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Figure 1. We propose RayZer, a self-supervised multi-view 3D Vision model trained on unlabeled data without any annotations, e.g.,

camera pose labels. At inference, RayZer supports feed-forward novel view synthesis from unposed & uncalibrated images. RayZer

achieves novel view synthesis performance comparable to that of supervised “oracle” methods (GS-LRM and LVSM), which require camera

labels in both training and inference, and even outperforms them when they rely on (potentially noisy) COLMAP camera annotations. We

show two examples on the right, where COLMAP camera annotations lead to consistent failures of GS-LRM and LVSM during inference.

Abstract

We present RayZer, a self-supervised multi-view 3D Vision

model trained without any 3D supervision, i.e., camera poses

and scene geometry, while exhibiting emerging 3D aware-

ness. Concretely, RayZer takes unposed and uncalibrated

images as input, recovers camera parameters, reconstructs

a scene representation, and synthesizes novel views. During

training, RayZer relies solely on its self-predicted camera

poses to render target views, eliminating the need for any

ground-truth camera annotations and allowing RayZer to be

trained with 2D image supervision. The emerging 3D aware-

ness of RayZer is attributed to two key factors. First, we de-

sign a self-supervised framework, which achieves 3D-aware

auto-encoding of input images by disentangling camera and

scene representations. Second, we design a transformer-

based model in which the only 3D prior is the ray struc-

ture, connecting camera, pixel, and scene simultaneously.

RayZer demonstrates comparable or even superior novel

view synthesis performance than “oracle” methods that rely

on pose annotations in both training and testing. Project:

https://hwjiang1510.github.io/RayZer/

1. Introduction

Self-supervised learning has driven the rise of foundation

models, enabling training on vast amounts of unlabeled data

and fueled by the scaling law [38]. This paradigm has proven

highly effective for LLMs [60], VLMs [2], and visual gener-

ation [56]. In contrast, 3D Vision models still rely heavily on

ground-truth 3D geometry and camera pose labels [28, 77],

which are usually estimated from time-consuming optimiza-

tion methods, e.g., COLMAP [65], and are not always per-

fect. This reliance limits both learning scalability and effec-

tiveness. To break free from this constraint, we move beyond

the supervised paradigm and ask: how far can we push a 3D

Vision model without any 3D supervision?

In this paper, we present RayZer, a large multi-view 3D

model trained with self-supervision and exhibiting emerg-

ing 3D awareness. The input of RayZer is unposed and

uncalibrated multi-view images, sampled from continuous

video frames or unordered multi-view captures. RayZer

first recovers the camera parameters, then reconstructs the

scene representation, and finally renders novel views. The

key insight of our self-supervised training is to use the cam-

era poses predicted by RayZer itself to render views that

provide photometric supervision, rather than following the

standard protocol of using ground truth poses for render-

ing [29, 74, 92]. Thus, RayZer can be trained with zero 3D

supervision, i.e., no 3D geometry or camera pose supervi-

sion. During inference, RayZer predicts camera and scene

representations in a feed-forward manner, without requiring

per-scene optimization. We show inference results in Fig. 1.
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As RayZer uses the camera poses predicted by itself for

training, this self-supervised task can be interpreted as 3D-

aware image auto-encoding [41, 61, 95]. Initially, RayZer

disentangles input images into camera parameters and scene

representations (reconstruction). It then re-entangles these

predicted representations back into images (rendering). To

facilitate this disentanglement, we control the information

flow. As shown in Fig. 2, we divide all images into two parts:

one set predicts the scene representation (input views), while

the other offers photometric self-supervision (target views).

This is achieved by using estimated poses of the second set

to render the scene representation predicted from the first set,
thereby preventing trivial solutions that are not 3D-aware.

To facilitate self-supervised learning, RayZer is built only

with transformers – no 3D representation, hand-crafted ren-

dering equation, or 3D-informed architectures. This design

is motivated by self-supervised large models in other modal-

ities [2, 6, 56], enabling RayZer to flexibly and effectively

learn domain-specific knowledge. The only 3D prior incorpo-

rated in RayZer is the ray structure, which simultaneously

models the relationship between camera, pixels (image), and

scene. Concretely, RayZer first predicts camera poses, which

are then converted into pixel-aligned Plücker ray maps [57]

to guide the scene reconstruction that follows. This ray-

based representation serves as a strong prior for addressing

the chicken-and-egg problem of structure and motion [68],

effectively allowing the camera and scene representations to

regularize each other during training.

We evaluate RayZer on three datasets, including both

scene-level and object-level data with different camera con-

figurations. We observe that RayZer demonstrates compara-

ble or even better novel view synthesis performance than

“oracle” methods [33, 91] that use pose labels in both training

and testing. Interestingly, we identify that potentially noisy

pose annotations from COLMAP can limit the performance

of “oracle” models. The results not only demonstrate the

effectiveness of RayZer, but also shows the potential of 3D

Vision models to break free from supervised learning.

2. Related Work

Large-scale 3D Vision Models. 3D Vision models learn

3D representations and priors from data [15, 23, 39, 58,

59, 71, 72, 93, 94]. Recently, researchers have developed

large-scale models to acquire general 3D knowledge. One

research direction focuses on designing improved model

architectures that incorporate the inductive biases of multi-

view stereo [10, 14, 75, 86] and epipolar geometry [9, 13,

19, 25]. Another line of work leverages full transformer

models that intentionally omit architectural 3D inductive

biases [29, 54, 62]. For example, LEAP [29], LRMs [28,

74, 78, 91, 98], and DUSt3R [20, 43, 76, 77, 83] are the

first works employing transformers to convert 2D images

into 3D representations. SRT [62] and LVSM [33] further
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Figure 2. Our proposed self-supervised training framework.

