SymBisect: Accurate Bisection for Fuzzer-Exposed Vulnerabilities

Zheng Zhang Yu Hao Weiteng Chen Xiaochen Zou Xingyu Li
UC Riverside UC Riverside Microsoft Research UC Riverside UC Riverside
Haonan Li Yizhuo Zhai Zhiyun Qian Billy Lau
UC Riverside UC Riverside UC Riverside Google
Abstract bug triage and patching, that is often done largely manu-

The popularity of fuzzing has led to its tight integration
into the software development process as a routine part
of the build and test, i.e., continuous fuzzing. This has
resulted in a substantial increase in the reporting of bugs
in open-source software, including the Linux kernel. To
keep up with the volume of bugs, it is crucial to automati-
cally analyze the bugs to assist developers and maintain-
ers. Bug bisection, i.e., locating the commit that intro-
duced a vulnerability, is one such analysis that can reveal
the range of affected software versions and help bug pri-
oritization and patching. However, existing automated
solutions fall short in a number of ways: most of them ei-
ther (1) directly run the same PoC on older software ver-
sions without adapting to changes in bug-triggering con-
ditions and are prone to broken dynamic environments
or (2) require patches that may not be available when
the bug is discovered. In this work, we take a differ-
ent approach to looking for evidence of fuzzer-exposed
vulnerabilities by looking for the underlying bug logic.
In this way, we can perform bug bisection much more
precisely and accurately. Specifically, we apply under-
constrained symbolic execution with several principled
guiding techniques to search for the presence of the bug
logic efficiently. We show that our approach achieves
significantly better accuracy than the state-of-the-art so-
lution by 16% (from 74.7% to 90.7%).

1 Introduction

In recent years, large-scale programs such as the Linux
kernel are being continuously fuzzed for the purpose of
improving code quality and security [23, 11, 42, 19, 31,
24]. Such continuous fuzzing systems have been shown
highly effective in identifying new bugs, e.g., syzbot [22]
reports thousands of bugs in the Linux kernel.

While fuzzing is highly effective, this poses large
workload to software developers and maintainers, as the
continuous stream of bugs requires various analysis, e.g.,

ally today [27]. This is a hard problem as we already see
over 8,000 bugs found by syzbot are auto-closed due to
the lack of human investigations [22]. Thus, automating
the analysis of fuzzer-exposed bugs is a worthwhile goal.

One important analysis that needs automation is bug
bisection, i.e., the process of identifying commit that
introduced a bug (also called vulnerability-contributing
commits, or bug-inducing commits). It proves instru-
mental in various aspects. For example, it can help devel-
opers and maintainers understand the bug and facilitate
patch development [7]; it can also pinpoint the vulnera-
ble software versions to inform users about whether they
need to worry about updating their software [12, 4].

To achieve this goal, researchers have proposed sev-
eral automated approaches, but unfortunately they all
have significant shortcomings.

The first type of approach directly executes the origi-
nal PoC on older software versions to see which version
would still crash after running the PoC. However, it is re-
ported that such a dynamic solution suffers from several
issues [3]: 1) Broken dynamic environment (e.g., build
or runtime errors) leading to versions being skipped. 2)
Accidental triggering of unrelated bugs. 3) Changes in
the underlying bug-triggering condition.

The second type of approach requires patches, which
may not be available at the time of the bug discovery.
Even if the patches are available, such static solutions
rely on heuristics which are inherently imprecise [9, 34].
This category includes the SZZ algorithm and its variants
[12, 40], as well as most vulnerable code clone detection
[26, 45]. For example, when given the code diff in a
patch, their solutions consider the bug-inducing commit
to be the one that introduces one or more lines in the
code diff [12, 45]. However, such a solution does not
take into account the bug-triggering conditions and can
miss important details that are outside of the scope of the
code diff in the patch.

There are also other methods, such as information



retrieval-based bisection [10, 47, 43], which are usually
based on bug reports. However, they either have low ac-
curacy or require manual analysis.

Motivated by the above deficiencies, we take a dif-
ferent approach from the traditional methods. In par-
ticular, we aim to reason about the presence of vulner-
ability logic through static code analysis. Fundamen-
tally, our approach investigates many more possible in-
puts beyond what’s included in the original PoC. Fur-
thermore, static methods can effectively circumvent a se-
ries of problems caused by the broken dynamic environ-
ments such as build errors. Finally, it does not require
the development of patches in advance. To this end, we
leverage symbolic reasoning which is the most precise
way of confirming the presence of a vulnerability stat-
ically. A crucial characteristic of this approach is that
it can automatically distinguish significant changes from
vulnerability-irrelevant changes and effectively eliminate
the influence of vulnerability-irrelevant changes on the
results.

More specifically, we apply under-constrained sym-
bolic execution [32] in different software versions to pre-
cisely identify the presence/absence of the same vulner-
ablility logic that is inherited from the released PoC.
Then with a simple binary search algorithm, we can pin-
point the commit that introduced the vulnerability. To
address the scalability challenges of symbolic execution,
we leverage the trace associated with the PoC to guide
the symbolic execution.

Following the methodology proposed in this paper, we
apply it to the context of Linux kernel and the corre-
sponding continuous fuzzing platform syzbot [22]. We
show that it significantly outperforms state-of-the-art ap-
proaches in terms of accurately determining the vulnera-
ble versions of bugs found with fuzzing. We summarize
our contributions as follows:

e We developed a novel and drastically differ-
ent solution of an automatic bisection tool
called SYMBISECT, targeting fuzzer-exposed
vulnerabilities. Our method is precise as it relies
on looking for the presence of key vulnerability
logic represented by symbolic formulas. We have
implemented SYMBISECT for Linux kernel bugs
reported on syzbot. We open-sourced the solution
to facilitate the reproduction of results and further
research [2].

e We proposed a new method to address the scalability
problem in under-constraint symbolic execution in the
Linux kernel. Our insight is that in the specific context
of fuzzing results, we are able to use the knowledge of
the vulnerability from the PoC to guide the symbolic
execution in a principled fashion.

o We evaluated the performance of SYMBISECT against

other state-of-the-art methods. We demonstrate that it
not only achieves much higher accuracy than the PoC-
based bisection but even outperforms the methods de-
pendent on the presence of patches. Specifically, it can
identify 83% of the vulnerable versions that elude de-
tection in the PoC bisection implemented by Syzbot.

2 Background and Motivation

In recent years, fuzzing has played a significant role in
discovering vulnerabilities in the Linux kernel [22, 23].
However, manual analysis of the extensive results gen-
erated by fuzzing has placed a tremendous burden on
maintainers [1]. Automatic analysis of fuzzing results,
such as identifying vulnerable versions and simultane-
ously identifying when vulnerabilities were introduced,
is highly beneficial for understanding the logic of vul-
nerabilities, developing patches, notifying the respec-
tive maintainers, and backporting patches to vulnerable
Long-Term-Support branches. For example, Rui Abreu
et al. observed that automating bug bisection that pin-
points the bug-inducing commits can speed up fixing
fuzzer-exposed bugs in Google’s proprietary code on av-
erage by a factor of 2.23 [7]. In this paper, we define bug-
inducing commit as a commit that introduces a software
bug into a codebase [10]. It is possible that multiple com-
mits (e.g., commitl and commit2) contribute to the bug,
and the last commit (commit2) makes the bug trigger-
able. In such cases, we consider the last commit the BIC
because that is when a vulnerability is considered to ex-
ist.

Previous researchers have developed various types
of methods for identifying bug-inducing commits, in-
cluding PoC-based, Patch-based, and other approaches.
However, each has its own limitations. Next, we will in-
troduce them separately.

PoC-based bisection. The most straightforward ap-
proach is to dynamically re-execute the PoC that trig-
gered the bug on older commits. This method is em-
ployed by the continuous fuzzing platform syzbot [22].
Specifically, syzbot starts bisection by running the same
PoC with the commit on which the bug was discovered,
ensures that it can reproduce the bug, and then goes back
release-by-release (e.g., v5.4 to v5.3) to pinpoint the ear-
liest release without the kernel crash (again using the
same PoC). The predicate for bisection is binary (crash
vs. no crash), not trying to differentiate between differ-
ent crashes. This is intentional because bugs can man-
ifest in a different ways (under different bug titles) [3].
However, this inevitably introduces false positives as un-
related bugs can sometimes be triggered. In fact, a small-
scale analysis showed that unrelated bugs being triggered
contributed to 66% of incorrect bisection [4]. In addi-
tion, such an approach also leads to false negatives, i.e.,



failing to report a kernel version being affected by the
bug during bisection. They can be due to build/boot er-
rors, bugs that are difficult to reproduce, and failing to ac-
count for changes in bug-triggering conditions (no adap-
tation in the original PoC). Overall, a previous small-
scale study conducted by the syzbot team concludes that
the bisection accuracy is only about 50% [4], highlight-
ing the need for a better solution.

Patch-based bisection. This family of solutions is
based on patches, including SZZ algorithm and its vari-
ants[40, 12] and most vulnerable code clone detection
solutions [26, 45, 56, 37]. The basic idea of SZZ is to
identify the bug-inducing commit by tracing the modi-
fied lines in the patch back to the most recent commit
that introduced the lines. This method is static and ef-
fectively assumes the source lines removed or changed
by the patch are responsible for introducing the bug.
The SZZ algorithm has many variations, among which
VSZZ [12] is the latest improvement aimed specifically
at vulnerabilities (instead of general bugs). VSZZ mod-
ifies SZZ slightly by tracing back the commit history to
the earliest commit (as opposed to the most recent) that
introduces the deleted lines of a patch. However, such
methods require patches input, which are not available
at the time of bug discovery. Furthermore, the SZZ al-
gorithm and its variants are fundamentally heuristics and
their accuracies are limited [9]. Finally, they are unable
to handle patches with only added lines [12], which are
quite common in security patches (e.g., adding a bounds
check).

