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Figure 1. We propose RayZer, a self-supervised multi-view 3D Vision model trained on unlabeled data without any annotations, e.g.,
camera pose labels. At inference, RayZer supports feed-forward novel view synthesis from unposed & uncalibrated images. RayZer
achieves novel view synthesis performance comparable to that of supervised “oracle” methods (GS-LRM and LVSM), which require camera
labels in both training and inference, and even outperforms them when they rely on (potentially noisy) COLMAP camera annotations. We
show two examples on the right, where COLMAP camera annotations lead to consistent failures of GS-LRM and LVSM during inference.
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Abstract

We present RayZer, a self-supervised multi-view 3D Vision
model trained without any 3D supervision, i.e., camera poses
and scene geometry, while exhibiting emerging 3D aware-
ness. Concretely, RayZer takes unposed and uncalibrated
images as input, recovers camera parameters, recOnstructs
a scene representation, and synthesizes novel views. During
training, RayZer relies solely on its self-predicted camera
poses to render target views, eliminating the need for any
ground-truth camera annotations and allowing RayZer to be
trained with 2D image supervision. The emerging 3D aware-
ness of RayZer is attributed to two key factors. First, we de-
sign a self-supervised framework, which achieves 3D-aware
auto-encoding of input images by disentangling camera and
scene representations. Second, we design a transformer-
based model in which the only 3D prior is the ray struc-
ture, connecting camera, pixel, and scene simultaneously.
RayZer demonstrates comparable or even superior novel
view synthesis performance than “oracle” methods that rely
on pose annotations in both training and testing. Project:
https://hwjiang1510.github.io/RayZer/

1. Introduction

Self-supervised learning has driven the rise of foundation
models, enabling training on vast amounts of unlabeled data

and fueled by the scaling law [38]. This paradigm has proven
highly effective for LLMs [60], VLMs [2], and visual gener-
ation [56]. In contrast, 3D Vision models still rely heavily on
ground-truth 3D geometry and camera pose labels [28, 77],
which are usually estimated from time-consuming optimiza-
tion methods, e.g., COLMAP [65], and are not always per-
fect. This reliance limits both learning scalability and effec-
tiveness. To break free from this constraint, we move beyond
the supervised paradigm and ask: how far can we push a 3D
Vision model without any 3D supervision?

In this paper, we present RayZer, a large multi-view 3D
model trained with self-supervision and exhibiting emerg-
ing 3D awareness. The input of RayZer is unposed and
uncalibrated multi-view images, sampled from continuous
video frames or unordered multi-view captures. RayZer
first recovers the camera parameters, then reconstructs the
scene representation, and finally renders novel views. The
key insight of our self-supervised training is to use the cam-
era poses predicted by RayZer itself to render views that
provide photometric supervision, rather than following the
standard protocol of using ground truth poses for render-
ing [29, 74, 92]. Thus, RayZer can be trained with zero 3D
supervision, i.e., no 3D geometry or camera pose supervi-
sion. During inference, RayZer predicts camera and scene
representations in a feed-forward manner, without requiring
per-scene optimization. We show inference results in Fig. 1.



As RayZer uses the camera poses predicted by itself for
training, this self-supervised task can be interpreted as 3D-
aware image auto-encoding [41, 61, 95]. Initially, RayZer
disentangles input images into camera parameters and scene
representations (reconstruction). It then re-entangles these
predicted representations back into images (rendering). To
facilitate this disentanglement, we control the information
flow. As shown in Fig. 2, we divide all images into two parts:
one set predicts the scene representation (input views), while
the other offers photometric self-supervision (target views).
This is achieved by using estimated poses of the second set
to render the scene representation predicted from the first set,
thereby preventing trivial solutions that are not 3D-aware.

To facilitate self-supervised learning, RayZer is built only
with transformers — no 3D representation, hand-crafted ren-
dering equation, or 3D-informed architectures. This design
is motivated by self-supervised large models in other modal-
ities [2, 6, 56], enabling RayZer to flexibly and effectively
learn domain-specific knowledge. The only 3D prior incorpo-
rated in RayZer is the ray structure, which simultaneously
models the relationship between camera, pixels (image), and
scene. Concretely, RayZer first predicts camera poses, which
are then converted into pixel-aligned Pliicker ray maps [57]
to guide the scene reconstruction that follows. This ray-
based representation serves as a strong prior for addressing
the chicken-and-egg problem of structure and motion [68],
effectively allowing the camera and scene representations to
regularize each other during training.

We evaluate RayZer on three datasets, including both
scene-level and object-level data with different camera con-
figurations. We observe that RayZer demonstrates compara-
ble or even better novel view synthesis performance than
“oracle” methods [33, 91] that use pose labels in both training
and testing. Interestingly, we identify that potentially noisy
pose annotations from COLMAP can limit the performance
of “oracle” models. The results not only demonstrate the
effectiveness of RayZer, but also shows the potential of 3D
Vision models to break free from supervised learning.

