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ABSTRACT

Large Generative Models (LGMs) such as GPT, Stable Diffusion, Sora, and Suno
are trained on a huge amount of texts, images, videos, and audio that are ex-
tremely diverse from numerous domains. This large-scale training paradigm on
diverse well-curated data enhances the creativity and diversity of the generated
content. However, all previous graph-generative models (e.g., GraphRNN, MD-
VAE, MoFlow, GDSS, and DiGress) have been trained only on one dataset each
time, which cannot replicate the revolutionary success achieved by LGMs in other
fields. To remedy this crucial gap, we propose a large-scale training paradigm
that uses a large corpus of graphs (over 5000 graphs) from 13 domains, leading
to the development of LARGE GRAPH GENERATIVE MODELS (LGGMS). We
empirically demonstrate that the pre-trained LGGMs have superior zero-shot gener-
ative capability to existing graph generative models. Furthermore, our pre-trained
LGGMs can be easily fine-tuned with graphs from target domains and demonstrate
even better performance than those directly trained from scratch, behaving as a
solid starting point for real-world customization. Inspired by Stable Diffusion, we
further equip LGGMs with the Text-to-Graph generation capability, such as provid-
ing the description of the network name and domain (i.e., "The power-1138-bus
graph represents a network of buses in a power distribution system.") and network
statistics (i.e., "The graph has a low average degree, suitable for modeling social
media interactions."). This Text-to-Graph capability integrates the extensive world
knowledge in the underlying language model, offering users fine-grained control of
the generated graphs. We release the code, the model checkpoint, and the datasets
at https://github.com/KINDLab-Fly/LGGM.

1 INTRODUCTION

Recently, Large Generative Models (LGMs) such as GPT, Stable Diffusion, and Sora (Achiam et al.,
2023; Brooks et al., 2024) have achieved revolutionary success in generating creative and diverse
content, which significantly increases the productivity of real-world applications (Somepalli et al.,
2023). Unlike previous models such as Bert (Devlin et al., 2018) in Natural Language Processing
(NLP) and Unet (Ronneberger et al., 2015) in image segmentation that are trained only on small-scale
datasets from specific domains over narrow tasks, the key to the success of these LGMs lies in their
large-scale training paradigm over well-curated training data from a wide variety of domains (Bubeck
et al., 2023). Graph, as a different data modality from image, text, and audio, is ubiquitous in
numerous fields and presents a new frontier for the applications of generative models such as drug
discovery (Liu et al., 2023; Igashov et al., 2024; Liu et al.), material design (Liu et al., 2024a) and
cyber-security (Liu et al., 2024c). Given the unprecedented success achieved by LGMs in other
domains and the promising practical usage of graph generative models, we naturally ask:

Can we design a large-scale training paradigm for graph generative models?
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Figure 1: (a): Average degree and clustering coefficient of graphs from 13 domains. The graph
universe consists of graphs from distinct domains (e.g., the tiny region of Chemical Graphs), yet
there are some common transferrable patterns. (b): Our pre-trained LGGM after fine-tuning on each
domain achieves better generative performance than DiGress trained on that same domain.

Although graph generative models have been the long-standing focus of generative-based re-
search (Zhu et al., 2022), previous ones have been trained on graphs from a single domain each time.
For example, both the representation autoregressive-based GraphRNN (You et al., 2018), VAE-based
GraphVAE (Simonovsky & Komodakis, 2018) and diffusion-based DiGress (Vignac et al., 2023)
have been trained only on synthetic or chemistry graphs, the statistics of which only count a tiny
region of the graph universe. In Figure 1(a), road networks have lower average clustering coefficients
than Facebook networks because road networks have square intersections, while social relationships
in Facebook networks form triangular connections (Rossi & Ahmed, 2019). Tortoises Animal Social
Networks (Sah et al., 2019) have a lower average degree than Power Networks because tortoises, as
solitary creatures, would not share the same burrow (Sah et al., 2016). Therefore, graph generative
models trained by graphs from one domain can hardly generalize to unseen graphs, as shown by the
worse zero-shot performance of DiGress in Table 2. Moreover, without training on graphs covering
the graph universe, small models can never replicate the success achieved by LGMs in other fields.

Recognizing the significant gap in developing LGMs for graph-structured data and their potential
revolutionary impact similar to LGMs in other fields, we design the very first large-scale training
paradigm that leads to the development of LARGE GRAPH GENERATIVE MODELS (LGGMs) pre-
trained over 5000 graphs from 13 domains sourcing from the Network Repository (Rossi & Ahmed,
2015; 2016). After pretraining, our LGGM learns fundamental structural patterns that are transferable
across different domains (Mao et al., 2024) and henceforth demonstrates better zero-shot generation
on graphs from unseen domains in Table 2. The generated graphs from pre-trained LGGMs using the
same domain further boost the graph classification performance in Table 3. Moreover, the pre-trained
LGGMs are highly adaptable for fine-tuning on a specific domain, achieving an overall performance
increase of 30% compared to the smaller DiGress model trained on the same domain, as depicted
in Figure 1(b). More importantly, our LGGMs support Text-to-Graph generation, which allows
for finer-level control of the generated graphs (e.g., their domains/names in Table 4 and clustering
coefficient/average degree in Figure 5). Our contributions are as follows:

• Large Graph Generative Models: We explore the large-scale training paradigm and propose
Large Graph Generative Models (LGGMs), trained on thousands of graphs arising from 13 distinct
domains. To the best of our knowledge, this work is the first to explore the potential of the
large-scale training paradigm on graph-structured data. We hope others expand this collection and
leverage our work to develop future LGGMs that could eventually replicate or exceed the success
of Stable Diffusion (Rombach et al., 2022) but in the graph modality.

• Superior Zero-shot and Fine-tuning Generative Capability: Our pre-trained LGGM delivers
exceptional zero-shot generative performance on unseen graphs in Table 2 of Section 5.2 and shows
great adaptability for fine-tuning in Figure 3 of Section 5.3. Remarkably, the fine-tuned LGGM
outperforms DiGress trained from scratch on the same graphs by around 30%, especially under
limited data scenarios , behaving as a better starting point for real-world development.

• Text-to-Graph Generation: We equip the LGGM with the capability to generate graphs given
user-specified text prompts, allowing finer-level control of the generated graphs in terms of their
domains/names and network statistics such as degree and clustering coefficient.
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2 RELATED WORK

2.1 LARGE GENERATIVE MODELS (LGMS)

Recent years have witnessed unprecedented success achieved by LGMs (Achiam et al., 2023; Brooks
et al., 2024; Cao et al., 2024; Touvron et al., 2023; Zhou et al., 2023). For example, in natural
language processing (NLP), large language models can effectively produce human-readable texts
for tasks such as question answering, translation, and more (Qin et al., 2023a; Tian et al., 2024; Han
et al., 2024). Furthermore, multi-modal generative models now support cross-modality generation,
such as converting text into images or vice versa (Rombach et al., 2022; Zhang et al., 2023; Wang
et al., 2022a). The key to their success lies in their usage of the world knowledge inherited from the
pre-training stage. This world knowledge has demonstrated positive transferability across numerous
domains. Compared with the recent LGMs in NLP/computer vision (Liu et al., 2024b; Penedo et al.,
2023; Rombach et al., 2022; Touvron et al., 2023), we alternatively develop LGMs for graphs to
realize a similar set of advantages achieved by LGMs in other fields, including enhanced zero-shot
generalization, improved fine-tuning performance and cross-modality generation.

2.2 GRAPH GENERATIVE MODELS Table 1: Comparison between previous graph genera-
tive models and our proposed LGGMs.

Type Model # Domains Multi-Domain
Training Text2Graph

AR (You et al., 2018) 2 8 8
(Bacciu et al., 2020) 3 8 8

VAE (Du et al., 2022) 1 8 8
(Guo et al., 2021) 1 8 8

GAN (Maziarka et al., 2020) 1 8 8
(Fan & Huang, 2019) 2 8 8

FLOW
(Madhawa et al., 2019) 1 8 8
(Zang & Wang, 2020) 1 8 8
(Luo et al., 2021) 2 8 8

DIFF
(Jo et al., 2022) 3 8 8
(Vignac et al., 2023) 2 8 8
(Liu et al., 2021) 1 8 8

LGGMs - Ours 13 4 4

Given the ubiquity of graphs in modeling
relational information of real-world objects
across different domains (Rossi & Ahmed,
2015; Hu et al., 2020; Liu et al., 2024d;
Wang et al., 2024; Li et al., 2023), graph
generative models have been developed to
generate realistic graphs for advancing nu-
merous applications (Kang et al., 2024; Liu
et al., 2024a; Trivedi et al., 2024), such
as generating molecules with high drug-
likeness, designing imperceptible adversar-
ial attacks, and supporting conditional gener-
ation. Graph generative models can generally be divided into two categories: statistic-based ones and
deep learning-based ones. Statistic-based generative models such as Stochastic Block Models (Lee
& Wilkinson, 2019) and Small World Models (Newman, 2000) assume that the real-world graph
formation adheres to specific statistical rules, and define various sampling strategies to simulate
networks with prescribed properties. However, this approach oversimplifies the complex distribution
of real graphs and struggles to generalize to those deviating from established norms. This limitation
has spurred recent research into deep-learning-based generative models that automatically capture
intricate statistics by learning to recover graphs (Simonovsky & Komodakis, 2018; Vignac et al.,
2023; Trivedi et al., 2024; You et al., 2018; Zang & Wang, 2020). Despite their effectiveness, they all
focus on a narrow range of domains and are trained solely on a single domain each time, as shown
in Table 1. Instead, we focus on training graph generative models in a large-scale paradigm with
thousands of graphs from 13 domains.

3 LARGE-SCALE TRAINING PARADIGM OF LGGM

3.1 NOTATION

Let G be a random variable of universal graphs, governed by its underlying distribution P (G). Given
that real-world graphs originate from various domains, we introduce Gc to represent a random
variable for graphs from domain c, with its distribution as P (Gc). Assuming the universal graph
space encompasses C distinct domains, i.e., G = [c2CGc with each set of graphs from domain c as
Gc, then P (Gc)/P (G) is domain-specific/agnostic distribution. To ease the introduction of training
and evaluation setting in Section 5, we further divide each domain-specific set of graphs Gc into
training, validation and testing subsets, notated as Gc = GTrain,c [ GVal,c [ GTest,c. We represent each
graph G = (XG,EG) with XG 2 RnG⇥dX/EG 2 RnG⇥nG⇥dE as the one-hot encoding matrix
representing node/edge categories with nG being the number of nodes in graph G and dX/dE being
the number of node/edge categories, considering the edge existence as a particular edge category.
In Text-to-Graph generation, each graph G is paired with a textual description S from the textual
distribution P (S) and their joint distribution is P (G, S).
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3.2 LARGE GRAPH CORPUS

Training LGGM requires a substantial, well-curated collection of graphs from multiple domains. We
select graphs from the Network Repository across 13 distinct yet representative domains covering a
wide variety of real-world scenarios, including Facebook (FB), Animal Social (ASN), Email, Web,
Road, Power, Chemical (CHEM), Biological (BIO), Economic (ECON), Retweet (RT), Collaboration
(COL), Ecological (ECO), Citation, as shown in Figure 2(a). Given that many real-world graphs
(e.g., social networks and road networks) comprise thousands or even millions of nodes and edges,
and that state-of-the-art diffusion models, e.g., DiGress and GDSS, are limited to handling networks
with only hundreds of nodes, we further sample subgraphs for certain domains to address scalability
challenges. Specifically, we generate 2- and 3-hop ego subgraphs centered on multiple randomly
chosen nodes followed by taking their induced subgraphs (Trivedi et al., 2024; Limnios et al., 2023).
We apply this strategy iteratively across all the initially collected graphs until hitting the preset budget.
Appendix D.1 presents the graph statistics.

