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Abstract

We introduce the first method for generating Vector Dis-001

placement Maps (VDMs): parameterized, detailed geomet-002

ric stamps commonly used in 3D modeling. Given a single003

input image, our method first generates multi-view normal004

maps and then reconstructs a VDM from the normals via005

a novel reconstruction pipeline. We also propose an effi-006

cient algorithm for extracting VDMs from 3D objects, and007

present the first academic VDM dataset. Compared to exist-008

ing 3D generative models focusing on complete shapes, we009

focus on generating parts that can be seamlessly attached010

to shape surfaces. The method gives artists rich control011

over adding geometric details to a 3D shape. Experiments012

demonstrate that our approach outperforms existing base-013

lines. Generating VDMs offers additional benefits, such as014

using 2D image editing to customize and refine 3D details.015

1. Introduction016

Generative neural models for 3D shape synthesis is a017

rapidly advancing research area [58]. However, they are018

still not widely adopted in artistic workflows for two main019

reasons. First, synthesizing fine geometric details is chal-020

lenging due to the heterogeneity of 3D representations and021

the lack of detailed 3D training data. Second, existing neu-022

ral tools lack the precise spatial and compositional controls023

needed by 3D artists. To address these limitations, instead024

of reinventing the 3D modeling stack to accommodate gen-025

erative AI, we draw inspiration from an existing workflow026

in which an artist starts with a base mesh and “stamps” the027

desired details onto the 3D surface (see Figure 1). These028

smaller stamps are easier to generate than full-scale 3D029

models, fit seamlessly into existing workflows, eliminate030

artists’ dependence on expensive and limited third-party031

stamp libraries, and provide full artistic control over spatial032

arrangement and composition.033

We chose the vector displacement map or VDM as our034

stamp representation. A VDM assigns an arbitrary 3D dis-035

placement to every point in a 2D rectangle, warping the036

Figure 1. We introduce GenVDM, a method that can generate

a highly detailed Vector Displacement Map (VDM) from a single

input image. The generated VDMs can be directly applied to mesh

surfaces to create intricate geometric details. Note that the thumb-

nails represent plain 2D RGB image sources.

sheet to form a curved surface with complex geometric fea- 037

tures, such as overhangs and cavities. It is widely supported 038

in 3D software [1–4] and compactly stored as a vector field 039

over a UV image domain. While using VDMs is common- 040

place, authoring them is extremely challenging, and artists 041

usually depend on packs of VDMs created by third parties 042

(analogous to brushes in digital painting tools), with lim- 043

ited customization or generality. Image or text-driven stamp 044

generation could drastically expand the scope of VDM us- 045

age by providing artists with custom stamps on demand. 046

In this paper, we propose the first neural pipeline to gen- 047

erate a VDM from a single RGB image. To achieve this, 048

we address two main technical challenges. The first chal- 049

lenge is that existing generative models are not suitable for 050

VDM generation: generating a 3D object usually does not 051

also produce a parametric 2D domain for stamp applica- 052

tion, and predicting a depth map from a single image does 053

not capture complex high-amplitude variations, overhangs, 054

and occlusions; see Figure 6. Thus, we develop a three-step 055

method. First, given an input RGB image (which can also 056
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be generated with existing text-to-image models), we pre-057