2. Related Work

Large-scale 3D Vision Models. 3D Vision models learn
3D representations and priors from data [15, 23, 39, 58,
59, 71, 72, 93, 94]. Recently, researchers have developed
large-scale models to acquire general 3D knowledge. One
research direction focuses on designing improved model
architectures that incorporate the inductive biases of multi-
view stereo [10, 14, 75, 86] and epipolar geometry [9, 13,
19, 25]. Another line of work leverages full transformer
models that intentionally omit architectural 3D inductive
biases [29, 54, 62]. For example, LEAP [29], LRMs [28,
74, 78, 91, 98], and DUSt3R [20, 43, 76, 77, 83] are the
first works employing transformers to convert 2D images
into 3D representations. SRT [62] and LVSM [33] further
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Figure 2. Our proposed self-supervised training framework.
This is an abstract design that we later operationalize with our
RayZer model (illustrated in Fig. 3 and Sec. 4). We divide the input
images into two sets Z4 and Zg. We predict the scene represen-
tation from Z 4, and use the predicted cameras of Zz (shown in
orange) to render the scene. We leverage photometric loss between
raw input Z and its prediction I for training.

replace 3D representations and physical rendering equations
with latent representations and learned rendering functions,
improving performance and scalability. However, they still
require ground-truth camera poses for supervised training
and/or accurate camera annotations during inference. To
achieve scalable supervised learning, MegaSynth [32] and
Stereo4D [34] leverage synthetic data and stereo videos to
expand the data scale, however, curating data for different
tasks can be laborious. In contrast, RayZer explores self-
supervised training to break free from supervised learning.

Self-supervised 3D Representation Learning. Learning
3D-aware representations from unlabeled image data is a
long-standing problem in 3D Vision. One line of work lever-
ages single-view images. However, they either only work
for a specific category [7, 37, 47, 52, 53, 82] or can only
recover partial observations [8, 64, 81]. Some works ex-
plore semi-supervised learning and achieve better scalabil-
ity [30, 84], but performance is still highly restricted to the
model weights, which are initialized by fully supervised
training [85]. The most relevant work is self-supervised
learning from multi-view images [69, 79, 80]. For exam-
ple, Zhou et al. [95], Lai et al. [41], and their following
works [21, 87] use camera motion as 2D or 3D warping
operations to regularize learning. However, this strong in-
ductive bias limits the learning effectiveness. RUST [63] is
a pioneering work in learning latent scene representations
from unposed imagery. RayZer is different in three aspects.
First, RayZer initially estimates camera poses and uses poses
to condition the following latent reconstruction. In contrast,
RUST operates in an inverse pipeline — it first reconstructs
the scene and then estimates the camera poses. Second,
RayZer employs different explicit pose representations to
improve information disentanglement and 3D awareness, en-



abling novel view synthesis by geometrically interpolating
predicted poses. Instead, RUST uses a latent pose represen-
tation, which makes scene-pose disentanglement challeng-
ing and they are not explicitly 3D-aware. Third, RayZer
follows the model architecture of LVSM [33] using pure
self-attention in transformers, which is different from RUST
that follows SRT using convolution and cross-attention.

Optimization-based Unsupervised SfM, SLAM, and NVS.
Although these methods are not directly comparable to
RayZer, we discuss them due to the similar input-output
formulations. In detail, these methods optimize target predic-
tions on a per-scene basis [65, 67], while RayZer is a feed-
forward parametrized model, learning priors by training on
large data. The traditional SfM, SLAM, and NVS methods
are unsupervised [26, 65]. Although generally performing
well, they are restricted by the complicated hand-crafted
workflow, leading to requirements of dense-view inputs [89],
slow speed [65], and sensitivity to hyper-parameters [70].
Recent optimization-based NeRF and 3DGS works can also
perform NVS from unposed images [4, 22, 48, 66]. How-
ever, they do not have learnable model parameters to encode
priors, thus requiring off-the-shelf models trained with 3D
supervision as regularization or providing initialization.

3. Preliminaries

We introduce two important building blocks of RayZer, i.e.,
the latent set scene representation and how to render it.
Latent set scene representation. Compressing data into
tokens in latent space is a common practice in text, im-
age, video, etc. Recently, this representation has also been
extended to 3D research [33, 62, 63, 88]. In contrast to clas-
sical explicit (e.g., meshes and point clouds), implicit (e.g.,
NeRF [51] and SDF [55]), and hybrid (e.g., triplane [8] and
3DGS [40]) representations that are 3D-aware, the latent
set representation is not explicitly 3D-aware. It serves as a
compression of scene information, where the 3D-awareness
properties are fully learned. The latent set scene representa-
tion can be denoted as z € R"*<¢ where n is the number of
tokens in the set and d is the latent feature dimension.
Rendering latent set scene representation requires a net-
work, say R?, as introduced by SRT [62] and LVSM [33].
We formulate it as v = R?(z, r), where r is a ray and v is the
rendered property, e.g., RGB values, of the corresponding
pixel'. This formulation is the same as traditional Graph-
ics rendering techniques [1, 36], as v = R(SCENE, RAY),
where R is a pre-defined and handcrafted rendering equa-
tion, e.g., alpha-blending ray marching in NeRF. Differently,
our “rendering equation” is a learned model parameterized
with weights 6, and our scene representation is a latent token
set as discussed previously. We omit the model parametriza-
tion, e.g., weight 6, in the following description for clarity.

!For improved efficiency and performance, LVSM groups rays from the
same image patch and decodes them jointly.

4. RayZer

In this section, we first introduce RayZer’s self-supervised
learning framework (Sec. 4.1). Then, we present the details
of the RayZer model architecture (Sec. 4.2).

4.1. RayZer’s Self-supervised Learning

We first formulate the input and output of RayZer. We then
introduce the self-supervised learning framework.

We focus on the standard setting of modeling static
scenes [65]. The input of RayZer is a set of unposed and
uncalibrated multi-view images Z = {I; € REXW>3|j =
1,..., K}, which can come from unlabeled video frames or
image sets. The output is a parametrization of the inputs,
i.e., camera intrinsics, per-view camera poses, and scene
representation, enabling novel view synthesis. To predict
these representations, we build the RayZer model and train
it with self-supervised learning — no 3D supervision, i.e., 3D
geometry, and camera pose annotations during training.