3.3 PRE-TRAINING AND GRAPH GENERATION OF LGGMS

Our LGGMs are designed based on discrete denoising diffusion (Chen et al., 2023; Vignac et al.,
2023), which consists of a forward process based on a transition matrix and a reverse process based
on minimizing the cross-entropy loss between the ground-truth and predicted clean graphs.

During the forward process, for each graph G sampled from the distribution P (G), we obtain its
noisy version Gt = (Xt,Et) at step t by sampling from the conditional categorical distribution:
q(Gt|Gt�1) = (Xt�1Qt

X ,Et�1Qt
E) and q(Gt|G0) = (XQ̄t

X ,EQ̄t
E) where Qt

X 2 RdX⇥dX

and Qt
E 2 RdE⇥dE are node/edge transition matrices and G0 = G is the original data distribution of

graphs. Depending on whether our generative downstream tasks require generalization to unseen
domains or not, we can either use different transition matrices for graphs from different domains, i.e.,
domain-specific transition matrix Qt,c

X = ↵tI+ (1�↵t)1mc
X ,mc

X = 1
|GTrain,c|

P
G2GTrain,c XG, 8c 2

C or unify transition matrices across different domains. For the unified transition matrices, we can
trivially use the uniform transition matrix, i.e. Qt,c

X = ↵tI+ (1� ↵t)(1dX1
>

dX
)/dX, or compute the

marginal transition matrix across all graphs from all domains Qt
X = ↵tI+ (1� ↵t)1mX ,mX =

1
|GTrain|

P
G2GTrain XG. And Qt

E can be computed similarly. We validate the advantages of LGGMs
under both of these two transition strategies in Appendix F.

In the reverse process, a parametrized neural network is trained to predict the clean graph given the
sampled noisy graph by optimizing the following loss:

⇥? = argmin
⇥

L = EG⇠P (G)Et⇠T EGt⇠q(Gt|G)(� log p⇥(G|Gt)). (1)

Following Vignac et al. (2023), we combine the learned P⇥?(G|Gt) and the closed-form posterior
P (Gt�1|Gt,G) to perform backward generation by sampling from the following distribution:

P (Gt�1|Gt) /
X

G
P (Gt�1|Gt,G)P⇥⇤(G|Gt). (2)

3.4 FINE-TUNING LGGMS

In many real-world applications, the graphs of interest eG may highly likely come from completely
unseen domains, i.e., eG \ G = ;, and their corresponding distribution may also be significantly
different from the pre-trained one, i.e., P (eG) 6= P (G) as shown by comparing CHEM and FB
Networks in Figure 1(a). In this case, we further fine-tune our pre-trained LGGMs based on the
observed graphs eG from the unseen domains:

⇥?? = argmin
⇥

L = E eG⇠P (eG)Et⇠T E eGt⇠q(eGt|eG)(� log p⇥( eG| eGt)), (3)

where ⇥?? is initialized as ⇥? from the pretaining phase in Eq. (1). After fine-tuning, our LGGM
can effectively adapt to unseen distributions by using both the prior knowledge from the pre-training
stage and the specific knowledge of new graphs from the unseen domains, as verified in Figure 3.
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Figure 2: The overview of LGGM framework and experimental settings. (a): Graph universe includes
our collected 13 distinct yet representative domains. (b)-(c): Compared with all previous graph
generative models that have been trained only on one domain each time, our LGGMs are trained
on thousands of graphs from 13 domains. (d): We pre-train/fine-tune LGGMs in Section 3.3/3.4.
(e): Given the text prompt S and the current generated graph at t, we concatenate its textual embedding
obtained from a pre-trained language model with the node/edge/graph embeddings after spectral
feature extraction, and forward them through the Graph Transformer to predict the clean graph.

Table 6 presents the Time/Space complexity of LGGMs in Appendix B. The proposed pre-trained
and fine-tuned LGGMs mimic the random sampling from the learned distribution P (G) that is
prescribed by the training data without any fine-level customization. To control the characteristics
of the generated graphs, we further propose Text-to-Graph LGGMs to generate graphs based on
textual descriptions. In this way, users could specify properties of the graphs through natural language
description, thereby customizing the graph generation.

4 TEXT-TO-GRAPH LGGM

Given the textual description S about the network to be generated, our goal here is to learn
P (Gt�1|Gt, S), which is further decomposed as:

P (Gt�1|Gt, S) /
X

G
P (Gt�1|Gt,G, S)P (G|Gt, S). (4)

Theorem 1 proves that if the transition matrices Qt
X ,Qt

E in forward process are independent of the
textual description S, the first term P (Gt�1|Gt,G, S) can then be simplified as P (Gt�1|Gt,G) with
the analytical form computation (Vignac et al., 2023). For the second term, we approximate it by a
neural network, i.e., P (G|Gt, S) = P⇥0 (G|Gt, S) with ⇥

0
being obtained by:

⇥
0
= argmin

⇥
L = E(G,S)⇠P (G,S)Et⇠T EGt⇠q(Gt|G)(� log p⇥(G|Gt,�(S))), (5)

where � is a pre-trained textual encoder. Figure 2(e) shows the architecture of LGGM-Text2Graph,
which firstly integrates the textual embedding �(S) into the node/edge/graph-level latent embeddings
after spectral feature extraction of the current generated graph and further predicts the clean graph.
Theorem 2 proves that modeling P (Gt�1|Gt, S) with P⇥0 (Gt�1|Gt, S) leads to higher evidence
lower bound of the likelihood logP (G0, S).
Training p⇥(G|Gt,�(S)) in Eq. (5) requires the joint distribution between graphs and their corre-
sponding textual descriptions, i.e., P (G, S). Given users’ specific interests in the graphs to generate,
we explore two main categories of textual prompts to guide graph generation: domain/name (e.g.,
Power Network, power-1138-bus) and structural characteristics (e.g., average degree, clustering
coefficient). For example, zoologists interested in the dynamics of tortoise interactions might seek to
generate Animal Social Networks (Sosa et al., 2021), and social scientists studying social anomalies
might prioritize generating social interactions with dense and unexpected connections (Ma et al.,
2021; Akoglu et al., 2015). Since this work is a pioneering effort in Text-to-Graph generation and no
prior collection of user prompts for this purpose exists, following previous works, e.g., LLaVA (Liu
et al., 2024b; Zhang et al., 2023), we ask GPT3.5/4 to emulate the human drafting of prompts to obtain
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pairs of (user prompt, graph). To prepare the graphs with user prompts about their domains/names, we
obtain the domain/name information of each graph directly from the Network Repository and prompt
GPT3.5 to generate the human-readable description paired with the corresponding graph. See more
details in Appendix D.2. For preparing the graphs with user prompts about their average clustering
coefficient/degree, instead of using graphs from Network Repository that only count partially of
the entire graph universe (i.e., no existing graphs there cover the area with high average degree and
low average clustering coefficient in Figure 1(a)), we use the Watts–Strogatz model to synthesize
graphs covering the full spectrum of the graph universe. After that, we calculate the average degree
and clustering coefficient for each graph and prompt GPT4 to generate textual descriptions about
these networks using their statistics. See more details in Appendix D.3. We also employ t-SNE
visualization to analyze the generated textual descriptions, as shown in Figure 7. This visualization
indicates that texts describing graphs from various domains or with distinct statistics tend to form
separate clusters, a necessary condition for the successful control of the generated graphs.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

In this section, we conduct five experiments over the graphs collected from 13 domains to demonstrate
the effectiveness of LGGMs in five different aspects, the details of which are summarized as follows:

• Pre-training Evaluation in Table 2 in Section 5.2: To demonstrate the superior zero-shot
performance of LGGM in generating unseen graphs compared to conventional graph generative
models, we adopt the out-of-distribution evaluation where we iteratively treat each domain X as
the unseen one and train the LGGM using training graphs from all other domains, and evaluate
its performance on the testing graphs from the unseen domain X. The variant of LGGM in this
experiment is called LGGM-X where X represents the unseen domain.

• Fine-tuning Evaluation in Figure 3 in Section 5.3: To demonstrate the high adaptability for fine-
tuning LGGM, we further fine-tune the above pre-trained LGGM. Specifically, we take LGGM-X
pre-trained on graphs from all other domains but domain X, and then fine-tune it on the training
graphs from domain X. After that we evaluate it on the testing graphs from domain X. The variant
of LGGM in this experiment is called Fine-tuned LGGM on X.

• Fine-tuned LGGM compared with DiGress trained directly on X in Figure 1(b)/4(c) in
Section 5.4: When having access to graphs of domain X, users could directly train existing graph
generative models and generate graphs for the domain X. To demonstrate the practical usage of
LGGMs, we further compare the fine-tuned LGGM on X with DiGress/EDGE directly trained
on X. In addition, we also compare their performance under limited data scenarios (Gavrilev &
Burnaev, 2023; Liu et al., 2024a) in Figure 4(a)-(b).

• Graph classification after boosting the training data with our Pre-trained LGGM compared
with using original training data in Table 3 in Section 5.4: When the training data for discrim-
inative tasks like graph classification is insufficient, users could use our pre-trained LGGM to
generate graphs and boost the training data. To demonstrate the benefits of incorporating these
generated graphs during the training process, we compare graph classification performance before
and after we boost the training data with generated graphs by our LGGM pre-trained on graphs
from chemistry and social domains.

• Text-to-Graph Generation in Table 4 and Figure 5 in Section 5.5: To control the graph
generation, we consider two types of user prompt information: the domain/name and the graph
properties, i.e., we train LGGM on training graphs from all domains with user prompts either
describing the graph domains/names or graph statistics. We call these two variants of LGGM as
LGGM-T2GD and LGGM-T2GUP, respectively.

