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Abstract

Attribute-based encryption (ABE) is a generalization of public-key encryption that enables fine-grained access
control to encrypted data. In (ciphertext-policy) ABE, a central trusted authority issues decryption keys for attributes
x to users. In turn, ciphertexts are associated with a decryption policy P. Decryption succeeds and recovers the
encrypted message whenever #(x) = 1. Recently, Hohenberger, Lu, Waters, and Wu (Eurocrypt 2023) introduced
the notion of registered ABE, which is an ABE scheme without a trusted central authority. Instead, users generate
their own public/secret keys (just like in public-key encryption) and then register their keys (and attributes) with
a key curator. The key curator is a transparent and untrusted entity.

Currently, the best pairing-based registered ABE schemes support monotone Boolean formulas and an a priori
bounded number of users L. A major limitation of existing schemes is that they require a (structured) common
reference string (CRS) of size L2 -|U| where || is the size of the attribute universe. In other words, the size of the CRS
scales quadratically with the number of users and multiplicatively with the size of the attribute universe. The large CRS
makes these schemes expensive in practice and limited to a small number of users and a small universe of attributes.

In this work, we give two ways to reduce the CRS size in pairing-based registered ABE schemes. First, we
introduce a combinatoric technique based on progression-free sets that enables registered ABE for the same class of
policies but with a CRS whose size is sub-quadratic in the number of users. Asymptotically, we obtain a scheme where
the CRS size is nearly linear in the number of users L (i.e., L*°(D) If we take a more concrete-efficiency-oriented
focus, we can instantiate our framework to obtain a construction with a CRS of size 11083 ~ 16, For instance, in
a scheme for 100,000 users, our approach reduces the CRS by a factor of over 115X compared to previous approaches
(and without incurring any overhead in encryption/decryption time). Our second approach for reducing the CRS
size is to rely on a partitioning-based argument when arguing security of the registered ABE scheme. Previous
approaches took a dual-system approach. Using a partitioning-based argument yields a registered ABE scheme
where the size of the CRS is independent of the size of the attribute universe. The cost is the resulting scheme satisfies
a weaker notion of static security. Our techniques for reducing the CRS size can be combined, and taken together,
we obtain a pairing-based registered ABE scheme that supports monotone Boolean formulas with a CRS size of
L1*°(1) Notably, this is the first pairing-based registered ABE scheme that does not require imposing a bound on
the size of the attribute universe during setup time.

As an additional application, we also show how to apply our techniques based on progression-free sets to the
batch argument (BARG) for NP scheme of Waters and Wu (Crypto 2022) to obtain a scheme with a nearly-linear
CRS without needing to rely on non-black-box bootstrapping techniques.

1 Introduction

Attribute-based encryption (ABE) [SW05, GPSWO06] is a cryptographic primitive that enables fine-grained access
control to encrypted data. Specifically, in (ciphertext-policy) ABE, secret keys are associated with a set of attributes
S and ciphertexts are associated with a decryption policy £ and a message m. Decryption recovers the message m



if the attributes S satisfy the decryption policy P (i.e., if P(S) = 1). Conversely, a user who does not have a key for
a satisfying collection of attributes should not learn anything about the message.

While ABE is a versatile generalization of public-key encryption, it comes with a significant drawback of intro-
ducing a central authority who is responsible for generating keys for individual users. To issue keys to users, a central
authority must hold on to a long-term master secret key for the lifetime of the system. If an attacker compromises the
central authority and exfiltrates its secret key, then the attacker is able to decrypt every ciphertext in the system, both
in the past and in the future. This is in stark contrast to traditional public-key encryption where users are individually
responsible for generating and safeguarding their own secret keys. In exchange for expressivity, ABE has introduced
a central point of failure, and this vulnerability to key-exfiltration attacks introduces significant hurdles for deploying
ABE in practice.

The registration model of cryptography. A recent line of works has introduced a new registration model
of cryptography whose goal is to replace the trusted key-issuer in identity-based encryption (IBE) [GHMR18,
GHM*19, GV20, CES21, GKMR22, DKL"23, FKdP23], ABE [HLWW23, FWW23, FFM*23, ZZGQ23], broadcast en-
cryption [BZ14, FWW23, KMW23, GLWW23], and functional encryption (FE) [FFM*23, DP23, DPY23, BLM*24] with
a transparent and untrusted key curator whose sole job is to aggregate users’ public keys. Specifically, in the setting
of registered ABE, users independently generate their own public/secret key-pairs, exactly as in vanilla public-key
encryption. They then register their public keys with a key curator along with the set of attributes they possess. Like
the key-issuer in ABE or the certificate authority in a classic public-key infrastructure, the key curator is responsible
for validating the attributes the user claims. The key curator then takes the public keys pk,, ..., pk; from the different
users along with their respective attribute sets Sy, ..., Sr, and aggregates them together into a single short master
public key mpk. Critically, the size of the aggregated mpk must be polylogarithmic in the number of users L. Like
many traditional ABE schemes [GPSW06, LOS*10, Att14, Wee14, CGW15], we do allow the length of the master
public key to scale with the size of the attribute universe. The aggregated master public key mpk now functions as the
public key for a standard ABE scheme. Namely, a ciphertext encrypted with respect to a policy  can be decrypted
by any registered user whose set of attributes S; satisfy the policy.

As users register in a registered IBE or ABE scheme, the master public key is continually updated. Thus, regis-
tered users must periodically return to the key curator to request helper decryption keys that they will use during
decryption. The number of times each user needs to update their key should be small, and we specifically require
it to be polylogarithmic in the number of users L; in fact, under mild assumptions, Q(log L/loglog L) updates are
needed [MQR22]. Finally, the key curator in a registered IBE or ABE scheme is transparent. It is a deterministic
algorithm and maintains no long-term secrets. Even if the key curator is compromised, the secret keys of existing
registered users remain secret and are not compromised. An adversary that corrupts a key curator cannot decrypt
any past ciphertext. Of course, such an adversary would be able to register a key that decrypts all future ciphertexts,
but such behavior is publicly detectable by auditing the state of the key curator [GV20].

Constructions of registered ABE. Hohenberger et al. [HLWW23] introduced the notion of registered ABE and
gave a construction from assumptions over composite-order pairing groups. Their scheme supports all monotone
Boolean formula policies and an a priori bounded number of users L. Moreover, the scheme relies on a structured
common reference string (CRS) whose size scales quadratically with the number of users L (and linearly with the size
of the attribute universe). Subsequently, a number of constructions of registered ABE have been introduced [DP23,
DPY23, FWW23, ZZGQ23, FFM*23] that expand on both the functionality and the security of the original scheme.
These constructions generally fall into two categories: ones which require non-black-box use of cryptography (i.e.,
obfuscation-based or witness-encryption-based approaches) [FFM*23, DP23, DPY23, FWW23], or pairing-based
constructions [FFM*23, ZZGQ23] that only require black box use of cryptography. The latter set of constructions
enable more concretely efficient realizations, but thus far, all of them inherit the quadratic-size CRS from the original
[HLWW?23] construction. The size of the CRS in [FFM*23] does not depend on the size of the attribute universe, but the
scheme supports a different and incomparable class of policies (inner products). The size of the CRS in the [HLWW?23,
77.GQ23] constructions for Boolean formulas (and extensions thereof) also scale linearly with the size of the attribute
universe. Our goal in this work is to develop new techniques to reduce the size of the CRS for registered ABE schemes.



1.1 Owur Contributions

In this work we introduce two techniques to reduce the CRS size in registered ABE. The first is a combinatoric
approach to reduce the CRS size from quadratic in the number of users L to nearly linear (specifically, L'*°(1)). The
second is a new partitioning-based proof strategy that enables a construction where the CRS size is independent of the
number of attributes. The two techniques are complementary and can be used simultaneously to obtain a construction
with a CRS whose size is nearly linear in the number of users and independent of the number of attributes. Previous
pairing-based registered ABE schemes [HLWW23, FFM*23, ZZGQ23] had a CRS whose size was quadratic in the
number of users, and for the schemes that supported general Boolean formulas, also linear in the number of attributes.
We now summarize our main contributions and provide a comparison in Table 1.

Sub-quadratic size CRS using progression-free sets. First, we introduce a new combinatoric approach based
on progression-free sets [ET36, Beh46, SS46, E1k10] to construct a registered ABE scheme whose CRS size is nearly
linear in the number of users. As we discuss in Section 1.2, existing group-based constructions of registered ABE
[HLWW23, FFM*23, ZZGQ23] aggregate user public keys by multiplying them together. Thus, when a user encrypts
to the master public key, they are technically encrypting to the product of every users’ key. To enable decryption,
the CRS contains “cross terms” that can be used to remove the interactions across different users’ public keys. The
cross terms allow a user to take a ciphertext encrypted to the master public key and cancel out the components from
the other users, leaving only a ciphertext encrypted to her own secret key, which she can then decrypt normally.

The CRS in recent pairing-based constructions of registered ABE include cross terms for every pair of users in
the system. This leads to a quadratic-size CRS. The starting point in our work is to observe that we do not necessarily
require a different cross term for each distinct pair of users. It can be the case that different pairs of users use a common
cross term during decryption. In this work, we take a combinatoric approach and “embed” a progression-free set into
the CRS of the registered ABE scheme. On the one hand, the progression-free set allows us to simultaneously reduce
the number of cross terms in the CRS, and by extension, the size of the CRS. On the other hand, the “progression-free”
property ensures that the components in the CRS do not allow unauthorized users to decrypt ciphertexts. Our security
reduction will critically rely on the progression-free property; we provide more details in Section 1.2. The idea of
using progression-free sets to improve the efficiency of cryptographic constructions was also previously used in a
work of Lipmaa [Lip12] who focused on succinct non-interactive zero-knowledge arguments.