Vulnerable code clone detection statically identifies
sections of code that are similar or identical to known
vulnerable code fragments [25, 36, 26, 28, 45, 49]. These
methods rely on similarity comparisons of vulnerability-
related code to determine the presence of a given vul-
nerability in the target program. The basis of similarity
could be in terms of text, tokens, Abstract Syntax Trees
(AST), Control Flow Graphs (CFG), or Program Data
Graphs (PDG) [55]. Even though not originally intended
for bisection, they can be directly applied to identify the
earliest version similar to the known vulnerable version.
VOFinder [45] represents the state-of-the-art in this cate-
gory. In general, these methods are not designed to dis-
tinguish small changes made to the code base (e.g., via
a bug-inducing commit). Besides, such methods still re-
quire an initial input of vulnerable code. The “vulnerable
code” is generally defined as the whole patch function or
a subset of lines within it. For example, VUDDY [26]
uses the entire patch function, while others, like MVP
[49], extract “relevant lines” through methods such as
slicing, using deleted/added lines in the patch as slicing
criteria. The “vulnerable code” can also be manually ex-
tracted, such as in HiddenCPG [44].

Other bisection. There are some other methods such as

Information Retrieval (IR) approaches, that take bug in-
formation (usually from the bug report) as input and stat-
ically rank prior commits according to their “relevance to
the bug” [10, 43, 13]. The advantage of IR-based meth-
ods is that they do not require patches and can still locate
the buggy code based on bug reports or code coverage.
Nevertheless, such methods still do not fundamentally
attempt to verify the presence of vulnerability logic and
instead only approximate them. As a result, the accuracy
is also limited. They are usually good at identifying the
top-N suspected bug-inducing commits. However, their
accuracy declines significantly when N=1. Specifically,
for Fonte [10], the state-of-the-art method in this cate-
gory, the accuracy drops to only 36% when N=1, which
is lower than the accuracy of PoC/Patch-based methods.
Therefore, we do not consider such methods as the base-
line for comparison.

Our insight. We observe that existing approaches have
significant shortcomings. First and foremost, none of the
above methods attempts to reason about the vulnerability
logic when determining whether a particular version is
affected by a bug. This motivates us to develop a solution
that looks for the presence of the vulnerability logic in
target software versions.

Specifically, we propose to leverage under-constrained
symbolic execution to effectively address the shortcom-
ings of existing solutions. Compared to PoC-based
bisection, our solution (1) is static, thus sidestepping
the challenges stemming from broken dynamic environ-
ments; (2) focuses on the specific vulnerability, allowing
it to overlook other unrelated bugs; (3) considers more
possible inputs and execution paths, alleviating the con-
cern of changes in the underlying bug-triggering condi-
tions.

Compared to the existing patch-based methods, our
solution (1) does not require patches, which are not avail-
able when a fuzzer first finds the bugs; (2) looks for the
presence of vulnerability logic as opposed to syntatic in-
formation such as the presence of certain source lines or
tokens; (3) inspects the vulnerability logic beyond the
scope of patch functions, allowing a much more com-
plete and informed validation compared to heuristics that
concentrate on only the code diff or the functions in-
volved in patches.

3 Overview

In this section, we begin with a motivating example to
provide a concise overview of why existing methods fall
short and the intuition behind SYMBISECT. We will also
discuss the main challenges of implementing our solu-
tion. Following that, we introduce the overall architec-
ture of SYMBISECT.



The Bug-inducing Commit:

static struct bpf_map *htab_map_alloc(...)
1 - cost = S1#C1 + S2*S3;

2 - cost += S2*C2
3 - err = bpf_map_charge_init(..., cost);
4 - if (err)

- goto free_htab;

5 err = prealloc_init(...);

int bpf_map_charge_init(...,u64 size)
6 if (size >= U32_MAX - PAGE_SIZE)
return -E2BIG;

The Patch:
static int prealloc_init(...)
S3 = S3 + C2;
7 - htab->elems =bpf_map_area_alloc(S2*S3,
8 + htab->elems =bpf_map_area_alloc((u64)S2*S3,

S1: (u64)htab->n_buckets
S2: (u64)htab->elem_size
S3: htab->map.max_entries

C1: sizeof(struct bucket)
C2: num_possible_cpus()

Figure 1: The Bug-inducing commit and Patch of a
vulnerability from syzbot

3.1 Motivating Example

Figure 1 illustrates an integer overflow vulnera-
bility that leads to an out-of-bounds memory ac-
cess. Specifically, the bug-inducing commit mod-
ifies the function htab_map_alloc(), which in turn
calls function bpf map_charge_init() and function
prealloc_init (). Prior to this commit, the function
bpf_map_charge_init () had a check at line 6, which
checked the variable size to prevent any potential in-
teger overflow in prealloc_init (). However, the re-
moval of this safeguard paved the way for the occurrence
of an integer overflow. To mitigate this vulnerability, the
subsequent patch introduced a type-casting operation at
line 8 within prealloc_init (), effectively preventing
the risk of integer overflow.

Prior PoC-based tool executed the released PoC in ver-
sions preceding the patch. However, in this case, it trig-
gered an unrelated bug, leading the kernel to crash before
it could access the function htab_map_alloc(). Conse-
quently, this resulted in an imprecise bisection result —
syzbot thinks the kernel version is vulnerable and keep
checking even earlier versions.

Prior Patch-based tools derive various forms of sig-
natures, primarily syntactic, from the patch function
prealloc_init (). In this case, the bug-inducing com-
mit does not alter the patch function. Consequently, these
solutions are unable to capture the commit and fail to
differentiate versions preceding and following the bug-
inducing commit. This leads to incorrect identification

Symbolic execution trace (partly):
...... -> htab_map_alloc() -> bpf_map_charge_init()
-> prealloc_init() -> ......

Before inducing commit:

Linel Assignment: cost = S1*C1 + S2#*S3
Line2 Assignment: cost += S2*C2
Line6 Constraint S1*C1 + S2(S3+C2) < U32_Max - 4096
Line7 Overflow condition: S2(S3+C2) > U32_Max
Not solvable => Not vulnerable

After inducing commit (before patch):
Line8 Overflow condition: S2(S3+C2) > U32_Max
Solvable => Vulnerable

Figure 2: Vulnerability detection via symbolic execution

of the bug-inducing commit.

Our solution symbolically executes the relevant func-
tions until it reaches the target source line and evalu-
ates the symbolic constraints to check whether an out-
of-bound memory access can occur — we know it is an
out-of-bound bug from the bug report. Specifically, the
symbolic execution starts from the syscall entry that trig-
gered the bug (available from the call stack in the bug
report). By enlarging the analysis scope, our solution
effectively explores more of the state space and is not
confined to the patch function. It effectively addresses
both the limitation of patch-based bisection and poten-
tial changes in the bug-triggering conditions. Addition-
ally, by disregarding unrelated bugs, it resolves the issues
associated with PoC-based bisection.

Figure 2 illustrates a portion of the symbolic execu-
tion process. In the non-vulnerable version (prior to the
bug-inducing commit), the variable cost is assigned in
lines 1 and 2, with a subsequent check at line 6. While
there are two branches in line 6, only one of them leads
to the vulnerability point. Within this path, symbolic
execution identifies a crucial constraint: S2(S3+C2) +
S1*C1 <U32_Max - 4096. This constraint ensures that
the overflow condition S2(S3+C2) >U32_Max is never
satisfied, preventing any subsequent out-of-bounds oc-
currences (the OOB section isn’t depicted in the figure).
Consequently, this version is deemed non-vulnerable,
which is correct. In contrast, in the vulnerable versions,
the critical check against the cost is removed. As a result,
the overflow condition becomes solvable by the symbolic
execution engine, leading to an out-of-bounds (OOB) sit-
uation later on. Accordingly, our solution correctly clas-
sified this version as vulnerable.

3.2 Challenges and Insights

Despite the advantages of using symbolic execution to
confirm the presence of vulnerability logic precisely,
symbolic execution also faces its own challenges.

Scalability concerns. In the motivating example, we
showed only a segment of the symbolic execution in Fig-
ure 2. In reality, our solution will encounter many more



functions (i.e., starting from the syscall entry) and accu-
mulate many more symbolic constraints. This can lead
to the classic scalability challenge for symbolic execu-
tion, as the number of forked states may grow exponen-
tially as the execution progresses. This makes the so-
lution seemingly ill-suited for a large scope of analysis,
especially against large-scale software such as the Linux
kernel. Previous methods deal with this problem by con-
fining the scope of symbolic execution to one specific
function [54] or utilizing concolic execution[15]. Nev-
ertheless, these methods are unsuitable for our purpose:
the existence of a vulnerability is not determined by a
single function, and we do not want to over-constrain the
possible inputs through concolic or concrete execution.
Key observation. We observe that, to overcome the
above challenge, it is possible to leverage fine-grained
trace-level information about how the vulnerability is
manifested (e.g., where the vulnerability is triggered, and
which functions are involved) in the reported version to
guide the exploration in the target version. This informa-
tion allows us to distinguish the key statements from the
unrelated ones for a specific vulnerability. As an illustra-
tion, coverage data can help de-prioritize less relevant ex-
ecution paths. By utilizing this approach, SYMBISECT
effectively narrows the scope of exploration, thus en-
hancing efficiency and mitigating the scalability chal-
lenge of symbolic execution.

3.3 System Architecture

As illustrated in Figure 3, our tool, denoted as
SYMBISECT, requires three essential inputs for its op-
eration:

e The source code of the program on which the bug
was reported — we refer to it as the reference version.
This version should be compilable and bootable as the
fuzzer has successfully found the bug on this version.

e Proof of Concept (PoC): This is the executable or
script that can reliably trigger the vulnerability in the
reference version of the program.

e The source code of the program in potentially vulnera-
ble target versions: These are the other versions of the
program that we want to assess for the same vulnera-
bility.