This is an abstract design that we later operationalize with our

RayZer model (illustrated in Fig. 3 and Sec. 4). We divide the input

images into two sets IA and IB. We predict the scene represen-

tation from IA, and use the predicted cameras of IB (shown in

orange) to render the scene. We leverage photometric loss between

raw input IB and its prediction ÎB for training.

replace 3D representations and physical rendering equations

with latent representations and learned rendering functions,

improving performance and scalability. However, they still

require ground-truth camera poses for supervised training

and/or accurate camera annotations during inference. To

achieve scalable supervised learning, MegaSynth [32] and

Stereo4D [34] leverage synthetic data and stereo videos to

expand the data scale, however, curating data for different

tasks can be laborious. In contrast, RayZer explores self-

supervised training to break free from supervised learning.

Self-supervised 3D Representation Learning. Learning

3D-aware representations from unlabeled image data is a

long-standing problem in 3D Vision. One line of work lever-

ages single-view images. However, they either only work

for a specific category [7, 37, 47, 52, 53, 82] or can only

recover partial observations [8, 64, 81]. Some works ex-

plore semi-supervised learning and achieve better scalabil-

ity [30, 84], but performance is still highly restricted to the

model weights, which are initialized by fully supervised

training [85]. The most relevant work is self-supervised

learning from multi-view images [69, 79, 80]. For exam-

ple, Zhou et al. [95], Lai et al. [41], and their following

works [21, 87] use camera motion as 2D or 3D warping

operations to regularize learning. However, this strong in-

ductive bias limits the learning effectiveness. RUST [63] is

a pioneering work in learning latent scene representations

from unposed imagery. RayZer is different in three aspects.

First, RayZer initially estimates camera poses and uses poses

to condition the following latent reconstruction. In contrast,

RUST operates in an inverse pipeline – it first reconstructs
the scene and then estimates the camera poses. Second,

RayZer employs different explicit pose representations to

improve information disentanglement and 3D awareness, en-
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abling novel view synthesis by geometrically interpolating

predicted poses. Instead, RUST uses a latent pose represen-

tation, which makes scene-pose disentanglement challeng-

ing and they are not explicitly 3D-aware. Third, RayZer

follows the model architecture of LVSM [33] using pure

self-attention in transformers, which is different from RUST

that follows SRT using convolution and cross-attention.

Optimization-based Unsupervised SfM, SLAM, and NVS.

Although these methods are not directly comparable to

RayZer, we discuss them due to the similar input-output

formulations. In detail, these methods optimize target predic-

tions on a per-scene basis [65, 67], while RayZer is a feed-

forward parametrized model, learning priors by training on

large data. The traditional SfM, SLAM, and NVS methods

are unsupervised [26, 65]. Although generally performing

well, they are restricted by the complicated hand-crafted

workflow, leading to requirements of dense-view inputs [89],

slow speed [65], and sensitivity to hyper-parameters [70].

Recent optimization-based NeRF and 3DGS works can also

perform NVS from unposed images [4, 22, 48, 66]. How-

ever, they do not have learnable model parameters to encode

priors, thus requiring off-the-shelf models trained with 3D

supervision as regularization or providing initialization.

3. Preliminaries

We introduce two important building blocks of RayZer, i.e.,

the latent set scene representation and how to render it.

Latent set scene representation. Compressing data into

tokens in latent space is a common practice in text, im-

age, video, etc. Recently, this representation has also been

extended to 3D research [33, 62, 63, 88]. In contrast to clas-

sical explicit (e.g., meshes and point clouds), implicit (e.g.,

NeRF [51] and SDF [55]), and hybrid (e.g., triplane [8] and

3DGS [40]) representations that are 3D-aware, the latent

set representation is not explicitly 3D-aware. It serves as a

compression of scene information, where the 3D-awareness

properties are fully learned. The latent set scene representa-

tion can be denoted as z ∈ Rn×d, where n is the number of

tokens in the set and d is the latent feature dimension.

Rendering latent set scene representation requires a net-

work, say Rθ, as introduced by SRT [62] and LVSM [33].

We formulate it as v = Rθ(z, r), where r is a ray and v is the
rendered property, e.g., RGB values, of the corresponding

pixel1. This formulation is the same as traditional Graph-

ics rendering techniques [1, 36], as v = R(SCENE, RAY),
where R is a pre-defined and handcrafted rendering equa-

tion, e.g., alpha-blending ray marching in NeRF. Differently,

our “rendering equation” is a learned model parameterized

with weights θ, and our scene representation is a latent token
set as discussed previously. We omit the model parametriza-

tion, e.g., weight θ, in the following description for clarity.

1For improved efficiency and performance, LVSM groups rays from the

same image patch and decodes them jointly.

4. RayZer

In this section, we first introduce RayZer’s self-supervised
learning framework (Sec. 4.1). Then, we present the details

of the RayZer model architecture (Sec. 4.2).

4.1. RayZer’s Self-supervised Learning

We first formulate the input and output of RayZer. We then

introduce the self-supervised learning framework.

