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improvements of Markov’s, Chebyshev’s

and Chernoff’s inequalities

Aaditya Ramdas, Tudor Manole

Abstract. We present simple randomized and exchangeable improvements of
Markov’s inequality, as well as Chebyshev’s inequality and Chernoff bounds.
Our variants are never worse and typically strictly more powerful than the
original inequalities. The proofs are short and elementary, and can easily
yield similarly randomized or exchangeable versions of a host of other in-
equalities (for example, martingale inequalities by Doob and Ville) that em-
ploy Markov’s inequality as an intermediate step. We point out some sim-
ple statistical applications involving tests that combine dependent e-values.
In particular, we uniformly improve the power of universal inference, and
obtain tighter betting-based nonparametric confidence intervals. Simulations
reveal nontrivial gains in power (and no losses) in a variety of settings.
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1. INTRODUCTION

Consider a standard probability space (€2, 7, P). Markov’s

inequality (MI) states that for any real-valued random
variable X defined on this space and constant a > 0, we
have

(1) P(X| > 1/a) < a-E[X]].

If X is nonintegrable, then the inequality trivially holds, so
the reader may implicitly assume going forward that we
deal with integrable X, without loss of generality. We now
present three inequalities that are all strictly stronger than
Markov’s inequality, with an eye towards applications and
improvements of other inequalities.

1.1 The exchangeable Markov inequality (EMI)

The following stronger version of Markov’s inequality
was recently noted by Manole and Ramdas (2023). Given
its seemingly basic and fundamental nature, it may exist
elsewhere in the literature. We will refer to it as the ex-
changeable Markov inequality (EMI).

Recall that Xi,..., X, are called exchangeable if the
joint distribution of (X, ..., X)) equals that of (X, ...
for any permutation 7 of {1,...,n}. A sequence X;, Xs,...,
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) Xn(n))

is called exchangeable if Xi,..., X, are exchangeable for
any n > 1. Of course, iid random variables are exchange-
able, but so are identical copies of the same random vari-
able. Also, exchangeable random variables have the same
expectation.

THeOREM 1.1 (Exchangeable Markov Inequality). For
any exchangeable sequence Xi,X,,... sequence of inte-
grable random variables and for any a > 0,

1 t
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P(Hr? 1:

> l/a)
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<P[3t> 1: ;; IX;| > 1/a) <a-E[X].

The same claim holds for a finite set of exchangeable ran-
dom variables.

This is clearly a strictly stronger statement than Markov’s
inequality which effectively makes an identical claim only
at t =1 (or when all random variables are identical).

The proof of Theorem 1.1 is short (the first inequality is
obvious, so we focus on the second). The exchangeabil-
ity of X1, Xy, ... implies that the process (Z?Zl X /n)n>l
forms a nonnegative reverse martingale; indeed, this fol-
lows from the fact that it can be rewritten as (E[|X; ||8,1])n>1,
where (&,),>1 denotes the exchangeable filtration gener-
ated by Xi,X5,... (defined for instance in Manole and
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Ramdas (2023) and references therein). The claim then
follows by invoking the time-reversed Ville inequality (re-
capped in Theorem 5.1 below, for completeness).

We point out immediately that the above inequality re-
sults in an improvement to subsampled universal infer-
ence (Wasserman et al., 2020), where repeated sample
splitting gives rise to exchangeable “split likelihood ra-
tios” on different subsets of the data. We return to this
topic in more detail in Section 7.

A useful corollary of the EMI is as follows. Let
Xi,...,X, be any set of (potentially nonexchangeable)
arbitrarily dependent random variables. Let 7 be a uni-

formly random permutation of {1,...,n}. Then, for any
a>0,
3) t
1 E[Xi| +[Xo[+--- + [Xal]
P - Xz 21 <a- .
[ 33l 1)< ;

Here, the original random variables are effectively made
exchangeable by the random permutation, thus allowing
us to invoke the original inequality.

We state a final variant of the inequality. Suppose we
take N arbitrarily dependent random variables and put
them in a bag. Suppose Xy(1), . . . , Xz(n) be n samples drawn
uniformly at random with or without replacement from
this bag. Then, we have

€] t
1 E[IX1| + X + - + [Xnl]
Pl sup — Xnl=1/al<a- .
1<t£n t ;| ”(l>| / N

This holds because the sampling process induces the ex-
changeability required for (2) to be invoked on the other-
wise non-exchangeable random variables.

The aforementioned three variants of EMI are all rela-
tively weak, in the sense that they do not improve with
increasing t,n,N: there is no concentration of measure
really happening, and indeed there cannot really be any
since we have assumed so little about the underlying
random variables (a first moment for each, and either
an exchangeable or an arbitrary dependence structure).
Hence we are under no illusions that these can be “much”
stronger than the original Markov’s inequality.

1.2 The uniformly-randomized Markov inequality
(UMI)

Another improvement of Markov’s inequality is the fol-

lowing uniformly-randomized Markov inequality (UMI).

TrEOREM 1.2 (Uniformly-randomized Markov Inequal-
ity). Let X be a nonnegative random variable, and let
U ~ Unif(0, 1) be independent of X. Then, for any a >0,

(5) P(X > UJa) = E[min(aX, 1)] < a - E[X].

The equality above is nontrivial even for nonintegrable
X. Further, that equality becomes an inequality < if U is

stochastically larger than uniform. Last, if X is bounded,
that is X € [0,C] almost surely for some C > 0, then the
inequality in (5) holds with equality for any a < 1/C.

One may consider the first equality in (5) as Markov’s
equality. The proof is simple:

(6) P(X>U/a)=E[P(U <aX|X)] = E[min(aX, 1],

yielding the claim. As mentioned above, if X < 1/a al-
most surely, then (5) holds with equality, removing all
looseness in Markov’s inequality. Further, the statement
is nontrivial for nonintegrable X. For example, when
X is a standard Cauchy distribution and a = 0.05, we
obtain P(|X| > U/a) actually equals (20 + log(401) —
40tan~1(20))/(207) ~ 0.127, but Markov’s inequality
only states that P(|X| > 1/a) is at most 0.127.

Clearly, UMI is strictly stronger than MI. Noting that
E[U] = 1/2 gives an intuitive idea of the extent of the
gain. The proof is so simple that the above inequality
may have been previously noted by other authors. But
it appears to not be commonly taught or broadly known,
and we have not found any source containing it so far.
Since the UMI also holds if U is stochastically larger than
uniform, Theorem 1.2 also gives an alternative proof to
Markov’s inequality (by choosing U = 1).

Remark 1.3.  What happens when Markov’s inequal-
ity holds with equality? This only happens in a few rare
cases, but it does happen, and in these cases UMI also
holds with equality. For example, take the discrete dis-
tribution with point masses at 0 and 2, with probabil-
ity half each, so that the mean is one. For a = 1/2, we
have {X > 2} ={X =2} and thus P(X > 2) = 1/2, meaning
Markov’s holds with equality. In this case, UMI also holds
with equality, because the event {X > 2U} is almost surely
equal to the event {X =2}, since U > 0 almost surely. To
summarize, Markov’s inequality is only tight for a discrete
random variable taking values in {0, 1/a}, while the UMI
holds with equality for any random variable taking values

in [0,1/al.

We again note that the UMI improves the recent method
of universal inference (Wasserman et al., 2020), by reject-
ing the null hypothesis when the split likelihood ratio (or
its variants like the crossfit or subsampled likelihood ra-
tio) exceed U/« rather than 1/@. We return to this “ran-
domized universal inference” in Section 7.

Another particular application of UMI was recently and
independently noted as a passing remark, for a different
context, in a recent paper by Ignatiadis et al. (2024). It
is known that, given an e-value E (defined in Section 6),
the mapping from E +— 1/E is an admissible e-to-p cal-
ibrator (Vovk and Wang, 2021) (that converts an e-value
into a p-value). But this admissibility result only applies
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to deterministic maps. After proving that P/E is a valid
p-value where P is a p-value and E L P, Ignatiadis et al.
(2024) note that this implies U/E is also a valid (random-
ized) e-to-p calibrator that converts an e-value E into a
p-value using independent randomization U, thus render-
ing 1/E as inadmissible if randomization is allowed. We
expand on this type of application in Section 6.

Last, it turns out that the UMI and EMI can be com-
bined into a single statement that implies both; this is
postponed to Theorem 5.3.

1.3 The additively-randomized Markov inequality
(AMI)

Instead of multiplicative randomization (as done in the
previous subsection), we may consider additive random-
ization. In this context, Huber (2019) recently proved an
interesting “smoothed Markov” inequality: for any non-
negative X and constant € > 0,

E[X]

(N P(X+B>¢€)< ,
2e

where B is an independent uniform random variable on
[—€,€]. However, while the right-hand side halves the
bound of Markov’s inequality (as his paper title sug-
gests), the left-hand side is not directly comparable. In-
deed, when calculating P(X > € — B), the right-hand side
€ — B is not always bigger than e. Hence, it appears that
the bound is not in general comparable to Markov’s in-
equality. Huber derives many interesting consequences of
this inequality, including extensions to Chebyshev’s and
Chernoft’s inequalities, and once again they appear in-
comparable to the original inequalities.

We present the following result, which (unlike Huber’s)
is stronger than Markov’s inequality.

ProposiTion 1.4 (Additively-randomized Markov In-
equality). Let € > 0. Given a nonnegative random vari-
able X, and an independent random variable A ~ Unif(0, €),
it holds that

®) P(X?E—A)S@.

The proof is simple. Since P(A > € — x) = x/e for x < e,
the left-hand side simplifies to

P(A > e—X) =E[P(A > e — X|X)] = E[min(X, €)]/e,

implying the claim.

It is also not hard to see that our additively-randomized
Markov inequality (Proposition 1.4) is actually equivalent
to our earlier uniformly-randomized Markov inequality
(Theorem 1.2). To see this, write A = €U, where U is uni-
form on [0,1]. Then PX > e -A)=PX > e(1 - U)) =
P(X 2 €U’), where U’ =1 — U is also uniform on [0, 1].
Writing a = 1/€ equates the two claims.

In Appendix A, we further discuss the relationship of
the above bound to Huber’s smoothed Markov inequal-
ity. We show, in particular, how the two types of bounds
can be used to derive each other, despite having different
interpretations and implications.

In the rest of this paper, we will continue to use our
multiplicative version, because we think the resulting ex-
pressions are cleaner, but readers may find the additive
version more useful in some settings, which is our rea-
soning for recording Proposition 1.4 as a separate result.

