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ABSTRACT — AR Unknown Face
Face recognition (FR) technologies have enabled many life-enriching Hh@\:vsb N ’ 3 Face Recognition
applications but have also opened doors for potential misuse. Gov- Scraping g

ernments, private companies, or even individuals can scrape the
web, collect facial images, and build a face database to fuel the
FR system to identify human faces without their consent. This
paper introduces PMask to combat such a privacy threat against
unauthorized FR. It provides a holistic approach to enable privacy-
preserving sharing of facial images. PMask preprocesses the facial
image and hides its unique facial signature through iterative op-
timization with dual goals: (i) minimizing the amount of noise to
ensure high image quality and (ii) minimizing the perception loss
between the privacy-protected face and the original face to en-
sure the face is recognizable to be the same person by humans.
Extensive experiments are conducted on eight representative FR
models to evaluate PMask against unauthorized FR. The results
validate that PMask provides much stronger protection, introduces
less perceptible changes to facial images, and runs faster than state-
of-the-art methods to provide privacy protection with a better user
experience.

1 INTRODUCTION

Face recognition (FR) technologies have made their way into our
everyday lives [8, 26, 30, 31]. Many pretrained FR models are avail-
able online for free [6]. Once a face database (a.k.a. the gallery)
with facial images for each person of interest is provided, the pre-
trained models can be used to recognize people effectively, even
when they are unknown at the model training phase. While FR
technologies have powered numerous life-enriching applications,
misuse of FR can cause serious privacy intrusions [2]. For example,
privacy intruders can conduct web scraping to build a face database
out of publicly available images on the Internet. Then, by sending
a facial image as a query against this gallery, privacy intruders can
infer the identity of the person with high confidence, as shown in
Figure 1a. For example, a private company, Clearview.ai [4], has
already collected over 20 billion online images and can recognize
millions of citizens without their consent. This is a real threat: stalk-
ers can find out the footprints of their victims [3], retail stores may
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Figure 1: The privacy intruder scrapes the web to build
a gallery for identifying unknown faces. Compared with
Fawkes [33] and TIP-IM [42], PMask can provide better pro-
tection with a small noise injected into the gallery images.

associate online browsing history with offline shopping behaviors
for advertisement [1], and criminals may commit identity fraud [5].

To protect against unauthorized FR using scraped photos contain-
ing facial images of citizens, we propose PMask, a facial masking
system for privacy-preserving facial image publishing. Before shar-
ing a photo with facial images on the Internet, PMask will inject a
privacy mask, which can effectively hide the true facial signature of
the image while maintaining its visual perception quality. Figure 1
illustrates the benefit of our proposed PMask with the unknown
face as query input by comparing (d) the PMask-protected Gallery
(ours) to (a) the Unprotected Gallery, (b) the Fawkes-protected
Gallery [33], and (c) the TIP-IM-protected Gallery [42]. It is ob-
served that for the two recent privacy protection systems, Fawkes
and TIP-IM, one fails to protect privacy (b), while another adds too
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much noise to the gallery images (c). Even though it succeeds in
protecting the input image from correct recognition, the preserva-
tion of the visual perception quality fails. In comparison, PMask can
generate the privacy mask, which not only ensures that it can ef-
fectively hide the unique facial signature of gallery images but also
guarantees that the noise added during privacy mask generation is
minimal and thus preserves the quality of the original image.

Protecting facial images with PMask is beneficial in two aspects.
First, individual users can use PMask to protect the photos they
share online from being misused by privacy intruders to recognize
their faces on images they collect, e.g., from a surveillance camera.
Second, some privacy intruders build a face-based search engine [7]
that can return the websites containing the victim’s facial image, a
serious threat beyond simply knowing the victim’s identity (i.e., the
name). Online content platforms, such as social networks, are the
target of such crime due to their rich collections of their members’
facial images. Hence, they can benefit from PMask by making the
photos published on their websites unable to be matched to the
correct person. This helps preserve their reputation by taking active
methods to protect their members’ digital footprints against misuse
and abuse.

This paper makes the following original contributions. First, we
develop a PMask framework to generate a privacy-preserving mask
for enforcing privacy protection of each facial image prior to sharing
it on the Internet. Our PMask generation process is iterative with
continuous optimization of dual goals: (i) minimizing the amount of
privacy noise injected while maximizing the effectiveness of hiding
the true facial signature of a facial image, and (ii) minimizing the
perception loss compared to the original facial image. The former
ensures the image quality (i.e., no excessive noise), while the latter
requires the protected image to be recognizable by humans. Second,
to further improve the generalizability of PMask in hiding facial
signatures by generating a robust privacy mask, we propose a
principled approach using focal diversity-based ensemble learning
to boost the robustness of PMask privacy protection. Instead of
using a random ensemble, our focal diversity method can enhance
the generalization performance of our privacy mask for more robust
privacy protection. To the best of our knowledge, PMask is the first
to utilize focal diversity for composing an ensemble of multiple FR
models to identify and hide the unique facial signature of facial
images by generating robust and generalizable privacy masks. We
conduct extensive experiments to analyze PMask with eight FR
models of different characteristics on FaceScrub [28], a widely-used
FR benchmark. The results validate that the focal diversity-based
privacy mask generation can deliver stronger protection against
unknown FR models and outperforms the representative state-of-
the-art methods with better user experience.