We focus on the standard setting of modeling static

scenes [65]. The input of RayZer is a set of unposed and

uncalibrated multi-view images I = Ii ∈ RH×W×3i =
1, , K, which can come from unlabeled video frames or

image sets. The output is a parametrization of the inputs,

i.e., camera intrinsics, per-view camera poses, and scene

representation, enabling novel view synthesis. To predict

these representations, we build the RayZer model and train

it with self-supervised learning – no 3D supervision, i.e., 3D

geometry, and camera pose annotations during training.

To train RayZer with self-supervision, we control the

data information flow. We split the input images I into two

non-overlapping subsets IA and IB, where IA  IB = I

and IA  IB = ∅. RayZer uses IA to predict the scene

representation, and use IB for providing supervision. Thus,

RayZer renders images that correspond to IB, denoted as

ÎB, and we apply photometric losses:

L =
1

KB



Î∈ÎB

(MSE(I, Î) + λ · Percep(I, Î)), (1)

where KB = IB is the size (number of images) of IB ,

I ∈ IB is the image that corresponds to a predicted image

Î , and λ is the weight for perceptual loss [35, 46]. The two

sets are randomly sampled during training.

4.2. RayZer Model

Overview. As introduced in Sec. 4.1, RayZer recovers both

camera parameters and the scene representation from un-

posed, uncalibrated input images. A key design element

of RayZer is its cascaded prediction of camera and scene

representations. This is motivated by the fact that even noisy

cameras can be a strong condition for better scene reconstruc-

tion [31, 65, 92], which is analogous to traditional structure-

from-motion methods [65] and is in contrast with recent

reconstruction-first methods [63, 74, 77]. This design can

provide mutual regularization of predicting pose and scene

during training, facilitating self-supervised learning.

RayZer builds a pure transformer-based model, benefit-
ing from its scalability and flexibility. As shown in Fig. 3,

RayZer first tokenizes input images and uses a transformer-

based encoder to predict camera parameters of all views. In

this step, the cameras are represented by their intrinsics and

SE(3) camera poses. This low-dimensional, geometri-
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Figure 3. RayZer self-supervised learning framework. RayZer takes in unposed and uncalibrated multi-view images I and predicts

per-view camera parameters and a scene representation, which supports novel view rendering. (Left) RayZer first estimates camera

parameters, where one view is selected as the canonical reference view (in blue box). RayZer predicts the intrinsics and the relative camera

poses P of all views. The predicted cameras are then converted into pixel-aligned Plücker ray maps R. (Middle) RayZer uses a subset of

input images, IA, as well as their previously predicted camera Plücker ray maps,RA, to predict a latent scene representation. Here, the

Plücker ray maps, RA, serve as an effective condition for scene reconstruction. (Right) RayZer can render a target image given the scene

representation z∗ and a target camera. During training, we use RB, which is the previously predicted cameras Plücker ray maps of IB, to

render ÎB. This allows training RayZer end-to-end with self-supervised photometric losses between inputs IB and their renderings ÎB.

cally well-defined parametrization helps disentangle image

information from the camera representation.

RayZer then transforms the SE(3) camera poses and

intrinsics into Plücker ray maps [57], representing the pre-

dicted cameras as pixel-aligned rays. This ray-based rep-

resentation captures both the 2D ray-pixel alignment and

the 3D ray geometry, providing fine-grained, ray-level de-
tails that encapsulate the physical properties of the camera

model. The ray maps serve as a condition for improving the

reconstruction stage that follows.

From the image and predicted Plücker rays of IA, RayZer

uses another transformer-based encoder to predict the latent

set scene representation (introduced in Sec. 3 and detailed

later). Then, RayZer uses the previously estimated cameras

of IB to predict ÎB, providing photometric self-supervision

(Eq. 1). We now formally introduce the RayZer model.

Image Tokenization. For all K input images I =
Ii ∈ RH×W×3i = 1, , K, we patchify them into non-

overlapping patches following ViT [18]. Each patch is in

R
s×s×3, where s is the patch size. We use a linear layer to

encode each patch into a token in Rd, leading to a patch-

aligned token map fi ∈ R
h×w×d for each image, where

h = Hs, w = Ws, and d is the latent dimension.

We then add positional embeddings (p.e.) to the tokens,

enabling the following model to be aware of the spatial

location and the corresponding image index of each token.

Specifically, we combine the sinusoidal spatial p.e. [18] and

the sinusoidal image index p.e. [3] using a linear layer; note

that the image index p.e. is shared among all tokens from

the same image. When training on continuous video frames,

these image index embeddings also encode sequential priors,

which benefits pose estimation. Finally, we reshape the token

maps of all images into a set, denoted as f ∈ RKhw×d (recall

that the transformer is invariant to the permutation of tokens).

For brevity, we will use this notation for latent token sets

throughout the rest of the paper.

Camera Estimator. The camera estimator Ecam predicts

camera parameters, i.e., camera poses and intrinsics, for all

input images. We use a learnable camera token in R1×d as

the initial feature for this prediction for all views. We repeat

the token K times and add them with image index p.e. such

that they correspond to theK images. We denote this camera

feature initialization as p ∈ RK×d. We then use the camera

estimator composed of full self-attention transformer layers

to update the camera tokens, as:

f∗,p∗ = Ecam(f ,p), (2)

where ·, · denotes concatenation along the token dimen-

sion (the union set of two token sets), and f∗ and p∗ are the

updated tokens. We note that f∗ is not used for the following
computation – it is only used as context to update p in the

transformer layers. For clarity, we formulate the transformer

layers as follows:

y0 = f ,p, (3)

yl = TransformerLayerl(yl−1), l = 1, ..., lT (4)

f∗,p∗ = split(ylT ), (5)

where lT is the number of layers, and the split operation

recovers the two token sets, inverting Eq. 3. This notation

remains consistent throughout the rest of the paper.

