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Randomized and exchangeable
improvements of Markov’s, Chebyshev’s
and Chernoff’s inequalities
Aaditya Ramdas, Tudor Manole

Abstract. We present simple randomized and exchangeable improvements of

Markov’s inequality, as well as Chebyshev’s inequality and Chernoff bounds.

Our variants are never worse and typically strictly more powerful than the

original inequalities. The proofs are short and elementary, and can easily

yield similarly randomized or exchangeable versions of a host of other in-

equalities (for example, martingale inequalities by Doob and Ville) that em-

ploy Markov’s inequality as an intermediate step. We point out some sim-

ple statistical applications involving tests that combine dependent e-values.

In particular, we uniformly improve the power of universal inference, and

obtain tighter betting-based nonparametric confidence intervals. Simulations

reveal nontrivial gains in power (and no losses) in a variety of settings.

Key words and phrases: Randomization, exchangeability, e-values, universal

inference, Markov, Chernoff, Ville, Doob, Chebyshev, Bernstein, Hoeffding,

martingales.

1. INTRODUCTION

Consider a standard probability space (Ω,F ,P). Markov’s

inequality (MI) states that for any real-valued random

variable X defined on this space and constant a > 0, we

have

(1) P(|X| ⩾ 1/a) ⩽ a · E[|X|].

If X is nonintegrable, then the inequality trivially holds, so

the reader may implicitly assume going forward that we

deal with integrable X, without loss of generality. We now

present three inequalities that are all strictly stronger than

Markov’s inequality, with an eye towards applications and

improvements of other inequalities.

1.1 The exchangeable Markov inequality (EMI)

The following stronger version of Markov’s inequality

was recently noted by Manole and Ramdas (2023). Given

its seemingly basic and fundamental nature, it may exist

elsewhere in the literature. We will refer to it as the ex-

changeable Markov inequality (EMI).

Recall that X1, . . . ,Xn are called exchangeable if the

joint distribution of (X1, . . . ,Xn) equals that of (XÃ(1), . . . ,XÃ(n))

for any permutation Ã of {1, . . . ,n}. A sequence X1,X2, . . . ,
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is called exchangeable if X1, . . . ,Xn are exchangeable for

any n ⩾ 1. Of course, iid random variables are exchange-

able, but so are identical copies of the same random vari-

able. Also, exchangeable random variables have the same

expectation.

Theorem 1.1 (Exchangeable Markov Inequality). For

any exchangeable sequence X1,X2, . . . sequence of inte-

grable random variables and for any a > 0,

(2)

P

∃t ⩾ 1 :

∣∣∣∣∣∣∣
1

t

t∑

i=1

Xi

∣∣∣∣∣∣∣
⩾ 1/a



⩽ P

∃t ⩾ 1 :
1

t

t∑

i=1

|Xi| ⩾ 1/a

 ⩽ a · E[|X1|].

The same claim holds for a finite set of exchangeable ran-

dom variables.

This is clearly a strictly stronger statement than Markov’s

inequality which effectively makes an identical claim only

at t = 1 (or when all random variables are identical).

The proof of Theorem 1.1 is short (the first inequality is

obvious, so we focus on the second). The exchangeabil-

ity of X1,X2, . . . implies that the process
(∑n

i=1 |Xi| /n
)

n⩾1

forms a nonnegative reverse martingale; indeed, this fol-

lows from the fact that it can be rewritten as
(
E
[|X1|

∣∣∣En

])
n⩾1,

where (En)n⩾1 denotes the exchangeable filtration gener-

ated by X1,X2, . . . (defined for instance in Manole and
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Ramdas (2023) and references therein). The claim then

follows by invoking the time-reversed Ville inequality (re-

capped in Theorem 5.1 below, for completeness).

We point out immediately that the above inequality re-

sults in an improvement to subsampled universal infer-

ence (Wasserman et al., 2020), where repeated sample

splitting gives rise to exchangeable “split likelihood ra-

tios” on different subsets of the data. We return to this

topic in more detail in Section 7.

A useful corollary of the EMI is as follows. Let

X1, . . . ,Xn be any set of (potentially nonexchangeable)

arbitrarily dependent random variables. Let Ã be a uni-

formly random permutation of {1, . . . ,n}. Then, for any

a > 0,

(3)

P

 sup
1⩽t⩽n

1

t

t∑

i=1

∣∣∣XÃ(i)

∣∣∣ ⩾ 1/a

 ⩽ a · E[|X1| + |X2| + · · · + |Xn|]
n

.

Here, the original random variables are effectively made

exchangeable by the random permutation, thus allowing

us to invoke the original inequality.

We state a final variant of the inequality. Suppose we

take N arbitrarily dependent random variables and put

them in a bag. Suppose XÃ(1), . . . ,XÃ(n) be n samples drawn

uniformly at random with or without replacement from

this bag. Then, we have

(4)

P

 sup
1⩽t⩽n

1

t

t∑

i=1

∣∣∣XÃ(i)

∣∣∣ ⩾ 1/a

 ⩽ a · E[|X1| + |X2| + · · · + |XN |]
N

.

This holds because the sampling process induces the ex-

changeability required for (2) to be invoked on the other-

wise non-exchangeable random variables.

The aforementioned three variants of EMI are all rela-

tively weak, in the sense that they do not improve with

increasing t,n,N: there is no concentration of measure

really happening, and indeed there cannot really be any

since we have assumed so little about the underlying

random variables (a first moment for each, and either

an exchangeable or an arbitrary dependence structure).

Hence we are under no illusions that these can be “much”

stronger than the original Markov’s inequality.

1.2 The uniformly-randomized Markov inequality

(UMI)

Another improvement of Markov’s inequality is the fol-

lowing uniformly-randomized Markov inequality (UMI).

Theorem 1.2 (Uniformly-randomized Markov Inequal-

ity). Let X be a nonnegative random variable, and let

U ∼Unif(0,1) be independent of X. Then, for any a > 0,

(5) P(X ⩾U/a) = E[min(aX,1)] ⩽ a · E[X].

The equality above is nontrivial even for nonintegrable

X. Further, that equality becomes an inequality ⩽ if U is

stochastically larger than uniform. Last, if X is bounded,

that is X ∈ [0,C] almost surely for some C > 0, then the

inequality in (5) holds with equality for any a ⩽ 1/C.

One may consider the first equality in (5) as Markov’s

equality. The proof is simple:

(6) P(X ⩾U/a) = E[P(U ⩽ aX | X)] = E[min(aX,1)],

yielding the claim. As mentioned above, if X ⩽ 1/a al-

most surely, then (5) holds with equality, removing all

looseness in Markov’s inequality. Further, the statement

is nontrivial for nonintegrable X. For example, when

X is a standard Cauchy distribution and a = 0.05, we

obtain P(|X| ⩾ U/a) actually equals (20Ã + log(401) −
40 tan−1(20))/(20Ã) ≈ 0.127, but Markov’s inequality

only states that P(|X| ⩾ 1/a) is at most 0.127.

Clearly, UMI is strictly stronger than MI. Noting that

E[U] = 1/2 gives an intuitive idea of the extent of the

gain. The proof is so simple that the above inequality

may have been previously noted by other authors. But

it appears to not be commonly taught or broadly known,

and we have not found any source containing it so far.

Since the UMI also holds if U is stochastically larger than

uniform, Theorem 1.2 also gives an alternative proof to

Markov’s inequality (by choosing U = 1).

Remark 1.3. What happens when Markov’s inequal-

ity holds with equality? This only happens in a few rare

cases, but it does happen, and in these cases UMI also

holds with equality. For example, take the discrete dis-

tribution with point masses at 0 and 2, with probabil-

ity half each, so that the mean is one. For a = 1/2, we

have {X ⩾ 2} = {X = 2} and thus P(X ⩾ 2) = 1/2, meaning

Markov’s holds with equality. In this case, UMI also holds

with equality, because the event {X ⩾ 2U} is almost surely

equal to the event {X = 2}, since U > 0 almost surely. To

summarize, Markov’s inequality is only tight for a discrete

random variable taking values in {0,1/a}, while the UMI

holds with equality for any random variable taking values

in [0,1/a].

We again note that the UMI improves the recent method

of universal inference (Wasserman et al., 2020), by reject-

ing the null hypothesis when the split likelihood ratio (or

its variants like the crossfit or subsampled likelihood ra-

tio) exceed U/³ rather than 1/³. We return to this “ran-

domized universal inference” in Section 7.

Another particular application of UMI was recently and

independently noted as a passing remark, for a different

context, in a recent paper by Ignatiadis et al. (2024). It

is known that, given an e-value E (defined in Section 6),

the mapping from E 7→ 1/E is an admissible e-to-p cal-

ibrator (Vovk and Wang, 2021) (that converts an e-value

into a p-value). But this admissibility result only applies



RANDOMIZED AND EXCHANGEABLE IMPROVEMENTS OF CLASSICAL INEQUALITIES 3

to deterministic maps. After proving that P/E is a valid

p-value where P is a p-value and E § P, Ignatiadis et al.

(2024) note that this implies U/E is also a valid (random-

ized) e-to-p calibrator that converts an e-value E into a

p-value using independent randomization U , thus render-

ing 1/E as inadmissible if randomization is allowed. We

expand on this type of application in Section 6.

Last, it turns out that the UMI and EMI can be com-

bined into a single statement that implies both; this is

postponed to Theorem 5.3.

1.3 The additively-randomized Markov inequality

(AMI)

Instead of multiplicative randomization (as done in the

previous subsection), we may consider additive random-

ization. In this context, Huber (2019) recently proved an

interesting “smoothed Markov” inequality: for any non-

negative X and constant ϵ > 0,

(7) P(X + B ⩾ ϵ) ⩽
E[X]

2ϵ
,

where B is an independent uniform random variable on

[−ϵ, ϵ]. However, while the right-hand side halves the

bound of Markov’s inequality (as his paper title sug-

gests), the left-hand side is not directly comparable. In-

deed, when calculating P(X ⩾ ϵ − B), the right-hand side

ϵ − B is not always bigger than ϵ. Hence, it appears that

the bound is not in general comparable to Markov’s in-

equality. Huber derives many interesting consequences of

this inequality, including extensions to Chebyshev’s and

Chernoff’s inequalities, and once again they appear in-

comparable to the original inequalities.

We present the following result, which (unlike Huber’s)

is stronger than Markov’s inequality.

Proposition 1.4 (Additively-randomized Markov In-

equality). Let ϵ > 0. Given a nonnegative random vari-

able X, and an independent random variable A ∼Unif(0, ϵ),

it holds that

(8) P(X ⩾ ϵ − A) ⩽
E[X]

ϵ
.

The proof is simple. Since P(A ⩾ ϵ − x) = x/ϵ for x ⩽ ϵ,

the left-hand side simplifies to

P(A ⩾ ϵ − X) = E[P(A ⩾ ϵ − X|X)] = E[min(X, ϵ)]/ϵ,

implying the claim.

It is also not hard to see that our additively-randomized

Markov inequality (Proposition 1.4) is actually equivalent

to our earlier uniformly-randomized Markov inequality

(Theorem 1.2). To see this, write A = ϵU , where U is uni-

form on [0,1]. Then P(X ⩾ ϵ − A) = P(X ⩾ ϵ(1 − U)) =

P(X ⩾ ϵU′), where U′ = 1 − U is also uniform on [0,1].

Writing a = 1/ϵ equates the two claims.

In Appendix A, we further discuss the relationship of

the above bound to Huber’s smoothed Markov inequal-

ity. We show, in particular, how the two types of bounds

can be used to derive each other, despite having different

interpretations and implications.

In the rest of this paper, we will continue to use our

multiplicative version, because we think the resulting ex-

pressions are cleaner, but readers may find the additive

version more useful in some settings, which is our rea-

soning for recording Proposition 1.4 as a separate result.

