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Abstract

We study the online learnability of hypothesis classes with respect to arbitrary, but bounded loss
functions. No characterization of online learnability is known at this level of generality. In this
paper, we close this gap by showing that existing techniques can be used to characterize any online
learning problem with a bounded loss function. Along the way, we give a new scale-sensitive
combinatorial dimension, named the Sequential Minimax dimension, that generalizes all existing
dimensions in online learning theory and provides upper and lower bounds on the minimax value.
Keywords: Online Learning, Supervised Learning, Learnability

1. Introduction

In the supervised online learning model, a learner plays a repeated game against an adversary over
T € N rounds. In each round ¢ € [T, an adversary picks a labeled example (x¢,y;) € X' x ) and
reveals x; to the learner. The learner observes x, picks a probability measure p; over the prediction
space Z, and then makes a randomized prediction z; ~ ;. Finally, the adversary reveals the true
label y; and the learner suffers the loss ¢(y;, z¢), where £ : V x Z — Rx¢ is some pre-specified,
bounded loss function. For a hypothesis class # C Z% known apriori to the learner, the goal of the
learner is to make predictions such that its expected regret, defined as the difference between the
expected cumulative loss of the learner’s predictions and that of the best-fixed hypothesis in H, is
small. We say that a tuple (X, ), Z,H, () is online learnable if there exists an online learner such
that its expected regret is a sublinear function of 7', for any strategy of the adversary.
Given a tuple (X, Y, Z,H, £) one is often interested in answering the following question:

What are necessary and sufficient conditions for (X', ), Z, #, ¢) to be online learnable?

For instance, when Z = ) and ¢(y, z) = 1{y # z}, online learnability has been characterized in
terms of the Littlestone dimension of % C Z%, henceforth denoted as L(H). Thatis, H C Z¥ s
online learnable if and only if L(#H) < oo (Littlestone, 1987; Daniely et al., 2011; Hanneke et al.,
2023). Similarly, when Z = Y = [-1,1] and ¢(y,2) = |y — z|, the sequential fat-shattering
dimension of X C Z<, denoted sfaty(’H), characterizes the online learnability of H. A class
H C Z?% is online learnable if and only if sfat, (1) < oo at every scale v > 0 (Rakhlin et al.,
2015a). Analogous dimensions for ranking and list learning have also been established and shown
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to characterize online learnability in their respective settings (Raman et al., 2024a; Moran et al.,
2023).

Existing characterizations of online learnability follow three steps. First, one identifies a com-
binatorial parameter, like the Littlestone or sequential fat-shattering dimension, whose finiteness
provides an obvious necessary condition. Then, one shows that the finiteness of such a dimension
is sufficient for online learnability under a suitable notion of realizability, where one places an as-
sumption on the label-generating process. This step involves constructing a learning algorithm that
computes the combinatorial dimension as a subroutine. These two steps were first outlined in the
seminal work by Littlestone (1987). Finally, to complete the proof of sufficiency, the realizable
learner is converted into an agnostic learner using the conversion introduced by Ben-David et al.
(2009). By the end, the finiteness of the combinatorial dimension is established as both a necessary
and sufficient condition for online learnability.

While this technique has been used to characterize online learnability for specific tuples, a gen-
eral characterization for an arbitrary tuple (X,Y, Z,H, /) is missing from the literature. In fact,
the only known sequential complexity measure for an arbitrary learning problem is the sequential
Rademacher complexity of the loss class £ o H := {(z,y) — £(y,h(x)) : h € H}. In particular,
Rakhlin et al. (2015a) show that if the sequential Rademacher complexity of the loss class £ o ‘H
is a sublinear function of 7', then (X', Y, Z,H,¥) is online learnable. However, even for natural
problems like online multiclass classification (Hanneke et al., 2023) and linear regression (Raman
et al., 2024b), sublinear sequential Rademacher complexity is not necessary for online learnability.

Main Contributions. In this paper, we show that the previously outlined procedure for character-
izing online learnability is universal - it works for any learning tuple (X, ), Z,H, () as long as ¢
is bounded. In particular, we identify a new scale-sensitive combinatorial dimension, termed the
Sequential Minimax dimension (SMdim), whose finiteness at every scale is an obvious necessary
condition for online learnability. Then, by identifying the right notion of realizability and provid-
ing a new realizable-to-agnostic conversion, we establish that the finiteness of the SMdim is also
sufficient for online learnability. Finally, and perhaps most surprisingly, we show that the SMdim
reduces exactly to existing combinatorial dimensions in their respective setting. This includes the
case where Z = ), like the Littlestone and sequential fat-shattering dimensions, as well as the
case where Z # ), like the (k + 1)-Littlestone dimension from Moran et al. (2023) and Measure
shattering dimension from Raman et al. (2024a).

At the highest level of generality, the SMdim may not be insightful as it is an abstract com-
binatorial object that cannot be efficiently computed. However, given a specific learning problem
(X,Y,Z,H,¢), one can use this object to define more concrete combinatorial objects that pro-
vide better insight into the hardness of learning and the minimax rates. In fact, in the proof of
Theorem 10, our techniques illustrate how one can use tools from discrete geometry to show that
existing combinatorial dimensions are just special instances of the SMdim. Thus, beyond providing
a unification of existing results in online learnability, the SMdim provides a good starting point for
understanding the true complexity of a learning problem (X', Y, Z, H, /).

1.1. Related Works

Characterizing learnability in terms of complexity measures has a long rich history in statistical
learning theory, originating from the seminal work of Vapnik and Chervonenkis (1971). In online
learning, Littlestone (1987) showed that a combinatorial parameter, later named the Littlestone
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dimension, provides a quantitative characterization of online binary classification in the realizable
setting. Twenty-two years later, Ben-David et al. (2009) proved that the Littlestone dimension also
provides a tight quantitative characterization of online binary classification in the agnostic setting.
Daniely et al. (2011) generalized the Littlestone dimension to multiclass classification and showed
that it fully characterizes online learnability when the label space is finite. Recently, Hanneke et al.
(2023) proved that the multiclass extension of the Littlestone dimension characterizes multiclass
learnability under the 0-1 loss even when the label space is unbounded. In a parallel line of work,
Rakhlin et al. (2015a,b) defined the sequential fat-shattering dimension and showed that it tightly
characterizes the online learnability of scalar-valued regression with respect to the absolute value
loss. In addition, they defined a general complexity measure called the sequential Rademacher
complexity and proved that it upper bounds the minimax expected regret of any supervised online
learning game. In a similar spirit, we define a combinatorial dimension that upper and lower bounds
the minimax expected regret of any supervised online learning game.

The proof techniques in online learning are generally constructive and result in beautiful algo-
rithms such as Follow The (Regularized) Leader, Hedge, Multiplicative Weights, Online Gradient
Descent, and so forth. In online binary classification, Littlestone (1987) proposed the Standard Op-
timal Algorithm and proved its optimality in the realizable setting. Daniely et al. (2011) and Rakhlin
et al. (2015a) generalize this algorithm to multiclass classification and scalar-valued regression re-
spectively. The idea of the Standard Optimal Algorithm is foundational in online learning and still
appears in more recent works by Moran et al. (2023), Filmus et al. (2023), and Raman et al. (2024a).
A common theme in these variants of the Standard Optimal Algorithm is their use of combinatorial
dimensions to make predictions. Similarly, Rakhlin et al. (2012) use the sequential Rademacher
complexity to directly construct a generic online learner in the agnostic setting. However, their
online learner requires the sequential Rademacher complexity of the loss class to be sublinear in
T, and thus does not work for arbitrary tuples (X', ), Z,H, (). Closing this gap, we define a new
scale-sensitive dimension, named the Sequential Minimax dimension, and use it to give a generic
online learner for any tuple (X, Y, Z,H, ().

Finally, we compare our work to the recent work by Blanchard (2022) on universal online learn-
ing for bounded losses. We highlight three main differences. First, in our setup, there exists a
function class F , and the goal of the learner is to drive the expected regret with respect to F to 0. In
contrast, there is no function class in the work by Blanchard (2022). Instead, the stream is labeled
by some unknown measurable function and the goal is to drive the average cumulative loss to after
placing some restrictions on the sequence of instances that can be chosen by the adversary. Second,
we place no restrictions on the sequence of instances the adversary may reveal to the learner (the
restriction is instead placed on how the stream is labeled). In contrast, Blanchard (2022) considers a
collection of stochastic processes and restrict the adversary to play a sequence of instances sampled
according to a process from this set. Finally, in our setup, the prediction space and label space
may be different. In contrast, Blanchard (2022) only studies the case where the prediction and label
space are the same.