To train RayZer with self-supervision, we control the
data information flow. We split the input images Z into two
non-overlapping subsets 7 4 and Zg, where Zy UZp =7
and Z4 N Zg = 0. RayZer uses Z 4 to predict the scene
representation, and use Zp for providing supervision. Thus,
RayZer renders images that correspond to Zp, denoted as
I, and we apply photometric losses:

_ L (MSE(I,I)+ \-Percep(l,])), (1)
Kp =

1€l

L

where K = |I| is the size (number of images) of Zp ,
I € Tp is the image that corresponds to a predicted image

I, and X is the weight for perceptual loss [35, 46]. The two
sets are randomly sampled during training.

4.2. RayZer Model

Overview. As introduced in Sec. 4.1, RayZer recovers both
camera parameters and the scene representation from un-
posed, uncalibrated input images. A key design element
of RayZer is its cascaded prediction of camera and scene
representations. This is motivated by the fact that even noisy
cameras can be a strong condition for better scene reconstruc-
tion [31, 65, 92], which is analogous to traditional structure-
from-motion methods [65] and is in contrast with recent
reconstruction-first methods [63, 74, 77]. This design can
provide mutual regularization of predicting pose and scene
during training, facilitating self-supervised learning.
RayZer builds a pure transformer-based model, benefit-
ing from its scalability and flexibility. As shown in Fig. 3,
RayZer first tokenizes input images and uses a transformer-
based encoder to predict camera parameters of all views. In
this step, the cameras are represented by their intrinsics and
SE (3) camera poses. This low-dimensional, geometri-



Camera Estimation
Predicted Pliicker

ted R Input 7,
All ITmages 7 Camera Ray Maps R e & 1-Ill::u
Tokens p 5 :
BeiE i :
= l+ id pe

B "HN
p [ |
R ]

1

Poses P & Intrinsics

7

T
1+

Latent Scene Reconstruction

(7, Posed & Calibrated)

Pliicker

Scene Ray Ry of 75
Tokens z . --:..|.....-.
Updated .L ' Predicted Images 75
l Scene a .. ]mages.’.’f (iid s Fam 1
Tokens z* >

- I B
L=1m Tieg, (MSE(LI) + A+ Percep(7, [))

Figure 3. RayZer self-supervised learning framework. RayZer takes in unposed and uncalibrated multi-view images Z and predicts
per-view camera parameters and a scene representation, which supports novel view rendering. (Left) RayZer first estimates camera
parameters, where one view is selected as the canonical reference view (in blue box). RayZer predicts the intrinsics and the relative camera
poses P of all views. The predicted cameras are then converted into pixel-aligned Pliicker ray maps R. (Middle) RayZer uses a subset of
input images, Z 4, as well as their previously predicted camera Pliicker ray maps, R 4, to predict a latent scene representation. Here, the
Pliicker ray rnaps ‘R 4, serve as an effective condition for scene reconstruction. (Right) RayZer can render a target image given the scene
representation z"* and a target camera. During training, we use R 3, which is the previously predicted cameras Pliicker ray maps of I3, to
render Z3. This allows training RayZer end-to-end with self-supervised photometric losses between inputs Zi and their renderings Is.

cally well-defined parametrization helps disentangle image
information from the camera representation.

RayZer then transforms the SE (3) camera poses and
intrinsics into Pliicker ray maps [57], representing the pre-
dicted cameras as pixel-aligned rays. This ray-based rep-
resentation captures both the 2D ray-pixel alignment and
the 3D ray geometry, providing fine-grained, ray-level de-
tails that encapsulate the physical properties of the camera
model. The ray maps serve as a condition for improving the
reconstruction stage that follows.

From the image and predicted Pliicker rays of Z 4, RayZer
uses another transformer-based encoder to predict the latent
set scene representation (introduced in Sec. 3 and detailed
later). Then, RayZer uses the previously estimated cameras
of 7 to predict Iz, providing photometric self-supervision
(Eq. 1). We now formally introduce the RayZer model.

Image Tokenization. For all K input images 7 =
{I; € REXW>3|j = 1, ..., K}, we patchify them into non-
overlapping patches following ViT [18]. Each patch is in
R**5%3 where s is the patch size. We use a linear layer to
encode each patch into a token in R¢, leading to a patch-
aligned token map f; € R"*“*9 for each image, where
h = H/s,w = W/s, and d is the latent dimension.

We then add positional embeddings (p.e.) to the tokens,
enabling the following model to be aware of the spatial
location and the corresponding image index of each token.
Specifically, we combine the sinusoidal spatial p.e. [18] and
the sinusoidal image index p.e. [3] using a linear layer; note
that the image index p.e. is shared among all tokens from
the same image. When training on continuous video frames,
these image index embeddings also encode sequential priors,

which benefits pose estimation. Finally, we reshape the token
maps of all images into a set, denoted as f € RE"* (recall
that the transformer is invariant to the permutation of tokens).
For brevity, we will use this notation for latent token sets
throughout the rest of the paper.