1.4 Contributions and paper outline

Having already introduced multiple new generaliza-

tions of Markov’s inequality, we next point out several

new concentration inequalities that result out of their use

and/or combination. Section 2 derives randomized and

exchangeable improvements of Chebyshev’s inequality

(with Appendix C.1 containing an improvement to Can-

telli’s inequality, as a way of exemplifying a more gen-

eral proof technique). Section 3 does the same for Ho-

effding’s inequality, and points out that the same tech-

niques improve any Chernoff bound (extensions of the

Bernstein and empirical Bernstein inequalities are in Ap-

pendix C.2). Section 4 shows how to derive a random-

ized improvement of Ville’s inequality for forward su-

permartingales. Then, Section 5 randomizes the reverse

Ville’s inequality (for reverse submartingales), and as

a consequence derives an inequality that combines the

strengths of the EMI and UMI into a single inequality

(Theorem 5.2). After presenting some of these improve-

ments (and omitting others for brevity), we describe some

statistical applications. Section 6 produces more power-

ful tests using arbitrarily dependent e-values. Section 7

uniformly improves different versions of the recent uni-

versal inference (Wasserman et al., 2020) methodology.

Section 8 improves betting-based tests and confidence in-

tervals that are an exciting development in nonparamet-

ric statistics (Waudby-Smith and Ramdas, 2024). Sec-

tion 9 explores the (often large) improvements in power

obtained in a variety of simulations. Section 10 con-

tains an extended discussion, including concerns about

reproducibility of randomized tests, and the possibility

of avoiding external randomization entirely by utilizing

the internal randomness of the data. Section 11 contains a

brief conclusion.

2. RANDOMIZED & EXCHANGEABLE

CHEBYSHEV INEQUALITY

In the rest of this section and paper, U is always a uni-

form random variable on [0,1], independent of all other

random variables.



4

2.1 Uniformly-randomized Chebyshev inequality

For any random variable X having variance (at most)

Ã2, Chebyshev’s inequality states that

(9) P (|X − EX| ⩾ kÃ) ⩽ 1/k2.

The proof is transparent: one just squares both terms

within the probability on the left-hand side, and applies

Markov’s inequality. More generally, consider n ⩾ 1 i.i.d.

random variables X1, . . . ,Xn with variance Ã2, and define

X̄n := (X1 + · · · + Xn)/n. Chebyshev’s inequality implies

that for any k > 0,

(10) P

(
|X̄n − EX| ⩾ k

Ã
√

n

)
⩽ 1/k2.

Our uniformly-randomized Chebyshev inequality reads as

follows:

Theorem 2.1 (Uniformly-randomized Chebyshev In-

equality). Let X1, . . . ,Xn be i.i.d. random variables with

variance Ã2, and let U ∼ Unif(0,1) be an independent

random variable. Then, for any k > 0,

(11) P

|X̄n − EX| ⩾ kÃ

√
U

n

 ⩽ 1/k2.

As before, the same result holds when U is stochastically

larger than uniform.

This is clearly a tighter claim than the original: the

probability of exceeding a random (but always smaller)

threshold is identical. Noting that E[
√

U] = 2/3 while

Var(
√

U) = 1/18 gives an intuitive idea of the extent of

the gain: the obtained confidence intervals will be 2/3 as

wide using our improved inequality.

The proof is similar to the UMI (6):

P

|X̄n − EX| ⩾ kÃ

√
U

n

 = E
[
P

(
U ⩽

n|X̄n − EX|2
k2Ã2

∣∣∣∣X
)]

⩽ E

[
n|X̄n − EX|2

k2Ã2

]
= 1/k2.

The sole inequality exists, despite U being exactly uni-

form, because
n|X̄n−EX|2

k2Ã2 could be larger than one. If one

replaces the resulting inequality by E
[

n|X̄n−EX|2
k2Ã2 ' 1

]
, then

the inequality would turn to equality, but the subsequent

equality (= 1/k2) would turn into an inequality.

It is clear that the i.i.d. assumption above, and in the

following sections, is made for convenience, and can be

weakened to give many variants of the above. It is also

possible to prove a randomized version of Cantelli’s in-

equality (Cantelli, 1929), which is a one-sided analogue

of Chebyshev’s inequality. We present such a result in Ap-

pendix C.

Remark 2.2. We thank an anonymous referee for

pointing out that by similar lines as above, it is also

possible to derive the following variant of the uniformly-

randomized Chebyshev inequality:

(12) P

(
|X̄n − EX| ⩾ k2Ã

U
√

n

)
⩽ 1/k2.

Although this bound has a poor dependence on k, it has a

more favourable dependence on U, since E[U] = 1/2 <

E[
√

U]. A simple derivation shows that equation (12)

is sharper in expectation than the uniformly-randomized

Chebyshev inequality (11) when the value of k is suffi-

ciently small, specifically k ⩽ 4/3.

2.2 Exchangeable Chebyshev inequality

If the data are exchangeable rather than i.i.d., we have

the following claim:

Theorem 2.3 (Exchangeable Chebyshev Inequality).

If X1,X2, . . . is a sequence of exchangeable random vari-

ables with variance at most Ã2, then for any k > 1,

(13) P

(
sup
m⩾1

|X̄m − EX| ⩾ kÃ

)
⩽ 1/k2.

If the random variables are further assumed to be i.i.d.,

then for any n ⩾ 1, we have

(14) P

(
sup
m⩾n

|X̄m − EX| ⩾ kÃ
√

n

)
⩽ 1/k2.

Note that (13) improves (9) by recovering it either at

m = 1 or when all random variables are identical. Unlike

the various bounds presented for the i.i.d. case, (13) does

not improve as the sample size increases. But improve-

ments are not possible without further assumptions, be-

cause when all Xi are identically equal to X, the statement

reduces to a claim about X, with no role for concentration

of measure.

The proof is simple: defining Rm := |X̄m − EX|2/Ã2,

a short calculation invoking Jensen’s inequality reveals

that (Rm)m⩾1 is a nonnegative reverse submartingale with

E[R1] ⩽ 1. The time-reversed Ville inequality (Theo-

rem 5.1) then yields our claim. Essentially the same proof

can be obtained by defining Yi = |Xi − EX|2/Ã2. Apply-

ing the exchangeable Markov inequality, we infer that

P(supm⩾1 Ȳm ⩾ k2) ⩽ 1/k2, which implies (13) by Jensen’s

inequality. For the second part, one may apply the same

proof as above, but now only considering the submartin-

gale (Rm)m⩾n starting at time n. Since Var[Rn] = Ã2/n un-

der the i.i.d. assumption, equation (14) follows.

Remark 2.4. The above inequalities are not to be con-

fused with Kolmogorov’s generalization of Chebyshev’s

inequality which states that if X1,X2, . . . ,Xn are i.i.d. (not
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just exchangeable) random variables with variance at

most Ã2, then for any k > 1 and n ⩾ 1,

(15) P

sup
m⩽n

|
m∑

i=1

(Xi − EX)| ⩾ kÃ
√

n

 ⩽ 1/k2.

Technically, the i.i.d. assumption above can be weakened

to just independence, and even to a martingale depen-

dence assumption, but we omit these for simplicity.

3. RANDOMIZED AND EXCHANGEABLE

CHERNOFF BOUNDS

We present randomized and exchangeable variants of

Chernoff bounds below. We remark that every Cher-

noff bound, including matrix concentration bounds, or

self-normalized concentration inequalities, are improved

via the same technique presented below (Howard et al.,

2020), but it is impractical to develop every one of these,

so we just pursue three of them: the Hoeffding bound be-

low, Bernstein’s inequality in Appendix C.2, and the em-

pirical Bernstein inequality in Appendix C.3.

3.1 Uniformly-randomized Hoeffding inequality

Recall that X is called Ã-subGaussian if for any con-

stant ¼,

(16) E[exp(¼(X − E[X]))] ⩽ exp(¼2Ã2/2).

Hoeffding’s inequality states that if X is Ã-subGaussian,

then for any ϵ > 0,

(17) P (X − E[X] ⩾ Ãϵ) ⩽ exp(−ϵ2/2).

More generally, considering n i.i.d. Ã-subGaussian ran-

dom variables X1, . . . ,Xn, the above inequality implies

that

(18) P
(
X̄n − E[X] ⩾ Ãϵ

)
⩽ exp(−nϵ2/2).

Setting the right-hand side to equal ³ ∈ (0,1), it can be

rewritten as

(19) P

X̄n − E[X] ⩾ Ã

√
2 log(1/³)

n

 ⩽ ³.

An identical bound can also be derived on the other tail.

As we shall soon see, the proof proceeds by multiplying

both sides within the probability by ¼ > 0, exponentiating

both sides, then applying Markov’s inequality, and finally

tuning ¼.

Our uniformly-randomized Hoeffding inequality reads

as follows.

Theorem 3.1 (Uniformly-randomized Hoeffding In-

equality). Let X1, . . . ,Xn be i.i.d. Ã-subGaussian ran-

dom variables, and let U ∼ Unif(0,1) be an independent

random variable. Then, for all ³ ∈ (0,1),

(20)

P

X̄n − E[X] ⩾ Ã

√
2 log(1/³)

n
+Ã

log(U)√
2n log(1/³)

 ⩽ ³.

The above bound also holds in non-i.i.d. settings un-

der a certain martingale dependence structure, where

each Xi is Ã-subGaussian conditional on X1, . . . ,Xi−1,

in which case the left-hand side E[X] is replaced by∑n
i=1 E[Xi|X1, . . . ,Xi−1]/n. We omit the details for simplic-

ity; see Howard et al. (2020) for details.

The original Hoeffding inequality (19) is recovered by

replacing U with 1. Since log U < 0, this is a strictly

tighter bound than the original. Note that E[log U] = −1

and Var(log U) = 1, perhaps giving an intuitive idea of

the extent of the gain.

The proof is simple: definition (16) implies that the

random variable exp(¼
∑n

i=1(Xi − E[X]) − ¼2

2
Ã2n) has ex-

pected value at most one. Since it is also nonnegative, we

can apply our randomized Markov’s inequality. Setting

¼ =

√
2 log(1/³)

Ã2n
, and rearranging terms, yields the above

claim. (Note that ¼ cannot be a function of U for the proof

to work.)

Remark 3.2. The bound in (20) can be rewritten by

setting ϵ =
√

2 log(1/³)/n) as:

(21) P

(
X̄n − E[X] ⩾ Ãϵ +

Ã log U

ϵn

)
⩽ exp(−nϵ2/2),

which is easier to compare to (18). Also, a (1 − ³)-

confidence interval for the mean E[X] is

(22) X̄n ±
Ã

√
2 log(2/³)

n
+Ã

log(U)√
2n log(2/³)

 .

The usual half-width of Hoeffding’s inequality simply in-

volves the first term above, that is Ã

√
2 log(2/³)

n
. Since

E[log U] = −1, the expected improvement in width is

Ã/
√

2n log(2/³), and the expected relative improvement

in width is the ratio of the aforementioned quantities

(latter divided by former), given by 1/(2 log(2/³)). This

equals 1/(2 log(40)) ≈ 0.14 when ³ = 0.05, meaning we

expect to get about a 14% improvement in width over Ho-

effding’s inequality. Indeed, we observe exactly this factor

of 14% in our later simulations.

Remark 3.3. The Chernoff technique, while attractive

due to its simplicity, leads to inefficient tail inequalities.

The original work of Hoeffding (1963, Theorem 1) pro-

vides a simple sharpening of the bound (18) for bounded

random variables. A variety of other strictly tighter tail

bounds have been developed in the literature—see for

instance Bentkus (2002); Bentkus et al. (2006). Each of

these tail bounds can be derived by applying MI to a de-

terministic function of X̄n, and can therefore be random-

ized using the UMI in the same way that we have done

here. We do not pursue this avenue further in order to

keep our exposition simple. Nevertheless, in Appendix C,
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we derive a general inequality which could be used to de-

rive such sharper randomized tail bounds, and which also

unifies Theorems 1.2, 2.1 and 3.1.

