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Abstract

In online multiple testing, the hypotheses arrive one by one, and at each time we must
immediately reject or accept the current hypothesis solely based on the data and hypotheses
observed so far. Many online procedures have been proposed, but none of them are generalizations
of the Benjamini-Hochberg (BH) procedure based on p-values, or of the e-BH procedure that uses
e-values. In this paper, we consider a relaxed problem setup that allows the current hypothesis to
be rejected at any later step. We show that this relaxation allows us to define — what we justify
extensively to be — the natural and appropriate online extension of the BH and e-BH procedures.
We show that the FDR guarantees for BH (resp. e-BH) and online BH (resp. online e-BH) are
identical under positive, negative or arbitrary dependence, at fixed and stopping times. Further,
the online BH (resp. online e-BH) rule recovers the BH (resp. e-BH) rule as a special case when
the number of hypotheses is known to be fixed. Of independent interest, our proof techniques also
allow us to prove that numerous existing online procedures, which were known to control the FDR
at fixed times, also control the FDR at stopping times.
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1 Introduction

Suppose we observe a stream of (null) hypotheses (Ht)t∈N that comes either with a sequence of
p-values (Pt)t∈N or with a sequence of e-values (Et)t∈N. Let P denote the true but unknown probability
distribution and E the corresponding expected value, while PH0

and EH0
denote the probability

and expectation under the null hypothesis (that is, according to any distribution that satisfies H0).
A p-value Pt for Ht is a random variable with values in [0, 1] such that PHt

(Pt f x) f x for all
x ∈ [0, 1]. In contrast, an e-value Et is a nonnegative random variable with EHt

[Et] f 1. Previous
works [14, 17, 11, 34] defined an online multiple testing procedure as a sequence of test decisions
(rt)t∈N, where each rt is only allowed to depend on the p-values (or e-values) P1, . . . , Pt. In this
paper we relax this setup, which allows to define more powerful procedures that are valid under more
general stopping rules. This allows us to propose (what we justify to be) online generalizations of the
Benjamini-Hochberg (BH) and e-BH procedures (recapped later).

1.1 Online ARC (accept-to-reject) procedures

An online ARC procedure is an online multiple testing method that can change earlier accept decisions
(or non-rejections) into a rejection at a later point in time. The motivation is that early in the
procedure, there have been no discoveries yet, and so the level at which hypotheses are tested at must
be quite stringent leading to fewer discoveries initially. However, as the number of discoveries builds
up, we may realize that we could have tested earlier hypotheses at more relaxed levels, leading to
rejections at earlier times.

In more detail, an online ARC procedure goes through all p-values P1, P2, . . . (or e-values) and at
each time t ∈ N it decides based on P1, . . . , Pt which of the hypotheses H1, . . . , Ht are to be rejected
with the restriction that as soon as a hypothesis is rejected, this decision cannot be overturned in the
future and thus the rejection remains during the entire testing process. However, in contrast to a fully
online multiple testing procedure, an online ARC procedure allows to turn an accepted hypothesis
into a rejected one based on information obtained in the future. This is why we call this online with
accept-to-reject changes (online ARC) procedure. Formally one can define an online ARC procedure as
follows.

Definition 1. An online ARC procedure is a nested sequence of rejection sets R1 ¦ R2 ¦ R3 ¦ . . .,
where each Rt ¦ [t] := {1, . . . , t} only depends on the p-values or e-values that are known up to step t.

In statistical hypothesis testing, the null hypothesis Ht usually states the status quo which is
challenged by testing it. If Ht is rejected, this can be seen as evidence that Ht is not true. This
evidence is used to draw conclusions and derive recommendations for the future. However, if Ht is
accepted, this is typically not seen as evidence that Ht is true, but just as insufficient evidence to reject
Ht. Therefore, actions are typically not changed based on accepted hypotheses. For these reasons, we
believe that reversing rejections should be forbidden, while accept-to-reject changes are useful in many
applications.

For example, an important online multiple testing application is A/B testing in tech companies
[18, 19]. Here, a rejection might lead to an adjustment of a website or an app. However, after
an acceptance there won’t be any changes. Consequently, reversing rejections can lead to undoing
unnecessary adjustments made to a website, which can cost money and time, whereas turning accepted
hypotheses into rejected ones may lead to additional improvements of the website at a later point.
The same logic applies to many other online multiple testing tasks such as platform trials [23, 35] and
genomic studies [2, 1].

Online multiple testing procedures are a special case of online ARC procedures, where we disallow
all changes to decisions. Sometimes, online multiple testing procedures are suitable for the applications,
leading to a rich literature on the topic, but ARC procedures also have their place, and this particular
paper focuses on designing online ARC procedures.
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1.2 Problem Setup

Let I0 ¦ N be the index set of true hypotheses. The false discovery proportion (FDP) of a rejection
set R is defined as

FDP(R) :=
|R ∩ I0|

|R| ( 1
.

The false discovery rate (FDR) is the expected FDP: FDR(R) = E [FDP(R)]. We let FDPt and FDRt

be shorthand for FDP(Rt) and FDR(Rt), respectively, for each t ∈ N. The type FDR control usually
considered in online multiple testing is defined as:

OnlineFDR := sup
t∈N

FDRt.

Javanmard and Montanari [17] provided an algorithm that controlled OnlineFDR below a fixed level
³ ∈ [0, 1] for independent p-values. However, this does not guarantee FDR control at any data-adaptive
stopping time (like the time of the hundredth rejection); this is severe restriction in the online setting.
For this reason, Xu and Ramdas [32] introduced the SupFDR, defined as

SupFDR := E

[

sup
t∈N

FDPt

]

.

We can also define a notion of FDR for arbitrary (data-dependent) stopping times

StopFDR := sup
τ∈T

FDRτ ,

where T denotes the set of all stopping times. In this paper, we will generally use ³ ∈ (0, 1] to denote a
constant used to induce a fixed level of error control unless otherwise specified. We note that enforcing
control of SupFDR and StopFDR have the following relationship,

SupFDR f ³ =⇒ StopFDR f ³

StopFDR f ³ =⇒ SupFDR f ³(1 + log(³−1)).

Controlling the SupFDR ensures valid FDR control at arbitrary (data-dependent) stopping times since
the supremum of FDPt will exceed FDPτ at any single time Ä . Interestingly, a reverse relationship
also holds, meaning control of the FDR at stopping times implies control of the SupFDR, albeit at an
inflated level (we prove this result in Appendix G.4).

In addition to the aforementioned false discovery metrics that involve all time steps, we will also
consider the SupFDR until some fixed time K, defined as

SupFDRK := E

[

sup
1ftfK

FDPt

]

.

The SupFDRK can be useful if there is a fixed maximum number of hypotheses K, but we may want
to stop early.

1.3 Our contributions

In this paper we introduce the online e-BH and online BH procedure, online ARC versions of the e-BH
and BH procedures [31, 3].

The e-BH procedure was recently proposed by Wang and Ramdas [31] and provides an e-value
analog of the seminal p-value based Benjamini-Hochberg (BH) procedure [3]. We show that online
e-BH controls the SupFDR under arbitrary dependence between the e-values (Section 2.1). To the best
of our knowledge, this is the first nontrivial online procedure with SupFDR control under arbitrary
dependence. In addition, it uniformly improves e-LOND, the current state-of-the-art online procedure
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for FDR control with arbitrarily dependent e-values. Next, we demonstrate how the “boosting” approach
for the offline e-BH procedure [31] can be extended to the online e-BH procedure (Section 2.3). We
also propose a new boosting technique for locally dependent e-values which improves on boosting
under arbitrary dependence. A comparison of the guarantees provided by the e-BH and online e-BH
procedure is given in Table 1.

Assumption e-BH Online e-BH
Independence or PRDS (boosted) FDR f ³ [31] OnlineFDR f ³ (Sec. 2.3)
Arbitrary dependence FDR f ³ [31] SupFDR f ³ (Sec. 2.1)
Local dependence (boosted) Not considered before SupFDR f ³ (Sec. 2.3)

Table 1: Comparison of e-BH and online e-BH guarantees.

In contrast, we show that the online BH procedure controls the OnlineFDR under positive regression
dependence on a subset (PRDS) (Section 3.1). Furthermore, it controls the SupFDR at slightly inflated
levels under weak positive (PRDN) and negative (WNDN) dependence assumptions (Sections 3.2
and 3.3). Under arbitrary dependence, online BH provides SupFDRK control at an inflated level if a
maximum number of hypotheses K is specified (Section 3.4). The guarantees of the BH and online BH
procedure are summarized in Table 2.

Assumption BH Online BH
Independence FDR f ³ [3] OnlineFDR f ³ (Sec. 3.1)
PRDS FDR f ³ [4] OnlineFDR f ³ (Sec. 3.1)
PRDN FDR f ³(1 + log(³−1)) [27] SupFDR f ³(1 + log(³−1)) (Sec. 3.2)
WNDN FDR f ³(3.18 + log(³−1)) [6] SupFDR f ³(3.18 + log(³−1)) (Sec. 3.3)

Arbitrary dependence FDR f ³ℓK [4] SupFDRK f ³ℓK (Sec. 3.4)

Table 2: Comparison of BH and online BH guarantees.

As shown in the Tables 1 and 2, both online procedures, online e-BH and online BH, provide
OnlineFDR control whenever their offline counterparts provide FDR control and in some cases even
control the SupFDR where the offline methods were only known to control the FDR. In addition, we
will show that the online versions are natural generalizations of the offline procedures, meaning e-BH
and BH can be obtained by online e-BH and BH for a specific choice of weighting parameters (see
Sections 2 and 3). Therefore, we believe the names online e-BH and online BH are justified for our
procedures.

Along the way, we also prove SupFDR control for all other existing online procedures with FDR
control under arbitrary dependence. This includes the reshaped LOND procedure [37] and e-LOND
[34]. Previously, these methods were only known to control the FDR at fixed times. In addition, we
prove SupFDR control of LOND [13] under PRDN and WNDN at slightly inflated levels. We also
provide new guarantees for the TOAD algorithm by Fisher [13].