2. Preliminaries
2.1. Notation

Let X denote the instance space, ) denote the label space, and Z denote the prediction space. For
a sigma algebra o(Z) on the prediction space Z, define II(Z) to be the set of all distributions on
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(Z,0(Z)). For any set S € o(Z), let S¢ denote its complement. Let # C Z% denote an arbitrary
hypothesis class consisting of predictors & : X — Z that maps an instance to a prediction. Given
any prediction z € Z and a label y € ), we consider a loss function £ : J) x Z — R>g. We put no
restrictions on the loss function ¢, except that it is bounded, sup, , £(y, z) < c for some ¢ € Rx.
In particular, the loss can asymmetric, and therefore we reserve the first argument for the label and
the second argument for the prediction. Finally, [N] := {1,2,...,N}.

2.2. Supervised Online Learning

In the supervised online learning setting, an adversary plays a sequential game with the learner
over 7' rounds. In each round ¢t € [T, the adversary selects a labeled instance (x¢,y:) € X' x YV
and reveals z; to the learner. The learner picks a probability measure p; € II(Z) and then makes
a randomized prediction z; ~ u,. Finally, the adversary reveals the feedback ¥, and the learner
suffers the loss £(y;, 2;). Given a hypothesis class H C Z?%, the goal of the learner is to output
randomized predictions z; such that its expected cumulative loss is close to the smallest possible
cumulative loss over hypotheses in H.

We follow the convention in online learning literature (see, e.g., Cesa-Bianchi and Lugosi (2006,
Chapter 4) by defining a randomized learner as a sequence of deterministic mappings to probability
distributions.

Definition 1 (Supervised Online Learning Algorithm) A supervised online learning algorithm
is a deterministic mapping A : (X x V)* x X — II(Z) that maps past examples and the newly
revealed instance x € X to a probability measure p € 11(Z). The learner then randomly samples
z ~ 4 to make a prediction.

Remark 2 Our definition of supervised online learning algorithm prevents an algorithm from us-
ing the realizations of its past predictions to make future predictions. While this may seem as a
restriction at first, our upper bounds are achievable using online learning algorithms of exactly this
type. Moreover, in Appendix A, we show that our lower bounds can be generalized to algorithms
which can use past realizations of their predictions to make future plays.

Although A is a deterministic mapping, the prediction z ~ g is random. Restricting the range of
A to be the set of Dirac measures on Z yields a deterministic online learner. When the context is
clear, with a slight abuse of notation, we use .A(x) to denote the random sample z drawn from the
distribution that A outputs. We say that # is online learnable with respect to ¢ if there exists an
online learning algorithm A with “small” expected regret:

T T
RA(T, H ,{) = sup (ZE[@(%, A(z))] - jnf > by, h(q:t))) .
t=1

(@1,y1) 55 (T y7) \ =1

Definition 3 (Supervised Online Learnability) A hypothesis class H C Z% is online learnable
with respect to € if and only if inf 4 R4(T, H,¢) = o(T).

Implicit in our definition of expected regret and online learnability is the fact that the adversary
is oblivious — it must pick the entire sequence of examples before the game begins. In this paper,
we will always assume an oblivious adversary. That said, all our results also apply to adaptive
adversaries given our definition of an online learning algorithm and the standard conversion of
oblivious to adaptive regret bounds (see Exercise 4.1 in Cesa-Bianchi and Lugosi (20006)).
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2.3. Combinatorial dimensions

In online learning theory, combinatorial dimensions play an important role in providing crisp quanti-
tative characterizations of learnability. Formally, we define a combinatorial dimension as a function
D that maps (, ¢) to NU{0, co} and satisfies the following two properties: (1) H is online learnable
with respect to £ if and only if D(#, /) < oo and (2) the minimax expected regret inf 4 R 4(T', H, ¢)
depends only on D(H,¢) and T'. In particular, inf 4 R 4(7T', H, ¢) should not depend on any other
property of the tuple (X', Y, Z,H, () such as || or | Z|. We also allow a combinatorial dimension to
take a scale parameter as an input. That is, a scale-sensitive combinatorial dimension is a function D
that maps (H, ¢) and a scale v > 0 to NU {0, oo} with the following two properties: (1) # is online
learnable with respect to ¢ if and only if D(H,¢,~) < oo for every v > 0 and (2) the minimax
expected regret inf 4 R4 (T, H,¢) can be lower- and upper bounded in terms of 7" and D(H, ¢, -).
Our definition of a combinatorial dimension is similar to the definition given by Ben-David et al.
(2019) with two key differences. In particular, the notion of dimension given by Ben-David et al.
(2019) requires D(#, ¢) to satisfy the finite-character property (see Section 5), but does not require
it to provide a quantitative characterization of learnability.

Nevertheless, our definition of dimension also captures all existing combinatorial dimensions in
online learning theory, such as the Littlestone and sequential fat-shattering dimension. These dimen-
sions are typically defined in terms of trees, a basic combinatorial object that captures the temporal
dependence inherent in online learning. Given an instance space X and a (potentially uncountable)
set of objects M, a X'-valued, M-ary tree T of depth 7" is a complete rooted tree such that (1) each
internal node is labeled by an instance x € X and (2) for every internal node and object m € M,
there is an outgoing edge indexed by m. Such a tree can be identified by a sequence (71, ..., 77)
of labeling functions 7; : M!~! — X which provide the labels for each internal node. A path of
length T is given by a sequence of objects m = (mq,...,my) € ML, Then, T;(m1,...,mi_1)
gives the label of the node by following the path (m, ..., m;_1) starting from the root node, going
down the edges indexed by the m;’s. We let 71 € X denote the instance labeling the root node.
For brevity, we define m«; = (mq, ..., my_1) and therefore write T;(m1,...,mi—1) = Ty(m<y).
Analogously, we let m<; = (mq, ..., ms).

Often, it is useful to label the edges of a tree with some auxiliary information. Given a X'-
valued, M-ary tree 7 of depth T" and a (potentially uncountable) set of objects A/, we can formally
label the edges of T using objects in A/ by considering a sequence (f1,..., fr) of edge-labeling
functions f; : M® — M. For each depth ¢ € [T, the function f; takes as input a path m<; of length
t and outputs an object in /. Accordingly, we can think of the object f;(m<;) as labeling the edge
indexed by m; after following the path m ., down the tree. We now use this notation to rigorously
define existing combinatorial dimensions in online learning.

We start with the Littlestone dimension, which is known to characterize binary/multiclass online
classification. In this setting, we take Y = Z and {(y, z) = 1{y # z}.

Definition 4 (Littlestone dimension (Littlestone, 1987; Daniely et al., 2011)) Let 7 be a com-
plete, X-valued, {+1}-ary tree of depth d. The tree T is shattered by H C Z7% if there ex-
ists a sequence (f1,...,fq) of edge-labeling functions f; : {£1}' — Y such that for every
path o = (01,...,0q) € {£1}9, there exists a hypothesis h, € H such that for all t € [d),
ho(Ti(o<t)) = fi(o<t) and fi((o<t, —1)) # fi((0<t,+1)). The Littlestone dimension of H, de-
noted L(H), is the maximal depth of a tree T that is shattered by H. If there exists shattered trees
of arbitrarily large depth, we say L(H) = co.
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For online regression, where we take Z = ) = [—1, 1] and {(y, z) = |y — z|, online learnability

is characterized by the sequential-fat shattering (seq-fat) dimension.

Definition 5 (Sequential fat-shattering dimension (Rakhlin et al., 2015a)) Let 7 be a complete,
X-valued, {+1}-ary tree of depth d and fix v € (0,1]. The tree T is ~y-shattered by H C Z% if
there exists a sequence (f1, ..., fq) of edge-labeling functions f; : {£1}* — Y such that for every
path o = (01,...,04) € {£1}%, there exists a hypothesis h, € H such that for all t € [d),
01(ho (Ti(o<t)) — filot) = 7 and fi(0<t,~1)) = fi(0i, +1)). The sequential far-shattering
dimension of H at scale vy, denoted sfat~(H), is the maximal depth of a tree T that is ~y-shattered
by M. If there exists y-shattered trees of arbitrarily large depth, we say that sfat.,(H) = oc.

Recently, Moran et al. (2023) study list online classification, where we take Z = {S : S C
V,|S| < k} and £(y,z) = 1{y ¢ z}. Here, they show that the (k + 1)- Littlestone dimension,
characterizes online learnability of a hypothesis class H C Z¥.

Definition 6 ((k + 1)-Littlestone dimension (Moran et al., 2023)) Let T be a complete, X -valued,
[k+41]-ary tree of depth d. The tree T is shattered by H C Z if there exists a sequence (f1, ..., fq)
of edge-labeling functions f; : [k + 1]* — Y such that for every path p = (p1,. .., pq) € [k + 1]%,
there exists a hypothesis h, € H such that for all t € [d], fi(p<t)) € he(Ti(0<t)) and for all
distinct i,j € [k + 1], fi((p<t,7)) # fi((p<t,])). The (k + 1)-Littlestone dimension of H denoted
Li11(H), is the maximal depth of a tree T that is shattered by H. If there exists shattered trees of
arbitrarily large depth, we say that L1 (H) = oc.