Camera Estimator. The camera estimator &, predicts
camera parameters, i.e., camera poses and intrinsics, for all
input images. We use a learnable camera token in R'*¢ as
the initial feature for this prediction for all views. We repeat
the token K times and add them with image index p.e. such
that they correspond to the K images. We denote this camera
feature initialization as p € R¥*?. We then use the camera
estimator composed of full self-attention transformer layers
to update the camera tokens, as:

{f*’ p*} = gcam({fa p})’ 2

where {-, -} denotes concatenation along the token dimen-
sion (the union set of two token sets), and f* and p* are the
updated tokens. We note that £* is not used for the following
computation — it is only used as context to update p in the
transformer layers. For clarity, we formulate the transformer
layers as follows:

"= {f,p}, 3)
y' = TransformerLayer' (yl_l)7 l=1,..,lp “)
{£%,p"} = split(y'"), 5)

where [7 is the number of layers, and the split operation
recovers the two token sets, inverting Eq. 3. This notation
remains consistent throughout the rest of the paper.

We then predict the camera parameters for each image
independently. For camera pose prediction, we follow prior



works of using relative camera poses to resolve ambigu-
ity [31, 89]. We select one view as the canonical reference
(e.g., with identity rotation and zero translation), while for
every non-canonical view, we predict its relative pose with
respect to the canonical view. We parametrize the SO (3)
rotation using a continuous 6D representation [97], and we
predict the relative pose with a two-layer MLP as follows:

pi = MLPo.c ([P}, P1]), ©)

where [-, -] denotes concatenation along the feature dimen-
sion, p; and p; (all in R?) are the camera tokens for image
I; and the canonical view, respectively. The output p; € R?
represents the predicted pose parameters, which are then
transformed into an SE (3) pose P; for image I;.

For intrinsics prediction, following prior works [24, 41],
we parameterize intrinsics using a single focal length value,
under the assumptions that i) the focal lengths along the x
and y axes are identical, ii) all views share the same intrinsics,
and iii) the principal point is at the image center. We predict
the focal length using a two-layer MLP:

focal = MLPyocqi(P})- O

The predicted focal length is then converted into the intrin-
sics matrix K € R332,

Scene Reconstructor. As discussed in Sec. 4.1, we predict
the scene representation from image set Z 4 and additionally
condition it on the previously predicted camera parameters
Pa={(P;,K)|I; € T4}. We first convert P4 to pixel-
aligned Pliicker rays [57] for each image, denoted as R €
REXHXWX6  Gimilar to image inputs, we also tokenize
the Pliicker rays into patch-level tokens using a linear layer,
yielding r € REhw*d We index the image and Pliicker rays
tokens corresponding to the image set Z 4, denoted as f 4 and
r 4 (each in REahwxd respectively). We fuse these tokens
along the feature dimension with a two-layer MLP:

XA = MLPfuse([fAv I‘A]), (8)

where x4 € REAMXd represents the fused tokens. Impor-

tantly, we use the raw image tokens f rather than the pose
transformer output f* for this fusion. This design choice
prevents leakage of information from the image set Zg, since
the camera estimator transformer producing f* has access to
a global context that includes tokens from Zp.

We then employ a scene reconstructor Egcene cOnsisting
of full self-attention transformer layers to predict the latent
scene representation. To initialize this representation, we
use a set of learnable tokens z € RL*? where L denotes the
number of tokens. We formulate the process as follows:

{Z*,XTA} = Escenc({2,X4})- 9)

The update rule is identical to the transformer layers in the
camera estimator £.,,. Here, z* represents the final latent

scene representation predicted from Z 4. Meanwhile, x% is
discarded.

Rendering Decoder. We first define the rendering decoder
and then describe its training usage.

We use a transformer-based decoder with full self-
attention for rendering, following LVSM [33]. For a target
image, we begin by representing it as pixel-aligned Pliicker
rays and tokenize these rays using a linear layer to obtain tar-
get tokens r € R"*4_ Next, we fuse the scene information
by updating the tokens with a decoder D¢, 4. cOmprising
transformer layers:

{r*’zl} = Drender({raZ*})7 (10)

where z’ is subsequently discarded, while the update rule
of Dyender 18 the same as previously introduced modules.
Finally, we decode the RGB values at the patch level with
an MLP:

I = MLP,,(r*), (11)

where [ € Rhwx(35”) We reshape I to recover the 2D spa-
tial structure, yielding a final rendered image in R <" 3,
During training, we use the predicted Pliicker ray maps
‘R, which correspond to 7 B, to render images of fB and
then compute the self-supervised loss as defined in Eq. 1.

5. Experiments

In this section, we introduce the experimental setting and
present the evaluation results. For the implementation,
RayZer employs 24 transformer layers, with 8 layers for
each of the camera estimator, scene encoder, and rendering
decoder. We train RayZer with a learning rate of 4 x 10~*
with a cosine scheduler for 50,000 iterations and a batch size
of 256. The weight of perceptual loss is A = 0.2. For all
experiments, we used a resolution of 256 with a patch size
of 16. More details are in the Appendix.

5.1. Experimental Setup

We introduce our experimental setup, including datasets,
evaluation protocol and metrics, as well as baseline methods.

Datasets. We use three datasets to evaluate RayZer,
including two scene-level datasets, DL3DV [49] and
RealEstate [96], and an object-level dataset Objaverse [17]
(rendered as videos). We train and test on each dataset sep-
arately. The numbers of input views (Z 4) and target views
(Zp) are set to 16 and 8 for DLL3DV, 5 and 5 for RealEstate,
and 12 and 8 for Objaverse, respectively. We sample input
images with the index ranges of 64-96, 128-192, and 50-65
on DL3DV, RealEstate, and Objaverse, respectively. These
values are chosen based on data difficulty, especially camera
baseline, following prior works [9, 91, 98]. We use the offi-
cal DL3DV train-test split, and split RealEstate following [9].
More details can be found in the Appendix.