SYMBISECT is designed for vulnerabilities found
through fuzzing. So both the compilable and bootable
source code of the reference program and the PoC are
naturally available when a vulnerability is found via
fuzzing. With such inputs, SYMBISECT bisects the bug
in a fashion similar to syzbot (except that SYMBISECT
is completely static). It first evaluates historical ver-
sions backwards — one major release version at a time
(e.g., v5.5 and then v5.4). Through this iterative pro-

Program
(ref version)

Guidance
Generator N

Guidance

Vulnerable
versions

Bug-inducing
Programs Transformer | —> commit
(target versions) —

Non-vulnerable
versions

Symbolic
Detector g

Detector

Figure 3: Overview of SYMBISECT

cess, SYMBISECT can identify the boundary or range
for which the bug-inducing commit falls under (e.g., be-
tween v5.4 and v5.5). Subsequently, SYMBISECT follow
a simple binary search procedure to pinpoint the specific
commit that introduced the bug.

SYMBISECT consists of three primary components,
designed to accurately identify vulnerabilities while also
addressing scalability issues:

Guidance Generator. SYMBISECT first runs a PoC to
trigger the specific vulnerability in the reference version
of the program, thereby collecting essential execution
traces. Utilizing these traces, SYMBISECT systemati-
cally produces three primary categories of guidance for
subsequent symbolic detection. Firstly, SYMBISECT at-
tempts to align the call stack trace (also called call trace
in the syzbot bug report) of the execution on the target
version to the one on the reference version (referred to as
Call Stack Guidance) This effectively steers the explo-
ration of symbolic execution towards the function where
the vulnerability is observed. Secondly, besides the call
stack trace, SYMBISECT also secondarily attempts to
align the execution path down to the basic block level
(referred to as Path Guidance). This is useful when
there are a large number of possible execution paths that
follow the same call stack. Lastly, SYMBISECT reuses
the callees involved in indirect calls (referred as Indirect
Call Guidance), thereby informing the symbolic detec-
tor to focus on a limited number of indirect call targets
(as opposed to all possible ones computed using static
analysis). More details are in §4.1.

Guidance Transformer. Upon identifying the above
three kinds of guidance, SYMBISECT transforms them
from the reference version into the target versions of the
program. This enables a more efficient symbolic exe-
cution and a more accurate vulnerability detection pro-
cess on these target versions. It’s important to highlight
that guidance translation between versions is done at the



source code level, which remains stable and unaffected
by compiler optimizations. To enhance the precision
and robustness of those guidance when applied to differ-
ing target versions of the program, SYMBISECT employ
multiple optimizations during the guidance transformer
phase. More details about the guidance transformer will
be provided in §4.2.

Symbolic Detector. The symbolic detector is a form of
detector that can capture (or re-capture) the bugs that
were reported by a fuzzer. The detector is applied to
a target version, where it tracks all variables, especially
symbolic variables, including the symbolic sizes of allo-
cated objects. However, instead of attempting to find all
possible bugs during the exploration (which is clearly not
scalable), we narrowly focus on the specific bug at hand,
with the help of the aforementioned guidance. Through-
out the execution, the symbolic detector leverages guid-
ance from preceding phases. Specifically, it dynamically
adjusts the execution state schedule, aiming to allevi-
ate path explosion. Additionally, the detector refines the
callees of indirect function calls based on prior indirect
call guidance. For vulnerability detection, the symbolic
detector relies on call trace guidance to ensure accurate
detection of the same vulnerability previously identified.
More details about the under-constrained symbolic de-
tector can be found in §4.3.

4 SYMBISECT Design

In this section, we delve into the intricacies of
SYMBISECT’s design by dissecting each component,
discussing the challenges encountered, and illustrating
our corresponding solutions.

4.1 Guidance Generator

Overall, this components attempts to guide SYMBISECT
when SYMBISECT executes the PoC in the reference
version of the program to trigger a specific vulnerabil-
ity and collects the execution trace. Then, SYMBISECT
produces three categories of guidance from the execution
traces, which we explain below.

Call Stack Guidance. The call stack guidance repre-
sents the state of the call stack at the moment a vulner-
ability is triggered. This information can be readily col-
lected when the corresponding bug is triggered in the ref-
erence version of the software under investigation. Uti-
lizing the call stack guidance serves multiple purposes.
First, it assists in identifying an appropriate entry func-
tion as the starting point for our symbolic detector. Sec-
ond, it assists in pinpointing the target line where the
vulnerability is triggered, allowing the symbolic detec-
tor to focus on the same vulnerability rather than any

arbitrary vulnerability. We use call stack guidance to
constrain the exploration of a target version so that it
only explores the basic blocks that can potentially lead to
the same stack trace. Correspondingly, we translate call
stack guidance into basic-block-level priorities to guide
the exploration.

e Highest Priority: basic blocks that dominate the ba-
sic blocks in the call stack will receive the highest
priority. This indicates that their execution is essen-
tial for reaching the bug while maintaining the same
call stack. The set of such basic blocks can be identi-
fied through the dominator analysis on the control flow
graph of functions in the call stack.

e Lowest Priority: basic blocks, upon the execution of
which can cause deviations from the call stack, will
receive the lowest priority. Consequently, a symbolic
detector should avoid executing any of these blocks.
They can be identified through reachability analysis.

Path Guidance. In addition to the call stack guidance,
we will need more fine-grained guidance if there are still
too many possible execution paths that follow the same
call stack. Specifically we propose to prioritize the exe-
cution path directly at the basic block level. The idea is
that a basic block in the target version is likely to be non-
critical if (1) the basic block is not executed in the refer-
ence version and (2) it remains unchanged in both the ref-
erence and target versions of the program. Therefore, the
symbolic execution should prioritize the exploration of
branches whose basic blocks have higher priority. Note
that when there are conflicts, path guidance must yield
to call stack guidance because the most critical goal is to
ensure the vulnerable function being reached. We trans-
late path guidance into the basic-block-level priorities as
follows:

e High Priority: basic blocks covered by the execution
trace in the reference version of the program will re-
ceive high priority (lower than the highest priority).

e Low Priority: basic block not covered by the execution
trace in the reference will receive low priority.

Indirect Call Guidance. The indirect call guidance
records the callee functions associated with each indi-
rect function call encountered in the execution trace. Its
primary role is to facilitate the accurate resolution of in-
direct function calls during the symbolic execution pro-
cess, particularly in the target versions of the software
under analysis.

4.2 Guidance Transformer

To enhance both the efficiency of symbolic execution and
the precision of vulnerability detection in target program
versions, it is essential to translate the three categories



of guidance collected from a reference version. Specifi-
cally, one fundamental task is to map basic blocks from
the binary form in the reference version, where execution
traces are collected, to the LLVM IR in the target version,
where symbolic execution is executed. One potential so-
lution is first to map the binary-level basic blocks from
reference to target. However, due to compiler optimiza-
tions, even if the source code lines are identical, their
binary basic blocks may differ, making this solution un-
desirable.

Our solution employs source code as an intermedi-
ate representation to improve the mapping accuracy be-
tween the reference and target versions. The transfor-
mation sequence for basic blocks begins with the binary
form in the reference version, moves to its source code,
transitions to the source code in the target version, and
ends in the LLVM IR of the target version. To facil-
itate these mappings, we use the debug information to
transition between binary and source code and between
source code and LLVM IR. Additionally, Git is employed
for source code mapping between the reference and tar-
get versions. During the transformation sequence, we
take care of multiple corner cases to enhance the preci-
sion (more details in §5.1).

After transforming the call stack to the target version,
we verify the presence of the target line triggering the
vulnerability. If absent, the target version is deemed non-
vulnerable. If present, we examine whether there is a
potential path from the entry to the target function in the
call graph. A missing path directly results in a negative
outcome.

Otherwise, the exploration of the target version will
follow the aforementioned guidance. Finally, if there are
basic blocks unique to the target version (never seen in
the reference), we will assign a neutral priority level to
them as it is unknown whether these basic blocks will be
useful in triggering the vulnerability:

e Medium Priority: basic blocks unique to the target ver-
sion, which do not map to any basic blocks in the ref-
erence version, will receive medium priority. Com-
pared to the low priority basic blocks — the ones seen
in reference version yet not exercised, we are less cer-
tain about the utility of such basic blocks; therefore we
prefer to explore them with a higher priority compared
to the basic blocks that were seen in both reference and
target versions but not exercised in the reference.

Then, all the guidance (call stack, five lists of varying
priorities, and indirect call mapping) are forwarded to the
subsequent component.

4.3 Symbolic Detector

After generating guidance for the target version of the
program under analysis, the symbolic detector conducts
under-constrained symbolic execution on these targeted
versions. Specifically, the detector monitors all variables
within the program to identify potential vulnerability pat-
terns, such as use-after-free or out-of-bound access er-
rors. We propose multiple improvements to enhance the
ability of under-constrained symbolic execution, includ-
ing but not limited to handling symbolic addresses, and
symbolic sizes of allocated memory. The details are de-
scribed in §5.2. Throughout this execution, the symbolic
detector utilizes the guidance generated in prior stages to
enhance its effectiveness.

Call Stack Guidance. Symbolic execution is initiated at
a selected entry function, determined by examining the
call stack. Specifically, execution starts at the first mean-
ingful function in the call stack — we choose to start at
the syscall handler [24] (which is typically several layers
behind the generic syscall entry). The symbolic execu-
tion process ends upon detecting a vulnerability (result-
ing in a positive output) or upon hitting a time constraint
(yielding a negative output). Importantly, the detector
only checks for vulnerabilities upon reaching the speci-
fied target line in the guidance, avoiding hitting any un-
related bugs accidentally. Also, the basic blocks with the
lowest priority are prohibited from execution.

Path guidance. When symbolic execution encounters a
symbolic condition, it forks to explore both true and false
branches. This forking behavior primarily contributes to
the path explosion in symbolic execution. The path guid-
ance is employed to address this. This approach priori-
tizes exploration by first traversing branches with higher
priority. When two branches have the same priority, one
is randomly selected to be explored first.

Indirect Call Guidance. During symbolic execution, if
we observe the indirect call target being assigned explic-
itly to a function pointer, we can unambiguously deter-
mine the indirect call target. Otherwise, we initially refer
to the indirect call guidance to identify the indirect call
target. If we find a match for the specific indirect call, we
use the specific target from the guidance directly. Oth-
erwise, we utilize the state-of-the-art type-based anal-
ysis [29] to resolve indirect calls (which may produce
multiple targets).

