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Figure 1. We introduce MegaSynth, a non-semantic synthesized dataset for training LRMs. MegaSynth benefits from its scalability and

controllability, enabling us to generate 700K scenes in 3 days. We train LRMs with both the large-scale MegaSynth data and small-scale real

data, improving LRMs for reconstructing wide-coverage scenes from dense-view images.

Abstract

We propose scaling up 3D scene reconstruction by train-

ing with synthesized data. At the core of our work is

MegaSynth, a procedurally generated 3D dataset compris-

ing 700K scenes—over 50 times larger than the prior real

dataset DL3DV—dramatically scaling the training data. To

enable scalable data generation, our key idea is eliminating

semantic information, removing the need to model complex

semantic priors such as object affordances and scene compo-

sition. Instead, we model scenes with basic spatial structures

and geometry primitives, offering scalability. Besides, we

control data complexity to facilitate training while loosely

aligning it with real-world data distribution to benefit real-

world generalization. We explore training LRMs with both

MegaSynth and available real data. Experiment results show

that joint training or pre-training with MegaSynth improves

reconstruction quality by 1.2 to 1.8 dB PSNR across di-

verse image domains. Moreover, models trained solely on

MegaSynth perform comparably to those trained on real data,

underscoring the low-level nature of 3D reconstruction. Ad-

ditionally, we provide an in-depth analysis of MegaSynth’s

properties for enhancing model capability, training stability,

and generalization, as well as application to other tasks.

1. Introduction

The scaling law has shifted the focus of contemporary AI re-

search toward large foundation models, which are built with

scalable neural network architectures [27, 70] and trained

on vast datasets [5, 61]. Following the scaling recipe seen

in NLP and 2D vision [1, 3, 4], the Large Reconstruction

Model (LRM) has been introduced to learn general 3D recon-

struction priors [29]. For object-level reconstruction, LRMs

have shown impressive reconstruction quality using either

single-view or sparse-view inputs [29, 35, 72, 88], enabling

a range of applications [40, 90].

Despite progress, enhancing LRM for reconstructing

wide-coverage scenes remains challenging due to two key

limitations of training data. First, scene-level datasets are

significantly smaller in scale compared to object-level coun-

terparts. For instance, Objaverse [17] contains 800K shape

instances, whereas the largest clean scene dataset, DL3DV,

includes just 10K scenes. Collecting more intentionally

captured scene data is labor-intensive and difficult to scale.

Second, existing scene-level datasets suffer from a subopti-

mal data distribution. They are often limited by insufficient

scene diversity [15], small camera motions [49, 92], noisy

content [69], and inaccurate annotations [41]. However,

given the inherent complexity of 3D scenes, effective train-
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ing requires clean and diverse data, especially multi-view

images captured by widely spaced cameras with precise

camera annotations [50].

In this work, we propose scaling up training data for

scene-level reconstruction by using synthesized data. Our

key idea is to eliminate the reliance on semantic infor-

mation in data generation, by constructing scenes with

non-semantic shape primitives arranged within basic spatial

structures. This approach is motivated by our insight that

scene semantics play a minimal role in multi-view reconstruc-

tion, as evidenced by the success of traditional non-semantic

methods such as COLMAP [60], MVS [62], NeRF [50],

and the emerging non-semantic properties of recent feed-

forward models [9, 31, 79]. Unlike prior scene generation

methods, which aim to replicate real-world scene distribu-

tions [20, 55, 56, 66, 75, 91] and are thus constrained by the

complexity of modeling semantics, e.g. object affordances,

our approach bypasses these challenges. This simplification

enables highly scalable and efficient data generation.

Beyond scalability, synthesized data offers controllabil-

ity. We control data complexity to facilitate training while

loosely aligning it with real-world data distribution to benefit

real-world generalization. Through heuristic methods, we

regulate key factors, such as geometric complexity, camera

pose distribution, materials, and lighting, for creating di-

verse scenes. Additionally, synthesized data provides precise

metadata, such as camera and geometry information, further

ensuring improved training stability and effectiveness.

