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Abstract
We study active data collection strategies for oper-
ator learning when the target operator is linear and
the input functions are drawn from a mean-zero
stochastic process with continuous covariance ker-
nels. With an active data collection strategy, we
establish an error convergence rate in terms of the
decay rate of the eigenvalues of the covariance
kernel. We can achieve arbitrarily fast error con-
vergence rates with sufficiently rapid eigenvalue
decay of the covariance kernels. This contrasts
with the passive (i.i.d.) data collection strategies,
where the convergence rate is never faster than
linear decay (→ n→1). In fact, for our setting,
we show a non-vanishing lower bound for any
passive data collection strategy, regardless of the
eigenvalues decay rate of the covariance kernel.
Overall, our results show the benefit of active data
collection strategies in operator learning over their
passive counterparts.

1. Introduction
There is an increasing interest in using data-driven methods
to estimate solution operators of partial differential equa-
tions (PDEs) encountered in scientific applications. To set
up the problem, consider X ↑ Rd and a linear PDE of the
form Lu = f , subject to the boundary condition u(x) = 0
for all x ↓ boundary(X ). The goal, given a function f , is
to find the corresponding solution u that satisfies the PDE.

Traditionally, numerical PDE solvers are used to compute
u from f . In contrast, operator learning focuses on approx-
imating the solution operator of the PDE (Lu et al., 2021;
Kovachki et al., 2023). Under typical conditions, this PDE
has a linear solution operator F such that u = F(f) for all
f in an appropriate function space. Given a set of training
samples (f1, u1), . . . , (fn, un), the aim is to learn an opera-
tor F̂n that closely approximates the true solution operator
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F under a suitable metric. The hope is that for a new in-
put function f , evaluating û = F̂n(f) will be considerably
faster than solving for u through traditional methods, with
minimal loss in accuracy.

In this work, we study the sample complexity of operator
learning. Specifically, given an operator F , how many input-
output pairs {(fj ,F(fj))}nj=1 are necessary to estimate an
operator F̂n such that F̂n(f) ↔ F(f) for all relevant f?
This question has been studied in several specific contexts,
such as for linear operators with fixed singular value de-
composition by de Hoop et al. (2023) and Subedi & Tewari
(2024), for Lipschitz operators by Liu et al. (2024), and
for the random feature model by Nelsen & Stuart (2021).
These are just a few representative works, and we refer the
reader to (Kovachki et al., 2024b, Section 5) for a more
comprehensive review of such sample complexity results.

A common theme of these sample complexity analyses is
that they are conducted within the framework of traditional
statistical learning (Kovachki et al., 2023, Section 2.2). In
the statistical setting, the learner has access to training sam-
ples {(fj ,F(fj))}nj=1, where fj →iid µ from some proba-
bility measure µ, and the objective is to produce an estimator
F̂n such that F̂n(f) ↔ F(f) on average over test samples
f → µ. This scenario is also referred to as the passive learn-
ing setting. Under reasonable non-trivial assumptions, the
best achievable rate of error convergence in this setting is
→ 1/n, when F̂n is evaluated under an appropriate metric,
say the p-th power of the Lp

µ-Bochner norm.

1.1. Our Contribution

In this work, we go beyond the passive statistical setting and
study operator learning where the learner is not restricted
to iid samples from a source distribution and can use active
data collection strategies. We focus on the case where the
operator of interest F is a bounded linear operator and µ is
a distribution with zero mean and the covariance structure
defined by a continuous kernel K. Such distributions in-
clude Gaussian processes with common covariance kernels.
For a given covariance kernel K, our main result provides
an active data collection strategy, an estimation rule, and
establishes an error bound for the proposed estimator in
terms of the eigenvalue decay of the integral operator of
K. Formally, if ω1 ↗ ω2 ↗ . . . are the eigenvalues of the
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integral operator of K, there exists an active data collection
strategy and estimation rule such that the estimator obtained
using n actively collected input-output pairs achieves the
following error bound:

ε2
n∑

i=1

ωi + ↘F↘
2
op

↑∑

i=n+1

ωi.

The ε2 captures the error of approximation oracle O for
F that the learner has access to. For example, O could
be the PDE solver used to generate training data for oper-
ator learning. Generally, ε > 0 is the irreducible error of
the bound. The second term O(

∑
i>n ωi) is a reducible

error, which goes to 0 as n ≃ ⇐ for continuous kernels
K under the bounded domain. For example, for the covari-
ance operator ϑ(⇒⇑

2 + ϖI)→ω used by Li et al. (2021) and
Kovachki et al. (2023), we show that the reducible error
vanish at the rate ↭ n→( 2ω

d →1). Taking 2ϱ ⇓ d, one can
achieve any polynomial rate of decay. In fact, given any rate
Rn ≃ 0 as n ≃ ⇐, one can always construct a continuous
kernel K such that the reducible error decays faster than
Rn. Thus, arbitrarily fast rates can be obtained using active
data collection strategies. Our main result is formalized
in Theorem 3.1, and the proof is based on the celebrated
Karhunen–Loève decomposition for functions drawn from
µ with covariance kernel K.

Furthermore, in Theorem 4.2, we show that, irrespective of
the decay rate of the eigenvalues of the covariance kernel
K, there always exists a bounded linear operator F and
a distribution µ with covariance kernel K such that the
minimax estimation error fails to converge to 0 under any

passive (i.i.d.) data collection strategy. In particular, for
every n, even when ε = 0, we establish the minimax lower
bound of

↘F↘
2
op ω1

under any passive data collection strategy. That is, the
lower bound does not vanish even as n ≃ ⇐. Collectively,
Theorems 3.1 and 4.2 establish a clear advantage of active
data collection strategy for operator learning.

1.2. Related Works

Recent work by Musekamp et al. (2024) considers active
methods for operator learning. However, in contrast to our
approach of using linearity of the solution operator and
the distributional family of interest, their methods rely on
estimating uncertainty and identifying coreset. Addition-
ally, their study is purely empirical and lacks theoretical
guarantees. In a similar spirit, Li et al. (2024) study using
active learning to select input functions from multiresolution
datasets to lower the data cost.

On the theoretical side, a closely related work is by Ko-
vachki et al. (2024a), who allow for active data collection

strategies. However, the upper bound in (Kovachki et al.,
2024a, Theorem 3.3) is derived assuming that input func-
tions v1, . . . , vn are drawn i.i.d. from µ. Their proof, based
on standard empirical risk minimization (ERM) analysis,
achieves a convergence rate that, at best, matches the Monte
Carlo rate of n→1/2. Moreover, their lower bounds apply to
both active and passive data collection strategies, suggesting
that, for the nonparametric operator classes considered by
Kovachki et al. (2024a), active learning provides no clear
advantage over passive approaches. Exploring whether an
adaptive data collection strategy, informed by the covari-
ance of µ and targeting smaller subclasses within these
broad nonparametric classes, could yield faster convergence
rates remains an interesting direction for future research.

Additionally, Boullé et al. (2023) shares our objective of
achieving faster convergence rates for PDEs with linear so-
lution operators, but there are notable differences between
their results and ours. First, their approach requires stronger
control over the Hilbert-Schmidt norm of the operator F ,
whereas we only require control over the operator norm.
Notably, the Hilbert-Schmidt norm can be arbitrarily larger
than the operator norm. Second, their estimator uses the spe-
cific structure of F , particularly the Green’s function, while
we rely on black-box access to F via an ε-approximate or-
acle. Lastly, although both approaches introduces a term
measuring the quality of training data (ε in our bound and
!ε in theirs), their definition of !ε is more technical and
less intuitive. However, their guarantee is stronger, as their
upper bound applies uniformly to any L2-integrable input
function, whereas our guarantees hold in expectation for
inputs drawn from the distribution µ.

Our work considers the setting where µ is defined by a
stochastic process with a specific covariance structure. Such
a µ was taken to be a Gaussian process with mean zero
and covariance given by ϑ(⇒⇑

2 + ϖI)→ω in (Bhattacharya
et al., 2021; Li et al., 2021; Kovachki et al., 2023). The
use of Karhunen–Loève decomposition for generating input
functions is also discussed by Boullé & Townsend (2023,
Section 4.1). Our upper bound also share conceptual similar-
ities with results in (Lanthaler et al., 2022; Lanthaler, 2023),
who established approximation error bounds, rather than
estimation, in terms of s eigenvalues of covariance operator.

Finally, we highlight the ICML 2024 tutorial by Azizzade-
nesheli (2024), who mentions active data collection as an
important future direction for operator learning. We also ac-
knowledge the extensive literature on the learning-theoretic
foundations of active learning (Settles, 2009). The active
learning framework we adopt is known as the membership
query model, which has a rich history in learning theory
(Angluin, 1988). A more detailed discussion of various
active learning models within the learning theory literature
is deferred to Section 3.4.
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2. Preliminaries
2.1. Notation

Let R,C denote the set of real and complex numbers re-
spectively. The set N and Z denote the natural numbers and
integers. Define N0 := N ⇔ {0}. For any x ↓ Rd, we use
|x|p to denote the ςp norm of x. Given a set X ↑ Rd, we
use L2(X ) to denote the space of squared integrable real-

valued functions on X under some base measure φ. For any
u ↓ L2(X ), we define ↘u↘2L2 :=

∫
X |u(x)|2 dφ(x). The

notation φ is reserved for the base measure on X , whereas
µ will be used to denote the probability distribution over
L2(X ). For a linear operator F : L2(X ) ≃ L2(X ), we
define ↘F↘op := sup{↘Fv↘L2 : ↘v↘L2 = 1}. We use GP
to denote Gaussian Process.

2.2. Distribution Over Function Space

Let X ↑ Rd be any compact set, B(X ) denote the Borel
sigma-algebra, and φ denote some finite measure on X

(that is, φ(X ) < ⇐). Generally, we will take φ to be
Lebesgue measure on X but sometimes it may be use-
ful to take a weighted measure such as ↖ e→ϑ2|x|2 dx.
Denote L2(X ,B(X ), φ) to be the set of all squared inte-
grable functions on X . From here on, we will drop the
dependence on B(X ) and φ, and just write L2(X ). Let
(”,#,P) denote a probability space. We will consider a
sequence of real-valued random variables {hx : x ↓ X}

defined over the probability space (”,#,P) that is cen-
tered, squared integrable, and has continous covariance ker-
nel K : X ↙ X ≃ R. Recall that covariance kernels are
symmetric and positive definite. More precisely, for any
x, y ↓ X , the random variables hx satisfies

E[hx] =

∫

!
hx(↼) dP(↼) = 0

E[h2
x] =

∫

!
|hx(↼)|

2 dP(↼) < ⇐

E[hx hy] =

∫

!
hx(↼)hy(↼) dP(↼) = K(y, x).