We then predict the camera parameters for each image

independently. For camera pose prediction, we follow prior
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works of using relative camera poses to resolve ambigu-

ity [31, 89]. We select one view as the canonical reference

(e.g., with identity rotation and zero translation), while for

every non-canonical view, we predict its relative pose with

respect to the canonical view. We parametrize the SO(3)

rotation using a continuous 6D representation [97], and we

predict the relative pose with a two-layer MLP as follows:

pi = MLPpose([p
∗
i ,p

∗
c ]), (6)

where [·, ·] denotes concatenation along the feature dimen-

sion, p∗
i and p∗

c (all in Rd) are the camera tokens for image

Ii and the canonical view, respectively. The output pi ∈ R9

represents the predicted pose parameters, which are then

transformed into an SE(3) pose Pi for image Ii.

For intrinsics prediction, following prior works [24, 41],

we parameterize intrinsics using a single focal length value,

under the assumptions that i) the focal lengths along the x

and y axes are identical, ii) all views share the same intrinsics,

and iii) the principal point is at the image center. We predict

the focal length using a two-layer MLP:

focal = MLPfocal (p
∗
c) (7)

The predicted focal length is then converted into the intrin-

sics matrix K ∈ R3×3.

Scene Reconstructor. As discussed in Sec. 4.1, we predict

the scene representation from image set IA and additionally

condition it on the previously predicted camera parameters

PA = (Pi,K)Ii ∈ IA. We first convert PA to pixel-

aligned Plücker rays [57] for each image, denoted as R ∈
R

K×H×W×6. Similar to image inputs, we also tokenize

the Plücker rays into patch-level tokens using a linear layer,

yielding r ∈ RKhw×d. We index the image and Plücker rays

tokens corresponding to the image set IA, denoted as fA and

rA (each in RKAhw×d, respectively). We fuse these tokens

along the feature dimension with a two-layer MLP:

xA = MLPfuse([fA, rA]), (8)

where xA ∈ RKAhw×d represents the fused tokens. Impor-

tantly, we use the raw image tokens f rather than the pose

transformer output f∗ for this fusion. This design choice

prevents leakage of information from the image set IB, since

the camera estimator transformer producing f∗ has access to

a global context that includes tokens from IB.

We then employ a scene reconstructor Escene consisting

of full self-attention transformer layers to predict the latent

scene representation. To initialize this representation, we

use a set of learnable tokens z ∈ RL×d, where L denotes the

number of tokens. We formulate the process as follows:

z∗,x∗
A = Escene(z,xA) (9)

The update rule is identical to the transformer layers in the

camera estimator Ecam. Here, z∗ represents the final latent

scene representation predicted from IA. Meanwhile, x∗
A
is

discarded.

Rendering Decoder. We first define the rendering decoder

and then describe its training usage.

We use a transformer-based decoder with full self-

attention for rendering, following LVSM [33]. For a target

image, we begin by representing it as pixel-aligned Plücker

rays and tokenize these rays using a linear layer to obtain tar-

get tokens r ∈ Rhw×d. Next, we fuse the scene information

by updating the tokens with a decoder Drender comprising

transformer layers:

r∗, z′ = Drender (r, z∗), (10)

where z′ is subsequently discarded, while the update rule

of Drender is the same as previously introduced modules.

Finally, we decode the RGB values at the patch level with

an MLP:

Î = MLPrgb(r
∗), (11)

where Î ∈ Rhw×(3s2). We reshape Î to recover the 2D spa-

tial structure, yielding a final rendered image in RH×W×3.

During training, we use the predicted Plücker ray maps

RB, which correspond to ÎB , to render images of ÎB and

then compute the self-supervised loss as defined in Eq. 1.

5. Experiments

In this section, we introduce the experimental setting and

present the evaluation results. For the implementation,

RayZer employs 24 transformer layers, with 8 layers for

each of the camera estimator, scene encoder, and rendering

decoder. We train RayZer with a learning rate of 4× 10−4

with a cosine scheduler for 50,000 iterations and a batch size

of 256. The weight of perceptual loss is λ = 02. For all
experiments, we used a resolution of 256 with a patch size

of 16. More details are in the Appendix.

5.1. Experimental Setup

We introduce our experimental setup, including datasets,

evaluation protocol and metrics, as well as baseline methods.

Datasets. We use three datasets to evaluate RayZer,

including two scene-level datasets, DL3DV [49] and

RealEstate [96], and an object-level dataset Objaverse [17]

(rendered as videos). We train and test on each dataset sep-

arately. The numbers of input views (IA) and target views

(IB) are set to 16 and 8 for DL3DV, 5 and 5 for RealEstate,

and 12 and 8 for Objaverse, respectively. We sample input

images with the index ranges of 64-96, 128-192, and 50-65

on DL3DV, RealEstate, and Objaverse, respectively. These

values are chosen based on data difficulty, especially camera

baseline, following prior works [9, 91, 98]. We use the offi-
cal DL3DV train-test split, and split RealEstate following [9].