We end by pointing out the possibility that the inter-

val (22) can be empty. Despite this, it maintains its fre-

quentist coverage as discussed in Section 10.3, but we

nevertheless propose a practical fix in Section 10.5.

3.2 Exchangeable Hoeffding Inequality

If the data are exchangeable rather than i.i.d. Ã-

subGaussian, then one can verify via Jensen’s inequality

that X̄n is still Ã-subGaussian. In fact, we have the fol-

lowing stronger claim:

Theorem 3.4 (Exchangeable Hoeffding Inequality). If

X1,X2, . . . are an exchangeable sequence ofÃ-subGaussian

random variables, then for any ϵ > 0,

(23) P

(
sup
m⩾1

|X̄m − EX| ⩾ ϵÃ
)
⩽ exp(−ϵ2/2).

If the random variables are further assumed to be i.i.d.,

then we have for any n ⩾ 1,

(24) P

(
sup
m⩾n

|X̄m − EX| ⩾ ϵÃ
√

n

)
⩽ exp(−ϵ2/2).

Equation (23) improves (17) by recovering it either at

m = 1 or when all random variables are identical. The

proof mimics that of Theorem 2.3, except by using Yi =

exp(¼(Xi −EX)− ¼2Ã2/2), which has expectation at most

one.

Remark 3.5. The above bound is not to be con-

fused with the Azuma-Hoeffding inequality which states

that if X1,X2, . . . are i.i.d. (not merely exchangeable) Ã-

subGaussian random variables, then for any ϵ > 0,

(25) P

sup
m⩽n

m∑

i=1

(Xi − EX) ⩾ ϵÃ
√

n

 ⩽ exp(−ϵ2/2).

Of course, the above inequality holds under a certain type

of martingale dependence structure, that we omit for sim-

plicity. The Azuma-Hoeffding inequality, despite its fame,

is itself loose and was uniformly improved by Howard

et al. (2020).

4. A RANDOMIZED IMPROVEMENT OF VILLE’S

INEQUALITY

There is a fundamental inequality for nonnegative

supermartingales called Ville’s inequality, whose time-

reversed version led to the exchangeable Markov inequal-

ity. In fact, both Ville’s and reverse Ville’s inequalities are

themselves stronger statements than Markov’s inequality.

Here we ask the question: is there a randomized improve-

ment of these inequalities? The answer is subtle—both

yes and no in some sense—and we return to answer this

question in Section 4.2 after giving a brief introduction to

these inequalities below.

4.1 Ville’s inequality for forward supermartingales

Ville (1939) proved that if X1,X2, . . . form a nonnega-

tive supermartingale (with respect to any filtration) then

for any constant a > 0,

(26) P

(
sup
t⩾1

Xt ⩾ 1/a

)
⩽ a · E[X1].

Markov’s inequality, of course, replaces supt⩾1 Xt with

just X1, and thus (26) is strictly stronger. This inequality

appears for example in the foundational books of game-

theoretic probability Shafer and Vovk (2005, 2019) and

much of the recent literature on time-uniform concentra-

tion inequalities (Howard et al., 2020, 2021), in which it

is called Ville’s inequality.

The proof is simple. Define the stopping time Ä :=

inf{t ⩾ 1 : Xt ⩾ 1/a}, where inf ∅ = ∞. For any fixed m,

Markov’s inequality implies

(27) P(Ä ⩽m) = P(XÄ'm ⩾ 1/a) ⩽ a ·E[XÄ'm] ⩽ a ·E[X1],

where the second inequality follows by Doob’s optional

stopping theorem. Letting m→∞ and using the bounded

convergence theorem yields P(Ä < ∞) ⩽ a · E[X1], prov-

ing (26).

4.2 Randomizing Ville’s inequality

Howard et al. (2021, Lemma 3) implies that there are

actually three equivalent statements of Ville’s inequality:

if M = (Mt)t⩾0 is a nonnegative supermartingale with re-

spect to a filtration F = (Ft)t⩾0, and E[M0] = 1, then for

any a > 0, the following three statements hold and imply

each other:

P(∃t ⩾ 0 : Mt ⩾ 1/a) ⩽ a.

(28a)

P(MÄ ⩾ 1/a) ⩽ a for any F-stopping time Ä.(28b)

P(MT ⩾ 1/a) ⩽ a for any F∞-measurable(28c)

random time T.(28d)

Despite the fact that the above three statements imply

each other, it turns out that (only) the second of these in-

equalities can be randomized to yield the following result.

Theorem 4.1. For any nonnegative supermartingale

M with E[M0] ⩽ 1, we have

(29) P(MÄ ⩾U/a) ⩽ a for every F-stopping time Ä,

where U is (stochastically larger than) uniform on [0,1]

and is independent of F (and thus independent of M and

Ä).
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The proof is simple: the optional stopping theorem for

nonnegative supermartingales implies that for any stop-

ping time without restriction, E[MÄ] ⩽ 1, to which we ap-

ply the UMI (5).

The entire discussion above does not require time to

be discrete: all the statements hold in continuous time as

well. In continuous time, it is easy to observe that equa-

tion (28a) cannot be improved by randomization: the in-

equality actually holds with equality for exp(¼Bt −¼2t/2),

where ¼ is any nonzero constant and (Bt)t⩾0 is a standard

Brownian motion (see for instance Durrett (2019), Exer-

cise 7.5.2).

We now present a corollary of Theorem 4.1 that has

direct implications for sequential testing.

Corollary 4.1.1 (Randomized Ville Inequality). For

any nonnegative supermartingale M with E[M0] ⩽ 1, and

any F-stopping time Ä, we have

(30) P(∃t < Ä : Mt ⩾ 1/a or MÄ ⩾U/a) ⩽ a,

where U is (stochastically larger than) uniform on [0,1]

and is independent of F (and thus independent of M

and Ä).

Given any stopping time Ä, (30) is obtained by applying

Theorem 4.1 to the stopping time Ä′ := min{Ä, µ}, where

µ := inf{t : Mt ⩾ 1/a}. We now discuss the implications of

the above randomized Ville inequality.

4.3 Implications for safe anytime-valid inference

Ville’s inequality plays a central role in modern sequen-

tial statistics (Howard et al., 2020, 2021), and in partic-

ular within “game-theoretic statistics and safe, anytime-

valid inference” (Ramdas et al., 2020, 2023). In the lat-

ter context, the above randomized variant of Ville’s in-

equality (29) can improve power in a concrete way. To

understand why, first note that one usually constructs M to

be a nonnegative supermartingale under the null hypothe-

sis, such that it increases to infinity under the alternative.

Then, Ä := inf{t : Mt ⩾ 1/³} is a stopping time of special

importance, since Ville’s inequality implies that we can

reject the null if Ä <∞, while controlling the type-I error

at level ³.

However, this stopping rule is not literally followed due

to its potentially unbounded nature. One may terminate an

experiment even if the above stopping time has not been

reached: in a simulation, we have bounded computational

resources, which means we only really allow for rejection

before some maximum time tmax, and in real experiments,

one may terminate due (for example) budget constraints.

This motivates the following three-step rule for sequential

testing with the randomized Ville’s inequality:

• Collect data and continuously monitor the test

statistic process M (that is guaranteed to be a non-

negative supermartingale under the null).

• If M ever crosses 1/a, stop and reject the null. Else,

stop at any F -stopping time Ä.

• Draw an independent random variable U that is

(stochastically larger than) uniform on [0,1]. Re-

ject the null if MÄ ⩾U/³.

Theorem 4.1 implies that the above rule yields a bona fide

level-³ sequential test that is valid under continuous mon-

itoring and adaptive stopping. This is clearly more pow-

erful than the usual rule employed in the aforementioned

papers (and references cited therein), which only reject

the null when MÄ ⩾ 1/³.

We note in passing that Theorem 4.1 also applies to a

larger class of processes than nonnegative supermartin-

gales. These are called “e-processes”, and play a particu-

larly key role in sequential composite null testing. How-

ever, we omit the details for brevity, and refer instead to

the aforementioned survey by Ramdas et al. (2023).

We end with the following note. Thanks to a dual-

ity between sequential tests and sequential estimation us-

ing confidence sequences (CSs), the above observations

also have implications for constructing CSs. A CS is a

time-uniform or anytime-valid generalization of a confi-

dence interval. Formally, a (1 − ³)-CS for a parameter

¹ is a sequence (Cn(³))n⩾1 of confidence intervals (one

for each sample size n) that are valid at arbitrary stop-

ping times, meaning that it satisfies P(¹ ∈ CÄ(³)) ⩾ 1 − ³
for any F -stopping time Ä, or equivalently it satisfies

P(∀n ⩾ 1 : ¹ ∈ Cn(³)) ⩾ 1 − ³. Since they are usually (or

in fact, essentially always, as per Ramdas et al. (2020);

Waudby-Smith and Ramdas (2024)) obtained by invert-

ing a family of sequential tests based on Ville’s inequal-

ity, our randomized Ville’s inequality improves the CI at

the final stopping time. To clarify, we have the following

result for any CS: For any F -stopping time Ä, we have

(31) P(∃t < Ä : ¹ <CÄ(³) or ¹ <CÄ(³/U)) ⩽ ³,

where U is a uniform that is independent of the data and

thus the stopping time (one may imagine it to be drawn

after stopping). To summarize, if we ever stop a sequential

experiment in which we were tracking a CS, the very last

confidence interval that we report can be at level ³/U , and

this would still have an overall miscoverage of at most ³.

5. RANDOMIZING THE TIME-REVERSED VILLE

INEQUALITY

Directly inspired by Ville (1939), the time-reversed

Ville inequality was first proved by Doob (1940) for re-

verse martingales, and for instance by Lee (1990) and

Christofides and Serfling (1990) for reverse submartin-

gales. We also refer to Manole and Ramdas (2023) for

two self-contained proofs of this result. The statement is

given as follows.
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Theorem 5.1 (Time-reversed Ville inequality). Let

(Xt)
∞
t=1

be a nonnegative reverse submartingale with re-

spect to a reverse filtration (Et)
∞
t=1

. Then, for any a > 0,

(32) P

(
sup
t⩾1

Xt ⩾ 1/a

)
⩽ a · E[X1].

We provide a self-contained proof in Appendix B,

which we briefly outline here. The proof is similar to that

of Ville’s inequality, with changes to account for the re-

versed nature of the process. Given m ⩾ 1, define Ä :=

sup{1 ⩽ t ⩽ m : Xt ⩾ 1/a}, where sup∅ = −∞. Markov’s

inequality implies

(33) P(Ä ⩾ 1) = P(XÄ(1 ⩾ 1/a) ⩽ a · E[XÄ(1] ⩽ a · E[X1].

To prove the last inequality, notice that the process Yt =

Xm−t+1, 1 ⩽ t ⩽ m, is a forward submartingale, and ¸ :=

m − Ä + 1 is a stopping time with respect to the same fil-

tration as (Yt)
m
t=1

, thus by the optional stopping theorem,

E[XÄ(1] = E[Y¸'m] ⩽ E[Ym] = E[X1].

Noting that {Ä ⩾ 1} = {sup1⩽t⩽m Xt ⩾ 1/a} yields

P

(
sup

1⩽t⩽m

Xt ⩾ 1/a

)
⩽ a · E[X1].

Sending m→∞ yields our claim.

5.1 The uniformly-randomized time-reversed Ville

inequality

Given a reverse filtration (Et)
∞
t=1

, we will say that Ä is a

reverse stopping time if it satisfies {Ä = t} ∈ Et for all t ⩾ 1.

We then have the following statement.

