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Abstract

This paper focuses on testing conditional in-
dependence between two random variables (X
and Y') given a set of high-dimensional con-
founding variables (Z). The high dimension-
ality of these confounding variables presents
a challenge, often resulting in inflated type-I
errors or insufficient power in many existing
tests. To address this issue, we leverage the
power of Deep Neural Networks (DNNs) to
handle complex, high-dimensional data while
mitigating the curse of dimensionality. We
propose a novel test procedure, DeepBET.
First, a DNN is used on part of the data
to estimate the conditional means of X and
Y given Z. Then, binary expansion testing
(BET) are applied to the predicted errors from
the remaining data. Additionally, we imple-
ment a multiple-split procedure to further
enhance the power of the test. DeepBET is
computationally efficient and robust to the
tuning parameters in DNNs.

Interestingly, the DeepBET statistic con-
verges at a root-n rate despite the nonpara-
metric and high-dimensional nature of the
confounding effects.

Our numerical results demonstrate that the
proposed method controls type-I error under
various scenarios and enhances both power
and interpretability for conditional depen-
dence when present, making it a robust alter-
native for testing conditional independence in
high-dimensional settings. When applied to
dry eye disease data, DeepBET reveals

meaningful nonlinear relationships between
the epithelial thickness and the tear produc-
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tion in the central region of eyes, given other
regions.

1 Introduction

Conditional independence (CI) is a fundamental con-
cept in statistics, machine learning, and artificial in-
telligence. Testing for CI has important applications
in various statistical problems, such as causal infer-
ence [Pearl, 2009], feature selection [Cai et al., 2018],
and dimension reduction [Waggoner, 2021].  The
widespread demand for CI tests stems from the need
to identify relationships between different objects, in-
cluding understanding how they are connected, the
mechanisms through which they interact, and how
information flows between them. CI tests are now ex-
tensively used across numerous disciplines, including
information extraction, speech recognition, computer
vision, gene discovery, and disease diagnosis.

The primary objective of this article is to develop
a testing procedure to assess whether two random vari-
ables, X and Y, are conditionally independent given
a set of potentially high-dimensional confounding vari-
ables, Z. If the joint density of XY, Z exists, then
we write X 1 Y|Z if f(x,y|z) = f(z|2)f(y|z) for
all x,y,z with f(z) > 0 where f(x,y|z) is the joint
density of X,Y given Z, f(z|z) and f(y|z) are, re-
spectively, marginal densities of X and Y given Z
(e.g.,[Shah and Peters, 2020]). We consider the follow-
ing hypothesis testing problem:

Hy: X LY|Z versus Hy: X L Y|Z,

where Il denotes independence and ‘|’ denotes condi-
tioning. Our focus is on high-dimensional confounding
variables Z, where the dimensionality d can potentially
diverge to infinity as the sample size n increases. A key
challenge arises from the “curse of dimensionality” in
estimating the unknown and unstructured conditional
distributions f(X|Z) and ¢g(Y'|Z), especially when the
sample size is small relative to the dimensionality of Z.

Significant research has been conducted on con-
ditional independence testing, with a comprehensive
review available in [Li and Fan, 2020]. These methods



generally fall into four main categories: distance-based
tests (e.g.,[Su and White, 2007, Su and White, 2014,
Wang et al., 2015,  Su and White, 2008]),  kernel-

based tests (e.g., [Fukumizu et al., 2007,
Zhang et al., 2011, Strobl et al., 2017]),
regression-based tests (e.g., [Hoyer et al., 2008,

Zhang et al., 2023, Shah and Peters, 2020,
Zhang et al., 2017]), and sampling-based tests (e.g.,
[Bellot and van der Schaar, 2019, Shi et al., 2021,
Duong and Nguyen, 2022]). Distance-based methods
typically compare the product of the conditional
marginal distributions of X given Z and Y given Z
with the conditional joint distribution of (X,Y") given
Z. The performance of these methods depends on
the choice of the distance measure and the estimators
used for conditional distributions. Regression-based
methods, on the other hand, rely on the conditional
correlation between X and Y given Z, but it is
well-known that uncorrelation does not imply indepen-
dence, which means these methods may fail to detect
conditional dependence in uncorrelated alternatives.
Kernel-based tests extend the linear correlation of
regression-based methods to non-linear correlations by
utilizing the kernel trick. However, the effectiveness
of detecting non-linear dependencies depends on the
choice of kernel functions. Finally, sampling-based
methods, such as those using Generative Adversarial
Networks (GANSs), generate synthetic samples from
the conditional distributions given the confounding
variables Z. GANs offer a flexible approach to approx-
imating conditional distributions in high-dimensional
settings.

The approaches mentioned above have at least
one of the following limitations: inconsistency, mean-
ing they lack power to detect certain alternatives; not
appropriate to handle high-dimensional confounding
variables, due to the “curse of dimensionality”; some
sampling based methods are not computational effi-
cient or too sensitive to tuning parameter choices. As
a result, many existing tests suffer from inflated type-I
errors, insufficient power to detect alternatives, or com-
putational complexity and instability due to parameter
tuning. Furthermore, a limitation of existing methods
is their lack of interpretability. They often function as
a black box, providing statistical significance without
identifying the nature of the relationship. These chal-
lenges highlight the need for more robust, consistent,
scalable, and interpretable testing procedures capable
of handling complex, high-dimensional datasets. Our
proposed method, DeepBET, addresses all of these
challenges by leveraging the power of deep neural net-
works (DNNs) in combination with innovative binary
expansion testing (BET) statistical techniques.

Our proposed DeepBET procedure combines the
strength of three key components: DNN, BET, and

multiple-splitting. First, to overcome the “curse of
dimensionality,” we implement deep neural network
(DNN) models to estimate the conditional means
of X given Z and Y given Z, respectively. DNNs
[Polson and Sokolov, 2018] have proven effective in cap-
turing nonlinear relationships in high-dimensional and
complex data. Recent studies (e.g., [Lu et al., 2021,
Bauer and Kohler, 2019, Schmidt-Hieber, 2020]) have
explored the consistency and convergence rates of cer-
tain types DNN estimators for nonparametric func-
tions involving high-dimensional confounding variables
Z when appropriate optimization strategies are cho-
sen (e.g.,[Jentzen and Riekert, 2022]). Second, we use
the innovative nonparametric binary expansion testing
(BET) [Zhang, 2019] to construct test statistics. BET
has been shown [Zhang, 2019] to achieve uniform con-
sistency and attain the minimax rate in terms of sample
size requirements for reliable power. Notably, BET also
offers clear insights into the conditional dependence re-
lationships when independence is rejected. Finally, we
employ a multi-split method [Guo and Shah, 2024] to
enhance the power of our test. Our proposed method
effectively controls type I error and demonstrates a
strong ability to detect alternatives, making it a robust
approach for testing conditional independence in the
presence of high-dimensional confounding variables.