Figure 4. Visualization results on RealEstate and DL3DV. We compare RayZer with “oracle” methods GS-LRM and LVSM, which use

COLMAP pose annotations in both training and testing. Our self-supervised RayZer model does not use any pose annotations. Generally,
RayZer performs on par with “oracle” methods (first row), and can outperform them on cases that COLMAP usually struggles to handle,
e.g., glasses and white walls (highlighted with red boxes). The results verify our analysis on the problems of using COLMAP in Sec. 5.2.

Evaluation Protocol and Metrics. We evaluate novel view
synthesis quality. Specifically, the evaluation protocol of
RayZer is different from the “oracle” and supervised meth-
ods, which use ground-truth poses to render images. Instead,
we use predicted poses to render novel views, thereby as-
sessing the compatibility between the predicted poses and
the scene representation. Since the model is trained without
explicit pose annotations, the learned poses exist in a differ-
ent space, and their direct correspondence to standard pose
annotations is unknown. This evaluation protocol follows
RUST [63]. We note that the target views are used only for
pose estimation and not for scene representation prediction,
ensuring that no information leakage occurs.

Baselines. We compare RayZer with two types of meth-
ods, including 1) “oracle” methods, i.e., GS-LRM [91] and
LVSM [33] (encoder-decoder version), that use ground-truth
camera poses during both training (as supervision) and in-
ference (as pre-requisite). LVSM also uses latent set scene
representation. Thus, it serves as the main comparison for the
“oracle” methods; 2) supervised method, i.e., PF-LRM [74],
which requires camera supervision to learn pose estimation
and reconstruction; thus, it is pose-free during inference. For
fair comparisons, we use 16 transformer layers in total for
GS-LRM and LVSM. Thus, their number of parameters is
the same as RayZer, except that RayZer has another camera
estimator to handle unposed images. We use 24 transformer
layers for PF-LRM. We also consider the self-supervised

Training
Supervision

Even Sample
PSNR; SSIM; LPIPS,

Random Sample
PSNR;  SSIM; LPIPS;

Inference w.
COLMAP Cam.

“Oracle” methods (assume inputs are posed & use pose annotations during training)

GS-LRM Yes 2349 0712 0252 23.02  0.705 0.266
LVSM Yes 2369 0.723 0.242 23.10 0703  0.257

2D + Camera
2D + Camera

Unsupervised methods (inputs are un-posed & no pose annotations used during training)

Rayzer | 2D | No | 2436 0757 0209 | 2372 0733 0222

Table 1. Evaluation results on DL3DV. The camera annotations
used by the “oracle” models come from COLMAP. The results are
reported with continuous video frames (ordered) as the input. The
results for the unordered image set input are in Table. 4. The input
and target views can be evenly or randomly sampled from video
frames. We bold our result if it is better than the “oracle” models.

method RUST [63], but since it does not have an official
public implementation, we ablate the key design differences
between RUST and RayZer in Table 7 instead.

5.2. Results

Main results. Table 1-3 summarizes the results on the three
datasets. Remarkably, without any 3D labels (e.g., cam-
era pose annotations) during training, RayZer achieves per-
formance comparable to the best “oracle” model, LVSM.
In fact, RayZer even outperforms LVSM on DL3DV and
RealEstate10k while performing slightly worse on Obja-
verse. We conjecture that this is because the camera poses in
DL3DV and RealEstate are annotated by COLMAP, which
can be imperfect and set an upper bound for “oracle” meth-
ods that are supervised by COLMAP annotations. In contrast,
our self-supervised approach enables the model to learn a
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Figure 5. Visualization results on Objaverse. RayZer performs on
par with LVSM and outperforms the supervised method PF-LRM.

Even Sample
PSNR; SSIM; LPIPS,

Random Sample

Training
PSNR; SSIM; LPIPS;

Supervision

Inference w.
COLMAP Cam.

“Oracle” methods (assume inputs are posed & use pose annotations during training)

GS-LRM Yes 24.25 0.770 0.227 23.21 0.748 0.251
LVSM Yes 27.00 0851 0.157 25.88 0.828 0.175

2D + Camera
2D + Camera

Unsupervised methods (inputs are un-posed & no pose annotations used during training)

Rayzer | 2D | No | 2748 0861 0.146 | 2632 0835 0164

Table 2. Evaluation results on RealEstate with continuous video
frames inputs. The camera annotations come from COLMAP.

pose space that optimally benefits latent reconstruction and
novel view synthesis. This hypothesis is further supported
by the results on Objaverse — a synthetic dataset with perfect
pose annotations from the rendering tool — where LVSM,
acting as a true oracle, outperforms RayZer. Nonetheless,
the small performance gap showcases the effectiveness of
our self-supervised training. Visualizations in Fig. 4 further
support our conjecture regarding COLMAP’s noisy poses,
as both LVSM and GS-LRM consistently underperform on
challenging cases that COLMAP usually fails. These results
not only validate our self-supervised learning approach but
also demonstrate its potential to break free from the limita-
tions of supervised learning.