1.4 The TOAD algorithm

While ARC procedures have not been explicitly named and conceptualized before, the only online ARC
procedure that we are aware of (which is not already a fully online procedure) is the TOAD algorithm
by Fisher [13]. The TOAD algorithm was introduced in the context of p-values and “decision deadlines”
where one must make a decision about Ht by a deadline dt based on a p-value Pt. One can view online
procedures as having a deadline for making a decision as setting dt = t, and online ARC procedures as
setting dt = ∞. In Fisher’s framework, rejection-to-acceptance changes before the deadline were not
explicitly disallowed, although not used by the procedures. In the Appendix B we present the e-TOAD
algorithm, an e-value analog of the TOAD procedure with decision deadlines. Then, our online e-BH
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procedure can be viewed as an instance of our e-TOAD framework with unbounded deadlines, where
e-TOAD extends TOAD and its guarantees from p-values to e-values. Further, while Fisher [13]
showed that TOAD for arbitrarily dependent p-values controls the OnlineFDR, we extend his result
to show that it actually controls the SupFDR. We also improve the power of TOAD under arbitrary
dependence slightly by allowing individual shape functions for the hypotheses. Furthermore, we prove
that TOAD for positively dependent p-values controls the SupFDR under PRDN and WNDN at a
slightly inflated level.

2 The online e-BH procedure

Let us first review the e-BH procedure for offline multiple testing. Let K e-values E1, . . . , EK for
the hypotheses H1, . . . , HK be given. The (base) e-BH procedure [31] rejects hypotheses with the k∗

largest e-values, where

k∗ = max







k ∈ {1, . . . ,K} :

K
∑

j=1

1{Ej g K/(k³)} g k







,

with the convention max(∅) = 0. For the online e-BH procedure we weight each hypothesis Hi with a
nonnegative constant µi such that

∑

i∈N
µi f 1. Let Ã0 :=

∑

i∈I0
µi be the sum of the null weights.

The online e-BH procedure is defined by the rejection sets

Roe-BH

t :=

{

i f t : Ei g
1

k∗t³µi

}

, t ∈ N, where

k∗t = max







k ∈ {1, . . . , t} :

t
∑

j=1

1{Ej g 1/(k³µj)} g k







,

with the conventions max(∅) = 0 and 1/0 = ∞. Note that k∗t is nondecreasing in t, which implies that
(Roe-BH

t )t∈N is a nested sequence of rejection sets such that the online e-BH procedure is indeed an
online ARC procedure. Also note that the naive procedure that sets Rt to be the rejection set of the
offline e-BH procedure applied to E1, ..., Et is not an online ARC procedure: it may change its mind
in both directions (possibly more than once).

If we choose µi = 1/K for i = 1, . . . ,K and µi = 0 otherwise, the online e-BH becomes the e-BH
procedure, and in that sense it is an online generalization of the e-BH procedure. In particular, the
online e-BH allows to choose different weights for the hypotheses and also to test an infinite number
of hypotheses. Wang and Ramdas [31] have already formulated a weighted e-BH procedure which is
similar to this method; however, their approach does not immediately apply to an infinite number of
hypotheses while we claim that our approach defines an online ARC procedure with SupFDR control.

2.1 SupFDR control under arbitrary dependence

To show SupFDR control, we first define the following class of procedures.

Definition 2. A discovery set of finite cardinality, R ¦ N, is considered self-consistent if it satisfies
Et g (³µt|R|)

−1 for e-values (or Pt f ³µt|R| for p-values) for each t ∈ R. We denote by R(³) the set
of discovery sets that are self-consistent at level ³.

The above definition is consistent with the definition of self-consistency as defined by Blanchard
and Roquain [5] and generalizes the definition (referred to as “compliance”) introduced in Su [27].
Wang and Ramdas [31] showed that self-consistent e-value procedures control FDR under arbitrary
dependence in the offline multiple testing setting with uniform weights. We now show an extension
of this result for general weights (µt)t∈N and any self-consistent rejection set in an infinite stream of
hypotheses.
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Proposition 2.1. For a stream of infinite hypotheses and its corresponding arbitrarily dependent

e-values (Et)t∈N, E
[

supR∈R(α) FDP(R)
]

f ³.

Proof. We first prove it for the case where we have K hypotheses. Since R(³) is finite, there exists a
R∗ that maximizes the FDP. Thus we have that

E

[

sup
R∈R(α)

FDP(R)

]

= FDR(R∗)

=
∑

i∈I0

E

[

1 {Ei g 1/(³µi|R
∗|)}

|R∗| ( 1

]

f ³ ·
∑

i∈I0

µiE[Ei] f Ã0³ f ³. (1)

Where the first inequality follows because 1{x g 1} f x for all x g 0, the second follows from Ei being
an e-value for each i ∈ I0, and the last is due to Ã0 f 1.

When we have an infinite stream of hypotheses, we know the following is true

sup
R∈R(α)

FDP(R) = lim
t→∞

sup
R∈R(α),R¦[t]

FDP(R).

Thus, by taking an expectation over all the terms in the above equation, we get

E

[

sup
R∈R(α)

FDP(R)

]

= lim
t→∞

E

[

sup
R∈R(α),R¦[t]

FDP(R)

]

f Ã0³ f ³,

where the equality is by the Fatou-Lebesgue theorem and the last two inequalities are by (1).

This immediately implies SupFDR control for online e-BH, since the rejection sets Roe-BH
t are

self-consistent for all t.

Theorem 2.2. The online e-BH procedure controls the SupFDR at level ³ under arbitrary dependence
between the e-values.

The existing state-of-the-art method for OnlineFDR control under arbitrary dependence of the
e-values is e-LOND [34]. In the following subsection, we show that e-LOND even provides SupFDR
control and that online e-BH uniformly improves e-LOND.

2.2 Online e-BH uniformly improves e-LOND

The e-LOND algorithm [34] rejects hypothesis Ht, if Et g (³e-LOND
t )−1, where

³e-LOND

t := ³µt
(

|Re-LOND

t−1 |+ 1
)

and Re-LOND

t := {i f t : Ei g (³e-LOND

i )−1}.

It follows immediately that Re-LOND
t ¦ Re-BH

t for all t ∈ N, where Re-BH
t is the rejection set of the

online e-BH procedure at step t. Hence, online e-BH uniformly improves e-LOND, meaning that the
former makes at least the same discoveries as the latter on every run. Xu and Ramdas [34] only proved
FDR control for e-LOND at fixed times. We note that e-LOND is also a self-consistent procedure so
its SupFDR control follows immediately from Proposition 2.1.

Proposition 2.3. The e-LOND procedure [34] controls SupFDR at level ³ under arbitrary dependence
between the e-values.

The power gain of the online e-BH method compared to e-LOND is illustrated in Figure 1. The
left plot shows that the online e-BH method substantially improves e-LOND when the signal of the
alternative hypotheses is weak. This improvement is slightly smaller when the signal strong (right
plot). The simulation setup is in Appendix F.
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Figure 1: Power comparison of online e-BH and e-LOND for different proportions of false hypotheses.
In the left (right) plot, the signal of the alternative is weak (strong).

Remark 1. Xu and Ramdas [33, 34] improved the e-BH and e-LOND procedure, respectively, using a
randomization approach. The idea is to define a randomized e-value as

Sα̂t
(Et) := max(1{Et g ³̂t}Et,1{U f Et³̂t}³̂

−1
t ),

where ³̂t is a potentially data-dependent significance level obtained by e-BH or e-LOND and U a
uniform random variable on [0, 1] that is independent of Et and ³̂t. Xu and Ramdas [33] showed that
if Et is an e-value, then Sα̂t

(Et) is a valid e-value as well. Furthermore, Sα̂t
(Et) g ³̂−1

t iff Et g ³̂−1
t U ,

implying that e-BH and e-LOND are uniformly more powerful when applied to Sα̂t
(Et) instead of Et.

One could consider applying the same idea to online e-BH. However, note that we do not have one
data dependent level with the e-BH but a sequence of levels that is increasing overtime due to future
rejections. Hence, one would need to fix a time at which the stochastic rounding approach is applied.
For example, one could set

³̂t := ³µt(k
∗
t−1 + 1).

In this case stochastic rounding would increase the probability of rejecting Ht at time t. However, if
we do not reject, then Sα̂t

(Et) = 0 and there would not be any chance to obtain a rejection at a later
stage. In this case, online e-BH becomes equivalent to the randomized e-LOND procedure. One could
also consider applying stochastic rounding at the (potentially data-adaptive) time Ä at which entire
testing process was stopped. In this case, stochastic rounding could only lead to additional rejections
at the very end and online e-BH becomes a weighted generalization of the randomized e-BH procedure
by Xu and Ramdas [33]. In the next section, we consider a deterministic rounding approach which also
leads to improved e-values. However, in contrast to stochastic rounding, it does not allow to round to
data-adaptive levels.

2.3 Boosting the online e-BH procedure

If additional information about the marginal or joint distribution of the e-values is available, then the
online e-BH procedure can be improved. We call this process “boosting” in line with the same term
being used for e-BH [31]. We demonstrate the following three forms of boosting in this paper.

1. Boosting when information about the marginal distribution is available.

2. Boosting when information about the marginal distribution is available and the e-values are
locally dependent.

3. Boosting when information about the marginal distribution is available and the e-values are
positive regression dependent on a subset (PRDS).
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While the first and third form are online extensions of the boosting techniques by Wang and
Ramdas [31], the second form of boosting is new and particularly useful in the online setting. Online
e-BH controls the SupFDR under the first two boosting types and the OnlineFDR under the third
boosting type. In the remaining part of the section, we describe the first form of boosting, which
is the cornerstone for all three methods. The details for the second and third form are provided in
Appendix A.

We first reformulate the boosting method by Wang and Ramdas [31] which makes it easier to use
it for our purposes; however, our approach is equivalent to theirs. Let K be the number of hypotheses.
Define the truncation function T : [0,∞] → [0,K/³] as

T (x) :=

K
∑

k=1

1

{

K

k³
f x <

K

(k − 1)³

}

K

k³
with T (∞) :=

K

³
,

where we again use the convention 1/0 = ∞. Note that T (x) only takes values in the set {K/(³k) :
k ∈ {1, . . . ,K}} ∪ {0}. Let X1, . . . XK be any nonnegative random variables (not necessarily e-values).
The idea of boosting is that e-BH applied on X1, . . . , XK rejects the same hypotheses as if applied on
T (X1), . . . , T (XK). Hence, if T (X1), . . . , T (XK) are valid e-values for H1, . . . , HK , e-BH applied on
X1, . . . , XK controls the SupFDR (even though the latter may not be e-values). We call such random
variables Xt boosted e-values. A simple approach is to set Xt = btEt, where Et is a valid e-value, for
some boosting factor bt g 1. Note that such a boosting factor always exists, since T (Et) f Et.

For a given (µt)t∈N we can simply extend this approach to the online e-BH procedure by defining
the truncation function for the t-th e-value as

Tt(x) :=

∞
∑

k=1

1

{

1

k³µt
f x <

1

(k − 1)³µt

}

1

k³µt
, with Tt(∞) :=

1

³µt
, (2)

and the convention 0 · ∞ = 0. In case of µt = 1/K, t f K, we have Tt = T for all t f K. We capture
the result about boosted e-values in the following proposition.