dict normal maps from multiple viewing directions to re-058

solve occlusions that may be hidden in a single view. Sec-059

ond, we reconstruct a mesh (which need not have disk topol-060

ogy) by fitting a neural SDF to the multi-view normal maps061

and polygonizing the result. Third, we use a neural defor-062

mation model to displace points on a 2D rectangle to fit the063

mesh, forming the final VDM.064

The second challenge in training a generative VDM065

model is the absence of training data. We tackle it by build-066

ing an interactive tool to segment interesting semantic and067

geometric regions from Objaverse 3D models [19], and then068

develop a geometry processing pipeline for converting these069

regions into a VDM representation, creating a dataset of070

1,200 VDM patches used for training. Our pipeline is ro-071

bust enough to analyze polygon soups in the wild, which072

we achieve by re-sampling the selected regions and recon-073

structing a single connected surface after removing outliers.074

We then deform the resulting mesh to obtain a co-planar075

boundary that can be seamlessly attached to a flat base tile076

over which the VDMs are typically defined. The processed077

shapes can then be rendered and used to finetune the multi-078

view normal generation model.079

We compare our method to state-of-the-art shape gener-080

ation techniques [27, 40, 51], as well as to reconstructing081

a heightfield (i.e. a scalar displacement map) from esti-082

mated depth [81]. We use a collection of images depicting083

parts commonly used in VDMs (e.g., facial elements, deco-084

rations), and evaluate using visual fidelity [54] and seman-085

tic similarity [52] metrics. Our method outperforms others086

due to its ability to handle smaller VDM-like regions. Note087

also that other mesh generation methods do not produce a088

displacement map – which can have both “outward” and089

“inward” displacements – and thus their output can only be090

additively combined with the base shape, e.g., they are not091

able to introduce cavities like an eye or a mouth in Figure 1.092

To summarize, our contributions are:093

• The first generative ML pipeline for VDMs;094

• A robust method to reconstruct VDMs from multi-view095

normal maps produced by image diffusion models;096

• A novel VDM extraction pipeline to efficiently extract097

and process patches from 3D objects to produce VDMs;098

• The first public dataset of VDMs for academic research.099

2. Related work100

Vector Displacement Maps. Texture mapping [10, 26] is101

the dominant solution in the industry to add complex sur-102

face details to shapes without increasing mesh complexity.103

Accompanying it are many techniques that hallucinate com-104

plex geometric details, such as bump mapping [9], horizon105

mapping [43], and parallax mapping [30]. Unlike those106

techniques that do not change the geometry of the shape,107

displacement mapping [17, 18, 61] adds geometric details 108

by subdividing the original geometry into finer polygons 109

and then displacing each vertex in its normal direction by a 110

height value indexed from the displacement map (although 111

some versions of displacement mapping can be done in the 112

pixel space without changing the original geometry [66]). 113

While a displacement map can be considered as a single- 114

channel image or heightfield, a vector displacement map 115

(VDM) can be seen as a three-channel image, where each 116

pixel contains a 3D displacement vector. VDMs naturally 117

support representing more complex geometries with less 118

distortion compared to displacement maps, and both are 119

used in 3D modeling tools to create geometric details. Re- 120

search on displacement maps and VDMs has focused on 121

texture synthesis from examples [82], and synthesis of hu- 122

man body and face meshes for shape reconstruction [6, 80]. 123

VDMs conceptually resemble Geometry Images [23], and 124

some recent works adopt image diffusion models for gener- 125

ating Geometry Images to synthesize 3D shapes [20, 79]. 126

To our knowledge, there is no prior work on generative 127

models of VDMs, nor a public research dataset for VDMs. 128

Image-to-3D. Early works on single-view 3D reconstruc- 129

tion [15, 16, 22, 45, 67, 78, 83] mostly adopt feed-forward 130

neural networks trained on limited data [11]. More recent 131

work [29, 46, 85, 87] trained on large 3D datasets [19] 132

has shown significantly improved generalizability to novel 133

shape categories. With the introduction of text-to-image 134

diffusion models [49, 53], a line of work [44, 63] achieved 135

zero-shot single-image-to-3D with score distillation sam- 136

pling (SDS) [50] by distilling 2D diffusion priors into 3D 137

representations with per-shape optimization. 138

Another line of work [38, 71] utilizes image diffusion 139

models for novel view synthesis conditioned on an input 140

image and a relative camera pose. Such models produce 141

images of the object from different views, therefore the 142

3D object can be reconstructed by SDS-based optimiza- 143

tion [38, 51] or a feed-forward reconstruction network [37]. 144

These methods inspired a series of subsequent work that 145

finetunes pretrained image diffusion models to directly gen- 146

erate 3D-consistent multi-view images of the target out- 147

put shape given a single-view image, where the output 148

shape can be reconstructed from generated multi-view im- 149

ages via optimizing a neural field or mesh [39, 40, 57], 150

a 3D diffusion reconstruction network [36], or a feed- 151

forward large reconstruction model powered by Transform- 152

ers [27, 34, 64, 68, 70, 72, 74, 76, 86, 88]. Most recently, 153

image diffusion models have been replaced by video diffu- 154

sion models to achieve better 3D consistency of the gener- 155

ated views [24, 65]. 156

Modeling by Parts. The use of small building compo- 157

nents to compose complex shapes has been widely studied 158

in modeling-by-assembly systems [21, 32]. Before gener- 159
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Figure 2. Overview of our image-to-VDM pipeline. Given an input image, we first add a gray square behind the object/part in the

image as background, so the image resembles a textured VDM applied to a square mesh, as in (a). Then we utilize a multi-view image

diffusion model to generate six normal maps with pre-defined camera poses, as in (b). The multi-view normal maps effectively represent

the geometry of the VDM when applied to a square mesh, and thus we can reconstruct the VDM from these normal maps, as in (c). The

reconstructed VDM can then be applied to various surfaces as in (d).