2 RELATED WORK

Existing approaches conduct pixel-level modification to facial im-
ages for privacy preservation [37]. They can be broadly classified
into two categories. The first category uses FR models to craft
small changes to perturb the original facial image. Fawkes [33]
formulates an untargeted attack to push the facial image in the
feature space away from the original location, while Face-off [12]
uses a targeted objective. Several works also focus on the image
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quality with LowKey [13] using LPIPS [45] and TIP-IM [42] using
MMD [10] to quantify and minimize the impact on human per-
ception. PMask falls into this category and advances the above
approaches in two aspects. First, we introduce a loss function to
search for facial signatures with a convergence condition to just
inject sufficient distortion without over-perturbing the face under
protection. Second, all existing works manually select FR mod-
els to craft perturbations, but none studies the impact of selected
FR models on robustness in privacy protection. PMask is the first
to leverage the diversity-optimized ensemble teaming framework
with a focal diversity-based ensemble selection method, showing
its effectiveness in strengthening the privacy mask generation qual-
ity for stronger protection against unknown FR models. We ar-
gue that privacy-preserving facial masking should preserve two
important data utilities: (1) The mask-transformed facial image
should preserve the image quality, and (2) The identity of the mask-
transformed facial image should remain recognizable by humans.
Then, the masked facial image can be safely released in public. Re-
call Figure 1, PMask, Fawkes, and TIP-IM-protected gallery images
fully preserve the second utility, although they differ in the first
and the protection robustness.

In contrast to the pixel perturbation approaches, the second cate-
gory uses conditional generative adversarial networks (GANs) [27]
to synthesize a face similar to the original one [24, 25, 34]. Although
the GAN-synthesized faces appear to be realistic facial images and
satisfy our first utility above, it fails to meet the second utility. The
owner can no longer recognize the person on the GAN-protected
facial image, which appears to be a stranger and completely dif-
ferent from the original facial image. Hence, this category of work
may not offer satisfactory user experience for human users.

3 PMASK OVERVIEW

DNN-based face recognition (FR) uses a feature extractor F trained
to map a given facial image x to a high-dimensional vector F(x) in
the feature space. In addition to using a pretrained FR model F, the
privacy intruder will also need to collect a set of gallery images D¢
by web scraping [4] and utilizing publicly available face datasets.
Then, the privacy intruder can use the pretrained FR model F to
map each gallery image x© € D to the feature vector F(x©).
Given a probe (query) image xT, the privacy intruder can use the
same FR model F to map it to a feature vector F(xF) and predict
the identity of the “unknown" person by using the identity of the
nearest gallery image, formally:

I (xP;D%) = [(argmin Dist(F(xF), F(x©)); D),
xGeDC

ey

where I (x; DC) denotes the identity of the image x, which is
known only for those gallery images in D°, and D1st(-,-) is a
distance function such as the Euclidean distance. The richer the
gallery set the privacy intruder maintains, the higher the likelihood
it will have one or more facial images of the person corresponding
to the query. This can lead to a serious threat to user privacy.

To combat such a privacy threat, we introduce PMask, which
develops two synergistic functional components of PMask loss
optimization: The first component is to learn the search for the
facial signature of a facial image and then the generation of a robust
privacy mask to effectively hide the true identity from pretrained
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Figure 2: The iterative generation process of PMask to hide the unique signature from the given facial image.

FR model(s). The second component leverages the focal diversity-
based ensemble selection method to find the most diverse team
of FR models to boost the generalization performance of the first
component and offer stronger protection with our privacy mask
system. Figure 2 gives an overview of the first component. Given
a facial image to be protected, we leverage a team of carefully
chosen FR models to iteratively generate the privacy mask until
convergence, such that the facial signatures of the masked image
will be hidden. When it is scraped by privacy intruders to build their
gallery images, the masked image serves no purpose in identifying
probe images of the person under protection.

Sometimes, the user may not have access to the photo that the
adversary uses to query a face recognition model. For instance,
a stalker can take a photograph of the victim and conduct FR on
the face database constructed by web scraping (e.g., PimEyes [7]).
The user cannot use a privacy tool to obtain privacy protection on
this type of Web facial data. Instead, PMask shares the same threat
model as the recent facial perturbation methods (e.g., Fawkes [33]
and Lowkey [13]) and provides the facial images released online to
be misused by intruders to invade their privacy. PMask improves
over these existing methods with better protection effectiveness,
image quality preservation, and protection speed. We also introduce
a principled approach to selecting a high-quality team from a pool
of pretrained FR models to boost protection against FR models.

In the following sections, we first introduce our optimization
with dual objectives to find such a privacy mask (Section 4). Then,
we present a principled approach to forming a team of FR models
(Section 5) to strengthen the privacy mask against unknown FR
models, which is particularly important as a protector has no prior
knowledge about which FR model will be used by a privacy intruder,
be it FR algorithm, neural architecture, or training dataset.

4 PRIVACY MASK GENERATION

For each gallery image xC of the person ¢ under protection, PMask
generates a privacy mask M (x®) to obfuscate its facial signatures.
We can conceptualize the protection process to contaminate the set
of gallery images DC built by the privacy intruder through web
scraping. Let Z)? be the subset of gallery images belonging to the
person ¢ under protection. PMask is to generate the protected set
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of gallery images DY formally as follows:

DY = {xC+ M(x%) | x® € DF}U [D - DY

st. I(xP; D) # ](xp;i)G) vx e Z)f, @
where Z)f is the set of probe images belonging to the person ¢
under protection. Intuitively, for each probe image x* of the person
¢, its identity recognized using the unprotected set of gallery images
DC should be different from the one using the PMask-protected
set of gallery images DC. Note that in the above formulation, we
assume only one person is under protection for brevity, but it can
be trivially extended to any or even all people.