1.4 Contributions and paper outline

Having already introduced multiple new generaliza-
tions of Markov’s inequality, we next point out several
new concentration inequalities that result out of their use
and/or combination. Section 2 derives randomized and
exchangeable improvements of Chebyshev’s inequality
(with Appendix C.1 containing an improvement to Can-
telli’s inequality, as a way of exemplifying a more gen-
eral proof technique). Section 3 does the same for Ho-
effding’s inequality, and points out that the same tech-
niques improve any Chernoff bound (extensions of the
Bernstein and empirical Bernstein inequalities are in Ap-
pendix C.2). Section 4 shows how to derive a random-
ized improvement of Ville’s inequality for forward su-
permartingales. Then, Section 5 randomizes the reverse
Ville’s inequality (for reverse submartingales), and as
a consequence derives an inequality that combines the
strengths of the EMI and UMI into a single inequality
(Theorem 5.2). After presenting some of these improve-
ments (and omitting others for brevity), we describe some
statistical applications. Section 6 produces more power-
ful tests using arbitrarily dependent e-values. Section 7
uniformly improves different versions of the recent uni-
versal inference (Wasserman et al., 2020) methodology.
Section 8 improves betting-based tests and confidence in-
tervals that are an exciting development in nonparamet-
ric statistics (Waudby-Smith and Ramdas, 2024). Sec-
tion 9 explores the (often large) improvements in power
obtained in a variety of simulations. Section 10 con-
tains an extended discussion, including concerns about
reproducibility of randomized tests, and the possibility
of avoiding external randomization entirely by utilizing
the internal randomness of the data. Section 11 contains a
brief conclusion.

2. RANDOMIZED & EXCHANGEABLE
CHEBYSHEV INEQUALITY

In the rest of this section and paper, U is always a uni-
form random variable on [0, 1], independent of all other
random variables.
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2.1 Uniformly-randomized Chebyshev inequality

For any random variable X having variance (at most)
o2, Chebyshev’s inequality states that

9) P(IX —EX| > ko) < 1/k>.

The proof is transparent: one just squares both terms
within the probability on the left-hand side, and applies
Markov’s inequality. More generally, consider n > 1 i.i.d.
random variables X, ..., X, with variance o2, and define
X, := (X; + --- + X,,)/n. Chebyshev’s inequality implies
that for any k > 0,

(10) P(lX,, _EX|> k%) <1/12.

Our uniformly-randomized Chebyshev inequality reads as
follows:

THeEOREM 2.1 (Uniformly-randomized Chebyshev In-
equality). Let Xi,...,X, be i.i.d. random variables with
variance o, and let U ~ Unif(0,1) be an independent
random variable. Then, for any k > 0,

(11) P(|X,,—EX|>km/g)< 1/k%.
n

As before, the same result holds when U is stochastically
larger than uniform.

This is clearly a tighter claim than the original: the
probability of exceeding a random (but always smaller)
threshold is identical. Noting that E[ VU] = 2/3 while
Var(VU) = 1/18 gives an intuitive idea of the extent of
the gain: the obtained confidence intervals will be 2/3 as
wide using our improved inequality.

The proof is similar to the UMI (6):

_ U n|X, - EX|?
P|IX, —EX|> ko | = :EPU<—’X
n k202

[np'(n -EX)?
< e
k202

}: 1/k>.

The sole inequality exists, despite U being exactly uni-
n|X,~EXP
202

replaces the resulting inequality by E [% A 1], then
the inequality would turn to equality, but the subsequent
equality (= 1/k?) would turn into an inequality.

It is clear that the i.i.d. assumption above, and in the
following sections, is made for convenience, and can be
weakened to give many variants of the above. It is also
possible to prove a randomized version of Cantelli’s in-
equality (Cantelli, 1929), which is a one-sided analogue
of Chebyshev’s inequality. We present such a result in Ap-
pendix C.

form, because could be larger than one. If one

Remark 2.2. We thank an anonymous referee for
pointing out that by similar lines as above, it is also
possible to derive the following variant of the uniformly-
randomized Chebyshev inequality:

(12) P(|X,, - EX|> kza% <1/

Although this bound has a poor dependence on k, it has a
more favourable dependence on U, since E[U] =1/2 <
E[VU]. A simple derivation shows that equation (12)
is sharper in expectation than the uniformly-randomized
Chebyshev inequality (11) when the value of k is suffi-
ciently small, specifically k < 4/3.

2.2 Exchangeable Chebyshev inequality

If the data are exchangeable rather than i.i.d., we have
the following claim:

Treorem 2.3 (Exchangeable Chebyshev Inequality).
If X1,X5,... is a sequence of exchangeable random vari-
ables with variance at most 0%, then forany k> 1,

(13) P(sup 1X,, - EX| > k(r) <1/
m>1

If the random variables are further assumed to be i.i.d.,

then for any n > 1, we have

_ ko
14 Plsup|X,, —EX|> —
(14) (m;;l m | N7

Note that (13) improves (9) by recovering it either at
m =1 or when all random variables are identical. Unlike
the various bounds presented for the i.i.d. case, (13) does
not improve as the sample size increases. But improve-
ments are not possible without further assumptions, be-
cause when all X; are identically equal to X, the statement
reduces to a claim about X, with no role for concentration
of measure.

The proof is simple: defining R,, := |X,, — EX|?/o2,
a short calculation invoking Jensen’s inequality reveals
that (R,,),>1 1S @ nonnegative reverse submartingale with
E[R;] < 1. The time-reversed Ville inequality (Theo-
rem 5.1) then yields our claim. Essentially the same proof
can be obtained by defining ¥; = |X; — EX|?>/o2. Apply-
ing the exchangeable Markov inequality, we infer that
P(sup,,> Y, > k?) < 1/k?, which implies (13) by Jensen’s
inequality. For the second part, one may apply the same
proof as above, but now only considering the submartin-
gale (R,,)msn Starting at time n. Since Var[R,] = o> /n un-
der the i.i.d. assumption, equation (14) follows.

)< 1/k2.

ReMaRk 2.4.  The above inequalities are not to be con-
fused with Kolmogorov’s generalization of Chebyshev’s
inequality which states that if X1,Xs,...,X, are i.i.d. (not
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just exchangeable) random variables with variance at
most o2, then for any k> 1 and n > 1,
m

(15)  Plsup| Y (X;—EX)|>kovVn|<1/k%.

msn i1
Technically, the i.i.d. assumption above can be weakened
to just independence, and even to a martingale depen-
dence assumption, but we omit these for simplicity.

3. RANDOMIZED AND EXCHANGEABLE
CHERNOFF BOUNDS

We present randomized and exchangeable variants of
Chernoff bounds below. We remark that every Cher-
noff bound, including matrix concentration bounds, or
self-normalized concentration inequalities, are improved
via the same technique presented below (Howard et al.,
2020), but it is impractical to develop every one of these,
so we just pursue three of them: the Hoeffding bound be-
low, Bernstein’s inequality in Appendix C.2, and the em-
pirical Bernstein inequality in Appendix C.3.

3.1 Uniformly-randomized Hoeffding inequality

Recall that X is called o-subGaussian if for any con-
stant A,

(16) E[exp(A(X — E[X]))] < exp(A°0/2).

Hoeffding’s inequality states that if X is o-subGaussian,
then for any € > 0,

(17) P(X —E[X] > 0€) < exp(—€/2).

More generally, considering  i.i.d. o-subGaussian ran-
dom variables Xi,...,X,, the above inequality implies
that

(18) P (X, - E[X] > 0°€) < exp(-ne?/2).

Setting the right-hand side to equal @ € (0, 1), it can be
rewritten as

(19) P(X,,—E[X]?(rﬂ%)éa

An identical bound can also be derived on the other tail.
As we shall soon see, the proof proceeds by multiplying
both sides within the probability by 4 > 0, exponentiating
both sides, then applying Markov’s inequality, and finally
tuning A.

Our uniformly-randomized Hoeffding inequality reads
as follows.

TaeorREM 3.1 (Uniformly-randomized Hoeffding In-
equality). Let Xi,...,X, be ii.d. o-subGaussian ran-
dom variables, and let U ~ Unif(0, 1) be an independent
random variable. Then, for all @ € (0, 1),

(20)

P(X,, —E[X]> 0/ 210gr(ll/a/) +0o

log(U) }< .
\2nlog(1/a)

The above bound also holds in non-i.i.d. settings un-
der a certain martingale dependence structure, where
each X; is o-subGaussian conditional on Xi,...,X;_|,
in which case the left-hand side E[X] is replaced by
iy BIXilX1,. .., Xi—1]/n. We omit the details for simplic-
ity; see Howard et al. (2020) for details.

The original Hoeffding inequality (19) is recovered by
replacing U with 1. Since logU < 0, this is a strictly
tighter bound than the original. Note that E[log U] = —1
and Var(log U) = 1, perhaps giving an intuitive idea of
the extent of the gain.

The proof is simple: definition (16) implies that the
random variable exp(4 Y7, (X; — E[X]) — %20'211) has ex-
pected value at most one. Since it is also nonnegative, we
can apply our randomized Markov’s inequality. Setting

A= 22V g rearranging terms, yields the above
o°n

claim. (Note that A cannot be a function of U for the proof
to work.)

Remark 3.2. The bound in (20) can be rewritten by

setting € = /2log(1/a)/n) as:

] 1
1) P(X,, _E[X]>oe+ T2

U) < exp(—n62/2),

which is easier to compare to (18). Also, a (1 — a)-
confidence interval for the mean E[X] is
log(U)

_ 2log(2/a)
22 X, = \/
(22) * [0- n i V2nlog(2/a)

The usual half-width of Hoeffding’s inequality simply in-
2log(2/a)
n

volves the first term above, that is o . Since
Ellog U] = —1, the expected improvement in width is
o/ +2nlog(2/a), and the expected relative improvement
in width is the ratio of the aforementioned quantities
(latter divided by former), given by 1/(21log(2/a)). This
equals 1/(210g(40)) ~ 0.14 when a = 0.05, meaning we
expect to get about a 14% improvement in width over Ho-
effding’s inequality. Indeed, we observe exactly this factor

of 14% in our later simulations.

ReMark 3.3.  The Chernoff technique, while attractive
due to its simplicity, leads to inefficient tail inequalities.
The original work of Hoeffding (1963, Theorem 1) pro-
vides a simple sharpening of the bound (18) for bounded
random variables. A variety of other strictly tighter tail
bounds have been developed in the literature—see for
instance Bentkus (2002); Bentkus et al. (2006). Each of
these tail bounds can be derived by applying MI to a de-
terministic function of X,, and can therefore be random-
ized using the UMI in the same way that we have done
here. We do not pursue this avenue further in order to
keep our exposition simple. Nevertheless, in Appendix C,
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we derive a general inequality which could be used to de-
rive such sharper randomized tail bounds, and which also
unifies Theorems 1.2, 2.1 and 3.1.

We end by pointing out the possibility that the inter-
val (22) can be empty. Despite this, it maintains its fre-
quentist coverage as discussed in Section 10.3, but we
nevertheless propose a practical fix in Section 10.5.

3.2 Exchangeable Hoeffding Inequality

If the data are exchangeable rather than i.i.d. o-
subGaussian, then one can verify via Jensen’s inequality
that X, is still o-subGaussian. In fact, we have the fol-
lowing stronger claim:

TueorREM 3.4 (Exchangeable Hoeffding Inequality). If
X1, Xo,...
random variables, then for any € > 0,

(23) P(sup X, —EX|>e€

m>1

0') <exp(—€2/2).

