moreover, we ablate the pre-training process and
presents the results of directly trained on the phishing detection
task in the last five rows of Table 5, where ZipZApp is trained on
dropped sequences and Z1pZAP is trained on recovered sequences.
The results show that the Z1pZap performs worse than BERT due
to the frequency-aware embedding compression. Moreover, we
observe that transaction dropping decreases the performance by
comparing ZIPZAP with Z1PZAPp, suggesting that the same strat-
egy poses an opposite effect for the pre-training and fine-tuning
stages, which further justifies the idea of asymmetric training.

5.3 Efficiency Comparison

5.3.1 Computational Efficiency Comparison: In this experi-
ment we only compare the speed of pre-training, as the time cost
of fine-tuning is negligible contrasted with pre-training. Table 7
compares the speed efficiency and effectiveness, where Time is the
average (pre-training) time cost for 500 batches, F; is the result after
fine-tuning. Our observations are as follows: (1) Efficient Trans-
formers are less efficient and effective compared to the methods
(ALBERT, ProgStack, and TokenBypass) designed for accelerating
pre-training. This is because the average sequence length in our
scenario is not very long, making the acceleration of self-attention
insignificant, and additional operations involved even lead to neg-
ative effects. (2) While ALBERT, ProgStack, and TokenBypass im-
prove efficiency, they also result in a decrease in the F; score. (3)
Z1rZapP offers both efficiency and effectiveness, as it provides a
F; gain and 1.94x and 3.05x speedup on the two datasets. The im-
provement in computational efficiency comes from two factors:
(i) Reduction of backward gradient computation because 94% of
parameters are reduced by frequency-aware compression. (i) Reduc-
tion of Transformer computation because of transaction dropping
and cross-layer sharing.
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Figure 8: Testing F; on the phishing detection task w.r.t. the
pre-training time (checkpoints).

Furthermore, Figure 8 plots the F; scores of ZipZap, BERT, AL-
BERT, and ProgStack w.r.t. pre-training time. For each pre-training
checkpoint, we fine-tune it on the downstream task to evaluate its
F; performance. It can be observed that ZipZap reaches a higher
Fj score in a shorter pre-training time, and its advantage over the
other competitors becomes more pronounced as the dataset size
increases. The reason is because the address embedding lookup
table for Dy is 2.7x larger than Dg, resulting a better benefit from
reducing the backward gradient computation.

5.3.2 Parameter Efficiency Comparison: Factorization and
LearnEmbed are two representative approaches for embedding com-
pression. For fairness in comparison, we apply them to ZipZap by
replacing our frequency-aware compression with their compression
techniques, and all other conditions remain the same. LearnEmbed
and LearnEmbed* are initialized with different masking threshold
values (-5 and -4) that lead to varying levels of sparsity. Sparsity is
defined as the percentage of non-zero parameters in the embedding
layer.

Table 8 presents the results of parameter efficiency compari-
son. It can be observed that Z1pZap outperforms existing methods,
yielding an improvement with a 3.18 AP increase over Factorization
and a much lower compression rate on Ds. This enhancement is
solely attributed to the frequency-aware embedding compression,
highlighting the importance of considering address occurrence fre-
quency in embedding dimension. ALBERT also shows good param-
eter efficiency through its adoption of the factorization technique.
On the other hand, the performance of LearnEmbed is not satis-
factory. Although 87% of its parameters are pruned to zero, the
unstructured pruning is unfriendly to hardware and cannot truly
reduce memory usage. Moreover, the learnable thresholding in-
troduces extra parameters and computation overhead, resulting in
slower pre-training and requiring twice the parameters of BERT.
For this reason, it causes an out-of-memory (OOM) error on the
experimental hardware (24GB GPU memory).

5.4 Ablation Study

We investigate the impact of two strategies, i.e., frequency-aware
compression and asymmetric training in terms of computational
efficiency on larger-scale datasets. We create another two datasets,
Dx11, and Dxi, by filtering out EOAs with fewer than 10, and
20 transactions from Dxy, respectively. The filtering rules lead to
two datasets with different statistics as presented in Table 9, where
Dy, has the highest number of addresses, yet the shortest sequence
length and Dy, has the lowest number of addresses, yet the longest
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Table 7: Comparison with computation-efficient methods. Time is the average time cost (in seconds) for 500 batches.