We generate the MegaSynth dataset, comprising 700K

scenes. MegaSynth is over 50 times larger than the real

dataset DL3DV and significantly scales up training data

for LRMs. We utilize MegaSynth to train feed-forward

LRMs [88, 93] jointly with DL3DV. Our experiments show

a 1.2 to 1.8 dB PSNR gain across diverse test datasets and

image resolutions. Moreover, the depth rendering quality

is significantly improved, showing a better reconstruction

geometry quality. These results highlight the synergy be-

tween synthesized and real data. Synthesized data excels

in scale and provides rich metadata, such as geometry su-

pervision, enabling models to develop a general geometric

understanding beyond rendering supervision. Meanwhile,

small-scale real data further sharpens the model. Interest-

ingly, MegaSynth can also benefit other 3D tasks, where a

monocular depth estimation model fine-tuned on MegaSynth

demonstrates significant improvement.

2. Related Work

Scene-level 3D Reconstruction. Reconstructing scenes

has been a long-standing challenge in 3D computer vision.

Traditional Structure-from-Motion (SfM) and Multi-view

Stereo (MVS) methods, as well as their neural counterparts,

adopt a bottom-up approach [21, 22, 33, 60, 62, 64, 65, 71].

For instance, COLMAP [60] builds from low-level visual

cues to more structured geometry through keypoint detection,

matching, camera reconstruction, and bundle adjustment.

Learning-based methods encompass both 3D neural

scene representations and feed-forward prediction mod-

els. Researchers have explored the distinct properties of

explicit [51, 74], implicit [8, 44, 50, 63], and hybrid 3D

representations [25, 30, 34, 37] to enhance reconstruction

quality, typically optimizing the 3D representation for each

scene to demonstrate capability. Meanwhile, generaliz-

able reconstruction models have been developed, where

neural networks predict 3D representation attributes in a

feed-forward manner. Some approaches follow a tradi-

tional bottom-up paradigm, leveraging inductive biases from

MVS [10, 73, 87], cost volume [12, 13], correspondence

cues [11], and epipolar geometry [9, 19, 78]. In contrast,

recent work proposes top-down frameworks [31, 39, 72, 74]

that infer geometry directly and better harness the power of

large models. However, some of these works rely on pair-

wise computations [74], which limits a global understanding

of inputs. Our work, in contrast, leverages recent global-

aware methods [88, 93] and focuses on scaling up training

data to advance dense-view reconstruction.

Large Reconstruction Model (LRM). LRMs have been

introduced to scale up generalizable 3D reconstruction meth-

ods [29], employing scalable network architectures and

training on large datasets to learn generic reconstruction

priors. Typically, LRMs use Transformers [29, 31, 70] or

U-Nets [57, 67] as model backbones, encoding 2D image

inputs into 3D representations, e.g., Triplane [29, 72] and

mesh [76, 80], enabling high-quality object reconstruction.

The following research has focused on enhancing object re-

construction by incorporating generative priors [81, 89] and

designing more scalable training frameworks [26, 32, 79].

Additionally, novel 3D representations, such as 3D Gaus-

sians [37], have extended LRMs to scene-level 3D recon-

struction [88, 93]. However, reconstructing wide-coverage

scenes remains challenging due to limited data. To address

this, we propose a scalable data generation method consider-

ing the non-semantic property of multi-view reconstruction.

Training with Synthesized Data. Leveraging synthesized

data for training is essential when available data is insuffi-

cient or biased. Synthesized data has been widely applied

across fields such as Robotics [66], Natural Language Pro-

cessing [2], Computer Vision [48], and AI for Science [68].

For example, recent depth estimation methods utilize synthe-

sized data’s accurate ground truth to enhance performance

on fine structures [7, 85]. A relevant topic to our work is

3D scene generation, where generated data supports training

3D reconstruction models [16, 28, 46, 52–54, 84]. How-

ever, these methods focus on generating realistic scenes,

necessitating semantic accuracy (e.g., object affordance and

relationships), which constrains scalability due to the com-

plex procedural rules required for accuracy and diversity.
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While some recent methods attempt to address this limitation

with language models [86], these models often lack spatial

awareness and are slow in inference. In contrast, we show

that semantics are not essential for multi-view reconstruc-

tion, allowing us to create a data generation pipeline free

from semantic constraints and capable of generating virtu-

ally unlimited training data. Previously, non-semantic shape

primitives have been used for various object reconstruction

and appearance acquisition tasks [42, 43, 59, 82, 83]. Re-

cently, LRM-Zero [79] has used primitive-based methods to

generate large-scale data to train large reconstruction mod-

els, but it is limited to the object level. We focus on more

challenging scene-level data synthesis, incorporating control

of lighting, object composition, and camera poses for re-

constructing wide-coverage scenes from dense-view images.