ative AI rose to prominence, these systems relied on part160

databases [12] (or shape databases from which parts could161

be cut out), and focused on building tools to help users find162

the right parts [7, 13, 56, 75] and assemble them meaning-163

fully [28, 60, 77]. As a variation, methods were developed164

to extract and transfer detailed patches from a shape to an-165

other [62]. A few papers studied joint synthesis and layout166

of parts [35], but the synthesis was conditioned only on the167

layout and not on user input, and the focus was on whole-168

shape generation and not adding detail to existing ones.169

Relying on existing part datasets or part generation with-170

out user control, and on complex, non-standard, topology-171

sensitive mesh fusion algorithms limits the utility of these172

older methods. Our approach generates detailed comple-173

mentary geometry in-situ from the image prompt, and our174

generated VDMs are defined over parameterized 2D do-175

mains which are suitable for seamlessly blending onto 3D176

models, with industry-wide support.177

3. Method178

Our image-to-VDM pipeline is shown in Figure 2. Similar179

to other methods in the literature, we follow an approach180

that first generates multi-view images of the target object181

with an image diffusion model and then reconstructs the ob-182

ject from the generated images. In particular, we only gen-183

erate normal maps of the object as we are only interested in184

the geometric details. Details of the multi-view normal gen-185

eration are described in Section 3.1. Next, we reconstruct186

the VDM from the multi-view normals. As VDMs have187

specific properties and constraints, reconstructing them is188

highly non-trivial. We report our attempts and solutions189

in Section 3.2. Finally, as there is no publicly available190

dataset for VDMs, we designed an efficient tool for extract-191

ing shape patches from Objaverse [19], and devised algo-192

rithms to process those patches for use as training data. We193

describe the data processing pipeline in Section 3.3.194

3.1. Multi­View Normal Map Generation 195

We opt to finetune an image diffusion model to generate 196

multi-view images, as the pretrained image diffusion model 197

offers strong generalizability. As will be shown in our ex- 198

periments, our model, trained on a small dataset of 1,200 199

examples, works on a large variety of shapes. 200

Specifically, we adopt Zero123++ [57] as the back- 201

bone for our multi-view diffusion model. Zero123++ is an 202

image-to-multiview model based on Stable Diffusion [53]. 203

Given an input image, Zero123++ generates a 960 × 640 204

image representing six multi-view images in a 3 × 2 grid, 205

where the six images have pre-defined camera poses so they 206

can be easily used for 3D reconstruction. However, the pre- 207

defined camera poses in Zero123++ fully surround the ob- 208

ject, e.g., there are front views and back views of the object. 209

In our pipeline, since we are aiming to generate VDMs, the 210

back views of the object are unnecessary. Therefore, we 211

re-designed the camera poses of the six images. As shown 212

in Figure 2 (b), assuming the front view (see (a) for an ex- 213

ample) has (elevation angle, azimuth angle) = (0◦, 0◦), we 214

define the six camera poses to be (0◦,−60◦), (0◦,−30◦), 215

(0◦, 30◦), (0◦, 60◦), (45◦, 0◦), (−45◦, 0◦). We also adopt 216

orthographic cameras to reduce distortion, and let the model 217

generate a normal map of the object for each camera pose. 218

To train the model, we render single-view RGB images as 219

input and multi-view normal maps as ground truth output. 220