If the random variables are further assumed to be i.i.d.,
then we have for any n > 1,

(24) (supIX - EX|> <exp(—€%/2).

i -20> )

Equation (23) improves (17) by recovering it either at
m =1 or when all random variables are identical. The
proof mimics that of Theorem 2.3, except by using Y; =
exp(A(X; — EX) — 2202 /2), which has expectation at most
one.

RemarRk 3.5. The above bound is not to be con-
fused with the Azuma-Hoeffding inequality which states
that if X1,Xs,... are i.i.d. (not merely exchangeable) o-
subGaussian random variables, then for any € > 0,

m

(25 Plsup )’

<n “
msn i=1

(X; —EX) > e Vn | < exp(—€*/2).

Of course, the above inequality holds under a certain type
of martingale dependence structure, that we omit for sim-
plicity. The Azuma-Hoeffding inequality, despite its fame,
is itself loose and was uniformly improved by Howard
et al. (2020).

4. A RANDOMIZED IMPROVEMENT OF VILLE’S
INEQUALITY

There is a fundamental inequality for nonnegative
supermartingales called Ville’s inequality, whose time-
reversed version led to the exchangeable Markov inequal-
ity. In fact, both Ville’s and reverse Ville’s inequalities are
themselves stronger statements than Markov’s inequality.

are an exchangeable sequence of o-subGaussian

Here we ask the question: is there a randomized improve-
ment of these inequalities? The answer is subtle—both
yes and no in some sense—and we return to answer this
question in Section 4.2 after giving a brief introduction to
these inequalities below.

4.1 Ville’s inequality for forward supermartingales

Ville (1939) proved that if X, X,,... form a nonnega-
tive supermartingale (with respect to any filtration) then
for any constant a > 0,

=1

(26) (supX, l/a) <a-E[Xi]
Markov’s inequality, of course, replaces sup,.; X; with
just X, and thus (26) is strictly stronger. This inequality
appears for example in the foundational books of game-
theoretic probability Shafer and Vovk (2005, 2019) and
much of the recent literature on time-uniform concentra-
tion inequalities (Howard et al., 2020, 2021), in which it
is called Ville’s inequality.

The proof is simple. Define the stopping time 7 :=
inf{t > 1: X; > 1/a}, where inf @ = co. For any fixed m,
Markov’s inequality implies

(27) P(T < m) = P(XT/\I’I‘l > l/a) < a'E[XT/\m] < a'E[Xl]a

where the second inequality follows by Doob’s optional
stopping theorem. Letting m — oo and using the bounded
convergence theorem yields P(t < o) < a - E[X;], prov-
ing (26).

4.2 Randomizing Ville’s inequality

Howard et al. (2021, Lemma 3) implies that there are
actually three equivalent statements of Ville’s inequality:
if M = (M;);>0 is a nonnegative supermartingale with re-
spect to a filtration F = (F;)»0, and E[Mj] = 1, then for
any a > 0, the following three statements hold and imply
each other:

(28a)

PEt>20: M, >21/a)<
(28b) P(M; > 1/a) < a for any F-stopping time 7.
(28¢) P(M7t > 1/a) < a for any F,,-measurable
(28d) random time 7.

Despite the fact that the above three statements imply
each other, it turns out that (only) the second of these in-
equalities can be randomized to yield the following result.

THEOREM 4.1.
M with E[Mj] <

For any nonnegative supermartingale
1, we have
(29) P(M. > UJ/a) < afor every F-stopping time T,

where U is (stochastically larger than) uniform on [0, 1]
and is independent of F (and thus independent of M and
T).
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The proof is simple: the optional stopping theorem for
nonnegative supermartingales implies that for any stop-
ping time without restriction, E[M;] < 1, to which we ap-
ply the UMI (5).

The entire discussion above does not require time to
be discrete: all the statements hold in continuous time as
well. In continuous time, it is easy to observe that equa-
tion (28a) cannot be improved by randomization: the in-
equality actually holds with equality for exp(1B; — A%t/2),
where A is any nonzero constant and (B;). is a standard
Brownian motion (see for instance Durrett (2019), Exer-
cise 7.5.2).

We now present a corollary of Theorem 4.1 that has
direct implications for sequential testing.

CoroLLARY 4.1.1 (Randomized Ville Inequality). For
any nonnegative supermartingale M with E[My) < 1, and
any E-stopping time T, we have

30) PAt<t:M;>21/aor M. > U/a)<a,

where U is (stochastically larger than) uniform on [0, 1]
and is independent of F (and thus independent of M
and T).

Given any stopping time 7, (30) is obtained by applying
Theorem 4.1 to the stopping time 7’ := min{t,y}, where
v :=inf{t: M; > 1/a}. We now discuss the implications of
the above randomized Ville inequality.

4.3 Implications for safe anytime-valid inference

Ville’s inequality plays a central role in modern sequen-
tial statistics (Howard et al., 2020, 2021), and in partic-
ular within “game-theoretic statistics and safe, anytime-
valid inference” (Ramdas et al., 2020, 2023). In the lat-
ter context, the above randomized variant of Ville’s in-
equality (29) can improve power in a concrete way. To
understand why, first note that one usually constructs M to
be a nonnegative supermartingale under the null hypothe-
sis, such that it increases to infinity under the alternative.
Then, 7 :=inf{f : M, > 1/a} is a stopping time of special
importance, since Ville’s inequality implies that we can
reject the null if 7 < co, while controlling the type-I error
at level a.

However, this stopping rule is not literally followed due
to its potentially unbounded nature. One may terminate an
experiment even if the above stopping time has not been
reached: in a simulation, we have bounded computational
resources, which means we only really allow for rejection
before some maximum time 7,,x, and in real experiments,
one may terminate due (for example) budget constraints.
This motivates the following three-step rule for sequential
testing with the randomized Ville’s inequality:

e Collect data and continuously monitor the test
statistic process M (that is guaranteed to be a non-
negative supermartingale under the null).

o If M ever crosses 1/a, stop and reject the null. Else,
stop at any ¥ -stopping time 7.

e Draw an independent random variable U that is
(stochastically larger than) uniform on [0,1]. Re-
ject the null if M; > U/ «.

Theorem 4.1 implies that the above rule yields a bona fide
level-a sequential test that is valid under continuous mon-
itoring and adaptive stopping. This is clearly more pow-
erful than the usual rule employed in the aforementioned
papers (and references cited therein), which only reject
the null when M; > 1/a.

We note in passing that Theorem 4.1 also applies to a
larger class of processes than nonnegative supermartin-
gales. These are called “e-processes”, and play a particu-
larly key role in sequential composite null testing. How-
ever, we omit the details for brevity, and refer instead to
the aforementioned survey by Ramdas et al. (2023).

We end with the following note. Thanks to a dual-
ity between sequential tests and sequential estimation us-
ing confidence sequences (CSs), the above observations
also have implications for constructing CSs. A CS is a
time-uniform or anytime-valid generalization of a confi-
dence interval. Formally, a (1 — @)-CS for a parameter
0 is a sequence (C,(a@)),>1 of confidence intervals (one
for each sample size n) that are valid at arbitrary stop-
ping times, meaning that it satisfies P( € C:(@)) > | —
for any ¥ -stopping time 7, or equivalently it satisfies
PVn>1:0€Cya)) > 1 - a. Since they are usually (or
in fact, essentially always, as per Ramdas et al. (2020);
Waudby-Smith and Ramdas (2024)) obtained by invert-
ing a family of sequential tests based on Ville’s inequal-
ity, our randomized Ville’s inequality improves the CI at
the final stopping time. To clarify, we have the following
result for any CS: For any ¥ -stopping time 7, we have

31) PAt<7:0¢Ci@)or ¢ Cea/U))<a,

where U is a uniform that is independent of the data and
thus the stopping time (one may imagine it to be drawn
after stopping). To summarize, if we ever stop a sequential
experiment in which we were tracking a CS, the very last
confidence interval that we report can be at level /U, and
this would still have an overall miscoverage of at most .

5. RANDOMIZING THE TIME-REVERSED VILLE
INEQUALITY

Directly inspired by Ville (1939), the time-reversed
Ville inequality was first proved by Doob (1940) for re-
verse martingales, and for instance by Lee (1990) and
Christofides and Serfling (1990) for reverse submartin-
gales. We also refer to Manole and Ramdas (2023) for
two self-contained proofs of this result. The statement is
given as follows.



THeEOREM 5.1 (Time-reversed Ville inequality). Let
(X1);2, be a nonnegative reverse submartingale with re-
spect to a reverse filtration (&,);2,. Then, for any a >0,

(32) P(supX,> 1/a)<a-]E[X1].

>1

We provide a self-contained proof in Appendix B,
which we briefly outline here. The proof is similar to that
of Ville’s inequality, with changes to account for the re-
versed nature of the process. Given m > 1, define 7 :=
sup{l <t <m:X; > 1/a}, where sup() = —co. Markov’s
inequality implies

(33) P(r>1)=PXrv1 > 1/a)<a-E[Xe1] <a-E[Xi].

To prove the last inequality, notice that the process Y, =
Xm-t+1, 1 <t < m, is a forward submartingale, and n :=
m— T+ 1 is a stopping time with respect to the same fil-

tration as (¥;);" |, thus by the optional stopping theorem,

E[Xrv1] = E[Yyam] < E[Y,] = E[X1].
Noting that {7 > 1} = {sup,,,, X; > 1/a} yields

P( sup X; > l/a) <a-E[Xi].

1<t<m

Sending m — co yields our claim.

5.1 The uniformly-randomized time-reversed Ville
inequality

[se]

Given a reverse filtration (&,);2,, we will say that 7 is a
reverse stopping time if it satisfies {r =} € & forall t > 1.
We then have the following statement.

TaEOREM 5.2 (Uniformly-randomized time-reversed
Ville inequality). Let (X;);2, be a nonnegative reverse
submartingale, and T a reverse stopping time, both with
respect to a reverse filtration (&), . Let U ~ Unif(0, 1)
be independent of (E;). Then, for any a >0,

(34) P(X.>Ula)<a-E[Xi].

Theorem 5.2 is a uniformly-randomized analogue of
the time-reversed Ville inequality in Theorem 5.1. This
last has been used for instance by Manole and Ramdas
(2023) to derive nonparametric sequential goodness-of-
fit and two-sample hypothesis tests using divergences be-
tween empirical probability distributions as test statistics.
When the validity of these sequential tests is only needed
at arbitrary reverse stopping times 7, their power can im-
mediately be improved with uniform-randomization by
Theorem 5.2, in much the same way as we described in
Section 4.3.

The proof of Theorem 5.2 is straightforward: by rea-
soning as in the proof of Theorem 5.1, above we have
E[X:] < E[X;], thus the claim follows by applying the
UMI to X,.