Finally, in the “flip” of list online classification, where )) C ¢ (Z) is some collection of measur-
able subsets of Z and ¢(y,z) = 1{z ¢ y}, Raman et al. (2024a) show that the Measure shattering
dimension characterizes online learnability of a hypothesis class H C Z.

Definition 7 (Measure shattering dimension (Raman et al., 2024a)) Let T be a complete X -valued,
II(Z)-ary tree of depth d, and fix v € (0,1]. The tree T is y-shattered by H C Z% if there ex-
ists a sequence (f1,. .., fq) of edge-labeling set-valued functions f; : II(Z)* — Y such that for
every path ju = (p1,. .., puq) € II(Z)% there exists a hypothesis h, € H such that for all t € [d],
hu(Ti(p<t)) € fi(p<e) and pe(fi(p<e)) < 1 —~. The Measure Shattering dimension (MSdim) of
H at scale vy, denoted MS.,(H,Y), is the maximal depth of a tree T that is ~y-shattered by H. If
there exists y-shattered trees of arbitrarily large depth, we say MS(H,)) = oc.

3. A Unifying Combinatorial Dimension

Following the procedure outlined in the introduction, we begin our characterization of online learn-
ability by defining a dimension that provides an “obvious” necessary condition. In the context
of online learning, this means giving the adversary a strategy against every possible move of the
learner. Since the learner plays measures in I1( Z), it suffices to consider a tree where each internal
node has an outgoing edge labeled by an element of ) for every measure in II(Z). For any predic-
tion p € TI(Z) by the learner, the label on the edge associated to u gives the element y € ) that the
adversary should play to force the learner to suffer a large expected loss.
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Definition 8 (Sequential Minimax dimension) Let 7 be a complete X -valued, I1( Z)-ary tree of
depth d, and fix v > 0. The tree T is y-shattered by H C Z% with respectto 0 : Y x Z — R>o
if there exists a sequence (f1, ..., fq) of edge-labeling functions f; : II(Z)! — Y such that for
every path i = (p1,...,pq) € I(Z)% there exists a hypothesis h, € H such that for all
t € [dl, Esup, [U(filp<e), 2)] > £(fi(p<e), hu(Te(p<t))) + 7. The sequential minimax dimen-
sion (SMdim) of H at scale vy, denoted SM.(H, (), is the maximal depth of a tree T that is -
shattered by H. If there exists y-shattered trees of arbitrarily large depth, we say SM(H,{) =
oo. Analogously, we can define SMo(H, {) by requiring strict inequality, E.., [€(f:(p<t), z)] >
C(felp<e), hu(Te(p<t))).

Remark 9 The astute reader might notice the strong similarity between the MSdim and the SMdim.
This similarity is not coincidental — the SMdim is a generalization of the MSdim designed to capture
general loss functions and go beyond realizability.

Observe that the SMdim is a function of both the hypothesis class 7 and the loss function .
However, when it is clear from context, we drop the dependence of ¢ and only write SM, (). As
with most scale-sensitive dimensions, SMdim has a monotonicity property, namely, SM., (H) <
SM,,, (H) for any 72 < 1.

In Section 4, we show that the finiteness of the SMdim is both necessary and sufficient for
online learnability. Theorem 10 then shows that the SMdim unifies several existing results in online
supervised learning.

Theorem 10 (Unifying Learnability) The following statements are true.
(i) IfY = Z and ((y, z) = 1{y # 2}, then SM(H) = L(H) for all v € [0, 3].

(i) If Y = Z=[-1,1]and l(y,z) = |y — =
0<vy <vy<1l

, then sfat (H) < SM,(H) < sfat.(H) for every

(i) If Z2=4{S: S C)Y,|S| <k}and l(y,z) = 1{y & z}, then SM(H) = Ly1(H) for every
v €10, ;=21

(iv) If Y Co(Z2)and Uy, z) = 1{z ¢ y}, then SM(H) = MS(H,Y) forall y € [0, 1].

As an immediate consequence, Theorem 10 shows that the SMdim provides a tight quantitative
characterization of online learnability for these problems. Our proof of Theorem 10, found in Ap-
pendix B, uses combinatorial arguments. In all four cases, our proof uses the following strategy. To
show that the SMdim upper bounds the existing dimension, we take the shattered tree guaranteed by
the existing dimension and for every node, use the labels on its outgoing edges to add new, labeled
edges indexed by measures in II(Z). We then remove all the old edges. To show that the SMdim
lower bounds the existing dimension, we take a shattered SMdim tree, and for every node, use the
labels on its outgoing edges to add new, labeled edges that match the requirements of the existing
dimension. Finally, we remove all the old edges indexed by measures in II(Z). In either direction,
the addition of new, labeled edges requires tools from discrete geometry. For example, the proof of
(ii) uses the celebrated Helly’s theorem (Radon, 1921). Thus, despite being an abstract object, the
techniques used in the proof of Theorem 10 show how one can use tools from discrete geometry to
derive more concrete dimensions for particular choices of (X', Y, Z, H, ().
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4. Bounding Minimax Expected Regret

Our main result in this section shows that the finiteness of SMdim at every scale v > 0 is both
necessary and sufficient for online learnability.

Theorem 11 (Minimax Expected Regret) For any (X,Y, Z,H, () with sup.,~o SM,(H) > 0,

sup v SM,(H) < inf R4(T,#H,¢) < inf {’yT + ¢ SMy(H) + 40\/ SM,,(H) Tln(T)} .
>0 A ~v>0

Moreover, the upper bound and lower bound can be tight up to logarithmic factors in T.

The upper bound in Theorem 9 is o(7") as long as SM,(H) < oo for every v > 0. Indeed,
the average regret satisfies lim supy_, . infy~o {7 + ¢ SMy(H)/T + 4¢y/SMy(H) In(T)/T} <
inf,~o limsupy_, {7 + ¢ SMy(H)/T + 4¢y/SMy(H) In(T)/T} = inf,~0{7} = 0, where the
first equality follows because SM.,(H) < oo, Vv > 0.

The condition sup.,~.o SM, (H) > 0 is necessary to ensure a non-negative lower bound. Raman
et al. (2024a) provide an example of a tuple (X, Y, Z,H, {) with sup, -, MS,(H) = 0 where the
corresponding minimax expected regret is negative. Moreover, Raman et al. (2024a, Example 5.1)
provide a tuple (X, Y, Z,H, (), where there exists an algorithm A such that inf 4 R4 (T, H,¢) <
sup,~o v MSy(#). Since SM, (H) = MS,(#) by Theorem 10, the lower bound in Theorem 11
cannot be improved in full generality. For the tightness of the upper bound, consider scalar-valued
regression where Y = Z = [—1,1], ¢(y,z) = |y — z|. Since, by Theorem 10, we have that
SM,,(H) < sfat./(#) for all 4/ < , Theorem 11 implies that inf 4 R (T, H, ¢) < inf\~o{29T +
2sfat, (H) + 44/ sfat, (H) TIn(T) }. However, for scalar-valued regression, Rakhlin et al. (2015a)
show that inf 4 R4(T,H, ) > sup,~q §+/sfat,(H)T. Thus, the upper bound in Theorem 11 is
tight up to O(/In(T)).

The proof of Theorem 11 will follow the procedure outlined in the introduction. Namely, the
lower bound will follow just from the definition of the SMdim. As for the upper bound, in Section
4.2, we will first define a notion of realizability we term e;-realizability. Then, in Lemma 12, we
will constructively show that the finiteness of the SMdim at every scale is sufficient for online
learnability under &;-realizability. Finally, in Section 4.3, we will provide a conversion of our ;-
realizable learner into a fully agnostic online learner with the stated upper bound in Theorem 11.

4.1. Proof sketch of lower bound

Our proof of the lower bound in Theorem 11 is constructive. Given an algorithm and a scale v > 0,
we construct a stream by traversing the sequential minimax tree of depth SM, (), adapting to the
deterministic sequence of measures the algorithm uses to make its randomized prediction. Then,
our claimed lower bound follows immediately from the definition of a shattered sequential minimax
tree. Since the proof of the lower bound is relatively straightforward, we defer it to Appendix D.