Figure 8 in Appendix E.3 comprehensively illustrates each of the above training paradigms. Due to
the page limitation, we present the evaluation metrics and model hyperparameters in Appendix E.
Moreover, we only present results under the uniform transition strategy in the main paper while
leaving the one under domain-specific transition strategy in Appendix F. It is important to note that
the benefits of LGGMs are consistent across both of these two transition strategies.
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Table 2: Comparing Zero-shot Generative Performance on unseen Graphs in held-out domain X
between DiGress trained on QM9 and LGGM-X trained on all except the held-out domain X. Result
"ALL" is computed by averaging across 12 domains and the best result for each domain is in bold.

Domain Method DEG CC Spec Orb Domain Method DEG CC Spec Orb

FB DiGress 0.3376 0.6298 0.0797 0.3593 BIO DiGress 0.2712 0.5202 0.1127 0.3188
LGGM-X 0.4723 0.6843 0.2924 0.7555 LGGM-X 0.1081 0.2696 0.0900 0.2053

ASN DiGress 0.1496 0.3258 0.1506 0.4420 ECON DiGress 0.2987 0.4841 0.2162 0.3834
LGGM-X 0.0281 0.2440 0.0830 0.0618 LGGM-X 0.1213 0.0920 0.1120 0.1086

EMAIL
DiGress 0.2192 0.6012 0.0702 0.3416 RT DiGress 0.4164 0.1327 0.4147 0.5957
LGGM-X 0.0751 0.2364 0.0768 0.3089 LGGM-X 0.0525 0.1429 0.1330 0.2219

WEB
DiGress 0.2556 0.6186 0.1877 0.6045 COL

DiGress 0.2473 0.5826 0.2314 0.7679
LGGM-X 0.0648 0.3961 0.0549 0.1127 LGGM-X 0.0736 0.5769 0.0895 0.0988

ROAD DiGress 0.3705 0.8226 0.2801 0.7198 ECO
DiGress 0.5431 0.7915 0.2338 0.6045

LGGM-X 0.0713 0.2193 0.0987 0.2986 LGGM-X 0.4753 0.3904 0.3194 0.3934

POWER
DiGress 0.3726 0.4582 0.3270 1.4732 CITATION

DiGress 0.2527 0.7790 0.1315 0.4966
LGGM-X 0.0119 0.1293 0.0373 0.0754 LGGM-X 0.1348 0.7257 0.1160 0.4981

ALL
DiGress 0.3112 0.5622 0.2030 0.5923
LGGM-X 0.1408 0.3422 0.1253 0.2616

DEG, CC, Spec, Orb: MMD of Degree, Clustering Coefficient, Eigenvalues, and Orbits, more details are in Appendix E.1.

(a) Performance of MMD of CC. (b) Performance of MMD of Spec.

Figure 3: Performance comparison between Fine-tuned LGGM and Fine-tuned DiGress.

5.2 PRE-TRAINING EVALUATION

Table 2 compares the performance of our model, LGGM-X, pre-trained on all graph domains except
the held-out domain X, with DiGress trained on the QM9 dataset. Both of them are evaluated over
graphs from the unseen domain X. Overall, LGGM-X outperforms DiGress across all evaluation
metrics shown by the "ALL" result. This superiority suggests that training on graphs from diverse
domains captures transferable structural patterns and enhances the generalization of the model to
unseen domains. The only exception from this trend occurs with Facebook Networks (FB) where
our LGGM-X performs uniformly worse than DiGress across all evaluation metrics. This is because
Facebook Networks (FB) only count a tiny region among the whole graph universe. As illustrated in
Figure 1(a), the average clustering coefficient of FB graphs ranges from 0.301 to 0.407, a narrow
segment within the broader global graph spectrum spanning from 0 to 1. This narrow range poses a
challenge for the generalized LGGM-X to specialize in learning the graph data distribution specific
to the FB domain. Furthermore, we conduct the same experiment but under the domain-specific
transition strategy in Table 8 in Appendix F, and similarly, LGGM-X generally outperforms DiGress.

5.3 FINE-TUNING EVALUATION

In addition to the superior zero-shot generative performance of pre-trained LGGM-X, many real-
world applications already possess exemplary graphs that can be leveraged, e.g., different types
of anomaly behaviors in social networks/e-commerce platforms, and molecules with predefined
chemical structures in drug discovery. In these scenarios, users can fine-tune LGGM-X with these
domain-specific graphs, adapting the broadly trained model to specialize in generating graphs tailored
to target domains. Figure 3 compares the generative performance of fine-tuned DiGress on X that is
originally pre-trained on QM9 and fine-tuned LGGM-X on X that is originally pre-trained on all but
domain X. We can see that LGGM-X consistently outperforms DiGress for graphs from most of the
domains, which further validates the adaptability of LGGM after fine-tuning on a specific domain.
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Table 3: Augmenting Graph Classification by Generating Graphs with LGGM. We follow the
conventional 10 cross-validation setting for evaluation. Better performance is highlighted red , while
worse performance is highlighted blue .

Model Strategy Protein ENZYMES MUTAG IMDB-M
F1-macro F1-micro F1-macro F1-micro F1-macro F1-micro F1-macro F1-micro

GIN
Basic 0.727±0.04 0.739±0.04 0.614±0.09 0.680±0.08 0.810±0.15 0.831±0.13 0.449±0.04 0.489±0.04
LGGMChem 0.735±0.03 0.748±0.03 0.615±0.08 0.693±0.05 0.766±0.18 0.799±0.14 0.482±0.03 0.487±0.04
LGGMSoc 0.724±0.04 0.736±0.04 0.597±0.08 0.697±0.04 0.839±0.09 0.861±0.08 0.483±0.04 0.493±0.04

GCN
Basic 0.688±0.04 0.706±0.04 0.631±0.04 0.690±0.03 0.747±0.10 0.782±0.09 0.468±0.06 0.498±0.06
LGGMChem 0.724±0.02 0.736±0.02 0.615±0.08 0.693±0.06 0.840±0.12 0.851±0.12 0.480±0.03 0.486±0.05
LGGMSoc 0.727±0.05 0.739±0.05 0.611±0.11 0.690±0.05 0.795±0.14 0.814±0.13 0.464±0.06 0.483±0.05

Figure 4: (a)-(b): With fewer training graphs, Fine-tuned LGGM becomes more advantageous than
DiGress. More analysis is in Appendix F.7. (c) We further demonstrate our large-scale training
paradigm gains similar advantages when equipped with the graph generative backbone EDGE (Chen
et al., 2023), complete results of which are in Appendix F.5.

5.4 PRACTICAL USAGE OF FINE-TUNED LGGM

To demonstrate the practical usage of LGGM in generating graphs for real-world deployment, we
further compare the fine-tuned LGGM with DiGress trained directly on each domain in Figure 1(b).
We can see that even using the same graphs for training, due to the additional knowledge incorporated
during the pre-training phase of LGGM, it exhibits significantly better generative performance for
most domains. Moreover, this advantage becomes even more pronounced when fewer graphs are
available. Figure 4(a)-(b) illustrates the improved performance of the fine-tuned LGGM versus
DiGress trained in X, with a wide margin as the number of training graphs in X decreases. This is
particularly useful since many graph-generative applications involve semi-supervised settings, e.g.,
generating anomaly software and drug design, the amount of which only count 0.05%-0.5% (Bajorath,
2002) and 0.01% (Oak et al., 2019) among the whole potential candidates, respectively. We further
demonstrate that the advantages of our proposed large-scale training paradigm are not limited to
DiGress but can also generalize to other generative backbones. In Figure 4(c), we apply our large-
scale training paradigm to EDGE and compare the graph generative performance. We observe
that LGGM also achieves better performance than EDGE. The smaller performance margin after
switching to the EDGE backbone, we hypothesize, is due to EDGE essentially approximating the
backward process by only recovering edges incident to important nodes. Therefore, training EDGE
with many graphs from different domains may cause less accurate crucial node estimation.

In addition to enhancing generative tasks, the generated graphs can also augment the training data
and improve graph classification. We select TUDataset (Morris et al., 2020), a well-established graph
classification dataset consisting of graphs from chemistry and social domains. For each graph in the
training dataset, we use LGGM to diffuse and regenerate its adjacency matrix while keeping the node
features initialized as in the original graph. The generated graphs are then added to the training set,
and the graph classification model is retrained with the boosted dataset. As shown in Table 3, the
graph classification performance improves in most cases when we use LGGM to augment the training
graphs. More specifically, F1-macro usually achieves a larger improvement than F1-micro. This is
because F1-macro gives more weight to minority classes, and hence the boosting benefit is naturally
more pronounced on minority data rather than majority data. Interestingly, we also observe that this
performance benefit sometimes occurs across different domains; for example, generating graphs with
LGGM trained on the social domain could lead to better performance on MUTAG. This sheds light
on domain transferability (Mao et al., 2024), where we conduct initial analysis in Appendix F.4 but
leave deeper exploration as future work.
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Table 4: Comparing the Graph Generative Performance of LGGM with/without Text Conditions.
Best and runner-up results are bolded and underlined.

Domain Method DEG CC Spec Orb Domain Method DEG CC Spec Orb

FB
LGGM 0.0321 0.4994 0.0763 0.3117

BIO
LGGM 0.2661 0.3120 0.1135 0.3835

LGGM-T2GD 0.1561 0.1639 0.0924 0.0417 LGGM-T2GD 0.0099 0.1286 0.0303 0.1366
LGGM-T2GUP 0.0050 0.0545 0.0070 0.0251 LGGM-T2GUP 0.0028 0.0287 0.0236 0.0174

ASN
LGGM 0.1511 0.4325 0.1875 0.3896

ECON
LGGM 0.3828 0.1533 0.2039 0.2583

LGGM-T2GD 0.0318 0.2821 0.0606 0.0631 LGGM-T2GD 0.0666 0.0594 0.0650 0.0586
LGGM-T2GUP 0.0211 0.1191 0.0462 0.0195 LGGM-T2GUP 0.0132 0.0257 0.0053 0.0191

EMAIL
LGGM 0.2156 0.2450 0.0666 0.2757

RT
LGGM 0.4395 0.2225 0.4337 0.6641

LGGM-T2GD 0.0469 0.0982 0.0484 0.0505 LGGM-T2GD 0.0468 0.0955 0.0729 0.0393
LGGM-T2GUP 0.0073 0.0379 0.0127 0.0437 LGGM-T2GUP 0.0286 0.0933 0.0400 0.0312

WEB
LGGM 0.2725 0.2672 0.1900 0.4368

COL
LGGM 0.3565 0.3554 0.2451 0.7874

LGGM-T2GD 0.0255 0.0737 0.0354 0.1856 LGGM-T2GD 0.0395 0.3110 0.1146 0.1823
LGGM-T2GUP 0.0105 0.0941 0.0206 0.0451 LGGM-T2GUP 0.0265 0.2813 0.0895 0.0899

ROAD
LGGM 0.4825 0.5373 0.3398 0.7542

ECO
LGGM 0.5466 0.6003 0.2257 0.7089

LGGM-T2GD 0.0088 0.1225 0.0399 0.0155 LGGM-T2GD 0.2160 0.2917 0.1203 0.2569
LGGM-T2GUP 0.0177 0.0437 0.0336 0.0086 LGGM-T2GUP 0.0293 0.2885 0.0416 0.2556

POWER
LGGM 0.4394 0.4646 0.3473 1.3186

CITATION
LGGM 0.2624 0.5374 0.1295 0.3419

LGGM-T2GD 0.0162 0.1131 0.0479 0.1786 LGGM-T2GD 0.0101 0.1025 0.0315 0.0651
LGGM-T2GUP 0.0062 0.0570 0.0111 0.0084 LGGM-T2GUP 0.0072 0.0849 0.0115 0.0287

Figure 5: Text-to-Graph Generation with Prescribed Graph Properties. (a) Controlling Average
Clustering Coefficient; (b) Controlling Average Degree. GT-Ground Truth Graphs and Gen-Generated
Graphs. Below each graph, the number of nodes and key statistical measures are displayed.