Our numerical studies demonstrate that the pro-
posed DeepBET procedure outperforms existing meth-
ods in terms of power while effectively controlling
the type I error, particularly in the presence of high-
dimensional confounding variables. The performance
of DeepBET is robust to the choice of tuning pa-
rameters in DNN fitting. More importantly, Deep-
BET is computationally efficient compared to exist-
ing sampling-based approaches (e.g., [Shi et al., 2021,
Bellot and van der Schaar, 2019]). In addition to de-
tecting dependence, DeepBET provides valuable in-
sights into the form of the conditional dependence,
which is helpful for subsequent modeling steps.

The remainder of the article is organized as fol-
lows: Section 2 provides a detailed explanation of the
DeepBET testing procedure and establishes the asymp-
totic distribution of the proposed statistics. Section
3 presents the simulation results and includes a case
study on corneal epithelial thickness data related to
dry eye disease. Section 4 concludes the paper. The
Appendix contains all the technical proofs.

2 A DeepBET procedure

Assume we observe independent and identically dis-
tributed samples (X;,Y;,Z;) for i € § = {1,...,n},
generated under additive noise models (ANM): X; =
hZ;)+ €; and Y; = g(Z;) + v;, where h(-) and g(-) are
arbitrary unknown functions of the high-dimensional
variables Z;. The variables X; and Y; are univariate,



and ¢; and v; are random errors that are independent of
Z;. The ANM are assumed for the convenience of theo-
retical exploration of the asymptotic null distributions
of the proposed DeepBET statistics. Our empirical
simulation studies in Section 3.2 have investigated the
performance of DeepBET when data are not generated
from the ANM.

We begin by randomly splitting the indices S into
two non-overlapping parts, denoted as Dy and Ds, such
that D; UDy = S and D; N Dy = (). Using the first
subset, D, we apply deep neural networks (DNN)
[Lee, 2021] to estimate the conditional means of X
given Z and Y given Z. Test statistics are then con-
structed using the second subset, Ds.

Specifically, we employ DNNs to estimate the con-
ditional expectations h(Z;) := E(Y;|Z;) and g(Z;) :=
E(X,|Z;) for j € D;. A DNN is an artificial neural
network architecture composed of multiple layers, with
each layer containing interconnected nodes that trans-
form input data using weighted sums and non-linear
activation functions. This structure allows DNNs to
effectively model complex relationships and capture
hierarchical patterns in the data. Detailed architecture
used in DeepBET is given in Section 3. Let the DNN
estimators of the conditional expectations be denoted
as hp, (Z;) = E(X;|Z;) and gp, (Z;) = E(Y;|Z;). We
then use these estimators to predict the conditional
expectations X;|Z; and Y;|Z; for i € Dy, denoted as
hp,(Z;) and §p, (Z;), respectively.

We then compute the residuals ¢; = X; — ﬁpl (Z)
and v; = Y; — gp,(Z;) for i € Dy, to approximate
the random errors ¢; and v;. Next, we construct BET

statistics to test the independence between €; and 7.

A graphical overview of our proposed testing procedure
is provided in Figure 1.
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Figure 1: The flowchart of the proposed DeepBET
procedure. First, we apply DNN to estimating the
conditional mean of X and Y given Z with part of the
data. Then, we obtain the residuals ¢ and ¥ from the
remaining data. We implement BET in these residuals
to verify conditional independence.

2.1 Binary expansion statistics

BET was first developed in [Zhang, 2019] to assess
the independence between two random variables. The
strength of BET lies in two key aspects. First, it

achieves uniform consistency in distribution-free depen-
dence detection and attains minimax optimal power.
Second, the BET procedure can provide insights into
the form of dependence if independence is rejected.
However, BET is not directly applicable to conditional
independence testing. This paper substantially extends
the scope and applicability of BET to test conditional
independence. One advantage of using binary expan-
sion statistics is that it is computationally simple to
obtain a binary expansion of a random variable. More
importantly, for binary variables, uncorrelatedness is
equivalent to independence, which is crucial for ensur-
ing the consistency of our test procedure.

The following outlines the steps to construct
marginal binary expansions. Assume we have n ob-
servations from the bivariate random vectors (U;, V;)
whose marginal distributions are uniform over [0, 1].
In practice, if the marginal distributions are not uni-
form. We can apply transformations so that U = F.(e)
and V = G, (v) are uniformly distributed over [0, 1],
where Fi(-) and G, (-) are marginal distributions of ¢
and v. If marginal distributions are unknown, we can
use the empirical CDFs so that for every observation
i, Uy = Fc(¢;) and V; = G,(v;) are each uniformly
distributed over {1/n,--- ,1}. In this paper, we focus
on testing the dependence of two continuous variables
€ and 7 and use the empirical CDFs to perform trans-
formation, since we do not have information about the
marginal distributions of € and D.

Consider the binary expansions of U; and V; giving
by the following:

Ui = Y2, (AN 4 1) /28 V= 5502 (B 1) /24

where Agk), Bfk) are random coefficients that are
Bernoulli distributed taking values in {—1,+1}. We
truncate the expansion of U; and V; at some certain
given depth d; and dy and define

dy d2
Z AP 41) /25 and Vi 0= (B +1) /28,
k=1 k=1

For each d; and ds, Udl and de are discrete multino-
mial variables taking 2d1 and 22 values, respectively.
As dy,dy — oo, UZ s U; and Vud2 — V; in prob-
ability. We could approx1mate the joint distribution
of (U, V) through (Udl,Vd2) We call the statistics
that are functions of Ak and Bk BET, and we call the
framework to test the independence of (Uy,, Va,) the
BET at depth d; and ds.

Note that (U;g,, Via,) can only take at most
2(di+d2) hogsible values, which lead to a partition of
the range space [0,1]x[0,1] into a 291 x 292 grids points.
With this approach, truncating the binary expansion
transforms the conditional dependence test problem
into a problem defined over grid points (a contingency



table), where the cell probabilities are identifiable pa-
rameters.