Details about training data is described in Section 3.3. Note 221

that the input image does not have to be a front view; we 222

render random views for training so the model can handle 223

images from various viewpoints. We finetune on the check- 224

point provided by Zero123++ [57] on 8 NVIDIA A100 225

GPUs for 3 days. 226

3.2. VDM Reconstruction 227

Reconstructing 3D shapes from multi-view images has been 228

well studies in the text/image-to-3D literature. Most recent 229
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Figure 3. Reconstructing VDM from multi-view normal maps. We adopt a two-step approach. First, we reconstruct an accurate (but perhaps

noisy) mesh (b) from the multi-view normals (a) with differentiable rendering and neural SDF representation. Then we parameterize the

mesh by fitting a deformable square to it with a neural deformation field, as in (c). An VDM image can thus be obtained by discretizing

the square into pixels and infer each pixel’s displacement from the neural deformation field. The whole reconstruction pipeline takes about

6 minutes for each shape on an NVIDIA A100 GPU, where each step takes about 3 minutes.

methods adopt a feed-forward large reconstruction model230

(LRM) to directly generate a 3D shape from multiple in-231

put images of different viewpoints [27, 34, 64, 68, 72, 86].232

Therefore, a straightforward way for reconstructing VDMs233

is to train a similar LRM to take the normal maps as input234

and directly regress a VDM image. However, given limited235

VDM training shapes, our LRM trained on a small dataset is236

unlikely to generalize as well as other LRM models trained237

on larger datasets, therefore leading to suboptimal results.238

Given the discussions above, we adopt a slower but more239

robust per-shape optimization approach. Given the six nor-240

mal maps with pre-defined fixed camera poses, we want to241

optimize a 3D representation to converge to the target 3D242

shape with supervision provided by differentiable render-243

ing. A naive approach would be to initialize with a dis-244

cretized square mesh and optimize with mesh-based differ-245

entiable rendering. However, as has been shown in other246

methods [33, 47], differentiable rendering on meshes is of-247

ten problematic and requires careful design of regulariza-248

tion losses and tuning of hyperparameters. As we will show249

later, even with ground truth 3D supervision, optimizing a250

discretized mesh to fit the target shape is not an easy task.251

Therefore, we devise a two-step approach, as shown in252

Figure 3, to first optimize a neural SDF field to reconstruct253

a 3D shape from the multi-view normal maps, and then pa-254

rameterize the 3D shape into a VDM image. We utilize255

the method proposed in Wonder3D [40] for the first step,256

with the only modification being that we removed Lrgb, the257

loss term to punish the difference between rendered RGB258

images and the ground truth, as we do not predict multi-259

view RGB images. Since we always put a grey square as260

background in our input images, the shape we obtained via261

optimization has a solid plane-like primitive where the ob-262

ject/part is attached to, see Figure 3 (b); then we can extract263

a mesh from the neural SDF field and easily separate a sin-264

gle layer of mesh that represents the VDM.265

Figure 4. Comparison of different approaches for parameterizing

a shape into VDM. (a) Topology fixing and Tutte embedding with

classic tools leads to noise and distortion. (b) Fitting a plane mesh

to the target mesh leads to large distortion. (c) Our approach by

applying a neural deformation field to a parametric square leads to

clean and high-quality reconstruction.