Next, we use this process to define a probability distribu-
tion over L2(X ). To that end, it will be more convenient to
write the process as a function h : X ↙ ” ≃ R. By defi-
nition, h(x, ·) is #-measurable for every x ↓ X . However,
this is not enough to argue that h is a random element of
L2(X ). Thus, to ensure measurability, we will only con-
sider stochastic processes h that satisfy the following: (i)
The process h is measurable with respect to product sigma
algebra B(X ) ↙ # and (ii) For every ↼ ↓ ”, the sample
path h(·,↼) : X ≃ R is an element of L2(X ). Conditions
(i) and (ii) ensure that ↼ ∝≃ h(·,↼) is a measurable function
from ” to L2(X ) (Hsing & Eubank, 2015, Theorem 7.4.1).
In other words, h is a L2(X ) valued random variable. We

can now meaningfully talk about probability distribution
over L2(X ) induced by the stochastic process h.

Accordingly, given a continuous covariance kernel K, let
P(K) denote the set of all centered and squared-integrable
stochastic processes with covariance kernel K indexed by
X that satisfies conditions (i) and (ii) above. With a slight
abuse of notation, we will also use P(K) to denote the set
of all distributions over L2(X ) induced by these stochastic
processes. Each element µ ↓ P(K) is now a probability
distribution over L2(X ).

2.3. Problem Setting and Goal

Let F : L2(X ) ≃ L2(X ) denote the operator of interest.
One should think of F as the solution operator of the PDE.
The goal is to estimate a surrogate F̂n using n input/output
functions such that

sup
µ↓P(K)

E
v↔µ

[∥∥∥F̂n(v)⇒ F(v)
∥∥∥
2

L2

]
(1)

is small. In the absence of additional knowledge about the
image space of the solution operator F , minimizing this ob-
jective is the most natural choice. Accordingly, for a fixed
µ, the Lp

µ-Bochner norm has been a standard error metric in
the operator learning literature (see (Kovachki et al., 2023,
Section 2.2), (Liu et al., 2024)). The p = 2 case, in particu-
lar, is of practical significance, as its empirical counterpart is
the widely used mean squared loss. Regarding the family of
probability distributions, our proposed family P(K) aims
to unify and generalize marginal distributions on input func-
tions commonly used in practice (Li et al., 2021; Lu et al.,
2021). This family also aligns with the recommendation of
Boullé & Townsend (2023). Other families of probability
distributions, such as the set of all compactly supported
measures on a Hilbert space, have been used in theoretical
analyses (e.g., (Liu et al., 2024)). Extending our result to
include other distribution families of theoretical or applied
interest is left for future work.

Throughout this work, we will assume that the learner knows
the covariance kernel K.
Assumption 2.1. The learner knows the kernel K.

Although not always explicitly stated, this has been a stan-
dard assumption in the operator learning literature. For
example, Li et al. (2021) and Kovachki et al. (2023) gener-
ate their input functions, both during training and testing,
from a Gaussian process with the covariance kernel K such
that its associated integral operator is ϑ(⇒⇑

2 + ϖI)→ω for
some constants ϑ,ϖ, ϱ > 0. Thus, all the empirical perfor-
mances observed in these works are in a setup similar to
those described above. Additionally, Boullé & Townsend
(2023, Section 4.1.1) also suggests generating source terms
(input functions) from Gaussian processes with standard
covariance kernels such as RBF, Mattern, etc.
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Additionally, from a learning-theoretic perspective, assum-
ing knowledge of the kernel K is arguably without loss
of generality. In active learning, it is common to as-
sume access to an unlimited pool of unlabeled samples
v1, . . . , vm →iid µ, where µ ↓ P(K), and focus on mini-
mizing label complexity—the number of labeled samples
requested (Hanneke, 2013). This aligns with our setting,
where labeling (e.g., solving a PDE) is the primary cost.
Given such unlabeled samples, one can estimate the covari-
ance operator as

#m =
1

m⇒ 1

m∑

i=1

(vi ⇒ v̄m)′ (vi ⇒ v̄m)

where v̄m = 1
m

∑m
i=1 vi. Since E[↘vi↘2] < ⇐, Theorem

8.1.2 of (Hsing & Eubank, 2015) guarantees that #m ≃ #
almost surely in Hilbert-Schmidt norm, where # is the inte-
gral operator associated with K. While our work assumes
# has a finite trace norm, this is not required to recover its
eigenfunctions: convergence in Hilbert-Schmidt norm suf-
fices for accurate spectral approximation. Thus, assuming
access to the eigenfunctions of K is reasonable in theory,
even if it may be computationally demanding in practice.

Once the input functions are generated, the learner has to
use numerical solvers to PDE numerically in order to gen-
erate the solution function. In this work, we will make the
following assumption about learner’s access to the PDE
solver.
Assumption 2.2. The learner only has black-box access to
F through an ε-approximate oracle O that satisfies

sup
v↓L2(X )

↘O(v)⇒ F(v)↘2L2 ∞ ε2.

From an implementation standpoint, it might seem unnatural
to consider O(v) for a function v ↓ L2(X ), especially
since most PDE solvers usually only take function values
over a discrete grid as an input. Nevertheless, the oracle
is an abstract object, and the grid can be integrated into its
definition. For example, given any function v, the oracle first
extracts the values of v on a grid {x1, . . . , xm} and produces
output values on the same or a different grid. On the output
side, the oracle may then construct an actual function, either
through trigonometric interpolation or simply by setting the
function values to zero outside the grid points. Thus, we do
not specify these implementation details of the oracle and
instead characterize it solely by accuracy parameter ε.

In general, ε primarily reflects the discretization error for
finite-difference type methods and truncation error for spec-
tral methods, but it may also include measurement errors
or errors resulting from the early stopping of some iterative
routine. Therefore, ε can be broadly viewed as quantifying
the quality of the training data. From this perspective, ε rep-
resents the irreducible error in (1). Specifically, there exists

a function g : [0,⇐) ≃ [0,⇐) such that (1) is bounded
below by g(ε), even as n ≃ ⇐. There is extensive liter-
ature that attempts to quantify ε for various oracles (PDE
solvers), and we can use these results readily to establish
bounds on the irreducible error in our context. For example,
for spectral solvers truncated to the first N basis functions
where the input and output functions are s-times continu-
ously differentiable, we typically have ε → N→s/d. Here, d
is the dimension of the domain ”.

3. Upper Bounds Under Active Data Collection
In Section 2.3, we discussed the problem setting and the
goal. Next, we specify how the learner can collect the
training data (v1, w1), . . . , (vn, wn). In a departure from
the standard statistical learning setting, where the training
data is obtained as iid samples from the distribution under
which the learner is evaluated, we investigate active data
collection strategies. In active data collection strategies, the
learner can pick any source terms v1, . . . , vn and use the
oracle to obtain wi = O(vi). Since the goal is to provide
guarantees under samples from the distribution µ ↓ P(K),
the learner can use the knowledge of K to pick source terms.
For a given oracle with accuracy ε, covariance kernel K,
and the desired accuracy ↽ > 0, the goal of the learner is
to develop an active data collection strategy for the source
terms and an estimation rule to produce F̂ such that the
accuracy of ↽ can be obtained with the fewest number of
oracle calls. Or equivalently, achieve an optimal decay in
the upperbound of (1) for n ↓ N number of oracle calls.
Under this model, we provide an upperbound on (1) when
F is a bounded linear operator.
Theorem 3.1 (Upper Bound). Suppose F is a bounded

linear operator. There exists a deterministic data collection

strategy and a deterministic estimation rule such that the

estimate F̂n produced after n calls to oracle O satisfies

sup
µ↓P(K)

E
v↔µ

[∥∥∥F̂n(v)⇒ F(v)
∥∥∥
2

L2

]
∞ ε2

n∑

i=1

ωi+↘F↘
2
op

∑

i>n

ωi.

Here, ω1 ↗ ω2 ↗ . . . are the eigenvalues of the integral op-

erator of K defined as (IKv)(·) =
∫
X K(·, x) v(x) dφ(x).

The first term above is the irreducible error, which depends
on the quality of the training data. For the second term,
Hsing & Eubank (2015, Theorem 4.6.7) implies that
↑∑

i=1

ωi =

∫

X
K(x, x) dφ(x) ∞ sup

x
|K(x, x)| φ(X ) < ⇐.

This is finite because φ is a finite measure on X , and K(x, x)
is a continuous function on a compact domain, making it
bounded. As a result, the second term in the upper bound of
Theorem 3.1 vanishes as n ≃ ⇐. In Section 3.3, we apply
Theorem 3.1 to derive precise rates for several common
covariance kernels.
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3.1. Data Collection Strategy and The Estimator

Here, we specify the data collection strategy and the estima-
tor that achieves the claimed guarantee in Theorem 3.1. Let
{ωj ,⇀j}

↑
j=1 be the sequence of eigenpairs of K defined by

solving the Feldholm integral equation
∫

X
K(y, x)⇀j(x) dφ(x) = ωj ⇀j(y), y, x ↓ X .

Given the Oracle call budget of n, the input functions that
the learner selects are ⇀1,⇀2, . . . ,⇀n as source terms. For
each i ↓ [n], the learner makes an oracle call and obtains
wi = O(⇀i). Then, we consider the estimator

F̂n :=
n∑

i=1

wi ′ ⇀i.

More precisely, this estimation rule yields an operator F̂n

such that F̂nv =
∑n

i=1 wi ∈⇀i, v∋L2 for any v ↓ L2(X ).
Appendix A.1 provides an overview of the process for de-
riving this estimator starting from a least-squares estima-
tion rule. Furthermore, Appendix C discusses methods for
approximating the eigenfunctions ⇀i when the Fredholm
integral equation cannot be solved exactly.

3.2. Sketch of a Proof of Theorem 3.1

We now provide a high-level, non-rigorous sketch of a proof
of Theorem 3.1, and defer a full proof to Appendix A.

To bound the risk of the estimator specified above, we first
rewrite the risk using Karhunen–Loève Theorem. Pick any
v → µ. Since v is defined using a centered and squared-
integrable stochastic process with continuous covariance
kernel K, the celebrated Karhunen–Loève Theorem (Hsing
& Eubank, 2015, Theorem 7.3.5) states that

v(·) =
↑∑

j=1

√
ωj ⇁j ⇀j(·),

where ⇁j’s are random variables defined as ⇁j :=
1△
ϖj

∫
X v(x)⇀j(x) dφ(x). It turns out that ⇁j’s are uncor-

related random variables with mean 0 and variance 1. That
is, E[⇁j ] = 0 and E[⇁i ⇁j ] = [i = j].

This decomposition allows us to rewrite expectation over µ
in terms of expectation over the randomness of the sequence
(⇁j)j↗1, which is more tractable. For simplicity, assume
that ε = 0. Then, using Karhunen–Loève expansion, we
can show that

Ev↔µ

[∥∥∥F̂n(v)⇒ F(v)
∥∥∥
2

L2

]
∞ Eϱ

[∥∥∥F
(∑

j>n

√
ωj ⇁j ⇀j

)∥∥∥
2

L2

]
,

which can then be further upper bounded by
↘F↘

2
op
∑

j>n ωj using properties of ⇁i’s.