4.2. The ¢;-realizable setting

In the ¢;-realizable setting, an adversary plays a sequential game with the learner over 7" rounds. In
each round ¢ € [T, the adversary selects a thresholded labeled instance (x, (y¢, €¢)) € X x (Y %
[0, ¢]) and reveals x; to the learner. The learner selects a measure p; € II(Z) and makes a random-
ized prediction z; ~ p;. Finally, the adversary reveals both the true label y; and the threshold ¢; and
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the learner suffers the loss ¢(yq, z¢). A sequence of thresholded labeled examples { (z¢, (yt, et))}thl
is called e;-realizable if there exists a hypothesis h* € # such that {(y;, h*(z:)) < e for all
t € [T]. Given any &;-realizable stream, the goal of the learner is to output predictions such that
ST I{E.~p, [€(yt, 2)] > v+&:} is sublinear in 7. We can think of the thresholds ¢; as the adver-
sary additionally revealing the loss that the best fixed hypothesis in hindsight suffers on the labeled
instance (z¢, y¢). This intuition is critical to our construction of an agnostic learner in Section 4.3.
Note that if it is guaranteed ahead of time that ¢; = 0 for all ¢ € [T], then this setting boils down to
the standard realizable setting. Lemma 12 shows that the finiteness of SM., (#) at every scale v > 0
is sufficient for H to be online learnable in e;-realizable setting.

The e-additive noise setting is a widely used model in regression. The ¢ in these works typically
represents stochastic noise, which may be unbounded. In contrast, ¢; is always bounded in our
model. To the best of our knowledge, the ¢;-realizable model has not been previously studied in the
learning theory literature. However, this model may provide a more realistic framework for certain
practical learning scenarios and thus be of independent theoretical interest.

Lemma 12 (¢,-Realizable Learner) For any tuple (X,Y, Z,H, (), Algorithm 1 running on any
gi-realizable stream {(xy, (yi, €1)) Y1 outputs {u; }1_, such that

T
S U By [0y, 2)] > 7+ 21 ) < SML (). ()
t=1

Algorithm 1 Minimax Randomized Standard Optimal Algorithm (MRSOA)

Input: #, Target accuracy v > 0

Initialize Vj = H

fort=1,...,T do

Receive unlabeled example z; € X.

For all (y,e) € Y x [0, c], define V;—1(y,¢) :=={h € Vi_1 | L(y, h(xy)) < e}.

Define C; := {(y,e) € Y x [0,¢] : |Vi—1(y,e)| > 0}.

If SMy(Vi—1) = 0, pick p¢ € II(Z) such that E, ., [¢(y, z)] < € + ~y for all (y, ) € C;. Else,

[y = arg min max SM~ (Vi—1(y,€))-
pell(2)  (ye)e¥Yx[0.] i (v:2))
Exnpll(y,2)]>e+y
Predict z; ~ 1.
Receive feedback (y;, ) and update V; = Vi1 (yt, £¢).

end

To prove Lemma 12, we show that (i) on any round where E., ., [((y, 2:)] > v + € and
SM,(Vi—1) > 0, we have SM(V;) < SM,,(Vs—1) — 1, and (ii) if SM(V;—1) = 0 there exists a
distribution yi; € II(Z) such that IE, ,, [€(y¢, 2¢)] < v + €¢. We defer the proof to Appendix C.

Algorithm 1 can be viewed as a generalization of RSOA introduced by Raman et al. (2024a).
When &; = 0 for all ¢, then MRSOA reduces exactly to Algorithm 2 in Raman et al. (2024a). At
its core, Algorithm 1 is a version space algorithm based on principles similar to that of the standard
optimal algorithm (SOA) of Littlestone (1987). Recently, other variants of SOA have also been
introduced in various settings. These include the Bandit SOA by Daniely and Helbertal (2013), List
SOA by Moran et al. (2023), and randomized SOA by Filmus et al. (2023).
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4.3. Realizable-to-Agnostic conversion

Now, we show how to convert Algorithm 1 into an agnostic learner satisfying the guarantee in
Theorem 11. A primary approach to proving online agnostic upper bounds involves defining a set
of experts that exactly covers the hypothesis class and then running multiplicative weights (Cesa-
Bianchi and Lugosi, 2006) using these experts. This technique originated in work (Ben-David et al.,
2009) on binary classification and was later generalized by Daniely et al. (2011) to multiclass classi-
fication. Daniely et al. (2011)’s generalization involves simulating all possible labels in Y to update
the experts, thus making their upper bound vacuous when |)| is unbounded. Recently, Hanneke
et al. (2023) removed || from the upper bound by (1) constructing an approximate cover of the
hypothesis class instead of an exact cover and (2) using the feedback in the stream to update experts
rather than simulating all possible labels. Our proof of the upper bound in Theorem 11 combines
the ideas of both Daniely et al. (2011) and Hanneke et al. (2023). In particular, following Hanneke
et al. (2023), we construct an approximate cover of the hypothesis class but follow Daniely et al.
(2011) in simulating all possible loss values.

Proof (of upper bound in Theorem 11) Let (x1,y1),. .., (zp,yr) be the data stream and h* €
arg mingcq, Zthl £(yt, h(z¢)) be an optimal function in hind-sight. For a target accuracy v > 0,
let d, = SM,(H).

Defining Experts. Given time horizon 7', let Ly = {L C [T];|L| < d,} denote the set of all
possible subsets of [1'] with size at most d,. For a € [0,1], let {0,a,...,[<]a} be an a-cover
of the loss space [0,c|. For every L € Ly, define @, = {0,c,...,[<]a}” to be the set of all

functions from L to the a-cover of [0, c|. Given L € Ly and ¢;, € P, define an expert Ejij such
that

B (21) = MRSOA, (¢ | {i, 61 (i) hicrrpe 1))

where MRSOA <a:t | {7, 00(7) }ic m[t_l]> is the prediction of the Minimax Randomized Standard

Optimal Algorithm (MRSOA) running at scale -y that has updated on thresholded labeled examples
{(z4, (yl, or(i ))}zELﬂ t—1)- Let& =Uprer, U¢>L€<I>L{E L} denote the set of all Experts. Note that

T d~
€= ()" () < (3D
Multiplicative Weights as our Agnostic Learner. Finally, given our set of experts £, we run the

Multiplicative Weights Algorithm (MWA), denoted hereinafter as A, over the stream
($17y1)7 ey (xTvyT)

with a learning rate 7 = /2 1n(|€|)/T. Let B denote the random variable denoting the randomized
prediction of all experts (or their corresponding randomized algorithms) . Then, conditioned on B,
Theorem 21.11 of Shalev-Shwartz and Ben-David (2014) tells us that

T
Z]E yt7 .’,Ut ) | B < lnf Zé yt7 )) +c 2T1H(|5’) .

\/Qd Tn <20T>. )
(6%

Using |€]| < (%)dw, and taking expectations on both sides yields

T

Zé(ytwA(ft))

t=1

T

inf S 0(y,. B
]gégt; (ye, B(1)) | +

E <E

10
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Next, we show that the expected loss of the optimal expert is at most the loss of h* plus a sublinear
quantity.

Tracking the Best Expert. Define ¢; := ¢(y;, h*(x)) to be the loss of the optimal hypothesis in
hindsight on each round ¢. Define 1y = i-MRSOA, (2 | {i, ¢1(i)}iern—1)) to be the measure
returned by MRSOA,, (Algorithm 1) to make its randomized prediction given that the algorithm
has updated on thresholded labeled examples {(z;, (yi, #1.(7))) }icLnp—1)- We say that u-MRSOA,,
makes a mistake on round ¢ if B, ., [0(ys, 2)] > [ ]+ 7. As [&]a > &, the stream

&t &t

(o1, (1. [ e, s (s | | )

is [t ] a-realizable. Thus, with this notion of the mistake, Equation 1 tells us that MRSOA., makes
at most d, mistakes on the stream (z1, (y1, [£])), ..., (@7, (yr, [2] ).

Since ;-MRSOA,, is a deterministic mapping from the past examples to a probability measure
in II(Z), we can recursively define a sequence of time points where ;;-MRSOA,, had it run exactly
on this sequence of time points, would make mistakes at each time point. To that end, let

t; = min {t €T : Eupropy [0(y, 21)] > {%W o+ where p; = 1-MRSOA., (24| {})}

be the earliest time point, where a fresh, unupdated copy of .-MRSOA., makes a mistake if it exists.
Given t1, we recursively define ¢; for¢ > 1 as

. €
t; = min { >t s B, [C(ye, 2)] > [at-‘a + 7,

Ep. 1—1
where p1; = u-MRSOA,, <xt’ {tj, {i-‘ a} )}
«a j=1

if it exists. That is, ¢; is the earliest timepoint in [T'] after ¢;_; where u-MRSOA, having updated
i—
j=
reach an iteration where no such time point in [7'] can be found where -MRSOA., makes a mistake.

only on the sequence {(z¢,, (¥, {%W ))}i—} makes a mistake. We stop this process when we

Using the definitions above, let t1, to, . . ., denote the sequence of timepoints in [7] selected via
this recursive procedure. Define L* = {¢1,¢2..., } and ¢« be the function such that ¢« (t) =
{%] a foreacht € L*. Let E}ff* be the expert parametrized by the pair (L*, ¢r+). The expert

Ejfjf* exists because Equation (1) implies that |L*| < d,,.