Theorem 5.2 (Uniformly-randomized time-reversed

Ville inequality). Let (Xt)
∞
t=1

be a nonnegative reverse

submartingale, and Ä a reverse stopping time, both with

respect to a reverse filtration (Et)
∞
t=1

. Let U ∼ Unif(0,1)

be independent of (Et). Then, for any a > 0,

(34) P (XÄ ⩾U/a) ⩽ a · E[X1].

Theorem 5.2 is a uniformly-randomized analogue of

the time-reversed Ville inequality in Theorem 5.1. This

last has been used for instance by Manole and Ramdas

(2023) to derive nonparametric sequential goodness-of-

fit and two-sample hypothesis tests using divergences be-

tween empirical probability distributions as test statistics.

When the validity of these sequential tests is only needed

at arbitrary reverse stopping times Ä, their power can im-

mediately be improved with uniform-randomization by

Theorem 5.2, in much the same way as we described in

Section 4.3.

The proof of Theorem 5.2 is straightforward: by rea-

soning as in the proof of Theorem 5.1, above we have

E[XÄ] ⩽ E[X1], thus the claim follows by applying the

UMI to XÄ.

5.2 A uniformly randomized variant of the EMI

We can use Theorem 5.2 to obtain the following variant

of the EMI which we refer to as the exchangeable and

uniformly-randomized Markov inequality (EUMI).

Theorem 5.3 (EUMI). Let X1, . . . ,Xn be a set of ex-

changeable random variables. Then, for any a ∈ (0,1),

P

X1 ⩾U/a or ∃t ⩽ n :

∣∣∣∣∣∣∣

t∑

i=1

Xi/t

∣∣∣∣∣∣∣
⩾ 1/a

 ⩽ a · E|X1|,

(35)

where U is a uniform random variable on [0,1] that is

independent of X1, . . . ,Xn.

The proof follows by defining the stopping time Ä :=

1 ( sup{1 ⩽ t ⩽ n :
∑t

i=1 Xi/t ⩾ 1/a}. Then, Theorem 5.2

implies that

P



∣∣∣∣∣∣∣
1

Ä

Ä∑

i=1

Xi

∣∣∣∣∣∣∣
⩾U/a

 ⩽ a · E|X1|,(36)

which is mathematically equivalent to (35). It is easy

to see that an analogous statement holds for infinite se-

quences of exchangeable random variables, by removing

the upper bound on t in the definition of Ä.

Equation (35) is one way of combining the strengths

of the EMI and UMI. Note that the EUMI is stronger

than both the UMI and the EMI, and indeed implies both

of them. This inequality has important implications for

(more powerful) statistical testing, which we discuss in

the following sections.

6. CONSTRUCTING RANDOMIZED TESTS WITH

E-VALUES

Despite e-values not being defined formally yet, we al-

ready used them implicitly in the proofs of all preceding

theorems: indeed the random variable Yi in the proofs of

Theorem 2.3 and Theorem 3.4 are e-values, as is X/E[X]

in the proof of Markov’s inequality.

Before defining e-values formally, we give a brief sum-

mary of what’s to come, in order to orient the reader. Let

E1 and E2 be arbitrarily dependent e-values for testing a

given hypothesis. In order to achieve a level ³ test, the

natural way to combine them is to average them into a

combined e-value and check if (E1 + E2)/2 ⩾ 1/³, whose

validity is guaranteed by Markov’s inequality.

However, a simple and uniform improvement is as fol-

lows: choose i ∈ {1,2} randomly with equal probability,

and first check if Ei ⩾ 1/³, and if not then check whether

(E1 + E2)/2 ⩾ 1/³. This is also a level-³ test, due to the

EMI. Another valid randomized level-³ test is to reject

if (E1 + E2)/2 ⩾ U/³ where U is an independent uni-

form random variable, whose validity is guaranteed by the

UMI. We expand on some statistical applications of these

ideas below.
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6.1 A brief review of e-values

For a set of distributions P, an e-value1 for the null hy-

pothesis H0 : P ∈ P is a nonnegative random variable X

such that

EP[X] ⩽ 1 for all P ∈ P.

Since e-values are likely to be small under the null (and

hopefully large under the alternative), a level-³ test is

given by:

(37) reject H0 if X ⩾ 1/³.

This test controls type-1 error (nonasymptotically and

hence uniformly over P) by Markov’s inequality (1).

Without knowing any further details about the distribu-

tion of X, this rule does not appear to be improvable in

general.

However, we note that with a little external random-

ization, the rule (37) can be made (usually strictly) more

powerful. The UMI (5) implies that if U is an independent

uniform random variable on [0,1], then the rule

(38) reject H0 if X ⩾U/³,

controls the type-I error at level ³. In other words,

min(U/X,1) is a valid p-value; this fact was indepen-

dently recently pointed out in Ignatiadis et al. (2024).

We will see that such uniform randomization can ef-

fectively be used to improve on (arguably natural) ways

to combine e-values to yield tests, but a new type of test

is opened up as a consequence of the EMI (2), and the

EUMI (35).

1If P = {P} is a singleton, then all optimal e-values take the form

of dQ/dP, that is likelihood ratios of Q against P, for some (implicit

or explicit) alternative Q. So, technically e-values have been around

for 100 years masquerading as likelihood ratios (and Bayes factors).

The recent christening of the term “e-value” is simply to recognize

the importance of a more general concept that has utility much be-

yond point nulls. Indeed, beyond the singleton case, e-values can be

viewed as nonparametric/composite generalizations of likelihood ra-

tios to complex settings involving nonparametric and composite nulls

and alternatives. Even for this setting, e-values have technically been

around for over 50 years (Robbins, 1970), appearing in the form of

stopped nonnegative supermartingales and implicitly within the proofs

of Chernoff bounds (Howard et al., 2020). The concept appears to have

simply floated around without a unified name for 50 years, until several

authors—who had a priori used different terms for the same concept—

simultaneously decided to converge to the terminology “e-value” a few

years ago (Shafer, 2021; Vovk and Wang, 2021; Grünwald et al., 2024;

Ramdas et al., 2020; Wasserman et al., 2020). Research on e-values has

blossomed recently, without acknowledgment of understanding of its

roots. The reader may see Ramdas et al. (2023) for a recent survey on

game-theoretic statistics and safe anytime-valid inference, which pro-

vides a broader context in which e-values arise naturally, and for many

examples of composite, nonparametric e-values, as well as details of

the connection to betting scores and the wealth of a gambler betting

against the null.

6.2 Combining multiple arbitrarily dependent

e-values to test P

Suppose we have constructed K arbitrarily dependent e-

values X1, . . . ,XK for the same null hypothesis H0 : P ∈ P.

These may or may not be exchangeable. A natural way to

form a test is to define

X̄K := (X1 + · · · + XK)/K,

which is also an e-value, and thus to

(39) reject H0 if X̄K ⩾ 1/³.

Said differently,

(40) p =min(1/X̄K ,1)

is a p-value. In fact, Vovk and Wang (2021, Appendix

G) prove that among symmetric e-to-p merging func-

tions, min(1/X̄K ,1) is the optimal choice. However, the

above optimality result precludes the use of randomiza-

tion, meaning that it can potentially be dominated by ran-

domized rules. We show that this is indeed the case. To

prepare for the result, given a permutation Ã of {1, . . . ,K},
define

X̄Ã
t :=

1

t

t∑

i=1

XÃ(i).

Note that X̄Ã
K
= X̄K .

Proposition 6.1. Let X1, . . . ,XK be arbitrarily depen-

dent e-values for the null hypothesis H0 : P ∈ P. If the Xi

are not exchangeable, let Ã be a uniformly random permu-

tation of {1, . . . ,K}, otherwise let Ã be the identity permu-

tation. Then, the following rules control the type-I error

at level ³:

1. reject H0 if X̄K ⩾U/³,(41)

2. reject H0 if sup
t⩽K

X̄Ã
t ⩾ 1/³,(42)

3. reject H0 if XÃ(1) ⩾U/³ or sup
t⩽K

X̄Ã
t ⩾ 1/³.(43)

Further, each of these rules is more powerful than (39).

The proof follows directly from the UMI (Theorem 1.2)

for (41), from the EMI (Theorem 1.1) for (42), and from

EUMI (Theorem 5.3) for (43). Despite rule (42) being

strictly less powerful than rule (43), we state it separately

for ease of reference below. These three rules can be al-

ternatively written as forming one of the following three

p-values:

1. p1 =min(U/X̄K ,1)(44)

2. p2 =min( inf
1⩽t⩽K

(X̄Ã
t )−1,1)(45)

3. p3 =min( inf
1⩽t⩽K

(X̄Ã
t )−1,U/XÃ(1),1),(46)
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and rejecting the null when that p-value is smaller than ³.

Note that if one wants to combine K arbitrarily depen-

dent e-values to obtain a combined e-value, averaging is

still optimal. But if one wants to form a p-value or test at

level ³, options like (44), (45), (46) dominate (40).

6.3 Combining m-way independent e-values

We now briefly extend the previous subsection’s ideas

beyond arbitrary dependence. Suppose that X1, . . . ,XK are

m-way independent e-values for some null H0, meaning

that every subset of m of them is jointly independent.

m = 1 corresponds to arbitrary dependence as discussed

previously, and m = K corresponds to full joint indepen-

dence.

A natural way to test using m-way independent2 e-

values is to use U-statistics and

reject if X̄K :=
1(
K

m

)
∑

A¢{1,...,K}
s.t. |A|=m

∏

i∈A
Xi ⩾ 1/³.

However, a better idea is to randomly sample (with or

without replacement) a size-m subset Ab ¢ {1, . . . ,K} one-

by-one for b = 1,2, . . . , calculate the average for the sub-

sets sampled thus far, and reject as soon as any average

exceeds 1/³:

reject as soon as
1

b

b∑

s=1

∏

i∈As

Xi ⩾ 1/³ for some b ⩾ 1.

This is a level-³ test because of the EMI (2). Instead, we

could also

reject if X̄K :=
1(
K

m

)
∑

A¢{1,...,K}
s.t. |A|=m

∏

i∈A
Xi ⩾U/³,

for an independent uniform U . As before, while the lat-

ter two tests (often strictly) dominate the first one, it is a

priori unclear which of the two options will be more pow-

erful, so we explore this in the simulations later. Last, one

can use the EUMI to combine the strengths of both the

earlier rules, but we omit this for brevity.

7. IMPROVING THE POWER OF UNIVERSAL

INFERENCE

Universal inference (Wasserman et al., 2020) is a sim-

ple and extremely broadly applicable test for any compos-

ite null hypothesis, that is nonasymptotically valid with-

out regularity conditions. At its heart is a randomized

2Even under full independence, such combinations may be more

robust and stable than the product
∏K

i=1
Xi. The latter will have the

largest value if all e-values exceed one, but equals zero if even a single

e-value was unluckily equal to zero. Of course there are ways to get

around the zero issue, like calculating
∏K

i=1
(Xi/2 + 1/2), but that is

besides the current point.

method for constructing an e-value. To describe the sim-

plest version of their idea, consider a setting where we

have i.i.d. data Y1, . . . ,Yn ∼ P and we would like to test

the null H0 : P ∈ P, perhaps against an alternative (im-

plicit or explicit) H1 : P ∈ Q. We first partition the data at

random into two (possibly unequal) datasets D0 and D1.

Using D1, we come up with any estimator/guess Q̂ in Q.

The split likelihood ratio is defined as

(47) X = inf
P∈P

∏

i∈D0

dQ̂

dP
(Yi),

where we assume for simplicity that Q j P for any

P,Q ∈ P ∪ Q. In other words, it is the likelihood ratio

of a particular alternative Q̂ (picked from D1) against the

maximum likelihood estimator under the null. Wasserman

et al. (2020) prove that X is an e-value for P, and they

(48) reject H0 when X ⩾ 1/³.