There are two primary challenges in completing this argu-
ment in a fully rigorous manner. First, we must address the
fact that the oracle O is only ε-approximate for any ε > 0.
Second, the convergence statement for

∑↑
j=1

√
ωj⇁j⇀j(·)

is quite specific, requiring careful attention when applying
this result.

3.3. Examples of Covariance Kernels

To make the upperbound in Theorem 3.1 more concrete,
let us consider a few specific covariance kernels K. While
not all claims are rigorously proven in this subsection, a
detailed and formal treatment of the material can be found
in Appendix B.

3.3.1. FRACTIONAL INVERSE OF SHIFTED LAPLACIAN

Li et al. (2021); Kovachki et al. (2023) generated input
functions from GP(0,ϑ(⇒⇑

2 + ϖI)→ω) for some constants
ϑ,ϖ, ϱ > 0. Here, ⇑2 is the Laplacian operator defined as

⇑
2v =

d∑

j=1

∂2v

∂x2
j

.

In this section, we will consider X to be a d-dimensional
periodic torus Td and the base measure φ is Lebesgue. We
identify Td by [0, 1]d with periodic boundary conditions.
Let us define a function ⇀m : Td

≃ C as ⇀m(x) = e2ς im·x

for every m ↓ Zd. Recall that ⇀m is the eigenfunction of
⇑

2 with eigenvalue ⇒4π2
|m|

2
2. In particular,

⇑
2e2ς im·x =

d∑

j=1

∂2

∂x2
j

e2ς im·x = ⇒4π2
|m|

2
2 e

2ς im·x.

Since {⇀m : m ↓ Zd
} forms a complete orthonormal sys-

tem in L2(Td), there are no other eigenfunctions of ⇑2. A
simple algebra shows that ⇀m’s are also the eigenfunctions
of (⇒⇑

2+ϖI)→ω with eigenvalues being (ϖ+4π2
|m|

2
2)

→ω .

Using this fact in Theorem 3.1 yields the upper bound

∞ ε2
(
ϑϖ→ω + ϑ+

ϑ

2ϱ ⇒ d

)
+

ϑ ↘F↘
2
op

2ϱ ⇒ d

1

n
2ω
d →1

.

When 2ϱ/d ⇒ 1 > 0, the reducible error above goes to 0
when n ≃ ⇐. Again, as an example, Li et al. (2021) uses
ϑ = 73/2, ϖ = 49 and ϱ = 2.5 in their experiment for
2d-Navier Stokes. In this case, 2ϱ/d = 2.5, yielding the
convergence rate of n→1.5 for the reducible error. Note that
this rate is faster than the usual passive statistical rate of 1/n.
However, for any value ▷ , one can take ϱ = d(▷ + 1)/2 to
get the rate of n→φ . Thus, every polynomial rate is possible
depending on the choice of ϱ.
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3.3.2. RBF KERNEL

Let X = R and K(x, y) = exp
(
⇒

1
2↼2 |x⇒ y|2

)
for all

x, y ↓ R and ς > 0. For now, let φ is a Gaussian measure
with mean 0 and variance ◁2 on R. Using the known results
on eigenfunctions of RBF kernel in terms of Hermite poly-
nomials (Williams & Rasmussen, 2006, Section 4.3.1), we
show that there exists ϱ ↓ (0, 1) such that the upper bound
in Theorem 3.1 is

∞
1

(1⇒ ϱ)

(
ε2 + ↘F↘

2
op ϱ

n
)
.

That is, the reducible error vanishes exponentially fast as
n ≃ ⇐. In Appendix B, we also show that a rate faster
than any polynomial rate can be achieved for RBF kernel
on Rd.

3.3.3. BROWNIAN MOTION

Let us consider the case where X = [0, 1], the base mea-
sure φ is Lebegsue, and the stochastic process in Section
2.2 is Brownian motion. Recall that the Brownian motion
is a Gaussian process with covariance kernel K(s, t) =
min(s, t) for all s, t ↓ [0, 1]. It is well-known (Hsing &
Eubank, 2015, Example 4.6.3) that the eigenfunctions of K
can be written in terms of sine waves. A simple analysis can
then be used to establish an upper bound of

∞
ε2

2
+ ↘F↘

2
op

1

π2

2

2n⇒ 1
.

Therefore, the reducible error vanishes at rate → n→1.

3.4. Comparison to Traditional Active Learning

The active learning framework we adopt in this work is re-
ferred to as the membership query model, which has a long-
standing history in the learning theory literature (Angluin,
1988; 2001). However, in traditional learning settings, the
membership query model—where the learner can request
labels for any unlabeled instance—is generally unrealistic.
For example, in the context of human data, it may not be
feasible to generate a label for an individual with an arbi-
trary feature vector, as such a person may not exist in reality.
As a result, other active learning frameworks, such as the
stream-based sampling model (Atlas et al., 1989) and the
pool-based model (Lewis & Gale, 1994; Hanneke, 2013),
have gained prominence in the recent literature. These mod-
els restrict the learner to requesting labels for instances
sampled from a specific distribution, making them more
practical for many real-world applications. For a compre-
hensive review of active learning models, their history, and
key results, we refer readers to (Settles, 2009). That said, we
believe that the membership query model is the right model
for developing surrogates for solution operators of PDEs.
This is because a PDE solver can provide a solution to any

query of an input function within an appropriate function
space.

4. Lower Bounds on Passive Learning
In this section, we establish a lower bound on (1) for
any passive data collection strategy. As usual, the ker-
nel K is known to the learner. Nature selects a distribu-
tion µ↽ ↓ P(K), and the learner receives n i.i.d. samples
v1, v2, . . . , vn → µ↽. For each i ↓ [n], the learner queries
the oracle O to produce wi = O(vi). It is important to
emphasize that the learner can only make oracle calls for the
i.i.d. samples v1, v2, . . . , vn. If the learner were allowed to
make oracle calls for other input functions, the learner could
simply disregard these i.i.d. samples and implement the
“active strategy” from Section 3.1. Such restriction on oracle
calls still includes most passive learning rules of interest,
such as arbitrary empirical risk minimization (ERM), regu-
larized least-squares estimators, and parametric operators
trained with stochastic gradient descent.

Using these n training points {(vi, wi)}i↘n, the learner then
constructs an operator F̂n. Since the learner only has access
to samples from µ↽, it is unrealistic to expect a uniform
guarantee over the entire family P(K) as established in
Theorem 3.1. Therefore, in this section, the learner will be
evaluated solely under the distribution µ↽. The objective is
to minimize the expected loss under µ↽, defined as

E
v1:n↔µn

ε

[
E

v↔µε

[∥∥∥F̂n(v)⇒ F(v)
∥∥∥
2

L2

]]
.

Moreover, establishing any meaningful lower bound on this
risk requires imposing some restriction on the oracle O. To
understand why, consider the case where F is a finite-rank
operator that only maps to the span of {01,02, . . . ,0N} for
some orthonormal sequence 01, . . . ,0N in L2(X ). Now,
consider an oracle O such that for any v ↓ L2(X ), it outputs

O(v) = F(v) + 10N+1,

where 1 ↓ R and 0N+1 is a unit norm function in L2(X )
that is orthogonal to all 0j for 1 ∞ j ∞ N . If |1| ∞ ε, it is
easy to see that

sup
v↓L2(X )

↘O(v)⇒ F(v)↘2L2 = ↘10N+1↘
2
L2 = |1|2 ∞ ε2.

Thus, O is a valid oracle according to Assumption 2.2. How-
ever, in principle, it is possible to encode the entire identity
of F in a real number 1. Thus, the learner could determine
the identity of F with just a single call to O, making any
attempt at establishing a lower bound futile.

This problem may still persist even when ε = 0. Consider
the case where φ is the Lebesgue measure, and the oracle is

6
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of the form

O(v) = F(v) + 1 [x = x0]

for some x0 ↓ X . Then, for any v ↓ L2(X ), we have
↘O(v)⇒ F(v)↘2L2 = ↘1 {x = x0}↘

2
L2 = 0 as φ({x0}) =

0. This shows that the oracle can still reveal the identity of
F in regions of the domain that have zero measure under φ.
Therefore, to avoid these pathological edge cases, we will
assume that the oracle is perfect.

Definition 4.1 (Perfect Oracle). O is a perfect oracle for F
if, for every v ↓ L2(X ), we have

(
O(v)

)
(x) =

(
F(v)

)
(x) ▽x ↓ X .

In other words, the perfect oracle O produces exactly the
same function that F does—nothing more, nothing less.
With this assumption, we are in the usual realizable setting
often considered in statistical learning theory. That is, the
learner has access to n samples {(vi,F(vi))}ni=1, where
v1, . . . , vn are drawn iid from some distribution µ.

Theorem 4.2 provides a lower bound on the risk of any
estimator under such passive data collection strategy.

Theorem 4.2 (Lowerbound). Fix any continuous covari-

ance kernel K with eigenvalues ω1 ↗ ω2 ↗ . . .. Then,

there exists a solution operator F , accessible to the learner

through a perfect oracle O, such that the following holds:

for every n ↓ N, there exists a distribution µ ↓ P(K)
such that, under any estimation rule within a passive data

collection strategy, the risk of the resulting estimator F̂n is

E
v1:n↔µn

[
E

v↔µ

[∥∥∥F̂n(v)⇒ F(v)
∥∥∥
2

L2

]]
↗

↘F↘
2
op

2

m∑

j=1

ωj

for every fixed m ↓ N.

Specifically, for m = 1, we obtain a lower bound of
1
2 ↘F↘

2
op ω1. This provides a non-vanishing lower bound

for any non-trivial operator F and covariance kernel K.

Our lower bound is constructive: we explicitly define a diffi-
cult distribution for the learner. We construct a distribution
µ over input functions such that, along each eigenfunction
direction ⇀j , it places mass 0 with probability 1 ⇒ p, and
±1/

△
p with equal probability p/2. This yields a sparse

distribution with rare but large spikes. A careful argument
shows that this construction defines a valid distribution in
P(K) for any p > 0. When p is small, the learner observes
mostly zero inputs during training with probability at least
1/2, yet the expected squared error along each direction is
(1/

△
p)2 · p = 1, leading to a non-vanishing error. The full

proof is provided in Appendix D.