To accomplish privacy protection, PMask needs to mask the
gallery image so that it will not be matched as the nearest neighbor
of a probe image of the same person. A straightforward solution is to
perturb an image as much as possible such that the distance between
the feature vector of the masked face and that of the unprotected
face is maximized. However, the facial image will be significantly
distorted, reducing the usability of PMask due to the loss of the
two utility criteria of the PMask-transformed facial image: (i) it
should preserve the image quality comparable to the original image
in terms of perception similarity metrics; and (ii) its identity should
remain recognizable by human, so the owner can safely publish the
masked facial image online. PMask introduces dual optimizations to
achieve privacy protection with minimal impact on image quality.

4.1 Reverse Triplet Optimization

We first introduce an identity-based reverse triplet loss for privacy
protection in PMask. To motivate the reason behind the use of a
reverse triplet loss, we first review the basic triple loss [32], a popu-
lar loss function for metric learning used in numerous applications,
e.g., face recognition [32], object tracking [18], and cross-modal
information retrieval [40]. It is defined by

Lvi = max(DisT(F(xg4), F(x4)) = DisT(F(xq), F(x-)) + m,0), (3)

where x, is an anchor sample, x; is a positive sample with the same
class as x4, x_ is a negative sample with a different class than x,,
and m is a margin controlling how far should the negative sample
be. Several sampling strategies have been introduced to form the
triplets [19, 43].
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Figure 3: PMask pushes each gallery image of the person un-
der protection (Anne Hathaway) away from the original posi-
tion in the feature space (left). The FR based on the resultant
gallery images (right) returns an image of Anne Hathaway
to be Rebecca Budig.

In the context of PMask, the direct adaptation of conventional
triplet loss will not work. We create an identity-based reverse triplet
loss function in order to correctly reflect the philosophy and the
abstraction logic of conventional triplet loss in this privacy mask-
ing context. Figure 3 gives an illustration. Considering the query
image (the green star) as the anchor x4, we want our privacy mask-
ing learner to progressively learn a feature extractor to bring the
embeddings of those positive images in the gallery set of the same
class (person) as the anchor xg, i.e., the set of x,’s (highlighted in
pink triangles) to be farther away from x, than the distance of the
anchor x, to some negative images (i.e., x_) from a different class.

The term “reverse" has multiple meanings. First, given an image
from the gallery set and its actual personal label (the full name of a
person), PMask iteratively learns to generate a privacy mask that
can effectively prevent the masked image from being mapped to
the name labeled on the original input image. The mask generation
process first freezes the FR models used for learning the mask and
randomly adds a small amount of noise. Then, it utilizes PMask’s
loss optimizer to continuously learn the right amount and pixel
locations for fine-tuning the noise to mask the facial image to be
protected. Hence, the learning task and objective are different from
the conventional procedure. Second, to learn the privacy mask of
a given gallery image, PMask’s loss optimization will have two
components: one for making sure the perturbation effectively hides
the protected gallery image in the crowd with a new identity, and
the other is to ensure the masked image has a similar visual per-
ception to the original one in both digital measures and the view
of human. The former ensures privacy is preserved after masking,
and the latter ensures the desired visual utility is preserved on the
masked image under the protection of PMask. We use the reverse
triplet loss because we aim to “maximize" the distance between
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Figure 4: The reverse triplet loss progressively searches for
the optimal location for the masked face to reside.

the samples of the same class in the gallery set and the anchor
image, i.e., the input image to be masked by PMask. At the same
time, we aim to “minimize" the distance between this anchor image
and some samples of different classes. Hence, we call our first loss
component the reverse triplet loss. Figure 4 provides another per-
spective for the illustration of our reversed triplet loss. The masked
image x© + M(x©) should be farther away from the embedding
location of the original unprotected one xC than the nearest gallery
image NN (x©) of a different class (person) by a margin m. The
iterative optimization to ensure the protected image resulting from
adding the privacy mask learned iteratively (i.e., ¥ + M(x%)) is
far away from any gallery image of the same class as the original
input image. Given that PMask uses a protection ensemble of FR
models 7 to generate the privacy mask for each input facial image,
the following reverse triplet loss function will protect the given
image x© of the class labeled as person £:

LRevTriplet = Z
FeT

max(DisT(F(xC), FINN(x°))) + m

@
— min_Dist(F(x® + M(x9)), F(x9)),0)|,
#GeDC
where m is a hyperparameter controlling the margin. To provide
a more intuitive setting, we redefine it to be a fraction & of the
distance between the unprotected image and its nearest gallery
image of a different person:

m =6 - DisT(F(x9), FINN(x9))). (5)

A nice property in Equation 4 is that the loss becomes zero when the
first term is non-positive. Then, no further perturbation is required.
As shown in Section 6, the number of required iterations depends
on the hardness of the image to be protected and can be determined
on the fly by PMask.