5.5 TEXT-TO-GRAPH GENERATION

Here we integrate Text-to-Graph (T2G) generation into LGGMs. We introduce two variants: LGGM-
T2GD, which utilizes domain labels such as "Power Networks" as textual descriptions, and LGGM-
T2GUP, which utilizes user prompts from GPT3.5, like "The power-1138-bus graph represents a
network of buses in a power distribution system". Table 4 compares the basic LGGM trained
without text conditions, against LGGM-T2GD and LGGM-T2GUP. Firstly, we observe a significant
performance improvement from LGGM to LGGM-T2GD/LGGM-T2GUP. The inclusion of text
descriptions acts as a unique identifier that enables LGGM-T2G to specialize in generating graphs
aligning with corresponding domains. Moreover, the network-level user prompts in LGGM-T2GUP

provide a finer-level control compared to the domain-level descriptions in LGGM-T2GD, further
boosting the performance. Furthermore, we shuffle the domain names paired with each graph for
LGGM-T2GD in the testing phase and observe the performance decrease in Table 19 as expected.

LGGM-T2G can also control the properties of the generated graphs. Here, we first synthesize
ground-truth graphs with clustering coefficients between [0, 0.75] and average degrees between [0,
100]. We divide these ground-truth graphs into three groups, low/medium/high, and prompt GPT4 to
generate user instructions describing these two graph properties (Appendix D.3). Then, we combine
these three groups of graphs with their instructions to train LGGM-T2G and evaluate whether the
properties of the generated graphs align with the instructions. In Figure 5(a)/(b), we can see a clear
alignment between the statistical properties of the ground-truth graphs and generated graphs, both in
terms of the average CC and DEG. Moreover, the observed long-tail overlap between the generated
graphs in the high and medium CC groups is due to the higher similarity in the embedding space of
their conditional text inputs, as illustrated in Figure 5(b). This demonstrates that in the conditional
generation, data-quality issues in conditioning input can be reflected in the generated graphs to some
extent, highlighting the importance of data-centric approaches in generative tasks (Qin et al., 2023b).
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Figure 6: (a) Scaling laws hold in road networks. (b) In retweet networks, scaling laws are observed
in Spectre and Degree metrics but not in Clustering and Orbit metrics. (c) Equipping EDGE with our
proposed large-scale training paradigm significantly accelerates training compared to DiGress.

5.6 ADDITIONAL ANALYSIS

Data Scaling Law Analysis: Following the experimental setting for zero-shot generation performance
of LGGM in Section 5.2, we increase the size of training graphs for all other domains ranging from
ratio 0.1 to ratio 0.9 and show the results for the following two datasets: Road and Retweet in Figure 6.
On the road network, we see that the performance gradually increases as the training graphs increase,
aligning with the data scaling law. However, on Retweet, although we observe a similar trend in
Degree and Spectre metrics, we do not observe a similar trend in Clustering and Orbit.

Efficiency of LGGM: We further validate the efficiency of LGGM by visualizing the training time
per epoch when equipped with DiGress and EDGE. Results indicate that the primary bottleneck lies
in the underlying diffusion model, as evidenced by the significant difference in training time between
LGGM-EDGE and LGGM-DiGress. A comprehensive analysis is given in Table 6 in Appendix B.

6 CONCLUSION AND FUTURE WORK

Motivated by the recent successes of Large Generative Models across fields of vision, language,
video, and audio, and recognizing the promising practical usage of graph generative models, we
introduce, for the first time, the large-scale training paradigm that leads to the development of Large
Graph Generative Models (LGGMs). These models are trained on over 5,000 graphs sourced from
13 distinct domains from the well-known Network Repository. We empirically verify the superiority
of our LGGMs in three aspects. Firstly, our pre-trained LGGM-X models demonstrate exceptional
zero-shot generative capabilities. Secondly, LGGMs show remarkable adaptability for fine-tuning,
and the fine-tuned LGGM is even more powerful than previous graph generative models trained from
scratch. The generated graphs by our LGGMs could boost the training data and lead to better graph
classification performance. Lastly, our models facilitate Text-to-Graph generation, enabling users to
customize their network generation through prompts.

Looking ahead, we identify several transformative research directions. First, text-controllable
graph generation has promising potential for scientific discovery, such as in designing drugs with
specific properties (Wang et al., 2022b). Moreover, LGGMs can enhance training data, especially in
scenarios with limited graph availability for applications like graph anomaly detection and molecular
classification (Liu et al., 2024a; Qin et al., 2023b; Ranshous et al., 2015), as demonstrated by our initial
exploration in graph classification (refer to Table 3). Additionally, our Text2-Graph generation reveals
that issues present in input conditions can cascade into the quality of generated graphs (long-tail
overlap in Figure 5), emphasizing the data-centric perspective in generative artificial intelligence.

7 REPRODUCIBILITY

We follow a rigorous reproducibility routine and provide the code and the dataset necessary
to reproduce the results shown in Figures 1, 3, 4, and Tables 2, 4 on our GitHub repository:
https://github.com/KINDLab-Fly/LGGM. The repository includes the complete framework for pre-
training, fine-tuning, and text-to-graph generation. Additionally, we offer a demo at https://lggm-
lg.github.io/ that enables users to experiment with our Text2Graph generation, controlling the degree
and average clustering coefficient of the generated graphs.
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A NOTATIONS

This section summarizes the notations used throughout this paper.

Table 5: Notations used throughout this paper.

Notations Definitions or Descriptions
G,Gc Random variable of universal graphs and graphs from domain c
G,Gc Set of universal graphs and graphs from domain c

GTrain, Val, Test, c Set of training/validation/testing graphs from domain c
P (G), P (Gc) Distribution of universal graphs and graphs from domain c
G = (XG,EG) Graph G with node/edge category matrices XG,EG

nG Number of nodes in graph G
dX/dE Number of node/edge categories
Qt

X ,Qt
E Node/edge transition matrices

Q̄t
X , Q̄t

E Node/edge accumulative transition matrices
mc

X ,mc
E Distribution of node/edge categories of graphs from domain c

t, T Diffusion step t and the set of total steps T
eG Distribution of graphs from unseen domains
eG Set of graphs from unseen domains

S,�(S) Text with its embedding from the pre-trained textual encoder �
P (G, S) Joint distribution of graphs and their textual descriptions

⇥ Parameters of Neural Networks
⇥? Optimal Parameters of Neural Networks after pre-training
⇥?? Optimal Parameters of Neural Networks after fine-tuning
⇥⇤ Optimal Parameters of Neural Networks after Text2Graph Generation

FB, ASN Facebook Networks, Animal Social Networks
EMAIL, WEB Email Networks, Web Graphs

ROAD, POWER Road Networks, Power Networks
CHEM, BIO Chemical Networks, Biological Networks

ECON, RT Economic Networks, Retweet Networks
COL, ECO Collaboration Networks, Ecological Networks
CITATION Citation Networks
LGGM-X Pre-trained LGGM on all other domains except X

Fine-tuned LGGM on X Fine-tuned LGGM-X on domain X
LGGM-T2G LGGM trained on graphs paired with texts

LGGM-T2GD LGGM trained on graphs with texts on domains
LGGM-T2GUP LGGM trained on graphs with user prompts on domains/names

LGGM LGGM trained on all graphs from all domains

B SPACE AND TIME COMPLEXITY ANALYSIS

Table 6: Our theoretical/empirical analysis of the DiGress and EDGE graph diffusion models, both
with and without our Large Graph Training Scheme (LGGM). Incorporating LGGM only increases
complexity linearly due to the added domains, aligning with the theoretical analysis. T - number of
diffusion steps, V/E - number of nodes/edges, K - number of active nodes, C - number of domains.

Backbone Training
Strategy

Theoretical Time
Space Complexity

Running Time per Epoch (s) with #Domains/#Graphs
1/403 2/806 4/1219 8/2837 12/4492

DiGress Original O(T |V|
2) 19.12±0.03 – – – –

LGGM O(CT |V|
2) 19.14±0.05 36.34±0.21 47.46±0.11 142.14±0.19 224.74±0.23

EDGE Original O(T max(|E|, K2)) 1.02±0.13 – – – –
LGGM O(CT max(|E|, K2)) 1.07±0.18 1.92±0.26 5.42±0.09 11.59±0.20 19.48±0.22
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C PROOF OF THEOREMS

Theorem 1. If the transition matrices Qt
X ,Qt

E are independent of the textual description S, then

we have P (Gt�1|Gt,G, S) / P (Gt|Gt�1)P (Gt�1|G) and correspondingly, we have the analytical

formed solution, i.e., P (Xt�1|Xt,X, S) / Xt(Qt
X)>�XQ̄t�1

X , P (Et�1|Et,E, S) / Et(Qt
E)

>�
EQ̄t�1

E following Vignac et al. (2023).

Proof. Applying the Bayes rule, we have:

P (Gt�1|Gt,G, S) / P (Gt�1,Gt,G, S) / P (Gt|Gt�1,G, S)P (Gt�1,G, S) (6)

/ P (Gt|Gt�1,G, S)P (Gt�1|G, S)P (G, S). (7)

Given the independence of the transition matrix on the textual description S and also the noise
is Markovian Vignac et al. (2023), we have P (Gt|Gt�1,G, S) = P (Gt|Gt�1), P (Gt�1|G, S) =
P (Gt�1|G), and also the irrelevance of P (G, S) to P (Gt�1|Gt,G, S), we then end up with:

P (Gt�1|Gt,G, S) / P (Gt|Gt�1)P (Gt�1|G). (8)

Since the distribution of graphs can be decomposed into the distribution of node and edge categories,
following Vignac et al. (2023), we similarly have:

P (Xt�1|Xt,X, S) / P (Xt|Xt�1)P (Xt�1|X) = Xt(Qt
X)> �XQ̄t�1

X , (9)

P (Et�1|Et,E, S) / P (Et|Et�1)P (Et�1|E) = Et(Qt
E)

> �EQ̄t�1
E . (10)

Theorem 2. Given the decomposition in Eq. (4) that P (Gt�1|Gt, S) /P
G P (Gt�1|Gt,G, S)P (G|Gt, S), optimizing ⇥ according to Eq. (5) essentially optimizes

the variational lower bound of the log-likelihood P⇥(G0, S).