5. Experiments
In this section, we conduct numerical studies comparing
our active data collection strategy with passive data col-
lection (random sampling) for learning solution operators
for the Poisson and Heat Equations. For the actively col-
lected data, we implement the linear estimator defined in
Section 3.1. On the other hand, for passively collected
data, we use a least-squares estimator, where the pseudoin-
verse is computed numerically. Recall that, given input-
output functions {vi, wi}

n
i=1, the least-squares estimator

has a form L = (
∑n

i=1 wi ′ vi) (
∑n

i=1 vi ′ vi)
†. For the

actively collected data in Section 3.1, the vi’s are orthogo-
nal, which yielded a simple and natural pseudoinverse (see
Appendix A.1). However, for the passively collected data,
the vi’s may not be orthogonal anymore and the pseudoin-
verse does not have a nice closed form. Thus, we use stan-
dard numerical techniques to compute the pseudo-inverse
(
∑n

i=1 vi ′ vi)
†. However, in practice, one rarely uses lin-

ear estimators for passively collected data. Thus, we also
compare our method against the Fourier Neural Operator (Li
et al., 2021), the most popular architecture for operator learn-
ing. Our code is available at https://github.com/
unique-subedi/active-operator-learning.

5.1. Poisson Equation

Let X = [0, 1]2. Consider Poisson equation with Dirichlet
boundary conditions:

⇒⇑
2u = f, u(x) = 0 ▽x ↓ boundary(X ),

where ⇑
2 is the Laplace operator. The objective is to learn

the solution operator that maps the source function f to the
solution u. This solution operator is the inverse of the Lapla-
cian, which is a compact linear operator since X is bounded.
For the passive data collection strategy, the input functions f
are independently sampled as f → GP(0, 502(⇒⇑

2+I)→2),
where GP denotes Gaussian Process.

The solution u is computed using the finite-difference
method. Both linear estimators and Fourier Neural Op-
erators (FNO) are trained on n such independently sam-
pled pairs (f, u). For testing, 100 additional source func-
tions f → GP(0, 502(⇒⇑

2 + I)→2) are generated, and their
corresponding solutions u are also obtained via the finite-
difference method. Both active and passive estimators are
evaluated on this test set, with the performance measured
using the mean-squared relative error:

Error =
1

ntest

ntest∑

i=1

∥∥∥utrue
i ⇒ upredicted

i

∥∥∥
2

L2

↘utrue
i ↘

2
L2

.

We report the relative error instead of the absolute error to
normalize for potential arbitrary scaling due to the norms
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of the true solution function. The FNO model has four
Fourier layers and N/2 Fourier modes, where N denotes
the number of grid points along each spatial dimension.
In our experiments, all computations are carried out on a
64 ↙ 64 grid, so N = 64. Figures (1) and (2) show the
testing error as a function of the training sample size. The
performance of FNO on active data is not included in this
figure due to its poor results. However, Figure (5) in the
Appendix includes the error curve for FNO trained with
active data, alongside the results for passive data.

Figure 1. Error Plots for various estimators for Poisson Equation.
The blue curve shows the performance of our linear estimator on
actively collected data. The orange and red curves include the
linear estimator’s and FNO’s performance on passively collected
data. Figure 2 shows the same plot in log-scale.

Figure 2. Error Plots for Poisson Equation in log-log scale.

While the convergence guarantee of our estimator is
formally established only for the covariance operator
502(⇒⇑

2 + I)→ω with ϱ > 1 as d = 2, we observe that
the estimator demonstrates robust convergence even when
ϱ ∞ 1 in the context of Poisson equation. Figure (3) presents

the convergence rate of our estimator in log scale, using ac-
tively collected data across various values of ϱ.

Figure 3. Convergence rate of the active linear estimator for Pois-
son equation with actively collected data for different values of ω.

5.2. Heat Equation

Consider the heat equation

∂u

∂t
= ▷ ⇑2u,

where u : [0, 1]2 ≃ R vanishes on the boundary. The
solution operator for this equation is given by exp(▷ t⇑2),
and the solution at time t ↗ 0 can be expressed as ut =
exp(▷ t⇑2)u0. Fixing t = 1, our objective is to learn the
solution operator exp(▷⇑2). This operator is defined as

exp(▷⇑2) =
↑∑

k=0

(▷⇑2)k

k!
,

which is a bounded linear operator. As in the previous case,
we sample n initial conditions u0 → GP(0, (⇒⇑

2+ I)→1.5).
For each initial condition, we use the finite difference
method with forward-time discretization to compute the
solution u1 at t = 1. This is done using 1000 time dis-
cretization steps on a 64 ↙ 64 grid. For our experiments,
we set ▷ = 10→2. As ▷ is the step size in the forward Euler
method, choosing a larger ▷ would result in instability in
the numerical PDE solver.

All estimators are evaluated on a test set of size 100, drawn
from the same distribution as the training data. Figure (4)
presents the relative testing errors. Furthermore, the error
plot for the Fourier Neural Operator (FNO) trained on ac-
tively collected data is shown in Figure (6) in the Appendix.
Finally, Figure (7) in the Appendix shows the convergence
rates of the active linear estimator for different values of ϱ.

Our experimental results verify the theoretical advantage of
active data collection strategies over passive sampling, as

8
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Figure 4. Error Plots for the Heat equation in log-scale.

established in Theorem 3.1. These findings highlight the
practical utility of active learning frameworks in improving
data efficiency for operator learning tasks.

6. Discussion and Future Work
In this work, we show that arbitrarily fast rates can be
achieved with an active data collection strategy when the op-
erator of interest is a bounded linear operator and the input
functions are drawn from centered distributions with contin-
uous covariance kernels. A natural extension of these results
would involve non-linear operators. Specifically, one might
ask whether there exists a natural class of non-linear oper-
ators that permits such fast rates when input functions are
drawn from centered distributions with continuous covari-
ance kernels. A natural starting point might be to consider
the RKHS of operators. Additionally, given that functional
PCA is the estimation of truncated Karhunen–Loève de-
composition, it would be interesting to explore whether a
variant of a PCANet-based architecture could achieve fast
rates with active data collection.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning for scientific applications. There are
many potential societal consequences of our work, none of
which we feel must be specifically highlighted here.
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A. Proof of Theorem 3.1
A.1. Specifying Data Collection Strategy and The Estimator

We first specify the estimator that achieves the claimed guarantee in Theorem 3.1. Let {ωj ,⇀j}
↑
j=1 be the sequence of

eigenpairs of K defined by solving the Feldholm integral equation
∫

X
K(y, x)⇀j(x) dφ(x) = ωj ⇀j(y), y, x ↓ X .

Given the Oracle call budget of n, the input functions that the learner selects are ⇀1,⇀2, . . . ,⇀n as source terms. For each
i ↓ [n], the learner makes an oracle call and obtain

wi = O(⇀i).

Consider the estimation rule

argmin
L is linear

n∑

i=1

↘L⇀i ⇒ wi↘
2
L2 .

Solving this optimization problem boils down to solving the linear equation

n∑

i=1

wi ′ ⇀i = L ̸


n∑

i=1

⇀i ′ ⇀i


.

It is clear that this system is ill-posed and has infinitely many solutions. The family of solutions can be written as

L =


n∑

i=1

wi ′ ⇀i


n∑

i=1

⇀i ′ ⇀i

†

,

where † indicates the pseudoinverse. Each particular choice of pseudoinverse yields a distinct solution. Since ⇀i’s are
orthonormal, a natural one is 

n∑

i=1

⇀i ′ ⇀i

†

=
n∑

i=1

⇀i ′ ⇀i.

This choice of pseudoinverse yields the estimator

F̂n :=
n∑

i=1

wi ′ ⇀i,

which will be our estimator interest.

A.2. Rewriting Risk using Karhunen–Loève Theorem

Next, we bound the risk of this estimator. Pick any v → µ. Since v is defined using a centered and squared-integrable
stochastic process with continuous covariance kernel K, the celebrated Karhunen–Loève Theorem (Hsing & Eubank, 2015,
Theorem 7.3.5) states that

v(·) =
↑∑

j=1

√
ωj ⇁j ⇀j(·),

where ⇁j’s are random variables defined as

⇁j :=
1√
ωj

∫

X
vx(↼)⇀j(x) dφ(x).

Here, vx(↼) is simply just v(x), but we write the dependence on ↼ explicitly to highlight the fact that v is generated by
stochastic process on the probability space (”,#,P).
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It turns out that ⇁j’s are uncorrelated random variables with mean 0 and variance 1. In particular, we have

E[⇁j ] = 0 and E[⇁i ⇁j ] = [i = j].

The precise convergence statement is

lim
m≃↑

sup
x↓X

E






v(x)⇒

m∑

j=1

√
ωj ⇁j⇀j(x)



2


 = 0. (2)

We refer the reader to standard texts (Hsing & Eubank, 2015, Theorem 7.3.5) or (Lord et al., 2014, Theorem 7.52) for the
full proof of Karhunen–Loève Theorem.

Fix m ↓ N such that m > n and define $m to be a projection operator onto the first m eigenfunctions of K. That is, for
each v with Karhunen–Loève decomposition v(·) =

∑↑
j=1

√
ωj ⇁j ⇀j(·), we define

$m(v) :=
m∑

j=1

√
ωj ⇁j⇀j(·).

Since both F̂n and F are linear operators, we can write

E
v↔µ

[∥∥∥F̂n(v)⇒ F(v)
∥∥∥
2

L2

]

= E
v↔µ

[∥∥∥F̂n

(
$m(v)

)
⇒ F

(
$m(v)

)
+
(
F̂n ⇒ F

)(
v ⇒$m(v)

)∥∥∥
2

L2

]

∞ E
v↔µ

[∥∥∥F̂n

(
$m(v)

)
⇒ F

(
$m(v)

)∥∥∥
2

L2

]
+ 2E

∥∥∥F̂n

(
$m(v)

)
⇒ F

(
$m(v)

)∥∥∥
L2

∥∥∥
(
F̂n ⇒ F

)(
v ⇒$m(v)

)∥∥∥
L2



+ E
[∥∥∥

(
F̂n ⇒ F

)(
v ⇒$m(v)

)∥∥∥
2

L2

]

The inequality follows upon using triangle inequality and expanding the square. For the cross term, Cauchy–Schwarz
inequality yields

E
∥∥∥F̂n

(
$m(v)

)
⇒ F

(
$m(v)

)∥∥∥
L2

∥∥∥
(
F̂n ⇒ F

)(
v ⇒$m(v)

)∥∥∥
L2



∞



E
[∥∥∥F̂n

(
$m(v)

)
⇒ F

(
$m(v)

)∥∥∥
2

L2

] 

E
[∥∥∥

(
F̂n ⇒ F

)(
v ⇒$m(v)

)∥∥∥
2

L2

]
.

Thus, we can write

E
v↔µ

[∥∥∥F̂n(v)⇒ F(v)
∥∥∥
2

L2

]
∞ (I) + 2

√
(I) (II) + (II),

where we define

(I) := E
v↔µ

[∥∥∥F̂n

(
$m(v)

)
⇒ F

(
$m(v)

)∥∥∥
2

L2

]

(II) := E
[∥∥∥

(
F̂n ⇒ F

)(
v ⇒$m(v)

)∥∥∥
2

L2

]
.

Next, we will bound (I) and (II) separately.

A.3. Bounding (I).