5.2 A uniformly randomized variant of the EMI

We can use Theorem 5.2 to obtain the following variant
of the EMI which we refer to as the exchangeable and
uniformly-randomized Markov inequality (EUMI).

THeEOREM 5.3 (EUMI). Let X,...,X, be a set of ex-
changeable random variables. Then, for any a € (0, 1),

(35

in/[

P(Xl >Ujaordt<n:
i=1

> 1/a)<a'E|X1|,

where U is a uniform random variable on [0,1] that is
independent of X1, ..., X,.

The proof follows by defining the stopping time 7 :=
1 vsup{l <z<n:Y!,X;/t>1/a}. Then, Theorem 5.2
implies that

(36) P( = U/a)ga-Elel,

1 T

T 2%
which is mathematically equivalent to (35). It is easy
to see that an analogous statement holds for infinite se-
quences of exchangeable random variables, by removing
the upper bound on ¢ in the definition of .

Equation (35) is one way of combining the strengths
of the EMI and UMI. Note that the EUMI is stronger
than both the UMI and the EMI, and indeed implies both
of them. This inequality has important implications for
(more powerful) statistical testing, which we discuss in
the following sections.

6. CONSTRUCTING RANDOMIZED TESTS WITH
E-VALUES

Despite e-values not being defined formally yet, we al-
ready used them implicitly in the proofs of all preceding
theorems: indeed the random variable Y; in the proofs of
Theorem 2.3 and Theorem 3.4 are e-values, as is X/E[X]
in the proof of Markov’s inequality.

Before defining e-values formally, we give a brief sum-
mary of what’s to come, in order to orient the reader. Let
E| and E; be arbitrarily dependent e-values for testing a
given hypothesis. In order to achieve a level « test, the
natural way to combine them is to average them into a
combined e-value and check if (E; + E>)/2 > 1/a, whose
validity is guaranteed by Markov’s inequality.

However, a simple and uniform improvement is as fol-
lows: choose i € {1,2} randomly with equal probability,
and first check if E; > 1/a, and if not then check whether
(E1 + E»)/2 > 1/a. This is also a level-a test, due to the
EMI. Another valid randomized level-a test is to reject
if (E1 + E»)/2 > U/a where U is an independent uni-
form random variable, whose validity is guaranteed by the
UMI. We expand on some statistical applications of these
ideas below.
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6.1 A brief review of e-values

For a set of distributions %, an e-value' for the null hy-
pothesis Hy : P € P is a nonnegative random variable X
such that

Ep[X]<1forall PeP.

Since e-values are likely to be small under the null (and
hopefully large under the alternative), a level-a test is
given by:

(37 reject Hy if X > 1/a.

This test controls type-1 error (nonasymptotically and
hence uniformly over ) by Markov’s inequality (1).
Without knowing any further details about the distribu-
tion of X, this rule does not appear to be improvable in
general.

However, we note that with a little external random-
ization, the rule (37) can be made (usually strictly) more
powerful. The UMI (5) implies that if U is an independent
uniform random variable on [0, 1], then the rule

(38) reject Hy if X > U/ a,

controls the type-l error at level @. In other words,
min(U/X, 1) is a valid p-value; this fact was indepen-
dently recently pointed out in Ignatiadis et al. (2024).

We will see that such uniform randomization can ef-
fectively be used to improve on (arguably natural) ways
to combine e-values to yield tests, but a new type of test
is opened up as a consequence of the EMI (2), and the
EUMI (35).

lfP={P}isa singleton, then all optimal e-values take the form
of dQ/dP, that is likelihood ratios of Q against P, for some (implicit
or explicit) alternative Q. So, technically e-values have been around
for 100 years masquerading as likelihood ratios (and Bayes factors).
The recent christening of the term ‘“e-value” is simply to recognize
the importance of a more general concept that has utility much be-
yond point nulls. Indeed, beyond the singleton case, e-values can be
viewed as nonparametric/composite generalizations of likelihood ra-
tios to complex settings involving nonparametric and composite nulls
and alternatives. Even for this setting, e-values have technically been
around for over 50 years (Robbins, 1970), appearing in the form of
stopped nonnegative supermartingales and implicitly within the proofs
of Chernoff bounds (Howard et al., 2020). The concept appears to have
simply floated around without a unified name for 50 years, until several
authors—who had a priori used different terms for the same concept—
simultaneously decided to converge to the terminology “e-value” a few
years ago (Shafer, 2021; Vovk and Wang, 2021; Griinwald et al., 2024;
Ramdas et al., 2020; Wasserman et al., 2020). Research on e-values has
blossomed recently, without acknowledgment of understanding of its
roots. The reader may see Ramdas et al. (2023) for a recent survey on
game-theoretic statistics and safe anytime-valid inference, which pro-
vides a broader context in which e-values arise naturally, and for many
examples of composite, nonparametric e-values, as well as details of
the connection to betting scores and the wealth of a gambler betting
against the null.

6.2 Combining multiple arbitrarily dependent
e-values to test P

Suppose we have constructed K arbitrarily dependent e-
values X1, ..., Xk for the same null hypothesis Hy : P € P.
These may or may not be exchangeable. A natural way to
form a test is to define

XK = (Xl +"'+XK)/K,

which is also an e-value, and thus to

39) reject Hy if Xx > 1/a.
Said differently,
(40) p=min(1/Xg, 1)

is a p-value. In fact, Vovk and Wang (2021, Appendix
G) prove that among symmetric e-to-p merging func-
tions, min(1/Xg, 1) is the optimal choice. However, the
above optimality result precludes the use of randomiza-
tion, meaning that it can potentially be dominated by ran-
domized rules. We show that this is indeed the case. To
prepare for the result, given a permutation x of {1,..., K},

define
1 t
VA . .
X = an@.
i=1
Note that X7 = Xk.

ProposiTion 6.1.  Let X1, ..., Xk be arbitrarily depen-
dent e-values for the null hypothesis Hy : P € P. If the X;
are not exchangeable, let w be a uniformly random permu-
tation of {1,. .., K}, otherwise let t be the identity permu-
tation. Then, the following rules control the type-I error
at level a:

41) 1. reject Hy if Xg > Ul a,
42) 2. reject Hy if sup X' > 1/a,

1<K

(43) 3. reject Hy if Xz1) = U/ or sup X! > 1/a.

<K

Further, each of these rules is more powerful than (39).

The proof follows directly from the UMI (Theorem 1.2)
for (41), from the EMI (Theorem 1.1) for (42), and from
EUMI (Theorem 5.3) for (43). Despite rule (42) being
strictly less powerful than rule (43), we state it separately
for ease of reference below. These three rules can be al-
ternatively written as forming one of the following three
p-values:

(44) 1. p1 = min(U/ X, 1)
(45) 2. p» =min( inf (X*)", 1)
1<t<K

(46) 3. p3 = min( inf (X7)', U/Xx), 1),
I<<K
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and rejecting the null when that p-value is smaller than a.

Note that if one wants to combine K arbitrarily depen-
dent e-values to obtain a combined e-value, averaging is
still optimal. But if one wants to form a p-value or test at
level a, options like (44), (45), (46) dominate (40).

6.3 Combining m-way independent e-values

We now briefly extend the previous subsection’s ideas
beyond arbitrary dependence. Suppose that X, ..., Xk are
m-way independent e-values for some null Hy, meaning
that every subset of m of them is jointly independent.
m =1 corresponds to arbitrary dependence as discussed
previously, and m = K corresponds to full joint indepen-
dence.

A natural way to test using m-way independent’ e-
values is to use U-statistics and

1

reject if Xg := — l_lXi >1/a.

However, a better idea is to randomly sample (with or
without replacement) a size-m subset A, C {1,..., K} one-
by-one for b =1,2,..., calculate the average for the sub-
sets sampled thus far, and reject as soon as any average
exceeds 1/a:

b
1
reject as soon as 5 Z HX,- > 1/a forsome b > 1.

s=1 i€A,

This is a level-a test because of the EMI (2). Instead, we
could also

reject if X := é Z ]_[Xi > Ula,
m) AC{l,...,K} i€A

for an independent uniform U. As before, while the lat-
ter two tests (often strictly) dominate the first one, it is a
priori unclear which of the two options will be more pow-
erful, so we explore this in the simulations later. Last, one
can use the EUMI to combine the strengths of both the
earlier rules, but we omit this for brevity.

7. IMPROVING THE POWER OF UNIVERSAL
INFERENCE

Universal inference (Wasserman et al., 2020) is a sim-
ple and extremely broadly applicable test for any compos-
ite null hypothesis, that is nonasymptotically valid with-
out regularity conditions. At its heart is a randomized

2Even under full independence, such combinations may be more
robust and stable than the product Hili 1 Xi- The latter will have the
largest value if all e-values exceed one, but equals zero if even a single
e-value was unluckily equal to zero. Of course there are ways to get
around the zero issue, like calculating Hili 1(Xi /2 + 1/2), but that is
besides the current point.

method for constructing an e-value. To describe the sim-
plest version of their idea, consider a setting where we
have i.i.d. data Yi,...,Y, ~ P and we would like to test
the null Hy : P € P, perhaps against an alternative (im-
plicit or explicit) H; : P € Q. We first partition the data at
random into two (possibly unequal) datasets Dy and D;.
Using D;, we come up with any estimator/guess Q in Q.
The split likelihood ratio is defined as
. do
@47) X =inf [ [ 2200,
i€Dy

where we assume for simplicity that Q < P for any
PO € PUQ. In other wgrds, it is the likelihood ratio
of a particular alternative Q (picked from D) against the
maximum likelihood estimator under the null. Wasserman
et al. (2020) prove that X is an e-value for #, and they

(48) reject Hy when X > 1/a.

There are many other variants, for example using profile
likelihoods to handle nuisance parameters, smoothed like-
lihoods to avoid encountering an infinite likelihood, re-
laxed likelihoods in case calculating the maximum like-
lihood is infeasible, and so on. Universal inference is
named such because it provides a simple and universally
applicable baseline method that works for testing any null,
without making any regularity assumptions (unlike the
generalized likelihood ratio test, whose threshold is often
unknown for singular or complex P).

Of course, the downside is that the method is conser-
vative in general. In parametric settings without nuisance
parameters, when the usual likelihood ratio test applies,
universal inference is typically loose (in asymptotic effi-
ciency, say) by a small constant factor of about 2 to 4,
achieving the right rate in sample size n, dimensionality
and level @, and appropriate notions of signal-to-noise ra-
tio (Dunn et al., 2023). In nonparametric settings, some-
times no other test exists, so the conservativeness of uni-
versal inference remains unclear (Dunn et al., 2024).

We mention two ways to gain back some of the con-
servativeness. The first is to simply replace (48) with the
UMI (1.2) to yield “uniformly-randomized universal in-
ference”: let U be an independent U[0, 1] random vari-
able, then we may

49) reject Hy when X > U/«,

yielding a strictly more powerful test than universal infer-
ence, that still controls type-I error at level a.