To formally define the BET statistic, we introduce a
filtration generated by {A(k)}glzl and {E(k)}Zil for ev-
ery dy and dg, which is 0(Uy,, Vg, ), a o-field formed by
the binary variables {/1(1), o A) B B(dZ)}.
Let a and b be indicator vectors with length d; and
ds, respectively. Let ab be one of the sets in the
o-field o(Uy,,Vy,) and the entries are Os and 1s in
vectors a and b where 1 represents that the corre-
sponding binary variable is selected in the set ab. De-
fine A® = [[iL, {A”} and BP = [T}, {B{"}** for
i € Dy. Then we obtain

S(ab),’ﬂ = EiEDQ A?szv
as a symmetry statistic which counts the difference
between the number of data points with .A2BP = 1 and
A?B:’ = —1, for a# 0 and b # 0.

Consider the following example: the residual plots
below are based on data generated from the nonlinear
model described in Section 3.2. Visually detecting
the dependence between X and Y in these plots is
challenging.

Figure 2: Left: Residual plot from D5, representing
the curvilinear relationship between X and Y given Z.
Right: The BET plot of residuals shows a significantly
higher concentration of points in the blue region, corre-
sponding to the interaction of the first bit from the Y
residuals and the first two bits from the X residuals.

In addition to detecting dependence, the BET plot
highlights a non-linear relationship, as more points
concentrate in the blue area compared to the white area,
revealing the conditional relationship between X and
Y given Z. The DeepBET not only effectively captures
the relationship between X and Y but also provides a
clear visual representation of this dependence.

Theorem 1 below provides the asymptotic distribu-
tion of the estimated BET statistic S'(ab)ﬂ.

Theorem 1. Assume the functions h(-) and g(-) are
(p, C)-smooth and satisfy the generalized hierarchical
model of order d, defined in the Appendiz. Assume
the conditions in Lemma 1 in the Appendix hold. The
CDFs F(-) and G(-) have bounded derivatives. If dy =
o(nP/rtd)) and dy = o(nP/Ptds))  then (S(ab),n +
np,)/4 and Hypergeometric(np,,np,/2,np,/2) for

a# 0 and b # 0 converge to the same limiting distri-
bution where np, s the sample size of Da.

The significance of Theorem 1 is in justifying the
application of DNN in the proposed procedure. De-
spite the convergence rate of DNN based estimators
is slower than n~/2 due to its nonparametric nature
and high dimensionality of the confounding variables
Z, the asymptotic distribution of S(ap),, is still root-n
consistent, which is mainly due to the binary nature
of the random variables A; and B;. As a comparison,
the generative conditional independence test (GCIT)
of [Bellot and van der Schaar, 2019] requires the total
variation distance between the estimated conditional
distribution and the underlying true conditional distri-
bution converges at a faster rate than n~'/2. The dou-
ble GANs for conditional independence test (DGCIT)
of [Shi et al., 2021] relaxes the condition and requires
that the product of two total variation distances (for
conditional distributions for X|Z and Y|Z) is a small
order of n~'/2. However, these conditions required
for GCIT and DGCIT may not be satisfied if the un-
derlying dimension d, in Theorem 1 is large and no
specific smoothness or sparsity assumptions on the non-
parametric functions. See [Shah and Peters, 2020] for
more discussion of using nonparametric functions of
high-dimensional confounding variables in conditional
independence tests.

Based on Theorem 1, it is not difficult to see that
(np, — 1)1/23’(31,)7”/11@2 is asymptotically normal. To
maximize the power, we then construct a maximal
normalized BET test statistic as following:

T, = max (np, — 1)1/2§(ab)’n/n92.

abeo(Uq, ,Va,),a#0,b#£0

Theorem 2. Assume the conditions in Theorem 1
hold and dy + dy = o{logy(n?/(PTd))}. As n — oo,
the statistic Tn has the same asymptotic distribution
as the mazximum of a Gaussian distribution with mean
zero and identity covariance under the Hy.

The complete proof is given in the Appendix.

2.2 Multiple data splitting with
rank-transformed subsampling

Although a single-split approach is simple and compu-
tationally efficient, it has its limitations. First, different
random splits of the same dataset can lead to varying
results. Second, the test tends to lose power because
it does not fully utilize the entire sample. To address
these issues, we adopt a multiple-splitting technique
[Guo and Shah, 2024], which combines the results of
multiple randomized tests to reduce randomness and
enhance the power of the test.

2.2.1 Setup

Let Tél), e ,TT(LL) be test statistics that can be com-
puted from samples in Dy, where L is pre-specified ways



of splitting the testing sample. Consider the aggregated
or “multiple-split” statistic

An = (T + - +1TM) /L,

where T,(Ll) is the [-th BET statistic based on the [-th
sample split for [ = 1,--- ,L. By taking L reason-
able large, we can expect that var(A,|Xy,---, X,) is
small enough such that the aggregated test statistic is
effectively de-randomized.

Based on Theorem 2, A,, converges to some distri-
bution G, under the null; Our aggregated test rejects
Hy for large values of A,. We aim to mimic an or-
acle procedure that rejects whenever A, exceeds an
unknown upper « quantile of Gp. We use subsampling
to compute G, to approximate G, and use its quantile
to determine the critical values for A,,.

2.2.2 Rank-transformed subsampling

In this section, we describe our procedure when using
a single aggregation function A,. We start with our
subsampling setup.

Subsampling Let m < n be a subsample size.
All the numerical experiments in this paper, we use
m = [n/log,]. We randomly select a total of B sets
of indices, each of size m, such that there is a suffi-
ciently low degree of overlap among the sets. First
of all, we choose a positive integer (e.g., J = 50) and
let B := J[n/m]. Then our collection of set indices
B :={(i1p, - ,imp) : b=1,---, B} is formed using
Algorithm 1 [Guo and Shah, 2024] below.

Algorithm 1 Generate ordered tuples

Input:Sample size n, subsample size m, positive integer
J.

1: B+ 0.