Using the state-of-the-art progression-free set constructions [Beh46, SS46, Elk10], we obtain a registered ABE
scheme (for monotone Boolean formulas) where the size of the structured CRS for L users is nearly linear: L'*°(1).
If we take a more concrete-efficiency-oriented view, we can use a lightweight progression-free set construction of
Erdés and Turan [ET36] to obtain a registered ABE scheme with a CRS size of size L!°%:3 ~ L0, As we illustrate in
Section 6, for a scheme that supports 100,000 users, the use of progression-free sets yields a 115X reduction in the
size of the CRS compared to a construction with a quadratic-size CRS (from 447 GB to 3.8 GB).! We also note that the
use of progression-free sets does not incur any overhead in the size of the master public key, the helper decryption
keys, or the running time of the encryption/decryption algorithms. In Sections 4 and 5, we show how to combine the
techniques from [HLWW?23] with progression-free sets to obtain registered ABE schemes with a nearly-linear-size
CRS in both prime-order groups (satisfying static security) and composite-order groups (satisfying adaptive security).

A partitioning proof strategy to support an arbitrary number of attributes. In this work, we also show how to
use a partitioning-based strategy (similar to [BB04, Wat05, Wat11]) to argue the security of our constructions (in con-
trast to the dual-system approaches taken in previous works [HLWW23, ZZGQ23]). The advantage of using a partition-
ing proof strategy is it avoids the need to fix the universe of attributes at the time the CRS is generated. Instead, only the
number of users needs to be declared in advance. Correspondingly, the size of the CRS no longer grows with the number
of attributes. Previous pairing-based registered ABE schemes for formulas [HLWW23, ZZGQ23] relied on a dual-
system methodology for the security analysis, which in turn required the universe of attributes to be fixed a priori. In
these constructions, the size of the CRS also scaled linearly with the size of the attribute universe. The downside of a par-
titioning proof is that the scheme achieves a weaker notion of static security where the adversary is not allowed to make

!For fairness, we compare against a prime-order analog of the [HLWW?23] construction (Appendix B), so the improvement in CRS size is purely
from the use of progression-free sets. The actual level of improvement over the composite-order construction of [HLWW23] is even larger.



|crs| |st| Treg [mpk|  |hsk| |ct] Policy Assumption Security

[HLWW23] |U| L? U L?>  |U|L [U| |U| |P| Formulas?  Composite-order Adaptive
[FWW23] |P|8 L |P|o |P|o P19 |P|®  Circuits Witness encryption  Static
[HLWW23] 1 L 1 1 1 |P|®  Circuits io Adaptive
[22GQ23] |U|L? |UIL? |UIL |[U| |U| |P|  ABP Prime-Order Adaptive
Construction 4.3 Li+o() UL UL |U| |U| ||  Formulas Prime-order Static
Construction 5.5 || L1+o™ UL |UIL [U| |U| |P| Formulas?  Composite-order Adaptive
Construction B.3 L? |U|L |UIL [U| |U| |P| Formulas Prime-order Static

 Construction 5.5 and [HLWW23] require an a-priori bound on the number of times an attribute is used in the formula (due to only
supporting single-use LSSS), while the other constructions allow unbounded reuse of attributes in the policy.

Table 1: Comparison with previous registered ABE schemes. Here, crs denotes the size of the common reference string,
st denotes the auxiliary information maintained by the key curator (excluding the CRS), Tg denotes the registration
time, mpk denotes the size of the master public key, hsk denotes the size of the helper decryption key, and ct denotes the
size of the ciphertext. We consider a system with L users, an attribute universe U, and a policy . The schemes that sup-
port formulas are restricted to monotone formulas; we write “ABP” to denote arithmetic branching programs. We write
“composite-order” to refer to schemes based on composite-order pairing groups and “prime-order” to refer to ones based
on prime-order pairing groups. We write § > 1 to denote some constant (corresponding to the overhead in the underly-
ing obfuscation or witness encryption scheme). In our asymptotic statements, we suppress polynomials in the security
parameter A and all polylogarithmic terms. We say a scheme is statically secure if the adversary is not allowed to make
any corruption queries in the security game (Definition 3.7) and that it is adaptively secure otherwise (Definition 3.6).

any corruption queries.? Previous approaches (based on the dual-system methodology [Wat09, LW10]) achieved adap-
tive security. While static security is a weaker security notion, the work of [FWW23] showed how to transform a regis-
tered ABE scheme that does not allow corruption queries into one that does in the random oracle model. Our partition-
ing proof strategy is compatible with the use of progression-free sets and in Section 4, we describe a construction with
both techniques over prime-order pairing groups. (For comparison purposes, we also describe a variant of [HLWW23]
with a quadratic-size CRS that supports an arbitrary polynomial-size attribute universe in Appendix B). Our construc-
tion is the first pairing-based registered ABE scheme for Boolean formulas that does not require an a priori bound on
the number of attributes at setup time. We summarize the main constructions we introduce in this work in Table 1.

Application to batch arguments. Our approach of using progression-free sets to reduce the CRS size can also
be applied to the pairing-based batch arguments of Waters and Wu [WW22]. Like the registered ABE scheme of
[HLWW23], the basic version of Waters-Wu batch argument has a CRS whose size is quadratic in the number of
instances. The quadratic overhead there is also due to the presence of “cross terms.” Using our combinatoric techniques,
we obtain a version of [WW22] where the CRS has size O(N'*°(1)) and N is the number of instances. Notably, this
gives a BARG from pairings with a sub-quadratic CRS that does not rely on non-black-box use of cryptography. While
there are approaches to generically reduce the size of the CRS in batch arguments [KPY19, WW22, KLVW23], all
of these rely heavily on non-black-box use of cryptography. Our approach is purely algebraic and incurs minimal
overhead over the original [WW22] construction.

Additional applications. A number of recent works have focused on batching cryptographic primitives using
cross-term cancellation techniques. This includes (sub)-vector commitments [CF13, LM19], batch arguments [WW22],
and registered ABE [HLWW23, FEM*23, ZZGQ23]. In each of these settings, the batching capability is enabled
through a large CRS whose size scales quadratically with the number of users. Our work provides a direct path to
reducing the size of the CRS in such constructions, and we expect that our techniques can be used to improve the
asymptotic and concrete efficiency of existing and future constructions that rely on cross term cancellation.

2Note that the static adversary is allowed to register keys of its own. However, it is not allowed to request the secret key for an honest user
(i.e., “corrupt” an honest user) in the static security game.



Recently, the work of [BLM*24] showed how to construct a registered quadratic functional encryption scheme
with a linear-size CRS. However, this scheme comes with the caveat that the function key associated with each user
need to be determined at setup time. This is sufficient for their application to registered traitor tracing, but is a
departure from the standard notions of registered ABE and FE where the user (or key curator) can determine the
attribute or function at registration time (i.e., when users join the system).

1.2 Technical Overview

We now provide an overview of our techniques for reducing the CRS size in registered ABE schemes. Throughout this
work, we primarily focus on the simpler notion of slotted registered ABE introduced by Hohenberger et al. [HLWW23].
We consider ciphertext-policy ABE where each secret key is associated with a set of attributes S and each ciphertext
is associated with a decryption policy; decryption is allowed whenever the attributes satisfy the policy. In a slotted
registered ABE scheme, we additionally assume an a priori bound on the number of users or slots L and the size of the
CRS can depend on L. Instead of users dynamically registering as in a standard registered ABE scheme, there is instead
a single aggregation algorithm that takes as input a tuple of L public keys pk, ..., pk; along with their associated
attributes Sy, . .., Sr, and outputs a succinct master public key mpk. The aggregation algorithm also outputs a set of L
helper decryption keys, one for each user. Typically, the key curator would be responsible for running the aggregation
algorithm. The master public key allows a user to encrypt to an arbitrary decryption policy, and all registered users
whose set of attributes satisfy the decryption policy are able to decrypt. While the slotted primitive seems weaker
than a registered ABE scheme, Hohenberger et al. showed that a slotted scheme can be generically compiled into
a standard registered ABE scheme that supports dynamic registration (i.e., where users can register at any point in
time) with only polylogarithmic overhead. Previous works [HLWW23, ZZGQ23] constructed slotted registered ABE
schemes that support monotone Boolean formulas (and more) from pairings. However, these constructions required
a CRS whose size scales quadratically with the number of users L and linearly with the size of the attribute universe.
In this work, we develop techniques to achieve a CRS whose size scales nearly linearly with the number of users
and independently of the size of the attribute universe.

Starting point: the [HLWW23] construction. The starting point of our work is the registered ABE scheme for
monotone Boolean formulas from [HLWW23] based on composite-order pairing groups. We begin by describing
a slimmed-down version of their scheme where the attribute universe contains a single attribute (denoted a) and
the only supported policy is checking whether the user possesses the attribute or not. Moreover, we describe the
scheme using a prime-order pairing group. The full [HLWW23] construction operates over a composite-order pairing
group, but for correctness, we only need to consider the scheme in a single (prime-order) subgroup of the full group.
The additional subgroups in their construction are used for re-randomization and implementing a dual-system proof
strategy [Wat09, LW10]. In this work, we show that if we adopt a partitioning proof strategy, then a version of this
slimmed-down prime-order construction is (statically)-secure.

Let L be the number of slots (or users) for the slotted registered ABE scheme. Let (G, Gr, ¢, p, g) be a (symmetric)
prime-order pairing group, where G, Gr are groups of prime-order p, g is a generator of G, and e: G X G — Gr is
an efficiently-computable non-degenerate bilinear map. The scheme now proceeds as follows:

« CRS components: The common reference string includes a description of the group along with the following
set of components (grouped together by their semantic properties):

— Slot-specific components: Each slot i € [L] is associated with three group elements:
A;j=g¢" and B;=¢%h'" and P;=g%.