More details can be found in the Appendix.
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Figure 4. Visualization results on RealEstate and DL3DV. We compare RayZer with “oracle” methods GS-LRM and LVSM, which use

COLMAP pose annotations in both training and testing. Our self-supervised RayZer model does not use any pose annotations. Generally,

RayZer performs on par with “oracle” methods (first row), and can outperform them on cases that COLMAP usually struggles to handle,

e.g., glasses and white walls (highlighted with red boxes). The results verify our analysis on the problems of using COLMAP in Sec. 5.2.

Evaluation Protocol and Metrics. We evaluate novel view

synthesis quality. Specifically, the evaluation protocol of

RayZer is different from the “oracle” and supervised meth-

ods, which use ground-truth poses to render images. Instead,

we use predicted poses to render novel views, thereby as-

sessing the compatibility between the predicted poses and

the scene representation. Since the model is trained without

explicit pose annotations, the learned poses exist in a differ-

ent space, and their direct correspondence to standard pose

annotations is unknown. This evaluation protocol follows

RUST [63]. We note that the target views are used only for

pose estimation and not for scene representation prediction,

ensuring that no information leakage occurs.

Baselines. We compare RayZer with two types of meth-

ods, including 1) “oracle” methods, i.e., GS-LRM [91] and

LVSM [33] (encoder-decoder version), that use ground-truth

camera poses during both training (as supervision) and in-

ference (as pre-requisite). LVSM also uses latent set scene

representation. Thus, it serves as the main comparison for the

“oracle” methods; 2) supervised method, i.e., PF-LRM [74],

which requires camera supervision to learn pose estimation

and reconstruction; thus, it is pose-free during inference. For

fair comparisons, we use 16 transformer layers in total for

GS-LRM and LVSM. Thus, their number of parameters is

the same as RayZer, except that RayZer has another camera

estimator to handle unposed images. We use 24 transformer

layers for PF-LRM. We also consider the self-supervised

Training Inference w. Even Sample Random Sample

Supervision COLMAP Cam. PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

“Oracle” methods (assume inputs are posed & use pose annotations during training)

GS-LRM 2D + Camera Yes 23.49 0.712 0.252 23.02 0.705 0.266

LVSM 2D + Camera Yes 23.69 0.723 0.242 23.10 0.703 0.257

Unsupervised methods (inputs are un-posed & no pose annotations used during training)

RayZer 2D No 24.36 0.757 0.209 23.72 0.733 0.222

Table 1. Evaluation results on DL3DV. The camera annotations

used by the “oracle” models come from COLMAP. The results are

reported with continuous video frames (ordered) as the input. The

results for the unordered image set input are in Table. 4. The input

and target views can be evenly or randomly sampled from video

frames. We bold our result if it is better than the “oracle” models.

method RUST [63], but since it does not have an official
public implementation, we ablate the key design differences

between RUST and RayZer in Table 7 instead.

5.2. Results

Main results. Table 1-3 summarizes the results on the three

datasets. Remarkably, without any 3D labels (e.g., cam-

era pose annotations) during training, RayZer achieves per-

formance comparable to the best “oracle” model, LVSM.

In fact, RayZer even outperforms LVSM on DL3DV and

RealEstate10k while performing slightly worse on Obja-

verse. We conjecture that this is because the camera poses in

DL3DV and RealEstate are annotated by COLMAP, which

can be imperfect and set an upper bound for “oracle” meth-

ods that are supervised by COLMAP annotations. In contrast,

our self-supervised approach enables the model to learn a

6



Figure 5. Visualization results on Objaverse. RayZer performs on

par with LVSM and outperforms the supervised method PF-LRM.

Training Inference w. Even Sample Random Sample

Supervision COLMAP Cam. PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

“Oracle” methods (assume inputs are posed & use pose annotations during training)

GS-LRM 2D + Camera Yes 24.25 0.770 0.227 23.21 0.748 0.251

LVSM 2D + Camera Yes 27.00 0.851 0.157 25.88 0.828 0.175

Unsupervised methods (inputs are un-posed & no pose annotations used during training)

RayZer 2D No 27.48 0.861 0.146 26.32 0.835 0.164

Table 2. Evaluation results on RealEstate with continuous video

frames inputs. The camera annotations come from COLMAP.

pose space that optimally benefits latent reconstruction and

novel view synthesis. This hypothesis is further supported

by the results on Objaverse – a synthetic dataset with perfect

pose annotations from the rendering tool – where LVSM,

acting as a true oracle, outperforms RayZer. Nonetheless,

the small performance gap showcases the effectiveness of

our self-supervised training. Visualizations in Fig. 4 further

support our conjecture regarding COLMAP’s noisy poses,

as both LVSM and GS-LRM consistently underperform on

challenging cases that COLMAP usually fails. These results

not only validate our self-supervised learning approach but

also demonstrate its potential to break free from the limita-

tions of supervised learning.

Using unordered image sets for training. RayZer can be

trained on continuous video frames (Table 1-3) or unordered

image sets (Table 4). Note that these two training settings

are applied separately. As shown in Table 4, we observe

that the model trained with unordered image sets performs

worse than the one trained with continuous video frames.