Proposition 2.4. Let X1, X2, . . . be a sequence of nonnegative random variables such that EHt
[Tt(Xt)] f

1 for all t ∈ N. Then the online e-BH procedure applied to X1, X2, . . . controls the SupFDR at level ³.

Due to the infinite sum in (2) it might be difficult to determine boosted e-values exactly. In
Appendix A.1, we propose two different approaches to handle this and demonstrate the application in
a Gaussian testing setup.

A power comparison of online e-BH with boosted and non-boosted e-values is shown in Figure 2.
The left plot shows the results for weak signals and the right plot for strong signals. Boosting improves
the power in both cases.

2.4 Online e-BH with p-values

In the following, we consider applying the online e-BH procedure to È1(P1), È2(P2), . . ., where each Pt

is a p-value for Ht and Èt : [0, 1] → [0,∞], t ∈ N is a function with Èt(0) = ∞. Wang and Ramdas [31]
called Èt a decreasing transform and (for simplicity) assumed that È1 = È2 = . . . = È for a strictly
decreasing and continuous function È. Here, we allow a different function Èt for each hypothesis Ht

and only assume that Èt is nonincreasing and left-continuous. To clarify this change of definition,
we use the term nonincreasing transform instead. Define the generalized inverse of a nonincreasing
transform Èt as

È−1
t (x) := max{u ∈ [0, 1] : Èt(u) g x}.

With this, boosting (see Section 2.3) can be applied to derive the following result, which is formally
proven in the Appendix G.1.

Proposition 2.5. Let È1, È2, . . . be nonincreasing transforms.

9
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Figure 2: Power comparison of online e-BH with non-boosted and boosted e-values for different
proportions of false hypotheses. In the left (right) plot, the signal of the alternative is weak (strong).
The simulation setup is described in Appendix F.

(i) If for every t it holds that

∞
∑

k=1

1

k³µt

(

È−1
t

(

1

k³µt

)

− È−1
t

(

1

(k − 1)³µt

))

f 1,

then the online e-BH procedure applied to the random variables È1(P1), È2(P2), . . . controls the
SupFDR at level ³.

(ii) If the p-values P1, P2, . . . are PRDS (see Appendix E for a formal definition of PRDS) and for
all t it holds that

sup
k∈N

1

k³µt
È−1
t (1/(k³µt)) f 1,

then the online e-BH procedure applied to the random variables È1(P1), È2(P2), . . . controls the
OnlineFDR at level ³.

In the offline case, the Benjamini-Hochberg (BH) procedure [3] is equivalent to the e-BH procedure
applied to the random variables 1/P1, . . . , 1/Pk [31]. One could derive an online BH procedure in the
same way by setting the decreasing transforms to Èt(x) = 1/x = È−1

t (x). Proposition 2.5 immediately
implies that this online BH procedure controls the OnlineFDR, if the p-values are PRDS. In the next
section, we study the behavior of the online BH procedure more deeply.

Remark 2. Benjamini and Yekutieli [4] introduced an offline p-value based multiple testing procedure
with FDR control (BY procedure) and Blanchard and Roquain [5] generalized this using a shape

function ´ (BR procedure). Let ´(k) =
∫ k

0
x d¿(x), k ∈ {1, . . . ,K}, for some probability measure ¿ on

(0,∞). Blanchard and Roquain [5] proved that FDR control is guaranteed under arbitrary dependence
of the p-values, if the hypotheses with the k∗ smallest p-values are rejected, where

k∗ = max







k ∈ {1, . . . ,K} :
K
∑

j=1

1{Pj f ´(k)³/K} g k







.

The BY procedure is obtained by setting ´(k) = k/ℓK , where ℓK :=
∑K

i=1
1
i
≈ log(K). Fisher [13]

generalized the method by Blanchard and Roquain [5] to the online ARC case in the same manner as
we did for the e-BH procedure by using general weights (µt)t∈N instead of 1/K for each hypothesis
(see (6) in Appendix for dt = ∞). We call this the online BR procedure in the following. However,
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Fisher [13] only showed FDR control for the online BR procedure at fixed times. In Appendix G.2, we
show how the online BR procedure can be written as a special case of the online e-BH procedure using
Proposition 2.5 (i) and therefore provides SupFDR control.

Remark 3. Javanmard and Montanari [16] introduced a version of their LOND algorithm with
OnlineFDR control under arbitrary dependence and later Zrnic et al. [37] generalized this method
to the reshaped LOND (r-LOND) procedure. The r-LOND procedure rejects hypothesis Ht, if
Pt f ³r-LOND

t , where

³r-LOND

t := ³µt´t
(

|Rr-LOND

t−1 |+ 1
)

and Rr-LOND

t−1 := {i f t− 1 : Pi f ³r-LOND

i }

and ´t is some shape function. In Appendix G.2 we show that r-LOND could be derived as a special
case of a boosted e-LOND procedure and therefore also provides SupFDR control under arbitrary
dependence of the p-values.

3 The online BH procedure

In the same manner as for e-values, one can define an online ARC version of the p-value based
Benjamini-Hochberg (BH) procedure [3], or the online BH procedure for short. Recall, as before, that
(µt)t∈N is a nonnegative sequence that sums to one. Then, define:

RoBH

t := {i f t : Pi f k∗t³µi} , t ∈ N, where

k∗t = max







k ∈ {1, . . . , t} :
t
∑

j=1

1{Pj f k³µj} g k







with the convention max(∅) = 0. Again, note that applying the offline BH procedure to the p-values
P1, . . . , Pt at each time t would not define an online ARC procedure.

The online BH procedure is a special instance of the TOAD framework under positive dependence
by Fisher [13], which is obtained if no decision deadlines are specified for the TOAD algorithm, meaning
that dt = ∞ for all t ∈ N. However, the great generality of the TOAD framework leads to a certain
notational overhead and complexity that is unnecessary to define and analyze the online BH procedure,
leading to this special case being lost. The online BH procedure, we argue, is a simple and important
algorithm which deserves particular emphasis.

As with the online e-BH procedure, if we set µ1, . . . , µK to equal 1/K and the rest of the µ sequence
to equal zero, one simply obtains the BH procedure at time K, so online BH is a generalization of the
BH procedure. Although OnlineFDR control of the online BH procedure under PRDS is implicitly
proven by Fisher [13], we also provide a short, direct proof in the next subsection. Furthermore, we
prove that the online BH procedure additionally controls the SupFDR in case of PRDN (Section 3.2)
and WNDN (Section 3.3) p-values, and SupFDRK for arbitrary p-values (Section 3.4).

3.1 OnlineFDR control under positive dependence

The most general condition under which FDR control of the BH procedure is usually proven is positive
regression dependence on a subset (PRDS) [4] (see Definition 3 in Appendix E). The online BH
procedure also controls the OnlineFDR under PRDS.

Proposition 3.1. If the null p-values are PRDS, the online BH procedure ensures that OnlineFDR f ³.

Proof. For any t ∈ N, we have

FDRt =
∑

ift,i∈I0

E

[

1{Pi f k∗t³µi}

k∗t

]

f
∑

ift,i∈I0

³µi f ³,

where the first inequality follows from Lemma 1 (b) of Ramdas et al. [21].

11



In the next subsection, we prove that online BH controls the SupFDR at a slightly inflated level
under a weaker assumption than PRDS.

Remark 4. In the same manner as online e-BH uniformly improves e-LOND (Section 2.2), online
BH uniformly improves the LOND procedure introduced by Javanmard and Montanari [16] which
controls the OnlineFDR under PRDS [37]. The LOND procedure is exactly defined as e-LOND but
with p-values instead of e-values, meaning Ht is rejected if Pt f ³µt(|R

LOND
t−1 |+ 1) where |RLOND

t−1 | is
the number of previous rejections. Another uniformly more powerful online procedure than LOND
is provided by the LORD algorithm [17, 19], which is only known to control the OnlineFDR under
independence of the p-values. In Appendix C we compare LORD to our online BH procedure.

Remark 5. It is easy to see from the proof above that online BH even controls the OnlineFDR at level
³Ã0. In order to avoid this conservatism in the offline case, Storey and colleagues [25, 26] introduced an
adaptive BH procedure by estimating Ã0. In Appendix D, we introduce the natural online generalization
of this Storey-BH procedure and prove its OnlineFDR control under independence of the p-values.

3.2 SupFDR control under positive dependence

We will now show that the online BH procedure can also control the SupFDR, albeit at a slightly
inflated level. Note that RoBH

t is clearly a self-consistent set (just like online e-BH) — it is the largest
such set when R is restricted to be a subset of {1, . . . , t}. Recall that R(³) is the set of self-consistent
rejection sets. The following theorem provides a weighted version of the FDR-linking theorem (i.e.,
weighted analog of Theorems 1 and 2 in Su [27]).

Theorem 3.2 (Weighted FDR-linking theorem). Under any dependence structure among p-values
(Pt)t∈[K] for fixed K ∈ N, we can ensure the following is true:

E

[

sup
R∈R(α)

FDP(R)

]

f Ã0³+ Ã0³

1
∫

π0α

FDR0(x)

x2
dx,

where FDR0(x) is the FDR of the weighted BH procedure applied only to the p-values corresponding to
the null hypotheses, i.e., I0, with weights (µt/Ã0)t∈I0 .

The proof of Theorem 3.2 is provided in Appendix G.3. We can use the weighted FDR-linking

theorem to prove an upper bound of the expected maximum FDP over all self-consistent discovery sets
under positive regression dependence on the nulls (PRDN). PRDN is a positive dependence assumption
that is restricted to the dependency between null p-values and is therefore weaker than PRDS (see
Appendix E for a definition of PRDN).

Proposition 3.3. For PRDN p-values (Pt)t∈N, we have that

E

[

sup
R∈R(α)

FDP(R)

]

f Ã0³(1 + log((Ã0³)
−1)) f ³(1 + log(³−1)).

Proof. Similar to the proof of Proposition 2.1, we first prove the above result restricted to a finite set
of K hypotheses. Since under positive regression dependence and the global null, the weighted Simes
p-value is a valid p-value, we have that FDR0(x) = x under PRDN. Then, we get the upper bounds in
the proposition statement for the finite K hypotheses by carrying out the integration in the upper
bound of the weighted FDR-linking theorem and the fact that the function f(x) = x(1 + log(1/x))
is increasing in (0, 1]. Now, we apply the same limit argument as seen in Proposition 2.1 to show
this upper bound extends to the infinite hypotheses case as well. Thus, we have shown our desired
result.

The SupFDR control of the online BH procedure is now a direct result of Proposition 3.3.
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Theorem 3.4. The online BH procedure ensures that SupFDR f ³(1 + log(³−1)) when the p-values
(Pt)t∈N are PRDN.