There are many other variants, for example using profile

likelihoods to handle nuisance parameters, smoothed like-

lihoods to avoid encountering an infinite likelihood, re-

laxed likelihoods in case calculating the maximum like-

lihood is infeasible, and so on. Universal inference is

named such because it provides a simple and universally

applicable baseline method that works for testing any null,

without making any regularity assumptions (unlike the

generalized likelihood ratio test, whose threshold is often

unknown for singular or complex P).

Of course, the downside is that the method is conser-

vative in general. In parametric settings without nuisance

parameters, when the usual likelihood ratio test applies,

universal inference is typically loose (in asymptotic effi-

ciency, say) by a small constant factor of about 2 to 4,

achieving the right rate in sample size n, dimensionality

and level ³, and appropriate notions of signal-to-noise ra-

tio (Dunn et al., 2023). In nonparametric settings, some-

times no other test exists, so the conservativeness of uni-

versal inference remains unclear (Dunn et al., 2024).

We mention two ways to gain back some of the con-

servativeness. The first is to simply replace (48) with the

UMI (1.2) to yield “uniformly-randomized universal in-

ference”: let U be an independent U[0,1] random vari-

able, then we may

(49) reject H0 when X ⩾U/³,

yielding a strictly more powerful test than universal infer-

ence, that still controls type-I error at level ³.

The above use of uniform randomization is reminiscent

of a somewhat similar use in the context of permutation or

randomization tests, which are typically conservative by

default, but can be made to be exact by the use of external

randomization; see also Section 10.6 on avoiding the use

of external randomization U .
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The second way to gain back some of the constant fac-

tors is to recall the randomness associated with sample

splitting, and derandomize the approach by averaging.

One natural subsampling approach proposed by Wasser-

man et al. (2020) just repeats the calculation of X a total

of B times, each time on a different independent random

split of the data. Call the resulting exchangeable e-values

as X1, . . . ,XB. They propose to

(50) reject H0 when
X1 + · · · + XB

B
⩾ 1/³.

Dunn et al. (2023) prove that such derandomization does

improve power. Given the discussion in preceding sec-

tions, using the UMI (5) to

(51) reject H0 when
X1 + · · · + XB

B
⩾U/³,

also yields a level-³ test. Alternatively, one may

(52) reject H0 when sup
1⩽b⩽B

X1 + · · · + Xb

b
⩾ 1/³,

whose validity follows from the EMI (2).

Several of the above observations also apply to other

related tests, for example using the reverse information

projection e-value (Grünwald et al., 2024). We summarize

the above observations below for easier reference.

Proposition 7.1 ((De)randomized universal inference).

Let X be the split likelihood ratio statistic defined in (47)

(or the crossfit likelihood ratio defined in Wasserman

et al. (2020), or the reverse information projection e-

value (Grünwald et al., 2024)). Consider the test that

rejects H0 when X ⩾U/³.

Similarly, for subsampling-based universal inference,

consider the rules (51) or (52), or a third rule that

(53)

rejects H0 when either X1 ⩾U/³ or sup
1⩽b⩽B

X1 + · · · + Xb

b
⩾ 1/³.

All the above rules are more powerful than universal in-

ference (48), and control type-I error at level ³ without

regularity conditions.

An important point worth remarking is that B has to

be fixed in advance if we want to average the e-values

to calculate a single e-value. However, in (52) or (53),

B does not have to be fixed in advance since technically

those suprema hold from 1 to ∞, not just 1 to B as stated,

and thus they hold even if B is chosen adaptively (as a

stopping time, say). In other words, instead of fixing B

in advance, one can simply calculate one Xb at a time,

calculate running averages as you go along, stop when

you want, and reject if at any step the average crosses 1/³

(or, in the case of (53), stop as early as the first step if

X1 ⩾U/³).

8. (DE)RANDOMIZING NONPARAMETRIC

BETTING-BASED TESTS

Consider a simple special case of a nonparametric test-

ing problem from Waudby-Smith and Ramdas (2024). Let

Y1, . . . ,Yn be drawn i.i.d. from an unknown distribution P

on [0,1], having mean µ. Suppose we want to test the null

H0 : µ = 0.5, against an alternative H1 : µ > 0.5. Define

the initial wealth of a gambler who wishes to bet against

this null as M0 = 1, and let their wealth evolve as

(54) Mt =

t∏

i=1

(1+¼i(Yi−0.5)) = Mt−1 · (1+¼t(Yt −0.5)),

where ¼i ∈ [0,2] is a random variable (representing the

gambler’s bet) that can be chosen based on Y1, . . . ,Yi−1,

meaning that it is “predictable” with respect to the fil-

tration Ft := Ã(Y1, . . . ,Yt). It is easy to check that under

the null, (Mt)t⩾0 is a nonnegative martingale with ini-

tial value one (and in fact for each fixed t, Mt is an e-

value). Ville’s inequality (Section 4.1) implies that, under

the null, P
(
sup0⩽t⩽n Mt ⩾ 1/³

)
⩽ ³, and thus a level-³ test

is obtained by

(55) rejecting the null if sup
0⩽t⩽n

Mt ⩾ 1/³.

Said differently, inf0⩽t⩽n(1/Mt) is a p-value. The experi-

ments in Waudby-Smith and Ramdas (2024) demonstrate

that these tests perform excellently in practice (when us-

ing appropriate rules3 for updating ¼i at each step), and

the resulting confidence intervals obtained by inverting

such a test are usually much shorter than a plethora of

competing methods. We note immediately an improve-

ment delivered by the randomized Ville inequality: we

may

(56) reject the null if sup
0⩽t⩽n

Mt ⩾ 1/³ or Mn ⩾U/³,

for an independent uniform random variable U .

However, there is something slightly unsettling about

this test: the p-value and test depend on the random order

Y1, . . . ,Yn of processing the points one by one, since the

bets ¼t depend on Y1, . . . ,Yi−1. Since the chosen ordering

was random to begin with, the p-value and test are sym-

metric functions of the data in a distributional sense (in-

deed, one can randomly scramble the data before running

the test to enforce this), but there is some sense in which

one may hope that the “algorithmic randomness” intro-

duced by processing the data along one random ordering

method can somehow be removed. In fact, this is also an

3One can show that if the alternative is true, then it is possible to bet

smartly (meaning derive automated rules to predictably set ¼t) so that

the gambler’s wealth Mt grows exponentially fast, with the exponent

automatically adapting to both the unknown signal µ−0.5, and the un-

known variance E[(Y − µ)2]. The authors also derive new exponential

“empirical Bernstein” inequalities that can achieve the same effect.
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issue with the oracle test: there is an optimal choice ¼∗(P)

that could be used at every step, but the supremum over t

still makes the resulting test or p-value dependent on the

order of processing the bag of data.

Waudby-Smith and Ramdas (2024) describe one way

to remove the effect of the arbitrary ordering. Noting that

the final wealth Mn is an e-value (because of the nonneg-

ative martingale property of the wealth process under the

null), one can repeat the procedure B times on different in-

dependent random permutations of the original data, and

only note the final wealth at time n on each permutation

of the data, denoted M1
n , . . . ,M

B
n . Then, they proposed to

(57) reject the null if
M1

n + · · · +MB
n

B
⩾ 1/³,

which for large enough B effectively becomes a symmet-

ric function of the data.

Noting the parallels between the above rule and (50),

one can instead gain more power by using (51) or (52)

instead, meaning to either

(58) reject the null if
M1

n + · · · +MB
n

B
⩾U/³,

or to

(59) reject the null if sup
1⩽b⩽B

M1
n + · · · +Mb

n

b
⩾ 1/³.

The first method derandomizes by averaging (thus remov-

ing the effect of data ordering), but then again randomizes

the threshold using the UMI. The second derandomizes in

a more sophisticated manner, using the EMI. The follow-

ing rule combines the two techniques

(60)

reject the null if M1
n ⩾U/³ or sup

1⩽b⩽B

M1
n + · · · +Mb

n

b
⩾ 1/³,

using the EUMI. We formalize these observations below.

Proposition 8.1. Let Y1, . . . ,Yn be independent ran-

dom variables supported in [0,1], with identical mean µ.

Let Ã1, . . . , ÃB be permutations of {1, . . . ,n} that are sam-

pled uniformly at random (with or without replacement),

and let

Mb
n =

t∏

i=1

(1 + ¼i(YÃb(i) − 0.5)), b = 1, . . . ,B.

Then, the test (56) for H0 : µ = 1/2 controls the type-I

error at level ³, and is more powerful than the original

rule (55). Likewise, the tests (58), (59) and (60) control

the type-I error and are more powerful than the rule (57).

Since one cannot take a supremum over both t and B,

it is a priori unclear which of the tests (55) and (59) is

more powerful (or (56) versus (60)). We examine such

questions in the simulations that follow.

We note that when inverting these tests to form confi-

dence intervals for the mean µ, as done in Waudby-Smith

and Ramdas (2024), the same U can be used across all the

tests.

9. EXPERIMENTS

We perform a simulation study to illustrate the extent to

which the UMI, EMI, and EUMI can increase the power

of the aforementioned methodologies. Code for reproduc-

ing this simulation study is publicly available4. We choose

the level ³ = .05 across all simulations. The parameter B

appearing in Sections 7–8 is always taken to be 100.

9.1 Confidence Intervals for a Gaussian Mean

We begin with a toy example to compare the tightness

of our randomized tail bounds. Let X1, . . . ,Xn be an i.i.d.

sample from the N(0,1) distribution. We compare the

width of the uniformly-randomized Hoeffding confidence

interval (20) for the mean E[X1], to that of the traditional

Hoeffding interval (19). As a benchmark, we also com-

pare them to the exact confidence interval X̄n ± z³/2/
√

n,

where z³/2 is the 1−³/2 quantile of the standard Gaussian

distribution. The average length and coverage of these

three intervals is reported in Figure 1, across ten values

of n ∈ [100,2000].

It can be seen that the randomized Hoeffding interval

(based on the UMI) has length lying between that of the

traditional Hoeffding interval and the exact interval. By

reasoning similarly as in Remark 3.2, the expected rela-

tive improvement in length of the exact interval over the

UMI interval is approximately 17%. On the other hand,

we have already stated that the relative improvement in

length of the randomized Hoeffding bound over its classi-

cal counterpart is 14%. Both of these expected length ra-

tios are confirmed by our simulation study, and show that

the UMI interval sits roughly halfway between the Ho-

effding and exact intervals, both in length and coverage.

As discussed in Remark 3.3, the Hoeffding interval can

itself be sharpened using more sophisticated tail bounds,

and we expect that randomized versions of such inequali-

ties would lead to even tighter intervals.

9.2 Testing with a set of arbitrarily dependent

e-values

Assume that X1, . . . ,XK are K = 100 test statistics

which are not necessarily independent, and which are

distributed as N(µ,1) for some µ ∈ R. We would like to

combine them to test the null hypothesis H0 : µ ⩽ 0. One

approach is to define the transformed statistics

(61) E j = exp(X j − 0.5), j = 1, . . . ,K,

4https://github.com/tmanole/Randomized-Markov
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Fig 1. Average length and coverage of the three confidence intervals across 20, 000 replications for each sample size. The uniformly-randomized

Hoeffding interval sits halfway between the traditional Hoeffding interval and the exact interval, both in terms of coverage and length.

which are e-values for the null hypothesis H0. We can

combine them to test H0 using the rule (39) based on aver-

aging the e-values and applying MI (“Av+MI”), the rule

(41) based on UMI, the rule (42) based on EMI, or the

rule (43) based on on EUMI.