S Implementation

In total, the implementation of SYMBISECT has 4,726
LoC Python code for the Guidance Generator and Guid-
ance Transformer and 4,347 LoC of C++ for the Sym-
bolic Detector atop KLEE [16]. In the following
sections, we will delve into further details regarding



the Guidance Transformer (§4.2), and Symbolic Detec-
tor (§4.3). In summary, SymBisect collects the original
trace at the binary level, the generated guidances are at
the source code level, and the symbolic execution engine
is based on LLVM IR.

5.1 Guidance Transformer

Code formatting. Because we employ source code as
an intermediate representation during the guidance trans-
former, we require each source code line to be associated
with only a single basic block. To achieve this, we de-
velop a simple source code formatter that divides com-
posite lines into simpler ones. For instance, splitting “}
else if(cond){” into two distinct lines. This is done for
both the reference version and the target version at the
beginning.

Accurate coverage collector. SYMBISECT leverage
KCOV mechanism to discern which sections of the code
have been covered. Syzkaller offers a tool to save the
coverage data from KCOV. However, this operation is
not always reliable. When the kernel crashes, some cov-
erage can be lost. To improve this, SYMBISECT modifies
the kernel to record the KCOV buffer in a log upon a ker-
nel crash.

Refine guidance. The source code level guidance is gen-
erated using DWARF debug information, which may not
always be accurate. Specifically, compiler optimizations
(compiling the Linux kernel with -O0 is generally not
supported), e.g., function inlining, and reordering, can
lead to inaccuracies when mapping basic blocks in binary
instructions into their corresponding source code lines
with debug information — we find that the coverage of
many basic blocks can be lost. To mitigate such impact,
we implement an analysis of the basic blacks with the
control flow graph and the dominator tree. We recover
potentially lost basic block coverage under the following
two conditions: 1) Should a line within a BB be marked
as covered by a test case, it is necessary to mark all lines
within that same BB as covered as well. 2) In instances
where a covered BB is dominated by another BB (indi-
cating that it is invariably executed after the dominating
BB), it’s essential that the dominator BB is also marked
as covered.

5.2 Symbolic Detector

The types of vulnerabilities supported by SYMBISECT
are determined by symbolic engine and detectors.
SYMBISECT currently support bugs that exhibit out-of-
bound (OOB) memory access and use-after-free (UAF)
errors. This is because OOB/UAF vulnerabilities are the
ones that are generally considered more security-critical
and commonly exploited [57, 15, 48]. Note that the root

causes of these vulnerabilities can vary, e.g., the underly-
ing causes might be integer overflow and type confusion
but they exhibit OOB memory access as an error. Given
that syzbot categorizes vulnerabilities based on their se-
curity impact, we follow the same categorization. Cur-
rently, SYMBISECT has a few limitations: (1) it does
not support race condition bugs (that are not supported
by KLEE), and (2) it does not support bugs that require
reasoning across multiple syscalls (instead the detector
focuses on the last syscall that triggered the bug). Below,
we discuss some modifications made to KLEE to achieve
more accurate results.

Under constraint symbolic variables. We choose to
symbolize all variables without concrete values in static
environments, including global variables and arguments
of system calls. This approach allows us to explore a
broader range of potential execution paths during our
analysis.

Symbolic address. In its original form, KLEE does
not adequately support under-constrained symbolic ad-
dresses. When it encounters read/write operations to a
symbolic address, KLEE typically generates a specific
concrete address based on the current constraints.

The logic KLEE employs for dealing with under-
constrained symbolic addresses is not reliable, partic-
ularly when faced with a multitude of such addresses.
There might be instances where a symbolic address does
not map onto any existing object. In such cases, arbi-
trarily concretizing this address to an existing object and
proceeding with read/write operations can lead to incor-
rect outcomes.

Instead, we apply an improved mechanism in UCK-

LEE [18] to deal with symbolic addresses that have not
been encountered before. When attempting to write/read
to such a novel symbolic address, our system allocates a
new object. Besides that, we maintain mappings between
symbolic and concrete addresses. Therefore, subsequent
attempts to access the same symbolic address will, in re-
ality, be directed toward the corresponding concrete ob-
ject as per the mapping. This procedure ensures that
each symbolic address is consistently linked to a unique
concrete object, thereby improving the precision of read-
/write operations and overall analysis.
Symbolic size. The original way KLEE allocates a new
object with symbolic size is also not suitable for our sit-
uation. Specifically, if the size is symbolic, it generates
a specific concrete size, and then KLEE tries to half its
size until the size is no larger than a small constant (i.e.,
128 in KLEE v2.2).

In our under-constraint cases, it will result in many
objects with small sizes, such automatic concretization
may result in the inaccuracy of the results. For example,
if there is a path that can only be explored with a size
larger than the constant, it will always be skipped.



Instead, we implement a solution similar to the previ-
ous work[41] to handle this issue. We choose to track
the symbolic sizes. We allocate the object with a large
constant size in memory to make sure that the intended
access to the object won’t be missed and log the sym-
bolic size. When there is a check against the size of an
object, we always use the symbolic size.

Function modeling. To improve the scalability of sym-
bolic execution, we manually model more general library
functions belonging, such as strcpy(), malloc().
Vulnerability checker. The under-constraint nature of
our symbolic execution will introduce some false posi-
tives when asserting the presence of vulnerability logic.
To mitigate the problem, we concentrate on detecting
the vulnerability on the corresponding line (called tar-
get line) in the target version where the vulnerability is
triggered — we require the same line to be present in the
reference and target version.

Once reaching the target line, for each read/write oper-
ation, we extract the address (usually symbolic) and find
the corresponding object. If no corresponding object is
found (usually happens in UAF cases), instead of allocat-
ing new under-constrained memory, we report the vul-
nerability directly. Otherwise, SYMBISECT compares
the offset with the size of the object under current con-
straints. If the offset can be larger than the size (usually
happens in OOB cases), SYMBISECT reports the vulner-
ability and terminates the execution. Finally, if none of
these is detected, SYMBISECT keeps exploring various
execution paths until a time limit is reached or runs out
of paths to explore, leading to a negative result.

6 Evaluation

In this section, we evaluate SYMBISECT based on the
following three research questions.

e RQI1: How precisely does SYMBISECT identify the
vulnerable versions for a specific vulnerability? How
precisely does it determine the exact bug-inducing
commit? What factors influence the accuracy?

e RQ3: How effective is SYMBISECT, when com-
pared with state-of-the-art (PoC-based/patch-based)
bug-inducing commit identification methods?

e RQ4: How efficient is SYMBISECT in conducting its
analysis? Specifically, how does the provided guid-
ance/exploration strategy improve efficiency?

Evaluation Target and Vulnerability Dataset. We
assess SYMBISECT on Linux kernel bugs reported on
syzbot [22]. This choice is made due to several fac-
tors. First, syzbot is among the earliest and most ma-
ture continuous fuzzing platforms and the Linux kernel
is among the most popular open source software. Sec-
ond, the Linux kernel is the largest software that is being

continuously fuzzed today. Third, there are a variety and
a large number of bugs reported on syzbot continuously,
which require bisection. Specifically, in our evaluation,
we utilize SYMBISECT to conduct bisection on the Linux
mainline branch. We believe our solution generalizes be-
yond the Linux kernel as it is likely more complex than
most other software.

We consider adding support for other types an impor-
tant but orthogonal exercise (see discussion in §7). As
mentioned, SYMBISECT currently supports bugs that ex-
hibit OOB and UAF impact (and no race conditions in-
volved). Therefore, we randomly sampled 50 bugs from
syzbot reports that meet the following requirements: 1)
reported in the last 4 years. 2) labeled to have OOB or
UAF impact. 3) not race conditions (which our symbolic
detector currently does not support). 4) with PoCs and
the bugs can be reproduced. 5) the corresponding patch
has a “Fixes:” tag (to be explained below).

A “Fixes:” tag is included in a patch that points to one
or more previous commits that are considered to intro-
duce the corresponding bug. We treat it as the ground
truth because we verified that they are consistent with
our definition of bug-inducing commits (see later for
“ground truth verification”). Note that SYMBISECT does
not require the presence of a “Fixes:” tag to operate; we
choose such bugs to merely simplify the evaluation pro-
cess.

For each vulnerability, our tool begins with the re-
leased vulnerable version and inspects every major re-
lease version (e.g., v5.10) until the oldest version, v4.20,
in our dataset. Versions prior to v4.20 present compat-
ibility issues with the Clang/LLVM toolchain. While
more engineering work might address this, it diverts from
our primary focus. If the released vulnerable version
is not on the Linux mainline branch, we find the cor-
responding commit (with the same Linux kernel ver-
sion) as the starting point on the mainline. In total, our
dataset consists of 645 bug-version pairs. We will de-
termine whether each version is affected by a bug (vul-
nerable vs. non-vulnerable). We evaluate the accuracy
of SYMBISECT against these bug-version pairs. Subse-
quently, to evaluate bug-inducing commit identification,
we retained the bugs introduced after v4.20 (32 in to-
tal): SYMBISECT employs a binary search between the
latest non-vulnerable version and version on which the
bug was reported by syzbot to pinpoint the exact bug-
inducing commit.

All experiments are conducted in Ubuntu-20.04 with
1TB memory and Intel(R) Xeon(R) Gold 6248 20 Core
CPU @ 2.50GHz * 2. For each bug-version pair, we allo-
cate a single CPU core for a maximum of 10,000 seconds
of symbolic execution.