The above use of uniform randomization is reminiscent
of a somewhat similar use in the context of permutation or
randomization tests, which are typically conservative by
default, but can be made to be exact by the use of external
randomization; see also Section 10.6 on avoiding the use
of external randomization U.
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The second way to gain back some of the constant fac-
tors is to recall the randomness associated with sample
splitting, and derandomize the approach by averaging.
One natural subsampling approach proposed by Wasser-
man et al. (2020) just repeats the calculation of X a total
of B times, each time on a different independent random
split of the data. Call the resulting exchangeable e-values
as Xi,...,Xg. They propose to

Xy +-+Xg
B

Dunn et al. (2023) prove that such derandomization does
improve power. Given the discussion in preceding sec-
tions, using the UMI (5) to

(50) reject Hy when >1/a.

+---+ X
B
also yields a level-a test. Alternatively, one may

X
(629 reject Hy when E>vu /a,

X1+---+X,,>

(52) reject Hy when sup >1/a,

1<b<B b
whose validity follows from the EMI (2).

Several of the above observations also apply to other
related tests, for example using the reverse information
projection e-value (Griinwald et al., 2024). We summarize
the above observations below for easier reference.

ProrosiTioN 7.1 ((De)randomized universal inference).
Let X be the split likelihood ratio statistic defined in (47)
(or the crossfit likelihood ratio defined in Wasserman
et al. (2020), or the reverse information projection e-
value (Griinwald et al., 2024)). Consider the test that

rejects Hy when X > U/ a.

Similarly, for subsampling-based universal inference,
consider the rules (51) or (52), or a third rule that

(53)
. . X+ +X,
rejects Hy when either X; 2 U/a or sup ———— >
1<b<B b
All the above rules are more powerful than universal in-
ference (48), and control type-I error at level a without

regularity conditions.

An important point worth remarking is that B has to
be fixed in advance if we want to average the e-values
to calculate a single e-value. However, in (52) or (53),
B does not have to be fixed in advance since technically
those suprema hold from 1 to oo, not just 1 to B as stated,
and thus they hold even if B is chosen adaptively (as a
stopping time, say). In other words, instead of fixing B
in advance, one can simply calculate one X, at a time,
calculate running averages as you go along, stop when
you want, and reject if at any step the average crosses 1/«
(or, in the case of (53), stop as early as the first step if
Xz Ula).

8. (DE)RANDOMIZING NONPARAMETRIC
BETTING-BASED TESTS

Consider a simple special case of a nonparametric test-
ing problem from Waudby-Smith and Ramdas (2024). Let
Yi,...,Y, be drawn i.i.d. from an unknown distribution P
on [0, 1], having mean u. Suppose we want to test the null
Hy : u=0.5, against an alternative H; : u > 0.5. Define
the initial wealth of a gambler who wishes to bet against
this null as M, = 1, and let their wealth evolve as

t
54) M, = l_l(l +A4:(Y;i=0.5) =M,_; - (1 + 4,(Y,-0.5)),

i=1
where A; € [0,2] is a random variable (representing the
gambler’s bet) that can be chosen based on Yi,...,Y;_|,
meaning that it is “predictable” with respect to the fil-
tration 7; := o(Yy,...,Y;). It is easy to check that under
the null, (M;);>0 is a nonnegative martingale with ini-
tial value one (and in fact for each fixed ¢, M, is an e-
value). Ville’s inequality (Section 4.1) implies that, under
the null, P (supogt@ M;>1/ a/) < @, and thus a level-a test
is obtained by
(55) rejecting the null if sup M, > 1/a.

0<r<n

Said differently, infog<,(1/M;) is a p-value. The experi-
ments in Waudby-Smith and Ramdas (2024) demonstrate
that these tests perform excellently in practice (when us-
ing appropriate rules® for updating A; at each step), and
the resulting confidence intervals obtained by inverting
such a test are usually much shorter than a plethora of
competing methods. We note immediately an improve-
ment delivered by the randomized Ville inequality: we
may
(56)  rejectthe nullif sup M, >1/aor M, > U/«a,

0<t<n

for an independent uniform random variable U.

However, there is something slightly unsettling about
this test: the p-value and test depend on the random order
Yy,..., Y, of processing the points one by one, since the
bets A; depend on Y1,...,Y;_;. Since the chosen ordering
was random to begin with, the p-value and test are sym-
metric functions of the data in a distributional sense (in-
deed, one can randomly scramble the data before running
the test to enforce this), but there is some sense in which
one may hope that the “algorithmic randomness” intro-
duced by processing the data along one random ordering
method can somehow be removed. In fact, this is also an

30One can show that if the alternative is true, then it is possible to bet
smartly (meaning derive automated rules to predictably set A;) so that
the gambler’s wealth M; grows exponentially fast, with the exponent
automatically adapting to both the unknown signal ¢ — 0.5, and the un-
known variance E[(Y — ,u)z]. The authors also derive new exponential
“empirical Bernstein” inequalities that can achieve the same effect.
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issue with the oracle test: there is an optimal choice A*(P)
that could be used at every step, but the supremum over ¢
still makes the resulting test or p-value dependent on the
order of processing the bag of data.

Waudby-Smith and Ramdas (2024) describe one way
to remove the effect of the arbitrary ordering. Noting that
the final wealth M, is an e-value (because of the nonneg-
ative martingale property of the wealth process under the
null), one can repeat the procedure B times on different in-
dependent random permutations of the original data, and
only note the final wealth at time n on each permutation
of the data, denoted M,ll, el Mf. Then, they proposed to

) M o+ M
&) reject the null if -5 > 1/a,

which for large enough B effectively becomes a symmet-
ric function of the data.

Noting the parallels between the above rule and (50),
one can instead gain more power by using (51) or (52)
instead, meaning to either

_ M+ MB
(58) reject the null if ——— > U/q,
or to
_ , M+ MP
(39)  rejectthe nullif sup ————">1/a.

1<b<B b

The first method derandomizes by averaging (thus remov-
ing the effect of data ordering), but then again randomizes
the threshold using the UMI. The second derandomizes in
a more sophisticated manner, using the EMI. The follow-
ing rule combines the two techniques

(60)

M)+ MP

reject the null if M! > U/a or sup = > 1/a,

1<b<B b

using the EUMI. We formalize these observations below.

PropostTioN 8.1. Let Yi,...,Y, be independent ran-
dom variables supported in [0,1], with identical mean p.
Let iy, ..., np be permutations of {1, ...,n} that are sam-
pled uniformly at random (with or without replacement),
and let

t
My =] |0+ Ai(Yri-05), b=1,....B.
i=1
Then, the test (56) for Hy : u = 1/2 controls the type-1
error at level a, and is more powerful than the original
rule (55). Likewise, the tests (58), (59) and (60) control
the type-1 error and are more powerful than the rule (57).

Since one cannot take a supremum over both ¢ and B,
it is a priori unclear which of the tests (55) and (59) is
more powerful (or (56) versus (60)). We examine such
questions in the simulations that follow.

We note that when inverting these tests to form confi-
dence intervals for the mean y, as done in Waudby-Smith
and Ramdas (2024), the same U can be used across all the
tests.

9. EXPERIMENTS

We perform a simulation study to illustrate the extent to
which the UMI, EMI, and EUMI can increase the power
of the aforementioned methodologies. Code for reproduc-
ing this simulation study is publicly available*. We choose
the level @ = .05 across all simulations. The parameter B
appearing in Sections 7-8 is always taken to be 100.

9.1 Confidence Intervals for a Gaussian Mean

We begin with a toy example to compare the tightness
of our randomized tail bounds. Let X;,..., X, be an i.i.d.
sample from the N(0,1) distribution. We compare the
width of the uniformly-randomized Hoeftfding confidence
interval (20) for the mean E[X], to that of the traditional
Hoeftding interval (19). As a benchmark, we also com-
pare them to the exact confidence interval X, + z,/2/ Vn,
where z,/2 is the 1 — /2 quantile of the standard Gaussian
distribution. The average length and coverage of these
three intervals is reported in Figure 1, across ten values
of n € [100,2000].

It can be seen that the randomized Hoeffding interval
(based on the UMI) has length lying between that of the
traditional Hoeffding interval and the exact interval. By
reasoning similarly as in Remark 3.2, the expected rela-
tive improvement in length of the exact interval over the
UMI interval is approximately 17%. On the other hand,
we have already stated that the relative improvement in
length of the randomized Hoeffding bound over its classi-
cal counterpart is 14%. Both of these expected length ra-
tios are confirmed by our simulation study, and show that
the UMI interval sits roughly halfway between the Ho-
effding and exact intervals, both in length and coverage.
As discussed in Remark 3.3, the Hoeffding interval can
itself be sharpened using more sophisticated tail bounds,
and we expect that randomized versions of such inequali-
ties would lead to even tighter intervals.

9.2 Testing with a set of arbitrarily dependent
e-values

Assume that Xi,...,Xg are K = 100 test statistics
which are not necessarily independent, and which are
distributed as N(u, 1) for some y € R. We would like to
combine them to test the null hypothesis Hy : 4 < 0. One
approach is to define the transformed statistics

(61) Ej=exp(X;-05), j=1,...K,

4https ://github.com/tmanole/Randomized-Markov
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05 Hoeffding
© = Randomized Hoeffding
Exact (Central Limit Theorem)
= 0.4
03
0.2
0.1

— 0.981

Coverage (%

)
3

0.96 1

0.951 /\/\/

Fic 1. Average length and coverage of the three confidence intervals across 20, 000 replications for each sample size. The uniformly-randomized
Hoeffding interval sits halfway between the traditional Hoeffding interval and the exact interval, both in terms of coverage and length.

which are e-values for the null hypothesis Hy. We can
combine them to test Hy using the rule (39) based on aver-
aging the e-values and applying MI (“Av+MI”), the rule
(41) based on UMI, the rule (42) based on EMI, or the
rule (43) based on on EUMIL.

We simulate the power of these four approaches by
drawing (Xi,...,Xk) with a Toeplitz-structured covari-
ance matrix, where Cov[X;, X;] = pi=forall 1 <i,j<K
and some p € [0, 1]. In Figure 2, we report their proportion
of rejections across ten equally-spaced values of the true
mean u € [0,4] and of the correlation parameter p € [0, 1].
The results are based on 500 replications from each model
under consideration.

It can be seen that the tests based on the EMI, UMI, and
EUMI improve upon the test based on the MI by at least
10% (in absolute power) for most combinations (u, o). In
some cases, the improvement in power is as high as 60%
for the UMI and EUMI. The gain made by the UMI is
similar to that of the EUMI, and both have similar be-
havior across all values of p. In contrast, the gains made
by the EMI are most pronounced for small values of p.
This is to be expected, since the cumulative averages of
e-values in equation (42) are highly correlated when p is
large; in fact, they are identical in the limit p = 1, in which
case the rejection rules based on MI and EMI coincide.