4.2 Imperceptibility Optimization

Even though the reverse triplet loss can generate privacy masks
protecting users, it is not attractive if the masked image is seriously
distorted. Hence, we dedicate the second optimization to the im-
perceptibility of privacy masks. The structural similarity (SSIM)
index [36] is a popular image quality measure comparing two im-
ages. Instead of comparing images by per-pixel differences such
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as the mean square error, SSIM focuses on the structure informa-
tion on the image, which aligns with the human visual perception
system and is defined as follows:

SSIM(xG i‘G): ziuxG”iG 2UXGU3-CG OxG 3G

Koo+ i 0o + 02 0xGO3G ' ©
where jix is the mean luminance of an image x, oy is the standard
deviation, and o, 3 is the covariance between two images. It ranges
from —1 to +1, where a higher value means two images are per-
ceptually more similar. To control the privacy mask to generate a
protected image perceptually similar to the unprotected one, we
define the imperceptibility loss as follows:

1
Limpercept = max(5 (1~ SSIM(x%, xC + M(x9))) — w,0),  (7)

where w controls the SSIM degradation. It ensures that the image
quality, measured in SSIM, does not fall below . We chose SSIM
because it is a popular image quality measure that aligns well with
the human visual perception system. There are several reference
systems available to help select the desired SSIM (e.g., “>0.99” is
excellent, and “0.95-0.99” is good [47]). We first rescale SSIM from
the range of [-1, 1] to [0, 1]. Then, if the image quality at the current
iteration falls below the threshold, a non-zero loss will be produced,
which will require optimization to reduce perturbations. Similar
to the reverse triplet loss in Equation 4, the above imperceptibility
loss also has a convergence condition (i.e., SSIM > 1 — 2w).

Based on the above, we can find the privacy mask for the image
xS of person ¢ as follows:

G .
M (x7) = argmin [LReVTriplet + KLImperceptL (8)

M(x9)

where « is a regularization hyperparameter balancing the reverse
triplet loss and the imperceptibility loss. We use a dynamic schedule
to define x with an initial value of 1.0, which will be doubled or
halved when the amount of perturbation is too low or high [33].
Overall, the optimization is complete when the protection objective
defined in Equation 4 is achieved, and the degradation in image
quality is within the budget in Equation 7.

5 FOCAL DIVERSITY TEAMING

We have introduced the privacy mask generation using a given
team of FR models. The next question to be answered is how to
find a team offering strong privacy protection. A large number
of models are publicly available. They can be directly applied to
production systems because FR models can extract features for
faces unknown during the training process. This allows one to
create a collection of FR models easily. Table 1 shows an example
collection of eight FR models. They use ArcFace [17], the state-of-
the-art FR algorithm, requiring an input resolution of 112X 112 and
encoding a given facial image into a 512-dimensional feature vector.
They differ in terms of neural architectures (i.e., EfficientNet [35]
or ResNet [22] in the 2nd column) and training datasets (i.e., MS-
Celeb-1M [21], Glint360K [9], VGG-Face2 [11], WebFace600K [46]
in the 3rd column). All models achieve a competitive FR accuracy
on the FaceScrub [28] dataset for testing (i.e., 4th column).

While one could use all available models for protection, prior
works have shown a carefully chosen subset of models can lead to
better generalization performance in image classification [38, 39]
and object detection [15]. To demonstrate the necessity of teaming
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Table 1: The collection of face recognition (FR) models.

Model ID Architecture Training Dataset Accuracy
Fy EfficientNet MS-Celeb-1M 94.94%
F ResNet50 MS-Celeb-1M 89.25%
Fs3 ResNet50 Glint360K 96.68%
Fy ResNet50 VGG-Face2 94.30%
Fs ResNet50 WebFace600K 96.72%
Fe ResNet18 MS-Celeb-1M 82.64%
F; ResNet34 MS-Celeb-1M 84.49%
Fg ResNet100 MS-Celeb-1M 91.85%
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Figure 5: The effectiveness of protection teams can vary. Find-
ing a high-quality combination is crucial.

in privacy protection, we enumerate all 28 teams of size two from
the collection. For each team, we measure the protection success
rate against a privacy intruder. Figure 5a shows that a poor choice
can lead to weak protection. Only 32.50% of the testing images
are incorrectly identified by the privacy intruder. In contrast, a
good choice can offer substantial protection, meaning the privacy
intruder will not be able to identify the correct name of an unknown
face. A similar observation can be found for three-member teams
(56 teams in total) in Figure 5b. Such a divergence in protection
effectiveness confirms the need for a principled approach to identify
a high-quality protection team. However, evaluating each possible
protection team with a validation set is impractical because of the
time complexity, even though PMask is already more efficient than
existing approaches (details are provided in Section 6.1).