Here, « and h (randomly sampled) are common to all of the slots while t;, §; < Z, are random slot-specific
exponents. The slot-specific components (A4;, B;, P;) ensure that decryption is possible only in settings
where the user possesses a secret key associated with some slot i € [L] (i.e., that the decrypter is a
registered user).



— Attribute-specific components: Each slot also includes a group element U; = g% associated with the
(single) attribute in the scheme.® The attribute-specific components ensure that decryption is only possible
if the user has a key for a slot i where the associated set of attributes satisfy the decryption policy.

- Cross terms: Each slot-attribute pair is also associated with a “cross term” W;; = g’/ for all i # j. These
will be used to construct helper decryption keys and facilitate decryption.

- General components: Finally, the CRS also contains a random group element h <~ G and Z = e(g, g)“.
These are used to encrypt the message and for linking together the slot-specific and attribute-specific
components during decryption.

« User key-generation: To generate a key for a slot i, the user starts by sampling a secret exponent r; ¢~ Z,.
The public key then consists of the group elements

Ti=9" , Qi=P"' , Vj?fl':Vj,iZA;i-

Here T; can be viewed as the user’s main public key, V; ; are the “cross terms” (used to generate helper decryption
keys at aggregation time), and Q; is auxiliary information about the user’s public key used for facilitating the
security analysis.

« Aggregation: Given pk,, ..., pk; and attributes S;,...,S; € {a} for each user (recall that we are considering
the simplified setting where the attribute universe consists of a single attribute a), the aggregation algorithm

computes the master public key as
T= l_[ T; and U= 1_[ U;
i€[L] i€[L]:a¢S;

Here T functions as the attribute-independent public key and U the attribute-specific public key for the attribute
a. When there are multiple attributes, each attribute will have its own attribute-specific public key. Moreover,
observe that the attribute-specific public key U for the attribute a is the product of the attribute-specific
components U; for the slots i that do not contain the attribute a (i.e., the indices i € [L] where a ¢ S;). For each
slot i € [L], the aggregation algorithm also computes the cross terms

Vi = HVU and W, = H Wi,j. (1.1)
Jj#i Jj#i:agS;
The helper decryption for user i contains both V; and W;.

« Encryption: To encrypt a message i, the encrypter samples encryption randomness s < Z, and hy, h, < G
such that hih, = h. The ciphertext is then

ct = (C1,Co, C3,C) = (u-Z°, g°, SUS, KST™S).
We often refer to Cs as the “attribute-specific” component and Cy as the “slot-specific” component.

+ Decryption: The decryption process affirms two main properties: (1) that the users’ purported secret key is
associated with some slot i € [L] and (2) that the attributes associated with slot i satisfy the challenge policy.
At a high level, if the user possesses a secret key for a public key registered to slot i, then it is able to compute
e(g, h1)%", where s is the encryption randomness and ¢; is the slot-specific exponent for slot i. Moreover, if the
attributes associated with slot i satisfy the challenge policy, then the user will be able to compute e(g, 7).
Taken together, the user is able to compute

e(g. h1)*"e(g, hy)™" = e(g, hihy)*"" = e(g, )™

Now, pairing the ciphertext component C, = g* with the component B; = g*h‘i from the CRS, the user obtains
e(Co, B;) = e(g, 9)*e(g, h)*'i, which can be used to recover the message. We provide more details below:

3When the attribute universe U contains more than one attribute, then there is a group element U,,,; = g/ for each attribute w € U and
each slot index i € [L].



- Slot check: Suppose the user know the secret key r; associated with slot i. Then, to compute e(g, k)",
the user computes

e(AiCy) = e(g", T™) =e(g, )™ [ | e(a.T) ™" = e(g.h)™ [ | e(g.9)7*"".
JjelL] JjelL]

Using r; as well as its cross term V; = []:.; Vi i = []+; """/, the user can now compute
J#EL L) J#i

e(Co A e(CoVh) = e(g.9")" | | e(g".9") = e(g.9)"" | | e(g. 90" = [ | eg.9)™™
j#i J#i Je[L]
In particular, this means that

Dyior = e(A;, Ca)e(Cao, AT V;) = e(g, hy)™".

- Policy check: Next, if the attributes S; associated with slot i contains attribute a (i.e., satisfies the
decryption policy), then the user is able to compute e(g, hy)*'i. Here, the user relies on the cross terms W;:

e(AnCy) =e(g" hU™) =e(g.h)™ || e@U) ™ =e(@h)™ [] elg.9)7".
Jje[L]:a¢S; JjE[L]:a¢S;

When a € S; and using the fact that the cross terms W; = [1jsiags; Wij = [1j2iags, 9, we have
e(4,Cp) = e(g.h)™ [ elg.9)™ =e(g.h)™ [ e(g'g")™" = e(g.ho)™e(Co W) . (12)
J#i:a¢S; j#iagS;

This means that
Dagrib = (A, C3)e(Ca, Wi) = e(g, hp)*".

Given both Dygjor = €(g, h1)®' and Dawrib = e(g, h2)*'* and using the fact that h;hy = h, the user can now recover
the message by computing

Ci - Dyiot - Dawriv _ - €(9,9)™ - e(g, h)*" _
e(CZ’Bi) e(gs>gahti)

Progression-free sets. The size of the CRS in the above variant of [HLWW23] is quadratic in the number of slots
because it contains a “cross term” W;; = g"/% for all i # j. In fact, when there are multiple attributes in the attribute
universe, there needs to be a separate set of (quadratically-many) cross terms for each attribute. These cross terms
are needed to generate the attribute-specific helper decryption key for each user (i.e., the W; in Eq. (1.1)), which are in
turn used in the “policy check” step during decryption (Eq. (1.2)). For correctness, it is essential that the CRS contains
the term W;; for all j # i (to cancel out the interaction between an attribute registered to slot j and the decryption
process with respect to slot i). For security, it is critical that the CRS does not contain the non-cross-term Wj; = gfi%i *

Our first technique for reducing the CRS size is observing that the cross terms W;; = g% do not have to be distinct
for every pair i # j. For instance, suppose we choose the slot-specific exponents ¢y, .. ., t; and the attribute-specific
exponents uy, . .., ur, from a distribution where t;u; = tyu; for many pairs (i, j) # (i’, j*). In this case, we only need
to publish a single group element W ; that can be shared across all pairs of indices (i’, j) where tyu; = tju;. Of
course, we still require the invariant that we never give out a non-cross-term: namely, there does not exist an index
k € [L] and a pair i # j such that tuy = tju;.

Specifically, we choose the exponents t; and u; to be powers of a (random) value a & Z,. We set t; := a% for
some integer d; € Nand u; = b - a%i where b & Zy is a randomizing term (shared across uy, . . ., ur). Observe now
that u;t; = ba%a% = ba%*% . We need to choose a set of powers D = {d; : i € [L]} ¢ N. so as to satisfy the following
correctness and security properties:

41f the non-cross-term W; ; was given out, then a user who does not satisfy the ciphertext policy would also be able to decrypt.



« Security: For security, it should be the case that di + dy # d; +d; for any distinct i, j, k € [L]. This ensures that

di+dj . .. . +
even if the CRS contains W;; = g’? " foralli # Jj. it never contains a non-cross-term of the form gb“dk * D

is a set of non-negative integers with the property that for all distinct d;, d;, dx. € D, it holds that d; + d; # 2dy,
then the set D does not contain any arithmetic progressions of length 3. Such sets are often referred to as
“progression-free sets”

+ Efficiency: The second property we desire is that there should be many overlaps in the values of d; + d;
for distinct i # j. This is because the number of cross terms in the CRS scales with the size of the set
{di+dj :i,j € [L],i # j}. Observe that we can always bound the size of this set (and thus, the number of cross
terms) by 2 - max(9) where max(2) denotes the largest element in the set 9. Thus, it suffices to construct a
progression-free set O with small values.

Progression-free sets are a well-studied combinatoric object [ET36, Beh46, E1k10] and state-of-the-art constructions
show how to construct a progression-free set  C N of size L where the maximum element has magnitude L*°(1).
Translating back to the setting of registered ABE, this means the number of cross terms we need to include in the CRS
is also L'*°(1) (i.e., nearly linear in the number of users L). This is a substantial improvement over the quadratic-size
CRS from [HLWW23].

On the flip side, choosing the slot-specific exponents ¢; and the attribute-specific exponents u; to be of the form a
and ba% for some fixed a, b & Zy will require us to make a more complex computational assumption when analyzing
security. Specifically, we rely on “q-type” assumptions (c.f., [BBG05, BGW05]) where the size of the assumption grows
with the number of users L, and moreover, where the terms given out in the assumption are parameterized by a
progression-free set. While these are new and non-standard assumptions, it is straightforward to show that they
hold in a generic (bilinear) group model [Sho97, BBG05, Boy08] and we refer to Appendix D for further discussion.

d;

CRS size dependence on the number of attributes. Progression-free sets allow us to reduce the number of cross-
terms in the CRS from quadratic to nearly linear in the number of users L. However, as described, we still need to give
out a set of cross-terms for each attribute in the attribute universe. In the simplified scheme described above, there is
only a single attribute, and as such, only one set of cross terms W; ; = ¢g'/*. However, when there are multiple attributes,
the [HLWW23] scheme associates a different exponent u,,; for each attribute w € U in the attribute universe U and
eachsloti € N, and there is a cross term W, j ; = g'/* for each attribute w and each pair of distinct slots i # j. Having
a different exponent u,,; for each attribute-slot index (w, i) is important for implementing the dual-system security
proof (specifically, these exponents are used to switch the parameters from slot i from normal mode to semi-functional
mode for the setting where the attributes associated with slot i do not satisfy the challenge policy). More broadly, the
fact that we need a set of cross-terms for each attribute means that the size of the CRS scales with |2/| - L? in the case of
[HLWW23]. Using progression-free sets, we can reduce the size of each collection of cross terms from L? to L'**!) but
if the CRS needs to contain || collections of cross terms, then the overall size of the CRS still scales with |2/] - L'*°(1).