We simulate the power of these four approaches by

drawing (X1, . . . ,XK) with a Toeplitz-structured covari-

ance matrix, where Cov[Xi,X j] = Ä
|i− j| for all 1 ⩽ i, j ⩽ K

and some Ä ∈ [0,1]. In Figure 2, we report their proportion

of rejections across ten equally-spaced values of the true

mean µ ∈ [0,4] and of the correlation parameter Ä ∈ [0,1].

The results are based on 500 replications from each model

under consideration.

It can be seen that the tests based on the EMI, UMI, and

EUMI improve upon the test based on the MI by at least

10% (in absolute power) for most combinations (µ, Ä). In

some cases, the improvement in power is as high as 60%

for the UMI and EUMI. The gain made by the UMI is

similar to that of the EUMI, and both have similar be-

havior across all values of Ä. In contrast, the gains made

by the EMI are most pronounced for small values of Ä.

This is to be expected, since the cumulative averages of

e-values in equation (42) are highly correlated when Ä is

large; in fact, they are identical in the limit Ä = 1, in which

case the rejection rules based on MI and EMI coincide.

We report the individual rejection proportions of all

four methods in Figure D.1 of Appendix D. Therein, we

also report simulation results under K = 2 rather than

K = 100; see Figures D.2–D.3. When K = 2, it can be seen

that the EUMI provides a more pronounced improvement

over the UMI, with an absolute gain in power as high as

10% for several combinations (µ, Ä).

9.3 Universal Inference for model selection

We compare the methods presented in Section 7 for the

problem of testing the number of components in a Gaus-

sian mixture model. It is well-known that the parametric

family of Gaussian mixtures does not satisfy the regular-

ity conditions required for (twice the negative logarithm

of) the likelihood ratio statistic to admit its traditional

Ç2 limiting distribution (Ghosh and Sen, 1984; Dacunha-

Castelle and Gassiat, 1999; Chen and Li, 2009). In con-

trast, the method of universal inference based on the split

likelihood ratio statistic, and its variants presented in Sec-

tion 7, are valid without any regularity conditions, and are

therefore natural candidates for this problem.

Although the limiting distribution of the likelihood ra-

tio statistic is unknown or intractable for general Gaussian

mixtures, it admits a simple expression when the underly-

ing mixing proportions are known (Goffinet et al., 1992).

We will assume this to be the case so that we can use the

likelihood ratio test (LRT) as a benchmark, but we em-

phasize that the LRT cannot easily be used to derive a

valid test for more general Gaussian mixtures, where the

universal inference method would remain valid.

Let

(62) X1, . . . ,Xn
i.i.d.∼ 0.25 · N(µ1,1) + 0.75 · N(µ2,1),

where the only unknown parameters are µ1, µ2 ∈ R, and

consider the problem of testing whether the above mixture

has one vs. two components, i.e.

(63) H0 : µ1 = µ2, vs. H1 : µ1 , µ2.

By Theorem 1 of Goffinet et al. (1992), if ¼ denotes

the likelihood-ratio statistic for these hypotheses, then

−2 log¼ admits the limiting distribution max(0,Z)2, for

Z ∼N(0,1), thus a valid level-³ test for H0 is to reject if −
2 log¼ > q1−2³, the latter being the 1 − 2³ quantile of

the Ç2
1

distribution. We will refer to this as the LRT

test. We compare its numerical performance to that of

universal inference (UI; (48)), uniformly-randomized UI

(UMI-UI; (49)), subsampling UI (SUI; (50)), uniformly-

randomized SUI (UMI-SUI; (51)), exchangeable SUI

(EMI-SUI; (52)), and exchangeable, uniformly-randomized

SUI (EUMI-SUI; (53)).

Figure 3 reports the empirical power of these pro-

cedures based on 500 samples of size n = 500 from

model (62), under ten equally-spaced values of µ :=
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Fig 2. Comparison of the rejection proportions ÃAvMI, ÃEMI, ÃUMI, and ÃEUMI. of the procedures (39), (41), (42), and (43), for rejecting the null

hypothesis H0 : µ ⩽ 0 based on the e-values (61). For varying values of Ä and µ, the left-hand side plot represents the difference ÃEMI − ÃAvMI, the

middle plot represents ÃUMI − ÃAvMI, and the right-hand side plot represents ÃEUMI − ÃAvMI. The procedures based on the UMI, EMI, and EUMI

are strictly more powerful than the naive procedure based on MI, in some cases leading to an absolute increase in power of 60%.

−µ1 = µ2 ∈ [0,1]. We observe that the power of the

UMI-UI method uniformly dominates that of the original

UI method, and similarly, the UMI-SUI, EMI-SUI, and

EUMI-SUI methods dominate their SUI counterpart. The

methods UMI-SUI and EUMI-SUI exhibit similar perfor-

mance, and their absolute increase in power compared to

SUI is on the order of 15% for some values of µ. Although

all methods based on the split LRT are markedly more

conservative than the LRT, we recall that they can be used

in arbitrary mixture models, while the LRT cannot.
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Fig 3. Empirical power of the seven tests for the null hypothesis H0 in

equation (63). While the benchmark test provided by the LRT is most

powerful, the variants of Universal Inference based on the EMI, UMI,

and EUMI are more powerful than their MI counterparts.

9.4 Testing the mean of a bounded random

variable by betting

Let X1, . . . ,Xn be an i.i.d. sample from a Beta(a,b) dis-

tribution, for some a,b > 0. Let µ = E[X1] = a/(a + b),

and consider the problem of testing the null hypothesis

H0 : µ = 1/2 using the procedures defined in Section 8.

We form the wealth statistic Mn in equation (54) based

on a predictable sequence (¼i)
n
i=1

chosen according to the

LBOW betting strategy described in Waudby-Smith and

Ramdas (2024), and compare the rejection rules in equa-

tions (55), (57), (58), (59),(60), based respectively on

Ville’s inequality, averaging followed by MI (“Av+MI”),

UMI, EMI, and EUMI. We take a = 20, thus the null

hypothesis reduces to H0 : b = 20, and we compare the

empirical power of these methods for varying values of

b ∈ [19,20.8] and n ∈ [100,2000], based on 500 replica-

tions for each pair (n,b).
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Fig 4. Comparison of the rejection proportions ÃAvMI, ÃVille, and

ÃEMI of the respective procedures (57), (55) and (59), for rejecting

the null hypothesis H0 : b = 20 based on the statistic Mn. For vary-

ing values of b and n, the left-hand side plot represents the difference

ÃEMI − ÃAvMI, and the right-hand side plot represents the difference

ÃEMI − ÃVille. The procedure based on the EMI provides a modest im-

provement over that based on MI, but does not dominate the procedure

based on Ville’s inequality.

Figure 4 compares the EMI-based procedure to those

based on the MI and Ville’s inequality. It can be seen that

the EMI yields a modest improvement in power—on the

order of 5%—compared to the MI, across the majority of
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choices of b and n. In some cases, it yields an improve-

ment of similar order over the procedure based on Ville’s

inequality, but does not uniformly dominate this method,

as could have been anticipated from the discussion in Sec-

tion 8. In contrast, in Figure 5, it can be seen that the pro-

cedure based on the UMI uniformly dominates both the

MI and the procedure based on Ville’s inequality, with

a gain in absolute power as high as 20% in many cases.

The performance of the EUMI-based procedure is nearly

identical to that of the UMI, thus we defer this result to

Figure D.4 of Appendix D.
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Fig 5. Comparison of the rejection proportions ÃAvMI, ÃVille, and

ÃUMI of the respective procedures (57), (55) and (58), for rejecting

the null hypothesis H0 : b = 20 based on the statistic Mn. For vary-

ing values of b and n, the left-hand side plot represents the difference

ÃUMI − ÃAvMI, and the right-hand side plot represents the difference

ÃUMI −ÃVille. In contrast to the EMI-based procedure reported in Fig-

ure 4, the UMI-based procedure uniformly dominates both procedures

based on MI and Ville’s inequality.

In Figure D.5 of Appendix D, we report the individ-

ual power of these five methods. In particular, it can be

seen therein that the power of all methods is at most ap-

proximately 5% under the null hypothesis b = 20. It can

further be seen that all methods achieve perfect (or nearly

perfect) power for values of b near the boundaries of the

interval [19,20.8], and for large values of n. This explains

why the UMI, EMI, and EUMI do not to appear to pro-

vide a substantial improvement over the other methods in

this regime.

10. DISCUSSION

This paper presented the uniformly-randomized and ex-

changeable Markov inequalities, along with extensions

to Chebyshev and Chernoff bounds, and some example

statistical applications involving universal inference and

testing by betting. We now begin a relatively long discus-

sion, mixing technical observations with some philosoph-

ical thoughts.

10.1 Markov’s inequality as a derandomization of

UMI

Let us begin by recalling the following implication of

Markov’s inequality from Section 6. For a nonnegative,

integrable X, we have that X/E[X] is an e-value, and thus

p∗ := E[X]/X is a p-value, meaning that

P(E[X]/X ⩽ a) ⩽ a.

In this vein, UMI implies that UE[X]/X is also a valid

p-value.

What if one tries to derandomize this statement? Sup-

pose we draw B independent uniforms U1, . . . ,UB and

calculate B such p-values (where pb =UbE[X]/X). Then,

we get B dependent, exchangeable, p-values. An old re-

sult by Rüschendorf (1982) implies that twice the average

of arbitrarily dependent p-values are also p-values, mean-

ing that p̄B := 2(p1 + · · ·+ pB)/B is a p-value, and this fac-

tor of 2 cannot be improved in general (also see Vovk and

Wang (2020)). Choi and Kim (2023) recently showed that

the factor of 2 cannot be improved even assuming that the

p-values are exchangeable (which is true in our setting).

Now note that as B→∞, p̄B converges to p∗, because

the uniforms average out to 1/2. Thus the gain made by

the uniform randomization is exactly offset by the factor

of 2 lost by combining p-values. In other words, one can

view Markov’s inequality as a derandomized version of

our UMI.

Further note that other forms of randomization do not

appear to help. A result by Rüger (1978) shows that p̃B :=

2 ·median(p1, . . . , pB) is also a p-value and the factor of 2

cannot be improved (assume B is odd for simplicity). In

fact, the same work also showed that pk
B

:= p(k)B/k is a p-

value for any fixed k ⩽ B, where p(k) is the k-th smallest p-

value. Remarkably, p̃B and pk
B

also converge to p∗ as B→
∞. This appears to be a perfectly-designed coincidence,

but perhaps on more reflection a simple explanation of

this phenomenon may be found. For now, it adds further

justification to the title of this subsection.

10.2 On the role of external randomization in

statistics

At a high level, there appear to be (at least) three rea-

sons that external randomization is used in statistics:

1. To save computation. A classic example of this

would be the permutation test. When applied to

(say) a problem like two-sample or independence

testing, the deterministic permutation test needs n!

permutations, where n is the number of data points.

The variant that is typically used in practice, how-

ever, involves the permutations being uniformly

sampled from the set of all permutations. This also

results in a valid p-value, and the randomization

is introduced solely to save computational effort.

Another example is a risk-limiting election audit,

where ballots are sampled in a random order, al-

lowing one to possibly stop the audit early (with

a guarantee on the error); without this randomiza-

tion, one must look at every single ballot in the au-

dit. A last example would be the use of stochastic
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gradient descent in minimizing convex objectives

because calculating a full gradient may be too ex-

pensive.

2. To enable inference that is (essentially) impossi-

ble otherwise. An example of this would be dif-

ferential privacy; it is provably impossible to guar-

antee privacy without randomization (adding noise

to summary statistics before releasing them). The

same impossibility also arises in online learning

against adversaries (e.g.: adversarial multi-armed

bandits), and in calibrated probabilistic forecasting.