Pick any v → µ. Then, we know that there exists {⇁j}j↓N such that v =
∑↑

j=1

√
ωj ⇁j⇀j . So, $m(v) =

∑m
j=1

√
ωj ⇁j⇀j ,

which subsequently implies that

F̂n

(
$m(v)

)
= F̂n




m∑

j=1

√
ωj ⇁j ⇀j



 =
m∑

j=1

√
ωj ⇁j F̂n(⇀j) =

n∑

j=1

√
ωj ⇁j wj ,
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where the final equality uses the fact that n < m and F̂n(⇀j) = 0 for all j > n. Defining 2i := O(⇀i)⇒ F(⇀i), we obtain
wi = F(⇀i) + 2i. This allows us to write

F̂n

(
$m(v)

)
=

n∑

i=1

√
ωi ⇁i (F(⇀i) + 2i)

= F


n∑

i=1

√
ωi ⇁i⇀i


+

n∑

i=1

√
ωi ⇁i2i

= F ($m(v))⇒ F




m∑

j=n+1

√
ωj ⇁j⇀j



+
n∑

i=1

√
ωi ⇁i2i.

So, we can rewrite (I) as

E
v↔µ

[∥∥∥F̂n

(
$m(v)

)
⇒ F

(
$m(v)

)∥∥∥
2

L2

]

= E
ϱ





∥∥∥∥∥∥

n∑

i=1

√
ωi ⇁i 2i ⇒ F




m∑

j=n+1

√
ωj⇁j ⇀j





∥∥∥∥∥∥

2

L2





= E
ϱ




∥∥∥∥∥

n∑

i=1

√
ωi ⇁i 2i

∥∥∥∥∥

2

L2



⇒ 2E
ϱ






n∑

i=1

√
ωi ⇁i 2i,F




m∑

j=n+1

√
ωj⇁j ⇀j






+ E
ϱ





∥∥∥∥∥∥
F




m∑

j=n+1

√
ωj ⇁j ⇀j





∥∥∥∥∥∥

2

L2



 .

The cross-term vanishes upon swapping sum and integral as ⇁i’s are zero mean and uncorrelated. For the first term, note that

E
ϱ




∥∥∥∥∥

n∑

i=1

√
ωi ⇁i 2i

∥∥∥∥∥

2

L2



 = E
ϱ


n∑

i=1

√
ωi ⇁i 2i,

n∑

i=1

√
ωi ⇁i 2i



L2



=
n∑

i=1

ωi E[⇁2i ] ↘2i↘L2 + 2
∑

1↘i<j↘n

√
ωiωj E[⇁i⇁j ] ∈2i, 2j∋L2

=
n∑

i=1

ωi ↘2i↘
2
L2 + 0

∞ ε2
n∑

i=1

ωi.

The final inequality uses the fact that O is ε-approximate for F . For the third term, similar arguments show that

E
ϱ





∥∥∥∥∥∥
F




m∑

j=n+1

√
ωj ⇁j ⇀j





∥∥∥∥∥∥

2

L2



 ∞ ↘F↘
2
op E

ϱ





∥∥∥∥∥∥

m∑

j=n+1

√
ωj ⇁j ⇀j

∥∥∥∥∥∥

2

L2





= ↘F↘
2
op

m∑

j=n+1

ωj ↘⇀j↘
2
L2

= ↘F↘
2
op

m∑

j=n+1

ωj .

Thus, we have established that

(I) ∞ ε2
n∑

i=1

ωi + ↘F↘
2
op

m∑

j=n+1

ωj .
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A.4. Bounding (II)

For any v → µ, we have

E
v↔µ

[∥∥∥
(
F̂n ⇒ F

)(
v ⇒$m(v)

)∥∥∥
2

L2

]
∞

∥∥∥F̂n ⇒ F

∥∥∥
2

op
E

↘v ⇒$m(v)↘2L2



Let v =
∑

j↗1

√
ωj ⇁j⇀j . Then,

E

↘v ⇒$m(v)↘2L2


= E





∥∥∥∥∥∥
v ⇒

m∑

j=1

√
ωj ⇁j ⇀j

∥∥∥∥∥∥

2

L2





= E




∫

X



v(x)⇒
m∑

j=1

√
ωj ⇁j ⇀j(x)




2

dφ(x)





=

∫

X
E







v(x)⇒
m∑

j=1

√
ωj ⇁j ⇀j(x)




2


 dφ(x)

∞ φ(X ) · sup
x↓X

E







v(x)⇒
m∑

j=1

√
ωj ⇁j ⇀j(x)




2


 .

The third equality uses joint measurability, finiteness of φ, and Tonelli’s theorem to exchange the order or integration.
Therefore, we have established that

(II) ∞
∥∥∥F̂n ⇒ F

∥∥∥
2

op
· φ(X ) · sup

x↓X
E







v(x)⇒
m∑

j=1

√
ωj ⇁j ⇀j(x)




2


 .

A.5. Combining (I) and (II)

For each m > n, we have established

E
v↔µ

[∥∥∥F̂n(v)⇒ F(v)
∥∥∥
2

L2

]
∞ (I) + 2

√
(I) (II) + (II),

where

(I) ∞ ε2
n∑

i=1

ωi + ↘F↘
2
op

m∑

j=n+1

ωj

(II) ∞
∥∥∥F̂n ⇒ F

∥∥∥
2

op
· φ(X ) · sup

x↓X
E







v(x)⇒
m∑

j=1

√
ωj ⇁j ⇀j(x)




2


 .

It now remains to choose m such that the upperbound is minimized. To that end, we will take m ≃ ⇐. Since w1, . . . , wn ↓

L2(X ), we must have
∥∥∥F̂n

∥∥∥
op

< ⇐. As F is also a bounded linear operator, for any n ↓ N, we must have

∥∥∥F̂n ⇒ F

∥∥∥
2

op
< ⇐.

Importantly, the norm of F̂n ⇒ F may grow with n, but is independent of m and does not grow as m ≃ ⇐. Moreover, as φ
is a finite measure, we must have φ(X ) < ⇐. Therefore, Karhunen–Loève Theorem (Hsing & Eubank, 2015, Theorem

14
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7.3.5) (also see Equation (2)) implies that

(II) ∞
∥∥∥F̂n ⇒ F

∥∥∥
2

op
· φ(X ) · sup

x↓X
E







v(x)⇒
m∑

j=1

√
ωj ⇁j ⇀j(x)




2


 m≃↑
⇒⇒⇒⇒≃ 0.

On the other hand,

(I) m≃↑
⇒⇒⇒⇒≃ ε2

n∑

i=1

ωi + ↘F↘
2
op

↑∑

j=n+1

ωj .

Overall, we have shown that

E
v↔µ

[∥∥∥F̂n(v)⇒ F(v)
∥∥∥
2

L2

]
∞ ε2

n∑

i=1

ωi + ↘F↘
2
op

↑∑

j=n+1

ωj .

This completes our proof of Theorem 3.1.

B. Examples of Covariance Kernels
In this section, we build upon and present a more rigorous analysis of the material discussed in Section 3.3 of the main text.

B.1. Fractional Inverse of Shifted Laplacian

Li et al. (2021) and Kovachki et al. (2023) generated input functions from GP(0,ϑ(⇒⇑
2 + ϖI)→ω) for some constants

ϑ,ϖ, ϱ > 0. Here, ⇑2 is the Laplacian operator defined as

⇑
2v =

d∑

j=1

∂2v

∂x2
j

.

In this section, we will consider X to be a d-dimensional periodic torus Td and the base measure φ is Lebesgue. We identify
Td by [0, 1]d with periodic boundary conditions.

Let us define a function ⇀m : Td
≃ C as ⇀m(x) = e2ς im·x for every m ↓ Zd. Recall that ⇀m is the eigenfunction of ⇑2

with eigenvalue ⇒4π2
|m|

2
2. In particular,

⇑
2e2ς im·x =

d∑

j=1

∂2

∂x2
j

e2ς im·x =
d∑

j=1

(2π imj)
2e2ς im·x = ⇒4π2

|m|
2
2 e

2ς im·x.

Since {⇀m : m ↓ Zd
} forms a complete orthonormal system in L2(Td), there are no other eigenfunctions of ⇑2. A simple

algebra shows that ⇀m’s are also he eigenfunctions of shifted Laplacian ⇒⇑
2 + ϖI with eigenvalues being (ϖ + 4π2

|m|
2
2).

Finally, the spectral mapping theorem implies that {(ωm,⇀m) : m ↓ Zd
} is the sequence of eigenpairs of ϑ(⇒⇑

2+ϖI)→ω ,
where the eigenvalues are

ωm = ϑ
(
ϖ + 4π2

|m|
2
2

)→ω
.

Next, we need to show that these eigenvalues are summable to use Theorem 3.1. Note that
∑

m↓Zd

ωm =
∑

m↓Zd

ϑ
(
ϖ + 4π2

|m|
2
2

)→ω
∞ ϑϖ→ω +

ϑ

(2π)2ω

∑

m↓Zd\{0}

|m|
→2ω
↑ .

It is easy to see that
∑

m↓Zd\{0}

|m|
→2ω
↑ ∞

↑∑

j=1

j→2ω (2j + 1)d ∞ 3d
↑∑

j=1

j→2ω+d < ⇐

as long as 2ϱ > d. The first inequality holds because |{m ↓ Zd
\{0} : |m|↑ = j}| ∞ 2(2j + 1)d→1. This is true

because at least one of the entries has to be ±j and other d⇒ 1 entries could be anything in {0,±1, . . . ,±j}. So we have∑
m↓Zd |ωm| < ⇐, implying that the operator ϑ(⇒⇑

2 + ϖI)→ω is in trace class as long as 2ϱ > d.

15



On the Benefits of Active Data Collection in Operator Learning

Finally, it is easy to see that the operator ϑ(⇒⇑
2 + ϖI)→ω is integral operator associated with the kernel

K(y, x) =
∑

m↓Zd

ωm ⇀m(y)⇀m(x).

Upon writing the Fourier series of v ↓ L2(T), it is obvious that
(
ϑ(⇒⇑

2 + ϖI)→ωv
)
(y) =

∫
X K(y, x)v(x) dx for all

y ↓ X . As
∑

m↓Z |ωm| < ⇐, the convergence is absolute and uniform. Since K is a uniform limit of the sum of continuous
functions, K must also be continuous. Moreover, as ωm = ω→m, the kernel K must be real-valued. In particular, we have

K(y, x) =
∑

m↓Zd

ωm ⇀m(y)⇀m(x)

=
∑

m↓Zd

ωm

2

(
⇀m(y)⇀m(x) + ⇀→m(y)⇀→m(x)

)

=
∑

m↓Zd

ωm cos
(
2πm · (y ⇒ x)

)

=
∑

m↓Zd

ωm

(
cos(2πm · y) cos(2πm · x) + sin(2πm · y) sin(2πm · x)

)

This is a generalization of the cosine covariance kernel often considered in computational PDE literature (see (Lord et al.,
2014, Example 5.20)). Since cos(3) = cos(⇒3), it is obvious that K is symmetric. As K is a continuous and real-valued
covariance kernel defined on a bounded domain Td, we can use Theorem 3.1 for such K. In principle, we could use the
Fourier modes ⇀m’s as source terms to define the estimator discussed in Section 3.1. However, the proof of Theorem 3.1
assumes that the eigenfunctions of the kernel are real-valued. So, we will first show that we can write the eigenfunctions of
K solely using sine and cosine functions without having to use complex exponentials. This allows us to use these sine and
cosine functions to define the estimator discussed in Section 3.1, and invoke results of Theorem 3.1.