We also present a mixed training framework to leverage the

synergy between synthesized and real data. DUST3R [74]

employs a pre-trained encoder from CroCo [77], which in-

corporates synthesized data, but its pre-training is limited to

2D image representation learning without directly learning

3D priors. In contrast, our pre-training approach directly

targets 3D scenes, enhancing our model’s geometric and

texture understanding. We also enable joint training with

both synthesized and real data.

3. Task and Preliminary

Our goal is to reconstruct wide-coverage scenes in a feed-

forward manner. Given a set of dense-view images {Ii |
i = 1, ..., n} with known camera information, the model

predicts the attributes of 3D representations. By default, we

use n = 32 views in our experiments to handle the high

complexity of scenes, in contrast to previous sparse-view

methods that rely on only 4 to 8 views [72, 76].

This paper primarily experiments with GS-LRM [88] and

Long-LRM [93], chosen for their strong reconstruction qual-

ity. Both methods predict pixel-aligned 3D Gaussians from

posed images with similar model architectures but different

backbones: GS-LRM and Long-LRM employ transformer-

based and Mamba-based [24, 45] backbones, respectively.

Given the input views, the models first patchify each

image using non-overlapping convolutions, encoding them

into feature tokens {Ti | i = 1, ..., n} as in ViT [18]. The

feature tokens from all images are flattened and concatenated

into a feature set, F, which is later processed by the model

M. Finally, an MLP decodes Gaussian parameters G to

represent the scene. The process is formulated as follows:

{T1, . . . , Tn} = {Conv(I1), . . . ,Conv(In)}, (1)

F = [Flatten(T1), . . . ,Flatten(Tn)], (2)

F̄ = M(F), (3)

G = MLP(F̄), (4)

where [·, ..., ·] denotes concatenation, and F̄ represents the

updated feature tokens produced by the backbone.

In the next section, we introduce our approach to synthe-

size data for training these models.

4. Synthesizing the MegaSynth Dataset

In this section, we first give an overview of our data synthesis

method and then dive deeper to introduce how we control

complexity, diversity, and alignment with real data.

Overview. We synthesize MegaSynth using a procedural

generation method, as illustrated in Fig. 2. The process

involves: i) generating a scene floor plan, including scene

size and object instance box locations, ii) instantiating ob-

ject geometries with random textures, and iii) randomizing

the lighting. During the process, we eliminate high-level

scene semantics. We only keep the low-level structural and

geometric features of scenes.

4.1. Scene Floor Plan

Without loss of generality, we plan the scene as a cube

box and populate it with objects represented by 3D bound-

ing boxes. We randomize the 3D aspect ratio and size of

scenes. We design multiple object box categories to simulate

real-world scene geometry structures (visualized as boxes

in Fig. 2 with different colors). For example, large object

boxes tend to be placed near the ground while small object

boxes have more flexible placement options. We parame-

terize the size, location, and number of each object type,

specifying each parameter as a range. This allows us to in-

troduce randomness to improve diversity. Further details of

the object box categories and their attribute sampling ranges

are provided in the Appendix.

4.2. Geometry and Texture

The scene floor plan constructed above divides the room

space into basic units of object boxes. We then synthesize

geometry and assign textures for each geometric shape.

Geometry of general objects. For each object box, we

generate geometry by combining non-semantic shape primi-

tives [79, 82], including cubes, spheres, cylinders, and cones.

These primitives incorporate diverse geometry patterns, such

as flat and curved surfaces, straight and curved lines, and

sharp edges. Composing these shapes further increases geo-

metric and topological complexity. Additionally, we apply

random height-field augmentations [82] to the primitives,

producing surfaces with both concave and convex details.

Different object categories (defined in Sec. 4.1) utilize

varying numbers of shape primitives; for instance, large

objects are typically composed of more primitives than small

ones, loosely reflecting the complexity distribution of real-

world objects. The geometry is instantiated in a canonical

space, then rescaled and translated to fit the object box.

Geometry for increasing complexity. To enhance diversity

and alignment with real data, we incorporate two additional
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Figure 2. MegaSynth generation pipeline. We first generate the scene floor plan, where each 3D box represents a shape and different

colors represent different object types. We compose shape primitives into objects with geometry augmentations, where these objects further

compose the scene. We randomize the texture and lighting, and generate random cameras for rendering.

types of geometry. First, we add thin structures, such as

wireframes of shape primitives, enabling the reconstruction

of fine-grained geometries. To further increase diversity,

we randomly place solid primitives intersecting with these

wireframes. Second, we introduce axis-aligned geometries,

such as thin sticks and flat surfaces, to reflect real-world

geometry distributions under the Manhattan assumption [14].