The next step is to parameterize the mesh into a VDM 266

image. Since the mesh is reconstructed from sparse-view 267

images, its geometry is often noisy and riddled with small 268

holes and large gaps, see Figure 4 (a) left. To convert it 269

into a VDM, we will need to fix its topology so that it is 270

topologically equivalent to a plane; and then we will apply 271

a mesh parametrization method to obtain its Tutte embed- 272

ding on a square, so that each pixel on the square can be 273

assigned with a displacement vector. However, as shown 274

in Figure 4 (a), although the state-of-the-art topology fixing 275

algorithms [84] can fix the topology, the result is often not 276

satisfactory, e.g., a gap that should have been filled is be- 277

ing cut, see Figure 4 (a) middle where the helix of the ear 278

is cut in half. As a result, after applying [55] to obtain its 279
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Figure 5. Data preparation. For each interesting object (a), we use a 3D lasso tool to segment out interesting parts. For each part, we

densely sample points on the part’s surface and then perform Screened Poisson Surface Reconstruction [31] to obtain a single connected

mesh (b). We then stitch the mesh to a square mesh with an algorithm inspired by Poisson Image Editing [48] (c). Afterwards, we can

color the part and render RGB images (d) and normal maps (e) for training the image diffusion model.

embedding on a plane, we see large distortions and noise in280

the final VDM, see Figure 4 (a) right where the upper part281

of the ear is missing due to distortion.282

An alternative is to initialize with an optimizable square283

mesh, and optimize it using a reconstruction loss with re-284

spect to the target mesh, as shown in Figure 4 (b). However,285

as mentioned, it is often required to have carefully designed286

regularization losses when a mesh is to be optimized. When287

adopting a naive optimization method proposed in [14], the288

resulting mesh exhibits large distortion.289

Therefore, instead of tuning the mesh optimization al-290

gorithm, inspired by AtlasNet [22] and Deep Geometric291

Prior [73], we propose to deform the square mesh with a292

neural deformation field parameterized by a Multilayer Per-293

ceptron (MLP). The MLP acts as a natural regularizer, as294

its inductive smoothness bias encourages smoothness of the295

deformation. We define the square to be {p | p ∈ [0, 1]2},296

and the MLP φθ with optimizable parameters θ. Then, given297

any 2D point p in the square, we obtain its corresponding298

3D point p′ = φθ(p) in the deformed shape. Therefore, for299

each optimization step, we sample a grid of 2D points in300

[0, 1]2, apply φθ to obtain the deformed 3D points, and then301

compute the symmetric Chamfer Distance between the de-302

formed 3D points and the ground truth points sampled from303

the target mesh. We also include a loss to maintain square304

boundary. Therefore our optimization objective is305

argmin
θ

EP,Q

1

|P |

∑

p∈P

min
q∈Q

∥φθ(p)− q∥22+

1

|Q|

∑

q∈Q

min
p∈P

∥φθ(p)− q∥22+

1

|∂P |

∑

p∈∂P

∥φθ(p)− proj(p)∥22,

(1)306

where P and Q are sets of sampled points from [0, 1]2 and307

the target mesh, respectively. ∂P contains all the boundary308

points in P and proj(p) maps p to a corresponding 3D point 309

in a pre-defined square boundary. After optimization, we 310

can sample a regular grid of points in [0, 1]2 and compute 311

their 3D displacement vectors from φθ to obtain the VDM 312

image, as shown in Figure 4 (c). 313

3.3. Data Preparation 314

To the best of our knowledge, there is no publicly available 315

dataset for VDMs. Therefore, we developed a data pro- 316

cessing pipeline so we can efficiently annotate interesting 317

parts from objects and then convert the parts into VDMs. 318

In fact, our data processing pipeline does not produce true 319

VDMs, but rather, shapes that look like VDMs, which are 320

good enough for training our multi-view generation model, 321

see Figure 5. If needed, our VDM reconstruction method in 322

Section 3.2 can be used to obtain readily usable VDMs. 323

To construct our VDM training dataset, we crop parts 324

from the Objaverse [19] dataset. We first create a keyword 325

filtering list and apply the filter on Objaverse shape cap- 326

tions [41, 42]. As VDMs are mostly used to model organic 327

parts, we select objects likely to contain such parts, e.g., 328

animals and characters. 329

We then developed a UI to precisely crop a part from a 330

3D object. This is achieved by a 3D lasso tool, where the 331

user only needs to select a ring of points along the cutting 332

boundary of the desired part. Our algorithm connects the 333

points to form a cut and extracts the part from the object. 334

Note that the part may not be a single connected mesh – it 335

may comprise several sub-meshes. Hence, we remesh the 336

part into a single connected mesh. We first densely sam- 337

ple points on the part, and then remove interior points by 338

computing winding numbers [8]. For the remaining points, 339

we perform Screened Poisson Surface Reconstruction [31] 340

to obtain a single connected mesh (Figure 5 (b)). Our 3D 341

lasso tool has proven to be quite efficient. Annotating our 342

entire dataset with 1,200 parts took only 24 man-hours. 343

5



CVPR

#10476

CVPR

#10476

CVPR 2025 Submission #10476. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