As noted above, the main reason [HLWW23] needed |U| sets of cross terms in the CRS is to facilitate a dual-system
proof of adaptive security. Specifically, in the adaptive security game, the adversary is able to corrupt any slot i (i.e.,
request the secret key for an honest user registered to slot ). This is permitted as long as the adversary later specifies
a set of attributes S which does not satisfy the challenge policy with slot i. Thus, when the reduction algorithm
generates a key for a slot i, it needs to be prepared to give out the associated secret key for slot i. At the same time, the
reduction algorithm should not be able to generate keys that would allow it to decrypt the challenge ciphertext itself
(as otherwise, it would not need the adversary at all). In the dual-system argument, there are two types of slots: normal
slots (whose parameters are generated according to the real scheme) and “semi-functional” slots whose parameters
are generated in a special way. Similarly, there are normal ciphertexts and semi-functional ciphertexts. The proof
maintains the invariant that keys registered to semi-functional slots can be used to decrypt normal ciphertexts and
keys registered to normal slots can decrypt semi-functional ciphertexts. However, keys registered to semi-functional
slots cannot decrypt semi-functional ciphertexts. The proof then consists of a sequence of hybrid experiments where
the challenge ciphertext is first replaced by a semi-functional ciphertext; next, the proof carefully switches each slot
from normal mode to semi-functional mode. At the very end of the proof, all of the slots as well as the challenge
ciphertext are semi-functional and it is straightforward to argue that the adversary cannot break semantic security.
In order to switch slot i from normal to semi-functional, the reduction algorithm critically relies on there being a



different set of attribute exponents u,,; associated with each attribute w € U and slot i. For this reason, the size of
the CRS in the previous adaptively secure constructions scaled multiplicatively with the size of the attribute universe.

A partitioning-based proof strategy. To achieve a shorter CRS (whose size is independent of the size of the
attribute universe), we take a different approach for arguing security. In particular, we consider a weaker “static”
security model where the adversary must declare the set of corrupted slots i € [L] at the very beginning of the game.
In this model, the reduction algorithm “knows” in advance which slots it needs to be able to generate the secret key
for and which ones it does not. This enables us to use a “partitioning” strategy to argue security, where the indices
of the corrupted slots are programmed into the CRS itself. The programming ensures that the adversary is able to
generate secret keys for all of the corrupted slots (but not for the non-corrupted slots). While this is a weaker security
notion that adaptive security, it still captures a meaningful security property, and moreover, the work of [FWW23]
show how generically compile a registered ABE scheme that does not allow corruption queries into a scheme that
supports adaptive corruptions in the random oracle model. The advantage of using a partitioning-based argument is
we no longer require a different sets of attribute exponents for each slot, and in fact, all of the attribute can share the
same set of attribute-slot components. This means the size of the CRS becomes independent of the size of the attribute
universe. This has the added benefit that the size of the attribute universe no longer needs to be fixed at setup time.
Note however that the size of the public key still grows with the number of attributes since we still need to associate
a group element with each attribute which encodes which slots in the scheme are associated with the attribute.

Our partitioning-based approach can be applied with or without progression-free sets. For completeness, we
describe both versions. In Section 4, we describe the scheme with both of our techniques for CRS size reduction.
This yields a scheme with a CRS of size L'+*°(!)_ Then, in Appendix B, we show an adaptation of [HLWW23] with
a quadratic-size CRS and a partitioning-based security analysis. Since we use a partitioning-based proof strategy,
we can rewrite the scheme over prime-order groups, and moreover, use a single set of attribute-slot exponents. The
CRS size in both constructions is independent of the size of the attribute universe. We refer to Table 1 for a detailed
comparison between our schemes as well as to those of previous works.

Proving adaptive security via a dual system approach. As noted above, using a partitioning-based proof
strategy allows us to eliminate the dependence on the size of the attribute universe from the CRS. However, it comes
at the cost of being able to prove adaptive security. In Section 5, we show how to integrate progression-free sets into
the construction of [HLWW23] to obtain an adaptively-secure scheme where the CRS size scales nearly linearly with
the number of slots. Adaptive security relies on a similar dual system argument as in [HLWW?23], and consequently,
we require an independent set of attribute exponents for each slot. As such, the size of the CRS in this construction
scales multiplicatively with the size of the attribute universe.

Note that integrating progression-free sets into the construction of [HLWW?23] requires making additional
adjustments to the scheme. Notably, since we now sample exponents from a correlated set (as opposed to uniformly
random), our modified scheme (Construction 5.5) requires an additional subgroup for re-randomization. Moreover,
we also need to introduce additional re-randomization for the ciphertexts in order to facilitate the dual-system proof
strategy; we refer to Section 5.3 for more technical details.

Incremental aggregation. Thus far, we have focused primarily on a slotted registered ABE scheme where the
system is initialized with a fixed number of slots L. Instead of users joining dynamically, the slotted notion assumes
that all L keys are provided together (to the aggregation algorithm). The work of [HLWW23] show how to generically
transform any slotted registered ABE scheme into a normal registered ABE scheme that supports dynamic user
registrations. In the normal setting, a key curator would be responsible for registering users, updating the scheme
parameters, and issuing helper decryption keys. Thus, applied naively, the [HLWW23] transformation would require
the key curator to store up to L public keys (before it is able to aggregate them together using the slotted registered
ABE scheme). In our slotted registered ABE scheme (and as in previous constructions), the size of each user’s public
key is O(L), which means the key curator would need to maintain an O(L?)-size state to support dynamic registrations.
Needing to maintain quadratic state would then remain a bottleneck in registered ABE schemes.

In this work, we show that if the underlying slotted registered ABE scheme supports incremental aggregation
(where the aggregation algorithm operates in a streaming manner where the user public keys arrive sequentially and re-



quires at most a linear-size state), then it is possible to adapt the [HLWW23] transformation to obtain a registered ABE
scheme where the key curator only needs to maintain a linear-size state. All of the schemes we construct (as well as the
original construction of [HLWW23]) support incremental aggregation, and thus, we are able to obtain a (standard) reg-
istered ABE scheme where the key curator only needs a linear amount of storage to support dynamic registrations. We
describe this property in Definition 3.8 and describe our adaptation of the [HLWW?23] transformation in Appendix C.

2 Preliminaries

Throughout this work, we write A to denote the security parameter. For a positive integer n € N, we write [n] to
denote the set {1,...,n}, and [0, n] to denote the set {0, ...,n}. We use bold uppercase letters (e.g., M) to denote
matrices and bold lowercase letters (e.g., v) to denote vectors. We use non-boldface letters to refer to their components
(e.g., v=[v1,...,04]). For a positive integer N € N, we write Zy to denote the integers modulo N. For a set S, we
write max(S) to denote the maximum element in the set, and min(S) to refer to the minimum element in the set. We
write 2° to denote the power set of S (i.e., the set containing all subsets T C ).

We write poly(A) to denote a function that is O(A€) for some constant ¢ € N and negl(1) to denote a function
that is 0(47¢) for all ¢ € N. We say that an event occurs with overwhelming probability if its complement occurs with
negligible probability. We say an algorithm is efficient if it runs in probabilistic polynomial time in its input length. We
say that two families of distributions D; = {D; )} 1enw and Dy = {D; 1 }1en are computationally indistinguishable if no
efficient algorithm can distinguish them with non-negligible probability. We say they are statistically indistinguishable
if the statistical distance A(D;, D-) is bounded by a negligible function in A.

2.1 Access Structures and Linear Secret Sharing

We also recall the definition of monotone access structures and linear secret sharing which we use in this work. Our
presentation is taken from that of [HLWW23].

Definition 2.1 (Access Structure [Bei%]). Let S be a set and let 2° denote the power set of S (i.e., the set of all subsets
of S). An access structure on S is a set A C 2% \ @ of non-empty subsets of S. We refer to the elements of A as the

authorized sets and those not in A as the unauthorized sets. We say an access structure is monotone if for all sets
51,5, € 25,if S; € Aand S; C Sy, then S, € A.

Definition 2.2 (Linear Secret Sharing Scheme [Bei96]). Let # be a set of parties. A linear secret sharing scheme over
aring Zy for P is a pair (M, p), where M € Z{" is a “share-generating” matrix and p: [¢] — # is a “row-labeling”
function. The pair (M, p) satisfy the following properties:

« Share generation: To share a value s € Zy, sample vy, ..., 0, & Zx and define the vector v = [s,0s,...,0,]".
Then, u = Mv is the vector of shares where u; € Zy belongs to party p(i) for each i € [£].

« Share reconstruction: Let S C P be a set of parties and let Is = {i € [£] : p(i) € S} be the row indices
associated with S. Let Mg € le\lflx" be the matrix formed by taking the subset of rows in M that are indexed
by Is. If S is an authorized set of parties, then there exists a vector ws € ZE\I,S‘ such that w Mg = e], where
e} =[1,0,...,0] denotes the first elementary basis vector. Conversely, if S C is an unauthorized sets of parties,
then e] is not in the row-span of M (i.e., there does not exist ws € lei‘ where w(Ms = e]). Equivalently, when
S is unauthorized, there exists a vector v* € Z" where the first component v] = 1 such that Mgv* = 0 (i.e., the
vector v* is orthogonal to the rows of M associated with the attributes in S).