Comparison Targets. We compare SYMBISECT with
the three following lines of work:



Tools TP FP TN FN Accuracy Precision Recall F-1 Score
SYMBISECT 237 29 348 31 90.7% 89.1% 88.4% 88.7%
Syzbot(PoC) 146 27 350 122 76.9% 84.4% 54.5% 66.2%

VOFinder 133 0 377 130 79.8% 100.0% 51.5% 68.0%

VSZZ 250 145 232 18 74.7% 63.4% 93.3% 75.4%

Table 1: The results of vulnerable versions detection

Tools correct incorrect Accuracy
SYMBISECT 24 8 75%
Syzbot 16 16 50%
VOFinder 11 21 34.375%
VSZz 18 14 56.25%

Table 2: The results of bug-inducing commit identifi-
cation

e PoC-based bisection. Syzbot bisects bugs with PoCs
to find the commit that introduced the bug [3]. We
employ a crawler to directly retrieve results from the
website. In instances where bisection results are un-
available, we execute the PoC on the target kernels to
get the results.

e Patch-based bisection with SZZ algorithm. As
described in §2.2, this line of research assesses
vulnerability-(un)affected versions by locating the
vulnerability-introducing commit with SZZ and its
variants. In this line of work, VSZZ [12] is the state-
of-the-art tool and it’s open source. We set up VSZZ
with their default options according to the tutorials[6].

e Patch-based bisection with vulnerable code clone de-
tection. These methods are based on code similarity
comparison. VOFinder [45] is a recent vulnerable code
clone detector that is used to discover the first ver-
sion where a vulnerability is introduced. We set up
VOFinder with their default options according to the
tutorials[5].

Evaluation metrics. For the evaluation of determining
the vulnerable versions for a specific vulnerability, for
each bug-version pair, we will get a verdict as true pos-
itives (TP), true negatives (TN), false positives (FP), or
false negatives (FN). Then we calculate the correspond-
ing accuracy, precision, recall, and F1 score. For pin-
pointing the precise bug-inducing commit, we received a
binary result (either identifying the correct bug-inducing
commit or not) from which we calculated the accuracy.

Ground truth verification. To ensure that the “Fixes:”
tag is consistent with the bug-inducing commit we de-
fined, we carried out the following verification for all
such tags in our dataset: 1) If the PoC triggers the re-
ported bug in the target version, then that version is
deemed vulnerable. 2) If the path from the entry function

to the target line is absent in the target version (for exam-
ple, if the target function or line does not exist), then it
is considered not vulnerable. 3) For versions that cannot
be verified through the previous two steps, we manually
analyze the logic of the vulnerability to determine if it
exists in the target version.

After the verification, we found that the vast majority
of “fixes” tags are consistent with the bug-inducing com-
mit we defined. The only exception was a vulnerability
introduced by two adjacent commits. The first commit
defined a function related to the vulnerability, and the
second introduced the caller of this function. According
to our definition, the second is the bug-inducing com-
mit, but the “fixes” tag pointed to the first. Interestingly,
we noted that these two adjacent commits were merged
into the Linux mainline branch together in a single merge
commit, thus not affecting our evaluation results.

6.1 Accuracy of SYMBISECT (RQ1)

Accuracy of vulnerable version detection. As shown
in Table 1, SYMBISECT achieves an overall accuracy
of 90.7% over 645 versions, higher than all existing
tools. Note that this evaluation is performed on a per-
bug-version-pair basis.

Accuracy of bug-inducing commit identification. Ta-
ble 2 shows the results of bug-inducing commit identi-
fication, SYMBISECT outperformed all the other cases
with an accuracy of 75%. The reason the accuracy is
lower (than vulnerable version detection) is that it aggre-
gates the results from all kernel versions for a single bug.
For example, if the vulnerability was introduced in v5.3,
we might correctly label v5.4 as vulnerable; however, if
we mistakenly labeled v5.3 as non-vulnerable, then we
still will end up with an incorrect bisection result for the
specific bug (FN). Upon manual inspection, we discov-
ered that among these eight cases of inaccuracy, five were
due to FPs, and three resulted from FNs.

False positives in SYMBISECT. SYMBISECT has 29
false positives (misidentifying non-vulnerable versions
as vulnerable). The FPs generated by SYMBISECT
tool arise from the intrinsic characteristics of under-
constrained symbolic executions. For example, global
variables are symbolized in our approaches, allowing the
constraints to represent them as potentially holding any



. gl
-

%7
0.4=

—— Correct-allcommits

0.2{ — Correct-relevantcommits

—— Incorrect-allcommits

—— Incorrect-relevantcommits

0-Por 10 10° 10
Number of commits between

non-vulnerable and released vulnerable version

CDF

Figure 4: Comparison of commit number between
correct and incorrect cases

value of the specified type. However, such a variable
could be hard-coded somewhere that symbolic execution
cannot access. Consequently, such under-constraining
can lead to SYMBISECT concluding infeasible behaviors
in practice.

As an example false positive, we find an OOB bug that
arises from a lack of checks against socket types. In the
kernel, different types of sockets possess different sizes.
The mappings between the socket type and the corre-
sponding structure sizes are stored as global variables in
the kernel, which are symbolized in our detectors. When
under-constrained, the symbolized mapping can produce
any sizes from a given socket type, leading to false posi-
tives.

False negatives in SYMBISECT. Our evaluation records
31 false negatives (misidentifying vulnerable versions as
non-vulnerable). The primary cause of FNs is the scala-
bility issue. Certain vulnerabilities can be triggered only
via a specific path, which might not be covered in the
symbolic execution due to the time threshold, despite our
effort to apply principled guidance during exploration.
Moreover, the guidance may not be complete due to dif-
ferences between the reference and target versions. If the
symbolic execution lacks accurate guidance, it is likely
to encounter scalability issues due to the complexity of
kernels.

An example of this challenge occurs when a vulnera-
bility site is influenced by a check against a pivotal vari-
able. The vulnerability can be triggered only when this
variable is set to a particular value in preceding functions.
Yet, the distance between this value assignment and the
condition check is substantial, with many functions with
many state forks interspersed. Even with our guidance,
satisfying such a nuanced condition in a limited time to
activate the vulnerability proves challenging, resulting in

false negatives.

Factors that influence accuracy. We hypothesize there
are certain factors that affect the bisection accuracy. For
instance, a plausible factor is the distance between the
bug-inducing commit and the commit on which the bug
is discovered. This is because the farther away the two
commits are, the more changes may occur to the under-
lying bug-triggering condition.

To evaluate the distance factor, we counted the total
number of commits between the released vulnerable ver-
sion and the non-vulnerable version (the version before
the bug-inducing commit) on the Linux mainline branch.
Note that on the Linux mainline branch, a merge commit
may combine updates from multiple commits on other
branches, and we did not break down this merge com-
mit to recount the number of commits. Another variation
of the distance factor is to count only the “relevant com-
mits” — commits that modify the files within the call
stack responsible for triggering the bug — between the
vulnerable and non-vulnerable versions.

We investigated the two aforementioned factors, and
the results are presented in Figure 4. Contrary to our
expectations, there appears to be little correlation be-
tween the two distance metrics and the accuracy of bi-
section in our dataset. Specifically, as illustrated in
the figure, 37.5% (3 out of 8) of the incorrect cases
(Incorrect-all commits) had very limited space (fewer
than 10 commits in total) between bug-inducing com-
mit and vulnerability-finding commit. This proportion is
close to that of the correct cases (Correct-all commits),
where 41.7% (10 out of 24) also had limited space.

We analyzed bugs that have more than 100 “rele-
vant commits” (i.e., with large distances), which con-
stitutes 14 bugs in total. The accuracy of SYMBISECT
was 71.4% (10 out of 14). In general, we find that our
method is effective in eliminating the influences of un-
related code changes. Even if those commits modified
files included in the call stack (or even directly modified
the corresponding functions), as long as they do not af-
fect the existence of the vulnerability logic, our symbolic
execution-based methods often can exclude their impact
on the results.

6.2 Comparison (RQ3)

As shown in Table 1, SYMBISECT outperforms other
tools effectively. It achieves higher accuracy (90.7%
compared to the 77.1% average of preceding tools) and
higher F1 scores (88.7% as opposed to 69.8%) than
all previous tools. As expected, we observed that the
main reasons for inaccuracies in existing PoC-based
methods are the broken dynamical environment, inad-
vertent triggering of unrelated bugs, and evolving bug-
triggering conditions as the code progresses. The fail-



Reason FN . Solved
in SYMBISECT

Hard to reproduce 3830 15
Detector not introduced 8 0 8
Build/boot errors 14 0 14
Config disabled 9 0 9
Trigger another bug 0o 27 27
Over-constraint on inputs 53 0 53

Total 149 126

Table 3: The reasons of PoC-based method failed

ures of patched-based tools are due to their dependence
on unreliable syntactic information and only consider a
limited portion of bug-related code. In comparison, our
solution based on static symbolic reasoning aims to cap-
ture the logic of the specific vulnerability and extend its
scrutiny to a much broader context beyond the confines
of the patched function.

Improvements over syzbot bisection. Table 3 outlines
the reasons for the PoC-based method’s failures in our
dataset. The first five types are cited from the official
syzbot documentation[3], while the final reason, “over-
constraint” is a reason we observed. In fact, we find
that it is the most common reason for inaccuracies. No-
tably, SYMBISECT has effectively addressed 83% of the
inaccuracies associated with the PoC-based approach.
We will now detail the causes of each failure and how
SYMBISECT addressed them, as follows:

e Vulnerability with low probability of triggering. PoC-
based approach often struggles to reproduce bugs that
have a very low probability of triggering even in the re-
leased version that corresponds to the PoC. At present,
for every target version, syzbot conducts testing only
10 times [3]. It is probable that vulnerabilities may not
be triggered within these limited attempts. The under-
constraint feature of SYMBISECT enhances its capa-
bility to fulfill the preconditions necessary for trigger-
ing the bug. As a result, SYMBISECT yields accurate
results for 15 of the 38 cases within the given time
threshold.

e Detector not introduced. The PoC-based approach is
dependent on specific detectors, like the KASAN san-
itizer. Until these detectors are integrated into the ker-
nel, PoCs cannot detect vulnerabilities effectively. In
contrast, SYMBISECT is equipped with its own sym-
bolic execution detector, eliminating the need for re-
liance on sanitizers in the Linux kernel.

e Build/boot errors. As we discussed in §2, the static
feature of SYMBISECT bypasses the problem resulting
from kernel boot errors.

e Config disabled. As PoC-bisection goes back in time,

certain kernel configs may be forcefully disabled when
they conflict with the other config options. In contrast,
since our solution does not require the compilation of
the entire kernel, we can simply force other config
conflicts to be disabled and make sure the vulnerable
modules involved are compiled into LLVM bitcode for
our analysis.

e Accidental triggering of unrelated bugs. The PoC
has the potential to activate unrelated kernel bugs that
break the program. Current syzbot does not look at
the exact crash, nor does it attempt to distinguish be-
tween different types of crashes, leading to some FPs.
In contrast, our tool focuses on the specific bug only
upon reaching the target line (and analyze its associ-
ated operations). This allows us to effectively sidestep
this issue.

e Over-constraint on inputs. This is essentially due to
changes in the underlying bug-triggering conditions.
Executing the original PoC does not always activate
the bug in some vulnerable versions. Input muta-
tions become necessary under these circumstances.
The under-constrained symbolic execution approach
treats all potential entry function arguments and global
values comprehensively, effectively addressing these
false negatives.