Bounding the Loss of the Best Expert. By definition of the expert, we have

E7%* (2¢) = MRSOA, (iﬁt | {4, dr~ (i)}ieL*m[t_1]>

11
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for all ¢t € [T']. Let us define p1f = p-MRSOA, (zt | {1, ¢L*(i)}z‘eL*m[t—1])- Using the guarantee
of MRSOA (Algorithm 1), we obtain

T T
| o B m»] = 3 B [ )]
T T
et ] = [} 155 (o)

T
<cdy+ Y e+l +9T,
t=1

where the final inequality uses the fact that the indicator is 1 only on L* whose size is < d- and

[fla <&+ o

Completing the Proof. Finally, substituting this loss bound of the expert Eff* in Equation (2), we
obtain

T T
1 [Zﬁ(yt%(wt))l < ertedy+ol +9T + c\/deTln (M)

«
t=1 t=1
T

= inf > llye, () + edy + 4T + 2+ 2¢4/d, T (T),

t=1

where we pick & = 2¢ and use the fact that &, := ¢(y;, h*(z;)). Finally, note that cd, + 2c +
2c¢/d,\TIn(T) < cd, + 4c\/d,TIn(T). Since v > 0 is arbitrary, this completes our proof. W

5. SMdim and the Finite Character Property

In addition to characterizing learnability, existing combinatorial dimensions in learning theory sat-
isfy the “Finite Character Property” (FCP) (Ben-David et al., 2019; Attias et al., 2023).

Definition 13 (Finite Character Property (Ben-David et al., 2019)) A combinatorial dimension
D(H,¢,) is said to satisfy the finite character property if for every d € N and ~y > 0, the statement
D(H,¢,~) > d can be demonstrated by a finite set of domain point X C X, and a finite subset of
hypotheses H C H.

In fact, according to Ben-David et al. (2019), a dimension is any function D that maps (#, /) to
NU{0, co} and satisfies the following two properties: (1) H is learnable with respect to ¢ if and only
if D(#H,¢) < oo and (2) D satisfies the FCP. This definition of dimension differs from ours since (1)
it requires D to satisfy FCP and (2) it does not require D to provide a quantitative characterization.

Despite characterizing online learnability, the SMdim may not satisfy the FCP since it is de-
fined using trees with infinite width. Naturally, this motivates the following question: Under what
conditions on (X,Y, Z,H,{) does the SMdim satisfy the FCP?

One way that the SMdim can satisfy the FCP is if it can be equivalently represented using
trees with finite width. For example, in Section 3 we showed that the SMdim reduces to the Ldim,

12
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seq-fat dimension, (k + 1)-Ldim, all of which are defined using finite-width trees, and thus satisfy
the FCP. Additionally, we showed that SMdim reduces to MSdim from Raman et al. (2024a), who
established that MSdim can be written using finite width trees when the underlying set system has
a finite Helly number. A unifying property in all these settings is the fact that (), Z,¢) is a Helly
space, a generalization of “finite dimension” to abstract spaces. More formally, given any (), Z, ¢),
let By(y,r) := {z € Z : £(y, z) < r} denote the “ball” of radius r centered at y induced by the loss
0. LetBy(), Z) :={By(y,r) : y € Y, r € [0,c|} to be the set of all such balls. We say (Y, Z,¢) is
a Helly space if the Helly number of B;(), Z) is finite.

Definition 14 (Helly Number) Let S be a family of sets. The Helly number of S, denoted H(.S), is
the smallest number p € N such that for any collection of sets C C S whose intersection is empty,
there is a subset C' C C of size at most p whose intersection is empty.

The Helly number of a set system roughly quantifies the property that every sequence of sets
with empty intersection has a small sub-sequence with empty intersection. In this sense, we use the
Helly number of B/(Y, Z) to quantify a notion of “dimension” for the space (), Z, ().

Definition 15 (Helly Space) Let Z = ). Then, we say (Y, Z,{) is a Helly space if and only if
H(B¢(Y, Z)) < co. Define the Helly number of the space (Y, Z,0) as H(Y, Z,¢) := H(By(), 2)).

All existing work in supervised online learning theory has focused on Helly spaces. For example,
in classification with the 0-1 loss, one can verify that H()), Z,¢) = 2. For scalar-valued regres-
sion with absolute-value loss, Helly’s theorem (Radon, 1921) gives that H(), Z,¢) = 2. More
recently, Raman et al. (2024a) showed that for online ranking with the 0-1 ranking loss, we have
that H(), Z,¢) = 2. Online learning settings where H(), Z,¢) > 3 have also been studied. For
example, in list online classification H(Y, Z,¢) = k + 1 (Moran et al., 2023). In online learning
with set-valued feedback (Raman et al., 2024a), H(), Z,¢) = H()), where ) denotes an arbitrary
set system defined over Z.

Remarkably, in all of these aforementioned settings, the combinatorial dimensions that char-
acterize learnability are defined using trees whose width is exactly H(), Z,¢). More importantly,
our proofs establishing the equivalence between the SMdim and existing combinatorial dimensions
crucially utilized the Helly property of (), Z,¢) to compress the infinite width trees in the def-
inition of SMdim to finite-width trees. These facts naturally lead to the question of whether the
finiteness of H(Y, Z, ¢) provides a sufficient condition under which the SMdim can be represented
using finite-width trees, and more specifically, H(), Z, £)-width trees.

As an initial step towards answering this question, consider the p-shattering dimension defined
in Definition 16. The central combinatorial object in this dimension is an X'-valued, [p]-ary tree T,
where p € N. In such a tree, each internal node of 7 has p outgoing edges, where each edge is
labeled by a tuple in ) x [0,c]. The tuple (y,r) induces a ball By(y,r) := {z € Z : {(y,z) <
r} in the space (), Z,¢) and we further require that the collection-wise intersection of the balls
induced by the tuples labeling the p edges must be empty. Such a [p|-ary tree is shattered by
a hypothesis class if for every root-to-leaf path there exists a hypothesis whose outputs on the
sequence of instances lie in the balls induced by the tuples labeling the edges along the path.

Definition 16 (p-shattering dimension) Let ¢ : Z x ) — [0, c| be a loss function, p € N, and
v > 0. Let T be a complete X-valued, [p)-ary tree of depth d. The tree T is y-shattered by H C Z*
if there exists a sequence (f1, ..., fq) of edge-labeling functions f; : [p]' — Y x [0, ¢| such that

13
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for every path ¢ = (q1,...,qq) € [p]d, we have ﬂie[p} B (ftl((q<t,z')), f2((qet,d)) + ’y) = () and
there exists a hypothesis hq € M such that for all t € [d], hq(Ti(q<¢)) € B (f!a<t), [} (a<t)).
The p-shattering dimension of H at scale v, denoted p-dim.(H,¥), is the maximal depth of a
tree T that is y-shattered by H. If there exists y-shattered trees of arbitrarily large depth, we say
p-dim, (H, £) = oo.

Note that the tree in Definition 16 is parameterized by both p and . The number p controls the
width of the tree, while the number «y is used to constrain the tuples labeling the edges. When
p = H(Y, Z, /), the p-dim also reduces to all existing combinatorial dimensions in their respective
setting, and thus also provides a unification of supervised online learning theory. However, unlike
the SMdim, the H(Y, Z, ¢)-dim is defined in terms of finite-width trees whenever H(Y, Z, /) < oo.

Accordingly, it is natural to ask when can the SMdim be equivalently represented using the
finite-width trees in Definition 16. Lemma 17, proved in Appendix E, provides a partial answer
to this question by relating the SMdim and p-dim whenever (), Z, /) is a Helly space. The key
intuition behind the proof of Lemma 17 is that Helly spaces allows us to effectively “compress” the
infinite-width, I1( Z)-ary tree from the definition of SMdim to a finite-width, [H(), Z, ¢)]-ary tree
according to the definition of p-dim.

Lemma 17 (SMdim < p-dim) For every (X,Y, Z,H, ) such that p* := H(Y, Z,{) < oo, we
have SM,(H) < p*-dim./ (H) for all " < 7.

Lemma 17 implies that when H(Y, Z,¢) < oo, the finiteness of p*-dim. (#) at every scale v is
sufficient for online learnability. The following open question asks whether it is also necessary.
Suppose that p* := H(Y, Z,{) < oco. Does online learnability of H imply that p* -dim~ (H) < oo
for all v > 0? One way to resolve this question would be to show that p* -dim. (#) < SM,(#) for
all v > 0. A positive resolution implies that (), Z, ) being a Helly space is a sufficient condition
for SMdim to be equivalently represented using finite-width trees and therefore satisfy the FCP.
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Appendix A. A More General Lower Bound

In Appendix D, we derive a lower bound on the expected regret for online learning algorithms
that satisfy Definition 1. Here, we show that the same lower bound in Theorem 11 applies to a
much larger family of algorithms which can also use the realizations of past plays to make future
predictions. The proof is identical except now the adversary computes and uses the “expected”
measure that the learner will play on round to traverse down the SM tree. We expand on this below.