We introduce a diversity-driven approach to conduct efficient
and effective teaming. The intuition is to form a team of FR models
making diverse mistakes, implying their divergence in the decision-
making process. If the privacy mask can protect against such a
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Figure 6: The workflow of focal diversity to efficiently quan-
tify the quality of a protection team of FR models. Note that
the protection team 77 ; ; means {F;, Fj, Fi }.

diverse team, it is more likely to transfer to disable other FR models.
Our design is based on the focal diversity framework originally
proposed for image classification systems [38]. Figure 6 provides
an overview of the workflow considering a collection of four models
comparing teams of size three. Concretely, given a collection of
N FR models {F, ..., Fx'}, we first identify the negative samples,
NS (F), for each FR model F by locating validation images that
F fails to recognize their true identity and remove those negative
samples that are negative w.r.t. all FR models (i.e., NS(F;) N...N
NS (Fyn)). To rank protection teams of size S, we enumerate all
(];] ) combinations, denoted by PROTTEAMSgj,e=s. For each team
9 € PROTTEAMSgjze=5s, We consider each member to be the focal
model Fg,co1 and use its negative samples NS (Fg,ca1) to statistically
estimate the level of negative correlation between Fg,., and the
remaining models in 7~ The focal negative correlation of team 7~
w.r.t. the focal model Fpoy), denoted by AL (T3 Fyo 1), is computed
by measuring the degree of disagreements using a generalized non-
pairwise measure [29]: let Y denote a random variable representing
the proportion of models (i.e., i out of S) that fail to recognize a
random negative sample x € NS (Ffycq1). With the propability
Y = § denoted as p;, the focal generalized negative correlation can
be computed as

s i
Zl 1 épl

s (=)
i=1 5(s-1) Pi

Aecal (75 Fpear) = ©)
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with a range of [0, 1] having the minimum correlation of 0 when the
failure of one member is accompanied by the correct recognition by
the other. The same procedure is repeated by considering each team
member as the focal model, and the focal diversity of the protection
team 7 is finalized as follows:

1
dfocal (7) = S Z [1- Afocal(fFfocal)]- (10)
Frocal €T

With focal diversity, users can select a high-quality team within
their computing budget according to the high diversity score.

Figure 7 gives an end-to-end overview of PMask. We provide a
service for users to perturb their images with PMask before sharing
such that even if they are scraped, no meaningful feature vectors
can be extracted. Given an image, PMask first uses an existing
face detection algorithm (e.g., MTCNN [44]) to detect and crop the
segments containing a face. Then, for each facial image, we use
the high-diversity team with our optimization algorithm with dual
objectives to search for a privacy mask and apply it to perturb the
corresponding region in the original image. Once all faces on the
image have been masked, the PMask-protected image can be shared
by the user on, e.g., social media platforms.

6 EXPERIMENTAL EVALUATION

We conduct extensive experiments on the representative bench-
mark dataset for face recognition, FaceScrub [28], to analyze the
effectiveness of PMask. It consists of 50, 924 facial images of 530
celebrities. PMask inherits the one-shot learning nature of FR and
is applicable to any face dataset. Since commercial FR APIs like
Azure now require manual approval to use their services to avoid
misuse, we expect that the privacy intruder will opt for open-source
FR models as they are readily available. Hence, our experiments
focus on protecting FR against pretrained models that are publicly
available online. We study PMask using the collection of FR models
reported in Table 1. Note that none of the models uses FaceScrub
(i.e., the testing set) for training, which is necessary to provide
fair evaluation. In our experiments, we consider ten randomly cho-
sen celebrities for protection analysis. The probe set consists of
100 facial images, 10 from each selected celebrity. Their remaining
facial images, together with all images of 520 other non-chosen
celebrities, form the gallery set, which consists of 50, 824 images.
We compare PMask with two representative approaches, Fawkes [33]

and TIP-IM [42], following the default settings in their open-source

User Sharing
a Photo

PMask

Face Detection Focal Diversity-based Protection Teaming

"| and Cropping W “ m mﬂ “

Masked PMask-protected
Faces Photo Social

Media

Privacy Mask Generation

5—»[ Q Identity-based Gallery Search ]

Optlmlzat|on

ﬂ ‘ (5) - Reverse Triplet ’

Imperceptibility
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Figure 7: The overview of PMask workflow to apply a privacy mask for each face on the given image.
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Figure 8: The comparison of Fawkes, TIP-IM, and PMask
against the privacy intruder using eight different FR models.

repository. For fair comparisons, the perturbation budget w is set
to 0.017 for all approaches, which is the same as the one used in
Fawkes. By default, we set § in Equation 5 to be 1.0. This hyper-
parameter controls the trade-off between image quality, protec-
tion time, and effectiveness. We will provide an analysis of it in
Section 6.4. TIP-IM uses an ArcFace [17] model with a ResNet50
architecture, Fawkes uses the two-member team (Fi, F2) in Table 1,
and the default setting for PMask is (Fy, F3), the most diverse team
identified by our teaming method. The source code of PMask is
publicly available at https://github.com/git-disl/PMask. All mea-
surements are recorded on NVIDIA RTX 2080 SUPER GPU, Intel
i7-9700K (3.60GHz) CPU, and 32 GB RAM on Ubuntu 18.04.

6.1 Privacy Protection Analysis

In this subsection, we analyze PMask from three perspectives: (i)
protection effectiveness, (ii) image quality, and (iii) time cost.

Better Protection. To evaluate the protection effectiveness
against a privacy intruder using an FR model F, we define the protec-
tion success rate (PSR) in percentage to be (100 — FR ACCURACY)%.
Intuitively, our goal is to maximize the PSR such that the privacy
intruder will not be able to identify a person’s true identity given
the facial image. Figure 8 reports the PSR against each of the eight
FR models. We make several interesting observations. First, F; is
the model used by both PMask and Fawkes to generate protection
masks, but only PMask can provide perfect protection with a PSR
of 100%, meaning that Fawkes may not provide strong protection
even if it knows which FR model the privacy intruder will use. Sec-
ond, F; is the second model used by Fawkes, which reaches a PSR
of 100%. Even though PMask does not have access to this model
during the protection process, it still achieves a high PSR of 97%
in this black-box protection setting. Third, TIP-IM offers a certain
level of protection, but it can only outperform Fawkes when the
privacy intruder uses Fy or Fs as the FR model. In contrast, PMask
reaches a much better PSR than both Fawkes and TIP-IM when the
privacy intruder uses Fy, Fs, Fg, F7, or Fg, which are all unknown to
protection mechanisms.