B.1.1. CASE d = 1

When d = 1, it is easy to see that {1} ⇔ {
△
2 cos(2πjx),

△
2 sin(2πjx) : j ↓ N} are the eigenfunctions of K. Writing the

expansion of K and using Fubini’s to switch the sum and the integral, we get

∫

T
K(y, x)

△
2 cos(2πjx) dx = ωj

△
2 cos(2πjy)

1

2
+ ω→j

△
2 cos(⇒2πjy)

1

2
= ωj

△
2 cos(2πjy).

Note that the first equality holds because cos(2πjx) is orthogonal to all other cosine and sine functions except for cos(2πjx)
and cos(⇒2πjx). The final equality holds because ωj = ω→j and cos(3) = cos(⇒3). A similar calculation shows that

∫

T
K(y, x)

△
2 sin(2πjx) dx = ωj

△
2 sin(2πjy)

1

2
+ ω→j

△
2 sin(⇒2πjy)

⇒1

2
= ωj

△
2 sin(2πjy).

Finally, we have
∫
T K(y, x) 1 dx = ω01. Thus, ωj for j ↓ N are the eigenvalues for sine/cosine functions and ω0 for 1.

Since {1} ⇔ {
△
2 cos(2πjx),

△
2 sin(2πjx) : j ↓ N} forms a complete orthonormal system of L2(T,R), there cannot be

any more eigenfunctions of K. Next, we will plug in the values of ωj’s in Theorem 3.1 to get the precise rates.

Pick an odd n ↓ N and suppose the n input terms used to construct the estimator in Section 3.1 are {1} ⇔
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{
△
2 cos(2πjx),

△
2 sin(2πjx) : j ∞ (n⇒ 1)/2}. Then, the upperbound is

ε2



ω0 +

(n→1)/2∑

j=1

2ωj



+ ↘F↘
2
op

↑∑

j=(n+1)/2

2ωj

∞ ε2ϑϖ→ω + ε22

(n→1)/2∑

j=1

ϑ
(
ϖ + 4π2j2

)→ω
+ 2 ↘F↘

2
op

↑∑

j=(n+1)/2

ϑ
(
ϖ + 4π2j2

)→ω

∞ ε2ϑϖ→ω + ε2ϑ
2

(4π2)ω

(n→1)/2∑

j=1

1

j2ω
+

2ϑ

(4π2)ω
↘F↘

2
op

↑∑

j=(n+1)/2

1

j2ω

∞ ε2ϑϖ→ω + ε2ϑ
2

(4π2)ω
+ ε2ϑ

2

(4π2)ω

∫ (n→1)/2

1
t→2ω dt+

2ϑ

(4π2)ω
↘F↘

2
op

∫ ↑

(n→1)/2
t→2ω dt

∞ ε2ϑϖ→ω + ε2ϑ
2

(4π2)ω
+

2

(4π2)ω
ε2ϑ

2ϱ ⇒ 1
+

2ϑ

(4π2)ω
↘F↘

2
op

1

2ϱ ⇒ 1

22ω→1

(n⇒ 1)2ω→1
, ▽ϱ >

1

2
.

Since 2 · 22ω→1
∞ (4π2)ω and 22ω→1

∞ (4π2)ω , the overall error is at most

ε2
(
ϑϖ→ω + ϑ+

ϑ

2ϱ ⇒ 1

)
+

ϑ ↘F↘
2
op

2ϱ ⇒ 1

1

(n⇒ 1)2ω→1
for all ϱ >

1

2
.

Since ϱ > 1/2, the reducible error goes to 0 as n ≃ ⇐. As an example, (Li et al., 2021) uses ϑ = 625, ϖ = 25 and ϱ = 2
in their experiment for 1d-Burger’s equation. In this case, we get the convergence rate of n→3 for the reducible error. Note
that this rate of cubic order is faster than the usual passive statistical rate of 1/n. In fact, for any value ▷ , one can take
ϱ = (▷ + 1)/2 to get the rate of n→φ . Thus, every polynomial rate is possible depending on the choice of ϱ.

B.1.2. CASE d > 1

Recall that {1} ⇔ {
△
2 cos(2πjx),

△
2 sin(2πjx) : j ↓ N} are the eigenvalues of K for d = 1 with eigenvalues ωj :=

ϑ
(
ϖ + 4π2j2

)→ω . Define a set of functions

E =
d∏

i=1

{1} ⇔ {
△
2 cos(2πjxi),

△
2 sin(2πjxi) : j ↓ N}.

For each element e ↓ E , there exists a tuple j := (j1, . . . , jd) ↓ Nd
0 such that

e(x) = 0j1(x1) . . .0jd→1(xd→1) · 0jd(xd),

where 0ji(xi) ↓ {
△
2 cos(2πjixi),

△
2 sin(2πjixi)} for ji > 0 and

△
2 for ji = 0. Let us denote the collection of all such

functions by Ej . Then, we have E = ⇔j↓Nd
0
Ej . We prove the following result on the eigenpairs of K.

Proposition B.1. For each j ↓ Nd
0, define ωj = ϑ

(
ϖ + 4π2

|j|22
)→ω

. Then,

⋃

j↓Nd
0

⋃

e↓Ej

{(ωj , e)}

is the set of eigenpairs of K on Td
.

We defer the full proof of Proposition B.1 to the end of this subsection. First, we use Proposition B.1 and Theorem 3.1 to get
the precise rate for kernel K. Pick r such that the source terms used to construct the estimator defined in Section 3.1 are

⋃

j↓Nd
0 : |j|↑↘r

Ej

17
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Note that |E0| = 1 and |Ej | ∞ 2d for all |j|↑ > 0. Thus, there are n ∞ (r + 1)d2d source terms. Then, the upperbound is

∞ ε2ω0 +
∑

0<|j|↑↘r

2d ωj + ↘F↘
2
op

∑

|j|↑>r

2d ωj

= ε2ϑϖ→ω + ε22d
∑

0<|j|↑↘r

ϑ
(
ϖ + 4π2

|j|22
)→ω

+ 2d ↘F↘
2
op

∑

|j|↑>r

ϑ
(
ϖ + 4π2

|j|22
)→ω

= ε2ϑϖ→ω + ε22d
∑

0<|j|↑↘r

ϑ
(
ϖ + 4π2

|j|2↑
)→ω

+ 2d ↘F↘
2
op

∑

|j|↑>r

ϑ
(
ϖ + 4π2

|j|2↑
)→ω

∞ ε2ϑϖ→ω + ε22d
r∑

k=1

ϑ (ϖ + 4π2k2)→ω (k + 1)d→1 + 2d ↘F↘
2
op

↑∑

k=r+1

ϑ
(
ϖ + 4π2k2

)→ω
(k + 1)d→1

∞ ε2ϑϖ→ω + ε22d
ϑ2d

(4π2)ω

r∑

k=1

kd→1→2ω + 2d ↘F↘
2
op

ϑ 2d

(4π2)ω

↑∑

k=r+1

kd→1→2ω

∞ ε2ϑϖ→ω + ε2
ϑ22d

(4π2)ω
+ ε2

ϑ22d

(4π2)ω

∫ r

1
td→1→2ω dt+ ↘F↘

2
op

ϑ 22d

(4π2)ω

∫ ↑

r
td→1→2ω dt

∞ ε2ϑϖ→ω + ε2
ϑ22d

(4π2)ω
+ ε2

ϑ22d

(4π2)ω
1

2ϱ ⇒ d
+ ↘F↘

2
op

ϑ 22d

(4π2)ω
1

2ϱ ⇒ d

1

r2ω→d
, for all 2ϱ > d.

Recall that n ∞ (2r + 2)d. So, we have n1/d/2⇒ 1 ∞ r. For n1/d
↗ 4, we have r ↗ n1/d/4. Thus,

1

r2ω→d
∞

42ω→d

n
2ω
d →1

Note that (4π2)ω = (2π)2ω ↗ 22d42ω→d. Moreover, as 2ϱ > d, we also have (4π2)ω ↗ 22d. Therefore, our upper bound is
at most

ε2
(
ϑϖ→ω + ϑ+

ϑ

2ϱ ⇒ d

)
+

ϑ ↘F↘
2
op

2ϱ ⇒ d

1

n
2ω
d →1

.

Since 2ϱ/d ⇒ 1 > 0, the reducible error above goes to 0 when n ≃ ⇐. Again, as an example, (Li et al., 2021) uses
ϑ = 73/2, ϖ = 49 and ϱ = 2.5 in their experiment for 2d-Navier Stokes. In this case, 2ϱ/d = 2.5, yielding the convergence
rate of n→1.5 for the reducible error. Note that this rate is faster than the usual passive statistical rate of 1/n. However,
as usual, for any value ▷ , one can take ϱ = d(▷ + 1)/2 to get the rate of n→φ . Thus, every polynomial rate is possible
depending on the choice of ϱ.

We now end this section by providing the proof of Theorem B.1.

Proof of Proposition B.1. Since ⇔j↓Nd
0
⇔e↓Ej {e} forms an orthonormal basis of L2(Td,R), there cannot be anymore

eigenfunctions of K. Thus, it suffices to show that (ωj , e) is an eigenpair for any e ↓ Ej and j ↓ Nd
0. To prove this, we will

establish that ∫

Td

∑

m↓Zd

{|mi| = ji ▽i ↓ [d]} cos
(
2πm · (y ⇒ x)

)
ej(x) dx = ej(y), (3)

where ej is an arbitrary element of Ej . Recall that
∫

Td

cos
(
2πm · (y ⇒ x)

)
ej(x) dx = 0 if ∃i such that |mi| ∀= ji.

This is true because if ∃i such that |mi| ∀= ji, then we can write cos
(
2πm · (y ⇒ x)

)
= cos

(
2π

∑
↼ ⇐=i m↼(y↼ ⇒

x↼)
)
cos(2πmi(yi⇒xi))⇒ sin

(
2π

∑
↼ ⇐=i m↼(y↼⇒x↼)

)
sin(2πmi(yi⇒xi)). Moreover, ej(x) = 0j1(x1) . . .0jd→1(xd→1) ·

0jd(xd), where 0jϑ ’s are either sine, cosine, or a constant function. Our claim follows upon noting that 0ji(xi) is orthogonal
to both sin(2πmi(yi ⇒ xi)) and cos(2πmi(yi ⇒ xi)).