Texture. Each shape primitive is assigned a random texture,

including a basic color map along with normal, material, and

roughness maps. We increase the probability of sampling

specular and glass materials, ensuring a closer match to

real-world appearances.

4.3. Lighting

Real-world images often feature complex lighting conditions.

Thus, we design three lighting conditions and randomly

compose them to improve the diversity and complexity. Each

lighting uses a randomly sampled color and intensity.

Ambient light. We use the uniformly distributed ambient

lighting with a unit brightness by default. The ambient light-

ing provides consistent illumination across a scene, helping

to reveal scene details and stabilizing training.

Sunlight. Adding sunlight simulates true-to-life lighting

effects, making the scene more complex with a higher inten-

sity and casting shadows. We set the sunlight outside of the

scene box. To enable the sunlight effect within the scene,

we create windows on the walls with random sizes, under

the regions that the sunlight covers. To further improve the

complexity and diversity, we randomly add window bars

implemented as the wireframes and window glasses.

Luminous objects and light bulbs. We randomly turn

objects and axis-aligned sticks as lights and place light bulbs

in the scene, simulating real-world lighting and increasing

diversity. The intensity of object light can be sampled as

large values to simulate lighting in dark environments.

5. Learning 3D Reconstruction on MegaSynth

In this section, we discuss how we utilize our synthesized

MegaSynth (Sec. 4) to train a feed-forward reconstruction

model (i.e., the LRM-based model illustrated in Sec. 3).

To reach the goal, we first construct the training data by

carefully sampling the camera distribution and rendering the

images (Sec. 5.1). We then train our model with a mixed-data

training strategy (Sec. 5.2) with rendering loss and geometry

loss (Sec. 5.3). The details of the training process can be

found in the Appendix.

5.1. Training Data Preparation on MegaSynth

To get training data, we render input views and target super-

visions from the synthesized MegaSynth scenes. We sample

cameras and then render RGB and depth images accordingly.

We do not distinguish the input views and target views, i.e.,

they will be used interchangeably during training.

The main challenge of this data creation pipeline is the

camera pose sampling. We empirically found that a careful

design of camera sampling distribution can largely improve

learning efficiency, model generalization, and training stabil-

ity. We next detail our camera sampling process.

Basic rules. The cameras are sampled to keep a minimal

distance from any objects in the scene, preventing the camera

from losing context and avoiding the near-clipping issue. We

randomly sample the field-of-view (FoV) of cameras, due to

the diversity of lenses used in real-world image capture.

Better scene coverage. We heuristically split the scene into

the inner and outer spaces, based on the distance to the scene

center. The cameras sampled in outer space always look

at the scene center, ensuring better view coverage. Mean-

while, the cameras in the inner space are encouraged to have
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more diverse poses, e.g. the orientations are randomly sam-

pled within pre-defined ranges, increasing the diversity and

matching real-world camera pose distribution.

Constrained camera baseline. The randomly sampled cam-

eras in the outer part of the scene tend to have large baselines.

To improve diversity, we choose to sample more scenes and

cameras with slightly smaller baselines, aligning with real-

world camera distribution. Thus, instead of sampling camera

position in all free space, we first sample a distance range

and then sample the camera within the constrained space.

5.2. Mixed Data Training

In training, we leverage distinct advantages from both

the synthesized MegaSynth renderings and the real-world

dataset (e.g., DL3DV). The synthesized data, with its di-

versity and scale, provide a foundation for models to learn

general reconstruction priors of geometry, texture, and light-

ing. Moreover, easy access to accurate metadata (e.g., depth

images and noise-free camera information) enhances geo-

metric understanding and stabilizes training.

Meanwhile, real-world data offers authenticity that is hard

to synthesize yet crucial for model robustness. For instance,

it captures real-world imperfections like sensor noise and

lighting artifacts, enhancing the model’s robustness for real-

world deployment. Additionally, its realistic semantics better

align the model with real-world scene distributions.