Figure 5 presents an OOB vulnerability. Specifi-
cally, in function mpol_parse_str() if the str vari-
able starts with “=", the flags variable will reference
the first byte of str. If a certain condition at line 2 is
met, the program skips to line 4. Here, a write opera-
tion occurs that exceeds the boundaries of str, leading
to an out-of-bounds write. The PoC-based syzbot bi-
section incorrectly pinpoints a bug-inducing commit
which modified the function shmem_parse_one—the
caller of the mpol_parse_str() function. Prior to
this misidentified commit, another check at line 8 was
in place against the opt variable. The initial PoC fails
this check, causing syzbot to label versions before this
commit as non-vulnerable. However, by using a dif-
ferent input that bypasses this check, the bug remains
exploitable. Instead, SYMBISECT symbolizes the in-
puts, making it easier to bypass such checks as long as
a feasible solution exist.

Improvements over VOFinder. VOFinder failed to dis-
cover 107 vulnerable versions out of 230 cases, result-
ing in a low recall of 46.5%. The main reason is that
VOFinder does a strict syntactic similarity comparison
for the whole function. Specifically, after normalization
and abstraction, it concludes that the target version is vul-
nerable only if the patch functions are strictly the same
as those in the released version. Thus it cannot detect
the vulnerable cases that are syntactically different, but
convey the same vulnerable functionality.



The vulnerable function:

int mpol_parse_str(char *str,...)
1 char *flags = strchr(str, '=");

2 if(condition)

3 goto out

4 if (flags)

5 *flags++ = '\0';
out:

6 if (flags)

7 *--flags = '=';

The incorrect Bug-inducing Commit
(Identified by Syzbot Bisection):
static int shmem_parse_one(...)

8 - else if (!strcmp(opt, "mpol")) {

9 - if (mpol_parse_str(value, &ctx->mpol))
10+ if (IS_ENABLED(CONFIG_NUMA)) {
.
11+ if (mpol_parse_str(param->string, &ctx->mpol))

Figure 5: Case study of syzbot FN

The Patch:
int qrtr_endpoint_post(...)
struct qrtr_cb *cb;
1 - unsigned int size;
2 + size_t size;

3 if (len !'= ALIGN(size, 4) + hdrlen)
goto err;

The incorrect Bug-inducing Commit
(Identified by V@Finder):
int qrtr_endpoint_post(...)

if (cb->type == QRTR_TYPE_NEW_SERVER) {
const struct qrtr_ctrl_pkt *pkt = data + hdrlen;

+
+
+ grtr_node_assign(node, le32_to_cpu(pkt->server.node));
+

Figure 6: Case study of VOFinder FN

In Figure 6, we see an illustrative example. Here, a
4-byte size variable is prone to an overflow at line 3.
To address this, the patch modifies the variable’s size to
8 bytes. However, the bug-inducing commit pinpointed
by VOFinder is actually a feature enhancement commit,
unrelated to the vulnerability. This commit introduces
multiple lines into the patched function. Due to this,
VOFinder incorrectly designates all preceding versions as
non-vulnerable, leading to a multitude of false negatives.

SYMBISECT, instead of syntactic comparison, ex-
tracts accurate semantic information. Thus it can dis-
tinguish vulnerability-irrelevant changes from significant
changes effectively. Furthermore, it does not rely on
patches. Whether the patch changes a function or not
is irrelevant to SYMBISECT. As a result, SYMBISECT
can eliminate a large number of FN cases of VOFinder.
This significant advantage is largely due to the differing

The Patch:
int squashfs_read_data(...)
1 - TRACE("Block @ 0x%11lx, %scompressed size %d\n", index
2 + TRACE("Block @ 0x%1lx, %scompressed size %d\n", index - 2,

compressed ? "" : "un", length);
}
3 + if (length < @ || length > output->length ||
+ (index + length) > msblk->bytes_used) {
4 + res = -EIO;
5+ goto out;
+ )

The incorrect Bug-inducing Commit :

...... (initialize the file)
6 + TRACE("Block @ 0x%1lx, %scompressed size %d\n", index

The correct Bug-inducing Commit :
int squashfs_read_data(...)

7  TRACE("Block @ 0x%llx, %scompressed size %d\n", index,
- compressed ? "" : "un", length);

8 - if (length < @ || length > output->length ||
- (index + length) > msblk->bytes_used)

9 - goto block_release;

Figure 7: Case study of VSZZ FP

foundational design principles of the two systems.

Improvements over VSZZ. VSZZ processes a patch as
input and identifies the vulnerability-introducing commit
by backtracing the patch’s deleted lines through the code
commit history to the earliest instance, facilitated by
line matching. The earliest commit where these deleted
lines were initialized is then marked as the commit that
induced the bug. When multiple deleted lines origi-
nate from different commits, VSZZ selects the earliest
of those commits as the bug-inducing commit. If the
patch does not have any deleted lines, VSZZ identifies
the commit that initialized the file mentioned in the patch
as the bug-inducing commit.

Figure 7 illustrates a typical scenario where the under-
lying assumption fails, leading to a false positive. The
deleted line 1 in the patch function is not created by the
vulnerability-inducing commit, leading to backtracing to
an earlier point. All commits situated between the com-
mit identified by VSZZ and the actual inducing commit
will be marked as FPs. In detail, the vulnerability was
brought into the codebase by a commit that removed a
certain validation check at line 8, then the vulnerabil-
ity was patched by putting the check back in. However,
the line they removed from the patch was just for log-
ging that is not really related to the vulnerability. VSZZ
traced this logging line back to when the whole function
was first added, resulting in some FPs.

Basically, the commit that introduces the vulnerability
may not alter the patch function at all, as demonstrated
in our motivating example. Even if it does alter the
patch function, it may not modify the deleted lines in the
patch, just as in the above example. Furthermore, even



Strategy Implementation

SYMBISECT Exploration + Indirect call + Stack + Path

Pure Exploration Exploration + Indirect call

Pure Re-tracing Indirect call + Stack + Path

Stack Exploration + Indirect call + Stack

Path Exploration + Indirect call + Path

Table 4: The relationship between strategy and guid-
ance

if the bug-introducing commit does change the deleted
lines, it may only modify them rather than create them.
In such cases, VSZZ may backtrace beyond the actual
bug-introducing commit. These factors contribute to 112
false positives, a significantly higher figure than those
seen with the other methods.

In contrast, our semantic method does not hinge on
such a strong assumption. The symbolic execution en-
gine accurately extracts semantic information, clarifying
their relationship with the vulnerability.

6.3 Scalability of Different Exploration
Strategies (RQ4)

To understand how the guidance helps with the overall
results, we conduct a comparative study against alterna-
tive strategies. Fundamentally, SYMBISECT balances the
exploration (i.e., allowing execution of the basic blocks
in the medium-priority list) with re-tracing (i.e., aligning
the execution trace with the one in the reference version).
Therefore, we consider the following strategies that fall
under various places in the spectrum: (1) pure explo-
ration without any re-tracing or guidance (no considera-
tion of basic block priorities), (2) pure re-tracing strictly
following path guidance (i.e., when a branch leads to a
high/highest priority exists, the other branches are pro-
hibited from execution), (3) exploration with call stack
guidance only. (4) exploration with path guidance only.
Table 4 shows the relationship between various strate-
gies and specific guidance. “Indirect call”, “Stack”, and
“Path” represent indirect call guidance, call stack guid-
ance, and path guidance, respectively. For strategies
with a combination of exploration and certain guidance,
we assign different priorities to different paths based on
guidance as defined in §4.1. In general, we prioritize the
execution of higher priority branches, and do not pro-
hibit the execution of branches unless the basic blocks
are marked as the lowest priority (which can never reach
the target line). In contrast, “Pure Re-tracing”, when one
branch leads to a high/highest priority basic block, the
execution of other branches is prohibited. For all strate-
gies, we employ the same entry function and target line
and activate the indirect call guidance to ensure a fair
comparison.
Results. The results are presented in Figure 8. The X-

1.0
- SymBisect

= Pure Exploration
= Pure Re-tracing
0.8 — stack

Path |

o S

04f A

ol
"

B

0.0——75r 102 10°

Execution time until reach target line
in seconds(Log-Scaled)

Figure 8: Scalability Evaluation

axis represents the symbolic execution time required to
reach the target line, while the Y-axis shows the percent-
ages of cases where the execution time falls within the
range [0, X]. We have the following observations:

We can see that SYMBISECT performs the best. Pure
re-tracing performs the worst, as it often fails to account
for changes in the underlying bug-triggering condition
and cannot reach the target line (e.g., the symbolic ex-
ploration is killed earlier than expected). Pure explo-
ration performs second to last because it has too many
execution paths to cover, resulting in path explosion. The
remaining two strategies with limited guidance perform
better than pure exploration but worse than SYMBISECT.
When comparing call stack guidance against path guid-
ance, we find that the former performs slightly better
than the latter. This is consistent with our strategy in
SYMBISECT where call stack guidance takes precedence
over path guidance. In other words, guiding the execu-
tion toward the target function is more aligned with the
end goal of reaching the target line of code.