We report the individual rejection proportions of all
four methods in Figure D.1 of Appendix D. Therein, we
also report simulation results under K = 2 rather than
K =100; see Figures D.2-D.3. When K =2, it can be seen
that the EUMI provides a more pronounced improvement
over the UMI, with an absolute gain in power as high as
10% for several combinations (u, p).

9.3 Universal Inference for model selection

We compare the methods presented in Section 7 for the
problem of testing the number of components in a Gaus-
sian mixture model. It is well-known that the parametric
family of Gaussian mixtures does not satisfy the regular-
ity conditions required for (twice the negative logarithm

of) the likelihood ratio statistic to admit its traditional
/\(2 limiting distribution (Ghosh and Sen, 1984; Dacunha-
Castelle and Gassiat, 1999; Chen and Li, 2009). In con-
trast, the method of universal inference based on the split
likelihood ratio statistic, and its variants presented in Sec-
tion 7, are valid without any regularity conditions, and are
therefore natural candidates for this problem.

Although the limiting distribution of the likelihood ra-
tio statistic is unknown or intractable for general Gaussian
mixtures, it admits a simple expression when the underly-
ing mixing proportions are known (Goffinet et al., 1992).
We will assume this to be the case so that we can use the
likelihood ratio test (LRT) as a benchmark, but we em-
phasize that the LRT cannot easily be used to derive a
valid test for more general Gaussian mixtures, where the
universal inference method would remain valid.

Let

62)  Xi,.... X,

2 Xp ~ 025 - N, 1) +0.75- N(up, 1),
where the only unknown parameters are ui,u, € R, and
consider the problem of testing whether the above mixture
has one vs. two components, i.e.

(63) Ho:py=po, vs. Hy:py#puo.

By Theorem 1 of Goffinet et al. (1992), if A denotes
the likelihood-ratio statistic for these hypotheses, then
—2log A admits the limiting distribution max(0, Z)?, for
Z ~ N(0, 1), thus a valid level-a test for Hy is to reject if —
2log A > q-24, the latter being the 1 — 2@ quantile of
the x? distribution. We will refer to this as the LRT
test. We compare its numerical performance to that of
universal inference (UI; (48)), uniformly-randomized UI
(UMI-UI; (49)), subsampling UI (SUI; (50)), uniformly-
randomized SUI (UMI-SUI; (51)), exchangeable SUI
(EMI-SUI; (52)), and exchangeable, uniformly-randomized
SUI (EUMI-SUI; (53)).

Figure 3 reports the empirical power of these pro-
cedures based on 500 samples of size n = 500 from
model (62), under ten equally-spaced values of u :=
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EMI vs. Av+MI

UMI vs. Av+MI

EUMI vs. Av+MI

0.60
7] 0.45

— 0.15

T il T T T 0.00

Fic 2. Comparison of the rejection proportions 7t aym1, TEMI, TUMI and Tgumi. of the procedures (39), (41), (42), and (43), for rejecting the null
hypothesis Hy : it < 0 based on the e-values (61). For varying values of p and p, the left-hand side plot represents the difference tgmt — mavmrs the
middle plot represents mymr — TayMl, and the right-hand side plot represents Tgumt — Taymr- The procedures based on the UMI, EMI, and EUMI
are strictly more powerful than the naive procedure based on M1, in some cases leading to an absolute increase in power of 60%.

—up = p € [0,1]. We observe that the power of the
UMI-UI method uniformly dominates that of the original
UI method, and similarly, the UMI-SUI, EMI-SUI, and
EUMI-SUI methods dominate their SUI counterpart. The
methods UMI-SUI and EUMI-SUI exhibit similar perfor-
mance, and their absolute increase in power compared to
SUI is on the order of 15% for some values of p. Although
all methods based on the split LRT are markedly more
conservative than the LRT, we recall that they can be used
in arbitrary mixture models, while the LRT cannot.

1.01

0

208

g

£0.61 IRT

s Ul

2041 UMI-UI

3 sul

2021 UMI-SUI
EMI-SUI

0.0 EUMI-SUI
0.0 0.2 0.4 0.6 0.8 1.0

Fi6 3. Empirical power of the seven tests for the null hypothesis Hy in
equation (63). While the benchmark test provided by the LRT is most
powerful, the variants of Universal Inference based on the EMI, UMI,
and EUMI are more powerful than their MI counterparts.

9.4 Testing the mean of a bounded random
variable by betting

Let Xi,...,X, be an i.i.d. sample from a Beta(a, b) dis-
tribution, for some a,b > 0. Let u = E[X;] = a/(a + b),
and consider the problem of testing the null hypothesis

Hy : = 1/2 using the procedures defined in Section 8.
We form the wealth statistic M,, in equation (54) based
on a predictable sequence (4;)7_, chosen according to the
LBOW betting strategy described in Waudby-Smith and
Ramdas (2024), and compare the rejection rules in equa-
tions (55), (57), (58), (59),(60), based respectively on
Ville’s inequality, averaging followed by MI (“Av+MI”),
UMI, EMI, and EUMI. We take a = 20, thus the null
hypothesis reduces to Hy : b = 20, and we compare the
empirical power of these methods for varying values of
b €[19,20.8] and n € [100,2000], based on 500 replica-
tions for each pair (n, ).

EMI vs. Av+MI EMI vs. Ville

100 . 0.2
0.1
733 .
o 0.0
1366 .
-0.1
2000 . —0.2
T T T T T T
19.0 20.0 20.8 19.0 20.0 20.8
b b

Fic 4. Comparison of the rejection proportions mayMI, Tville» and
mEMI of the respective procedures (57), (55) and (59), for rejecting
the null hypothesis Hy : b = 20 based on the statistic My, For vary-
ing values of b and n, the left-hand side plot represents the difference
TEMI — TavMI, and the right-hand side plot represents the difference
TEMI — TVille- The procedure based on the EMI provides a modest im-
provement over that based on MI, but does not dominate the procedure
based on Ville’s inequality.

Figure 4 compares the EMI-based procedure to those
based on the MI and Ville’s inequality. It can be seen that
the EMI yields a modest improvement in power—on the
order of 5%—compared to the MI, across the majority of
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choices of b and n. In some cases, it yields an improve-
ment of similar order over the procedure based on Ville’s
inequality, but does not uniformly dominate this method,
as could have been anticipated from the discussion in Sec-
tion 8. In contrast, in Figure 5, it can be seen that the pro-
cedure based on the UMI uniformly dominates both the
MI and the procedure based on Ville’s inequality, with
a gain in absolute power as high as 20% in many cases.
The performance of the EUMI-based procedure is nearly
identical to that of the UMI, thus we defer this result to
Figure D.4 of Appendix D.

UMI vs. Av+MI UMI vs. Ville

100

733

1366

2000

19.0 20.0
b b

20.8 19.0 20.0 20.8

Fic 5. Comparison of the rejection proportions maymI, Tvilles and
nmumi of the respective procedures (57), (55) and (58), for rejecting
the null hypothesis Hy : b = 20 based on the statistic My,. For vary-
ing values of b and n, the left-hand side plot represents the difference
TUMI — TAavMI, and the right-hand side plot represents the difference
TUMI — Wille- In contrast to the EMI-based procedure reported in Fig-
ure 4, the UMI-based procedure uniformly dominates both procedures
based on MI and Ville’s inequality.

In Figure D.5 of Appendix D, we report the individ-
ual power of these five methods. In particular, it can be
seen therein that the power of all methods is at most ap-
proximately 5% under the null hypothesis b = 20. It can
further be seen that all methods achieve perfect (or nearly
perfect) power for values of b near the boundaries of the
interval [19,20.8], and for large values of n. This explains
why the UMI, EMI, and EUMI do not to appear to pro-
vide a substantial improvement over the other methods in
this regime.

10. DISCUSSION

This paper presented the uniformly-randomized and ex-
changeable Markov inequalities, along with extensions
to Chebyshev and Chernoff bounds, and some example
statistical applications involving universal inference and
testing by betting. We now begin a relatively long discus-
sion, mixing technical observations with some philosoph-
ical thoughts.

10.1 Markov’s inequality as a derandomization of
umMi

Let us begin by recalling the following implication of
Markov’s inequality from Section 6. For a nonnegative,

integrable X, we have that X/E[X] is an e-value, and thus
p* :=E[X]/X is a p-value, meaning that

PE[X]/X<a)<a.

In this vein, UMI implies that UE[X]/X is also a valid
p-value.

What if one tries to derandomize this statement? Sup-
pose we draw B independent uniforms Uy,...,Ug and
calculate B such p-values (where p, = U,E[X]/X). Then,
we get B dependent, exchangeable, p-values. An old re-
sult by Riischendorf (1982) implies that twice the average
of arbitrarily dependent p-values are also p-values, mean-
ing that pp :=2(p; +---+ pp)/ B is a p-value, and this fac-
tor of 2 cannot be improved in general (also see Vovk and
Wang (2020)). Choi and Kim (2023) recently showed that
the factor of 2 cannot be improved even assuming that the
p-values are exchangeable (which is true in our setting).

Now note that as B — oo, pp converges to p*, because
the uniforms average out to 1/2. Thus the gain made by
the uniform randomization is exactly offset by the factor
of 2 lost by combining p-values. In other words, one can
view Markov’s inequality as a derandomized version of
our UMIL

Further note that other forms of randomization do not
appear to help. A result by Riiger (1978) shows that pp :=
2 -median(py,..., pp) is also a p-value and the factor of 2
cannot be improved (assume B is odd for simplicity). In
fact, the same work also showed that p% := pyB/k is a p-
value for any fixed k < B, where p, is the k-th smallest p-
value. Remarkably, p and p’; also converge to p* as B —
oo, This appears to be a perfectly-designed coincidence,
but perhaps on more reflection a simple explanation of
this phenomenon may be found. For now, it adds further
justification to the title of this subsection.

10.2 On the role of external randomization in
statistics

At a high level, there appear to be (at least) three rea-
sons that external randomization is used in statistics:

1. To save computation. A classic example of this
would be the permutation test. When applied to
(say) a problem like two-sample or independence
testing, the deterministic permutation test needs n!
permutations, where 7 is the number of data points.
The variant that is typically used in practice, how-
ever, involves the permutations being uniformly
sampled from the set of all permutations. This also
results in a valid p-value, and the randomization
is introduced solely to save computational effort.
Another example is a risk-limiting election audit,
where ballots are sampled in a random order, al-
lowing one to possibly stop the audit early (with
a guarantee on the error); without this randomiza-
tion, one must look at every single ballot in the au-
dit. A last example would be the use of stochastic
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gradient descent in minimizing convex objectives
because calculating a full gradient may be too ex-
pensive.