Using unordered image sets for training. RayZer can be
trained on continuous video frames (Table 1-3) or unordered
image sets (Table 4). Note that these two training settings
are applied separately. As shown in Table 4, we observe
that the model trained with unordered image sets performs
worse than the one trained with continuous video frames.
We notice that the difference is at the pose estimation stage —
specifically, the image index positional embedding encour-
ages local pose smoothness that benefits the learning of
pose estimation on continuous frames. This finding suggests
that scaling training data using video resources, which are
plentiful online, could be more advantageous than relying

Training

Even Sample Random Sample
Supervision

GT Cam. PSNR; SSIM; LPIPS, | PSNR+ SSIM; LPIPS|

Inference w. |

“Oracle” methods (assume inputs are posed & use pose annotations during training)

LVSM | 2D+GTCam. |  Yes | 3234 0950 0050 | 3234 0949 0051

Supervised methods (inputs are un-posed & use pose annotations during training)
PF-LRM | 2D + GT Cam. | Yes (render) | 2548 0882  0.110 | 2543 0881  0.111

Unsupervised methods (inputs are un-posed & no pose annotations used during training)
RayZer | 2D | No | 3152 0945 0052 | 3142 0943 0053

Table 3. Evaluation results on Objaverse with continuous video
frames inputs. The camera annotations are Blender ground-truth.
PF-LRM uses ground-truth poses to render novel views, same with
oracle methods, and we evaluate its predicted pose in Table 5.

Training Inf. w. | Continuous Even Sample Random Sample
Supervision | GT Pose Inputs PSNR; SSIM; LPIPS; | PSNR; SSIM; LPIPS
(1) 2D No v 2436 0757 0209 2372 0.733 0.222
2) 2D No 20.56  0.576  0.334 20.02  0.566  0.356

Table 4. Evaluating RayZer performance when using continu-
ous or unordered images for training on DL3DV. In evaluations,
the input frames are sampled from continuous video frames. (1)
keeps their temporal continuity (encoded by the image index p.e.)
during training. (2) randomly shuffles the images during training.

on unordered image sets that are often limited in scale and
contain noisy content [45, 73].

5.3. Analysis of Camera Poses

RayZer’s learned camera pose space. We visualize some
camera poses predicted by RayZer in Fig. 6. Although
RayZer predicts SE (3) camera poses, we observe that these
poses do not exactly match the real-world pose space. This
result indicates that the SE (3) poses, which are later con-
verted into Pliicker ray maps, offer a degree of flexibility.
Since both the rendering decoder and the scene representa-
tion operate in latent space, RayZer remains robust to any
warping between the learned pose space and the actual real-
world poses, as long as the poses are compatible with the
scene representation and the decoder.

3D Awareness of predicted camera poses. We further in-
vestigate whether the pose space learned by RayZer is 3D
aware. To this end, we interpolate the predicted poses of in-
put views to synthesize more novel views, where the camera
pose of a novel view is interpolated from two neighboring
input views. We use ground-truth camera poses to calculate
the interpolation coefficients, checking whether predicted
poses follow the same geometric interpolation rules. We in-
clude the details of the interpolation method in Appendix. As
shown in Table 5, RayZer demonstrates significantly better
performance than PF-LRM and the naive baseline of copying
the nearest rendered input view. These results verify that
poses predicted by RayZer are interpolatable and 3D-aware.
Probing the learned camera pose space. To probe how
much actual pose information is learned by RayZer, we fol-
low RUST [63] to fit a lightweight 2-layer MLP head on
the pose features. We freeze the camera estimator’s trans-
formers and train the MLP under camera supervision. As
shown in Table 6, our probing outperforms the supervised
baseline (which has the same model architecture and uses



Inference w.
GT Pose

Random Sample
PSNR; SSIM; LPIPS,

Training
Supervision

Even Sample
PSNR; SSIM; LPIPS;

Supervised methods (inputs are un-posed & use pose annotations during training)

PF-LRM | 2D+GTPose | No | 2063 0819 0160 | 21.27 0827 0.154

Unsupervised methods (inputs are un-posed & no pose annotations used during training)

RayZer-copy 2D No 19.56  0.812 0.159 20.17  0.820  0.150
RayZer 2D No 27.01 0900  0.075 2687 089  0.078

Table 5. Evaluating 3D awareness of predicted camera poses
on Objaverse. Unlike Table 3, here we render novel views by
interpolating predicted poses of input views, where the interpolation
coefficients are calculated from GT poses. This experiment tests
whether the learned SE (3) poses are geometrically well-defined
and 3D-aware. We also compare against a naive baseline “RayZer-
copy” that simply copies the nearest rendered input view.

transformers trained from scratch), indicating that RayZer’s
novel view synthesis self-supervision facilitates a better la-
tent pose space. In contrast, supervised learning struggles
due to the challenges of low-dimensional pose representa-
tion [5, 11, 44, 90, 97].

5.4. Ablation Study

We ablate the main design choices of RayZer from three
aspects, including scene representation, 3D prior, and the
overall model paradigm. As shown in Table 7 (1), when
using the 3DGS representation rather than the latent set rep-
resentation, the training does not converge. This verifies the
optimization difficulty of explicit 3D representation [40, 91]
and demonstrates the flexibility of the latent representation
with its learned rendering decoder.

Table 7 (2) and (3) ablate the prior of camera representa-
tion. Without Pliicker ray maps, we observe a degraded per-
formance in (2), showing the effectiveness of using Pliicker
ray maps to regularize the solution of structure-and-motion
problem. Besides, we observe a slightly better performance
of (3), which directly uses camera tokens p*, compared to
(2). The reason is that the camera tokens p* € R? can
leak target image information, while SE (3) poses used in
(2) serve as an information bottleneck to enforce this dis-
entanglement. Moreover, SE (3) poses are geometrically
well-defined, allowing us to interpolate them and generate
novel views along the interpolated camera trajectory, while
the latent camera representation is not directly interpolable.