We say that a policy (M, p) is one-use if the row-labeling function p is injective (i.e., each party appears at most once
in the policy).

Remark 2.3 (Monotone Boolean Formulas). Our pairing-based registered ABE constructions support monotone
access policies that can be described by any linear secret sharing scheme. As a special case, this captures the class
of monotone Boolean formulas. There are multiple ways to take a monotone Boolean formula and express it as a
linear secret sharing scheme; we refer to [LW11, Appendix G] for one such approach.
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2.2 Progression-Free Sets

The main combinatoric notion we use in this work is a progression-free set [ET36], which are sets that do not contain
any arithmetic progressions of length 3). We provide the formal definition below:

Definition 2.4 (Progression-Free Set [ET36]). A set D C N is progression-free if for all i, j,k € D where i # j, it
follows that i + j # 2 - k.

Theorem 2.5 (Constructions of Progression-Free Sets [Beh46, E1k10]). There exists an efficiently-computable family
of progression-free sets { Dy} nert where |Dy| = n and max(D,) = n'+o),

Double-free sets. We will also consider “double-free” sets which are sets of positive integers where there does not
exist i, j where i = 2j. We define this formally below and then show that any progression-free sets can be converted
into a double-free and progression-free set.

Definition 2.6 (Double-Free Set). We say a set D C N is double-free if for all i, j € D, it follows that i # 2 - j.

Corollary 2.7 (Progression-Free and Double-Free Sets). There exists an efficiently-computable family of progression
and double-free sets {D,} where max(D,) € n'*°W),

Proof. Let D, | be a progression-free set of size n+ 1. Define D* = {d —min(D, ) | d € D, ,,}. Since we are simply
subtracting a constant from the elements in D), any arithmetic sequence in D* corresponds to an arithmetic se-
quence in D; . This means that D" is progression-free. Next, by construction, 0 € D*. Since D" is progression-free,
there does not exist any pair of indices i, j € D* such that i + 0 = 2 - j. Now we can take D, = D* \ {0} to be our

progression and double-free set of size n. O

3 Registered Attribute-Based Encryption

We recall the preliminaries for a registered ABE scheme. The definition and discussion is copied verbatim from
[HLWW23].

Definition 3.1 (Registered Attribute-Based Encryption [HLWW23]). Let A be a security parameter. Let U = {U }ren
be a universe of attributes and P = {P; } 1w be a set of policies on U (i.e., every P € P, is a function P: 24 — {0,1}).
A registered attribute-based encryption scheme with attribute universe U and policy space P consists of a tuple
of efficient algorithms IIgage = (Setup, KeyGen, RegPK, Encrypt, Update, Decrypt) with the following properties:

« Setup(1%,1%l) — crs: On input the security parameter A and the size of the attribute universe 2y, the setup
algorithm outputs a common reference string crs. We assume the crs (implicitly) contains the security parameter
1* and a description of the message space M, (where |M;| > 2).

« KeyGen(crs,aux) — (pk, sk): On input the common reference string crs, and a (possibly empty) state aux, the
key-generation algorithm outputs a public key pk and a secret key sk.

+ RegPK(crs, aux, pk, Spi) — (mpk, aux’): On input the common reference string crs, a (possibly empty) state
aux, a public key pk, and a set of attributes Sy C U, the registration algorithm deterministically outputs
the master public key mpk and an updated state aux’. We assume that mpk implicitly contains the security
parameter 1* and a description of the message space M (from crs).

« Encrypt(mpk, P, ) — ct: On input the master public key mpk, an access policy P € $,, and a message y € M,
the encryption algorithm outputs a ciphertext ct.

« Update(crs, aux, pk) — hsk: On input the common reference string crs, a state aux, and a public key pk, the
update algorithm deterministically outputs a helper decryption key hsk. We assume that hsk implicitly contains
the security parameter 1* and a description of the message space M (from crs).
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« Decrypt(sk, hsk, ct) — M U {1, GetUpdate}: On input the master public key mpk, a secret key sk, a helper
decryption key hsk, and a ciphertext ct, the decryption algorithm either outputs a message y € M,, a spe-
cial symbol L to indicate a decryption failure, or a special flag GetUpdate that indicates an updated helper
decryption key is needed to decrypt.

Definition 3.2 (Correctness and Efficiency of Registered ABE). Let IIrage = (Setup, KeyGen, RegPK, Encrypt,
Update, Decrypt) be a registered ABE scheme with attribute universe U and policy space #. For a security parameter
A and an adversary A, we define the following game between A and the challenger:

« Setup phase: The challenger starts by sampling the common reference string crs < Setup(1%, 1/%41). It then
initializes the auxiliary input aux = L and initial master public key mpk, = L. It also initializes a counter
ctr[reg] = 0 to keep track of the number of registration queries and another counter ctr[enc] = 0 to keep track
of the number of encryption queries. Finally, it initializes ctr[reg]* = co as the index for the target key (which
will also be updated during the course of the game). Finally, it gives crs to A.

+ Query phase: During the query phase, the adversary A is able to make the following queries:

Register non-target key query: In a non-target-key registration query, the adversary A specifies a pub-
lic key pk and a set of attributes S C U). The challenger first increments the counter ctr[reg] = ctr[reg]+1
and then registers the key by computing (mpk,[,eq)s aux’) < RegPK(crs, aux, pk, S). The challenger

updates its auxiliary data by setting aux = aux” and replies to A with (ctr[reg], mpkcy[;eq} aUX).

Register target key query: In a target-key registration query, the adversary specifies a set of attributes
S§* € U,. If the adversary has previously made a target-key registration query, then the challenger
replies with L. Otherwise, the challenger increments the counter ctr[reg] = ctr[reg] + 1, samples
(pk*,sk*) « KeyGen(1%), and registers (mpkctr[reg],aux’) «— RegPK(crs, aux, pk*, S*). It computes the
helper decryption key hsk* « Update(crs, aux, pk™). The challenger updates its auxiliary data by set-
ting aux = aux’, stores the index of the target identity ctr[reg]® = ctr[reg], and replies to A with
(ctr[reg], mpk aux, pk*, hsk”, sk™).

Encryption query: In an encryption query, the adversary submits the index ctr[reg]* < i < ctr[reg]
of a public key,” a message Hetr[enc] € My (Where M, is the message space associated with crs), and a
policy Petr[enc] € P If the adversary has not yet registered a target key, or if the target set of attributes
S* does not satisfy the policy Petr[enc], the challenger replies with L. Otherwise, the challenger increments
the counter ctr[enc] = ctr[enc] + 1 and computes ctey[enc] < Encrypt(mpk;, Petrfenc]s Hetr[enc])- The
challenger replies to A with (ctr[enc], cter[enc])-

ctr[reg]>

Decryption query: In a decryption query, the adversary submits a ciphertext index 1 < j < ctr[enc].
The challenger computes m; « Decrypt(sk*, hsk*, ct;). If m; = GetUpdate, then the challenger
computes an updated helper decryption key hsk* « Update(crs, aux, pk*) and recomputes my
Decrypt(sk®, hsk®, ct;). If m’; # m;, the experiment halts with outputs b = 1.

If the adversary has finished making queries and the experiment has not halted (as a result of a decryption
query), then the experiment outputs b = 0.

We say that ITrage is correct and efficient if for all (possibly unbounded) adversaries A making at most a polynomial
number of queries, the following properties hold:

« Correctness: There exists a negligible function negl(-) such that for all A € N, Pr[b = 1] = negl(A) in the
above game. We say the scheme satisfies perfect correctnessif Pr[b = 1] = 0.

« Compactness: Let N be the number of registration queries the adversary makes in the above game. There
exists a universal polynomial poly(, -, -) such that for all i € [N], |[mpk;| = poly(4, |U,|,log i). We also require
that the size of the helper decryption key hsk™ satisfy |hsk*| = poly(4, |U,|,log N) (at all points in the game).

SSince we are requiring correctness to hold with respect to the target key, we only consider ciphertexts encrypted to master public keys constructed
after the target key has been registered.
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« Update efficiency: Let N be the number of registration queries the adversary makes in the above game. Then,
in the course of the above game, the challenger invokes the update algorithm Update at most O(log N) times,
where each invocation runs in poly(log N) time in the RAM model of computation. Specifically, we model
Update as a RAM program that has random access to its input; thus, the running time of Update in the RAM
model can be smaller than the input length.

Security. The security requirement for a registered ABE scheme asserts that a user with keys for attribute sets
Si, ..., Sk should not be able to learn anything about the message associated with a ciphertext encrypted to a policy
P where P(S;) = 0 for all i € [k]. We give the formal definition from [HLWW23]:

Definition 3.3 (Registered ABE Security [HLWW23]). Let IIrage = (Setup, KeyGen, RegPK, Encrypt, Update,
Decrypt) be a registered ABE scheme with attribute universe U and policy space $. For a security parameter
A, an adversary A, and a bit b € {0, 1}, we define the following game between A and the challenger:

« Setup phase: The challenger samples the common reference string crs « Setup(1%, 1/%)_ It then initializes
the auxiliary input aux = L, the initial master public key mpk = L, a counter ctr = 0 for the number of
honest-key-registration queries the adversary has made, an empty set of keys C = @ (to keep track of corrupted
public keys), and an empty dictionary mapping public keys to registered attribute sets Dict = @. For notational
convenience, if pk ¢ Dict, then we define Dict[pk] := @. to be the empty set. The challenger gives the crs to A.