After obtaining the parts, we will then stitch each part to344

a square mesh to mimic the appearance of a VDM applied345

to a plane. Note that in almost all cases, the vertices on the346

boundary of each part are not coplanar, therefore additional347

steps are required to make them coplanar. We first deter-348

mine the plane via least squares plane fitting with respect to349

the boundary vertices. Then we project the boundary ver-350

tices to the plane, and adopt a method similar to Poisson351

Image Editing [48] to deform the part so that it follows the352

new coplanar boundary. Denote the set of all boundary ver-353

tices in the part (before projection) as B and non-boundary354

vertices as A; also denote the set of all edges as E. De-355

note the coplanar boundary vertices after projection as B′,356

and the non-boundary vertices after deformation as A′. For357

each point p in A or B, denote its corresponding point in A′
358

or B′ as p′. Then our new vertices after mesh deformation359

can be obtained by solving a quadratic error function360

argmin
A′

E(p,q)∈E ∥(p′ − q′)− (p− q)∥22. (2)361

The minimization objective is to ensure that the gradients362

on the mesh are preserved as much as possible after defor-363

mation, while the target coplanar boundary points B′ are364

also strictly followed.365

We then place the deformed part on a square mesh so366

that the boundary vertices and the square mesh vertices are367

coplanar. Once the part is attached to the square mesh, we368

perform one additional Laplacian Smoothing step to the ver-369

tices close to the boundary to remove boundary noise, see370

Figure 5 (c). We always keep the square mesh gray and371

assign a random color to the part. We also performs transla-372

tion, scaling, and rotation augmentation to the part to enrich373

the diversity of the dataset. Finally, for each shape, we ren-374

der several RGB images from different viewpoints to serve375

as the training input to the multi-view normal generation376

model, and six normal maps in pre-defined camera poses as377

the ground truth output, see Figure 5 (d, e).378

4. Experiments379

In this section, we verify the effectiveness of our method380

by comparing it with various state-of-the-art methods. We381

also validate our design choices in ablation studies. Fi-382

nally, we present additional results produced by our method,383

show applications of VDMs on adding details to geometry,384

and demonstrate how users can customize VDMs by simply385

editing the input images. We will make our code, trained386

model weights, and dataset available to the public.387

4.1. Vector Displacement Map Generation388

Baselines. Since there is no prior work on generating389

VDMs from single view images, we compare our method390

with methods that perform a similar task, namely, single-391

view image to 3D reconstruction. Specifically, we compare392

our method with Wonder3D [40], Magic123 [51], Large Re- 393

construction Model (LRM) [27], as well as a scalar dis- 394

placement map (scalar DM) reconstruction method based 395

on DepthAnything [81]. Given an input image, Won- 396

der3D [40] generates multi-view RGB and normal images 397

and optimizes a neural SDF field to reconstruct the 3D 398

shape from the multi-view images. Magic123 [51] lever- 399

ages SDS loss [50] to optimize the 3D shape while apply- 400

ing a reconstruction loss on the input view. LRM [27] gen- 401