We notice that the difference is at the pose estimation stage –

specifically, the image index positional embedding encour-

ages local pose smoothness that benefits the learning of

pose estimation on continuous frames. This finding suggests

that scaling training data using video resources, which are

plentiful online, could be more advantageous than relying

Training Inference w. Even Sample Random Sample

Supervision GT Cam. PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

“Oracle” methods (assume inputs are posed & use pose annotations during training)

LVSM 2D + GT Cam. Yes 32.34 0.950 0.050 32.34 0.949 0.051

Supervised methods (inputs are un-posed & use pose annotations during training)

PF-LRM 2D + GT Cam. Yes (render) 25.48 0.882 0.110 25.43 0.881 0.111

Unsupervised methods (inputs are un-posed & no pose annotations used during training)

RayZer 2D No 31.52 0.945 0.052 31.42 0.943 0.053

Table 3. Evaluation results on Objaverse with continuous video

frames inputs. The camera annotations are Blender ground-truth.

PF-LRM uses ground-truth poses to render novel views, same with

oracle methods, and we evaluate its predicted pose in Table 5.

Training Inf. w. Continuous Even Sample Random Sample

Supervision GT Pose Inputs PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

(1) 2D No ✓ 24.36 0.757 0.209 23.72 0.733 0.222

(2) 2D No ✗ 20.56 0.576 0.334 20.02 0.566 0.356

Table 4. Evaluating RayZer performance when using continu-

ous or unordered images for training on DL3DV. In evaluations,

the input frames are sampled from continuous video frames. (1)

keeps their temporal continuity (encoded by the image index p.e.)

during training. (2) randomly shuffles the images during training.

on unordered image sets that are often limited in scale and

contain noisy content [45, 73].

5.3. Analysis of Camera Poses

RayZer’s learned camera pose space. We visualize some

camera poses predicted by RayZer in Fig. 6. Although

RayZer predicts SE(3) camera poses, we observe that these

poses do not exactly match the real-world pose space. This

result indicates that the SE(3) poses, which are later con-

verted into Plücker ray maps, offer a degree of flexibility.
Since both the rendering decoder and the scene representa-

tion operate in latent space, RayZer remains robust to any

warping between the learned pose space and the actual real-

world poses, as long as the poses are compatible with the

scene representation and the decoder.

3D Awareness of predicted camera poses. We further in-

vestigate whether the pose space learned by RayZer is 3D

aware. To this end, we interpolate the predicted poses of in-

put views to synthesize more novel views, where the camera

pose of a novel view is interpolated from two neighboring

input views. We use ground-truth camera poses to calculate

the interpolation coefficients, checking whether predicted

poses follow the same geometric interpolation rules. We in-

clude the details of the interpolation method in Appendix. As

shown in Table 5, RayZer demonstrates significantly better
performance than PF-LRM and the naive baseline of copying

the nearest rendered input view. These results verify that

poses predicted by RayZer are interpolatable and 3D-aware.

Probing the learned camera pose space. To probe how

much actual pose information is learned by RayZer, we fol-

low RUST [63] to fit a lightweight 2-layer MLP head on

the pose features. We freeze the camera estimator’s trans-

formers and train the MLP under camera supervision. As

shown in Table 6, our probing outperforms the supervised

baseline (which has the same model architecture and uses
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Training Inference w. Even Sample Random Sample

Supervision GT Pose PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

Supervised methods (inputs are un-posed & use pose annotations during training)

PF-LRM 2D + GT Pose No 20.63 0.819 0.160 21.27 0.827 0.154

Unsupervised methods (inputs are un-posed & no pose annotations used during training)

RayZer-copy 2D No 19.56 0.812 0.159 20.17 0.820 0.150

RayZer 2D No 27.01 0.900 0.075 26.87 0.896 0.078

Table 5. Evaluating 3D awareness of predicted camera poses

on Objaverse. Unlike Table 3, here we render novel views by

interpolating predicted poses of input views, where the interpolation

coefficients are calculated from GT poses. This experiment tests

whether the learned SE(3) poses are geometrically well-defined
and 3D-aware. We also compare against a naive baseline “RayZer-

copy” that simply copies the nearest rendered input view.

transformers trained from scratch), indicating that RayZer’s

novel view synthesis self-supervision facilitates a better la-

tent pose space. In contrast, supervised learning struggles

due to the challenges of low-dimensional pose representa-

tion [5, 11, 44, 90, 97].

5.4. Ablation Study

We ablate the main design choices of RayZer from three

aspects, including scene representation, 3D prior, and the

overall model paradigm. As shown in Table 7 (1), when

using the 3DGS representation rather than the latent set rep-

resentation, the training does not converge. This verifies the
optimization difficulty of explicit 3D representation [40, 91]

and demonstrates the flexibility of the latent representation

with its learned rendering decoder.

Table 7 (2) and (3) ablate the prior of camera representa-

tion. Without Plücker ray maps, we observe a degraded per-

formance in (2), showing the effectiveness of using Plücker

ray maps to regularize the solution of structure-and-motion

problem. Besides, we observe a slightly better performance

of (3), which directly uses camera tokens p∗, compared to

(2). The reason is that the camera tokens p∗ ∈ R
d can

leak target image information, while SE(3) poses used in

(2) serve as an information bottleneck to enforce this dis-

entanglement. Moreover, SE(3) poses are geometrically

well-defined, allowing us to interpolate them and generate

novel views along the interpolated camera trajectory, while

the latent camera representation is not directly interpolable.

Table 7 (4) ablates the overall paradigm. When the model

first predicts the latent scene and then estimates poses, we

observe a degraded performance. In detail, the pose estima-

tor takes the scene representation and target image feature

tokens as inputs. The result verifies our insight that pose
estimation can be a strong condition for scene reconstruction,

championing traditional pose-first methods in the context of

self-supervised learning. Note that combining (3) and (4)

will be a model that is similar to RUST conceptually.