Note that the bound in Theorem 3.4 is sharp in the following sense.

Theorem 3.5. For every ε > 0, there exists a K0 ∈ N, and ³′ ∈ (0, 1] such that, for online BH,

SupFDR g StopFDR > (1− ε)³(1 + log(³−1))

for all ³ f ³′ where the first K0 hypotheses are null and have p-values that are i.i.d. uniform random
variables, and the remaining hypotheses are non-null with p-values set to 0. Note that this p-value
distribution satisfies the PRDN conditon, meaning that the SupFDR upper bound in Theorem 3.4 is
unimprovable.

We defer the proof of this result to Appendix G.5.
Notably, the p-value configuration constructed in Theorem 3.5 ensures that all p-values are

independent. Hence, it is not even possible to improve the SupFDR bound in Theorem 3.4 under
stronger assumptions like PRDS or independence.

3.3 SupFDR control under negative dependence

We can also show that online BH controls the SupFDR under some kind of negative dependence,
following a similar approach to Chi et al. [6]. Like positive dependence, there are many notions of
negative dependence. A comprehensive overview of the different notions and a comparison between
these is given by Chi et al. [6]. In addition, they showed that the BH procedure controls the FDR
at a slightly inflated level, if the p-values are weakly negatively dependent on the nulls (WNDN) (see
Appendix E for a formal definition of WNDN). The following result can be shown about weighted
self-consistent procedures under negative dependence.

Proposition 3.6. For WNDN p-values (Pt)t∈N, we have that

E

[

sup
R∈R(α)

FDP(R)

]

f ³(3.18 + log(³−1)).

The above result, when restricted to a finite set of hypotheses, follows from the proof of Theorem 19
in Chi et al. [6], as the proof utilizes an application of the FDR-linking theorem with a bound on the
type I error of the Simes p-value under WNDN. Prop. 12 in Chi et al. [6] shows that the weighted Simes
p-value has identical type I error under WNDN as unweighted Simes, so we can apply the weighted
FDR-linking theorem to obtain the upper bounds in the proposition for finite hypotheses using an
identical argument to the aforementioned proof. Combining this result with the limit argument seen in
Proposition 3.3, we can obtain the full result for an infinite stream of hypotheses.

The following theorem shows that online BH even controls SupFDR under WNDN at an inflated
level and is a direct result of Proposition 3.6.

Theorem 3.7. The online BH procedure ensures that SupFDR f ³(3.18+log(³−1)) when the p-values
(Pt)t∈N are WNDN.

The sharpness result in Theorem 3.5 holds on an instance of independent p-values (which are
WNDN) that achieve SupFDR and StopFDR which approaches ³(1+ log(³−1)). Thus, the dependence
on log(³−1) cannot be improved, but it may still be possible to show a sharper constant than 3.18.

Propositions 3.3 and 3.6 directly imply that the LOND algorithm [16, 37] (see Remark 4) and the
TOAD algorithm for positively dependent p-values [13] (see (6) in Appendix B with ´t(k) = k) also
have the prescribed SupFDR bounds, since both also satisfy the weighted self-consistency condition.

Proposition 3.8. LOND and TOAD ensure that SupFDR f ³(1+log(³−1)) when (Pt)t∈N are PRDN,
and SupFDR f ³(3.18 + log(³−1)) when (Pt)t∈N are WNDN.
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3.4 SupFDRK control under arbitrary dependence

In Remark 2 we mentioned that the online BR procedure controls the SupFDR, which is formally proven
in Appendix G.2. Suppose we have some fixed number K ∈ N of hypotheses and let ´(k) = k/ℓK for

k ∈ {1, . . . ,K}, where ℓK =
∑K

i=1
1
i
≈ log(K). It follows immediately, that online BR applied at level

³ℓK rejects exactly the same hypotheses as online BH applied at level ³. Hence, online BH controls
the SupFDRK at the inflated level ³ℓK .

Theorem 3.9. The online BH procedure ensures that SupFDRK f ³ℓK for all K ∈ N under arbitrarily
dependent p-values.

Online BH does not control the SupFDR under arbitrary dependence if the number of hypotheses
is infinite. To see this, note that Guo and Rao [15, Theorem 5.1 (iii)] showed that there exist p-value
configurations such that the FDR of the BH procedure equals exactly min(³ℓK , 1), where K is the
number of total hypotheses. Hence, for every ³ there is a K such that the FDR of the BH procedure
equals 1. Since the BH procedure is a special case of online BH for every K, the online BH procedure
can neither control the OnlineFDR, the StopFDR nor the SupFDR at a level below 1 under arbitrary
dependence.

4 Related literature

In the following, we give a brief overview of the existing online multiple testing literature divided
according to the different settings and assumptions considered in this paper.

Independence. The online multiple testing framework was introduced by Foster and Stine [14]
and initially focused on online FDR control at fixed times and with independent p-values [17, 20, 19].
The most popular procedures in this setting are the LORD algorithm, which was introduced by
Javanmard and Montanari [17] and later generalized and improved by Ramdas et al. [19], and the
SAFFRON algorithm, which was introduced by Ramdas et al. [20]. We compare the (improved)
LORD algorithm to online BH in Appendix C and SAFFRON to online Storey-BH in Appendix D.
We conclude that the existing methods and our online ARC procedures lead to similar power, however,
our online ARC procedures provide a more balanced and better interpretable weighting. In addition,
online BH even controls the OnlineFDR under PRDS and allows to control the SupFDR at a slightly
inflated level. Such results are not known for LORD nor SAFFRON.

PRDS. The LOND algorithm was introduced by Javanmard and Montanari [16] and proven to
control the OnlineFDR under PRDS by Zrnic et al. [37]. The TOAD algorithm (for PRDS p-values)
by Fisher [13] generalizes LOND by allowing delayed decisions. We proved that LOND and TOAD
also control the SupFDR at a slightly inflated level (under PRDN and WNDN), allowing them to stop
data-adaptively at any time (Section 3.3).

Arbitrary dependence. Javanmard and Montanari [16] introduced a modified version of
the LOND algorithm that provides OnlineFDR control under arbitrary dependence, which was later
generalized by Zrnic et al. [37] to the r-LOND algorithm. With TOAD (for arbitrarily dependent
p-values), Fisher [13] introduced a modification of r-LOND that allows to incorporate decision deadlines.
Recently, Xu and Ramdas [34] introduced e-LOND, providing OnlineFDR control with arbitrarily
dependent e-values. In this paper we showed that r-LOND (Appendix G.2), TOAD (Appendix B) and
e-LOND (Section 2.2) even provide SupFDR control without any additional assumptions and therefore
can be stopped at arbitrary stopping times.

FDR control at stopping times. Xu and Ramdas [32] were the first considering FDR control
at arbitrary stopping times. They introduced SupLORD and showed that it provides valid SupFDR
control. However, they rely on the assumption that the null p-values are valid conditional on all
past p-values, which is a strong assumption close to independence [12]. Other works also considered
FDR control at particular data-adaptive stopping times [37, 13], all relying on some assumption of
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independence or conditional validity. Our paper is the first bringing together arbitrary/positive/negative
dependence and stopping times.

Batching and delayed decisions. Zrnic et al. [36] and Fisher [13] explored the possibility of
increasing power of online procedures by batching multiple hypotheses and allowing delayed decisions,
respectively. They introduced online frameworks where decisions, both acceptances and rejections,
can be reversed until some prespecified decision deadlines. Although Fisher [13] noted that his TOAD
algorithm will never turn a rejected hypothesis into an accepted one, the online ARC framework was
not explicitly mentioned before.

E-values. Multiple testing with e-values was initially considered in the offline setting. Wang
and Ramdas [31] provided with e-BH an analog of the popular Benjamini-Hochberg (BH) procedure [3].
Vovk and Wang [30, 29] considered merging functions for e-values and applying the closure principle
with these. Recently, e-values were also brought up in online multiple testing. Xu and Ramdas [34]
introduced the aforementioned e-LOND and Fischer and Ramdas [10] considered online closed testing
with e-values, proving that e-values are essential for an online true discovery guarantee.

5 Conclusion

Online ARC multiple testing is a flexible and powerful concept. It allows to test hypotheses one at
a time, while ensuring that a rejection remains, regardless of the future. However, by changing the
decision for accepted hypotheses based on future information online ARC procedures are more powerful
than classical online procedures. We showed that the e-BH and BH procedure possess natural online
ARC generalizations.

The online e-BH method controls the SupFDR under arbitrary dependence between the e-values.
This allows to apply the online e-BH procedure at any e-values and to stop data-adaptively at any
time while ensuring valid FDR control. This offers a much higher flexibility than classical online
FDR control at fixed times. We proved that the same flexibility is provided by the existing online
procedures r-LOND [37], e-LOND [34], online BR [5, 13] and TOAD for arbitrarily dependent p-values
[13]. Previously, data-adaptive stopping was only proven under some independence assumption about
the joint distribution of the test statistics.

The p-value based online BH procedure controls the SupFDR at a slightly inflated level when the
p-values are PRDN or WNDN. The same holds for the LOND [17] and the TOAD (for positively
dependent p-values) [13] algorithm.

In Table 3 we list all online procedures with proven SupFDR control under different dependence
assumptions between the p-values or e-values.

Arb. dep. Pos. dep. Neg. dep. Cond. val.

e-
va

lu
e Online e-BH Section 2.1 =⇒ =⇒ =⇒

e-LOND [34] Section 2.2 =⇒ =⇒ =⇒
e-TOAD Section B =⇒ =⇒ =⇒

p
-v

al
u
e

Online BH - Section 3.2∗ Section 3.3∗ -
Online BR Section G.2 =⇒ =⇒ =⇒

r-LOND [37] Section G.2 =⇒ =⇒ =⇒
TOAD (arb. dep.) [13] Section B =⇒ =⇒ =⇒
TOAD (pos. dep.) [13] - Section 3.3∗ Section 3.3∗ -

LOND [17] - Section 3.3∗ Section 3.3∗ -
SupLORD [32] - - - Xu and Ramdas [32]

Table 3: Procedures with proven SupFDR control under different dependence assumptions. The
“implies” symbol indicates that the guarantee is implied by control under arbitrary dependence and
the asterisk that the SupFDR guarantee is provided at a slightly inflated level.
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Here we give a brief overview of the appendix. We begin with a detailed explanation of boosting
under local dependence and PRDS e-values in Section A. In Section B, we introduce e-TOAD, an
e-value version of the TOAD procedure [13], which can be applied in online settings with decision
deadlines. We also show that e-TOAD and TOAD (for arbitrarily dependent p-values) provide SupFDR
control under arbitrary dependence. In Section C, we compare the LORD algorithm [17, 19] with the
online BH procedure. Afterwards, we introduce an online version of the Storey-BH procedure [25, 26]
and compare it to the SAFFRON algorithm [20] (Section D). In Section E, we discuss the considered
notions of positive and negative dependence. In Section F, we describe the simulation setup used in the
paper. In Section G, we provide omitted proofs and derivations for results stated in the main paper.