2. To enable inference that is (essentially) impossi-
ble otherwise. An example of this would be dif-
ferential privacys; it is provably impossible to guar-
antee privacy without randomization (adding noise
to summary statistics before releasing them). The
same impossibility also arises in online learning
against adversaries (e.g.: adversarial multi-armed
bandits), and in calibrated probabilistic forecasting.
Such examples also arise in the Monte Carlo liter-
ature, for example MCMC algorithms are used to
enable sample from distributions that would oth-
erwise be (analytically and computationally) in-
tractable. The bootstrap and subsampling methods
would also be examples. Universal inference also
falls under this umbrella, since for many problems,
we do not know of any other computational or an-
alytical tool that could replace it. Another example
is the knockoffs method for (fixed-X or model-X)
conditional independence testing, and the related
conditional randomization test. Nonexchangeable
conformal prediction provides a contemporary case
in point. Finally, sample splitting is used in a vari-
ety of contexts to enable assumption-lean inference
(such as in post-selection inference).

3. For more powerful inference. An example of this
would again be the permutation test. Whether used
in its deterministic or random form, it produces a
discrete p-value. Randomization can be introduced
to convert it into a continuous p-value that is al-
most surely smaller than the discrete p-value (and
exactly uniformly distributed under the null), thus
improving (strictly) power.

The randomization used by UMI falls into the last cate-
gory: the only purpose of introducing randomization is to
improve power.

On a different note, there are at least two types of ran-
domized procedures:

1. Can be computationally derandomized. For many
procedures, expending more computation can ren-
der them “effectively deterministic” in the sense
that some concentration of measure kicks in, so
that the stochastic result concentrates around some
deterministic limiting quantity. Examples include
the bootstrap, subsampling, permutation and Monte
Carlo methods (including MCMC), the conditional
randomization test, (subsampling-based) universal
inference, and stochastic gradient descent for con-
vex optimization.

2. Cannot be computationally derandomized. This
includes adversarial multi-armed bandits, proba-
bilistic forecasting, differentially private inference,
nonexchangeable conformal prediction, and many
methods based on sample splitting.

UMI falls into the first category, but as discussed in the
previous subsection, the power benefits of UMI vanish
when it is derandomized, because it reduces exactly to
Markov’s inequality.

10.3 Frequency interpretation of the tests &
confidence intervals

Chebyshev’s inequality (10) implies that for any a €
0, 1),

(64) X, +

Jan

is a (1 — @) confidence interval for EX. This means that
when we construct infinitely many such intervals for dif-
ferent problems (with independent data from distributions
with potentially different means and variances), at least
95% of those confidence intervals will cover the cor-
responding means. In contrast, our randomized Cheby-
shev’s inequality (10) implies that
(65) &i”vv

Jan
is also (1 — @) confidence interval for EX. We high-
light that it has exactly the same frequency interpretation
as above. Despite being randomized and (almost surely)
strictly tighter than (64), when we construct infinitely
many such intervals for different problems (with inde-
pendent data from distributions with different means and
variances), at least 95% of those confidence intervals will
cover the corresponding means.

Our e-value based tests (38), like our more powerful
variant of universal inference (51), also have the same
frequency interpretation as the nonrandomized tests (37).
There is a simple way to interpret our use of randomiza-
tion. When @ = 0.05, nonrandom thresholding rules re-
ject the null when the e-value exceeds 1/a = 20. Meaning
that if the e-value equals 10, we do not reject, while if it
equals 20, we do. In our randomized setting, we simply
view an e-value of 10 as having half the evidence as that
of an e-value equaling 20, so we reject it with probability
one half. Similarly, an e-value of 19.999 would not get re-
jected with the usual nonrandomized rules, but would get
rejected with very high probability in our scheme. In other
words, the rejection probability is exactly proportional to
the required evidence for a definite rejection, resulting in
a “smoothed” test, as opposed to a sharp 0-1 decision.
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10.4 The potential for p-hacking, and ideas to
overcome it

Despite the frequency interpretation discussed in the
previous subsection, we recognize the potential risks for
“p-hacking” (or hacking confidence intervals), where a
naive or dishonest practitioner may reconstruct our uni-
formly randomized confidence interval many times (re-
drawing U), and pick the one that suits them (in order to
report a narrow enough interval for their purposes), even
reporting the random seed for “reproducibility”. This of
course is not valid. Thus our intervals must be employed
with care. We suggest a few points that should be kept in
mind for practical applications:

e If the interval constructions are coded up as part of
some automated software that constructs thousands
of such intervals (and perhaps acts on them) with-
out any human involvement, then the above fre-
quency interpretations will be preserved and (65)
and (22) yield bona fide, valid confidence intervals.

e In Section 10.5, we point out that it may make sense
to sometimes truncate the intervals, which increases
interpretability, avoids contradicting intuition, and
also reduces the extent to which p-hacking is possi-
ble.

e In Section 10.6, we point out that sometimes exter-
nal randomization is not needed at all, and one can
use randomness intrinsic in the data itself.

e Finally, we note that there may be opportunities to
systematize the use of external randomness. One
could create a central repository of uniform ran-
dom numbers, and you can request a fixed number
of them, but then have to use all of them. Indepen-
dently, one could report a file with all the uniform
random numbers used in an analysis, and these
should pass a battery of uniformity tests (though
this could itself be p-hacked, it is now a much
higher bar).

10.5 Truncation to avoid empty (or tiny)
confidence intervals

Since log(U) has its smallest possible value being —co,
the interval (22) could sometimes simply be the empty
interval. This will only happen to (much) less than an o
fraction of constructed intervals, since the (1 — @) cover-
age property does still hold; indeed a direct calculation
shows that an empty interval is constructed if and only
if log U < —2log(2/a), which happens with probability at
most a?/4. Rare as it may be, this phenomenon may not
be very useful or intuitive in practice. Thus we suggest the
following alternative:

(66)

_ 2log(2/a) log(U) 0Z1-a/2

Xn —_— b b
+|max [0' \/ " +0 > log—(Z/a/) N7 H

where z;_, is the right a-quantile of the standard Gaussian
distribution. In short, whenever the randomized Hoeffd-
ing interval becomes smaller than the asymptotic interval
based on the central limit theorem, we resort to reporting
the latter. The interval in (66) is never shorter than what
the CLT reports, almost surely shorter than the original
Hoeftding interval, and is nonasymptotically valid.

Despite the fact that the Chebyshev interval is non-
empty almost surely, we recognize that observing an ex-
tremely short interval, even if by chance due to random-
ization U, may also be troubling. One simple fix is to out-
put the interval:

- omax(VU,1/2)
X, +
67) + Van

Of course, 1/2 can be replaced by any other constant. The
above interval is still nonasymptotically valid at level a,
is almost surely tighter than Chebyshev’s inequality (that
is, the interval obtained from it) but never improves on it
by more than a factor of 2. Indeed, the expected ratio of
widths is E[max( VU, 1/2)] =17/24 = 0.71, only a mild
increase from the 2/3 value obtained earlier.

In short, enlarging the interval by truncating the random
improvement may be a suitable practical middle ground.

10.6 Using internal randomization in lieu of
external randomization

Several of the bounds in this paper were formulated in
terms of external randomization U. However, we note that
in some situations, we can avoid the use of U entirely,
while maintaining the gist of the original statements.

To elaborate, recall that many statistics in the paper, like
the sample mean X,,, are only functions of the order statis-
tics of the data X := {X(y),..., X} (equivalently, of the
unordered bag of data, or of the empirical distribution).
For a real x and finite set S of reals, define

rank(x;$) := ) 105 < x)/IS .
ieS
Now, note that if Xi,...,X, are i.i.d. from a continuous
univariate distribution, then

X 1 rank(X,,; X).

Further, the aforementioned rank is uniformly distributed
on the discrete set {1/n,2/n,...,1}. Thus, the rank stochas-
tically dominates U and can therefore be used in its place
in our earlier bounds. In essence, the leftover information
in the data ordering, like the rank of X,, within the set X,
can be utilized “for free” without affecting the distribution
of the underlying main statistic (like X,,).

Thus, to use two examples whose expressions were re-
called in the previous subsection, both

- [21log(2/a) N O_log(rank(X,,;X))
n 2nlog2/a) |

68) X, +
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and

X, + o yrank(X,; X)

Van
are valid (1 — @) confidence intervals for the mean (of a -
subGaussian distribution, or a distribution with variance
at most o2, respectively).

The same observation also applies to universal infer-
ence, because the likelihood calculation in the split like-
lihood ratio statistic is only a function of the unordered
set {X1,...,X;n} (Where m is the size of the first split), and
hence the rank of X,, within that set can be used in place
of U in (49).

Perhaps such uses of the uniformly-randomized Markov’s
inequality, which are entirely “intrinsic” to the data itself,
may be more palatable to those who have reasons to not
prefer to use “extrinsic” randomization by using U.

(69)

10.7 Other potential applications

Despite our applications being focused on universal in-
ference and “betting-based” inference, the use of the ex-
changeable Markov inequality was really enabled by two
properties:

e The original underlying problem statement has a
certain symmetry, for example the data are i.i.d. or
exchangeable.

e The original method did not respect the above sym-
metry, by employing sample splitting, or by pro-
cessing the data one at a time in a random order.

To be clear, there were some benefits to deviating from
the original symmetric problem statement: in the case of
universal inference, it enabled constructing a test without
regularity conditions, and in the case of testing bounded
means, it enabled a powerful test that was adaptive to the
underlying unknown variance of the data. The loss of the
problem symmetry could be regained by “algorithmic de-
randomization”, that is repeating the same procedure and
averaging the resulting e-values. It is in this latter step that
the exchangeable Markov inequality kicks in and delivers
more power to the final test.

The above bullet points apply to several other problems,
for example Shekhar and Ramdas (2023) design betting-
based tests for nonparametric two-sample testing, and the
same techniques would apply to that problem as well.
Similarly, Waudby-Smith and Ramdas (2024) derived the
only known closed-form empirical Bernstein inequality
that converges in width exactly to Bernstein’s inequality,
both of which can be improved with our uniform random-
ization technique, while the former can also be improved
with the exchangeable Markov inequality. We omit the
details for brevity.

The large improvements delivered by the uniformly-
randomized Markov’s inequality may be unsettling to

some readers, which is why we presented a version that
only uses the data itself for randomization in the previous
section. We anticipate more applications and discussions
about when such techniques may be appropriate (or not)
to emerge with time.

11. SUMMARY

This paper revisited several standard inequalities (by
Markov, Chebyshev, Chernoff, Ville, Doob) and proved
that they can be improved by suitably employing a simple
randomization technique involving a single independent
uniform random variable, or by exploiting exchangeabil-
ity of the underlying random variables (or both). Since
these are standard building blocks for nonasymptotic in-
ference, those inferential tools are thus improved. We pro-
vide several contemporary examples, including universal
inference, betting-based concentration, and combining e-
values, where we show large improvements in power. The
preceding discussion attempts to address some concerns
that may arise with the use of such techniques.
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Python code for reproducing the simulation study pre-
sented in Section 9.
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APPENDIX A: FURTHER DETAILS ON THE
RELATIONSHIP TO Huber (2019)

We have seen that the additively randomized Markov’s
inequality in Proposition 1.4 is equivalent to the (mul-
tiplicatively) uniformly randomized Markov’s inequality
in Theorem 1.2, in the sense that they can be used to de-
rive each other. We also saw that the result (7) by Huber
(2019) makes a different claim, that is neither stronger nor
weaker than Markov’s inequality.