Thus, Equation (3) together with the fact that ωm = ωj for all m ↓ {k ↓ Zd : |ki| = ji ▽i ↓ [d]} implies that (ωj , ej) is
the eigenpair of K. As j ↓ Nd

0 and ej ↓ Ej are arbitrary, this completes our proof.
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Now, it remains to prove Equation (3). We will proceed by induction on d. For the base case, take d = 1. If j = 0, ej = 1
and our claim follows trivially. Suppose j ∀= 0. Since cos(3) = cos(⇒3), we have

∑

m↓Z
{|m| = j} cos

(
2πm(y ⇒ x)

)
= 2 cos(2πj(y ⇒ x))

= 2 cos(2πjy) cos(2πjx) + 2 sin(2πjy) sin(2πjx).

If ej(x) =
△
2 cos(2πjx), then
∫

T
(2 cos(2πjy) cos(2πjx) + 2 sin(2πjy) sin(2πjx))

△
2 cos(2πjx) dx =

△
2 cos(2πjy).

If ej(x) =
△
2 sin(2πjx), a similar calculation shows that
∫

T
(2 cos(2πjy) cos(2πjx) + 2 sin(2πjy) sin(2πjx))

△
2 sin(2πjx) dx =

△
2 sin(2πjy).

This completes our proof of the base case.

Suppose (3) is true for d⇒ 1. We will now prove it for d. Note that

cos
(
2πm · (y ⇒ x)

)
= cos


2π

d∑

i=1

mi(yi ⇒ xi)



= cos


2π

d→1∑

i=1

mi(yi ⇒ xi)


cos (2πmd(yd ⇒ xd))⇒ sin


2π

d→1∑

i=1

mi(yi ⇒ xi)


sin (2πmd(yd ⇒ xd)) .

First, observe that when summed over all m ↓ Zd such that |mi| = ji for all i ↓ [d], the sine term vanishes. That is,

∑

m↓Zd

{
|mi| = ji ▽i ↓ [d]

}

sin


2π

d→1∑

i=1

mi(yi ⇒ xi)


sin (2πmd(yd ⇒ xd))



=




∑

m↓Zd→1

{
|mi| = ji ▽i ↓ [d⇒ 1]

}
sin


2π

d→1∑

i=1

mi(yi ⇒ xi)






∑

md↓Z
{|md| = jd} sin (2πmd(yd ⇒ xd))



= 0.

The final step follows here because the term in the second parenthesis above is always 0. There are two cases to consider. If
jd = 0, the summand only has one term and our claim holds as sin(0) = 0. On the other hand, if jd ∀= 0, then we are have
sin(3) + sin(⇒3) = 0.

Therefore, we obtain
∑

m↓Zd

{|mi| = ji ▽i ↓ [d]} cos
(
2πm · (y ⇒ x)

)

=




∑

m↓Zd→1

{|mi| = ji ▽i ↓ [d⇒ 1]} cos


2π

d→1∑

i=1

mi(yi ⇒ xi)






∑

md↓Z
{|md| = jd} cos (2πmd(yd ⇒ xd))



A similar factorization can be done for ej to write

ej(x) = 0j1(x1) . . .0jd(xd),

where 0ji ’s are either sine, cosine, or a constant function.

However, 0jd is some ejd defined on T. Thus, using the base case, we have
∫

T

∑

md↓Z
{|md| = jd} cos (2πmd(yd ⇒ xd)) 0jd(xd) dxd = 0jd(yd).
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Similarly, using the induction hypothesis, we have

∫

Td→1




∑

m↓Zd→1

{|mi| = ji ▽i ↓ [d⇒ 1]} cos


2π

d→1∑

i=1

mi(yi ⇒ xi)




d→1∏

i=1

0ji(xi) d(x1, . . . , xd→1)

=
d→1∏

i=1

0ji(yi).

Combining everything, we obtain

∫

Td

∑

m↓Zd

{|mi| = ji ▽i ↓ [d]} cos
(
2πm · (y ⇒ x)

) d∏

i=1

0ji(xi) dx =
d∏

i=1

0ji(yi).

The final step requires using the factorization of cosine and writing integral over Td as product of integral over Td→1 and T.
This completes our induction step, and thus the proof.

B.2. RBF Kernel on R.

Let K be the RBF kernel on R. That is, K(x, y) = exp
(
⇒

1
2↼2 |x⇒ y|2

)
for all x, y ↓ R. For now, let φ is a Gaussian

measure with mean 0 and variance ◁2 on R. Then, it is known (Williams & Rasmussen, 2006, Section 4.3.1) that
K(x, y) =

∑↑
j=0 ωj ⇀j(x)⇀j(y), where

ωj :=

√
2a

a+ b+ c

(
b

a+ b+ c

)j

⇀j(x) := exp(⇒(c⇒ a)x2)Hj(
△
2cx).

Here, a = (4◁2)→1, b = (2ς2)→1, c =
△
a2 + 2ab, and Hj(·) is the Hermite polynomial of order j defined as

Hj(x) = (⇒1)j exp(x2)
dj

dxj
exp(⇒x2).

Note that this is the eigenpairs of K(y, x) over the entire R, whereas we need eigenpairs over some compact domain X ↑ R.
The eigenpairs of K(y, x) are generally not available in closed form for arbitrary X . However, the variance of the Gaussian
measure ◁2 can be tuned appropriately to localize the domain R to appropriate X of interest. For example, let X = [⇒1, 1].
Then, ∫ 1

→1
K(y, x)⇀j(x) dφ(x) =

∫

R
K(y, x)⇀j(x) dφ(x)⇒

∫

|x|>1
K(y, x)⇀j(x) dφ(x).

Since
∫
R K(y, x)⇀j(x) dφ(x) = ωj⇀j(y), we have


∫ 1

→1
K(y, x)⇀j(x) dφ(x)⇒ ωj⇀j(y)

 ∞
∫

|x|>1
|K(y, x)| |⇀j(x)| dφ(x)

∞

∫

|x|>1
|K(y, x)|2 dφ(x)

∫

|x|>1
|⇀j(x)|2 dφ(x)

∞

∫

|x|>1
exp

(
⇒
|x⇒ y|2

ς2

)
dφ(x),

where the second term is upper bounded by 1 as ⇀2
j integrates to 1 over the whole domain R. Note that exp

(
⇒

|x→y|2
↼2

)
∞ 1

and
√
φ([⇒1, 1]c) ∞ 3.9 ↙ 10→12 when ◁ = 0.1. So, ◁ can be appropriately tuned such that (ωj ,⇀j)j↗1 is a good

approximation of the eigenpair of K for our domain X of interest. Next, we use these eigenvalues to study how the upper
bound in Theorem 3.1 decays as n ≃ ⇐.
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Let ϱ := b/(a+ b+ c). It is clear that ϱ ↓ (0, 1). Since c =
△
a2 + 2ab ↗ a, we also have

√
2a

a+b+c ∞ 1. Thus, we obtain
ωj ∞ ϱj . Plugging this estimate in the upperbound of Theorem 3.1, we obtain

ε2
n→1∑

i=0

ωi + ↘F↘
2
op

↑∑

i=n

ωi ∞ ε2
n→1∑

i=0

ϱj + ↘F↘
2
op

↑∑

i=n

ϱj

=
1⇒ ϱn

1⇒ ϱ
ε2 + ↘F↘

2
op

ϱn

1⇒ ϱ

∞
1

(1⇒ ϱ)

(
ε2 + ↘F↘

2
op ϱ

n
)
.

Therefore, the reducible error vanishes exponentially fast as n ≃ ⇐.

B.3. RBF Kernel on Rd

Let K(y, x) = exp(⇒|x⇒ y|22/(2ς
2)), where x, y ↓ Rd. Then, it is clear that

K(y, x) =
d∏

i=1

exp(⇒|xi ⇒ yi|
2/(2ς2)) =:

d∏

i=1

Ki(yi, xi).

If (ωij ,⇀ij)j↓N are the eigenpairs of Ki under the weighted measure standard Gaussian measure on R, then
{

d∏

i=1

ωiji ,
d∏

i=1

⇀iji

 (j1, j2, . . . , jd) ↓ Nd
0

}

are the eigenpairs of K when φ is multivariate Gaussian with mean 0 and covariance ◁2I. This follows immediately upon
noting that

∫

Rd

K(y, x)
d∏

i=1

⇀iji(xi) dφ(x) =
d∏

i=1

∫

R
Ki(yi, xi)⇀iji(xi) dφ(xi) =

d∏

i=1

ωiji ⇀iji(xi).

Finally, these are the only eigenpairs because the product functions
∏d

i=1 ⇀iji for all possible j1, . . . , jd ↓ N0 form a
complete orthonormal system of L2(Rd) under the base measure φ.

Pick m such that m > d, and suppose the n source terms in Theorem 3.1 are {⇀ij : i ↓ [d] and 0 ∞ j ∞ m⇒ 1}. That is,
we have n = md source terms. So, the upperbound is

ε2
m→1∑

j1=0

. . .
m→1∑

jd=0

d∏

i=1

ωiji + ↘F↘
2
op

∑

(j1,...,jd)↓Nd
0

max{j1,...,jd}↗m

d∏

i=1

ωiji

The first summation is
m→1∑

j1=0

. . .
m→1∑

jd=0

d∏

i=1

ωiji =
d∏

i=1

m→1∑

ji=0

ωiji ∞

d∏

i=1

m→1∑

ji=0

ϱji ∞

(
1⇒ ϱm

1⇒ ϱ

)d

∞
1

(1⇒ ϱ)d
.

On the other hand,

∑

(j1,...,jd)↓Nd
0

max{j1,...,jd}↗m

d∏

i=1

ωiji ∞

∑

(j1,...,jd)↓Nd
0

max{j1,...,jd}↗m

ϱj1+...+jd ∞

↑∑

r=m

rd ϱr
∞

∫ ↑

m→1
rd ϱr dr.

The second inequality follows because the number of tuple (j1, . . . , jd) that sum to r is ∞ rd. It is easy to see that the integral
converges faster than 1/nt for every t ↗ 1. To see this, pick t ↗ 1. Then, there exists c > 0 such that ϱr

∞ c r→dt→1→d .
Note that c may depend on ϱ, d, and t, but it does not depend on r. Thus, we obtain

∫ ↑

m→1
rd ϱr dr ∞ c

∫ ↑

m→1
r→dt→1 dr =

c

(m⇒ 1)dt
.
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Since m = n1/d, this rate is c⇒/nt for some c⇒. That is, our overall upper bound is

ε2
1

(1⇒ ϱ)d
+ ↘F↘

2
op

c⇒

nt
.

for some c⇒ for every t ↗ 1. Therefore, the reducible error vanishes at a rate faster than every polynomial function of 1/n.

B.4. Brownian Motion

Let us consider the case where X = [0, 1], the base measure φ is Lebegsue, and the stochastic process in Section 2.2 is
Brownian motion. Recall that the Brownian motion is a Gaussian process with covariance kernel

K(s, t) = min(s, t) s, t ↓ [0, 1].