We find these datasets to be complementary. Our experi-

ments investigate two training strategies to leverage their syn-

ergy: (1) pre-training on the large-scale MegaSynth dataset

followed by fine-tuning on a smaller real-world dataset; and

(2) joint training on both datasets simultaneously. These

approaches balance scalability and authenticity.

5.3. Rendering and Geometry Losses

We follow the standard method for training large reconstruc-

tion models using photometric image rendering losses:

Limg = MSE(Ii, Îi) + λ · Perceptual(Ii, Îi), (5)

where λ is the weight for balancing the perceptual loss [36],

Ii is ground-truth target image, and Îi is image rendered

from predicted 3D Gaussians under target camera poses.

Our synthesized data naturally provides accurate geome-

try information, which is utilized to supervise the geometry

of the 3D Gaussians predicted by the LRM models. In detail,

both GS-LRM and Long-LRM (described in Sec. 3) predict

pixel-aligned 3D Gaussians, where each Gaussian corre-

sponds to a pixel in the input view. We supervise the center

location of the predicted 3D Gaussians using the ground-

truth geometry information. It is formulated as

Lloc = M · Smooth-L1(c,Gloc), (6)

where c and Gloc are ground-truth and predicted 3D Gaus-

sian location, respectively. The ground-truth Gaussian lo-

cation c is computed from the depth maps of input views.

Besides, the loss mask M masks out the pixels where the

depth is larger than a threshold (e.g., 100 under the scale-

normalized camera coordinate frame). This mask operation

helps avoid numerical instability during training. This geom-

etry loss proves particularly useful for scene-level reconstruc-

tion, which typically involves larger depth ranges, making it

challenging to infer geometry solely from photometric cues.

Additionally, it enhances the training convergence of the 3D

Gaussians, as discussed in Long-LRM.

The final loss function can be formulated as LS = LS
img+

γ ·LS

loc , where γ balances the strength of geometry loss term.

6. Experiments

In this section, we describe the experimental setting and

present evaluation results. Due to the space limit, implemen-

tation and training details are in the Appendix.

6.1. Datasets

Besides our MegaSynth, we use three datasets in our paper,

where DL3DV is the only one we take into training, i.e.,

others are evaluation-only.

DL3DV [47]1 is a large-scale dataset capturing diverse real-

world scenes. We split it into 6723 and 400 scenes for train-

ing and performing evaluation, respectively. The 400 testing

scene is composed of the DL3DV benchmark (140 outdoor

scenes) and 260 indoor scenes held out from its official train-

ing set to balance the indoor-outdoor ratio.

Hypersim [56] is a synthetic 3D indoor scene dataset with

ultra photo-realistic renderings, aimed at testing the gen-

eralization capability to out-of-distribution indoor scenes.

Hypersim is challenging due to its complicated geometry,

extreme lighting conditions, and large camera baselines. Hy-

persim also provides high-quality depth ground truth. We

use a test set composed of 302 scenes.

MipNeRF360, Tanks & Temples (TT) [6, 38] includes 11

scenes for further testing the out-of-domain generalization

capability of models on real data.

6.2. Evaluation and Baselines

We use 32 views as input and use 32 target novel view images

for evaluation. The input and target views are non-overlap

and are evenly sampled. We compare with three baselines:

GS-LRM and Long-LRM trained on DL3DV. These two

baselines aim at validating the effectiveness of our proposed

data. In detail, we train the GS-LRM and Long-LRM models

on the largest real scene-level dataset, DL3DV, using the

same training setting as ours.

Optimization-based 3DGS [37]. This baseline aims at

validating the overall performance of our method, as the

1We refer to the DL3DV-10K dataset. Only 7K scenes were used in this

project as it was completed before the full release.
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Figure 3. Reconstruction visualization on the in-domain DL3DV data. The results are from Long-LRM at resolution 256. We present

both indoor and outdoor results in the first and second rows, respectively. With our MegaSynth (denoted as ‘w. MegaSynth’), the model

performs better on thin structures (e.g., bottom left), complicated lighting (e.g., top middle), and cluttered scenes (e.g., top right).