2: for j=1,---,J do
7 < a random permutation of {1,---  n}.
B+ BU{(Wh . 77Tm)7 (7Tm+1, C.. a772m)a cee

(ﬂ-([n/m]—l)m—i-la to aﬂ—[n/m]m)}'

3: return B

We arrange the subsampled test statistics into a B x L
matrix H = (Hy;) consisting of rows:
ﬁb,- = (ng)(Xil,bv T 7Xim,b)7 T

T#ﬂL)(Xil,b"" 7Xim.b))v b=1,--- aB'
Then, we apply the aggregation function A,, to each row
of H, we could obtain Ay, := A,,(Hp 1, -+ , Hp,1), whose
empirical distribution function G, (z) := ]F{Kb}(x) is
the natural subsampling estimate for G, (x)

Rank transform Let 5 denote the empirical

distribution function based on entries of ﬁ . With
this, we form a rank-transformed version of H denoted
H = (Hy,) filled with entries

Hy = Fy "{(Ry; — 1/2)/(BL)},

where Ry, ; be the rank of T 0} (ng)) among the statistics
(TDY for b=1,--- ,Band I =1,--- ,L; Fy is
chosen as the CDF of a standard normal distribution.
We then compute the aggregated statistics

Ay = Ap(Hpp, -+, Hy 1),

and their resulting empirical distribution function

Gpn :=TFj,,(z), which we then use to determine the
b

critical value G *(1 — ) for A,,. The full procedure is
given in Algorithm 2 [Guo and Shah, 2024].

Algorithm 2 Aggregated multiple-split test
Input: Data X;,---,X,, exchangeable single-split
test statistics (Tr(Ll), e ,Tr(lL))7 asymptotic null distri-
bution function Fp, aggregation function A,,, signifi-
cance level a € (0,1), positive integer J.

1: m < [n/log,], B < J[n/m)]

2: Run Algorithm 1 to obtain B = {(i1,, " ,imp :

b=1,---,B)}
3: Initialise B x L matrices H, H and B-dimensional
vector A

4: forb=1,...,B do
Hy. — (T (Xiy -
TS (Xiy sy Xi )
5. forb=1,...,B do
fori=1,---,L do
L Hoo Fy (R —1/2)/(BL)}
Ay = An(|Hpal,- - [Hy L)
6: én «— F{S~'b}

s X y)seeos

7. Compute A, <+ An(|T7§l)|, I |T,(LL)|) from
le T 7Xn N
8: Reject Ho if A,, > G} (1—a/2) and report p-value

1—Gn(Ar)

3 Numerical studies

We begin by discussing key implementation details.
Next, we conduct simulations to evaluate the empirical
size and power of the proposed test, comparing its
performance with several alternative methods.

3.1 Details of Implementing DNN

There is a trade-off when selecting the number of splits,
L, in Algorithm 2. While L should be as large as pos-
sible to ensure strong power, increasing L also raises
computational complexity. Based on our empirical in-
vestigations, we found that setting L between 30 to 50
strikes a favorable balance between power and computa-
tional cost. Therefore, we set L= 40. Existing research
(e.g., [Chen and Shen, 1998]; [Schmidt-Hieber, 2020])
has demonstrated that DNNs can consistently estimate
nonparametric functions of high-dimensional covariates,



effectively overcoming the curse of dimensionality. How-
ever, the feasibility and applicability of DNNs to statis-
tical inference problems, such as conditional indepen-
dence tests, remain largely unexplored. We carefully
examined and tuned DNNs to ensure their suitability
for statistical inference tasks. Additionally, we stud-
ied the robustness of DNNs and the impact of tuning
parameters on the proposed conditional independence
test. We constructed fully connected neural networks
and experimented with different activation functions,
including LeakyReLU, ReLU, and Tanh. Furthermore,
we split the data into training and testing sets in a
1: 4 ratio. We set reasonable ranges for key parame-
ters such as the learning rate (0.005), batch size (50),
and the number of training epochs (15). The Adam
optimizer was utilized for parameter optimization. To
improve the network’s generalization capability and
reduce overfitting, we applied the dropout technique.
Specifically, we used a dropout rate of 0.2, randomly
dropping 20% of neurons in each layer.

3.2 Simulations

Simulation setting I

We generate the data following the post nonlin-
ear noise model similarly as in [Shi et al., 2021];
[Bellot and van der Schaar, 2019], i.e.,

X = Sin(a?Z) + €5, and Y = cos(al Z 4+ bX) + v,.

The entries of af, ay are randomly and uniformly sam-
pled from [0,1], then normalized to the unit ¢; norm.
The noise variables ¢4, v, are independently sampled
from a normal distribution with mean zero and variance
0.25. In this model, the parameter b determines the de-
gree of conditional dependence. When =0, Hj holds,
and otherwise H; holds. We set the significance level
at « = 0.05. All results are based on 500 simulation
replications.

The left panel of Figure 3 compares the empirical
size and power of the BET with the generalized correla-
tion measure (GCM) ([Shah and Peters, 2020]), using
predicted residuals from a deep neural network model
with a single split, where the dimension of Z is dz =
100 and sample size is n=1000. We vary the value of b
=0, 0.45, 0.6, 0.75, 0.9. The results in the left panel of
Figure3 demonstrate that DeepBET outperforms DNN
+ GCM in this simulation setting. In addition, we
conducted further simulations that compare the deep
neural network (DNN) with the random forest (RF)
model. The right panel of Figure 3 presents empirical
size and power results for dz = 500 and n = 500, using
the same values as b. The right panel of Figure 3 shows
that DeepBET consistently outperforms RF+BET in
this setting.

In Figure 4, we compare the empirical size and
power of the proposed single-splitting procedure with
the multiple-splitting procedure, the dimension of Z

—— DeepBET —— DeepBET
—— DNN+GCM RF+BET
08 08

Empirical Size/Power
Empirical Size/Power

.

0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8
b b

Figure 3: Left: The empirical size/power of the pro-
posed test with DeepBET and DNN+GCM. Right: The
empirical size/power of the DeepBET and RF+BET.

as dz = 100, and vary the value of b = 0, 0.45, 0.6,
0.75, 0.9. We note that multiple splits have controlled
the type I error and significantly improved power. The
power almost doubles when b approaches 0.9.

DeepBET

— single Split
Multiple Split

Empirical Size/Power

0.0 0.2 0.4 06 08
b

Figure 4: The empirical size/power of the proposed
test with single- and multiple- splitting.