In full generality, a randomized learner is a sequence of maps f1, fo,..., fr where f; : X —
(Z)and f; : (X x Y)I71 x 271 x X — TI(Z). On round t, if the learner’s past predictions are
21, ..., 2t—1, then its prediction on round ¢ is z; ~ fi(21.4—1, Y1:t—1, 21:t—1, ¢ ). Now, we can define
the “expected” measure on round ¢ as:

gt($1:t—1, Y1:t—1, ﬂft)

= EZlel(wl) [Ez2~f2($1,y1,21,$2) [ ’ ‘E2z71~ft71($1:t72,y1:t72721:z72,9€t71) [ft(xlit—l’ Y1:t—-1, Z1:¢-1, xt)]” .

Note that g¢(x1.¢—1, Y1:t—1,x¢) is only a function of the data stream (x1,y1),..., (zp,yr) and so
it can be computed by the adversary before the game begins. Moreover, the expected regret can
be written in terms of the “expected” measures, and so our lower bounds applies to this learning
algorithm if the adversary uses g;’s to traverse down the SM tree as in the proof in Appendix D.

Appendix B. Proof of Theorem 10

In this section, we show that SMdim reduces to existing combinatorial dimensions. We start with
Lemma 18, which shows that SMdim = Ldim.

Lemma 18 (SMdim = Ldim) LetY = Z, H C 2%, and ((y, z) = 1{y # z}. Then, SM,(H) =
L(H) for all v € [0, 5.

Proof Fix v € (0, 5]. We first show that SM, (%) < L(H). Let T be a X-valued, II(Z)-ary tree of
depth d = SM,, () shattered by #. Let v be the root node of 7 and x denote the instance labeling
the node. Recall that v has an outgoing edge for each measure p € I1(Z). Let {y,},crm(z) be the
set of elements in ) that label the outgoing edges from v. We first claim that there at least two
distinct elements in the set {y, },cr1(z). For the sake of contradiction, suppose this is not the case.
That is, there is only one distinct element that labels the outgoing edges from v. Let y denote the
element that labels the outgoing edges from v. That is, y,, = y forall 1 € II(Z). Consider the Dirac
measure J, that puts all mass on y. Note that 6, € II(Z) and therefore there exists an outgoing edge
from v indexed by &, and labeled by y. However, it must be the case that P.s, [y # z] = 0. Since
~v > 0, the shattering condition required by Definition 8 cannot be met, which is a contradiction.
Accordingly, there is at least two distinct elements in the set {y, },cri(z).-
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Let y_1,y+1 be the distinct elements of the set {y,, } ueti(z)> and p—1, pi4q be the indices of the
edges labeled by y_1 and y 1 respectively. Let H_1 = {h, : p € (2)4, 1 = p_1} denote the set
of shattering hypothesis that corresponds to following a path down 7 that takes the outgoing edge
indexed p—; from the root node. Likewise define H ;. Keep the edges indexed by 1 and g4
and remove all other outgoing edges along with their corresponding subtree. Reindex the two edges
using {£1}. The root node v should now have two outgoing edges, indexed by {+1} and labeled
by distinct elements of )/, matching the first constraint of a Littlestone tree. As for the second
constraint, observe that forall h_; € H_; and hy; € H 1 the shattering condition from Definition
8 implies that Pz~u—1 [y—l 7& Z] > IL{y—l 7é h—l(x)} + 7 and ]P)zwu+1 [y-i-l 7é Z} > ]]-{y-‘rl 75
hyi(x)} 4 . However, this can only be true if both 1{y_; # h_1(z)} =0 = y_1 = h_1(x)
and 1{y+1 # hy1(z)} = 0 = wy41 = hii(x). Accordingly, the hypotheses that shatters
the edges indexed by p—; and p41 in the original tree according to Definition 8 also shatters the
newly re-indexed edges according to Definition 4. Recursively repeating the above procedure on
the subtrees following the two reindexed edges results in a Littlestone tree shattered by H of depth
d. Thus, SM,(#) < L(H) for v € (0, 5]. The case when y = 0 follows similarly and uses the
fact that when v = 0, we define the shattering condition in SMdim with a strict inequality (see last
sentence in Definition 8).

We now prove the inequality that SM (H) > L(#). Fixy € [0, 5]. Let 7 be a X-valued, {+1}-
ary tree of depth d = L(#) shattered by H according to Definition 4. Our goal will be to expand T
into a II(Z)-ary tree that is y-shattered by # according to Definition 8. Let v be the root node of 7,
x be the instance that labels the root node, and y_1, y+1 denote the distinct elements of ) that label
the left and right outgoing edges from v respectively. Let H_1 = {hy : 0 € {£1}¢, 01 = —1} CH
denote the set of shattering hypothesis that correspond to following a path down 7T that takes the
edge indexed by —1 in the first level. Define {1 analogously. Then, for all h_; € H_; and
hy1 € Hy1, the shattering condition implies that h_1 (z) = y_1 and hy1(z) = y4+1.

For every measure ;1 € II(Z), we claim that there exists a o, € {£1} such that P, [yo, # 2] =
1({Yo, }¢) > 7. Suppose for the sake of contradiction that this is not true. Then, there ex-
ists a measure € II(Z) such that for both ¢ € {£1}, we have u({y,}¢) < ~. Then, 1
w(Z) = p({y-1}° U {y+1}¢) < 2y < 1, a contradiction. Thus, for every measure p € II(2)
there exists a o, € {£1} such that P, [y, # z] > 7. Combining this with the fact that for
any h_; € H_q and hyy € Hyq, we have y_; = h_i(x) and y41 = hy1(z), gives that, for
every measure 4 € II(Z), there exists a o, € {£1} such that for all h,, € H,, ,we have
Pemp (Yo, # 2] = H{yo, # ho,(x)} + 7. Note that if we take y,, to be the label on an edge
indexed by p, then the inequality above matches the shattering condition required by Definition 8.

To that end, for every measure . € II(Z), add an outgoing edge from v indexed by p and
labeled by the y,,, where o, is the index as promised by the analysis above. Take the sub-tree in T
following the original outgoing edge from v indexed by o, and append it to the newly constructed
outgoing edge from v indexed by p. Remove the original outgoing edges from v indexed by {£1}
and their corresponding subtrees. Recursively repeat the above procedure on the subtrees following
the newly created edges indexed by measures. Upon repeated this process for every internal node
in 7, we obtain a II(Z)-ary tree that is y-shattered by H of depth d. Thus, we have that L(H) <
SM,,(H) for v € [0, 3. u

Next, we show an equivalence between SMdim and seq-fat.
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Lemma 19 (SMdim = seq-fat) LetY = Z = [-1,1], H C Z%, and ((y, z) = |y — z|. Then for
everyy € (0,1] and v < ~,

sfat, (H) < SM,(H) < sfat,/ (H).

Proof We first prove the upper bound. Let v € (0,1] and 4" < ~. Let 7 be a X-valued, II(Z)-ary
tree of depth d = SM.,,(#) shattered by #. Let v be the root node of 7 and « denote the instance
labeling the node. Recall that v has an outgoing edge for each measure p € II(Z). In particular,
this means that v has outgoing edges corresponding to the Dirac measures on Z, which we denote
by {0, }.cz. Fix a z € Z and consider the outgoing edge from v indexed by ¢,. Let y, € ) be the
element that labels the outgoing edge indexed by &,. Let H, = {h,, : p € I(Z)4, 1 = 8,} CH
denote the set of shattering hypothesis that corresponds to following a path down 7 that takes the
edge ¢, in the root node. Then, for all h € H, the shattering condition from Definition 8 implies
that

|z — | > |h(x) —y=| +v > |h(z) —y:| +7

Taking the supremum on both sides, gives that:

|z —y,| > sup |h(z) —y.| +7 =7 +7. 3)
heH,

where we let 7, = supycy, [h(x) — y.|. Let I, == [y, — (r2 + '), y. + (. +7')] € [-3,3]
denote an interval corresponding to z. Inequality (3) above implies that z ¢ I, (note that I, changes
depending on z). Since z € Z was arbitrary, it must be the case that z ¢ I, for all z € Z. This
means that (.. z I, = 0. Since [—3,3] is compact and {I.}.cz is a family of closed intervals
whose intersection is empty, the celebrated Helly’s theorem states that there exists two intervals
in {I.},cz that are disjoint (Eckhoff, 1993; Radon, 1921). Accordingly, let z1, zo be such that
I,, NI, = 0. As before, let y,, and y,, be the labels on the outgoing edges from v indexed by
the Dirac measures 6., and ¢, respectively. Without loss of generality, let y,, < vy, (we have
strict inequality because we are guaranteed that [,, and I, are disjoint). By inequality 3, for all

h., € H., and h., € H., we have that

hoy(2) € [Yzy = Tayy Yoy +72]  and Doy (@) € [Yay — Tags Yy + 720) -

Let s = W € [—1,1] be a witness. Then, for all h,, € H,, and h,, € H,,, we
have that s — h,, () >+ and h,,(x) — s > +'. Relabel the two edges indexed by 4., and ¢, with
the same witness s. Reindex the two edges indexed by J,, and 6., with —1 and +1 respectively.
Remove all other edges indexed by measures and their corresponding subtrees. There should now
only be two outgoing edges from v, each labeled by the same witness. Next, recall that for all
h,, € H., and h, € H,, we have that s — h,, > 7' and h,, —s > 7. Accordingly, the hypotheses
that shatter the edges indexed by ., and ¢, in the original tree according to Definition 8 also
shatter the newly re-indexed and relabeled edges according to Definition 5. Recursively repeating
the above procedure on the subtrees following the two newly reindexed and relabeled edges results
in a seq-fat tree +'-shattered by H of depth d. Thus, SM,,(#) < sfat./(#) for 7' < ~.