+ Query phase: Adversary A can now issue the following queries:

- Register corrupted key query: In a corrupted-key-registration query, the adversary A specifies a public
key pk and a set of attributes S € U. The challenger registers the key by computing (mpk’, aux’) «
RegPK(crs, aux, pk, S). The challenger updates its copy of the public key mpk = mpk’, its auxiliary data
aux = aux’, adds pk to C, and updates D[pk] = D[pk] U {S}. It replies to A with (mpk’, aux’).

— Register honest key query: In an honest-key-registration query, the adversary specifies a set of attributes
S € U,. The challenger increments the counter ctr = ctr+1 and samples (pk,,, sketr) < KeyGen(1%), and
registers (mpk’, aux’) « RegPK(crs, aux, pkg,,S). The challenger updates its public key mpk = mpk’, its
auxiliary data aux = aux’, and D[pk,] = D[pk,] U {S}. It replies to A with (ctr, mpk’, aux’, pk,).

— Corrupt honest key query: In a corrupt-honest-key query, the adversary specifies an index 1 < i < ctr.
Let (pk;, sk;) be the ith public/secret key the challenger samples when responding to the i honest-key-
registration query. The challenger adds pk; to C and replies to A with sk;.

+ Challenge phase: The adversary A chooses two messages g, ; € M, (where M} is the message space
associated with crs) and an access policy P* € P,. The challenger replies with the challenge ciphertext
ct® « Encrypt(mpk, P, pi7).

« Output phase: At the end of the game, algorithm A outputs a bit b’ € {0, 1}.

Let S = {S € Dict[pk] : pk € C} be the set of corrupted attributes. We say that an adversary A is admissible if the
challenge policy P* is not satisfied by any attribute set S € S. Note that it could be the case that P* is satisfied by the
attributes S from an honest key query (that was not subsequently corrupted). We say that a registered ABE scheme
is secure if for all efficient and admissible adversaries A, there exists a negligible function negl(-) such that for all
A € N, we have that |Pr[b’ =1 | b =0] —Pr[b’ = 1| b = 1]| = negl(A) in the above security game.

Definition 3.4 (Bounded Registered ABE). As in [HLWW23], we say a registered ABE scheme Ilgagg is bounded
if there is an a priori bound on the number of registered users in the system. In this setting, the Setup algorithm
takes as input an additional bound parameter 1° which specifies the maximum number of registered users. In the
correctness and security definitions (Definitions 3.2 and 3.3), the adversary specifies the bound 1% at the beginning
of the experiment, and is then allowed to make a maximum of L registration queries.

Definition 3.5 (Static Security). In this work, we also also consider the weaker notion of static security for a registered
ABE scheme. In the static security game, the adversary must pre-commit to the number N of registration queries
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that it will make, and moreover, for each index i € [N], the adversary must also declare upfront whether its ith
registration query will be to register a “corrupted key” or an “honest key.” Note that the adversary does not need to
choose the corrupted keys themselves at the beginning of the game (which may not even be possible as the structure
of a public key may depend on the common reference string). In addition, in this model, the adversary is not allowed
to make “corrupt honest key” queries during the query phase. While static security is considerably weaker than the
security definition in Definition 3.3, this relaxation will enable more efficient constructions.

3.1 Slotted Registered Attribute-Based Encryption

Similar to [HLWW23], we focus on constructing the simpler notion of a slotted registered ABE scheme. A slotted
registered ABE scheme is simpler in the sense that it does not have to support dynamic registrations where users
register their public keys (and attribute sets) one at a time. Instead, the scheme is initialized with a fixed number
of slots L, and there is a single aggregation algorithm that takes all L public keys (together with their attribute sets)
and outputs the aggregated public key. While the slotted version of the scheme may seem to provide a weaker
functionality than a full registered ABE scheme (Definition 3.1), previous works have shown that the slotted version
implies a scheme with dynamic registration via a powers-of-two compiler [GHM*19, GHM*19, HLWW23].

Definition 3.6 (Slotted Registration-Based Encryption [HLWW23]). Let A be a security parameter. Let U = {U } jen
be a universe of attributes and P = {P; } 1ci be a set of policies on U (i.e., every P € P, is a function P: 2H1 — {0,1}).
A slotted registered ABE scheme with attribute universe U and policy space P is a tuple of efficient algorithms
IT;rase = (Setup, KeyGen, IsValid, Aggregate, Encrypt, Decrypt) with the following properties:

« Setup(14,11%1 1) — crs: On input the security parameter A, the size of the attribute universe U, and the
number of slots L, the setup algorithm outputs a common reference string crs. We assume that crs implicitly
contains the security parameter 1* as well as a description of the message space M associated with the scheme

(where |1M,| > 2).

+ KeyGen(crs, i) — (pk;, sk;): On input the common reference string crs, a slot index i € [L], the key-generation
algorithm outputs a public key pk; and a secret key sk; for slot i.

« IsValid(crs, i, pk;) — {0, 1}: On input the common reference string crs, a slot index i € [L], and a public key
pk;, the key-validation algorithm outputs a bit b € {0, 1} indicating whether pk; is valid or not. This algorithm
is deterministic.

« Aggregate(crs, (pky, S1), ..., (pk;, Sz)) — (mpk, hsky,. .., hskz): On input the common reference string crs
and a list of public keys and the associated attributes (pk;, S1), ..., (pk;, St), the aggregate algorithm outputs the
master public key mpk and a collection of helper decryption keys hsky, ..., hsky. This algorithm is deterministic.
We assume that the master public key mpk and the helper decryption keys hsk; also contain (implicitly) the
security parameter 1* as well as a description of the message space M (from crs).

« Encrypt(mpk, P, u) — ct: On input the master public key mpk, an access policy P € P, and a message p € M,
the encryption algorithm outputs a ciphertext ct.

« Decrypt(sk, hsk, ct) — m: On input a decryption key sk, the helper decryption key hsk, and a ciphertext ct,
the decryption algorithm outputs a message p € My U {L}. This algorithm is deterministic.

Moreover, the above algorithms should satisfy the following properties:

« Completeness: For all parameters A € N, L € N, and all indices i € [L],

Pr [IsValid(crs, i,pk;) =1:crs Setup(l’l, 11l 15); (pk;, sk;) < KeyGen(crs, 1)] =1

« Correctness: We say IIspage is correct if for all security parameters A € N, all slot lengths L € N, all indices
i € [L], if we sample crs « Setup(14, 11%1 1L), (pk;, sk;) <= KeyGen(crs, i), then for all collections of public
keys {pk;};#; (which may be correlated with pk;) where IsValid(crs, j, pk;) = 1, all messages 1 € M; (where
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M} is the message space associated with crs), all sets of attributes Sy,...,S; € U), all policies P € P, where
S; satisfies policy P, the following holds:

(mpk, hsky, ..., hsky) < Aggregate(crs, (pky, S1), ..., (pk;, St)) | _

Pr [Decrypt(sk;, hsk;, ct) = p : ¢t  Encrypt(mpk, P, 1)

1,

where the probability is taken over the randomness in Setup, KeyGen, and Encrypt.

« Compactness: There exists a universal polynomial poly(-, -, -) such that the length of the master public key
and individual helper secret keys output by Aggregate are poly (A, |U,|,log L).

+ Security: Let b € {0, 1} be a bit. For an adversary A, define the following security game between A and a
challenger:

- Setup phase: The adversary A sends a slot count 1% to the challenger. The challenger then samples
crs < Setup(1%, 11111 and gives crs to A. The challenger also initializes a counter ctr = 0, a dictionary
Dict, and a set of slot indices C = @.

— Pre-challenge query phase: Adversary A can now issue the following queries:

» Key-generation query: In a key-generation query, the adversary specifies a slot index i € [L].
The challenger responds by incrementing the counter ctr = ctr + 1, sampling (pk,, sketr) <
KeyGen(crs, i) and replies with (ctr, pk,,,) to A. The challenger adds the mapping ctr — (i, pk,, sketr)
to the dictionary Dict.

« Corruption query: In a corruption query, the adversary specifies an index 1 < ¢ < ctr. In response,
the challenger looks up the tuple (i’, pk’, sk’) = Dict[c] and replies to A with sk’.

— Challenge phase: For each slot i € [L], adversary A specifies a tuple (c;, S, pk}) where either ¢; €
{1,...,ctr} to reference a challenger-generated key or ¢; = L to reference a key outside this set. The
adversary also specifies a challenge policy P* € £, and two messages i3, ij € M, (where M, is the
message space associated with crs). The challenger responds by first constructing pk; as follows:

« If ¢; € {1,...,ctr}, then the challenger looks up the entry Dict[c;] = (i/, pk, sk’). If i = i/, then the
challenger sets pk; = pk’. Moreover, if the adversary previously issued a “corrupt identity” query on
index c;, then the challenger adds the slot index i to C. Otherwise, if i # i’, then the experiment halts.

= If ¢; = 1, then the challenger checks that IsValid(crs, i, pk}) outputs 1. If not, the experiment halts.
If the key is valid, the challenger sets pk; = pk; and adds the slot index i to C.

The challenger computes (mpk, hsky, ..., hsky) < Aggregate(crs, (pky,S1), ..., (pk;,Sr)) and replies
with the challenge ciphertext ct* «— Encrypt(mpk, P*, ii;). Note that because Aggregate is deterministic
and can be run by A itself, there is no need to additionally provide (mpk, hsky, ..., hskr) to A. Similarly,
there is no advantage to allowing the adversary to select the challenge policy and messages after seeing
the aggregated key.

- Post-challenge query phase: Adversary A can now issue the following queries:

» Corruption query: In a corruption query, the adversary specifies an index ¢ € {1,...,ctr}. In
response the challenger looks up the tuple (i’, pk’, sk’) = Dict[c] and replies to A with sk’. Moreover,
if the adversary registered a tuple of the form (c, S, pk®) in the challenge phase for some choice of
S € Uj and pk®, then the challenger adds the slot index i’ € [L] to C.