erates multi-view RGB images and trains a Transformer- 402

based feed-forward model to reconstruct the 3D shape from 403

the multi-view images. To validate the necessity of gen- 404

erating vector displacement map instead of regular scalar 405

displacement map, we also compare with a state-of-the-art 406

depth prediction method, DepthAnything [81], by convert- 407

ing the predicted depth of the object into a scalar DM. 408

We run these baseline models with official implementation 409

and pretrained weights; except that LRM does not release 410

the official code, so we use open-source implementation 411

OpenLRM [25] instead. For all the reconstructed shapes, 412

we render textureless images for visualization and evalua- 413

tion. For Wonder3D, Magic123, and LRM, as they generate 414

complete objects and not VDMs, we put a square plane be- 415

hind their generated shapes to make the visualization more 416

consistent and to have a fair quantitative comparison. 417

Evaluation Dataset and Metrics. As there is no exist- 418

ing benchmark dataset for VDMs, we collected a dataset 419

of 50 RGB images from the Internet and a text-to-image 420

model [5] for evaluation. All images depict common VDM 421

categories used by artists such as facial elements and deco- 422

rations. For quantitative evaluation, we measure CLIP sim- 423

ilarity [52] and 3D-FID score [69] between the input im- 424

age and the rendered images of the generated shapes from 425

different views, denoted as CLIPImg and 3D-FID, respec- 426

tively. For CLIP, we additionally evaluate semantic align- 427

ment by measuring CLIP similarity between the rendered 428

images and the texts describing the categories of the input 429

images, denoted as CLIPText. We use public implementa- 430

tion of CLIP [59] and 3D-FID [54] for computing the met- 431

rics. Please see Supplementary Material for more details. 432

The quantitative results are summarized in Table 1 and 433

qualitative results are presented in Figure 6. Quantitatively, 434

our method outperforms others by a significant margin. The 435

closest competitors to our method are Wonder3D and scalar 436

DM, which is also reflected in the qualitative results in Fig- 437

ure 6. Magic123 and LRM lack geometric detail as they rely 438

heavily on textures which often hallucinate details in ge- 439

ometry. Wonder3D has a similar shape generation pipeline 440

with ours, yet it was designed to generate complete objects. 441

Therefore, it struggles to generate partial shapes, e.g., noses 442

and ears. Although the results of scalar DM look reason- 443

able from the front view, its side view suffers as scalar DM 444

cannot represent unseen regions of the front view. 445
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Figure 6. Qualitative results compared with baseline methods. As Magic123 [51], LRM [27], and Wonder3D [40] generate complete

objects and not VDMs, we put a square plane behind their generated shapes to make the visualization more consistent.

Figure 7. Qualitative results of ablation study.
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Method CLIPImg↑ CLIPText↑ 3D-FID↓

Wonder3D [40] 0.8246 0.2542 199.5

Magic123 [51] 0.8293 0.2510 213.2

LRM [27] 0.8144 0.2510 239.9

Scalar DM 0.8223 0.2564 213.0

Ours 0.8520 0.2701 192.7

Table 1. Quantitative comparison with baseline methods. Scalar

DM stands for scalar displacement map produced from DepthAny-

thing [81].