A Details about boosting with online e-BH

In this section, we provide several details regarding the boosting techniques briefly described in
Section 2.3. In Section A.1, we demonstrate how the infinite sum in (2) can be handled. In Section A.2,
we show how the boosting approach can be further improved when information about a local dependence
structure is available while maintaining SupFDR control. We show in Section A.3 how OnlineFDR
control can be guaranteed while employing an improved boosting technique for PRDS e-values.

A.1 Handling the infinite sum in the truncation function used for boosting

In this section we propose two approaches to handle the infinite sum in (2) and demonstrate their
application in a Gaussian testing problem. The first approach is a conservative one. Here, for each
t ∈ N we define some natural number s ∈ N and set

+T s
t (x) := x1

{

x <
1

s³µt

}

+

s
∑

k=1

1

{

1

k³µt
f x <

1

(k − 1)³µt

}

1

k³µt
. (3)

Obviously, we have Tt(x) f
+T s

t (x) for all s ∈ N and therefore EHt
[+T s

t (Xt)] f 1 implies that Xt is a
boosted e-value. We still have that +T s

t (x) f x such that boosting with +T s
t can only increase power

compared to no boosting.
Another approach is to set

−T s
t (x) :=

s
∑

k=1

1

{

1

k³µt
f x <

1

(k − 1)³µt

}

1

k³µt
= +T s

t (x)− x1

{

x <
1

s³µt

}

(4)

for some natural number s ∈ N. Note that we have −T s
t (x) = Tt(x) for all x g 1/(s³µt) and

−T s
t (x) < Tt(x) for all x < 1/(s³µt). Therefore, applying online e-BH to Xt with EHt

[−T s
t (Xt)] f 1 does

not necessarily control SupFDR. However, we can apply online e-BH to −T s
t (Xt) instead, which provides

SupFDR guarantee since −T s
t (Xt) is a valid e-value. Furthermore, note that Tt[

−T s
t (x)] =

−T s
t (x) for

all x, implying that the e-value −T s
t (Xt) cannot be further improved by boosting if EHt

[−T s
t (Xt)] = 1.

With this approach we do not necessarily improve non-boosted e-values, since Et f Xt does not imply
that Et f

−T s
t (Xt), where f is to be read in an almost sure sense. However, in some situations this is

even more powerful than boosting with (2). For example, suppose we know in advance that the total
number of rejections won’t be larger than r. Then boosting with −T r

t is uniformly more powerful than
boosting with Tt, since e-values smaller than 1/(r³µt) cannot lead to a rejection anyway. If such prior
information is not available one could also adapt s to t, for example, by setting s = +1/µt,. In this
case we could not reject hypotheses with Xt < ³−1, however, all the mass of −T s

t (Xt) is put to values
greater than ³−1, increasing the probability for a rejection at larger levels.

Wang and Ramdas [31] have introduced several concrete examples how the boosted e-values
X1, X2, . . . could be chosen in specific testing problems. In the following we extend one of them to the
online case.
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Example 1. Consider an e-value Et that is obtained from a likelihood ratio between two normal
distributions with variance 1 but a difference ¶ > 0 in means

Et = exp(¶Zt − ¶2/2),

where Zt follows a standard normal distribution under the null hypothesis Ht. Hence, Et is a log-
normally distributed random variable with parameters (−¶2/2, ¶) if Ht is true. Suppose we are looking
for a boosted e-value of the type Xt = btEt for some boosting factor bt g 1. Using (3), we can calculate

EHt
[+T s

t (btEt)] = bt

[

1− Φ

(

¶

2
+ log(s³µtbt)/¶

)]

+

s
∑

k=1

[Φ (¶/2− log([k − 1]³µtbt)/¶)− Φ (¶/2− log(k³µtbt)/¶)] /(k³µt),

where Φ is the CDF of a standard normal distribution. Thus, we can set this equation to 1 and solve
for bt numerically. For ³ = 0.05, µt = 0.01, ¶ = 3 and s = 10, we obtain a boosting factor of bt = 1.165.
For increasing s, the method becomes less conservative and the boosting factor increases. For s = 100
we obtain bt = 1.174, but increasing s further only leads to marginal improvements. Using (4), we
obtain

EHt
[−T s

t (btEt)] =
s
∑

k=1

[Φ (¶/2− log([k − 1]³µtbt)/¶)− Φ (¶/2− log(k³µtbt)/¶)] /(k³µt).

In this case, the same parameters as before yield a boosting factor of bt = 3.071. This boosting factor
decreases if s increases. For s = 100, we obtain bt = 1.73. The boosting factors obtained by these two
approaches converge to the same limit for s → ∞. Note that with the latter approach we need to
plugin the e-value −T s

t (btEt) instead of btEt into the online e-BH algorithm. However, if we expect
the number of rejections to be small, we can increase power substantially using −T s

t .

In the following section, we show how the boosting approach can be further improved if additional
information about the joint distribution of the e-values is available.

A.2 Boosting under local dependence

In many online applications not all e-values are arbitrarily dependent. Indeed, e-values that lie far
in the past often have no influence on the current testing process. For this reason, Zrnic et al. [37]
introduced a local dependence structure that allows arbitrary dependence for e-values close together in
time while e-values in the distant past should be independent. Precisely, (Et)t∈N are called locally
dependent with lags (Lt)t∈N, if for all t ∈ I0 it holds that

Et §§ Et−Lt−1, . . . , E1.

If Lt = t− 1, the e-values are arbitrarily dependent. If Lt < t− 1, the e-value Et is independent of
some of the past e-values.

In the following, we will show that such local dependence information can be exploited to further
boost the e-values and increase power. For this, we define a lag-dependent truncation function.

TLt

t (x) =
1

(k∗t−Lt−1 + 1)³µt
1

{

x g
1

(k∗t−Lt−1 + 1)³µt

}

+

∞
∑

k=k∗
t−Lt−1

+2

1

{

1

k³µt
f x <

1

(k − 1)³µt

}

1

k³µt

= min

(

Tt(x),
1

(k∗t−Lt−1 + 1)³µt

)

,
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where Tt is the truncation function in (2). Note that TLt

t (x) f Tt(x) for all x and Lt. Hence, the
boosted e-values using TLt

t can potentially be larger than the ones obtained by Tt. The idea of
TLt

t is that if we know that k∗t−Lt−1 of the independent past hypotheses were rejected, Ht can be
rejected if Et g [(k∗t−Lt−1 + 1)³µt]

−1. Hence, there is no additional gain if Et is strictly larger than
[(k∗t−Lt−1 + 1)³µt]

−1. We can then use this information for improved boosting.

Proposition A.1. Let X1, X2, . . . be a sequence of nonnegative random variables such that EHt
[TLt

t (Xt)] f
1 for all t ∈ N. Then the online e-BH procedure applied with X1, X2, . . . controls the SupFDR at level
³.

Finding such X1, X2, . . . is particularly simple if a sequence of locally dependent e-values (Et)t∈N

with lags (Lt)t∈N and known marginal distributions is available. In this case one can simply calculate
EHt

[TLt

t (btEt)|k
∗
t−Lt−1], since Et is independent of k∗t−Lt−1.

Analogously to (3) and (4), we can also define +TLt,s
t and −TLt,s

t , respectively. In the following we
continue Example 1 to quantify the improvement gain due to local dependence.

Example 2. Consider Example 1 but suppose the e-value Et is independent of the e-values E1, . . . , Et−Lt−1

for some Lt ∈ {1, . . . , t− 1}. We obtain

EHt
[+TLt,s

t (btEt)|k
∗
t−Lt−1]

= bt [1− Φ (¶/2 + log(s³µtbt)/¶)]

+
[

1− Φ
(

¶/2− log((k∗t−Lt−1 + 1)³µtbt)/¶
)]

/[(k∗t−Lt−1 + 1)³µt]

+

s
∑

k=k∗
t−Lt−1

+2

[Φ (¶/2− log([k − 1]³µtbt)/¶)− Φ (¶/2− log(k³µtbt)/¶)] /(k³µt).

For the parameters ³ = 0.05, µt = 0.01, ¶ = 3, s = 100 and k∗t−Lt−1 = 2, this leads to the boosting
factor bt = 1.265. For a larger number of previous (independent) rejections k∗t−Lt−1 = 10, the boosting
factor also increases to bt = 1.541. Furthermore, we have

EHt
[−TLt,s

t (btEt)|k
∗
t−Lt−1] = EHt

[+TLt,s
t (btEt)|k

∗
t−Lt−1]− bt [1− Φ (¶/2 + log(s³µtbt)/¶)] .

In this case we obtain a boosting factor of bt = 1.940 for k∗t−Lt−1 = 2 and bt = 2.639 for k∗t−Lt−1 = 10.

The gain in power obtained by exploiting information about the local dependence structure to
improve boosting is illustrated in Figure 2. It is seen that using information about locally dependent
e-values improves power significantly.
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Figure 3: Power comparison of online e-BH with boosted and boosted e-values under local dependence
for different proportions of false hypotheses. In the left (right) plot the signal of the alternative is weak
(strong). The simulation setup is described in Section F.
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In the p-value literature, it is usually started with a procedure under independence which is made
conservative when local dependence is present. Interestingly, we take the other direction and start
with a procedure that works under arbitrary dependence and improve it when information about a
local dependence structure is available. A similar behavior for the BH and e-BH procedure was noted
by Wang and Ramdas [31].

Remark 6. Another advantage of local dependence is that µt can be measurable with respect to
Ft−Lt−1 = Ã(E1, . . . , Et−Lt−1) and thus depend on the previous data. In fact, to choose µt predictable
it is even sufficient that Et is valid conditional on Ft−Lt−1, which is slightly weaker than independence.
To see this, just note that for all t ∈ I0 it holds that

E[µtEt] = E[E[µtEt|Ft−Lt−1]] = E[µtE[Et|Ft−Lt−1]] f E[µt].

A.3 Boosting with PRDS e-values

Wang and Ramdas [31] also introduced a more powerful boosting technique than the one we described
in Section A.1 which works under positive regression dependence on a subset (PRDS) [4] (see Section
E for a formal definition of PRDS for e-values). In the following we extend this method to the online
setting. However, the proof technique of FDR control is different in this case such that SupFDR
control can no longer be guaranteed and we only show OnlineFDR control.