Proof. We start directly from the log-likelihood of the joint distribution of P⇥(G0, S):

logP⇥(G0, S) = log

Z
P⇥(G0, S,G1, ...,GT )d(G1,G2, ...,GT ) (11)

= log

Z
P⇥(G0, S,G1, ...,GT )

q(G1,G2, ...,GT )
q(G1,G2, ...,GT )d(G1,G2, ...,GT ) (12)

= logEq(G1,G2,...,GT )
P⇥(G0, S,G1, ...,GT )

q(G1,G2, ...,GT )
(13)

� Eq(G1,G2,...,GT ) log
P⇥(G0, S,G1, ...,GT )

q(G1,G2, ...,GT )
by Jensen’s inequality (14)

= Eq(G1,G1,...,GT ) log
P (GT , S)

QT
t=1 P⇥(Gt�1|Gt, S)

q(G1)
QT

t=2 q(Gt|Gt�1)
by Markovian (15)

= Eq(G0,G1,...,GT )[logP (GT , S) +
TX

t=1

log
P⇥(Gt�1|Gt, S)
q(Gt|Gt�1)

] + const. (16)

According to the decomposition in Eq. (2), optimizing ⇥ according to Eq. (5) leads to optimizing
P⇥(Gt�1|Gt, S), which corresponds to the second term in Eq. (16) and subsequently optimizes the
variational lower bound of the log-likelihood P⇥(G0, S) according to the derivation from Eq. (11)
to Eq. (16). Therefore, training Text-to-Graph LGGM according to Eq. (5) enables the model to
generate graphs such that the pairs of texts and graphs end up with higher likelihoods.
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D DATA PREPARATION

D.1 PRE-PROCESSED GRAPHS FOR TRAINING LGGMS

We select graphs from the Network Repository across 13 distinct yet representative domains covering
a wide variety of real-world scenarios, including Facebook, Animal Social, Email, Web, Road, Power,
Chemical, Biological, Economic, Retweet, Collaboration, Ecological, and Citation. Due to the
scalability with diffusion-based graph generative models, we further sample subgraphs for certain
domains, and Table 7 presents the comprehensive statistics of the sampled subgraphs, which are used
for training LGGMs. We can see that graphs from different domains are statistically different.

Table 7: Summary of Graph Statistics. Facebook (FB), Animal Social (ASN), Email, Web, Road,
Power, Chemical (CHEM), Biological (BIO), Economic (ECON), Retweet (RT), Collaboration
(COL), Ecological (ECO), Citation.

Category Num
Nodes

Num
Edges

Avg
Degree

Avg
Clustering

Max
Nodes

Min
Nodes

Max
Edges

Min
Edges

Num
Graphs

ASN 52.47 ± 40.13 77.59 ± 80.95 2.62 ± 1.52 0.395 ± 0.178 283 3 515 2 267
BIO 191.14 ± 43.47 965.71 ± 878.35 9.16 ± 7.69 0.276 ± 0.199 258 109 4392 96 504
CHEM 36.46 ± 20.49 64.61 ± 26.23 3.75 ± 0.63 0.421 ± 0.223 125 2 149 1 646
Citation 235.91 ± 27.25 1287.16 ± 1087.00 10.17 ± 8.14 0.369 ± 0.224 270 175 4474 188 504
COL 174.26 ± 53.82 312.56 ± 176.33 3.41 ± 1.24 0.497 ± 0.203 247 52 996 68 504
ECO 100.67 ± 30.10 1490.00 ± 673.87 27.72 ± 7.00 0.406 ± 0.082 128 54 2106 353 6
ECON 144.18 ± 35.82 3258.76 ± 3540.28 39.76 ± 37.80 0.419 ± 0.296 219 90 11142 188 504
Email 146.67 ± 35.86 681.55 ± 500.28 9.79 ± 7.26 0.389 ± 0.211 213 82 2909 216 504
Power 132.22 ± 20.29 289.32 ± 183.02 4.35 ± 2.31 0.161 ± 0.164 187 81 1332 133 512
Road 265.25 ± 94.31 276.46 ± 79.61 2.70 ± 2.08 0.078 ± 0.134 411 32 456 137 504
RT 104.11 ± 35.23 110.99 ± 46.44 2.11 ± 0.37 0.028 ± 0.038 175 35 295 34 558
FB 219.45 ± 47.05 1863.44 ± 701.53 16.36 ± 6.17 0.315 ± 0.083 259 48 3898 46 504
Web 173.32 ± 24.86 462.21 ± 336.46 5.09 ± 3.06 0.404 ± 0.196 231 119 1607 149 504

D.2 PREPARING GRAPHS AND TEXT DESCRIPTION ABOUT THEIR DOMAINS/NAMES

Here we thoroughly discuss the process of obtaining graphs and their corresponding text prompts
describing their domains/names. As given by the Network Repository, we directly download graphs
along with their domains/names. We then prompt GPT3.5 to generate user prompts describing the
graph given its domain/name. The concrete prompt template we use here is shown in Listing 1 with
exemplary generated user prompts shown in Listing 2. Moreover, we apply the sentence transformer
to obtain text embeddings of the generated prompts for each network and perform t-SNE visualization.
As shown in Figure 7a, we see prompts for graphs from different domains from different clusters.
More importantly, textual similarity can somewhat reflect their network similarity. For example,
prompts for road and power networks are very close, and they both belong to infrastructure. Moreover,
Facebook Networks, Email Networks, Collaboration Networks, Web Graphs are very close since all
these four belong to some sub-variants of social networks. This inherent relationship between the

textual similarity and structural similarity between two graphs demonstrates that the world knowledge

encoded in the text could somehow provide useful preference for the graphs to be generated.

(a) Domain and Name (b) Average Clustering Coefficient (c) Average Degree

Figure 7: t-SNE visualization of textual description about network (a) domain/name (b) average
clustering coefficient (c) average degree.

18



Published as a conference paper at ICLR 2025

Listing 1: Prompt Template for Generating Textual Description about Network Domain/Name.
PROMPT: Given a graph called {GRAPH NAME} that is from the DOMAIN {DOMAIN NAME}. Please

generate a short sentence about the graph.

Note:
* Do not generate more than 20 words.

Listing 2: Examples of Textual Description about Network Domain/Name.
==============================================================================
*DOMAIN: Animal Social Networks
*NAME: reptilia−tortoise−network−sl
*TEXT: The reptilia−tortoise−network−sl graph represents the social connections among tortoises in the

reptile community.
==============================================================================
*DOMAIN: Power Networks
*NAME: power−eris1176
*TEXT: The power−eris1176 graph represents the interconnected nodes and edges of a power network system
==============================================================================
*DOMAIN: Economic Networks
*NAME: econ−poli
*TEXT: The econ−poli graph represents the interconnectedness of economic and political factors in a

network.
==============================================================================
*DOMAIN: Ecology Networks
*NAME: eco−evergla
*TEXT: The eco−evergla graph represents the interconnectedness of species in the Everglades ecosystem.
==============================================================================
*DOMAIN: Email Networks
*NAME: email−enron−only
*TEXT: The email−enron−only graph represents the network of email communication within the Enron

corporation.
==============================================================================
*DOMAIN: Road Networks
*NAME: road−roadNet−CA
*TEXT: The road−roadNet−CA graph represents the road network in California.
==============================================================================
*DOMAIN: Retweet Networks
*NAME: rt_occupywallstnyc
*TEXT: The graph rt_occupywallstnyc represents retweet relationships in the Occupy Wall Street movement

in New York City.
==============================================================================
*DOMAIN: Facebook Networks
*NAME: socfb−Haverford76
*TEXT: The socfb−Haverford76 graph represents the social connections among users in the Haverford

College community on Facebook.
==============================================================================
*DOMAIN: Web Graphs
*NAME: web−wiki−chameleon
*TEXT: The web−wiki−chameleon graph represents the interconnections between web pages, Wikipedia

articles, and chameleon species.
==============================================================================
*DOMAIN: Biological Networks
*NAME: bio−WormNet−v3−benchmark
*TEXT: The bio−WormNet−v3−benchmark graph represents a biological network related to worms.
==============================================================================
*DOMAIN: Citation Networks
*NAME: cit−DBLP
*TEXT: cit−DBLP is a graph representing the citation relationships between research papers in the field of

computer science.
==============================================================================
*DOMAIN: Collaboration Networks
*NAME: ca−netscienc
*TEXT: The ca−netscienc graph represents a collaboration network in the field of science.
==============================================================================
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D.3 PREPARING GRAPHS AND THEIR TEXTUAL DESCRIPTION ABOUT GRAPH PROPERTY

Here we thoroughly discuss the process of obtaining graphs and their corresponding text prompts
describing their properties. Our goal is to demonstrate that Text2Graph LGGM can control the
statistics of the generated graphs in the full spectrum. However, the graphs obtained directly from
the Network Repository do not cover the whole topological space (e.g., Figure 1(a) shows that no
networks have a higher average degree while low clustering coefficient). Therefore, we plan to
synthesize graphs covering the whole space by Watts-Strogatz Small-world Graph Model. We vary
the number of nodes between [10, 110], the number of initial neighbors between [5, number of nodes],
and also the probability of rewiring each edge between [0, 1] to ensure the generated graphs span
across the full spectrum. After that, we group the generated graphs into low, medium, and high groups
in terms of their clustering coefficient and average degree. We implement this using NetworkX.

After we synthesize graphs and divide them into three groups, we generate user prompts paired with
these graphs next. Specifically, we prompt GPT4 following the templates in Listing 3/4. To ensure
the compatibility between the synthesis graphs and the generated user prompts. We further replace
the number output by GPT4 describing the network property with the real statistic calculated from
each network.

Listing 3: Prompt Template for Generating Textual Description about Network Property.
==============================================================================
PROMPT: Please generate a short sentence about the graph, including its clustering coefficient information.

Note:
* Do not generate more than 20 words.
* Make sure the generated sentence includes the level of clustering coefficient, you can either specify it via

words like [’low’, ’medium’, ’high’]. or specify it via numbers like [(0, 0.25), (0.25, 0.5), (0.5, 0.75)]"
* You can also sometimes specify a concrete application scenario of the generated network.
* Please be accurate but also diverse
==============================================================================
PROMPT: Please generate a short sentence about the graph, including its average degree information.