— Output phase: At the end of the experiment, algorithm A outputs a bit b’ € {0, 1}, which is the output
of the experiment.

We say an adversary (A is admissible if for all corrupted slot indices i € C, the set S; does not satisfy P* (i.e., the
attributes associated with a corrupted slot does not satisfy the challenge policy). Finally, we say that a slotted
registration-based encryption scheme is secure if for all polynomials L = L(A) and all efficient and admissible
adversaries A, there exists a negligible function negl(-) such that for all A € N,

[Pr[b' =1:b=0]-Pr[b’ =1:b=1]| = negl(d)

in the above security experiment.
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Definition 3.7 (Static Security). Similar to Definition 3.5, we say that a slotted registered ABE scheme satisfies static
security if the adversary has to declare upfront (at the beginning of the security game before the challenger samples
the CRS) the slot indices i € [L] where it will provide its own key during the challenge phase (i.e., the set of indices
i € [L] where ¢; = ). In addition, in the static security game, the adversary is not allowed to make any corruption
queries in either query phase.

Incremental aggregation. Finally, we introduce the notion of incremental aggregation for a slotted registered
ABE scheme. As mentioned above, the work of [HLWW23] describes a transformation from slotted registered ABE
to registered ABE. However, a naive implementation of this transformation would require the key curator to store
a large amount of auxiliary data. Specifically, in the [HLWW23] transformation, as users join the system, their public
keys and attribute sets are assigned to a collection of slotted registered ABE schemes (where the number of slots
in each scheme are consecutive powers of two). Once a public key has been assigned to every slot of a particular
scheme, the key curator runs the aggregation algorithm to derive an updated master public key for the slotted scheme.
Since the key curator cannot run the aggregation algorithm for the slotted scheme until a key has been assigned
to every slot, the key curator will need to cache a large number of public keys (up to L of them if there are L slots).
In the [HLWW?23] scheme (and our system), each user’s public key in the slotted scheme also has size Q(L). As
a result, if the key curator has to store L public keys, this means the key curator needs to maintain a state of size
Q(L?). However, in algebraic constructions of registered ABE such as [HLWW23] and our scheme, the underlying
slotted registered ABE scheme supports “incremental aggregation.” Namely, the aggregation algorithm for the slotted
scheme essentially reads in a single public key and attribute set and uses them to “update” the master public key
and helper decryption components. Once a public key and attribute set has been incorporated into the master public
key and helper decryption components, the key curator no longer needs to keep the user public key around. In our
setting, this will bring now the key curator set from Q(L?) to O(L). We describe this transformation in Appendix C.
We now define the incremental aggregation property we rely on formally:

Definition 3.8 (Incremental Aggregation). Let f(-,-) be a function. We say a slotted registered ABE scheme
II;rase = (Setup, KeyGen, IsValid, Aggregate, Encrypt, Decrypt) supports f-incremental aggregation if there exists
an efficient algorithm AggregateUpdate with the following syntax:

- AggregateUpdate(crs, st, (pk,S)) — st’: On input the common reference string crs, state st, public key pk, and
an associated set of attributes, the aggregate update algorithm outputs an updated state st’.

Then, we say that IT;rage supports f-incremental aggregation if Aggregate(crs, (pk,S1), ..., (pk;,Sr)) can be imple-
mented as follows:

1. Initialize sty = L.
2. For each i € [L], compute st; < AggregateUpdate(crs, st;_1, (pk;, Si)).
3. Output (mpk, hsky, ..., hskr) < AggregateUpdate(crs, str, L).

Moreover, we require that max;ey, [st;| < f(L, |U,]) - poly(A).

4 Statically-Secure Registered ABE via Progression-Free Sets

In this section, we show how to construct a statically-secure slotted registered ABE scheme over prime-order
pairing groups. By instantiating the construction with state-of-the-art progression-free sets (Theorem 2.5), we
obtain a scheme whose CRS size is O(L'*°())). This improves upon the schemes with a quadratic CRS from prior
work [HLWW23, FFM*23, ZZGQ23]. Similarly, by using a partitioning argument in the security proof, the CRS in
our scheme does not grow with the size of the attribute universe. Previous registered ABE schemes for monotone
Boolean formulas require a CRS whose size scales linearly with the size of the attribute universe.
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4.1 Prime-Order Pairing Groups

Our construction of slotted registered ABE will rely on prime-order pairing groups. We recall the formal definition
below:

Definition 4.1 (Prime-Order Bilinear Group). A (symmetric) prime-order bilinear group generator is an efficient
algorithm PrimeGroupGen that takes as input the security parameter A and outputs a description (G, Gr, p, g, e)
of a bilinear group where p = 2°W is a prime, G and Gy are cyclic groups of order p, g is a generator of G, and
e: G x G — Gr is a non-degenerate bilinear map (called the “pairing”). We require that the group operation in G
and Gr as well as the pairing operation be efficiently computable.

Set-consistent decisional bilinear Diffie-Hellman exponent assumption. The security of our construction
relies on a new assumption on prime-order bilinear groups, which we call the set-consistent bilinear Diffie-Hellman
exponent assumption. This is a variant of the bilinear Diffie-Hellman exponent (BDHE) assumption from [BBGO05].
In the ¢g-BDHE assumption from [BBGO05], the adversary’s goal is to distinguish e(g, g)“qﬂs from random given the
group elements

(9.9%9%9% . ...g" g%\ g"").

In the g-set-consistent bilinear Diffie-Hellman exponent assumption, the adversary’s goal is to distinguish the element
e(g,¢)?"* from random given g, ¢°, and for each i € [g — 1], either the element g° or the element ¢" 5. Similar
to the g-BDHE assumption, the adversary also gets additional group elements corresponding to the powers of a
beyond g. Observe that if the adversary had both g% and g** * for a particular index i € [q — 1], the adversary
can trivially distinguish by pairing these two elements together. However, given only one element from each pair,
the adversary cannot trivially compute e(g, g)%’*. We give the formal statement of the assumption below, and in
Appendix D (Theorem D.6), we show that this assumption holds unconditionally in the generic bilinear group model.

Assumption 4.2 (Set-Consistent Bilinear Diffie-Hellman Exponent). Let PrimeGroupGen be a prime-order group
generator. For a security parameter A and a bit b € {0, 1}, we define the g-set-consistent bilinear Diffie-Hellman
exponent game between an adversary A and a challenger:

« On input the security parameter 14, the adversary A starts by outputting set S C [g — 1].
« The challenger samples G = (G, Gr, p, g, ) < PrimeGroupGen(1%) and exponents a, s & Zp.

« The challenger computes Y = ¢° and for each i € [2q], let X; = g“i and Z; = g“is. Let Q = e(g,9)*. The
challenger also computes Ty = e(g,9)%’* and samples T; & Gr.

+ The challenger gives the following challenge to A:

g » 9> Y, {Xi}iesu[q+1,2q] ’ {Zq—i}ie[q—l]\s > {Zi}[q+1,2q] > Q > '

+ The adversary outputs a bit b* € {0, 1} which is the output of the experiment.

We say the g-set-consistent bilinear Diffie-Hellman exponent assumption holds with respect to PrimeGroupGen if
for all efficient adversaries A, there exists a negligible function negl(-) such that for all A € N,

|Pr[b' =1:b=0]—Pr[b’ =1:b=1]| = negl(})

in the g-set-consistent bilinear Diffie-Hellman exponent game.

4.2 Slotted Registered ABE Construction

We now give the construction and analysis of our slotted registered ABE scheme from prime-order pairing groups.
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Construction 4.3 (Slotted Attribute-Based Registration-Based Encryption). Let PrimeGroupGen be a prime-order
bilinear group generator. Let U = {U) } en be a (polynomial-size) attribute space. Let # = {#, } 1en be a set of policies
that can be described by a linear secret sharing scheme (Definition 2.2) over U, where each policy P € P, is defined
over a maximum of K = K(A) attributes. We construct a slotted attribute-based registration-based encryption scheme
Irase = (Setup, KeyGen, IsValid, Aggregate, Encrypt, Decrypt) with attribute space U and policy space P as follows:

« Setup(1%,1%):* On input the security parameter A, and the number of slots L, the setup algorithm starts by sam-
pling G = (G, Gr, p, g, ) < PrimeGroupGen(1%). The setup algorithm now constructs the following quantities:

- Let D = {d;}ie[1] be an efficiently-computable progression-free and double-free set of size L (Corollary 2.7).
In the following, we define f(i, j) := d; + d; and the set & of all distinct pairwise sums of elements in D:

E={f@jlijelL]:i#j}

Let diax = 3 - max (D).

~ Sample random exponents a, b ¢~ Z,, and set a = —a%=x. Compute h = [T;¢(1] gam,

— For each index i € [L], sample §; ¢ Z,, and let t; = a% . Then, define the following group elements:
Ai=g" , Bi=ghi , Pi=g% , U =g".
Then, for each z € &, let W, = ¢g*¢".
— Finally let Z = e(g, g)*. Output the common reference string

cas=(G, Z, g, h, {(Ai Bi, P, U Yierr] » {We)zes) (4.1)

The associated message space M is defined to be M, = Gr.

« KeyGen(crs, i): On input the common reference string crs (with components given by Eq. (4.1)) and a slot index
i € [L], the key-generation algorithm samples r; ¢~ Z, and computes

Ti:gri 5 Ql:Plrl

Then for each j # i, it computes the cross terms V;; = A;i. Finally, it outputs the public key pk; and the secret
key sk; defined as follows:
pk; = (T;, Qi {Vj,i}j=) and sk; =r;.

Note that this key-generation algorithm does not depend on the set of attributes.