We now move on to prove the lower bound. Let v € (0,1] and 7 be a X-valued, {+1}-ary
tree of depth d = sfat. (#) shattered by H according to Definition 5. Our goal will be expand 7
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into a IT1(Z)-ary tree that is y-shattered by H according to Definition 8. Let v be the root node,
the instance that labels the root node, and s be the witness that labels the two outgoing edges of
v. Let H_1 = {h, : 0 € {£1}4 01 = —1} C H denote the set of shattering hypothesis that
corresponds to following a path down 7T that takes the outgoing edge indexed by —1 from the root
node. Likewise define ;. Then, for all h_; € H_; and h41 € H41, the shattering condition
implies that s — h_1(x) > v and hy(x) — s > ~y respectively.

For every measure 1 € II(Z), we claim that there existao, € {—1,1} suchthatE, ., [0, — 2|]
|s — 0,|. Suppose for the sake of contradiction that this is not true. That is, there exists p € II(2)
such that for all 7 € {—1,1} we have that E,, [|T — z|] < |s — 7|. Then, when 7 = —1, we have
that E;., [2] < |s+ 1] — 1 and when 7 = 1, we have 1 — |s — 1| < E., [2], using the fact that
|7 — 2| = 1 — 72. Combining the two inequalities together and using the fact that s € [—1, 1] gives
that 2 < |s+ 1|+ |s — 1| = 2, which is a contradiction. Accordingly, for every measure p € II(Z),
there exists a 0, € {—1,1} such that E., [|o,, — 2|] > |s — 0,|. Next, crucially note that for any
7 € {£1} and any h, € H,, we have |h.(z) — 7| = |s — 7| — |h-(x) — 5| < |s — 7| — y by the
seq-fat shattering condition from Definition 5. Therefore, for every measure 1 € II(Z), there exists
o, € {#1} such that for all h,, € H,,, we have that E.,, [0, — 2|] > |0y — hg, ()] + 7. Note
that if we take 0, to be the label on a edge indexed by p, then E.,, [|o, — z|] > |0y — ho, (x)] +7
exactly matches the shattering condition required by Definition 8.

To that end, for every measure p € II(Z), add an outgoing edge from v indexed by u and
labeled by the 0, € {£1} promised in the analysis above. Take the sub-tree in 7 following the
original outgoing edge from v indexed by o, and append it to the newly constructed outgoing edge
from v indexed by . Remove the original outgoing edges from v indexed by —1 and +1 and their
corresponding subtrees. Recursively repeat the above procedure on the subtrees following the newly
created edges indexed by measures. Upon repeating this process for every internal node in 7, we
obtain a IT(Z)-ary tree that is y-shattered by # of depth d. Thus, we have that sfat., (H) < SM.,(H).
|

Next, we show that SMdim reduces to (k + 1)-Ldim from Moran et al. (2023).

Lemma 20 (SMdim = (k + 1)-Ldim) Let Z = {S: S c ),|S| <k}, H C Z¥, and {(y,2) =
1{y ¢ z}. Then for every y € [0, k%kl} we have SM (M) = Ly41(H).

Proof Fix v € (0,1]. We first show that SM, (H) < Lj11(H). Let T be a X-valued, II(Z)-ary
tree of depth d = SM,,(#) shattered by #. Let v be the root node of 7 and « denote the instance
labeling the node. Recall that v has an outgoing edge for each measure € TI(Z). Let {y,} ser(z)
be the set of elements in ) that label the outgoing edges from v. We first claim that there at least
k+1 distinct elements in the set {y,, } ueti(z)- For the sake of contradiction, suppose this was not the
case. That is, there are only £ distinct elements that label the outgoing edges from v. Let y1, ..., Y
denote the k distinct elements that label the outgoing edges from v, Consider the measure [ that puts
all mass on {yj,...,yr}. Note that i € II(Z) and let§ € {y1,...,yx} be the label on the outgoing
edge from v indexed by /i. By definition of /i and g, it must be the case that P, [ ¢ z] = 0. Since
~v > 0, the shattering condition required by Definition 8 cannot be met, which is a contradiction.
Accordingly, there exists at least & + 1 distinct elements in the set {y, } ,er(z)-

Letyi,. .., yk+1 be the distinct elements of the set {y,. } e (z), and pi1, - . - , pig41 be the indices
of the edges labeled by y1, . . ., Y1 respectively, breaking ties arbitrarily. For p; € {u1,. .., tet1},
let H,,, denote the set of shattering hypothesis that corresponds to following a path down 7 that
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takes the outgoing edge p; from the root node. Keep the edges indexed by 1, . .., tg+1, and re-
move all other outgoing edges along with their corresponding subtree. Reindex the k + 1 edges
using distinct numbers in [k + 1]. The root node v should now have k£ + 1 outgoing edges, each
indexed by a different natural number in [k + 1] and labeled by a distinct element of ), matching
the first constraint of a (k + 1)-Littlestone tree. As for the second constraint, observe that for all
h € H,, the shattering condition implies that P, [y; ¢ z] > 1{y; ¢ h(z)} + . However, this
can only be true if 1{y; ¢ h(z)} =0 = y; € h(z). Accordingly, the hypotheses that shatter
the edges indexed by 1, ..., ugr+1 in the original tree according to Definition 8§ also shatter the
newly re-indexed edges according to Definition 6. Recursively repeating the above procedure on
the subtrees following the k + 1 reindexed edges results in a (k + 1)-Littlestone tree shattered by H
of depth d. Thus, SM(H) < Ly41(#) for v € (0,1]. The case when y = 0 follows similarly and
uses the fact that when v = 0, we define the shattering condition in SMdim with a strict inequality
(see last sentence in Definition 8).

We now prove the inequality that SM.(#) > Lyy1(#H). Fix v € [0, k%rl] Let 7 be a X-
valued, [k + 1]-ary tree of depth d = Ly, 1(H) shattered by H according to Definition 6. Our
goal will be to expand 7 into a II(Z)-ary tree that is ~y-shattered by #H according to Definition
8. Let v be the root node of 7', = be the instance that labels the root node, and {y;}**! denote
the distinct elements of ) that label the k& 4 1 outgoing edges from v. For each i € [k + 1], let
Hi = {hy :p € [k +1]¢,p1 = i} C H denote the set of shattering hypothesis that corresponds to
following a path down 7 that takes the outgoing edge indexed by ¢ from v. Then, for all i € [k + 1]
and h; € H;, the shattering condition implies that y; € h;(x) = 1{y; ¢ hi(z)} = 0.

For every measure ;1 € II(Z), we claim that there exists a i, € [k+1] such that P, (i, ¢ 2] >
~v. Suppose for the sake of contradiction that this is not true. Then, there exists a measure p € II(2)
such that for all ¢ € [k + 1], we have P, [y; ¢ 2] < ~. This implies that

P.u[3i € [k+1]suchthaty; ¢ z] < (k+1)y <1.

However, since 1 is supported over subsets of Y of size < k, we have ., [3i € [k + 1] such that y;
1, a contradiction. Thus, for every measure p € II(Z) there exists a i, € [k + 1] such that
Pz~p [yi, & 2] = ~. Combining this with the fact that for every i € [k + 1] and h; € H; we have
that y; € h;(x) gives that, for every measure p € II(Z), there exists a i, € [k + 1] such that for
all h;, € Hi,, wehave P, [y, ¢ 2| > L{yi, & hi,(x)} + . Note that if we take y;, to be the
label on an edge indexed by p, then the inequality above matches the shattering condition required
by Definition 8.