Note:
* Do not generate more than 20 words.
* Make sure the generated sentence includes the level of average degree, you can either specify it via words

like [’low’, ’medium’, ’high’]. or specify it via numbers like [(0, 20), (20, 50), (50, 100)]"
* You can also sometimes specify a concrete application scenario of the generated network.
* Please be accurate but also diverse
==============================================================================

Listing 4: Examples of Textual Description about Network Property.
==============================================================================
* This graph has a high clustering coefficient, suggesting strong node clustering.
* Please generate a network with a clustering coefficient around 0.61, indicating strong clustering.
* This retirement community’s social interaction graph displays a high clustering coefficient of 0.73,

indicative of close relationships.
==============================================================================
* With an average degree of 35, this network is ideal for studying urban transportation patterns.
* The graph’s moderate connectivity level helps in understanding the structure of small to medium−sized

music bands.
* An average degree of 41 makes this network suitable for simulating the collaboration in local artisan

markets.
==============================================================================
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E EXPERIMENTAL SETTING

E.1 EVALUATION METRICS

Following Thompson et al. (2022); You et al. (2018), we evaluate the graph generation performance
by the standard Maximum Mean Discrepancy (MMD) between generated and reference graphs
Gg,Gr:

MMD(Gg,Gr) =
1

m2

mX

i,j=1

k(xr
i ,x

r
j) +

1

n2

nX

i,j=1

k(xg
i ,x

g
j )�

2

nm

nX

i=1

mX

j=1

k(xg
i ,x

r
j), (17)

where k(·, ·) is a general kernel function and specifically we use RBF kernel following You et al.
(2018):

k(xi,xj) = exp(�d(xi,xj)/2�
2), (18)

where d(·, ·) computes pairwise distance following Vignac et al. (2023) and MMD is evaluated over
the distributions of degree (DEG), clustering coefficients (CC), eigenvalues of normalized Laplacian
matrix (Spec) and orbits counts representing the distribution of all substructures of size 4 (Orb).

E.2 HYPERPARAMETER DETAILS

For all experiments, we select the best configuration according to the generation performance on
validation graphs and report the final performance on generating testing graphs. We adopt the
default hyperparameter settings from DiGress Vignac et al. (2023) with the following exceptions:
we generate 100 graphs per domain for each evaluation and set the training epochs at 300 to ensure
convergence. Additionally, we implement gradient accumulation, using a mini-batch size of 12 across
4 accumulations, resulting in an effective batch size of 48. For Text-to-Graph Generation, the textual
encoder used to obtain textual description embeddings is "all-MiniLM-L6-v2". All experiments are
performed on a machine with A100-80G GPU RAM and 128GB RAM.

E.3 PARADIGM SETUP

Figure 8 comprehensively visualizes the training/evaluation paradigms of the four experiments, the
details of which are discussed in Section 5.1.

Figure 8: Comprehensive Overview of the Experimental Setup for our LGGMs.
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F FULL EXPERIMENTAL RESULTS

F.1 OUT-OF-DOMAIN PERFORMANCE COMPARISON BETWEEN DIGRESS AND LGGM

F.1.1 DOMAIN SPECIFIC TRANSITION STRATEGY

Table 8: Comparing Zero-shot Generation Performance on Unseen Graphs in domain X between
DiGress trained on QM9 and LGGM-X pre-trained on all domains except the held-out domain X.

Domain Method DEG CC Spec Orb Domain Method DEG CC Spec Orb

FB DiGress 0.2695 0.3452 0.0649 0.1489 BIO DiGress 0.2419 0.2993 0.1101 0.2978
LGGM-X 0.4962 0.7625 0.3408 0.7982 LGGM-X 0.2117 0.6365 0.1690 0.5156

ASN DiGress 0.1793 0.4721 0.1751 0.5654 ECON DiGress 0.2811 0.2042 0.2028 0.2633
LGGM-X 0.0220 0.4044 0.1274 0.0505 LGGM-X 0.1916 0.0917 0.1219 0.0640

EMAIL
DiGress 0.2312 0.5444 0.0674 0.2650 RT DiGress 0.4466 0.4170 0.4483 0.4551
LGGM-X 0.2618 0.8650 0.3013 1.0459 LGGM-X 0.0721 0.0517 0.2331 0.4085

WEB
DiGress 0.2575 0.5955 0.1907 0.9282 COL

DiGress 0.2393 0.5341 0.2247 0.7619
LGGM-X 0.1491 0.9436 0.1154 0.4016 LGGM-X 0.1493 0.9200 0.1786 0.2057

ROAD DiGress 0.4111 0.6653 0.3084 0.6530 ECO
DiGress 0.4580 0.4546 0.2144 0.4417

LGGM-X 0.0379 0.1191 0.0759 0.0401 LGGM-X 0.2049 0.2760 0.0691 0.2107

POWER
DiGress 0.5292 0.6083 0.3556 1.2124 CITATION

DiGress 0.3159 0.3664 0.1299 0.2278
LGGM-X 0.0343 0.6290 0.0649 0.0228 LGGM-X 0.1314 0.8908 0.1188 0.6391

ALL
DiGress 0.3217 0.4589 0.2077 0.5184
LGGM-X 0.1635 0.5492 0.1597 0.3669

F.1.2 UNIFORM TRANSITION STRATEGY

Table 9: Comparing Zero-shot Generation Performance on Unseen Graphs in domain X between
DiGress trained on QM9 and LGGM-X pre-trained on all domains except the held-out domain X.

Domain Method DEG CC Spec Orb Domain Method DEG CC Spec Orb

FB DiGress 0.3376 0.6298 0.0797 0.3593 BIO DiGress 0.2712 0.5202 0.1127 0.3188
LGGM-X 0.4723 0.6843 0.2924 0.7555 LGGM-X 0.1081 0.2696 0.0900 0.2053

ASN DiGress 0.1496 0.3258 0.1506 0.4420 ECON DiGress 0.2987 0.4841 0.2162 0.3834
LGGM-X 0.0281 0.2440 0.0830 0.0618 LGGM-X 0.1213 0.0920 0.1120 0.1086

EMAIL
DiGress 0.2192 0.6012 0.0702 0.3416 RT DiGress 0.4164 0.1327 0.4147 0.5957
LGGM-X 0.0751 0.2364 0.0768 0.3089 LGGM-X 0.0525 0.1429 0.1330 0.2219

WEB
DiGress 0.2556 0.6186 0.1877 0.6045 COL

DiGress 0.2473 0.5826 0.2314 0.7679
LGGM-X 0.0648 0.3961 0.0549 0.1127 LGGM-X 0.0736 0.5769 0.0895 0.0988

ROAD DiGress 0.3705 0.8226 0.2801 0.7198 ECO
DiGress 0.5431 0.7915 0.2338 0.6045

LGGM-X 0.0713 0.2193 0.0987 0.2986 LGGM-X 0.4753 0.3904 0.3194 0.3934

POWER
DiGress 0.3726 0.4582 0.3270 1.4732 CITATION

DiGress 0.2527 0.7790 0.1315 0.4966
LGGM-X 0.0119 0.1293 0.0373 0.0754 LGGM-X 0.1348 0.7257 0.1160 0.4981

ALL
DiGress 0.3112 0.5622 0.2030 0.5923
LGGM-X 0.1408 0.3422 0.1253 0.2616
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F.2 PERFORMANCE COMPARISON BETWEEN FINE-TUNED DIGRESS AND FINE-TUNED LGGM

F.2.1 DOMAIN SPECIFIC TRANSITION STRATEGY

Table 10: Comparing Graph Generation Performance between Fine-tuned DiGress and Fine-tuned
LGGM on each domain. DiGress-FT: DiGress pre-trained on QM9 and fine-tuned on domain X;
LGGM-FT: LGGM pre-trained on all other domains except X and fine-tuned on X under Domain
Specific Transition Strategy.

Domain Method DEG CC Spec Orb Domain Method DEG CC Spec Orb

FB DiGress-FT 0.0159 0.0564 0.0082 0.0298 BIO DiGress-FT 0.0391 0.0354 0.0347 0.0291
LGGM-FT 0.0065 0.0544 0.0069 0.0282 LGGM-FT 0.0036 0.0303 0.0102 0.0342

ASN DiGress-FT 0.0189 0.0775 0.0729 0.0886 ECON DiGress-FT 0.0301 0.0431 0.0372 0.0392
LGGM-FT 0.0014 0.0509 0.0161 0.0084 LGGM-FT 0.0215 0.0330 0.0062 0.0249

EMAIL DiGress-FT 0.0208 0.0448 0.0230 0.0447 RT DiGress-FT 0.0054 0.0464 0.0051 0.0437
LGGM-FT 0.0166 0.0364 0.0104 0.0463 LGGM-FT 0.0012 0.0075 0.0033 0.0162

WEB DiGress-FT 0.0192 0.0808 0.0664 0.1361 COL DiGress-FT 0.0255 0.2279 0.0788 0.0731
LGGM-FT 0.0116 0.0721 0.0152 0.0656 LGGM-FT 0.0202 0.1621 0.0571 0.0631

ROAD DiGress-FT 0.0907 0.1404 0.1099 0.1097 ECO DiGress-FT 0.1370 0.2747 0.0476 0.2109
LGGM-FT 0.0088 0.1349 0.0347 0.0125 LGGM-FT 0.0196 0.2343 0.0291 0.2100

POWER DiGress-FT 0.0104 0.2197 0.1023 0.0445 CITATION DiGress-FT 0.0363 0.1140 0.0469 0.0423
LGGM-FT 0.0008 0.1539 0.0215 0.0081 LGGM-FT 0.0078 0.0827 0.0137 0.0316

All DiGress-FT 0.0374 0.1134 0.0528 0.0743
LGGM-FT 0.0010 0.0877 0.0187 0.0458

F.2.2 UNIFORM TRANSITION STRATEGY

Table 11: Comparing Graph Generation Performance between Fine-tuned DiGress and Fine-tuned
LGGM on each domain. DiGress-FT: DiGress pre-trained on QM9 and fine-tuned on domain X;
LGGM-FT: LGGM pre-trained on all other domains except X and fine-tuned on X under Uniform
Transition Strategy.