We aim to determine whether the choice of acti-
vation function significantly influences the results of
our test. To investigate this, we experiment with vari-
ous activation functions and compare their empirical
performance. We vary the dimension of Z as dy =
50, 100, 150, 200, 250, generating Z from a standard
normal distribution. Additional we compare the em-
pirical power for dz= 100 while varying the value of
b= 0.45, 0.6, 0.75, 0.9. Upon examining Figure 5, we
observe minimal discrepancies in the results when using
different activation functions. This suggests that our
DeepBET is robust across various activation functions.

Type | error by various activatioin function Empirical power by various activatioin function

—— LeakyRelU 101 — LeakyRelu
— Relw — rely
Tahn Tahn

o \/ 04

50 75 100 125 150 175 200 225 250 o5 Y o o o
Dimension of 2z

Figure 5: The empirical sizes and power of DeepBET
are not sensitive to the choices of activation functions.



Figure 6 reports the empirical size when b = 0. We
vary the dimension of Z as dz = 50, 100, 150, 200,
250, and consider two generation distributions of Z
from a standard normal distribution and Laplace dis-
tribution. We compared two sample size, n = 500 and
n = 1000. We compared our proposed test DeepBET
with generative conditional independence test (GCIT)
of [Bellot and van der Schaar, 2019], double generative
adversarial networks for conditional independence test
(DGCIT) of [Shi et al., 2021] and the classifier condi-
tional independence test (CCIT) of [Sen et al., 2017].
We observe that DeepBET and GCIT effectively con-
trol the empirical size under the nominal level across
all cases, while DGCIT exhibits inflated type-1 errors
in every instance. While DeepBET shows a slightly
higher type-I error when the sample size is 500 and
the dimension of Z = 250, CCIT experiences an initial
increase in type-I error, followed by a decrease as the
dimensionality of Z increases.

Standard Normal Distribution Laplace Distribution

—< DeepBet —< Deepset
oecr eciT

025 ~* & 0251 —— eI
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50 75 100 125 150 175 200 225 250 0 75
Di 2z

100 125 150 175 200 225 250
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Laplace Distribution
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eI
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Dimension of
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z

Figure 6: The empirical sizes of various tests under Hy.
Left panels : Z is normal, right panels: Z is Laplacian.
Top panels: sample size is 500, bottom panels: sample
size is 1000. The size of DeepBET is around 0.05.

Figure 7 reports the empirical power with the di-
mension of Z as dz = 100, and vary the value of b
= 0.45, 0.6, 0.75, 0.9. We compare two sample size,
n = 500 and n = 1000. We observe that the empirical
power of the DeepBET surpasses that of the competi-
tors, converging to 1 as b increases to 0.9, demonstrat-
ing the consistency of the proposed test. In contrast,
both GCIT and CCIT do not display sufficient power
across all cases. Moreover, we also compare DeepBET
with the kernel-based conditional distance correlation
(KCDC) test in [Wang et al., 2015] when n = 500 and
dz = 100. We found that the empirical size of KCDC
was always 1, and was not able to control the type I
error. This may indicate that KCDC is not applicable

to conditional tests with high-dimensional confounding
variables.
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Figure 7: The empirical power of various tests under
H,. Left panels : Z is normal, right panels: Z is
Laplacian. Top panels: sample size is 500, bottom
panels: sample size is 1000. DeepBET has good power
in all cases.

Lastly, we examine computational efficiency. All
experiments were conducted on Google Colab using an
Intel Xeon CPU with 2 vCPUs and a T4 GPU. The
wall-clock time for executing the complete DeepBET
test for one data replication was approximately 1.5
seconds. When employing multiple splits, the computa-
tion time increased to about 1 minute. In comparison,
the running time for CCIT was around 2 minutes, for
GCIT about 20 seconds, and for DGCIT, it extended
to approximately 8 minutes.

Simulation setting II

We run additional simulation by generating data
from another nonlinear noise model

X={1+4 exp(a?Z)}’1 + €5, and
Y = tanh(a} Z + bX) + vy,

where the entries of ay, a, and noise variables ¢4, v,
has same setting as setting I. The sample size is set
at n=1000. The generation distribution of Z is from
a standard normal distribution. We set the signifi-
cance level at a = 0.05. All results are based on 500
simulation replications.

We vary the dimension of Z as dz = 50, 100,
150, 200, 250. We compare our proposed DeepBET
with generative conditional independence test (GCIT)
of [Bellot and van der Schaar, 2019], and Deep Neural
Network (DNN) with GCM of [Shah and Peters, 2020].
The left panel of Figure 8 reports the empirical size
when b = 0. We find that DNN+GCM could potentially
have inflated type I error when data dimension dz = 50.



In the right panel of Figure 8, we compare the empirical
power of the DeepBET, DNN with GCM and CGIT
when the dimension of Z is dz = 100. We vary the value
of b = 0.02, 0.08, 0.14 that controls the magnitude of
the alternative. We observe that DNN+GCM perform
the best followed by DeepBET and then the GCIT.
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Figure 8: Left Panel: The empirical size of various
tests under Hy. Right Panel: The empirical power of
various tests under H;.

Simulation setting ITI

We run additional simulation by generating data
from another nonlinear noise model

X = sin(a?Z) +ep,and Y = (al Z +0X)% + vy,

where the entries of ay, ay and noise variables €4, v, are
all have the same setting with above model. The sample
size is set at n=1000. The generation distribution of
Z is from a standard normal distribution.

We vary the dimension of Z as dz = 50, 100,
150, 200, 250. We compare our proposed Deep-
BET with Deep Neural Network with GCM of
[Shah and Peters, 2020]. The left panel of Figure 9
reports the empirical size when b = 0. We find that
DNN+GCM have inflated type I errors in all instances.
In the right panel of Figure 9, we compare the empirical
power of the DeepBET and DNN with GCM when the
dimension of Z is dz = 100. We vary the value of b =
0.45, 0.6, 0.75 and 0.9 that controls the magnitude of
the alternative. We observe that DNN+GCM does not
have sufficient power in this scenario.
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Figure 9: Left Panel: The empirical size of various
tests under Hy. Right Panel: The empirical power of
various tests under Hj.

3.3 Analysis of dry eye disease data

Dry eye disease (DED) encompasses a complex group
of conditions resulting from dysfunction of the ocular
system, significantly impacting patients’ quality of life,
financial resources, and US society as a whole. Symp-
toms of DED range from general discomfort to severe
pain and burning sensations, which negatively affect
sleep, productivity, and vision. It is estimated that
DED affects over 16 million people in the US, with a
prevalence of 6.8% among US adults.