To that end, for every measure p € II(Z), add an outgoing edge from v indexed by  and labeled
by the y;,,, where i/, is the index as promised by the analysis above. Take the sub-tree in 7 following
the original outgoing edge from v indexed by i,, and append it to the newly constructed outgoing
edge from v indexed by . Remove the original outgoing edges from v indexed by numbers in
[k + 1] and their corresponding subtrees. Recursively repeat the above procedure on the subtrees
following the newly created edges indexed by measures. Upon repeating this process for every
internal node in 7, we obtain a II(Z)-ary tree of depth d that is y-shattered by 7{. Thus, we have
that 41 (H) < SM,(H) for vy € [0, 7). u

Finally, we show that the SMdim = MSdim.
Lemma 21 (SMdim = MSdim) Let Y C o(2), H C 2%, and ((y,z) = 1{z ¢ y}. Then for
every vy € [0, 1], we have SM.,(H) = MS.,(H).
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Proof The equality follows directly from the fact that E.., [((y, 2)] (y°) and the fact that

= ply
B (2, fi(p<e))] 2 L(hu(Te(p<t)), felp<e))+y <= hu(Te(p<t)) € fi(p<) and m(ft(ugt.)) <
1—.

Appendix C. Proof of Lemma 12

We now prove that given any target accuracy v > 0 and any &;-realizable sequence {(z, (yz, €t)) }1—1,
Algorithm 1 computes distributions p; € II(Z) such that

T

> By, [Ulye 2)] = v+ e} < SM,(H).
t=1

To prove this guarantee, it suffices to show that (i) on any round where E., ,, [¢(ys, 2t)] > v + &
and SM (V;—1) > 0, we have SM, (V;) < SM(V;—1) — 1, and (ii) if SMy(V;—1) = 0 there always
exists a distribution y; € II(Z) such that B, [((y:, 2¢)] < v + &

Let t € [T] be a round where E., -, [¢(y¢, 2t)] > v + ¢ and SM,(V;—1) > 0. For the sake
contradiction, suppose that SM.,(V;) = SM,(V;—1) = d. Then, by the min-max computation in
Algorithm 1, for every measure o € II(Z), there exists a pair (y,,e,) € Y X [0,¢] such that
Eonp (€Y, 2)] = €4 + v and SMy(Vim1(yy, €u)) = d. Now construct a tree 7 with z; labeling
the root node. For each measure u € II(Z), construct an outgoing edge from z; indexed by p
and labeled by 7,,. Append the tree of depth d associated with the version space V;_1(yu,¢€,) to
the edge indexed by p. Note that the depth of 7 must be d + 1. Furthermore, observe that for
every hypothesis h € V;_1(yu,€,), we have that E.,, [0(y,, 2)] > £(yu, h(x¢)) + v, matching the
shattering condition in Definition 8. Therefore, by definition of SMdim, we have that SM., (V;—1) >
d + 1, a contradiction. Thus, it must be the case that SM, (V;) < SM,,(V;—1) — 1.

Now, suppose ¢ € [T is a round such that SM,(V;_1) = 0. We show that there always exist
a distribution y; € II(Z) such that for all (y,e) € C; , we have E.,,, [((y, z)] < v + ¢. Since
we are in the £;-realizable setting, it must be the case that (y,e;) € C;. To see why such a p
must exist, suppose for the sake of contradiction that it does not exist. Then, for all u € II(2),
there exists a pair (y,,c,) € C; such that E., [((yu, z)] > v + €4. As before, consider a tree
with root node labeled by ;. For each measure p € II(Z), construct an outgoing edge from x;
indexed by 1 and labeled by y,,. Since (y,,c,) € Cy, there exists a hypothesis h,, € V;_1 such that
U(yu, hy(xe)) < ey Therefore, we have E.,, [€(yy, 2)] > (yu, hyu(z:)) + v . By definition of
SMdim, this implies that SM.,(V;_1) > 1, which contradicts the fact that SM.,(V;—1) = 0. Thus,
there must be a distribution y; € II(Z) such that for for all (y,e) € C;, we have E.,, [((y, 2)] <
7 + €. Since this is precisely the distribution that Algorithm 1 plays whenever SM, (V;_;) = 0 and
since SM,, (V) < SM,(V;—1) for all ¢’ > ¢, the algorithm no longer suffers expected loss more
than y + &4 for all ¢ > ¢. This completes the proof.

Appendix D. Proof of lower bound in Theorem 11

We now prove the lower bound in Theorem 11. Fix v > 0 and d, := SM,,(H). By definition of
SMdim, there exists a X'-valued, II(Z)-ary tree 7 of depth d, shattered by H. Let (fi,..., fq)
be the sequence of edge-labeling functions f; : II(Z)! — ) associated with 7. Let A be any
randomized learner for 7. Our goal will be to use 7 and its edge-labeling functions (fi, ..., fq)
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to construct a difficult stream for A such that on every round, the expected loss of A is at least
more than the loss of the optimal hypothesis in hindsight. This stream is obtained by traversing T
adapting to the sequence of distributions output by A.

To that end, for every round ¢ € [d,], let ;; denote the distribution that A computes before mak-

ing its prediction z; ~ ;. Consider the stream {(7;(u<y), ft(ugt))}fll, where p = (1, -, fd,)
denotes the sequence of distributions output by .A. This stream is obtained by starting at the root of
T, passing 7T; to A, observing the distribution 1 computed by A, passing the label f;(1<1) to A,
and then finally moving along the edge indexed by 11. This process then repeats d-, — 1 times until
the end of the tree T is reached. Note that we can observe and use the distribution computed by .4
on round ¢ to generate the label because A deterministically maps a sequence of labeled instances
to a distribution.

Recall that the shattering condition implies that 3k, € H such that E.,,, [0(fi(p<t), 2e)] >
U(fe(p<e)s hu(Ti(p<t)) + v for all t € [d,]. Therefore, the regret of A on the stream described
above is at least

dy dy dy
RA(T7 H?@ > ZEZtNMz [e(ft(:uﬁt)v Zt)] - Zg(ft(uﬁt)v hlt(’ﬁ(uﬁf)) > Z’V - 7d7'
t=1 t=1 t=1

Since our choice of v and the randomized algorithm A is arbitrary, this holds true for any v > 0
and randomized online learner. This completes our proof.

Appendix E. Proof of Lemma 17

Let p = H(Y, Z,¢). Fixy € (0,1] and v/ < 7. Let T be a X-valued, II(Z)-ary tree of depth
d = SM, () shattered by /. Let v be the root node of 7 and x denote the instance labeling v.
Recall that v has an outgoing edge for each measure i € II(Z). In particular, this means that v
has outgoing edges corresponding to the Dirac measures on Z, which we denote by {0, }.cz. Fix a
z € Z and consider the outgoing edge from v indexed by ¢.. Let y, € ) be the element that labels
the outgoing edge indexed by 6,. Let Hs, = {h, : p € II(Z2)%, 41 = 5.} C H denote the set of
shattering hypothesis that corresponds to following a path down 7 that takes the edge ¢, in the first
level. Then, for all h € H;, the shattering condition implies that

(Y=, 2) = L(yz, h(x)) + v > L(y=, h(@)) + 7.
Taking the supremum on both sides further gives that

U(y=,2) > sup L(yz, h(z)) +7.
heHs,

Let B, := By(y.,7. +7') € By()) be the ball centered around y, of radius r, + ' where
Tz = SuPpey; €(yz, h(x)). The inequality above implies that z ¢ B. (note that B. changes
depending on z). Since z € Z was arbitrary, it must be the case that z ¢ B, for all z € Z.
This means that (,_z B. = 0. Then, using the fact that (), Z,¢) is a Helly space with Helly
number p, there exists p balls in { B, } .c z such that their collection-wise intersection is also empty.
Accordingly, let z1, ..., z, be such that (\,_; B., = 0. As before, for every i € [p], let y., denote
the label on the outgoing edge from v indexed by the Dirac measure J,,. By definition, for all i € [p]
and h;,. € Hs, we have that
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hézi (l‘) € BZ(yZﬂTZi) = Bzi

Note that B, is the o expansion of Bzi. For each i € [p], relabel the outgoing edge from v
indexed by 0., with the tuple (y,,,r,,). For each i € [p], reindex the outgoing edge from v indexed
by ¢, with <. Remove all other edges indexed by measures and their corresponding subtrees. There
should now only be p outgoing edges from v, each indexed by a number ¢ € [p] and labeled by a
tuple in Y x [0, ¢]. Note that (?_; B(yz,, 72, + ') = (iey B>, = 0, which matches the second
constraint imposed by Definition 16. As for the first constraint on shattering, note that for all
i € [p] and all hs., € H, we have that hs_, (x) € Bzi. Thus, the hypothesis that shatters the edges
indexed by ¢, in the original tree according to Definition 8 also shatters the newly re-indexed and
relabeled edges according to Definition 16. Thus, for the root node v, both constraints imposed by
Definition 16 are met. Recursively repeating the above procedure on the subtrees following the p
newly reindexed and relabeled edges results in a p-dim tree +'-shattered by H of depth d. Thus,
SM, (H) < p-dim. (H) for o' < 7.
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