Inf. Time

In-Domain Out-of-Domain (Zero-shot Generalization)

DL3DV Hypersim MipNeRF360 & TT

Model Training Dataset PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ AbsRel↓ δ1↑ PSNR↑ SSIM↑ LPIPS↓

RESOLUTION 128, 32 INPUT VIEWS

3DGS [37] N.A. (Per-scene Optimization) 5.2 min 24.27 0.817 0.166 20.67 0.672 0.293 0.320 0.715 16.46 0.458 0.405

Long-LRM [93] DL3DV
0.12 sec

24.18 0.812 0.173 23.41 0.790 0.210 0.272 0.763 19.68 0.569 0.312

Long-LRM (ours) DL3DV + MegaSynth 25.44 0.853 0.136 25.01 0.836 0.164 0.258 0.792 20.86 0.652 0.249

GS-LRM [88] DL3DV
0.11 sec

24.60 0.824 0.161 23.89 0.806 0.195 0.291 0.772 19.93 0.601 0.289

GS-LRM (ours) DL3DV + MegaSynth 25.75 0.859 0.130 25.46 0.846 0.154 0.258 0.800 21.19 0.672 0.235

RESOLUTION 256, 32 INPUT VIEWS

3DGS [37] N.A. (Per-scene Optimization) 6.4 min 23.26 0.778 0.206 21.75 0.690 0.294 0.319 0.709 16.06 0.436 0.421

Long-LRM [93] DL3DV
0.35 sec

23.71 0.779 0.236 22.51 0.767 0.267 0.291 0.753 18.61 0.465 0.421

Long-LRM (ours) DL3DV + MegaSynth 25.14 0.828 0.186 24.26 0.817 0.210 0.255 0.794 19.84 0.555 0.339

Table 1. Evaluation results against baseline methods. We report results at resolutions of 128 and 256. For resolution 256, we only report

results of Long-LRM as transformer-based GS-LRM is too slow. Our models are pre-trained on MegaSynth and then tuned on DL3DV. We

report NVS quality on all data and evaluate reconstruction by measuring geometry accuracy (rendered depth accuracy) on Hypersim.

optimization-based 3DGS usually demonstrates a promising

reconstruction quality. We use known camera information to

get point cloud initialization from the 32 input views using

COLMAP. We use official training hyper-parameters.

Additionally, we note that comparing with more advanced

3DGS methods is not the focus our work, as our target is

scaling up training data for improving feed-forward methods.

Our contributions can be directly ablated by comparing with

LRMs trained without our data.

6.3. Results

Table 1 presents our results, demonstrating that training with

both DL3DV and our MegaSynth dataset significantly im-

proves model performance, with PSNR gains ranging from

1.2 to 1.8 dB. This improvement is consistent across model

architectures (GS-LRM and Long-LRM), testing data (both

in-domain DL3DV and out-of-domain datasets), image reso-

lutions, and evaluation metrics, highlighting the effectiveness

of our synthesized MegaSynth in enhancing the reconstruc-

tion quality of LRMs for wide-coverage scenes. Moreover,

the rendering depth quality improves significantly as evalu-

ated on Hypersim, showing the benefit of improving geom-

etry quality by training with MegaSynth. Fig. 3 and Fig. 4

visually compare the reconstruction results for models with

and without MegaSynth. We observe remarkable improve-

ments in scenes with complicated scene structures, geoemtry,

material and lighting, aligning with data generation designs

(Sec. 4). Our approach also achieves substantially better

results than the optimization-based 3DGS method while of-

fering much faster inference speeds (e.g., over 2000 times

speed-up from 5 minutes to 0.1 seconds).

We observe a notable trend of utilizing MegaSynth. The

performance gains with MegaSynth on out-of-domain data

are often larger than those on in-domain data. For example,

Long-LRM achieves PSNR gains of 1.6 and 1.8 dB on Hy-

persim at resolutions of 128 and 256, respectively, surpassing

the 1.3 and 1.4 dB improvements observed on the in-domain

DL3DV dataset. GS-LRM results exhibits a similar pat-

tern. The results underscore MegaSynth’s effectiveness in

enhancing the generalization capability of LRMs.
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Figure 4. Reconstruction visualization on the out-of-domain data. The results are from Long-LRM at resolution 256. We include results

for both Hypersim and MipNeRF360 are presented in the first and second rows, respectively.