Recent findings have shown thinning of the corneal
epithelium in patients with DED (Figure 10 illustrates
corneal epithelium thickness in normal individuals com-
pared to three different types of DED). Epithelial
mapping is conducted using anterior segment opti-
cal coherence tomography (AS-OCT), specifically the
RTVue XR OCT Avanti System (Optovue Inc, Fre-
mont, California, USA). This technique provides data
on corneal epithelium thickness across 25 regions of the
cornea, with darker colors indicating thinner areas of
the cornea.

Autoimmune DED

Figure 10: The example of Corneal Epithelial Thickness
for Normal vs 3 types of Dry Eye Disease.

Our dataset includes measurements of corneal ep-
ithelium thickness across 25 regions and Schirmer’s
test results from 451 eyes (229 from right eyes and
222 from left eyes). First, we obtained the variable
importance measures by fitting a random forest (RF)
model. From the RF model results, we identified two
key indicators for diagnosing DED: the Schirmer test,
which measures tear production in five minutes, and
the average corneal epithelial thickness of the central 10
regions of the cornea. These findings motivated us to
implement the DeepBET method to determine which
of the 25 regions of the corneal epithelium exhibits the
strongest association with the Schirmer’s test, given the
results for the remaining 24 regions of corneal epithelial
thickness.

We split the data into training and testing sets in
a 1:4 ratio. The predictor variable X represents the
corneal epithelium thickness in one of the regions, and
the outcome variable Y is the Schirmer test result, with
both X and Y conditioned on the remaining 24 regions
of corneal epithelium thickness. We applied DeepBET
to data from each participant’s left eye to obtain p-
values. Then, DeepBET was applied separately to



data from the right eyes. Our goal is to identify which
region of the cornea is most strongly associated with
tear production.
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Figure 11: Three highlighted regions of epithelial thick-
ness for both eyes are conditionally dependent with
Shimmer test result.

Figure 11 reveals that 3 regions of corneal epithe-
lium thickness for both eyes are significantly dependent
on tear production (given other regions) after multi-
plicity corrections using conformal ¢g-values proposed
by [Zhao and Sun, 2024] with false discovery rate con-
trolled at 5%.

Next, we examine the BET results for specific vari-
ables. Figure 12 shows two BET plots for the central
region (C) of each eye, where both tests are significant.
In both plots, U, represents epithelial thickness, and
U, represents tear production. In the sigma field of
binary variables, where a # 0 and b # 0, the max BET
results reveal a significantly higher concentration of
observations in the blue regions compared to the white
regions, with the corresponding p-value being signifi-
cant. This indicates that the conditional dependency
between U, and U, arises from the interaction of the
first bit from the U, residuals and the first two bits
from the U, residuals.

Practically, this means that given other regions,
patients with either thinner (below the first quartile) or
thicker (above the third quartile) epithelial thickness
in the center region tend to have lower (below median)
tear production, as indicated by the clustering of points
in the lower left and right regions. In contrast, patients
with normal (between the first and third quartile) ep-
ithelial thickness exhibit higher (above median) tear
production, as shown by the concentration of points
in the upper central region. Notably again, this form
of dependency is consistent for both eyes. Therefore,
these BET plots provide some heuristic insights and
explanations. Since other tests do not offer an immedi-
ate interpretability upon rejection if no further residual
analysis is performed, DeepBET could be a valuable
alternative in this sense.

10 - - 10

Figure 12: Left: BET plot for the central region (C) of
the left eye. Right: BET plot for the central region (C)
of the right eye. Both tests are significant, and both
plots show significantly more points in the blue regions.
These results reveal the same nonlinear relationship
between the epithelial thickness and the tear production
in the center region, given other regions.

4 Discussion

In this paper, we presented a novel method for con-
ditional independence testing with high-dimensional
confounding covariates. Our approach, called Deep-
BET, combines the strengths of advanced deep neural
networks (DNNs), the non-parametric binary expan-
sion testing (BET), and multiple-split techniques. The
proposed method offers both theoretical and empiri-
cal advantages, including uniform consistency in de-
tecting alternatives, fast computation, robustness to
tuning parameter selection in DNNs, and the ability
to handle high-dimensional confounding variables. De-
spite the nonparametric and high-dimensional nature
of the confounding effects, DeepBET achieves a root-
n consistent rate. This result is a complementary to
a rapidly growing literature on estimation/statistical
inference using machine learning methods, in particu-
lar, the semi-parametric estimation/statistical infer-
ence for low-dimensional parameters with nuisance
functions of high-dimensional confounding variables
(e.g., [Chernozhukov et al., 2018, Farrell et al., 2021]).
However, there is limited research on using DNN for
conditional independence tests.

We have also demonstrated the superior empiri-
cal performance of DeepBET and its computational
efficiency compared to several existing methods. The
gains in interpretability, as shown in the dry eye dis-
ease data analysis, suggest that DeepBET is a valuable
alternative in practice.
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Appendix A. Proofs

Technical proofs

For theoretical analysis, we impose some conditions on the family of the nonparametric functions A(-) and g(-),
and the architecture of the neural network.

Definition 1. A function m(z) is (p, C)-smooth if the partial derivative 09m(z)/027" - -- 02" exists and satisfy
0%m(z) 0%m(x)

_ < Ollz — zlIf
Ozt - 0297 0202501 T Iz =l

for all z,z € R?, Z?Zl aj =q and p =g+ s. A function m(z) is a generalized hierarchical interaction model of
order d, and level 0, if there exist ay,--- ,aq, € R* and f: R* — R such that m(z) = f(a{ z,--- ,al 2) for all z.
Then, a function m(z) is a generalized hierarchical interaction model of order d, and level I + 1 if there exist K,
0r(-) and f1 -, fa.rx such that m(z) = Zszl Ou{fik(2), , fa. k(2)} where f1k, -+, fa. r are generalized
hierarchical models of order d,. and level l. If all the functions f(-), Ok(-), fi,k,- - fa..k are (p,C) smooth, then
the function m(z) is a (p, C)-smooth generalized hierarchical interaction model.