Method CLIPImg↑ CLIPText↑ 3D-FID↓

Recon. Mesh 0.8440 0.2636 198.0

Topo. Fix(a) 0.8401 0.2617 209.9

Mesh Opt.(b) 0.8245 0.2525 217.2

Ours(c) 0.8521 0.2701 192.7

Table 2. Quantitative ablation on VDM Reconstruction.

Figure 8. Customizing VDMs by editing images. Here we show

original input images and generated VDMs in (a) and edited im-

ages and their generated VDMs in (b)(c).

4.2. Ablation Study446

As discussed in Section 3.2, we compare the following set-447

tings for parameterizing the reconstructed mesh into a VDM448

image: (a) Topology fixing and Tutte embedding, (b) fit-449

ting a square mesh into reconstructed mesh, and (c) our ap-450

proach; see Figure 4. We also include the reconstructed451

mesh before parameterization as a reference baseline. Ta-452

ble 2 summarizes quantitative results and Figure 6 shows453

qualitative comparisons. Topological fixing and Tutte em-454

bedding suffer when the topology of the reconstructed mesh455

is complex due to noisy reconstruction results, as shown in456

Figure 6 (a). This is because the topological fixing algo-457

rithm does not consider the distortion after parameterization458

as one of its optimization goals, thus some topological fixes459

may significantly increase distortion. Figure 6 (b) shows460

that mesh optimization is not reliable in our setting, and461

is likely to fall into local minima during optimization. In462

contrast, our method, shown in Figure 6 (c), not only recon-463

structs high quality VDMs with correct topology, but also464

smooths out noise induced in neural SDF reconstruction,465

leading to visually more pleasing results.466

Figure 9. Failure case.

4.3. Application 467

Shape modeling. With our method, users are able to 468

generate parts of the shape from single-view images or 469

text prompts (via text-to-image to obtain the input to our 470

method). Compared with methods that generate complete 471

shapes, our method naturally provides more controllability, 472

as users can start with a coarse shape and add customization 473

details and shape parts, see Figure 1. We also show a video 474

in the Supplementary Material to demonstrate the modeling 475

process with VDMs generated by our method. 476

Part editing. With our image-to-VDM, one can perform 477

editing in 2D image space and change the appearance of the 478

part in 3D, see Figure 8. Editing in image space is typically 479

much more convenient than sculpting 3D shapes, therefore 480

allowing users to customize their parts with ease. 481

5. Conclusion, Limitation, and Future Work 482

In this work, we propose a method to generate a VDM from 483

an input single-view image. Our method first finetunes a 484

pretrained image diffusion model to generate multi-view 485

normal maps from the input image, and then reconstructs 486

a VDM image from the multi-view normals. The gener- 487

ated VDMs can be used directly in shape modeling, which 488

provide more freedom to the users on the appearance and 489

position of each part on the shape. We also propose an effi- 490

cient pipeline for creating a VDM dataset from 3D objects. 491

Our method outperforms state-of-the-art image-to-3D mod- 492

els and scalar displacement map baseline, proving that our 493

approach is more suited for VDM generation. 494

As discussed in Section 3.2, our VDM reconstruction 495

involves per-shape optimization, making its inference time 496

significantly slower than the current image-to-3D methods 497

with feed-forward LRM. Investigating the possibility of a 498

VDM-LRM with limited training data is of great interest 499

to us. For certain shapes with thin structures, our method 500

cannot produce plausible results, while the generated nor- 501

mals look reasonable, see Figure 9. We suspect it is due 502

to the multi-view images being inconsistent across different 503

views, as observed by many other works [24, 65]. 504

VDMs are predominantly used for modeling or- 505

ganic shapes, yet the idea of modeling-by-parts can be 506

applied to the majority of 3D shapes. There are excit- 507

ing further avenues for part-based 3D generative models. 508
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