Such examples also arise in the Monte Carlo liter-

ature, for example MCMC algorithms are used to

enable sample from distributions that would oth-

erwise be (analytically and computationally) in-

tractable. The bootstrap and subsampling methods

would also be examples. Universal inference also

falls under this umbrella, since for many problems,

we do not know of any other computational or an-

alytical tool that could replace it. Another example

is the knockoffs method for (fixed-X or model-X)

conditional independence testing, and the related

conditional randomization test. Nonexchangeable

conformal prediction provides a contemporary case

in point. Finally, sample splitting is used in a vari-

ety of contexts to enable assumption-lean inference

(such as in post-selection inference).

3. For more powerful inference. An example of this

would again be the permutation test. Whether used

in its deterministic or random form, it produces a

discrete p-value. Randomization can be introduced

to convert it into a continuous p-value that is al-

most surely smaller than the discrete p-value (and

exactly uniformly distributed under the null), thus

improving (strictly) power.

The randomization used by UMI falls into the last cate-

gory: the only purpose of introducing randomization is to

improve power.

On a different note, there are at least two types of ran-

domized procedures:

1. Can be computationally derandomized. For many

procedures, expending more computation can ren-

der them “effectively deterministic” in the sense

that some concentration of measure kicks in, so

that the stochastic result concentrates around some

deterministic limiting quantity. Examples include

the bootstrap, subsampling, permutation and Monte

Carlo methods (including MCMC), the conditional

randomization test, (subsampling-based) universal

inference, and stochastic gradient descent for con-

vex optimization.

2. Cannot be computationally derandomized. This

includes adversarial multi-armed bandits, proba-

bilistic forecasting, differentially private inference,

nonexchangeable conformal prediction, and many

methods based on sample splitting.

UMI falls into the first category, but as discussed in the

previous subsection, the power benefits of UMI vanish

when it is derandomized, because it reduces exactly to

Markov’s inequality.

10.3 Frequency interpretation of the tests &

confidence intervals

Chebyshev’s inequality (10) implies that for any ³ ∈
(0,1),

(64) X̄n ±
Ã
√
³n

is a (1 − ³) confidence interval for EX. This means that

when we construct infinitely many such intervals for dif-

ferent problems (with independent data from distributions

with potentially different means and variances), at least

95% of those confidence intervals will cover the cor-

responding means. In contrast, our randomized Cheby-

shev’s inequality (10) implies that

(65) X̄n ±
Ã
√

U
√
³n

is also (1 − ³) confidence interval for EX. We high-

light that it has exactly the same frequency interpretation

as above. Despite being randomized and (almost surely)

strictly tighter than (64), when we construct infinitely

many such intervals for different problems (with inde-

pendent data from distributions with different means and

variances), at least 95% of those confidence intervals will

cover the corresponding means.

Our e-value based tests (38), like our more powerful

variant of universal inference (51), also have the same

frequency interpretation as the nonrandomized tests (37).

There is a simple way to interpret our use of randomiza-

tion. When ³ = 0.05, nonrandom thresholding rules re-

ject the null when the e-value exceeds 1/³ = 20. Meaning

that if the e-value equals 10, we do not reject, while if it

equals 20, we do. In our randomized setting, we simply

view an e-value of 10 as having half the evidence as that

of an e-value equaling 20, so we reject it with probability

one half. Similarly, an e-value of 19.999 would not get re-

jected with the usual nonrandomized rules, but would get

rejected with very high probability in our scheme. In other

words, the rejection probability is exactly proportional to

the required evidence for a definite rejection, resulting in

a “smoothed” test, as opposed to a sharp 0-1 decision.
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10.4 The potential for p-hacking, and ideas to

overcome it

Despite the frequency interpretation discussed in the

previous subsection, we recognize the potential risks for

“p-hacking” (or hacking confidence intervals), where a

naive or dishonest practitioner may reconstruct our uni-

formly randomized confidence interval many times (re-

drawing U), and pick the one that suits them (in order to

report a narrow enough interval for their purposes), even

reporting the random seed for “reproducibility”. This of

course is not valid. Thus our intervals must be employed

with care. We suggest a few points that should be kept in

mind for practical applications:

• If the interval constructions are coded up as part of

some automated software that constructs thousands

of such intervals (and perhaps acts on them) with-

out any human involvement, then the above fre-

quency interpretations will be preserved and (65)

and (22) yield bona fide, valid confidence intervals.

• In Section 10.5, we point out that it may make sense

to sometimes truncate the intervals, which increases

interpretability, avoids contradicting intuition, and

also reduces the extent to which p-hacking is possi-

ble.

• In Section 10.6, we point out that sometimes exter-

nal randomization is not needed at all, and one can

use randomness intrinsic in the data itself.

• Finally, we note that there may be opportunities to

systematize the use of external randomness. One

could create a central repository of uniform ran-

dom numbers, and you can request a fixed number

of them, but then have to use all of them. Indepen-

dently, one could report a file with all the uniform

random numbers used in an analysis, and these

should pass a battery of uniformity tests (though

this could itself be p-hacked, it is now a much

higher bar).

10.5 Truncation to avoid empty (or tiny)

confidence intervals

Since log(U) has its smallest possible value being −∞,

the interval (22) could sometimes simply be the empty

interval. This will only happen to (much) less than an ³

fraction of constructed intervals, since the (1 − ³) cover-

age property does still hold; indeed a direct calculation

shows that an empty interval is constructed if and only

if log U ⩽ −2 log(2/³), which happens with probability at

most ³2/4. Rare as it may be, this phenomenon may not

be very useful or intuitive in practice. Thus we suggest the

following alternative:

(66)

X̄n±
max

Ã
√

2 log(2/³)

n
+Ã

log(U)√
2n log(2/³)

,
Ãz1−³/2√

n


 ,

where z1−a is the right a-quantile of the standard Gaussian

distribution. In short, whenever the randomized Hoeffd-

ing interval becomes smaller than the asymptotic interval

based on the central limit theorem, we resort to reporting

the latter. The interval in (66) is never shorter than what

the CLT reports, almost surely shorter than the original

Hoeffding interval, and is nonasymptotically valid.

Despite the fact that the Chebyshev interval is non-

empty almost surely, we recognize that observing an ex-

tremely short interval, even if by chance due to random-

ization U , may also be troubling. One simple fix is to out-

put the interval:

(67) X̄n ±
Ãmax(

√
U,1/2)

√
³n

Of course, 1/2 can be replaced by any other constant. The

above interval is still nonasymptotically valid at level ³,

is almost surely tighter than Chebyshev’s inequality (that

is, the interval obtained from it) but never improves on it

by more than a factor of 2. Indeed, the expected ratio of

widths is E[max(
√

U,1/2)] = 17/24 ≈ 0.71, only a mild

increase from the 2/3 value obtained earlier.

In short, enlarging the interval by truncating the random

improvement may be a suitable practical middle ground.

10.6 Using internal randomization in lieu of

external randomization

Several of the bounds in this paper were formulated in

terms of external randomization U . However, we note that

in some situations, we can avoid the use of U entirely,

while maintaining the gist of the original statements.

To elaborate, recall that many statistics in the paper, like

the sample mean X̄n, are only functions of the order statis-

tics of the data X := {X(1), . . . ,X(n)} (equivalently, of the

unordered bag of data, or of the empirical distribution).

For a real x and finite set S of reals, define

rank(x; S ) :=
∑

i∈S
1(xi ⩽ x)/|S |.

Now, note that if X1, . . . ,Xn are i.i.d. from a continuous

univariate distribution, then

X§ rank(Xn; X).

Further, the aforementioned rank is uniformly distributed

on the discrete set {1/n,2/n, . . . ,1}. Thus, the rank stochas-

tically dominates U and can therefore be used in its place

in our earlier bounds. In essence, the leftover information

in the data ordering, like the rank of Xn within the set X,

can be utilized “for free” without affecting the distribution

of the underlying main statistic (like X̄n).

Thus, to use two examples whose expressions were re-

called in the previous subsection, both

(68) X̄n ±
Ã

√
2 log(2/³)

n
+Ã

log(rank(Xn; X))√
2n log(2/³)

 ,
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and

(69) X̄n ±
Ã
√

rank(Xn; X)
√
³n

are valid (1−³) confidence intervals for the mean (of a Ã-

subGaussian distribution, or a distribution with variance

at most Ã2, respectively).

The same observation also applies to universal infer-

ence, because the likelihood calculation in the split like-

lihood ratio statistic is only a function of the unordered

set {X1, . . . ,Xm} (where m is the size of the first split), and

hence the rank of Xm within that set can be used in place

of U in (49).

Perhaps such uses of the uniformly-randomized Markov’s

inequality, which are entirely “intrinsic” to the data itself,

may be more palatable to those who have reasons to not

prefer to use “extrinsic” randomization by using U .

10.7 Other potential applications

Despite our applications being focused on universal in-

ference and “betting-based” inference, the use of the ex-

changeable Markov inequality was really enabled by two

properties:

• The original underlying problem statement has a

certain symmetry, for example the data are i.i.d. or

exchangeable.

• The original method did not respect the above sym-

metry, by employing sample splitting, or by pro-

cessing the data one at a time in a random order.

To be clear, there were some benefits to deviating from

the original symmetric problem statement: in the case of

universal inference, it enabled constructing a test without

regularity conditions, and in the case of testing bounded

means, it enabled a powerful test that was adaptive to the

underlying unknown variance of the data. The loss of the

problem symmetry could be regained by “algorithmic de-

randomization”, that is repeating the same procedure and

averaging the resulting e-values. It is in this latter step that

the exchangeable Markov inequality kicks in and delivers

more power to the final test.

The above bullet points apply to several other problems,

for example Shekhar and Ramdas (2023) design betting-

based tests for nonparametric two-sample testing, and the

same techniques would apply to that problem as well.

Similarly, Waudby-Smith and Ramdas (2024) derived the

only known closed-form empirical Bernstein inequality

that converges in width exactly to Bernstein’s inequality,

both of which can be improved with our uniform random-

ization technique, while the former can also be improved

with the exchangeable Markov inequality. We omit the

details for brevity.

The large improvements delivered by the uniformly-

randomized Markov’s inequality may be unsettling to

some readers, which is why we presented a version that

only uses the data itself for randomization in the previous

section. We anticipate more applications and discussions

about when such techniques may be appropriate (or not)

to emerge with time.

11. SUMMARY

This paper revisited several standard inequalities (by

Markov, Chebyshev, Chernoff, Ville, Doob) and proved

that they can be improved by suitably employing a simple

randomization technique involving a single independent

uniform random variable, or by exploiting exchangeabil-

ity of the underlying random variables (or both). Since

these are standard building blocks for nonasymptotic in-

ference, those inferential tools are thus improved. We pro-

vide several contemporary examples, including universal

inference, betting-based concentration, and combining e-

values, where we show large improvements in power. The

preceding discussion attempts to address some concerns

that may arise with the use of such techniques.
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APPENDIX A: FURTHER DETAILS ON THE

RELATIONSHIP TO Huber (2019)

We have seen that the additively randomized Markov’s

inequality in Proposition 1.4 is equivalent to the (mul-

tiplicatively) uniformly randomized Markov’s inequality

in Theorem 1.2, in the sense that they can be used to de-

rive each other. We also saw that the result (7) by Huber

(2019) makes a different claim, that is neither stronger nor

weaker than Markov’s inequality.

Despite the above facts, we can show that all three re-

sults are mathematically equivalent, meaning that they

can all be used to derive each other. To see this, first let us

recall (7) below for simplicity:

P(X + B ⩾ ϵ) ⩽ E[X]/(2ϵ),

where B ∼U[−ϵ, ϵ]. Now, rewrite the left-hand side as

(70)
P(X ⩾ ϵ − B) = P(X ⩾ 2ϵ − (ϵ + B))

= P(X ⩾ 2ϵ − 2A) = P(X/2 ⩾ ϵ − A),

where we used the fact that ϵ+B is distributed as U[0,2ϵ],

which has the same distribution as 2A, where A =U[0, ϵ]

was defined in Proposition 1.4.