Domain Method DEG CC Spec Orb Domain Method DEG CC Spec Orb

FB DiGress-FT 0.0039 0.0650 0.0090 0.0304 BIO DiGress-FT 0.0274 0.0845 0.0493 0.0312
LGGM-FT 0.0050 0.0579 0.0059 0.0280 LGGM-FT 0.0049 0.0496 0.0056 0.0257

ASN DiGress-FT 0.0249 0.5604 0.0779 0.0348 ECON DiGress-FT 0.0133 0.0355 0.0223 0.0360
LGGM-FT 0.0058 0.1098 0.0311 0.0101 LGGM-FT 0.0597 0.0594 0.0216 0.0535

EMAIL DiGress-FT 0.0134 0.0709 0.0223 0.0694 RT DiGress-FT 0.0418 0.0243 0.0495 0.0583
LGGM-FT 0.0120 0.0559 0.0158 0.0444 LGGM-FT 0.0032 0.0163 0.0051 0.0227

WEB DiGress-FT 0.0327 0.2025 0.0858 0.2033 COL DiGress-FT 0.0562 0.7070 0.1086 0.1471
LGGM-FT 0.0218 0.1398 0.0310 0.1262 LGGM-FT 0.1074 0.4265 0.1398 0.0897

ROAD DiGress-FT 0.0843 0.1010 0.1873 0.5155 ECO DiGress-FT 0.1118 0.3016 0.0548 0.2102
LGGM-FT 0.0081 0.0547 0.0573 0.0228 LGGM-FT 0.0204 0.2347 0.0404 0.2100

POWER DiGress-FT 0.0231 0.1029 0.0683 0.0441 CITATION DiGress-FT 0.0277 0.1622 0.0501 0.0813
LGGM-FT 0.0077 0.0570 0.0134 0.0040 LGGM-FT 0.0052 0.0821 0.0221 0.0443

All DiGress-FT 0.0384 0.2015 0.0654 0.1218
LGGM-FT 0.0218 0.1120 0.0324 0.0568
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F.3 PERFORMANCE COMPARISON BETWEEN DIGRESS DIRECTLY TRAINED ON X AND
FINE-TUNED LGGM

F.3.1 DOMAIN SPECIFIC TRANSITION

Table 12: Comparing Graph Generation Performance between DiGress and Fine-tuned LGGM on
each domain. DiGress: DiGress trained directly on domain X; LGGM-FT: LGGM pre-trained on all
other domains except X and fine-tuned on X under Domain Specific Transition Strategy.

Domain Method DEG CC Spec Orb Domain Method DEG CC Spec Orb

FB DiGress 0.0423 0.0718 0.0243 0.0298 BIO DiGress 0.0481 0.1286 0.0487 0.0460
LGGM-FT 0.0065 0.0544 0.0069 0.0282 LGGM-FT 0.0036 0.0303 0.0102 0.0342

ASN DiGress 0.0319 0.0835 0.0679 0.1463 ECON DiGress 0.0224 0.0361 0.0084 0.0325
LGGM-FT 0.0014 0.0509 0.0161 0.0084 LGGM-FT 0.0215 0.0330 0.0062 0.0249

EMAIL DiGress 0.0145 0.0671 0.0143 0.0558 RT DiGress 0.0035 0.0111 0.0094 0.0207
LGGM-FT 0.0166 0.0364 0.0104 0.0463 LGGM-FT 0.0012 0.0075 0.0033 0.0162

WEB DiGress 0.0204 0.0778 0.0695 0.1101 COL DiGress 0.0278 0.2192 0.0669 0.0284
LGGM-FT 0.0116 0.0721 0.0152 0.0656 LGGM-FT 0.0202 0.1621 0.0571 0.0631

ROAD DiGress 0.0333 0.1342 0.0932 0.0861 ECO DiGress 0.0268 0.2356 0.0339 0.2100
LGGM-FT 0.0088 0.1349 0.0347 0.0125 LGGM-FT 0.0196 0.2343 0.0291 0.2100

POWER DiGress 0.0143 0.2050 0.0776 0.0392 CITATION DiGress 0.0406 0.1790 0.0677 0.0944
LGGM-FT 0.0008 0.1539 0.0215 0.0081 LGGM-FT 0.0078 0.0827 0.0137 0.0316

All DiGress 0.0272 0.1208 0.0485 0.0749
LGGM-FT 0.0100 0.0877 0.0187 0.0458

F.3.2 UNIFORM TRANSITION

Table 13: Comparing Graph Generation Performance between DiGress and Fine-tuned LGGM on
each domain. DiGress: DiGress trained directly on domain X; LGGM-FT: LGGM pre-trained on all
other domains except X and fine-tuned on X under Uniform Transition Strategy.

Domain Method DEG CC Spec Orb Domain Method DEG CC Spec Orb

FB DiGress 0.0177 0.0698 0.0138 0.0296 BIO DiGress 0.0179 0.0499 0.0441 0.0526
LGGM-FT 0.0050 0.0579 0.0059 0.0280 LGGM-FT 0.0049 0.0496 0.0056 0.0257

ASN DiGress 0.0337 0.1744 0.0482 0.0243 ECON DiGress 0.0229 0.0430 0.0088 0.0427
LGGM-FT 0.0058 0.1098 0.0311 0.0101 LGGM-FT 0.0597 0.0594 0.0216 0.0535

EMAIL DiGress 0.0259 0.0901 0.0366 0.0743 RT DiGress 0.0336 0.0920 0.0432 0.0572
LGGM-FT 0.0120 0.0559 0.0158 0.0444 LGGM-FT 0.0032 0.0163 0.0051 0.0227

WEB DiGress 0.0239 0.0898 0.1033 0.2371 COL DiGress 0.0252 0.5156 0.1171 0.2060
LGGM-FT 0.0218 0.1398 0.0310 0.1262 LGGM-FT 0.1074 0.4265 0.1398 0.0897

ROAD DiGress 0.1553 0.2788 0.2169 0.0542 ECO DiGress 0.0263 0.2359 0.0439 0.2100
LGGM-FT 0.0081 0.0547 0.0573 0.0228 LGGM-FT 0.0204 0.2347 0.0404 0.2100

POWER DiGress 0.0348 0.3174 0.1083 0.1393 CITATION DiGress 0.0217 0.1566 0.0645 0.1235
LGGM-FT 0.0077 0.0570 0.0134 0.0040 LGGM-FT 0.0052 0.0821 0.0221 0.0443

All DiGress 0.0366 0.1761 0.0707 0.1042
LGGM-FT 0.0218 0.1120 0.0324 0.0568
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F.4 DOMAIN TRANSFERABILITY ANALYSIS

Table 14: Transferability analysis between Chemistry (CHEM) and Society (SOC) domains. The
pre-trained LGGM on chemistry demonstrates negative transferability on IMDB-BINARY/MULTI
graphs in the SOC domain. LGGM pre-trained on society demonstrates negative transferability on
graphs PROTEINS/ENZYMES/MUTAG in CHEM domain.

Domain Chemistry Social
Dataset PROTEINS ENZYMES MUTAG IMDB-BINARY IMDB-MULTI
Metric Orb CC Orb CC Orb CC Orb CC Orb CC

CHEM 0.0604 0.0297 0.0593 0.0534 0.0445 0.0340 0.9001 0.4085 0.5511 0.6324
SOC 0.6997 0.0890 0.8028 0.0422 0.5022 0.9439 0.1526 0.2247 0.0605 0.0945

F.5 EQUIPPING LARGE-SCALE TRAINING PARADIGM WITH ANOTHER GRAPH GENERATIVE
BACKBONE EDGE

Table 15: Comparing Graph Generation Performance between EDGE and EDGE equipped with
LGGM on each domain. We can still see the performance boost after equipping EDGE with our
large-scale training paradigm.

Domain Method DEG CC Spec Orb Domain Method DEG CC Spec Orb

FB EDGE 0.0031 0.0609 0.0079 0.0362 BIO EDGE 0.0126 0.0555 0.0484 0.0612
LGGM 0.0022 0.0657 0.0073 0.0354 LGGM 0.0120 0.0669 0.0502 0.0590

ASN EDGE 0.0212 0.1416 0.1145 0.1652 ECON EDGE 0.0416 0.0398 0.0078 0.0364
LGGM 0.0146 0.0783 0.0724 0.1285 LGGM 0.0519 0.0817 0.0665 0.0551

EMAIL EDGE 0.0118 0.0661 0.0249 0.0771 RT EDGE 0.0340 0.1760 0.1242 0.0331
LGGM 0.0081 0.0519 0.0237 0.0691 LGGM 0.0288 0.3088 0.0366 0.0938

WEB EDGE 0.0132 0.1062 0.1094 0.1950 COL EDGE 0.0042 0.2161 0.1325 0.3049
LGGM 0.1225 0.1283 0.0976 0.1840 LGGM 0.0026 0.3058 0.1285 0.3104

ROAD EDGE 0.0254 0.1314 0.1313 0.1065 ECO EDGE 0.0367 0.2424 0.0665 0.2156
LGGM 0.0222 0.0624 0.1242 0.0867 LGGM 0.0197 0.2406 0.0349 0.2156

POWER EDGE 0.1417 0.2811 0.2568 0.4298 CITATION EDGE 0.0124 0.0962 0.0460 0.0438
LGGM 0.1276 0.2276 0.2548 0.3549 LGGM 0.0073 0.0947 0.0448 0.0458
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F.6 TEXT-TO-GRAPH GENERATION

F.6.1 DOMAIN SPECIFIC TRANSITION

Table 16: Comparing the performance of graph generation between LGGM trained on graphs from
all domains with and without domain/name as textual conditions.

Domain Method DEG CC Spec Orb Domain Method DEG CC Spec Orb

FB
LGGM 0.2566 0.3552 0.0587 0.1614

BIO
LGGM 0.2860 0.3275 0.1117 0.2333

LGGM-T2GD 0.1533 0.1894 0.0817 0.0492 LGGM-T2GD 0.1313 0.5111 0.1340 0.3736
LGGM-T2GUP 0.0053 0.0576 0.0076 0.0245 LGGM-T2GUP 0.0219 0.0251 0.0126 0.0190

ASN
LGGM 0.1477 0.3003 0.1551 0.3719

ECON
LGGM 0.3540 0.3404 0.2078 0.2740

LGGM-T2GD 0.0429 0.4742 0.0949 0.0401 LGGM-T2GD 0.2346 0.1572 0.1550 0.0579
LGGM-T2GUP 0.0161 0.1312 0.0344 0.0174 LGGM-T2GUP 0.0869 0.0601 0.0412 0.0592

EMAIL
LGGM 0.1957 0.2629 0.0646 0.2118

RT
LGGM 0.4355 0.3924 0.4329 0.4966

LGGM-T2GD 0.0874 0.3238 0.1472 0.2869 LGGM-T2GD 0.0050 0.0940 0.0415 0.2870
LGGM-T2GUP 0.0077 0.0316 0.0176 0.0365 LGGM-T2GUP 0.0034 0.0253 0.0225 0.0869

WEB
LGGM 0.2461 0.3570 0.1853 0.4832

COL
LGGM 0.2616 0.3398 0.2305 0.7090

LGGM-T2GD 0.1253 0.9088 0.1156 0.3884 LGGM-T2GD 0.1301 0.9384 0.1963 0.2032
LGGM-T2GUP 0.0771 0.2720 0.0732 0.1251 LGGM-T2GUP 0.0845 0.5070 0.1378 0.1531

ROAD
LGGM 0.4315 0.8107 0.3192 0.6976

ECO
LGGM 0.4611 0.3108 0.1932 0.3468

LGGM-T2GD 0.0112 0.1611 0.0298 0.0120 LGGM-T2GD 0.0575 0.2976 0.0585 0.2580
LGGM-T2GUP 0.0097 0.1316 0.0324 0.0119 LGGM-T2GUP 0.1070 0.2913 0.0410 0.2556

POWER
LGGM 0.4411 0.4694 0.3384 1.3222

CITATION
LGGM 0.3392 0.5009 0.1295 0.2248

LGGM-T2GD 0.0194 0.6031 0.0286 0.0193 LGGM-T2GD 0.1636 0.8868 0.2036 0.6142
LGGM-T2GUP 0.0227 0.4817 0.0330 0.0223 LGGM-T2GUP 0.0496 0.0914 0.0669 0.0318

ALL
LGGM 0.3213 0.3973 0.2022 0.4610
LGGM-T2GD 0.0968 0.4621 0.1072 0.2158
LGGM-T2GUP 0.0410 0.1755 0.0434 0.0703

F.6.2 UNIFORM TRANSITION

Table 17: Comparing the performance of graph generation between LGGM trained on graphs from
all domains with and without domain/name as textual conditions.