Let the truncation function Tt be as in (2). Instead of bounding the expected value of the truncated
e-value Tt(Xt), Wang and Ramdas [31] proposed to bound the probability

sup
k∈N

1

k³µt
PHt

(Xt g 1/(k³µt)) = sup
xg0

xPHt
(Tt(Xt) g x) f 1, (5)

if the Xt, t ∈ N, are PRDS. In the following, we show that this condition can also be used for boosting
in the online case.

Proposition A.2. Let X1, X2, . . . be a sequence of nonnegative random variables such that (5) holds
for all t ∈ N. Then the online e-BH procedure applied with X1, X2, . . . controls the OnlineFDR at level
³, if the random variables X1, X2, . . . are PRDS.

Proof. Let t ∈ N be fixed and X = (X1³µ1, . . . , Xt³µt). Then f(X) = 1/(k∗t ( 1), where

k∗t = max







k ∈ {1, . . . , t} :
t
∑

j=1

1{Xj g 1/(k³µj)} g k







,

is a nonincreasing function. Furthermore, the range of f is given by If = {1, 1/2, 1/3, . . .} and

sup{x ∈ If : x f Xi³µi} = Ti(Xi)³µi.

With this, Lemma 1 (ii) in [31] implies that

E[f(X)1{Xi³µi g f(X)}] f sup
xg0

xP(Ti(Xi)³µi g x)

for all i ∈ I0, i f t. Since

sup
xg0

xP(Ti(Xi)³µi g x) f ³µi ô sup
xg0

xP(Ti(Xi) g x) f 1,

we obtain

FDRt =
∑

i∈I0,ift

E

[

1{Xi g 1/(³µi(k
∗
t ( 1))

(k∗t ( 1)

]

f
∑

i∈I0,ift

sup
xg0

xP(Ti(Xi)³µi g x) f ³
∑

i∈I0,ift

µi f ³.
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By Markov’s inequality, EHt
[Tt(Xt)] f 1 implies that (5) is satisfied. Hence, boosting with (5) is

more powerful than boosting with EHt
[Tt(Xt)] f 1.

B The e-TOAD procedure

First, we review the TOAD procedure by Fisher [13] under arbitrary dependence. Afterwards, we
introduce e-TOAD, an e-value analog of the TOAD procedure and show that e-TOAD provides
SupFDR control. By showing that TOAD is a special case of e-TOAD we also conclude SupFDR
control for the TOAD procedure.

In the online setup with “decision deadlines” by Fisher [13] each Ht comes with a decision deadline
dt g t, which means that the decision for hypothesis Ht can be changed until time dt. For example, if
dt = t for all t ∈ N, the classical online setup is obtained. Furthermore, let Ct = {i f t : di g t} be
the set of currently “active” hypotheses. We will see that TOAD and e-TOAD never turn a rejected
hypothesis into an accepted hypothesis and therefore are online ARC procedures.

Initialize R0 = ∅. The TOAD algorithm under arbitrary dependence [13] is recursively defined as
follows.

RTOAD

t :=
{

i ∈ {1, . . . , t} : Pi f ³µi´i(k
∗
min(di,t)

)
}

, t ∈ N, where (6)

k∗t = |RTOAD

t−1 \ Ct|+max







k f |Ct| :
∑

jft,j∈Ct

1{Pj f ³µj´j(|R
TOAD

t−1 \ Ct|+ k)} g k







.

The shape functions ´i are defined the same as in Section 2.4. The TOAD procedure under arbitrary
dependence is an online generalization of the BR procedure [5]. Note that Fisher [13] only allowed to
use the same shape function ´ = ´i for all i ∈ N. This can cost a lot of power, particularly if dt <∞.
For example, suppose d1 = 1, which means that the decision for the first hypothesis must be made
immediately. Then we could choose ´1(1) = 1, meaning to put all mass on k∗1 = 1 since this is the only
relevant value. This would not be possible if the same shape function must be used for all hypotheses,
which usually implies ´1(1) < 1. We will show that TOAD even controls the SupFDR for individual
shape functions by proving that it is a special case of e-TOAD.

The e-TOAD algorithm is defined by

Re-TOAD

t :=
{

i ∈ {1, . . . , t} : Ei g (³µik
∗
min(di,t)

)−1
}

, t ∈ N, where

k∗t = |Re-TOAD

t−1 \ Ct|+max







k f |Ct| :
∑

jft,j∈Ct

1{Ej g [³µj(|R
e-TOAD

t−1 \ Ct|+ k)]−1} g k







.

Note that e-TOAD becomes online e-BH in case of dt = ∞ for all t and e-LOND if dt = t for all t.
Analogously to Section 2, the SupFDR control of the e-TOAD algorithm follows because the e-value

Ei, i ∈ {1, . . . , t}, of every rejected hypothesis at time t satisfies

Ei g 1/(³µi|R
e-TOAD

t |).

Proposition B.1. The e-TOAD procedure provides SupFDR control at level ³ under arbitrary
dependence between the e-values.

Define the truncation function as

TTOAD

t (x) =

dt
∑

k=1

1

{

1

k³µt
f x <

1

(k − 1)³µt

}

1

k³µt
with Tt(∞) =

1

³µt
.
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Then e-TOAD applied to X1, X2, . . . rejects the same hypotheses as if applied to
TTOAD
1 (X1), T

TOAD
2 (X2), . . . . Therefore, applying e-TOAD to X1, X2, . . . ensures SupFDR con-

trol, if E[TTOAD
t (Xt)] f 1 for all t ∈ I0. With this, we can prove the following proposition in the exact

same manner as we proved Proposition 2.5.

Proposition B.2. Let È1, È2, . . . be nonincreasing transforms such that for every t it holds that

dt
∑

k=1

1

k³µt

(

È−1
t

(

1

k³µt

)

− È−1
t

(

1

(k − 1)³µt

))

f 1.

Then the e-TOAD procedure applied to the random variables È1(P1), È2(P2), . . . controls the SupFDR
at level ³.

Define Èt such that È−1
t (1/(³µtk)) = ³´t(k)µt. Then Èt(Pt) g 1/(³µtk) iff Pt f È−1

t (1/(³µtk)) =
³´t(k)µt. Hence, e-TOAD applied to È1(P1), È2(P2), . . . rejects the same hypotheses as TOAD applied
to P1, P2, . . . . In the exact same manner as in Proposition G.1, we can show that È1, È2, . . . satisfy
Proposition B.2. Hence, TOAD controls the SupFDR.

Proposition B.3. The TOAD procedure (6) provides SupFDR control at level ³ under arbitrary
dependence between the p-values.

C Online BH versus LORD

In this section, we compare the LORD procedure [17, 19] with the online BH procedure. Javanmard and
Montanari [17] introduced the LORD algorithm with OnlineFDR control which was later generalized
and improved to the LORD++ algorithm by Ramdas et al. [19]. Here we follow the latter presentation,
but call it LORD instead of LORD++ for brevity.

Let ³LORD
1 , ³LORD

2 , . . . be individual levels such that

∑t
i=1 ³

LORD
i

|RLORD
t | ( 1

f ³ for all t ∈ N, where RLORD

t := {i f t : Pi f ³LORD

i }. (7)

Ramdas et al. [19] showed that any online procedure defined by the rejection sets RLORD
t , t ∈ N,

controls the OnlineFDR if the null p-values are independent from each other and the non-nulls; and the
thresholds ³LORD

i , i ∈ N, are nonrandom and nondecreasing functions of the past rejection indicators
1{P1 f ³LORD

1 }, . . . ,1{Pi−1 f ³LORD
i−1 }.

Let ³oBH
i,t := k∗t³µi, t ∈ N and i f t, be the individual significance level for hypothesis Hi at time

t obtained by the online BH procedure (Section 3). Since k∗t = |RoBH
t |, it is easy to see that the

individual levels ³oBH
i,t , i f t, also satisfy the LORD condition (7). However, ³oBH

i,t is not a function of
only the first i− 1 rejections, but depends on all rejections up to step t. Therefore, online BH is not a
special instance of the LORD algorithm, but online BH and LORD are both allowed to spend the
same amount of significance level up to each time t. For this reason, online BH and LORD should
have similar power, and the difference between these procedures lies in a different weighting of the
hypotheses (with online BH all individual levels gain from rejections, while with LORD only future
levels gain from rejections).

This is verified via simulations in Figure 4, where we compare online BH with a special instance of
the LORD algorithm implemented in the R package onlineFDR [22]. The simulation setup is described
in Section F. Recall that (µt)t∈N is a sequence that sums to one and which defines the weighting of
the different hypotheses. In Figure 4, we set µt = qt−1(1− q) with q = 0.99 in the left plot and with
q = 0.999 in the right plot for both procedures. That means, in the right plot the µ sequence is
decreasing slower. It is easy to see that LORD performs better than online BH in the left plot and
worse in the right plot. In addition, online BH with q = 0.999 performs nearly the exact same as
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LORD with q = 0.99. This supports our theoretical reasoning that the difference between these two
procedures lies in a different weighting of the hypotheses, but both procedures spend the same amount
of significance level.

We think one advantage of online BH compared to LORD is that its weighting is easier to interpret.
If µi = 2µj for i ≠ j, then Hi will be tested at twice the level compared to Hj with online BH,
regardless of the number of rejections. In contrast, the weighting of LORD strongly depends on the
number of rejections in a complex nonlinear manner. Another important advantage of online BH
compared to LORD is that online BH controls the OnlineFDR under PRDS, while LORD is only
known to control it under independence. In addition, we proved that online BH even controls the
SupFDR at slightly inflated levels under PRDN and WNDN. Such results are not known for the LORD
procedure. However, of course LORD is an online procedure in the strict sense, which can be desirable
in certain applications, while online BH is an online ARC procedure. We conclude that there is much
to be gained by relaxing the online requirement to an online ARC requirement: we get a procedure
with seemingly comparable power, but with a much stronger suite of type-I error control guarantees.
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Figure 4: Power comparison of online BH and LORD for different proportions of false hypotheses.
In the left plot the sequence (µt)t∈N decreases fast (q = 0.99) and in the left plot it decreases slow
(q = 0.999). The simulation setup is described in Section C.

D The online Storey-BH procedure

Similarly as for e-BH and BH, one can define an online version of the Storey-BH procedure [25, 26],
which we call just SBH in the following. In this section, we introduce the online SBH procedure, prove
its OnlineFDR guarantee and compare it with the existing SAFFRON [20] procedure.