Despite the above facts, we can show that all three re-
sults are mathematically equivalent, meaning that they
can all be used to derive each other. To see this, first let us
recall (7) below for simplicity:

P(X + B> ¢) <E[X]/(2¢),
where B ~ U[—¢, €]. Now, rewrite the left-hand side as
PX>e-B)=P(X>2e—-(e+B))
70 =P(X>2e-2A)=P(X/2>€—-A),

where we used the fact that e+ B is distributed as U[0, 2¢],
which has the same distribution as 2A, where A = U[0, €]
was defined in Proposition 1.4.

We can either apply Huber’s result to the left-hand side
of (70) or Proposition 1.4 to the right-hand side of (70)
to see that the two results imply each other. Neverthe-
less, the “take-home message” behind these inequalities
is quite different. Indeed, as suggested by the title of his
paper, Huber’s focus is on halving the bounds of Markov’s
inequality with his two-sided additive randomization B
(with implications for shape-constrained settings), while
ours focus has been on improving Markov’s inequality
and the statistical implications of such an improvement.
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APPENDIX B: PROOF OF THE TIME-REVERSED
VILLE INEQUALITY (THEOREM 5.1)

In this appendix, we provide a detailed proof of the
time-reversed Ville inequality (Theorem 5.1), which is at
the heart of the proofs of the EMI (Theorem 1.1) and
EUMI (Theorem 5.3). As previously mentioned, proofs
of this result appear under varying assumptions in the
works of Doob (1940), Lee (1990), Christofides and Ser-
fling (1990), and Manole and Ramdas (2023). In what fol-
lows, we provide a new self-contained proof which easily
lends itself to deriving the EUML.

Let m > 1. Notice first that the process (Y;);" | defined
by Y; = X141 is a forward submartingale with respect to
the forward filtration G, = &,,_;+1, 1 <t < m. Indeed, (Y;)
is adapted to (G,), and

E[Yt+1|gt] = E[Xm—t|8m—t+1] 2Xp1=Y,,

forall=1,...,m— 1. It must then also follow that (¥;)",
is a forward submartingale with respect to the filtration

Fi=oX1,....Y)=0Xpnts15 -, Xn), I<t<m.

With these preliminaries in place, we turn to proving the
claimed inequality. Given m > 1, define 7 :=sup{l <¢ <
m: X; > 1/a}, where sup ) = —co. Markov’s inequality im-
plies

(71) P(t>1)=PXrv1 2 1/a)<a-E[Xqv1].

Now define 1 :=m — 7 + 1, so that Xry; = Yy,. For all
t=1,...,m, we have

m—t+1l=tl={r=m—-t+1}eF,

thus 77 and n A m are stopping times with respect to (7).
Furthermore, the process (¥,)/”, is trivially uniformly in-
tegrable, hence by Doob’s optional stopping theorem for
submartingales,

E[Xzvi] =E[Yyam] < E[Yy] = E[X].

Returning to equation (71) and noting that {r > 1} =
{sup,<;<,n X; > 1/a}, we have thus shown

P( sup X; > l/a) <a-E[X]
1<t<m

By the bounded convergence theorem, sending m — oo
yields our claim. m|

APPENDIX C: A GENERAL RANDOMIZED TAIL
BOUND

We state and prove a simple randomized tail bound
which contains Theorems 1.2, 2.1 and 3.1 as special cases,
and can be used to derive randomized variants of other tail
bounds in the literature.

Prorosition C.1.  Let X be a random variable taking
values in a set X CR, and let | CR, be an interval. Let f :
X — Iand g: 1 — X be nondecreasing Borel-measurable
functions such that f(g(z)) > z for any z € I. Then, given
a random variable U ~ Unif(0, 1) independent of X, and
x>0, it holds that

E[f(X)]
f(x)
The proof is exactly as before. Notice first that U f(x)

takes values in I since U is supported in [0, 1], thus the
quantity g(U f(x)) is well-defined. Furthermore,

P(X > g(Uf(x)) = P(f(X) > f(g(Uf(x)))

P(X>g(Uf(x) <

SP(fX) > Uf(x)
=E[P(U < fX)/f)IX] <Ef(X)/ f(x),
which proves the claim. |

As an example, we next use Proposition C.1 to derive
uniformly-randomized analogues of Cantelli’s inequality,
Bernstein’s inequality, and of the empirical-Bernstein in-
equality.

C.1 Uniformly-randomized Cantelli inequality

We begin by deriving a uniformly-randomized ana-

logue of Cantelli’s inequality (Cantelli, 1929), which is a

one-sided version of Chebyshev’s inequality”. In contrast
to (10), it states that

(72) P(X —EX > ko) <

K+1
It can be improved by uniform randomization as follows:
1
(73)  PX-EX> VUGko +0/k) =0 /k) < 5

which we call the uniformly-randomized Cantelli inequal-
ity. To see that (73) is a stronger statement than (72),
rewrite the left-hand side as

P(X —EX > ko — (1 - VU)(ko + o /k)),

and note that (1 — VU) is positive.

The proof of (73) is a simple consequence of Proposi-
tion C.1. Let x = ok and u = o /k. Taking f(y) = (y + u)’
for all y e R and and g(z) = vz — 1 for all ze R,, we have

P(X - EX > VU(ko + o /k) - o /k)
= P(X -EX > g(Uf(x))
_ B/(X -EX)]
)
ek D B V.
(x+u)? 2+k2+1/k2 1+k%

5Despite its name, Cantelli’s inequality apparently originated in
Chebyshev’s much earlier work (Tchebichef, 1874); see Ghosh (2002).
In fact, it is commonly accepted that Markov’s inequality itself had al-
ready been proven by Chebyshev, who was Markov’s doctoral advisor.
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as claimed.
C.2 Uniformly-randomized Bernstein inequality

We next derive a uniformly-randomized analogue of
the classical Bernstein inequality (see for instance Propo-
sition 2.10 of Wainwright (2019)). We will assume that
the random variable X satisfies the Bernstein condition,
namely

1
(74 [EX-EX)H < SkIo?B 2, fork=2,3,...

for some o, b > 0. In particular, if X is a bounded ran-
dom variable with variance at most o> and satisfying
|X — EX]| < 1, then the above condition holds for b = 1/3.
Bernstein’s inequality states that, under condition (74),
for all e > 0,

2
75 PX-EX>e)< -——.
(73) ( € <exp ( 2007 + eb))
Setting the right-hand side equal to a € (0, 1), the above
implies

P(X—EX > /202 log(l/a) + 2blog(1/a/)) <a.

Consequently, given #n i.i.d. samples of X, the following
is a (1 — @)-confidence interval for EX:

[2021og(2/ @) N 2blog(2/a)
n n '

It is well known that the i.i.d. assumption can be re-
laxed into a martingale dependence assumption requiring
neither the independence aspect nor the identically dis-
tributed aspect, but we omit this generalization for sim-
plicity.

Our uniformly-randomized Bernstein inequality reads
(77)

P(X _EX> (02 T byJolog(1/a)2b? log(1 /a)) log U
+ /202 log(1/a) + 2blog(1/a)) <a,

where U is a random variable that is independent of X
and (stochastically larger than) uniform on [0, 1]. Since
logU < 0 almost surely, the above inequality provides
a strict and almost sure improvement of Bernstein’s in-
equality (and it recovers Bernstein’s inequality by sub-
stituting U = 1). Recall also that E[logU] = -1 and
Var[log U] = 1, giving an idea of the extent of the im-
provement.

To prove (77), let |4 < b™!, f(x) = exp(Ax) for all x € R,
and g(z) = logz/A for all z > 0. By Proposition C.1, we
have for all x> 0,

logU
A

(76) X, +

P X-u> + x) < e ME['X BN

22
< — — Ax¢,
eXp{za ~Bll) x}

where we used the fact that E[e*F%] < exp(/lzaz/ 2(1 -
b|A])) for all || < b~! under the Bernstein condition (cf.
Proposition 2.10 of Wainwright (2019)). Now, letting A =
(bx + o?)~! and simplifying the above expression, we ob-
tain
(78)

2
2 x
P(X—ﬂ?(bx+0' )logU+x)<exp{—m},

which can be viewed as another form of our random-
ized Bernstein inequality. Setting x = /202 log(1/a@) +
2blog(1/a) leads to the claimed inequality.

Combining the above with Lieb’s inequality, one di-
rectly obtains a randomized matrix-Bernstein inequality
as well; we omit the details for brevity.

C.3 Uniformly-randomized empirical Bernstein
inequality

Bernstein’s inequality is not always practically appli-
cable due to the need to know o. When the data are
bounded, one can construct so-called empirical Bernstein
(EB) inequalities that only depend on the data. There
are several such EB inequalities in the literature, but we
present below a randomized variant of a recent EB in-
equality by Waudby-Smith and Ramdas (2024), because it
is the only one that we are aware of whose corresponding
confidence interval width exactly matches the first order
term in (76).

Going forward, suppose that the i.i.d. data lie in [0, 1];
this is done for simplicity and without loss of generality.
Define

Y() = (=log(l = 1) = 1)
and the instantaneous empirical variance as
% + ZE:I Xi
t+1
The following is then a (1 — @)-CI for EX:

for 1€ [0, 1),

v = (X, —T-1)%, where 1, :=

n AKX log(2 n
(79) Zt:nl A Xy + [ 0g(2/a) ";2,:1 vay(4y) ’

Zt:l /ll Zt:l /lt
where A, € (0, 1) is a function of X, ..., X,_; that is set as
follows:

O 2logRla) 1, i+ D Xi—m)?
ﬂ't': —’\2 /\5, O-l = 1 .
o n t+

The proof follows by observing that
t
M, = | |exp{(X; — ) — vitp(4)}
i=1
is a nonnegative supermartingale with initial value M, =
1, and thus M, is an e-value. Applying Markov’s inequal-
ity to M,, and rearranging, yields one side of (79), and a
union bound with —4; in place of A; yields the other side.
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Instead, applying UMI in place of Markov’s inequality,
we obtain the uniformly-randomized empirical Bernstein
confidence interval:

(80) 2o Xy N log(2/a) +1log U + X7_; vib(4) ,

T =1 A
which is almost surely tighter than (79) since logU < 0
with probability one.

Remark C.2. Denoting the expression in (79) by C,,
it turns out that (<, C; is also a valid (1 — a)-confidence
interval. This is obtained by applying Ville’s inequality
to the supermartingale M, in place of Markov’s inequal-
ity. It may be a priori unclear whether (¢, C; is tighter
than (80) or not, but Figure 5 suggests a clear win for
UMI over Ville.
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