We can either apply Huber’s result to the left-hand side

of (70) or Proposition 1.4 to the right-hand side of (70)

to see that the two results imply each other. Neverthe-

less, the “take-home message” behind these inequalities

is quite different. Indeed, as suggested by the title of his

paper, Huber’s focus is on halving the bounds of Markov’s

inequality with his two-sided additive randomization B

(with implications for shape-constrained settings), while

ours focus has been on improving Markov’s inequality

and the statistical implications of such an improvement.
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APPENDIX B: PROOF OF THE TIME-REVERSED

VILLE INEQUALITY (THEOREM 5.1)

In this appendix, we provide a detailed proof of the

time-reversed Ville inequality (Theorem 5.1), which is at

the heart of the proofs of the EMI (Theorem 1.1) and

EUMI (Theorem 5.3). As previously mentioned, proofs

of this result appear under varying assumptions in the

works of Doob (1940), Lee (1990), Christofides and Ser-

fling (1990), and Manole and Ramdas (2023). In what fol-

lows, we provide a new self-contained proof which easily

lends itself to deriving the EUMI.

Let m ⩾ 1. Notice first that the process (Yt)
m
t=1

defined

by Yt = Xm−t+1 is a forward submartingale with respect to

the forward filtration Gt = Em−t+1, 1 ⩽ t ⩽ m. Indeed, (Yt)

is adapted to (Gt), and

E[Yt+1|Gt] = E[Xm−t|Em−t+1] ⩾ Xm−t+1 = Yt,

for all t = 1, . . . ,m−1. It must then also follow that (Yt)
m
t=1

is a forward submartingale with respect to the filtration

Ft = Ã(Y1, . . . ,Yt) = Ã(Xm−t+1, . . . ,Xm), 1 ⩽ t ⩽m.

With these preliminaries in place, we turn to proving the

claimed inequality. Given m ⩾ 1, define Ä := sup{1 ⩽ t ⩽

m : Xt ⩾ 1/a}, where sup∅ = −∞. Markov’s inequality im-

plies

(71) P(Ä ⩾ 1) = P(XÄ(1 ⩾ 1/a) ⩽ a · E[XÄ(1].

Now define ¸ := m − Ä + 1, so that XÄ(1 = Y¸'m. For all

t = 1, . . . ,m, we have

{m − Ä + 1 = t} = {Ä =m − t + 1} ∈ Ft

thus ¸ and ¸ 'm are stopping times with respect to (Ft).

Furthermore, the process (Yt)
m
t=1

is trivially uniformly in-

tegrable, hence by Doob’s optional stopping theorem for

submartingales,

E[XÄ(1] = E[Y¸'m] ⩽ E[Ym] = E[X1].

Returning to equation (71) and noting that {Ä ⩾ 1} =
{sup1⩽t⩽m Xt ⩾ 1/a}, we have thus shown

P

(
sup

1⩽t⩽m

Xt ⩾ 1/a

)
⩽ a · E[X1].

By the bounded convergence theorem, sending m→ ∞
yields our claim. □

APPENDIX C: A GENERAL RANDOMIZED TAIL

BOUND

We state and prove a simple randomized tail bound

which contains Theorems 1.2, 2.1 and 3.1 as special cases,

and can be used to derive randomized variants of other tail

bounds in the literature.

Proposition C.1. Let X be a random variable taking

values in a setX ¦ R, and let I ¦ R+ be an interval. Let f :

X→ I and g : I→X be nondecreasing Borel-measurable

functions such that f (g(z)) ⩾ z for any z ∈ I. Then, given

a random variable U ∼ Unif(0,1) independent of X, and

x > 0, it holds that

P(X ⩾ g(U f (x))) ⩽
E[ f (X)]

f (x)
.

The proof is exactly as before. Notice first that U f (x)

takes values in I since U is supported in [0,1], thus the

quantity g(U f (x)) is well-defined. Furthermore,

P(X ⩾ g(U f (x))) = P( f (X) ⩾ f (g(U f (x))))

⩽ P( f (X) ⩾U f (x))

= E[P(U ⩽ f (X)/ f (x)|X)] ⩽ E f (X)/ f (x),

which proves the claim. □

As an example, we next use Proposition C.1 to derive

uniformly-randomized analogues of Cantelli’s inequality,

Bernstein’s inequality, and of the empirical-Bernstein in-

equality.

C.1 Uniformly-randomized Cantelli inequality

We begin by deriving a uniformly-randomized ana-

logue of Cantelli’s inequality (Cantelli, 1929), which is a

one-sided version of Chebyshev’s inequality5. In contrast

to (10), it states that

(72) P(X − EX ⩾ kÃ) ⩽
1

k2 + 1
.

It can be improved by uniform randomization as follows:

(73) P(X − EX ⩾
√

U(kÃ +Ã/k) −Ã/k) ⩽
1

k2 + 1
,

which we call the uniformly-randomized Cantelli inequal-

ity. To see that (73) is a stronger statement than (72),

rewrite the left-hand side as

P(X − EX ⩾ kÃ − (1 −
√

U)(kÃ +Ã/k)),

and note that (1 −
√

U) is positive.

The proof of (73) is a simple consequence of Proposi-

tion C.1. Let x = Ãk and u = Ã/k. Taking f (y) = (y + u)2

for all y ∈ R and and g(z) =
√

z− 1 for all z ∈ R+, we have

P
(
X − EX ⩾

√
U(kÃ +Ã/k) −Ã/k

)

= P
(
X − EX ⩾ g(U f (x))

)

⩽
E[ f (X − EX)]

f (x)

=
Ã2 + u2

(x + u)2
=

1 + 1/k2

2 + k2 + 1/k2
=

1

1 + k2
,

5Despite its name, Cantelli’s inequality apparently originated in

Chebyshev’s much earlier work (Tchebichef, 1874); see Ghosh (2002).

In fact, it is commonly accepted that Markov’s inequality itself had al-

ready been proven by Chebyshev, who was Markov’s doctoral advisor.
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as claimed.

C.2 Uniformly-randomized Bernstein inequality

We next derive a uniformly-randomized analogue of

the classical Bernstein inequality (see for instance Propo-

sition 2.10 of Wainwright (2019)). We will assume that

the random variable X satisfies the Bernstein condition,

namely

(74)
∣∣∣E(X − EX)k

∣∣∣ ⩽ 1

2
k!Ã2bk−2, for k = 2,3, . . .

for some Ã,b > 0. In particular, if X is a bounded ran-

dom variable with variance at most Ã2 and satisfying

|X − EX| ⩽ 1, then the above condition holds for b = 1/3.

Bernstein’s inequality states that, under condition (74),

for all ϵ > 0,

(75) P (X − EX ⩾ ϵ) ⩽ exp

(
− ϵ2

2(Ã2 + ϵb)

)
.

Setting the right-hand side equal to ³ ∈ (0,1), the above

implies

P

(
X − EX ⩾

√
2Ã2 log(1/³) + 2b log(1/³)

)
⩽ ³.

Consequently, given n i.i.d. samples of X, the following

is a (1 − ³)-confidence interval for EX:

(76) X̄n ±


√
2Ã2 log(2/³)

n
+

2b log(2/³)

n

 .

It is well known that the i.i.d. assumption can be re-

laxed into a martingale dependence assumption requiring

neither the independence aspect nor the identically dis-

tributed aspect, but we omit this generalization for sim-

plicity.

Our uniformly-randomized Bernstein inequality reads

(77)

P

(
X − EX ⩾

(
Ã2 + b

√
Ã2 log(1/³)2b2 log(1/³)

)
log U

+

√
2Ã2 log(1/³) + 2b log(1/³)

)
⩽ ³,

where U is a random variable that is independent of X

and (stochastically larger than) uniform on [0,1]. Since

log U < 0 almost surely, the above inequality provides

a strict and almost sure improvement of Bernstein’s in-

equality (and it recovers Bernstein’s inequality by sub-

stituting U = 1). Recall also that E[log U] = −1 and

Var[log U] = 1, giving an idea of the extent of the im-

provement.

To prove (77), let |¼| ⩽ b−1, f (x) = exp(¼x) for all x ∈ R,

and g(z) = log z/¼ for all z > 0. By Proposition C.1, we

have for all x > 0,

P

(
X − µ ⩾ log U

¼
+ x

)
⩽ e−¼x

E[e¼(X−EX)]

⩽ exp

{
¼2Ã2

2(1 − b|¼|) − ¼x

}
,

where we used the fact that E[e¼(X−EX)] ⩽ exp(¼2Ã2/2(1−
b|¼|)) for all |¼| ⩽ b−1 under the Bernstein condition (cf.

Proposition 2.10 of Wainwright (2019)). Now, letting ¼ =

(bx+Ã2)−1 and simplifying the above expression, we ob-

tain

(78)

P
(
X − µ ⩾ (bx +Ã2) log U + x

)
⩽ exp

{
− x2

2(Ã2 + bx)

}
,

which can be viewed as another form of our random-

ized Bernstein inequality. Setting x =
√

2Ã2 log(1/³) +

2b log(1/³) leads to the claimed inequality.

Combining the above with Lieb’s inequality, one di-

rectly obtains a randomized matrix-Bernstein inequality

as well; we omit the details for brevity.

C.3 Uniformly-randomized empirical Bernstein

inequality

Bernstein’s inequality is not always practically appli-

cable due to the need to know Ã. When the data are

bounded, one can construct so-called empirical Bernstein

(EB) inequalities that only depend on the data. There

are several such EB inequalities in the literature, but we

present below a randomized variant of a recent EB in-

equality by Waudby-Smith and Ramdas (2024), because it

is the only one that we are aware of whose corresponding

confidence interval width exactly matches the first order

term in (76).

Going forward, suppose that the i.i.d. data lie in [0,1];

this is done for simplicity and without loss of generality.

Define

È(¼) := (− log(1 − ¼) − ¼) for ¼ ∈ [0,1),

and the instantaneous empirical variance as

vt := (Xt − µ̂t−1)2, where µ̂t :=

1
2
+

∑t
i=1 Xi

t + 1

The following is then a (1 − ³)-CI for EX:

(79)

∑n
t=1 ¼tXt∑n

t=1 ¼t

±
[
log(2/³) +

∑n
t=1 vtÈ(¼t)∑n

t=1 ¼t

]
,

where ¼t ∈ (0,1) is a function of X1, . . . ,Xt−1 that is set as

follows:

¼t :=

√
2 log(2/³)

Ã̂2
t−1

n
' 1

2
, Ã̂2

t :=

1
4
+

∑t
i=1(Xi − µ̂i)

2

t + 1
.

The proof follows by observing that

Mt :=

t∏

i=1

exp {¼i(Xi − µ) − viÈ(¼i)}

is a nonnegative supermartingale with initial value M0 =

1, and thus Mn is an e-value. Applying Markov’s inequal-

ity to Mn, and rearranging, yields one side of (79), and a

union bound with −¼i in place of ¼i yields the other side.
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Instead, applying UMI in place of Markov’s inequality,

we obtain the uniformly-randomized empirical Bernstein

confidence interval:

(80)

∑n
t=1 ¼tXt∑n

t=1 ¼t

±
[
log(2/³) + log U +

∑n
t=1 vtÈ(¼t)∑n

t=1 ¼t

]
,

which is almost surely tighter than (79) since log U < 0

with probability one.

Remark C.2. Denoting the expression in (79) by Cn,

it turns out that
⋂

i⩽n Ci is also a valid (1 − ³)-confidence

interval. This is obtained by applying Ville’s inequality

to the supermartingale M, in place of Markov’s inequal-

ity. It may be a priori unclear whether
⋂

i⩽n Ci is tighter

than (80) or not, but Figure 5 suggests a clear win for

UMI over Ville.
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