Recall that (µt)t∈N is a sequence that sums to one. In addition, let ¼ ∈ [³, 1) be a user-defined
constant and

Ã̂t
0 =

maxi∈N µi +
∑∞

i=1 µi1{Pi > ¼ ( i > t}

(1− ¼)
. (8)

Then the online SBH method is defined by the rejection sets

RoSBH

t :=
{

i f t : Pi f min(k∗t³µi/Ã̂
t
0, ¼)

}

, t ∈ N,

where k∗t = max







k ∈ {1, . . . , t} :

t
∑

j=1

1{Pj f min(k³µj/Ã̂
t
0, ¼)} g k







,
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with the convention max(∅) = 0. Note that for µ1 = . . . = µK = 1/K, we have Ã̂K
0 =

1+
∑K

i=1
1{Pi>λ}

(1−λ)K .

In this case the online SBH procedure recovers the SBH procedure [25, 26] and therefore is a true
generalization of it. In addition, since Ã̂t

0 is nonincreasing in t, the online SBH procedure is indeed an
online ARC procedure.

Proposition D.1. If the null p-values are independent from each other and the non-nulls, the online
SBH procedure ensures that OnlineFDR f ³.

Proof. Let Ã̂t,−j
0 =

maxi∈N γi+
∑∞

i=1,i ̸=j γi1{Pi>λ(i>t}

(1−λ) . For any t ∈ N, we have

FDRt =
∑

ift,i∈I0

E

[

1{Pi f min(k∗t³µi/Ã̂
t
0, ¼)}

k∗t

]

=
∑

ift,i∈I0

E

[

1{Pi f min(k∗t³µi/Ã̂
t,−i
0 , ¼)}

k∗t

]

f
∑

ift,i∈I0

E

[

1{Pi f k∗t³µi/Ã̂
t,−i
0 }

k∗t

]

=
∑

ift,i∈I0

E

[

E

(

1{Pi f k∗t³µi/Ã̂
t,−i
0 }

k∗t

∣

∣

∣

∣

∣

(Pj)j∈{1,...,t}\i

)]

(i)

f
∑

ift,i∈I0

³µiE

[

1

Ã̂t,−i
0

]

(ii)

f
∑

ift,i∈I0

³µi
1

maxjft µj +
∑

jft,j∈I0,j ̸=i µj

= ³
∑

ift,i∈I0

µi
maxjft µj +

∑

jft,j∈I0,j ̸=i µj
f ³.

Inequality (i) follows by Lemma 1 (a) and inequality (ii) by Lemma 3 of Ramdas et al. [21].

An existing online procedure that adapts to the proportion of true hypotheses is SAFFRON [20],
which is defined as LORD (see Section C) but with the condition

∑t
i=1 ³

SAFFRON
i

1{Pi>λ}
1−λ

|RSAFFRON
t | ( 1

f ³ for all t ∈ N, where RSAFFRON

t := {i f t : Pi f ³SAFFRON

i } (9)

instead of (7). The relation between SAFFRON and online SBH is similar to the relation between
LORD and online BH (see Section C). That means, the levels defined by online SBH satisfy (9).
However, in contrast to the LORD vs. online BH case, online SBH satisfies the SAFFRON condition
(9) only in a conservative manner due to the additional summand maxi∈N µi in (8). We think this is
required, since SAFFRON only allows to use the information Pi > ¼i for all levels ³SAFFRON

j , j > i,
while online SBH uses it for all j ∈ N. Consequently, online SBH can lead to a more balanced weighting.
Overall, we think both procedures lead to a comparable power and the main difference lies in a different
weighting of the hypotheses, just as for online BH and LORD.

This can also be seen in Figure 5, where we compare online SBH with SAFFRON as implemented
in the R package onlineFDR [22], which should be compared to Figure 4. Both procedures were applied
with ¼ = 0.5, the remaining simulation setup is the same as in Section C.
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Figure 5: Power comparison of online SBH and SAFFRON for different proportions of false hypotheses.
In the left plot the sequence (µt)t∈N decreases fast (q = 0.99) and in the left plot it decreases slow
(q = 0.999). The simulation setup is described in Section D.

E Positive and negative dependence

Here we give the formal definitions of the used positive and negative dependence assumptions made in
the paper, which are online extensions of the classical definitions [4, 27, 6, 31].

Let us first define two different positive dependence assumptions that one can make on p-values.
The first is the PRDS condition for FDR control of the BH procedure that was introduced by Benjamini
and Yekutieli [4]. We generalize this typical PRDS definition to the online setting (i.e., applicable to
countably infinite hypotheses) in the following way.

Definition 3 (PRDS). A set D ¦ R
n is called increasing if x ∈ D implies that y ∈ D for all y g x. For

a sequence of p-values (Pt)t∈I with a countable index set I, we say that they have positive regression
dependence on a subset (PRDS) if, for any finite I ′ ¦ I, increasing set D ¦ R

I′

, and null index i ∈ I0,
we have that P ((Pt)t∈I′ ∈ D | Pi f s) is increasing over s ∈ (0, 1].

Note that this definition is equivalent to the standard PRDS definition when I is finite. Further,
this is the PRDS definition implicitly used by Zrnic et al. [37]. For example, PRDS is satisfied if the
p-values corresponding to true hypotheses are independent from all the other p-values. However, it
also holds under some kind of positive dependence [4].

A slightly weaker notion of positive dependence is PRDN [27], which is restricted to the dependency
between p-values that correspond to true hypotheses.

Definition 4 (PRDN). For a sequence of p-values (Pt)t∈I with a countable index set I, we say that they
have positive regression dependence within nulls (PRDN) if, for any finite subset of the null hypotheses
I ′ ¦ I0, increasing set D ¦ R

I′

, and null index i ∈ I0, we have that P ((Pt)t∈I′ ∈ D | Pi f s) is a
increasing over s ∈ (0, 1].

Likewise, this is the generalization of PRDN from Su [27] to the online setting.
The only type of negative dependence we consider in this paper is WNDN.

Definition 5 (WNDN). We say that a sequence of p-values (Pt)t∈I are weakly negatively dependent
within nulls (WNDN) if P

(
⋂

i∈A Pi f s
)

f
∏

i∈A P (Pi f s) for any A ¦ I0 and s ∈ [0, 1].

Similarly as for positive dependence, there are many types of negative dependence. A comparison
of the different types is given by Chi et al. [6].

Since e-values and p-values are working on inverse scales, the PRDS condition is also flipped around
when considering e-values [31].

Definition 6 (PRDS for e-values). A set D ¦ R
n is called decreasing if x ∈ D implies that y ∈ D

for all y f x. For a sequence of e-values (Et)t∈I with a countable index set I, we say that they have
positive regression dependence on a subset (PRDS) if, for any finite I ′ ¦ I, decreasing set D ¦ R

I′

,
and null index i ∈ I0, we have that P ((Et)t∈I′ ∈ D | Ei g s) is decreasing over s ∈ (0,∞).
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This definition of PRDS for e-values ensures that if the p-values (Pt)t∈N are PRDS and (Èt)t∈N are
nonincreasing transforms, then the random variables (Èt(Pt))t∈N are PRDS in the e-value sense.

F Simulation setup

We simulated m = 100 independent trials, each consisting of n = 1000 hypothesis pairs of the form
Ht : Xt ∼ N(0, 1) vs. HA

t : Xt ∼ N(µA, 1), t ∈ N, where µA > 0 is the signal strength. In case
of µA = 3.5 we speak of weak signal and in case of µA = 4.5 of strong signal. To obtain locally
dependent e-values, we first generated normally distributed random variables (Z1, . . . , Zn) with mean 0,
variance 1 and a batch dependence structure. That means we have batches Bi = {Z(i−1)b+1, . . . , Zib},
i ∈ {1, . . . , n/b}, such that random variables contained in the same batch have correlation 0.5 while
random variables from different batches are independent. The final test statistics were obtained by
Xt = Zt + µAΠA, where ΠA ∼ Ber(ÃA) and ÃA ∈ {0.1, 0.2, . . . , 0.9} gives the probability that HA

t is
true.

The e-values were calculated as likelihood ratio ϕµA
(Xt)/ϕ0(Xt), where ϕµ denotes the density of

a normal distribution with variance 1 and mean µ. The boosted e-values were obtained as described
in Examples 1 and 2 using the truncation functions −T s

t and −TLt,s
t with s = n, respectively. In

all simulations concerning e-values we set the batch-size to b = 20 and applied all procedures with
µt = qt−1(1− q), t ∈ {1, . . . , n}, where q = 0.99.

The p-values were calculated by Pt = Φ(−Zt). When considering p-values, we generated independent
test statistics (b = 1) and only considered weak signals (µA = 3.5).

The code for the simulations is available at https://github.com/fischer23/online_e-BH.

G Omitted proofs and derivations

In this section, we provide the omitted proofs or derivations for results that were mentioned in the
main paper.

G.1 Online e-BH with p-values

In this subsection, we provide the formal proof of Proposition 2.5.

Proof. If we prove that E[Tt(Èt(U))] f 1, where Tt is given by (2) and U ∼ U [0, 1], then the first claim
follows by Proposition 2.4. For this, note that

E[Tt(Èt(U))] =

∞
∑

k=1

P

(

1

k³µt
f Èt(U) <

1

(k − 1)³µt

)

1

k³µt

=

∞
∑

k=1

P

(

È−1

(

1

k³µt

)

g U > È−1

(

1

(k − 1)³µt

))

1

k³µt

=
∞
∑

k=1

1

k³µt

(

È−1
t

(

1

k³µt

)

− È−1
t

(

1

(k − 1)³µt

))

f 1.

The second claim follows immediately by Proposition A.2, since

sup
k∈N

1

k³µt
P(Èt(U) g 1/(k³µt)) = sup

k∈N

1

k³µt
P(U f È−1

t (1/(k³µt)))

= sup
k∈N

1

k³µt
È−1
t (1/(k³µt)).
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G.2 SupFDR control of online BR and r-LOND

In the following proposition, we show how the online BR procedure can be written as a special instance
of the online e-BH method and therefore provides SupFDR control under arbitrary dependence between
the e-values.

Proposition G.1. The online BR procedure provides SupFDR control at level ³ under arbitrary
dependence between the p-values.

Proof. Let ´t be a shape function and Èt be chosen such that È−1
t (1/(³µtk)) = ³´t(k)µt. Note

that Èt(Pt) g 1/(³µtk) iff Pt f È−1
t (1/(³µtk)) = ³´t(k)µt. Hence, online e-BH applied to

È1(P1), È2(P2), . . . rejects the same hypotheses as online BR applied to P1, P2, . . . . Furthermore,
it holds that

∞
∑

k=1

1

k³µt

(

È−1
t

(

1

k³µt

)

− È−1
t

(

1

(k − 1)³µt

))

=

∞
∑

k=1

1

k
(´t(k)− ´t(k − 1))

=

∞
∑

k=1

∫ k

k−1

x/k d¿(x)

f

∫ ∞

0

1 d¿(x)

= 1.