We further report the PSR of three celebrities in Table 2 to show
that PMask is not just, on average, effective but can be consistently
helpful for different celebrities. For instance, when the privacy
intruder uses Fs, even under the protection of Fawkes or TIP-IM, all
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Table 2: PMask offers the most consistently effective protec-
tion, while other approaches vary across various celebrities
and FR models used by the privacy intruder.

Protection Success Rate (%)

Name Method
Fr F, F3 F4 F5 F¢ F; Fsg
Unprotected o o0 o0 o0 0 o0 0 O
. Fawkes 100 100 20 50 0 70 90 30
David
Schwimmer TIP-IM 0 0 0 30 0 20 20 0
PMask 100 90 100 80 90 90 100 100
Courten Fawkes 100 100 60 70 60 70 80 50
CZ;‘ UY TIPIM 100 90 90 90 80 60 80 80
PMask 100 90 100 90 100 80 80 100
Anne Fawkes 100 100 20 80 30 100 70 30
TIP-IM 90 90 30 70 10 90 90 30
Hathaway
PMask 100 90 100 80 100 100 100 80

probe images of David Schwimmer can still be perfectly identified
(i-e., a PSR of 0%). In contrast, under PMask’s protection, the same
FR model can only identify 10% of the probe images (i.e., a PSR of
90%). We can make similar observations across different celebrities
and FR models being used by the intruder.

For each of the three celebrities in Table 2, we select one example
probe image and use (a) F4 and (b) F5 to find the most similar image
from the gallery set protected by Fawkes, TIP-IM, and PMask in
Table 3. Both FR models are unknown to all protection mechanisms.
Under the protection by Fawkes (3rd and 6th columns) and TIP-IM
(4th and 7th columns), the most similar gallery image belongs to
the same person as the corresponding probe image, meaning the
protection fails. Yet, PMask (5th and 8th columns) can deceive both
unknown FR models to malfunction. For instance, David Schwim-
mer’s face (1st example) is matched to Patrick Dempsey’s by Fy4 in
(a) and to Freddie Prinze’s by F5 in (b). Similarly, both Courteney
Cox’s (2nd example) and Anne Hathaway’s (3rd example) faces are
mismatched to the wrong person under the protection of PMask.

Better Image Quality. No one would like to share a selfie with
a significantly distorted face. Hence, the privacy-protected image to
be shared online should be of high image quality and look similar
to the original one. We use two metrics most commonly used across
various fields to quantify image quality. Figure 9 gives the distribu-
tions of SSIM [36] and PSNR [23] of images protected by Fawkes,
TIP-IM, and PMask, demonstrating the overall image quality under
protection. A higher value means better quality. We make three
observations. First, PMask and Fawkes generate protected images
of much higher SSIM than TIP-IM. The degraded image quality by
TIP-IM can be observed in the 4th and the 7th columns in Table 3,
where the protected faces are seriously distorted. Second, PMask-
protected images tend to have a higher SSIM than Fawkes, even if
both explicitly minimize the SSIM degradation. The improvement
made by PMask can be attributed to the convergence condition
in Equation 4, where PMask stops perturbing the image when the
condition is met, while Fawkes continues to do so until a predefined
number of iterations is executed. Third, even though none of the
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Table 3: The most similar gallery image found by two FR models given the probe image (1st column). Both FR models used by
the privacy intruder are unknown during any protection process. They can still find the most similar gallery image with the
correct identity under Fawkes’ and TIP-IM’s protection, but PMask leads to the wrong one (i.e., successful protection).

(a) Privacy intruder uses Fy: RN50-VGG-Face2 (b) Privacy intruder uses F5: RN50-WebFace600K
Probe Example PMask- The Most Similar Gallery Image & Its Identity The Most Similar Gallery Image & Its Identity
Image Protected Face Fawkes TIP-IM PMask Fawkes TIP-IM PMask
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(a) SSIM (Higher is better) (b) PSNR (Higher is better) (a) Required Iterations (b) Duration per Face
Figure 9: The distributions of SSIM and PSNR over 100 gallery Figure 10: The distributions of (a) the required iterations
images protected by PMask, TIP-IM, and Fawkes. PMask- and (b) the protection duration per face over 100 gallery
protected gallery images reach higher SSIM and PSNR than images protected by PMask, TIP-IM, and Fawkes. TIP-IM and
both Fawkes and TIP-IM. Fawkes require a fixed number of iterations (i.e., 100 and 150,

respectively). In contrast, the number of iterations needed by
PMask varies across facial images because PMask can finish
protection mechanisms uses PSNR to optimize the imperceptibility the iterative process sooner.
of perturbations, PMask generates protected images with a better
(higher) PSNR, while Fawkes and TIP-IM tend to produce images

with a similar quality in terms of PSNR. varies across faces and can be determined automatically by PMask