7 Discussion

Exploration range. As discussed in §2, Relying
solely on patch functions presents inherent disadvan-
tages, prompting us to explore entire traces in order to
gather comprehensive information relevant to vulnera-
bilities within the program. However, these traces may
encompass thousands of functions, with the majority
of them unrelated to the vulnerability at hand. Conse-
quently, achieving a balance between scalability and ac-
curacy primarily relies on determining the appropriate
exploration range. While we employ specific heuristics
to limit the range, there is still room for a more system-
atic approach to this decision-making process. For ex-



ample, we envision one can apply static analysis (less
precise but more scalable) to identify the vulnerability-
related functions in advance, then skipping the unrelated
functions when applying symbolic execution. Develop-
ing such a solution would significantly improve our ca-
pability to identify and address vulnerabilities without
overwhelming our resources.

Support more bug types. The types of vulnera-
bilities supported by SYMBISECT depend on the sym-
bolic engine it is based on (currently KLEE) and the
detectors built on top of it (or provided by KLEE it-
self). SYMBISECT currently supports bugs that mani-
fest as OOB and UAF, including type confusion and in-
teger overflow bugs that manifest as OOB. There are a
few types of bugs that are interesting to support for fu-
ture improvements: (1) additional bug types such as use-
before-initialization [52], (2) bugs that require precise
reasoning across multiple syscalls, and (3) race condi-
tions bugs. For (1), it requires additional symbolic de-
tectors to recognize other bug types. For (2), symbolic
execution across multiple syscalls is feasible but presents
an additional scalability challenge. For example, in some
OOB cases, the allocation and use of the vulnerable ob-
ject occur in different system calls. Without analyzing
the allocation, the analysis of the subsequent syscall on
use will be under-constrained and therefore potentially
lead to false positives. This means we will need to first
collect the symbolic expression for the object size (in one
syscall), and then reason about whether the use can go
out-of-bounds (in another syscall). We envision an opti-
mization to terminate the symbolic execution of the al-
location syscall earlier, as soon as the object size info
is collected and leave other unexplored variables under-
constrained. For (3), there are specialized symbolic de-
tectors that can detect specific race condition bugs, e.g.,
multi-reads and double-fetch [50]. In the context of bi-
section, we envision that a more general approach is to
recognize the interleaving points [51] and record the de-
sired interleaving during the execution of the PoC in the
reference version and use it to guide the execution of the
target version.

Support bugs without PoCs. When a fuzzer discov-
ers bugs, it usually generates a corresponding PoC, but
there are exceptions. In some cases, syzakaller only pro-
duces a bug report. We wish to point out that our tool
does not necessarily have to rely on PoCs. Instead, as
long as we can obtain traces that trigger the vulnerability,
it would be sufficient to guide the symbolic execution.
For example, with hardware support (e.g., Intel Proces-
sor Trace [21]), we envision bug reports can be accom-
panied with corresponding control flow information.

8 Related Work

Under-constrained symbolic execution in OS kernels.
UCKLEE [33] represents the initial implementation of
an under-constrained symbolic execution virtual ma-
chine based on KLEE. It is primarily utilized for patch
verification as well as rule-based generalized checks,
encompassing areas such as memory leaks, uninitial-
ized data, and user input vulnerabilities. UBITect [52]
and IncreLux [53] utilize under-constrained symbolic
execution to identify feasible paths and mitigate false
positives in static analysis when detecting Use-Before-
Initialization (UBI) bugs. SID [46] aims to distinguish
security-related patches from other bug fixes, which is
different from our work. It attempts to set up a model for
several types of vulnerabilities with the help of under-
constraint symbolic execution, rather than simply ex-
tracting and comparing characteristics. Besides, previ-
ous studies that attempted to perform symbolic execution
on operating system kernels addressed the scalability is-
sues using the following methods: 1) Decrease the scope
of symbolic execution when analyzing operating system
kernels. For example, performing intra-procedural anal-
ysis on a specific function such as the patch function [54]
[46]. However, the approach may not be suitable for our
purposes. The existence of a vulnerability is not deter-
mined by a single function. 2) Concretizing symbolic
inputs and global variables [15, 48]. In our cases, it will
result in an over-constraint problem.

Dynamic vulnerable version identification. The infor-
mation about the affected versions of a vulnerability is
quite important [38]. Dai et al. [17] proposed a PoC mi-
gration approach that takes a PoC as input and migrates
the PoC to verify other affected versions. However, it
specifically targets user-space programs. Furthermore,
as demonstrated in § 6, over-constraint on inputs is only
one of the causes of failure.

Code clone detection. If two code fragments are highly
similar, with only minor modifications, or identical due
to copy-paste, then one fragment may be considered
a code clone of the other [55]. Code clone detec-
tion is widely used in software engineering tasks such
as program understanding, plagiarism detection, copy-
right infringement investigation, and code compaction
[8, 35, 36, 39, 20]. These techniques are designed to
detect general code clones with high accuracy and scal-
ability. However, they do not aim to precisely reason
about security properties of the code, which may be in-
fluenced by small changes while still preserving “sim-
ilarity”. In addition, vulnerable code clone detection
[26, 25, 14, 49, 56, 14, 45] usually perform code clone
detection on what they define as vulnerability-related
code (a few lines within the patch function or the entire
function, sometimes manually extracted [44]). However,



the lack of vulnerability logic reasoning makes them im-
precise, as demonstrated in our evaluation.
Information-retrieval-based bisection. Locus [43] was
the initial method to pinpoint bugs at the software change
level using token similarities from bug reports. Change-
Locator [47] determines Bug-Inducing Commit (BIC)
using crash call stack information. Orca [13] ranks com-
mits based on bug symptoms, like exception messages or
customer feedback. Bug2Commit [30] aggregates fea-
tures from bug reports and commit, averaging their vec-
tor representations. FONTE [10] identifies BIC via test
coverage. It ranks commits by the suspiciousness of their
modifications. Despite their scalability, these methods
fall short in accuracy. As mentioned in the Background
section, The state-of-the-art, Fonte, only reaches a 36%
accuracy rate.

9 Conclusion

The identification of vulnerable versions of Open Source
Software and pinpointing bug-inducing commits are cru-
cial for vulnerabilities uncovered through fuzzing. In
response to this, we introduce SYMBISECT, a precise
methodology grounded in symbolic analysis. The cen-
tral principle is that detailed symbolic information tends
to be more stable compared to both the original PoC and
syntactic similarity assessments during software evolu-
tion. Our experimental results confirm that SYMBISECT
not only significantly surpasses the existing PoC-based
approach in terms of accuracy, but also outperforms
methods that rely on patches. With the insights gained
from SYMBISECT about vulnerable versions, develop-
ers can precisely locate the bug-inducing commit. This
empowers them to address the potential threats brought
about by fuzzing vulnerabilities, thus promoting a more
secure software ecosystem.

Acknowledgment

We thank anonymous reviewers for their insightful com-
ments and suggestions. This work is supported by the
National Science Foundation under Grant #2155213,
#2247881 and a Google Gift.

References

[1] Linux Kernel Faces Reduction in Long-Term
Support Due to Maintenance Challenges. https:
//www.linuxjournal.com/content/linux-
kernel-reduction-longterm-support.

[2] SymBisect Source Code. https://github.com/
zhangzhenghsy/SymBisect.

[3] Syzbot Bisection. https://android.
googlesource.com/platform/external/
syzkaller/+/HEAD/docs/syzbot .md#
bisection.

[4] Syzbot Bisection Motivation. https:
//lore.kernel.org/all/CACT4Y+Y3nN=
nLEKHXLFcX7vxp_vs1JrD=8auJ3cX9we6TQHO+
wOmail.gmail.com/T/#u.

[5] VOFinder Source Code. https://github.com/
WOOSEUNGHOON/VOFinderpublic.

[6] VSZZ Source Code. https://figshare.com/
ndownloader/files/31748777.

[7] R. Abreu, F. Ivanc¢i¢, F. Niksi¢, H. Ravanbakhsh,
and R. Viswanathan. Reducing time-to-fix for
fuzzer bugs. In 2021 36th IEEE/ACM Interna-
tional Conference on Automated Software Engi-
neering (ASE), pages 1126-1130. IEEE, 2021.

[8] Q.U. Ain, W. H. Butt, M. W. Anwar, F. Azam, and
B. Magbool. A systematic review on code clone
detection. IEEE access, 7:86121-86144, 2019.

[9] N. Alexopoulos, M. Brack, J. P. Wagner, T. Grube,
and M. Miihlhduser. How long do vulnerabilities
live in the code? a {Large-Scale} empirical mea-
surement study on {FOSS} vulnerability lifetimes.
In 31st USENIX Security Symposium (USENIX Se-
curity 22), pages 359-376, 2022.

[10] G. An, J. Hong, N. Kim, and S. Yoo. Fonte: Find-
ing bug inducing commits from failures. In 2023
IEEE/ACM 45th International Conference on Soft-
ware Engineering (ICSE), pages 589-601. IEEE,
2023.

[11] C. Ascherm, S. Schumilo, T. Blazytko, R. Gawlik, ,
and T. Holz. Fuzzing with input-to-state correspon-
dence. NDSS, 2019.

[12] L. Bao, X. Xia, A. E. Hassan, and X. Yang. V-szz:
automatic identification of version ranges affected
by cve vulnerabilities. In Proceedings of the 44th
International Conference on Software Engineering,
pages 2352-2364, 2022.

[13] R. Bhagwan, R. Kumar, C. S. Maddila, and A. A.
Philip.  Orca: Differential bug localization in
{Large-Scale} services. In 13th USENIX Sympo-
sium on Operating Systems Design and Implemen-
tation (OSDI 18), pages 493-509, 2018.

[14] B. Bowman and H. H. Huang. Vgraph: A robust
vulnerable code clone detection system using code



[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

property triplets. In 2020 IEEE European Sym-
posium on Security and Privacy (EuroS&P), pages
53-69. IEEE, 2020.