MegaSynth-only Training Real Data Tuning

Data
LS

loc

Scale (Trained w. only MegaSynth) (Using DL3DV)

Control Up Fail. Iter. PSNR↑ SSIM↑ LPIPS↓ Fail. Iter. PSNR↑ SSIM↑ LPIPS↓

(0) : : : 70k 17.18 0.519 0.445 80k 18.44 0.577 0.418

(1) 6 : : 45k 18.71 0.601 0.384 57k 21.87 0.738 0.266

(2) 6 6 : - 20.72 0.691 0.300 - 25.12 0.835 0.171

(3) 6 6 6 - 21.07 0.698 0.292 - 25.46 0.846 0.154

Table 2. Ablation study on data control, property and quantity. Results are reported on

the Hypersim dataset with resolution 128. We also report the number of iterations before

the job fails. Please see Appendix for data control details for experiment (0). The default

data is composed of 100K examples, and the scaled one contains 700K examples.

DL3DV-Test-Indoor

Data PSNR↑ SSIM↑ LPIPS↓

DL3DV 25.41 0.853 0.150

DL3DV + MegaSynth 26.75 0.890 0.116

DL3DV-Test-Outdoor

Data PSNR↑ SSIM↑ LPIPS↓

DL3DV 23.09 0.771 0.183

DL3DV + MegaSynth 23.89 0.803 0.157

Table 3. Performance gains on in-

door and outdoor test data. Results

are from 128-resolution GS-LRM. Test

data split details are in Sec. 6.1.

6.4. Ablation Studies

In this section, we examine the impact of MegaSynth data

quality, quantity, properties, and training paradigms for uti-

lizing synthesized data. Without additional specification, the

default experimental setup is the resolution-128 GS-LRM

with pre-training + fine-tuning training protocol.

MegaSynth data quality, quantity and property. Table 2

presents our results. In general, we observe a positive cor-

relation between performance of MegaSynth-only training

and subsequent real-data fine-tuning, underscoring the value

of MegaSynth in model training. Specifically, we refer

MegaSynth-only training to the model trained after the per-

training stage using only MegaSynth.

In Table 2 (0), training with a basic version of MegaSynth

without controlling the data diversity and complexity results

in lower performance than training with real data alone (Ta-

ble 4), suggesting that unregulated synthesized data fails to

enhance training. Additionally, we observe training instabil-

ity, with pre-training and fine-tuning failing after around 70K

iterations. We hypothesize that the high data randomness

contributes to this instability, impeding effective learning

and negatively affecting fine-tuning of real data.

Introducing control of data distribution, as shown in Ta-

ble 2 (1), improves both MegaSynth-only training and real-

data fine-tuning performance, emphasizing the importance

of data quality and effectiveness of our data control method.

However, training instability worsens, likely due to the in-

creased complexity that amplifies training challenges.

Incorporating metadata during training mitigates this in-

stability. Table 2 (2) shows that adding geometrical su-

pervision, LS

loc, significantly improves stability and overall

performance. This result underscores a key advantage of

MegaSynth: the ability to provide additional ground-truth

data. Expanding the dataset to include more scenes (i.e.,

700K scenes in total), as in Table 2 (3), yields additional

gains, showing the benefit of scale.

Indoor and outdoor improvements. We analyze the perfor-

mance gains in Table 3, focusing on both indoor and outdoor

test data from DL3DV. Although our synthesized MegaSynth

data is primarily focusing on indoor scenes, we observe im-

provements in outdoor scenes as well, with a notably larger

performance gain on indoor scenes. This suggests that the

MegaSynth contributes to a generalized enhancement in ge-

ometric and appearance understanding, enabling broader

generalization across diverse environments. At the same

time, improving MegaSynth with outdoor characteristics

would be an interesting direction.
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Hypersim

PSNR↑ SSIM↑ LPIPS↓

DL3DV Real-only 23.89 0.806 0.195

MegaSynth-only 21.50 0.719 0.272

Joint Training 25.33 0.844 0.157

Pre-training + Fine-tuning 25.46 0.846 0.154

Table 4. Ablation study on the training

framework to leverage MegaSynth. Re-

sults are reported with GS-LRM.

Figure 5. Visual comparison between

training with only MegaSynth and only

real data. We include two failure cases of

MegaSynth-only with failures highlighted.

Figure 6. Analysis of real data only

and MegaSynth-only performance

with different number of input views.

Training strategies. We evaluate different strategies for uti-

lizing MegaSynth. As shown in Table 4, training exclusively

on MegaSynth (row 2) achieves performance comparable to

training on real data (row 1), highlighting the effectiveness

of MegaSynth and supporting our hypothesis that explicit

semantics are not required for training scene reconstruction

models. We visualize the results in Fig. 5. We find the model

performs closely in most of the scenes but is much worse on

complicated geometry patterns and large scene scales that

are hard to model in synthesized data.