Better Time Cost. A lengthy protection duration can prevent based on the hardness to satisfy the condition defined in Equation 8.
users from sharing their, e.g., social media posts immediately and Once convergence is reached, PMask terminates. However, TIP-IM
reduce the attractiveness of employing privacy protection. Fig- and Fawkes require a fixed number of iterations (i.e., 100 and 150,
ure 10a compares the required iterations per face between PMask, respectively). The number of required iterations directly affects the
TIP-IM, and Fawkes. The number of required iterations for PMask protection duration per face, as reported in Figure 10b. Most faces
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< 804 o e o ® | Table 4: The most diverse and the least diverse teams with (a) two or (b) three
S 604 K1 R ° members identified by our teaming with their PSR against different FR models used
£ 40 . , LI S by the privacy intruder.
0.|10 0.I15 0.‘20 O.I25
Focal Diversity Protection Protection Success Rate (%)
Ti
(a) Two-member Teams eam Fy F, F3 N F5 Fg F; Fg Mean Std
100 . e o Unprotected 0 0 0 0 0 0 0 0 0.00 0.00
£ 80 ﬂ (a) Two-member Teams
24
L 60+ o9 Most Diverse: Fy, F3 100 90 100 80 100 100 100 80 93.75 9.16
40 T T T T T Least Diverse: Fg, F7 0 50 0 10 0 100 100 10 33.75 44.06
0.100 0.125 0.150 0.175 0.200
Focal Diversity (b) Three-member Teams
(b) Three-member Teams Most Diverse: Fq, F3,Fs 100 100 100 100 100 100 100 100 100.00 0.00
Least Diverse: Fy, Fg, F7 0 100 60 20 0 100 100 40 52.50  44.00

Figure 11: Ranking teams with diversity.

can be protected within 50 seconds by PMask, but Fawkes requires
over 100 seconds, which is 2x slower than ours. This time cost is
measured per face. In real life, dozens of people can appear in the

same image, and the advantage of PMask is much more significant.

6.2 Focal Diversity-driven Protection Teaming

In this subsection, we analyze our focal diversity to understand
how well it can identify protection teams that can lead to stronger
protection when used to generate privacy masks. Given the pool
of eight models in Table 1, we enumerate all possible teaming
combinations with two and three members. We show the focal
diversity of each protection combination and its PSR in Figure 11a
and Figure 11b, respectively. We use the PSR for the celebrity
Anne Hathaway in the following experiments due to a similar
trend in other celebrities. According to the scatter plots, our focal
diversity positively correlates with the PSR, meaning that choosing
a team (combination) with high focal diversity can generate privacy
masks with stronger protection. This can be observed in Table 4,
where we provide the detailed PSR against each FR model using
the most diverse and the least diverse protection teams identified
by our focal diversity for a two-member setting (Table 4a) and
a three-member setting (Table 4b). An interesting observation is
that a team of models having different neural architectures is not
always the top priority [14]. Focusing on the three-member case
as an example, the most diverse team is (Fy, F3, F5), which leads to
perfect protection against all FR models. The FR models F; and F3
are of different neural architectures (EfficientNet and ResNet50).
While there are other FR models with a different architecture than
these two members (e.g., ResNet18, ResNet34, or ResNet100), our
focal diversity teaming selects Fs as the third member, which is
also a ResNet50 as F3 but trained on a different dataset. For the
least diverse team (F, Fg, F7), all members are trained on the same
dataset (i.e., MS-Celeb-1M) but with different depths in ResNet.
Such a team can only lead to perfect protection when the privacy
intruder uses the same FR model (i.e., F2, Fg, or F7). Otherwise,
the protection is weak, and the average PSR is only 52.50%. The
teaming method can be easily extended to consider a wide range
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Table 5: An ablation study of PMask with different variants.

Protection Success Rate (%)
F; F4 F5 F¢ F; Fg Mean Std
0 0 0 0 0 O 0 0

Fi F
Unprotected 0 0

Fawkes 100 100 20 80 30 100 70 30 52.50 44.00

(a) Rev. Triplet Loss 100 100 40 70 50 100 80 60 75.00 23.90
(b) Focal Div. Team 100 90 100 70 30 100 80 50 77.50 26.05
(c) PMask: (a) + (b) 100 90 100 80 100 100 100 80 93.75 9.16

of backbones in the FR model collection. With more backbones
included, a critical optimization is to select a subset of FR models
to form an ensemble team instead of using all backbone models.
The results show that selecting a team of highly diverse FR models
is crucial to generating privacy masks. A higher diversity can lead
to protected faces that can effectively transfer to deceive other
unknown FR models utilized by the privacy intruder.

6.3 Ablation Studies

The synergy of the reverse triplet loss and the focal diversity protec-
tion teaming provides strong protection effectiveness. We demon-
strate the necessity of both modules by conducting an ablation
study in this subsection. Table 5 uses Fawkes as the baseline and
compares it with three variants of PMask: (a) our reverse triplet
loss with Fawkes’s team (Fy, F2), (b) Fawkes’s loss with our diverse
two-member team (Fy, F3), and (c) our reverse triplet loss with our
diverse two-member team (Fj, F3), which is the complete PMask.
Using either (a) or (b) can lead to much better protection, boosting
the mean PSR across all FR models from 52.50% by Fawkes to 75.00%
by (a) or 77.50% by (b). The standard deviations also drop drastically
by almost half (the 11th column), meaning the protection against
different unknown FR models is more stable. When both modules
are enabled, the mean PSR further increases to 93.75%, which is
significantly better than employing only one module and Fawkes,
and the standard deviation drops to only 9.16%. For instance, the
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Figure 12: Hyperparameter analysis on § to control the trade-off between image quality, protection time, and effectiveness.

protection against F5 has only a success rate of 50% by (a). Using
the complete PMask can enhance the protection to 100%.