It is well-known (Hsing & Eubank, 2015, Example 4.6.3) that the eigenpairs of K is given by

ωj :=
1

(
j ⇒ 1

2

)2
π2

and ⇀j(t) :=
△
2 sin

((
j ⇒

1

2

)
πt

)
▽j ↓ N.

Plugging this in the upperbound of Theorem 3.1 yields the bound

ε2
n∑

j=1

1
(
j ⇒ 1

2

)2
π2

+ ↘F↘
2
op

↑∑

j=n+1

1
(
j ⇒ 1

2

)2
π2

= ε2
π2

2

1

π2
+ ↘F↘

2
op

↑∑

j=n+1

1
(
j ⇒ 1

2

)2
π2

∞
ε2

2
+ ↘F↘

2
op

1

π2

∫ ↑

n

1

(t⇒ 1/2)2
dt

=
ε2

2
+ ↘F↘

2
op

1

π2

2

2n⇒ 1
.

Therefore, the reducible error vanishes at rate →
1
n .

C. Numerical Approximation of Eigenfunctions
In Section 3.3, we provided analytic expressions for the eigenfunctions of certain covariance kernels. However, for some
kernels of interest, closed-form expressions for the eigenfunctions are generally not available. In such cases, numerical
approximation is necessary. Here, we will briefly mention some key concepts behind the numerical approximation of
eigenfunctions of kernels. The material presented here is based on (Williams & Rasmussen, 2006, Section 4.3.2), so we
refer the reader to that text for a more detailed discussion and relevant references.

Let dφ(x) ↖ p(x) dx for some density function p. For example, if φ is Lebesgue measure on [⇒1, 1] ↙ [⇒1, 1], then
p(x) = 1/4. Then, the solution of Feldolm integral

∫

X
K(y, x)⇀j(x) dφ(x) = ωj⇀(y)

is approximated using the equation
1

N

N∑

i=1

K(y, xi)⇀j(xi) = ωj⇀j(y).

Here, x1, x2, . . . , xN are iid samples from p. Taking y = x1, . . . , xN , we obtain a matrix eigenvalue equation

Kuj = ϱj uj ,

where K is a N ↙N matrix such that [K] = K(xi, xj). The sequence (ϱj , uj)j↗1 is the eigenpair of K. Then, the estimator
for eigenfunctions ⇀j’s and eigenvalues ωj’s are

⇀j(xi) →
△

N [uj ]i ωj →
ϱj
N

.
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The
△
N normalization for eigenfunction is to ensure that the squared integral of ⇀j on the observed samples is 1. That is,

∫

X
⇀j(x)⇀j(x) dφ(x) ↔

1

N

N∑

i=1

⇀j(xi)⇀j(xi) =
1

N

∑

i=1

△

N [uj ]i ·
△

N [uj ]i = u↭
j uj = 1.

As for the eigenvalues, the proposed estimator is consistent. That is, ϱj/N ≃ ωj when N ≃ ⇐ (Baker & Taylor, 1979,
Theorem 3.4).

The estimator for eigenfunction only allows evaluation on points x1, . . . , xN used to solve the matrix eigenvalue equation.
To evaluate the eigenfunction on arbitrary input, one can use a generalized Nyström-type estimator, defined as

⇀j(y) →

△
N

ϱj

N∑

i=1

K(y, xi) [uj ]i.

D. Proof of Lower Bound
Proof. Let {⇀j}j↓N be the eigenfunctions of K. That is,

∫

X
K(y, x)⇀i(x) dx = ωi ⇀i(y) ▽i ↓ N.

We now construct a hard distribution for the learner. Fix some p ↓ (0, 1) and let ⇁1, ⇁2, . . . denote the sequence of pairwise
independent random variables such that

⇁j =






⇒
√

1/p with probability p
2

0 with probability 1⇒ p√
1/p with probability p

2

.

Given such sequence, define a function v such that

v(·) =
↑∑

j=1

√
ωj ⇁j ⇀j(·).

Note that

↘v↘L2 =
↑∑

j=1

ωj⇁
2
j < ⇐

as supj↓N |⇁j |2 ∞ 1/p and
∑↑

j=1 ωj < ⇐. Thus, v is a random element in L2(X ). Let µ denote the probability measure
over L2(X ) induced by the random sequence {⇁j}j↓N. It is easy to see that E[v(x)] = 0 for each x ↓ X . Moreover, for
every x, y ↓ X , we have

E[v(x) v(y)] = E








↑∑

j=1

√
ωj ⇁j ⇀j(x)








↑∑

j=1

√
ωj ⇁j ⇀j(y)









= E




↑∑

j=1

ωj ⇁
2
j⇀j(x)⇀j(y) + 2

∑

i<j

√
ωiωj ⇁i⇁j ⇀i(x)⇀j(y)





=
↑∑

j=1

ωj E[⇁2j ]⇀j(x)⇀j(y)

=
↑∑

j=1

ωj⇀j(x)⇀j(y)

= K(y, x),
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where the final equality holds due to Mercer’s theorem and the convergence is uniform over x, y ↓ X . Therefore, we have
shown that µ ↓ P(K). Let ◁ := {◁j}j↗1 be a sequence of iid random variables such that ◁j → Uniform({⇒1, 1}). Fix
c > 0 and for each such ◁ ↓ {⇒1, 1}N, define

F⇀ := c
↑∑

j=1

◁j ⇀j ′ ⇀j .

For each m ↓ N, we will show that

E
⇀

[
E

v1:n↔µn

[
E

v↔µ

[∥∥∥F̂n(v)⇒ F⇀(v)
∥∥∥
2

L2

]]]
↗

c2

2

m∑

j=1

ωj .

Since this holds in expectation, using the probabilistic method, there must be a ◁↽ such that

E
v1:n↔µn

[
E

v↔µ

[∥∥∥F̂n(v)⇒ F⇀ε(v)
∥∥∥
2

L2

]]
↗

c2

2

m∑

j=1

ωj .

Noting that ↘F⇀ε↘op = c completes our proof. The rest of the proof will establish this inequality.

Since {⇀j}j↓N is the orthonormal bases of L2(X ), Parseval’s identity implies that

∥∥∥F̂n(v)⇒ F⇀(v)
∥∥∥
2

L2
=

↑∑

j=1


〈
F̂n(v)⇒ F⇀(v),⇀j

〉
2
=

↑∑

j=1


〈
F̂n(v),⇀j

〉
⇒ ∈F⇀(v),⇀j∋


2
.

Recall that F↽(⇀j) = c◁j⇀j , where F
↽ is the adjoint of F . Thus, for any v → µ, we have

∈F(v),⇀j∋ = ∈v,F↽(⇀j)∋ = ∈v, c◁j ⇀j∋ = c◁j

√
ωj ⇁j ,

which subsequently implies

∥∥∥F̂n(v)⇒ F⇀(v)
∥∥∥
2

L2
=

↑∑

j=1


〈
F̂n(v),⇀j

〉
⇒ c◁j

√
ωj ⇁j


2
.

Using this fact, we can write

E
⇀

[
E

v1:n↔µn

[
E

v↔µ

[∥∥∥F̂n(v)⇒ F⇀(v)
∥∥∥
2

L2

]]]

= E
⇀



 E
v1:n↔µn



 E
v↔µ




↑∑

j=1


〈
F̂n(v),⇀j

〉
⇒ c◁j

√
ωj ⇁j


2













= E
v1:n↔µn



 E
v↔µ



E
⇀




↑∑

j=1


〈
F̂n(v),⇀j

〉
⇒ c◁j

√
ωj ⇁j


2











 .

In the final step, we changed the order of integration. Note that drawing n samples of v1, . . . , vn and drawing ◁ can be
done in any order, as they are interchangeable. Finally, the draw of v → µ occurs during the test phase, independent of the
previously drawn samples v1:n and ◁.

Next, let En,m denote the event such that

∈vi,⇀j∋ = 0 ▽1 ∞ i ∞ n and 1 ∞ j ∞ m.

Then, we will lowerbound

E
v↔µ



E
⇀




↑∑

j=1


〈
F̂n(v),⇀j

〉
⇒ c◁j

√
ωj ⇁j


2








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conditioned on the event En,m. First, note that

E
v↔µ



E
⇀




↑∑

j=1


〈
F̂n(v),⇀j

〉
⇒ c◁j

√
ωj ⇁j


2







 ↗ E
v↔µ




m∑

j=1

E
⇀

[
〈
F̂n(v),⇀j

〉
⇒ c◁j

√
ωj ⇁j


2
]



↗ E
v↔µ




m∑

j=1

(
E
⇀


〈
F̂n(v),⇀j

〉
⇒ c◁j

√
ωj ⇁j


)2



 ,

where the final step uses Jensen’s inequality. Next, we use the fact that when the event En,m occurs, the learner has no
information about ◁1, . . . ,◁m. This is because the input data shows no variation along the directions spanned by ⇀1, . . . ,⇀m.
Given that O is the perfect oracle for F⇀ , any information provided by the oracle O must be independent of how F⇀ operates
on the subspace spanned by ⇀1, . . . ,⇀m. Specifically, for every 1 ∞ i ∞ n and 1 ∞ j ∞ m, the output of the oracle O(vi)
must be independent of ◁j . If this condition holds, then the estimator F̂n must also be independent of ◁1, . . . ,◁m. Thus,
conditioned on the event En,m, for any 1 ∞ j ∞ m, we have

E
⇀


〈
F̂n(v),⇀j

〉
⇒ c◁j

√
ωj ⇁j

 = E

E
⇀j
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The first equality uses the fact that conditioned on ◁\{◁j}, the function F̂n(v) is independent of ◁j . Thus, conditioned on
the event En,m, we have shown that
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Therefore, our overall lowerbound is
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
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m∑
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The final step uses the fact that P[En,m] = (1⇒ p)n·m. It now remains to pick p to obtain the claimed lowerbound. Let us
pick p = 1

2mn . Then, we have (1⇒ p)mn
↗ 1/2 as long as n ↗ 1, yielding the lowerbound of

c2

2

m∑

j=1

ωj .

Since m ↓ N is arbitrary, our lowerbound holds for every fixed m. Noting that ↘F⇀↘op = c for every ◁ completes our
proof.

E. Experiments
This section presents additional experimental results using the same setup as described in Section 5. The results show that
the Fourier Neural Operator (FNO) performs poorly with actively collected data. This is likely because the training data
are not i.i.d. samples from the test distribution, requiring FNO to generalize out of distribution when trained on actively
collected data.
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E.1. Poisson Equation

Figure 5. Error Plots for various estimators for Poisson Equation. The plot on the right shows the same plot in log scale.

E.2. Heat Equation

Figure 6. Error Plots for various estimators for Heat Equations in log-log scale.
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Figure 7. Convergence rate of the active linear estimator for Heat equation with actively collected data for different values of ω.
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