6. Conclusion

We introduce RayZer, a self-supervised large multi-view

3D Vision model trained with zero 3D supervision, i.e., no

Figure 6. Visualization of RayZer predicted cameras learned

with self-supervision. We visualize 3 out of 5 rendered views due

to space limit, where the image index is highlighted by its color.

Pose Encoder Rotation Acc.↑ (%) Translation Acc.↑ (%)

(Epose) R@10◦ R@20◦ R@30◦ t@0.1 t@0.2 t@0.3

DL3DV
supervised 39.3 63.0 77.8 15.7 33.1 44.4

self-supervised 47.6 72.5 84.0 20.8 44.0 60.5

RealEstate
supervised 87.0 96.4 99.6 44.6 59.3 82.5

self-supervised 99.6 99.9 100 61.2 84.2 92.8

Objaverse
supervised 19.8 46.7 66.0 15.1 37.2 53.8

self-supervised 33.6 69.2 86.8 20.1 52.7 75.5

Table 6. Effectiveness of self-supervised pre-training for pose

estimation. We train a two-layer MLP (with supervised learning)

to read out latent camera tokens p∗ predicted by the pose encoder

Epose , where the backbone is frozen. At the same time, we also

compare with the baseline where both encoder Epose and the pose

prediction MLP are trained with supervised learning from scratch.

Even Sample Random Sample

PSNR SSIM LPIPS PSNR SSIM LPIPS

(0) RayZer 24.36 0.757 0.209 23.72 0.733 0.222

(1) Representation - 3DGS + rasterization – – failed – –

(2) Prior - no Plücker ray, use SE(3) pose 22.73 0.687 0.249 21.88 0.647 0.274

(3) Prior - no explicit pose, use latent camera 23.13 0.700 0.251 22.36 0.668 0.272

(4) Paradigm - scene first, not pose first 13.31 0.338 0.732 13.12 0.337 0.729

Table 7. Ablation study of RayZer designs on DL3DV with con-

tinuous inputs. (1) is a variant uses the 3D Gaussian representation

rather than latent scene representation with its learned rendering

decoder used by RayZer; (2) does not use Plücker ray mapsRA for

conditioning latent reconstruction. Instead, it encodes the SE(3)

poses PA and intrinsics K into tokens as condition; (3) directly

uses the latent camera tokens p∗, rather than converting it to any

explicit forms of cameras, to condition the latent scene reconstruc-

tion; (4) first reconstructs latent scene and then estimates pose as

Plücker ray maps, contrasting our pose-first paradigm.

3D geometry and camera annotations. RayZer achieves

comparable or even better novel view synthesis performance

than prior works that use pose labels in both training and

inference, verifying the feasibility of breaking free from

supervised learning.
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A. Experimental Details

In this section, we introduce more details of RayZer.

Objaverse Data Details. We render Objaverse as contin-

uous videos for training and evaluation. The frames are

rendered with corresponding cameras on a unit sphere with a

constant distance to the object center. Specifically, we render
about 70 frames for azimuth 0◦ to 360◦, where the elevation
is randomly sampled between -20◦ to 60◦ for each shape

instance. We sample frames with the distance between the

first frame and the last frame being 50 to 65, covering the

camera azimuth rotation for about one cycle.

Camera Interpolation Details. For the experiment of inter-

polating predicted cameras, we use Spherical Linear Inter-

polation (Slerp) for interpolating the camera pose rotation.

This is based on the fact that the camera of Objaverse is

moving at a constant speed. Thus, Slerp ensures the correct

rotation interpolation. We then find the location on the unit

sphere that corresponds to this interpolated rotation angle.

Thus, we ensure the interpolated cameras are still on the

unit sphere, which matches the camera sampling rule for

rendering. In conclusion, this interpolation assumes that 1)

the camera is moving in a constant speed, and 2) the rule of

sampling camera location is known. Thus, this interpolation

is only applicable to the synthetic Objaverse data, and does

not apply to DL3DV and RealEstate.

More Training Details. For all transformer layers in RayZer,

we apply QK-Norm [27] to stabilize the training. We use a la-

tent dimension of 768 for RayZer and all baselines methods.

RayZer and LVSM both use a latent set scene representation

with 3072 tokens. We use mixed precision training [50]

with BF16, further accelerated by FlashAttention-V2 [16] of

xFormers [42] and gradient checkpointing [12].

We train RayZer and all baselines with the same training

protocol. We use 32 A100 GPUs with a total batch size

of 256. During training, we warm up with 3000 iterations,

using a linearly increased learning rate from 0 to 4e− 4. We

apply a cosine learning rate decay, while the final learning
rate is 15e − 4. We train all baselines with 50, 000 steps.

We clip the gradient with norm larger than 1.0. We follow

all other hyper-parameters of LVSM.

More Model Details. Following LVSM, we do not use bias

terms in linear and normalization layers. We also apply the

depth-wise initialization for transformer layers.