Table 7 (4) ablates the overall paradigm. When the model
first predicts the latent scene and then estimates poses, we
observe a degraded performance. In detail, the pose estima-
tor takes the scene representation and target image feature
tokens as inputs. The result verifies our insight that pose
estimation can be a strong condition for scene reconstruction,
championing traditional pose-first methods in the context of
self-supervised learning. Note that combining (3) and (4)
will be a model that is similar to RUST conceptually.

6. Conclusion

We introduce RayZer, a self-supervised large multi-view
3D Vision model trained with zero 3D supervision, i.e., no

Rendered Views (3/5) Cameras

Figure 6. Visualization of RayZer predicted cameras learned
with self-supervision. We visualize 3 out of 5 rendered views due
to space limit, where the image index is highlighted by its color.

Rotation Acc.1 (%)
R@10° R@20° R@30°

Translation Acc.t (%)

t@0.] t@0.2 t@0.3

Pose Encoder
(Epose)

DL3DV supervised 39.3 63.0 77.8 15.7 33.1 44.4
self-supervised 47.6 72.5 84.0 20.8 44.0 60.5

RealEstate supervised 87.0 96.4 99.6 44.6 593 82.5
self-supervised 99.6 99.9 100 61.2 84.2 92.8

Objaverse supervised 19.8 46.7 66.0 15.1 372 53.8
) self-supervised 33.6 69.2 86.8 20.1 52.7 75.5

Table 6. Effectiveness of self-supervised pre-training for pose
estimation. We train a two-layer MLP (with supervised learning)
to read out latent camera tokens p* predicted by the pose encoder
Epose, Where the backbone is frozen. At the same time, we also
compare with the baseline where both encoder &5, and the pose
prediction MLP are trained with supervised learning from scratch.

Random Sample

Even Sample
PSNR SSIM LPIPS

PSNR SSIM  LPIPS

) | RayZer | 2436 0.757  0.209 | 2372 0733 0.222
(1) | Representation - 3DGS + rasterization | - - failed - -

?2) 2273 0.687 0249 | 21.88 0.647 0.274
3) 23.13 0700 0251 | 2236 0.668 0.272

“) | Paradigm - scene first, not pose first | 1331 0.338 0.732 | 13.12 0.337  0.729
Table 7. Ablation study of RayZer designs on DL3DV with con-
tinuous inputs. (1) is a variant uses the 3D Gaussian representation
rather than latent scene representation with its learned rendering
decoder used by RayZer; (2) does not use Pliicker ray maps R 4 for
conditioning latent reconstruction. Instead, it encodes the SE (3)
poses P 4 and intrinsics K into tokens as condition; (3) directly
uses the latent camera tokens p*, rather than converting it to any
explicit forms of cameras, to condition the latent scene reconstruc-
tion; (4) first reconstructs latent scene and then estimates pose as
Pliicker ray maps, contrasting our pose-first paradigm.

Prior - no Pliicker ray, use SE (3) pose
Prior - no explicit pose, use latent camera

3D geometry and camera annotations. RayZer achieves
comparable or even better novel view synthesis performance
than prior works that use pose labels in both training and
inference, verifying the feasibility of breaking free from
supervised learning.
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A. Experimental Details

In this section, we introduce more details of RayZer.
Objaverse Data Details. We render Objaverse as contin-
uous videos for training and evaluation. The frames are
rendered with corresponding cameras on a unit sphere with a
constant distance to the object center. Specifically, we render
about 70 frames for azimuth 0° to 360°, where the elevation
is randomly sampled between -20° to 60° for each shape
instance. We sample frames with the distance between the
first frame and the last frame being 50 to 65, covering the
camera azimuth rotation for about one cycle.

Camera Interpolation Details. For the experiment of inter-
polating predicted cameras, we use Spherical Linear Inter-
polation (Slerp) for interpolating the camera pose rotation.
This is based on the fact that the camera of Objaverse is
moving at a constant speed. Thus, Slerp ensures the correct
rotation interpolation. We then find the location on the unit
sphere that corresponds to this interpolated rotation angle.
Thus, we ensure the interpolated cameras are still on the
unit sphere, which matches the camera sampling rule for
rendering. In conclusion, this interpolation assumes that 1)
the camera is moving in a constant speed, and 2) the rule of
sampling camera location is known. Thus, this interpolation
is only applicable to the synthetic Objaverse data, and does
not apply to DL3DV and RealEstate.

More Training Details. For all transformer layers in RayZer,
we apply QK-Norm [27] to stabilize the training. We use a la-
tent dimension of 768 for RayZer and all baselines methods.
RayZer and LVSM both use a latent set scene representation
with 3072 tokens. We use mixed precision training [50]
with BF16, further accelerated by FlashAttention-V2 [16] of
xFormers [42] and gradient checkpointing [12].

We train RayZer and all baselines with the same training
protocol. We use 32 A100 GPUs with a total batch size
of 256. During training, we warm up with 3000 iterations,
using a linearly increased learning rate from O to 4e — 4. We
apply a cosine learning rate decay, while the final learning
rate is 1.5e — 4. We train all baselines with 50, 000 steps.
We clip the gradient with norm larger than 1.0. We follow
all other hyper-parameters of LVSM.

More Model Details. Following LVSM, we do not use bias
terms in linear and normalization layers. We also apply the
depth-wise initialization for transformer layers.