6.4 Trade-off Analysis

The main hyperparameter in PMask is the ¢ in Equation 5, control-
ling how far the margin should be considered sufficient to converge.
This subsection analyzes its impact on image quality, time cost, and
protection effectiveness. Figure 12 reports the trade-off between
these three factors in different settings of . Setting a small § (e.g.,
0.20) means only a slight overshoot in the feature space is already
sufficient to consider reaching convergence. Since it implies that
the protection process can terminate sooner, we can expect the
image quality to be better (Figure 12a) and the protection time to
be shorter (Figure 12b). However, it may lead to insufficient pertur-
bations and weaker protection (Figure 12c). Comparatively, a large
§ (e.g., 10) can provide strong protection, but the image quality
drops, and the protection time becomes longer. In practice, one
could use a small number of validation images with a grid search
to find the appropriate setting based on the application scenario.
Several settings can be provided to users such that they can select
the one that suits their needs. For instance, a person with a more
serious privacy concern can choose a larger § for better protection.

6.5 PMask Against Adaptive Intruders

A privacy intruder with advanced knowledge may introduce ad-
ditional mechanisms to disable the countermeasure. We study the
effectiveness of PMask under such adaptive intruders by consid-
ering four adaptive attacks aiming to wash out PMask. Table 6
summarizes the results under (a) JPEG-compression attack [16],
(b) mean-filter attack, (c) gaussian-filter attack, and (d) median-
filter attack [41]. For JPEG compression, we use a low quality of
70 to launch an aggressive compression. For spatial filtering-based
methods, the window size is set to 3 X 3. These are popular meth-
ods studied in the adversarial robustness domain [20]. We observe
that PMask degrades when adaptive attacks are launched, but the
impact is limited. Our perception loss, which requires the preser-
vation of the visual quality of protected faces, makes the patterns
introduced by PMask smoother and, hence, less sensitive to in-
put transformation-based attacks. PMask is more resilient to the
JPEG-compression attack with a drop in PSR of 7.50% even under a
highly aggressive compression. Comparatively, it is more sensitive
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Table 6: The protection success rate of PMask against an
adaptive intruder using different strategies to remove the
patterns introduced by PMask to protect the images.

Protection Success Rate (%)

Fy F, F3 F4 F5 F¢ F; Fg Mean Std

Non-adaptive
Baseline

(a) JPEG-compr. Attack 90 80 100 80 90
(b) Mean-Fil. Attack 70 70 80 80 70
(c) Gauss-Fil. Attack 90 80 90 70 80
(d) Med-Fil. Attack 90 90 80 70 80

100 90 100 80 100 100 100 80 93.75 9.16

80
70
80
90

90 80 86.25 7.44
80 60 72.50 7.07
80 70 80.00 7.56
90 70 82.50 8.86

to spatial filtering-based approaches. Still, the PSR against different
FR models can be maintained at least 72.50%. While the adaptive
intruder may lower the quality parameter in JPEG compression
or increase the window size in spatial filtering to further remove
the patterns introduced by PMask, the operation also removes the
salient features of faces that are necessary for face recognition. In
other words, the privacy intruder needs to take the risk of lowering
the FR accuracy due to low-quality facial images.

Alternatively, the privacy intruder may attempt to retrain the
FR model with PMask-protected images. The main difficulty is
that the adversary needs to first identify those PMask-protected
images from the large pool of photos scraped on the Internet. Then,
this adversary can train the FR model on those PMask-protected
images, which may lead to poor FR accuracy on unprotected images.
Furthermore, separating protected and unprotected images may not
be feasible due to its high cost and the imperceptibility of PMask-
injected perturbations.

Under the scenario in which Web users did not protect all their
facial images by PMask and the adversary may have some facial
images of a user, say, Alice, PMask is still useful in protecting the
user’s privacy, especially PMask helps to reduce their digital foot-
prints. Consider the threat scenario in which face search engines
(built by the intruder or companies like PimEyes [7]) continuously
collect facial images by web scraping. Given a facial image of Alice,
those companies can retrieve all web pages containing images of
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Alice’s face. This is a serious privacy issue as Alice’s digital foot-
print will be disclosed to, e.g., her stalker. Alice can use PMask to
protect her new facial images before posting them online. Then,
those new web pages containing Alice’s protected facial images
will not be matched as part of Alice’s digital footprint.

7 CONCLUSION

We have presented PMask for anti-facial recognition through pri-
vacy protection masks. First, we develop a privacy mask gener-
ation process to learn the unique signatures of facial images to
be protected and hide them from unauthorized FR models. It is
accomplished by iterative optimization with dual goals: (i) maxi-
mizing the effectiveness of privacy protection and (ii) minimizing
the perception loss compared to the original facial image. Second,
we further improve the generalizability of PMask with a princi-
pled approach using focal diversity-based ensemble learning to
enhance the protection effectiveness against unknown FR models.
Our future work includes further speeding up the protection and
exploring the authorization of FR models owned by trusted entities.
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