Ablation details. In Table 7 (2), we use a two-layer MLP to

encode the camera pose and intrinsics back to a latent pose

representation in Rd. In detail, for the predicted pose of each

image (in 6D representation [97]), and the camera intrinsics

(as the 4-dimensional focal length and principal points of

x-axis and y-axis), we first concatenate them, getting a 10-

dimensional pose representation. Then, we use the MLP

to map it as a high-dimensional pose feature token. To

predict the target views, we use a set of learnable patch-

aligned spatial tokens shared across all target images as the
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Even Sample Random Sample

PSNR SSIM LPIPS PSNR SSIM LPIPS

(0) RayZer 24.36 0.757 0.209 23.72 0.733 0.222

(1) first frame as canonical 23.86 0.736 0.224 23.78 0.737 0.225

(2) no curriculum 23.87 0.734 0.226 23.87 0.735 0.226

Table 8. Ablation study of RayZer techniques to train on con-

tinuous video frames. (1) is a variant choosing the first image in

the sequence as the canonical view, rather than choosing the middle

frame. (2) does not use the frame sampling curriculum.

initialization. Thus, the rendering decoder takes in the spatial

tokens, the scene tokens, and the pose token. After using

transformer for updating, we use the updated spatial tokens

to regress the pixel values.

B. RayZer Training with Continuous Inputs

RayZer takes in multi-view image inputs, which can be sam-

pled from either continuous video frames or an unordered

image set. In this section, we present two design choices to

improve self-supervised learning on video frames input.

Canonical View Selection. Prior works [29, 74] usually

select the first image in an image sequence as the canonical

view. In contrast, we select the frame at the middle time-step

as canonical. In this context, the pose prediction MLPpose
initialized with a zero mean for its weights will have a small

pose data variance. Otherwise, when using the first frame

as canonical, the variance can be much larger. Note that

this difference in pose variance can be easily handled with

ground-truth camera supervision, thus, prior works choose

the first image as the canonical view. However, this is more

important for unsupervised methods, like RayZer.

Curriculum. We gradually increase the training difficulty
by sampling video frames with an increasing distance range.

With proper initialization of the model for camera pose esti-

mation, it first learns from images with small camera base-

lines, benefiting the training with larger camera baselines,

that follows. In detail, we use a curriculum with a frame

sampling range of 48-64, 96-128, and 24-32 at the beginning

of training for DL3DV, RealEstate, and Objaverse, respec-

tively. The frame sampling range is linearly increased to

64-96, 128-192, and 48-65 at the end of training for DL3DV,

RealEstate, and Objaverse, respectively. The final frame

sampling range is also used for the evaluation. The sampling

ranges are set based on the difficulty (camera baseline) of

each dataset, following prior works [9, 32, 74, 91, 98].

Experiments. We include ablations in Table 8, where re-

moving any of the previously discussed techniques leads to a

degraded performance. This demonstrates the effectiveness

of our designs of selecting canonical view and using frame

sampling curriculum during training.

Figure 7. Visualization of RayZer failure cases on DL3DV.

C. More Results

In this section, we present more results for discussing

RayZer’s failure cases and show more visualizations.

Failure Case Pattern. We observe that RayZer can fail when

dealing with fine-grained geometry, complicated materials,

and occlusions. We present the visualization in Fig. 7. In

detail, RayZer fails to handle complicated plant geometry

(first row). This failure is not specific to RayZer – GS-LRM

and LVSM also can not handle it. In the second and last

row, RayZer fails to handle multiple stacked glasses and is

not perfect on the specular reflection of the silver teapots.

GS-LRM and LVSM also demonstrate imperfect results. In

the third and fourth rows, all methods, including RayZer, fail

to handle occlusions, where the side view of the exhibition

stand is not observed in input views (third row), and the

chairs in the fourth row have self-occlusion.

More Comparisons. We present more visualization results,

comparing with GS-LRM and LVSM in Fig. 8. RayZer

generally performs on par, while being a self-supervised

method that does not require any camera pose annotations.

More Visualization. We present more visualization results

comparing with ground-truth novel views in Fig. 9-11.
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D. More Discussion

Why does RayZer demonstrates strong novel view synthesis

quality while the fine-tuned pose estimation is not perfect

(Table 7 in the main manuscript)? We conjecture RayZer’s

pose space jointly learns the actual pose information and

3D-aware video frame interpolation at the same time. On

datasets with small camera baselines (RealEstate), which

is easy to learn, RayZer mainly focuses on learning actual

pose estimation. This is supported by the accurate pose

estimation performance on RealEstate. On datasets that

have large camera baselines (DL3DV and Objaverse), where

pose estimation is harder to learn with only self-supervision,

RayZer also leverages video interpolation cues together with

pose estimation to perform novel view synthesis.

Thus, the method to further enhance disentanglement of

interpolation and pose estimation would be an important

future direction. In RayZer, using unordered image sets for

training and using continuous video frames for training can

be two extreme cases in the spectrum for learning this disen-

tanglement. In detail, learning on continuous video frames

with using image index positional embeddings strongly en-

courages the camera pose local smoothness to enhance train-

ing performance; while training on unordered image sets

fully discards this prior. Finding a balance between the two

and designing a better method to encourage the camera pose

local smoothness is a promising avenue to solve the structure-

and-motion problem with learning SE(3) camera poses in

the real-world space.

Figure 8. Visual compression of RayZer and “oracle” methods

on DL3DV.
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Figure 9. Visual compression with ground-truth novel views on DL3DV. The first row of each sample is the target novel views, and the

second row are images rendered by RayZer.
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Figure 10. Visual compression with ground-truth novel views on RealEstate. The first row of each sample is the target novel views, and

the second row are images rendered by RayZer.
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Figure 11. Visual compression with ground-truth novel views on Objaverse. The first row of each sample is the target novel views, and

the second row are images rendered by RayZer.
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