Definition 2. A hierarchical neural network HY is defined recursively given by the following:
K
HO = {h:h(z)= Zﬂk(flyk(z), ooy fa, k(2)) for some gi, € fﬁi\{d*yd’a and fjr € H(lfl)}.
k=1

and H®) = fﬁ{\{d*7d7a, Here fﬁ{\{d*7d7a is the family of neural networks include the set of all functions of the
form

M 4d, d
f(z) = Z ui0< Z )\i,jU( Z i w20 + 9i,j,0> + )\i,0> + o
=1 =1

v=1
for some || < a, [N ;| < a and |0; ;.| < a, and an activation function o(-).
We estimate the nonparametric function A(-) by minimizing the following objective function:

n

B . N2
h = arg in 2 (Xi —h(Z))7, (1)

where H () is defined in Definition 2. In practice, we minimize the loss function in equation (1) using algorithms
such as stochastic gradient descent algorithms. It is possible that the global minimization might not be achieved.
In such cases, the results about the convergence rate in Lemma 1 might not be guaranteed. We made the following
assumptions:

(C1) z € R has bounded support. Assume that both functions h(z) and g(z) satisfy the (p, C')-smooth generalized
hierarchical interaction model of order d, and finite level | with p = ¢ + s for some non-negative integers ¢
and s € (0, 1].

(C2) Assume that (X1,Y7,727),---,(Xn,Yn,Z,) are independent and identically distributed samples,
E{exp(c1X?)} < 0o and E{exp(c1Y?)} < oo for some constants ¢; and co.

The following results are proved in [Bauer and Kohler, 2019].

Lemma 1. Assume (C1), (C2) and all the partial derivatives of order < q of O, f;r are bounded and 0y
is Lipschitz continuous. In addition, M* =< cn®/(2r+ds) o = n¢ for sufficient large constant ¢ and o(-) is
N -admissible. Then, the estimated function from the optimization in (1) converges to h(-) with the the following
rate:

E||lh — h|)2 < en=2/Crtd) 1663 (n),

for sufficiently large n.

The following Lemma generalized the results the inequality in [Bickel and Levina, 2008] for the differences between
products with [ terms (I > 2).



Lemma 2. Let I, = Zl1§1)1<---<va§l [T, ) — Ci)| | O |CD|. Then, the following inequality holds:

l

l l
[[c9-T[¢9 <3 1
j=1 a=1

=1

Proof of Lemma 2: Note that we can write

!
HC(J H{ (CW) — Wy 4 CUy
j=1

_HC(])JFZ Z HC(U’) G ﬁ ou.

a=11<v; << <l j=1 JFV1, Y
It then follows that

a

!
Hc(j) HC(]) <Z Z H|C(% — )| H |CW.
j=1

a=11<v;<--<v <l j=1 JF#VL, Ve

This completes the proof of Lemma 2.

Proof of Theorem 1: Since np, is at the same order as n, we use n to replace np, in this proof to simplify the
notations. Theorem 4.2 of [Zhang, 2019] has shown that (S(ap),, +7n)/4 ~ Hypergeometric(n,n/2,n/2). To prove
the desired result, (S'(ab),n +n)/4 ~ Hypergeometric(n,n/2,n/2), we will need to show that |S'(ab)m — S(ab),n| =
OP{S(ab),n}' R )

We start with calculate the difference between S(ap),, and S(ap) n, given by [Siab)n — Sab)nl:

|Sab)n = Stab).nl = [S(ab)n = Sheawy. + Shiawyn ~ Shiaw.n + Shiawy.n — Stab)n
< |S(ab),n - Sh(ab)m,| + |§h<ab),n - Sh(ab),n| + |Sh(ab)7n - S(ab),n|7
where Sp,,, , 1S a smoothed version of Sap),, which will be defined below. We will show in three steps
that each term on the right-hand side of the above inequality is a smaller order term of S(ap),, so that
|S(ab),n — S(ab),n n}t

Step 1: Let ¢; and 7; be residuals obtained from the DNN fitting. Let F' and G be, respectively, distribution

functions of ¢; and ;. Then we obtain the transformed random variables: U; = F (&) and v, = G(7;). In the

proposed BET procedure, the binary variables Agk) and Bfk)

are generated by the predicted residuals:

i 1 if AR <Uis A

P i B <l 2

241 = 2%

and

Lo 2j-2 vy o 2j—1

A _ Loif gdz <Vi< gdz

i T ce2j—1 _ 7 2§

+1 if S <Vi<sh

where k=1,--- .24 and j=1,...,2%"1

Let us construct a smoothed version of A;Lk) so that it transitions smoothly from -1 to +1. That is

-1 if E2 <7< le L _h
R b (2k=1 1 1y — (zk 1 ] B
AP =3 14 2(fL L (— Nat) f 7)dt) = (2)
2 1
. Jo—
+1 if 22d11+h<U < ZF

where ¢(z) is a bump function which is infinitely differentiable defined by

—1/(1—=%) _
q/}(x){(e)ll for—1l<zxz<1 3)

otherwise.



— h, 2221+ h]. Outside of this region,

The difference between AE ) and A;Z ) occurs only in the interval [2£ TR

2’11

both functions are identical. Define the event where Ai and AEH) differ:

N 2k — 1 2k —1
gA::{UiE( o — h, o —|—h>}

Then, for any u > 0,

P(AY — AP > u) < P (AP £ AD) = (gA):/2dl fo. (w)du,

where fp;. (u) denote the probability density function of U,.
When £ is small and the density fy, (u) is bounded, the above integration can be approximated by the following:

2%k —1\ (2k—1 2% — 1 9% — 1
pen =t (Tt ) (B vi (T ) =2t (B = om

Thus, we have:

|A£k) = Op(h)~

Similarly, we can also construct a smoothed version of Bfk) using B,(lk)

the difference between B ) and B (k) by

. Using the same approach, we can bound

Sk Sk
1B — BV = 0,(h).