Domain Method DEG CC Spec Orb Domain Method DEG CC Spec Orb

FB
LGGM 0.0321 0.4994 0.0763 0.3117

BIO
LGGM 0.2661 0.3120 0.1135 0.3835

LGGM-T2GD 0.1561 0.1639 0.0924 0.0417 LGGM-T2GD 0.0099 0.1286 0.0303 0.1366
LGGM-T2GUP 0.0050 0.0545 0.0070 0.0251 LGGM-T2GUP 0.0028 0.0287 0.0236 0.0174

ASN
LGGM 0.1511 0.4325 0.1875 0.3896

ECON
LGGM 0.3828 0.1533 0.2039 0.2583

LGGM-T2GD 0.0318 0.2821 0.0606 0.0631 LGGM-T2GD 0.0666 0.0594 0.0650 0.0586
LGGM-T2GUP 0.0211 0.1191 0.0462 0.0195 LGGM-T2GUP 0.0132 0.0257 0.0053 0.0191

EMAIL
LGGM 0.2156 0.2450 0.0666 0.2757

RT
LGGM 0.4395 0.2225 0.4337 0.6641

LGGM-T2GD 0.0469 0.0982 0.0484 0.0505 LGGM-T2GD 0.0468 0.0955 0.0729 0.0393
LGGM-T2GUP 0.0073 0.0379 0.0127 0.0437 LGGM-T2GUP 0.0286 0.0933 0.0400 0.0312

WEB
LGGM 0.2725 0.2672 0.1900 0.4368

COL
LGGM 0.3565 0.3554 0.2451 0.7874

LGGM-T2GD 0.0255 0.0737 0.0354 0.1856 LGGM-T2GD 0.0395 0.3110 0.1146 0.1823
LGGM-T2GUP 0.0105 0.0941 0.0206 0.0451 LGGM-T2GUP 0.0265 0.2813 0.0895 0.0899

ROAD
LGGM 0.4825 0.5373 0.3398 0.7542

ECO
LGGM 0.5466 0.6003 0.2257 0.7089

LGGM-T2GD 0.0088 0.1225 0.0399 0.0155 LGGM-T2GD 0.2160 0.2917 0.1203 0.2569
LGGM-T2GUP 0.0177 0.0437 0.0336 0.0086 LGGM-T2GUP 0.0293 0.2885 0.0416 0.2556

POWER
LGGM 0.4394 0.4646 0.3473 1.3186

CITATION
LGGM 0.2624 0.5374 0.1295 0.3419

LGGM-T2GD 0.0162 0.1131 0.0479 0.1786 LGGM-T2GD 0.0101 0.1025 0.0315 0.0651
LGGM-T2GUP 0.0062 0.0570 0.0111 0.0084 LGGM-T2GUP 0.0072 0.0849 0.0115 0.0287

ALL
LGGM 0.3206 0.3856 0.2132 0.5526
LGGM-T2GD 0.0562 0.1535 0.0633 0.1061
LGGM-T2GUP 0.0146 0.1007 0.0286 0.0494
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F.7 SENSITIVE ANALYSIS ON NUMBER OF TRAINING DATA UNDER DOMAIN SPECIFIC
TRANSITION

(a) Road-DEG (b) Road-CC (c) Road-Orb (d) Road-Spec

Figure 9: Effect of Number of Training Graphs on Road Networks.

(a) Retweet-DEG (b) Retweet-CC (c) Retweet-Orb (d) Retweet-Spec

Figure 10: Effect of Number of Training Graphs on Retweet Networks.

(a) Email-DEG (b) Email-CC (c) Email-Orb (d) Email-Spec

Figure 11: Effect of Number of Training Graphs on Email Networks.

(a) Web-DEG (b) Web-CC (c) Web-Orb (d) Web-Spec

Figure 12: Effect of Number of Training Graphs on Web Graphs.

(a) Facebook-DEG (b) Facebook-CC (c) Facebook-Orb (d) Facebook-Spec

Figure 13: Effect of Number of Training Graphs on Facebook Networks.
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F.8 SENSITIVE ANALYSIS ON NUMBER OF TRAINING DATA UNDER UNIFORM TRANSITION
STRATEGY

(a) Citation-DEG (b) Citation-CC (c) Citation-Orb (d) Citation-Spec

Figure 14: Effect of Number of Training Graphs on Citation Networks.

(a) Retweet-DEG (b) Retweet-CC (c) Retweet-Orb (d) Retweet-Spec

Figure 15: Effect of Number of Training Graphs on Retweet Networks.

(a) Email-DEG (b) Email-CC (c) Email-Orb (d) Email-Spec

Figure 16: Effect of Number of Training Graphs on Email Networks.

(a) Web-DEG (b) Web-CC (c) Web-Orb (d) Web-Spec

Figure 17: Effect of Number of Training Graphs on Web Graphs.

(a) Facebook-DEG (b) Facebook-CC (c) Facebook-Orb (d) Facebook-Spec

Figure 18: Effect of Number of Training Graphs on Facebook Networks.
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F.9 COMPARING THE DOMAIN AS THE TEXTUAL CONDITION BEFORE/AFTER SHUFFLING

F.9.1 DOMAIN SPECIFIC TRANSITION

Table 18: Comparing the performance of graph generation between LGGM trained on graphs from
all domains with and without domain/name as textual conditions under domain-specific transition.

Domain Method DEG CC Spec Orb Domain Method DEG CC Spec Orb

FB LGGM-T2GD 0.1533 0.1894 0.0817 0.0492 BIO LGGM-T2GD 0.1313 0.5111 0.1340 0.3736
LGGM-T2GD* 0.2323 0.2618 0.1590 0.0923 LGGM-T2GD* 0.1762 0.5887 0.1460 0.4929

ASN LGGM-T2GD 0.0429 0.4742 0.0949 0.0401 ECON LGGM-T2GD 0.2346 0.1572 0.1550 0.0579
LGGM-T2GD* 0.0891 0.5725 0.1446 0.0610 LGGM-T2GD* 0.2029 0.3393 0.2298 0.0579

EMAIL
LGGM-T2GD 0.0874 0.3238 0.1472 0.2869 RT LGGM-T2GD 0.0050 0.0940 0.0415 0.2870
LGGM-T2GD* 0.2169 0.7497 0.2825 0.8397 LGGM-T2GD* 0.0240 0.1023 0.1374 0.4123

WEB
LGGM-T2GD 0.1253 0.9088 0.1156 0.3884 COL

LGGM-T2GD 0.1301 0.9384 0.1963 0.2032
LGGM-T2GD* 0.1464 0.9776 0.1460 0.4211 LGGM-T2GD* 0.1529 0.9684 0.2313 0.2089

ROAD LGGM-T2GD 0.0112 0.1611 0.0298 0.0120 ECO
LGGM-T2GD 0.0575 0.2976 0.0585 0.2580

LGGM-T2GD* 0.0365 0.2430 0.0605 0.0500 LGGM-T2GD* 0.1964 0.3330 0.1438 0.2574

POWER
LGGM-T2GD 0.0194 0.6031 0.0286 0.0193 CITATION

LGGM-T2GD 0.1636 0.8868 0.2036 0.6142
LGGM-T2GD* 0.0434 0.6721 0.0626 0.0231 LGGM-T2GD* 0.1615 0.9553 0.1903 0.6078

ALL
LGGM-T2GD 0.0968 0.4621 0.1072 0.2158
LGGM-T2GD* 0.1399 0.5636 0.1611 0.2937

F.9.2 UNIFORM TRANSITION

Table 19: Comparing the performance of graph generation between LGGM trained on graphs from
all domains with and without domain/name as textual conditions under uniform transition strategy.

Domain Method DEG CC Spec Orb Domain Method DEG CC Spec Orb

FB LGGM-T2GD 0.1561 0.1639 0.0924 0.0417 BIO LGGM-T2GD 0.0099 0.1286 0.0303 0.1366
LGGM-T2GD* 0.3018 0.4207 0.2069 0.2622 LGGM-T2GD* 0.0754 0.2889 0.0881 0.2783

ASN LGGM-T2GD 0.0318 0.2821 0.0606 0.0631 ECON LGGM-T2GD 0.0665 0.0594 0.0650 0.0586
LGGM-T2GD* 0.0637 0.1561 0.1416 0.2351 LGGM-T2GD* 0.1035 0.0736 0.0971 0.0922

EMAIL
LGGM-T2GD 0.0469 0.0982 0.0484 0.0505 RT LGGM-T2GD 0.0468 0.0955 0.0729 0.0393
LGGM-T2GD* 0.1107 0.2322 0.1315 0.1692 LGGM-T2GD* 0.1399 0.3913 0.2441 0.2497

WEB
LGGM-T2GD 0.0255 0.0737 0.0354 0.1856 COL

LGGM-T2GD 0.0395 0.3110 0.1146 0.1823
LGGM-T2GD* 0.0485 0.0830 0.1340 0.2669 LGGM-T2GD* 0.0323 0.4972 0.1159 0.5375

ROAD LGGM-T2GD 0.0088 0.1225 0.0399 0.0155 ECO
LGGM-T2GD 0.2160 0.2917 0.1203 0.2569

LGGM-T2GD* 0.0453 0.1005 0.1257 0.3803 LGGM-T2GD* 0.3722 0.3210 0.2226 0.2771

POWER
LGGM-T2GD 0.0162 0.1131 0.0479 0.1786 CITATION

LGGM-T2GD 0.0101 0.1025 0.0315 0.0651
LGGM-T2GD* 0.0225 0.1533 0.1264 0.2957 LGGM-T2GD* 0.0375 0.2454 0.0699 0.1363

ALL
LGGM-T2GD 0.0562 0.1535 0.0633 0.1061
LGGM-T2GD* 0.1128 0.2469 0.1420 0.2650
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