We further compare two approaches: (i) joint training on

both synthesized MegaSynth and real data in row 3, and (ii)

pre-training on MegaSynth followed by fine-tuning on real

data in row 4. As shown in Table 4, the second approach

yields slightly better performance, though the performance

gap is minimal. This suggests that the model effectively

learns the joint distribution of synthesized and real data

without catastrophic forgetting during fine-tuning, indicating

a degree of distribution alignment between MegaSynth and

real data. Additionally, this experiment confirms that the

performance gain results from the enhanced reconstruction

capability acquired through MegaSynth, rather than simply

from additional training iterations.

6.5. Analysis

We perform a more detailed analysis of MegaSynth, espe-

cially its effectiveness against other synthetic data and appli-

cation to other 3D tasks.

Analysis on different numbers of input views. We ex-

tend our model trained with MegaSynth to scenarios with

fewer input views, training GS-LRM with inputs of 8, 16,

24, and 32 views using either real-world data alone or a

combination of real-world and MegaSynth data. As shown

in Fig. 6, GS-LRM trained with both DL3DV and synthe-

sized MegaSynth data demonstrates improved performance

as the number of input views increases. Notably, an almost

constant performance gap remains regardless of the number

of views, which we attribute to the semantic gap between

DL3DV and MegaSynth. These results highlight the effec-

tiveness of MegaSynth for sparse-view reconstruction and

suggest that semantic alignment is not a primary driver of

3D reconstruction performance.

Advantages over other synthetic datasets. We experiment

with using other synthetic datasets for training LRMs. As

shown in Table 5, Kurbic [23] (data released in SRT [58])

DL3DV Hypersim MipNeRF360 & TT

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

DL3DV 18.31 0.555 0.391 18.43 0.602 0.373 15.59 0.550 0.332

DL3DV+Kubric [23] 18.28 0.552 0.395 18.46 0.600 0.375 15.49 0.546 0.340

DL3DV+Front3D [20] 18.40 0.558 0.389 18.48 0.603 0.370 15.63 0.551 0.329

DL3DV+MegaSynth 19.58 0.592 0.338 19.88 0.638 0.324 16.72 0.592 0.303

Table 5. Comparison with other synthetic datasets. We report

results with 8 input views and GS-LRM under resolution 128.

AbsRel (↓) δ1(↑)

Depth Anything V2 0.213 0.761

Tuned on MegaSynth 0.158 0.799

Table 6. MegaSynth benefits

monocular depth estimation.

DL3DV Ours Front3D

Geom. Difficulty (↓) 1.65 1.35 3.00

Diversity (↓) 1.40 1.60 3.00

Table 7. User study of data dif-

ficulty and diversity.

and Front3D [20] fail to improve LRM performance, while

MegaSynth benefits the model across all test datasets consis-

tently. In detail, Kurbic contains 1 million scenes radnomly

composed by realistic 3D assets; Front3D is composed of

6,000 indoor scenes designed by artists. The results imply

that realistic 3D assets or scene composition is not the gau-

rantee for improving reconstruction quality. Instead, recon-

struction model benefits from data with better non-semantic

quality, e.g. geometry difficulty and scene diversity.

MegaSynth also helps other tasks. We fine-tune Depth

Anything V2 ViT-B model on MegaSynth and evaluate on

Hypersim. Results in Table 6 shows that MegaSynth helps

improving monocular depth estimation, demonstrating the

potential of MegaSynth to be used for other 3D tasks.

Comparison with real data. Tab. 7 presents a user study

ranking geometry difficulty and scene diversity of datasets,

showing our comparability with real data and advantage over

the other synthetic data Front3D. Please see more analysis

on measuring alignment with real data in Appendix.

7. Conclusion

We introduce MegaSynth, a non-semantic procedurally gen-

erated dataset, to improve LRMs for reconstructing wide-

coverage scenes. MegaSynth benefits from its scalability

and controllability, improving the model’s understanding of

geometry and appearance. Experiments show MegaSynth’s

capability of improving LRM reconstruction quality via both

pre-training and joint training. The performance gains are

consistent over different model architectures, test data do-

mains, and input/output resolutions. Interestingly, LRMs

trained sorely with MegaSynth demonstrate comparable per-

formance with using real data, demonstrating that reconstruc-

tion is almost a non-semantic/low-level task.
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