Now, we will bound the difference S'(ab) and Sh(ab)m. Recall that

dy ds
S(ab)n, = H{A“”}“k H{B“”}bk, sand S, = [JEAS ) TTBR Y™
k=1 k=1 k=1
Let CA’I-(l) and CA’,(ll) denote the [-th term in g(ab) and S’h(ab)- Applying the Lemma 2, we have

e B e LT
<UL+ Lo+ Ligg, +dv)>

|S(ab),ni - S(ab),ni

where, fora =1,--- ,d; + da,

a

Liu = Z H\O“J— LTI 16y

101 < <va <l j=1 JFVL, Ve
By definition |C’Z(J )\ =1, So we have
l a
Lu= Y. JLIE =),
1<v1 < <v, <l j=1

Recall CA'i(l) and é’éli) are the [-th term in S(ab)m and Sh(ab),n,;’ so C! is either Agk) or Bfk) and C’L is either Ag’j)

or B,(:) Because |A§k) - Agj)| = Op(h) and |Bz(k) - B,(llj)\ = O,(h), we have |C’i(vj) - CA'}(:J)| = Op(h). Thus, we
have:



fora=1,---,d; +ds. Then
dy+da

> Lo =0p{(1+h)"F% — 1},

a=1
Then, if we choose small enough h, then we could bound the difference |5'(ab))n — S(ab)7n|:

n di+dz

=33 Lia = 0, (n{(1+ BT — 1}) = 0,(Sab.n)-

=1 a=1

‘S(ab),n - g(ab),n| = | Z(S(ab),ni - S(ab),ni)

Step 2: We will bound the difference between gh(ab),n and S, ., which is given by the following expression:

= |4 ATVBVEY B - A AY AT BBY B

‘Sh(ab),ni - Sh(ab),ni

Let CA’}(ll) and C’,(lli) denote the I-th term in Sh(ab) and Sp,,,, , then

1) A2 A(d1+d 2 dy+d
(CRCD -Gt — oD ot

i

M:

|Sh(ab) Sh(ab)‘ = ‘
1

(L + Tio 4 I g, 1))

INA
-
I M: ..
— Il

where
dy+d2

S (e ies —e@i( 11 ey
=1

j=0 j=a+1

).

Since |C}(LJL)| <1 and |C'}(LZ)| <1, we have

Zn:Ii < Z|C — o).
=1

Recall that the definition of C’,(Ll) and C’}(fi) in gh(ab) and Sp,,,, » we need to find out the difference between |A (k) _ k)|

and |Bﬁf) — B;(:)|. Using Taylor’s expansion, we have: /Algf) = A;Zj) + A;l(f)(Uz - U,), B}(Lk) B(k) + B/(k (V Vi)
Then,

~(k k
AP — AP < 1A ()| - (T - U]
B — B,‘Jf)| < 1B® (wy)]| - |(Vi = Vi)

for some u; € (min(U;, U;), max(U;, Uy)) and v; € (min(V;, Vi), max(V;, Vi)). Since |U; — U;| = |F(&) — F(e;)| and
|V; = Vi| = |G(¥;) — G(v;)|, using the first order Taylor expansion of F and G, we have

U; = Uil = |[F(&) = F(e)| = |F ;) (& — )],
Vi = Vil = |G(#1) — G(wi)| = |G (di) (5 — vs)],
where ¢; and d; is an intermediate point between ¢; and ¢;, 7 and v;. Then, for a fix 1 < a < d;,

iféaéi\éé‘? |<Z|A (U; = Uy)|*.
=1 i=1

By the Cauchy-Schwarz inequality:

STr, < 1A W) P | S 1 — ).
=1 =1 )




Assume F'(¢;) is bounded by some constant L and M, |F'(¢;)] < L and |G (d;)| < Q. The derivative of fl;k)
with respect to u; is given by:

0 if 222 < ;< 2k

241 241

o 2k—1
) P ody
h

A0 () =

% ! 2kd_1+h’ t_(de;1) if 25(;11 - h S Uz S 2§d—11 + hv
fzgfrll ¢<+1> dt
21 " .
0 if 222l 4 h < Uy < 2E.
For any ¢ > 0, we know that, as h — oo,
(k) /1 2k -1 - 2k —1
P (|4 (Ui)>c)<P( s —h<Ui< == +h) —o.

Thus, we have: |A;l(k)(UZ)\ = 0,(1). If we choose h small enough so that nh — 0, then

DAL () Y (e0)[2 = 0p(1).

By the ANM model assumption: X; = h(Z;) + ¢;:

n-

U3 e )t = o S - (7)) — (Xi — A(Z)Y > - b
i=1 i=1

Because of the Markov inequality and using Lemma 1, we obtain:
E|[h — h||? < en=2P/Crd) 1663 (n),

we have R
E|lh — h|f?
<

C

P(||h —h|? > ¢) O(n=2P/Cr+da) 1003 ().

So, we have
n

D (& =€) = Oy (n=2P/ P4 1og% ().

i=1

1
n
Thus, we can write:

n

Do (6= €)? = Op{n 2 log 2 (m)} = o0, (n'?).
i=1

If dy = o(n?+ % ) and dy = o(n?+7 ), then we have
|Sh(ab),n - Sh(ab),n| = Op(nl/Q) = OP{Sh(ab),n}'

Step 3: For the binary variable A¥ which is generated by the i.i.d random residual e

! +1 if 2 <y <2k

241

A0 _ —-1 if 22U < 2L
241

where k= 1,---,2%~1, Following the same steps in the above step 1, we could conclude the result that

|Sh(ab) - S(ab)| = OP(Sh(ab),n)'

In summary of the above Steps 1-3, we have proved that |.§(ab),n — S(ab),n| = 0p{S(ab),n}- This completes the
proof of Theorem 1.

Proof of Theorem 2: We construct a normalized BET test statistic



T, = maxabeg(ﬁdl,‘;dz)(np2 — 1)1/2S(ab)7n/np2.

According to the results in [Zhang, 2019], the maximum of the standardized statistic T, has the same asymptotic
distribution with the asymptotic distribution of independent Gaussian distributions under the null. To show the
desired results, we need to show that |T;, — T;,| = 0,(1). Based on the results in Theorem 1, we have

|(nD, = 1) S(ab)n /1D, — (1D, = 1)/ S(ab) /1, | = 0p{(dy + dp)n /P40,
Note that the total number of elements in the o-field o(Uy, , Vy, ) is 291792, So, we have

|Tn - Tn| < max |(nD2 - 1)1/2S(ab),n/nD2 - (nD2 - 1)1/2S(ab),n/nDz|
aon’(Udl,Vd2)

< Y |, = 1) S(abyn/np, — (00, = 1)/*S(ab)n/np,| = 0p{(dr + dg)281 2P/ CrEdy,
abEU(Udl,Vdg)

If dy + dy = o{logy(n?/P+d))} then |T,, — T,,| = 0,(1). This completes the proof of Theorem 2.
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