Ablation details. In Table 7 (2), we use a two-layer MLP to
encode the camera pose and intrinsics back to a latent pose
representation in R?. In detail, for the predicted pose of each
image (in 6D representation [97]), and the camera intrinsics
(as the 4-dimensional focal length and principal points of
x-axis and y-axis), we first concatenate them, getting a 10-
dimensional pose representation. Then, we use the MLP
to map it as a high-dimensional pose feature token. To
predict the target views, we use a set of learnable patch-
aligned spatial tokens shared across all target images as the



Even Sample Random Sample

PSNR SSIM LPIPS | PSNR SSIM LPIPS
(0) | RayZer | 2436 0757 0.209 | 2372 0.733 0222
(1) | first frame as canonical | 23.86 0.736  0.224 | 23.78 0.737 0.225
(2) | no curriculum | 2387 0734 0226 | 23.87 0735 0226

Table 8. Ablation study of RayZer techniques to train on con-
tinuous video frames. (1) is a variant choosing the first image in
the sequence as the canonical view, rather than choosing the middle
frame. (2) does not use the frame sampling curriculum.

initialization. Thus, the rendering decoder takes in the spatial
tokens, the scene tokens, and the pose token. After using
transformer for updating, we use the updated spatial tokens
to regress the pixel values.

B. RayZer Training with Continuous Inputs

RayZer takes in multi-view image inputs, which can be sam-
pled from either continuous video frames or an unordered
image set. In this section, we present two design choices to
improve self-supervised learning on video frames input.

Canonical View Selection. Prior works [29, 74] usually
select the first image in an image sequence as the canonical
view. In contrast, we select the frame at the middle time-step
as canonical. In this context, the pose prediction MLP,,,.
initialized with a zero mean for its weights will have a small
pose data variance. Otherwise, when using the first frame
as canonical, the variance can be much larger. Note that
this difference in pose variance can be easily handled with
ground-truth camera supervision, thus, prior works choose
the first image as the canonical view. However, this is more
important for unsupervised methods, like RayZer.

Curriculum. We gradually increase the training difficulty
by sampling video frames with an increasing distance range.
With proper initialization of the model for camera pose esti-
mation, it first learns from images with small camera base-
lines, benefiting the training with larger camera baselines,
that follows. In detail, we use a curriculum with a frame
sampling range of 48-64, 96-128, and 24-32 at the beginning
of training for DL3DV, RealEstate, and Objaverse, respec-
tively. The frame sampling range is linearly increased to
64-96, 128-192, and 48-65 at the end of training for DL3DV,
RealEstate, and Objaverse, respectively. The final frame
sampling range is also used for the evaluation. The sampling
ranges are set based on the difficulty (camera baseline) of
each dataset, following prior works [9, 32, 74, 91, 98].

Experiments. We include ablations in Table 8, where re-
moving any of the previously discussed techniques leads to a
degraded performance. This demonstrates the effectiveness
of our designs of selecting canonical view and using frame
sampling curriculum during training.
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Figure 7. Visualization of RayZer failure cases on DL3DV.

C. More Results

In this section, we present more results for discussing
RayZer’s failure cases and show more visualizations.

Failure Case Pattern. We observe that RayZer can fail when
dealing with fine-grained geometry, complicated materials,
and occlusions. We present the visualization in Fig. 7. In
detail, RayZer fails to handle complicated plant geometry
(first row). This failure is not specific to RayZer — GS-LRM
and LVSM also can not handle it. In the second and last
row, RayZer fails to handle multiple stacked glasses and is
not perfect on the specular reflection of the silver teapots.
GS-LRM and LVSM also demonstrate imperfect results. In
the third and fourth rows, all methods, including RayZer, fail
to handle occlusions, where the side view of the exhibition
stand is not observed in input views (third row), and the
chairs in the fourth row have self-occlusion.

More Comparisons. We present more visualization results,
comparing with GS-LRM and LVSM in Fig. 8. RayZer
generally performs on par, while being a self-supervised
method that does not require any camera pose annotations.

More Visualization. We present more visualization results
comparing with ground-truth novel views in Fig. 9-11.



D. More Discussion

Why does RayZer demonstrates strong novel view synthesis
quality while the fine-tuned pose estimation is not perfect
(Table 7 in the main manuscript)? We conjecture RayZer’s
pose space jointly learns the actual pose information and
3D-aware video frame interpolation at the same time. On
datasets with small camera baselines (RealEstate), which
is easy to learn, RayZer mainly focuses on learning actual
pose estimation. This is supported by the accurate pose
estimation performance on RealEstate. On datasets that
have large camera baselines (DL3DV and Objaverse), where
pose estimation is harder to learn with only self-supervision,
RayZer also leverages video interpolation cues together with
pose estimation to perform novel view synthesis.

Thus, the method to further enhance disentanglement of
interpolation and pose estimation would be an important
future direction. In RayZer, using unordered image sets for
training and using continuous video frames for training can
be two extreme cases in the spectrum for learning this disen-
tanglement. In detail, learning on continuous video frames
with using image index positional embeddings strongly en-
courages the camera pose local smoothness to enhance train-
ing performance; while training on unordered image sets
fully discards this prior. Finding a balance between the two
and designing a better method to encourage the camera pose
local smoothness is a promising avenue to solve the structure-
and-motion problem with learning SE (3) camera poses in
the real-world space.
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GS-LRM LVSM RayZer (ours)

Figure 8. Visual compression of RayZer and ‘“oracle”
on DL3DV.
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Figure 9. Visual compression with ground-truth novel views on DL3DV. The first row of each sample is the target novel views, and the
second row are images rendered by RayZer.
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Figure 10. Visual compression with ground-truth novel views on RealEstate. The first row of each sample is the target novel views, and
the second row are images rendered by RayZer.
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Figure 11. Visual compression with ground-truth novel views on Objaverse. The first row of each sample is the target novel views, and
the second row are images rendered by RayZer.
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