Consequently, the SupFDR control follows by Proposition 2.5.

In the same manner as we derived the online BR procedure as special case of the boosted online
e-BH procedure, one could also derive r-LOND as a special case of a boosted e-LOND procedure. For
this, one can just define the truncation function

TLOND

t =

t
∑

k=1

1

{

1

k³µt
f x <

1

(k − 1)³µt

}

1

k³µt
with Tt(∞) =

1

³µt

and then do the same steps as above. Consequently, r-LOND also provides SupFDR control.

Proposition G.2. The r-LOND procedure provides SupFDR control at level ³ under arbitrary
dependence between the p-values.

G.3 Weighted FDR-Linking theorem

Here we provide the proof of Theorem 3.2.

Proof. We follow a similar proof structure as the proof of Theorem 1 in Su [27]. By the definition of
self-consistency, we note that any R ∈ R(³) and t ∈ R, the following inequality holds:

|R| g +(³µt)
−1Pt,. (10)

Thus, we get an upper bound on the supremum over FDP

sup
R∈R(α)

FDP(R) = max
R∈R(α)

|I0 ∩R|

|R| ( 1
f max

R∈R(α)

|I0 ∩R|

max{+(³µt)−1Pt, : t ∈ R} ∪ {1}
.

The inequality is a result of applying the bound in (10) to every t ∈ R and taking the best possible
bound.
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Let K0 := |I0| and P null
1 , . . . , P null

K0
and µnull

1 , . . . , µnull
K0

denote the corresponding weights. Now,

define P null

(1) , . . . , P
null

(K0)
and µnull

(1) , . . . , µ
null

(K0)
be the null p-values and weights sorted in ascending order

based on (µnull
i )−1P null

i . We continue the derivation of the upper bound as follows.

sup
R∈R(α)

FDP(R) f max
R∈R(α)

|I0 ∩R|

+(³µnull

(|I0∩R|))
−1P null

(|I0∩R|),
f max

j∈[K0]

j

+(³µnull

(j) )−1P null

(j) ,

f
³

minj∈[K0](jµ
null

(j) )−1P null

(j)

=
Ã0³

minj∈[K0](jµ
null

(j) /Ã0)
−1P null

(j)

. (11)

The first inequality is noting that there exists a null p-value and corresponding weight of index i ∈ R
that satisfies (µnull

(i) )−1P null

(i) f (µnull

(|I0∩R|))
−1P null

(|I0∩R|) simply by the cardinality of I0 ∩ R. The second
inequality is by changing the indexing set of the maximum, and the third inequality is by dropping the
ceiling function in the denominator.

Now we note that

P null-Simes := min
j∈[K0]

(jµnull

(j) /Ã0)
−1P null

(j)

is precisely the weighted Simes p-value applied only to the p-values and weights of the null hypotheses,
i.e., I0. One rejects the weighted Simes p-value if and only if the weighted BH procedure makes any
discoveries at level ³ ∈ [0, 1].

We now observe that trivially, we can augment the bound in (11) to get that

sup
R∈R(α)

FDP(R) f
( Ã0³

P null-Simes

)

' 1. (12)

Now, let F denote the c.d.f. of P null-Simes. Thus, we get the following derivation:

E

[

sup
R∈R(α)

FDP(R)

]

f E

[( Ã0³

P null-Simes

)

' 1
]

= P
(

P null-Simes f Ã0³
)

+ E

[ Ã0³

P null-Simes
· 1
{

P null-Simes > Ã0³
}

]

= F (Ã0³) +

1
∫

π0α

Ã0³

x
dF (x).

The first inequality is by plugging in (12). The second equality follows from casing on the value of
P null-Simes into disjoint cases, and the last equality comes from the definition of F .

Using integration by parts, it follows that

E

[

sup
R∈R(α)

FDP(R)

]

f F (Ã0³) + Ã0³



F (1)−
F (Ã0³)

Ã0³
+

1
∫

π0α

F (x)

x2
dx





= Ã0³+ Ã0³

1
∫

πα

F (x)

x2
dx = Ã0³+ Ã0³

1
∫

πα

FDR0(x)

x2
dx.

The last equality follows from the equivalence between Type I error of weighted Simes p-value and
FDR of weighted BH under the global null (i.e., when applied to only null p-values). Hence we have
shown our desired result.
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G.4 Relationship between SupFDR and StopFDR

We noted in the introduction that a bound on the FDR at all stopping times also implies a bound on
the SupFDR. In this section we give a formal derivation of this result.

Definition 7. Recall that a filtration (Ft)t∈N is a sequence of nested sigma-algebras, and stopping
times (w.r.t. (Ft)) are random variables Ä ∈ N such that 1 {Ä = t} is measurable w.r.t. Ft.

Theorem G.3. Let (Wt)t∈N be a nonnegative process that is adapted to some filtration (Ft), meaning
Wt is measurable with respect to Ft for all t ∈ N. Furthermore, let (Wt)t∈N be almost surely bounded
(with respect to P) by some constant c g 1 and E[Wτ ] f 1 for all stopping times Ä with respect to (Ft).
Then, E[supt∈NWt] f 1 + log(c).

Proof. By Ville’s inequality, we have that

P

(

sup
t∈N

Wt > ³−1

)

f ³

for all ³ ∈ [0, 1]. Thus, we can use the tail bound integration formula for expectation of nonnegative
random variables:

E

[

sup
t∈N

Wt

]

f

∞
∫

0

P

(

sup
t∈N

Wt g s

)

ds

=

c
∫

0

P

(

sup
t∈N

Wt g s

)

ds f

c
∫

0

s−1 ' 1 ds

=

1
∫

0

ds+

c
∫

1

s−1 ds = 1 + log(c)

Corollary G.4. If a sequence of discovery sets (Rt) ensures StopFDR control at level ³, then SupFDR
is controlled at level ³(1 + log(³−1)).

The above theorem can also be seen as similar to defining an adjuster [24, 9, 8, 7] for upper bounded
e-processes or calibrator [28, 29] for lower bounded anytime-valid p-values.

G.5 Sharpness of SupFDR and StopFDR control of online BH

We will show that the SupFDR and StopFDR control of online BH under PRDN p-values in Theorem 3.4
is sharp, as claimed in Theorem 3.5. First, we cite the following construction from Su [27] for a
worst-case construction of the FDP of picking non-nulls as a function of the realized null p-values. Let
there be K fixed hypotheses, and without loss of generality let I0 = [|K0|], i.e., the nulls come first.
Now, define the following quantities:

j∗ := argmax
j∈I0

j/+KP null

(j) /³,,

K∗
1 := (+KP null

(j∗)/³, − j∗) ( 0,

where P null

(1) , . . . , P
null

(K0)
are the p-values corresponding to null hypotheses ordered from smallest to

largest. Consider the following adversarial construction of non-null p-values for t ∈ {K0 + 1, . . . ,K}.

Pt = 1− 1 {t f K0 +K∗
1} . (13)
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Fact 1 (Lemma 2.4 of Su [27]). Let RBH be the discovery set of the BH procedure at level ³ applied
to any p-values where the non-null p-values are set in the manner of (13). When K∗

1 f K −K0, then
FDP(RBH) = maxj∈I0(j/+Kp

null

(j∗)/³,) ' 1.

Figure 6 shows how we derive our problem instance for the online ARC setting from the afore-
mentioned offline construction. Let µt = K−1 for t ∈ [K] and µt = 0 for t > K. We let the first K0

p-values be identical to the offline setting and the remaining hypotheses be non-null with p-values set
to 0. Now we note the following.

Lemma G.5. For the above choice of p-values and weights for the online setting, we have that
RoBH

K0+K∗
1

= RBH and as a result, we get the following identity for the FDP when K∗
1 f K − K0:

FDP
(

RoBH
K0+K∗

1

)

= (maxj∈I0 j/+Kp
null

(j∗)/³,) ' 1.

Proof. Note that we can map p-value realizations of our offline construction to our online construction
simply by setting the null p-values to be equivalent but setting all non-null p-values to be 0 in the online
construction. Applying weighted BH with weights of µt = K−1 to the first K0 +K∗

1 hypotheses is
exactly equivalent to applying standard BH to K hypotheses where the first K0 +K∗

1 hypotheses have
identical p-values to the weighted BH p-values, and the remaining p-values are 1, as the hypotheses
with p-values of 1 will never be rejected. Thus, when combined with Fact 1, we can justify the above
lemma.
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Figure 6: Visualization of our p-value construction for the online ARC setting that results in online
BH producing discovery sets that are equal to the discovery sets in Su [27] produced by the (offline)
BH procedure (which maximize the FDR). This occurs whenever K∗

1 f K −K0, and we formalize the
discovery equivalence result in Lemma G.5.

Now, Su [27] showed that the FDP expression in the above lemma was sufficient to justify sharpness
of the FDR bound when the null p-values are chosen to be i.i.d. uniform random variables.

Fact 2 (Theorem 6 of Su [27]). For every ε > 0, there exists a K, K0 < K, and ³′ ∈ (0, 1) such that
FDR(RBH) > (1− ε)³(1 + log(³−1)) for all ³ f ³′ where the null p-values are i.i.d. uniform random
variables, and the non-null p-values are set in accordance with (13).

Now, we note that K0+K
∗
1 is a stopping time since it can be determined solely by the null p-values

(which we will have observed by the K0th time step). Thus, if we apply our Lemma G.5 to the above
fact, we have shown our desired result in Theorem 3.5.

As a result, SupFDR and StopFDR control of online BH is sharp in the PRDN case, and the
log(³−1) factor is unimprovable in the WNDN case.

Remark 7. We will also note what our example here means w.r.t. the sharpness of certain self-consistent
procedures in the offline multiple testing setting.
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• If we are thinking about the self-consistent set that has the maximum FDP over all self-consistent
sets, then our construction does indicate that under i.i.d. null and non-null p-values, a FDR
lower bound of ³(1 + log(³−1)) is sharp.

• However, we can also restrict ourselves to discovery sets along the “BH path”, i.e., self-consistent
sets that correspond to to the smallest k p-values for some k ∈ [K]. The discovery sets used for
our example would not be along the BH path, since the null p-values would not be 0 almost
surely, and anything along the BH path would discover all the non-null p-values first (as they
are all 0). In this case, we would still have i.i.d. null p-values, but some of the non-null p-values
must be adversarially chosen in the sense of Su [27], i.e., setting the K∗

1 non-null p-values to be
1, to restrict the “BH path” to reach the sharp lower bound of ³(1 + log(³−1)).
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