Dataset ‘ Dy ‘ Dy
Method ‘ Precision Recall F; Param.# Time Speedup ‘ Precision Recall Fy Param.# Time Speedup
BERT 0.7191 0.6017 0.6552 153M 42.82s 1.0 0.6260 0.4867 0.5476 409.6M 69.25s 1.0
ALBERT 0.6823 0.5805 0.6273 19.3M 27.40s 1.56x 0.5750 0.4613 0.5119 48.3M 33.45s 2.07x
ProgStack 0.7130 0.5969 0.6498 153M 33.88s 1.26x 0.6192 0.4768 0.5387 409.6M 56.76s 1.22x
TokenBypass 0.7145 0.5695 0.6338 153M 35.07s 1.22x 0.6003 0.4756 0.5307 409.6M 60.93s 1.17x
Longformer 0.6820 0.5883 0.6317 153M 42.78s 1.00x 0.5797 0.4769 0.5233 409.6M 69.74s 0.99x
Linformer 0.6780 0.5847 0.6279 153M 42.02s 1.02x 0.6085 0.4613 0.5247 409.6M 66.42s 1.04x
Performer 0.6602 0.5835 0.6205 153M 55.96s 0.77x 0.5711 0.4579 0.5083 409.6M 87.19s 0.79x
Z1PZAP ‘ 0.7374 0.6132 0.6696 11.5M 22.40s 1.92x | 0.6406 0.5011 0.5623 29.8M 23.37s 2.96x
Table 8: Comparison with parameter-efficient methods. (-) denotes out-of-memory (OOM).
Dataset ‘ Ds ‘ Dy,
Method ‘ Precision  Recall F; Sparsity Param.# Comp. Rate ‘ Precision  Recall F, Sparsity Param.# Comp. Rate
BERT 0.7191 0.6017 0.6552 0% 153M 100.0% 0.6260 0.4867 0.5476 0% 409.6M 100.0%
ALBERT 0.6823 0.5805 0.6273 0% 19.3M 12.61% 0.5750 0.4613 0.5119 0% 48.3M 11.79%
Factorization 0.7052 0.5822 0.6378 0% 19.3M 12.61% 0.6044 0.4811 0.5357 0% 48.3M 11.79%
LearnEmbed 0.6662 0.5447 0.5993 63.40% 307.2M 200.8% - - - - ~ 820M -
LearnEmbed* 0.6398 0.5043 0.5640 87.27% 307.2M 200.8% - - - - ~ 820M -
Z1pZAP ‘ 0.7374 0.6132  0.6696 0% 11.5M 7.52% 0.6406 0.5011 0.5623 0% 29.8M 7.28%
. . . BN BERT e - onl: - A .onl ZipZ
Table 9: Statistics of large-scale datasets derived from Dy, 100 il ke e
with different filtering rules. 2759
3 504
Dataset  # of address Length RS 8 ZSAJ]_I
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ol
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sequence length. A desirable characteristic of Ethereum transac- E_ 4

tion is that as the sequence length increases, the Repetitiveness
Score becomes higher, making ZrpZap more advantageous from
transaction dropping. We evaluate four models, i.e., the base BERT,
Z1pZAp w/ compression only, ZIPZAP w/ asymmetric training only
and Z1pZap. To prevent the base model encountering the OOM
error, the batch size and hidden dimension are set to half of the
original hyper-parameters.

In Figure 9, we report the time cost for 500 batches and speedup
for pre-training. By comparing Z1pZap w/ compress. with BERT, we
observe that the improvement in computation-efficiency brought
by compression is the most significant for Dxp, which owns the
largest address embedding layer. As the number of addresses de-
creases, the speedup also decreases. Additionally, we observe that
the contribution of asymmetric training increases as the sequence
length increases (Dxp->Dxr1->Dx12), and surpasses ZIPZAP w/
compress. on Dxy 2. Notably, under different settings, the time cost
of Z1pZAP remains relatively stable, which is a desired feature for
large-scale applications.

Table 10: Generalization to GPT model on Ds.

Method ‘ F; Param.# Comp. Rate Time Speedup
GPT 0.6102 153M 100% 50.53 1.0
Z1pZap(GPT) | 0.6201 11.5M 7.5% 34.36 1.76x

5.5 Generalization to GPT model

ZipZap works on the generic characteristics of LMs, therefore,
can be generalized to other types of LMs. We also implement the
GPT model with a pre-training task named next address prediction.
Specifically, we construct a transaction sequence for each account,
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Figure 9: Ablation study on large-scale datasets. Frequency
compression contributes more than asymmetric training
when the sequence is shorter and number of address is larger.

sort the transactions according to the timestamp ascendingly, put
the self-transaction to the head, and use the mean vector of all the
transaction representations to represent the sequence. As shown in
Table 10, ZipZap can be generalized to GPT and obtain considerable
benefits for compression and training speed.

6 CONCLUSION

We present Z1pZAP, a framework for efficient and effective training
of LMs for blockchain transactions. Equipping with the frequency-
aware compression technique, ZIPZAP enjoys a 92% reduction in
parameters from the original LM by leveraging frequency as the
signal for dimension allocation. With the asymmetric training ap-
proach, Z1pZAp optimizes both the speed of pre-training and the
efficacy of fine-tuning. Coupled with two strategies, ZIPZAP expe-
dites the entire training process up to 3 times faster on large-scale
real world datasets. Our study sheds light on bridging language
models with large-scale fraud detection applications.
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of GNN layers is set to 2, with a neighbor sample size of 50. For all
methods, the batch size is set to 256, the dropout rate to 20%, and the
hidden dimension to 64, based on empirical hyperparameter tuning.
DeepWalk-based methods are implemented using Genism [28], and
GNN-based methods are implemented using DGL [34].

The hyper-parameter settings for LM-based methods are kept
consistent with Z1pZAp as outlined in Table 11, and the maximum
sequence length is set to three times the average sequence length,
as sequence length follows a power-law distribution. ALBERT,
ProgStack and TokenBypass speed up training from three aspects:
reducing the number of parameters, progressively copying pre-
trained parameters for initialization, and reducing computation for
trivial tokens. Another type of methods is adopting efficient Trans-
former as the backbone, which can accelerate the self-attention
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calculation. Specifically, for ALBERT, the factorization size for the
embedding is set to 8. For Linformer, the factorization size for the
self-attention mechanism is set to 16. For Performer, the number of
multi-head self-attention is set to 8 to achieve accurate attention
estimation. The original TokenBypass selects 50% of tokens except
special tokens to bypass. For TokenBypass we follow its original
setting by only masking 15% of the tokens, and select the left 50%
of tokens to bypass.

For parameter-efficient methods including LearnEmbed and em-
bedding factorization, we adopt ZIpZAP as the backbone. In the
case of Embedding Factorization, the factorization size is set to
8, which is consistent with ALBERT. For LearnEmbed, we set the
initial masking threshold to -5 and -4, referred to as LearnEmbed
and LearnEmbed™ respectively.
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