W. Chen, X. Zou, G. Li, and Z. Qian. Koobe: To-
wards facilitating exploit generation of kernel out-
of-bounds write vulnerabilities. USENIX Security,
2020.

D. E. Cristian Cadar, Daniel Dunbar. Klee: Unas-
sisted and automatic generation of high-coverage
tests for complex systems programs. USENIX
Symposium on Operating Systems Design and Im-
plementation (OSDI 2008) December 8-10, 2008,
San Diego, CA, USA.

J. Dai, Y. Zhang, H. Xu, H. Lyu, Z. Wu, X. Xing,
and M. Yang. Facilitating vulnerability assessment
through poc migration. In Proceedings of the 2021
ACM SIGSAC Conference on Computer and Com-
munications Security, pages 3300-3317, 2021.

D. E. David A Ramos. Under-constrained symbolic
execution: Correctness checking for real code.
USENIX Security, 2015.

eng Chen and H. Chen. Angora: Efficient fuzzing
by principled search. In 2018 IEEE Symposium on
Security and Privacy (SP). IEEE, 2018.

C. Fang, Z. Liu, Y. Shi, J. Huang, and Q. Shi. Func-
tional code clone detection with syntax and seman-
tics fusion learning. In Proceedings of the 29th
ACM SIGSOFT international symposium on soft-
ware testing and analysis, pages 516527, 2020.

X. Ge, W. Cui, and T. Jaeger. Griffin: Guarding
control flows using intel processor trace. In Pro-
ceedings of the Twenty-Second International Con-
ference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS 17,
2017.

Google. Google syzbot. https://syzkaller.
appspot.com/upstream/.

Google. Google syzkaller.
com/google/syzkaller.

https://github.

Y. Hao, G. Li, X. Zou, W. Chen, S. Zhu, Z. Qian,
and A. A. Sani. Syzdescribe: Principled, auto-
mated, static generation of syscall descriptions for
kernel drivers. In 2023 IEEE Symposium on Se-
curity and Privacy (SP), pages 3262-3278. IEEE
Computer Society, 2023.

J. Jang, A. Agrawal, and D. Brumley. Redebug:
finding unpatched code clones in entire os distribu-
tions. Oakland’12.

[26]

[27]

(28]

(29]

(30]

(31]

(32]

(33]

[34]

(35]

(36]

S. Kim, S. Woo, H. Lee, and H. Oh. Vuddy: A scal-
able approach for vulnerable code clone discovery.
Oakland’17.

X. Li, Z. Zhang, Z. Qian, T. Jaeger, and C. Song.
An investigation of patch porting practices of
the linux kernel ecosystem. arXiv preprint
arXiv:2402.05212, 2024.

Z. Li, D. Zou, S. Xu, H. Jin, H. Qi, and J. Hu.
Vulpecker: an automated vulnerability detection
system based on code similarity analysis. AC-
SAC’16.

K. Lu and H. Hu. Where does it go? refining
indirect-call targets with multi-layer type analysis.
In Proceedings of the 2019 ACM SIGSAC Confer-
ence on Computer and Communications Security,
pages 1867-1881, 2019.

V. Murali, L. Gross, R. Qian, and S. Chandra.
Industry-scale ir-based bug localization: A per-
spective from facebook. In 2021 IEEE/ACM 43rd
International Conference on Software Engineering:
Software Engineering in Practice (ICSE-SEIP),
pages 188—197. IEEE, 2021.

H. Peng, Y. Shoshitaishvili, and M. Payer. Tfuzz:
fuzzing by program transformation. In /IEEE Sym-
posium on Security and Privacy. IEEE, 2018.

D. A. Ramos and D. Engler. Under-constrained
symbolic execution: Correctness checking for real
code. USENIX Security’15.

D. A. Ramos and D. R. Engler. Under-constrained
symbolic execution: Correctness checking for real
code. InJ. Jung and T. Holz, editors, 24th USENIX
Security Symposium, USENIX Security 15, Wash-
ington, D.C., USA, August 12-14, 2015, pages 49—
64. USENIX Association, 2015.

G. Rodriguez-Pérez, G. Robles, A. Serebrenik,
A. Zaidman, D. M. German, and J. M. Gonzalez-
Barahona. How bugs are born: a model to iden-
tify how bugs are introduced in software compo-
nents. Empirical Software Engineering, 25:1294—
1340, 2020.

C. K. Roy, J. R. Cordy, and R. Koschke. Compar-
ison and evaluation of code clone detection tech-
niques and tools: A qualitative approach. Science
of computer programming, 74(7):470-495, 2009.

H. Sajnani, V. Saini, J. Svajlenko, C. K. Roy, and
C. V. Lopes. Sourcerercc: Scaling code clone de-
tection to big-code. In Proceedings of the 38th

international conference on software engineering,
pages 1157-1168, 2016.



[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

E. C. H. L. Seunghoon Woo, Hyunji Hong.
Movery: A precise approach for modified vulner-
able code clone discovery from modified open-
source software components. USENIX Security,
2022.

Y. Shi, Y. Zhang, T. Luo, X. Mao, and M. Yang.
Precise (un) affected version analysis for web vul-
nerabilities. In 37th IEEE/ACM International Con-
ference on Automated Software Engineering, pages
1-13, 2022.

G. Shobha, A. Rana, V. Kansal, and S. Tanwar.
Code clone detection—a systematic review. Emerg-
ing Technologies in Data Mining and Information
Security: Proceedings of IEMIS 2020, Volume 2,
pages 645-655, 2021.

J. Sliwerski, T. Zimmermann, and A. Zeller. When
do changes induce fixes? ACM sigsoft software
engineering notes, 30(4):1-5, 2005.

D. Trabish, S. Itzhaky, and N. Rinetzky. A
bounded symbolic-size model for symbolic execu-
tion. In D. Spinellis, G. Gousios, M. Chechik, and
M. D. Penta, editors, ESEC/FSE, pages 1190-1201.
ACM, 2021.

D. Wang, Z. Zhang, H. Zhang, Z. Qian, S. V. Krish-
namurthy, and N. Abu-Ghazaleh. Syzvegas: Beat-
ing kernel fuzzing odds with reinforcement learn-
ing. USENIX Security, 2021.

M. Wen, R. Wu, and S.-C. Cheung. Locus: Locat-
ing bugs from software changes. In Proceedings
of the 31st IEEE/ACM International Conference on
Automated Software Engineering, pages 262-273,
2016.

S. Wi, S. Woo, J. J. Whang, and S. Son. Hid-
dencpg: large-scale vulnerable clone detection us-
ing subgraph isomorphism of code property graphs.
In Proceedings of the ACM Web Conference 2022,
pages 755-766, 2022.

S. Woo, D. Lee, S. Park, H. Lee, and S. Dietrich.
VOfinder: Discovering the correct origin of pub-
licly reported software vulnerabilities. In USENIX
Security Symposium, pages 3041-3058, 2021.

Q. Wu, Y. He, S. McCamant, and K. Lu. Precisely
characterizing security impact in a flood of patches
via symbolic rule comparison. NDSS, 2020.

R. Wu, M. Wen, S.-C. Cheung, and H. Zhang.
Changelocator:  locate crash-inducing changes
based on crash reports. Empirical Software Engi-
neering, 23:2866-2900, 2018.

(48]

[49]

(50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

W. Wu, Y. Chen, J. Xu, X. Xing, X. Gong, and
W. Zou. {FUZE}: Towards facilitating exploit gen-
eration for kernel {Use-After-Free} vulnerabilities.
In 27th USENIX Security Symposium (USENIX Se-
curity 18), pages 781797, 2018.

Y. Xiao, B. Chen, C. Yu, Z. Xu, Z. Yuan, F. Li,
B. Liu, Y. Liu, W. Huo, W. Zou, et al. {MVP}:
Detecting vulnerabilities using {Patch-Enhanced}
vulnerability signatures. In 29th USENIX Security
Symposium (USENIX Security 20), pages 1165—
1182, 2020.

M. Xu, C. Qian, K. Lu, M. Backes, and T. Kim.
Precise and scalable detection of double-fetch bugs
in os kernels. In 2018 IEEE Symposium on Security
and Privacy (SP), pages 661-678. IEEE, 2018.

T. Yavuz. Sift: A tool for property directed sym-
bolic execution of multithreaded software. In 2022
IEEE Conference on Software Testing, Verification
and Validation (ICST), pages 433443, 2022.

Y. Zhai, Y. Hao, H. Zhang, D. Wang, C. Song,
Z. Qian, M. Lesani, S. V. Krishnamurthy, and P. L.
Yu. Ubitect: a precise and scalable method to de-
tect use-before-initialization bugs in linux kernel.
In ESEC/FSE, pages 221-232. ACM, 2020.

Y. Zhai, Y. Hao, Z. Zhang, W. Chen, G. Li,
Z. Qian, C. Song, M. Sridharan, S. V. Krish-
namurthy, T. Jaeger, and P. L. Yu. Progressive
scrutiny: Incremental detection of UBI bugs in the
linux kernel. In 29th Annual Network and Dis-
tributed System Security Symposium, NDSS 2022,
San Diego, California, USA, April 24-28, 2022.
The Internet Society, 2022.

H. Zhang and Z. Qian. Precise and accurate patch
presence test for binaries. USENIX Security, 2018.

H. Zhang and K. Sakurai. A survey of software
clone detection from security perspective. [EEE
Access, 9:48157-48173, 2021.

D. Zou, H. Qi, Z. Li, S. Wu, H. Jin, G. Sun,
S. Wang, and Y. Zhong. Scvd: A new semantics-
based approach for cloned vulnerable code detec-
tion. In DIMVA, pages 325-344. Springer, 2017.

X. Zou, G. Li, W. Chen, H. Zhang, and Z. Qian.
{SyzScope}: Revealing {High-Risk} security im-
pacts of {Fuzzer-Exposed} bugs in linux kernel. In
31st USENIX Security Symposium (USENIX Secu-
rity 22), pages 3201-3217, 2022.