« IsValid(crs, i, pk;): On input the common reference string crs (with components given by Eq. (4.1)), a slot index
i € [L], and a purported public key pk; = (T;, Qi, {V;,i} j#i), the key-validation algorithm first affirms that each
of the components in pk; is a valid group element (i.e., an element in G). If so, it then checks

e(T;, P;) = e(g, Qi)
Next, for each j # i, the algorithm checks that

e(9. Vi) = e(Ti, A))

If all checks pass, it outputs 1; otherwise, it outputs 0.

®Since the setup algorithm does not depend on the size of the attribute universe, we omit the parameter 1% to this algorithm.
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« Aggregate(crs, (pky, S1), ..., (pkg, St)): On input the common reference string crs (with components given by
Eq. (4.1)), a collection of L public keys pk; = (T;, Qi, Ri, {V},i} j#i) together with their attribute sets S; € U, the
aggregation algorithm starts by computing the attribute-independent public key T and the attribute-independent

slot key V; for each i € [L]:
le_[TJ and \A/izl—[Vi,j.
jelL] Jj#i
Next, for each attribute w € U}, it computes the attribute-specific public key U,, and the attribute-specific slot
key W; ,, for each i € [L]:
Uw = ]_[ Uj and I/{/,‘,W = ]_[ Wf(i,j)~
JE[L]:wgS; J#i:wgS;

Finally, it outputs the master public key mpk and the slot-specific helper decryption keys hsk; where

mpk = (g,g, hZ,T, {UW}WG(MA) and hsk; = (mpk, i,S;, A, B;, V},{Wi,w}we«m).

Encrypt(mpk, (M, p), #): On input the master public key mpk = (G, g,k Z, T, {Uw}we(u,\), a policy (M, p)
where M € Zg *"and p: [K] — U, is a row-labeling function, and a message y € Gr, the encryption algorithm
starts by sampling a secret exponent s <~ Z, and hy,h; <~ G such that h = hih,. Then, it constructs the
ciphertext components as follows:

- Message-embedding components: First, let C; = - Z° and C; = ¢°.
- Attribute-specific components: Sample 05, ..., v, < Z,, for the linear secret sharing scheme and let
v = [1,09,...,0,]". Then, for each k € [K], sample s; & Z, and set Cs = h;mLVU;(s,f) and Gy = g%,
where m; € Z7 denotes the k™ row of M.
— Slot-specific component: Set Cs = (h,T~1)°.
It then outputs the ciphertext

ct= ((Ma p)’ Cl’ C2a {C?),ks C4,k}k€[KJ’ C5)

Decrypt(sk, hsk, ct): On input the secret key sk = r, the helper key hsk = (mpk, i,S;, A, Bi, V, {v{li’w}weq/{;{),
where mpk = (G,¢.h, Z, T, {Uw}we(ll/l)a and the ciphertext ct = ((M, p), C, Cz, {Cs g, Cak }re[k]> C5) Where
Me Z;f *"and p: [K] — U, is a row-labeling function, the decryption algorithm proceeds as follows:

If the set of attributes S; is not authorized by (M, p), then the decryption algorithm outputs L.

Otherwise, let I = {k € [K] : p(k) € S;} be the indices of the rows of M associated with the attributes
S; € U). Write the elements as I = {ky,..., k5 }.

Let M, be the matrix formed by taking the subset of rows in M indexed by I. Since S; is authorized, let
ws, € Zgl be a vector such that wg Mg, = e;.

Then, compute and output

G

s A @s;.j
(o B - e(Cs, A;) - e(Cp, A} Vi) - l_[ (6(C3,kj,Ai) - e(Ca;, Wi,p(kj))) ~ (4.2)

1<j<||

Dgjot Dattrib

We will refer to Dgot as the slot-specific decryption component and Dayip as the attribute-specific decryption
component.

Theorem 4.4 (Completeness). Construction 4.3 is complete.
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Proof. Take any security parameter A € N and slot parameter L € N. Let crs < Setup (14, 1%). Then, we can write

Crs = (g> Z’ g, ha {(Ai’Bi’PbUi)}iE[L] 5 {WZ}ZES) .

Take any index i € [L] and let (pk;,sk;) < KeyGen(crs,i). By construction of KeyGen, we can write pk; =
(Ti Qi {Vji} j=i), where

Ti=¢g" ., Q=P , V=47

for some r; € Z,. We now consider each of the pairing checks in IsValid:

e(T, P;) = e(g", P;) = e(g. ;") = e(9, Qi).
e(9. Vi) = e(g. A7) = e(g', Aj) = e(T;, A)).

Since all of the pairing checks pass, IsValid(crs, i, pk;) outputs 1 and completeness holds. O

Theorem 4.5 (Correctness). Construction 4.3 is correct.

Proof. Take any security parameter A € N, slot parameter L € N, and index i € [L]. Consider the following
components in the correctness experiment:

Let crs « Setup(14,1L) where crs = (G, Z, g, h, {(Ai, B, P, Up) }ier]» {Wx}zeg). Recall that the slot compo-
bt;

nents can be written as A; = g%, B; = g*h%, and P; = ¢%. The attribute components can be written as U; = 9,

and W, = g’l’“z (where t; = a%).
Let (pk;, sk;) < KeyGen(crs, i). Then, we can write sk; = r; and pk; = (T, Qi, {Vi} j2i) where

Ti=g" ., Q=P , Vj=A'=4"" (4.3)
Take any set of public keys {pkj } j=i where IsValid(crs, j, pkj) = 1. Since pk; satisfies the IsValid predicate, we
can write pk; = (Tj, Qj, {Vej}r2j)-
For each j € [L], let S; C U, be the attributes associated with pk;.

Let (mpk, hsky, ..., hsk) < Aggregate(crs, (pky,S1), ..., (pk;,Sr)). Then, the master public key mpk and the
ith slot-specific helper decryption key hsk; can be written as follows:

mpk = (g’ g’ h’ Z’ ’f’ {UW}WE(H)L) and hSki = (mpk= ia Si’Ai: Bi: ‘>i3 {"Vi,w}we‘lh),

where T = [Tjerr) Tis Vi= [1j Vi), and

U, = H Uj = H gbtf

JE[L]:weS; JE[L]:wgS;
N S i) p
Ww= [ Wran= [] ¢
JHiweS; JEEweS;

Let (M, p) be the challenge policy where M € Zg *"and p: [K] — U, is a row-labeling function. Take any
message p € Gr. The challenge ciphertext ct can be written as

ct = ((M, p), C1, Co, {Csx, Cac Yke[k], Cs)

T A A
where C; = p- Z%,Cy = ¢°, C3 = hIanVUp_(S]f), Cyr = g%, and Cs = h$T %,

We now show that Decrypt(sk;, hsk;, ct) outputs . Let I = {k € [K] : p(k) € S;} be the indices of the rows of M
associated with the attributes S;. Write the elements of I as I = {ky, ..., kj;}. Let Mg, be the matrix formed by taking

the subset of rows in M indexed by I, and let wg, € Z%l be a vector such that wgi Mg, = e]. We break up the decryption
relation (Eq. (4.2)) into several pieces and analyze them individually:
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« Policy check: First, consider Dagrib = [11<j<|1 (€(Cs,»Ai) - €(Cag;» Wi!p(kj)))ws"’j. By definition,

Sm}EjV A =Sk; I st;m Sk titeb
2 Uy 9| =e(hag) » ]]1 ) e(g.9)
€[L]:p(kj)¢S,

. S0
e(Cor Wipap) =[] el Wran) = [] elg9” ™"

e#i:p(k;)2S, e#i:p(k;)#S,

e(Cs;, Ai) = e (h

By construction, p(k;) € S; and by definition, t;t, = atitde = gf (i0) gq
Sk; titeb —afEDg b
e(9:9) =[] e9 7
ee[L]:p(k;) S, t#i:p (k) €S,

and so we can write
st,mk

e(Cs ks A )e(C4kj,sz(k y) = e(ha,g)

Finally noting that e]v = 1, we have

Datrib = n (e(cs,kj,Ai)'e(C4,kj,Wi,p(kj)))ws"’j
1<j<|I|

St; Zlﬁjﬁm a)s.,jml_v
e(hy, g) P

= e(hy,g)" MY
— e(hz,g)stier — e(hz,g)Sti.

« Slot check: Next, consider the component Dgjor = e(C5,A,~)e(C2,A:"f/I-). By definition

e(Cs, A)) = e(RT7,g") = e(h1,g)*" [ | e(Tg) " = e(hi,g)*" [ | (T 40

je[L] JjelL]
e(Co ATV)) = e(g°.g"1Vi) = e(9.9)"" | | elg. V)"
J#i

Now, since we know for all j € [L], IsValid(crs, j, pk;) = 1, we have that for all j # i, e(g, Vi;) = e(T}, As).
Thus, using Eq. (4.3), we can now write

Dyjor = €(Cs, A)e(Co, AT'V;) = |e(hi, 9)™"e(T;, A) ™ | | e(T;, 40
J#i
=e(hy,9)*"e(T;, Ai) “e(g,9)° "
=e(h,9)*"e(g", g") e(g.9)*" = e(h,g)*". O

(e(g, A

J#i

+ Message reconstruction: Using the fact that h = hyh,, and combining the above relations, we have that
Dsjot * Dattrib = e(hbg)Stie(hZ:g)Sti =e(h, S)Sti-

Next, we can see that have
e(Cz, B;) = e(g",g"h") = e(g.9)"e(h. 9)*"".
Thus, putting everything together, Eq. (4.2) becomes

Ci - Dytot - Dawiib _ - ¢(9,9)e(h,9)*"t _
e(Cy, By) e(g, g)*e(h, g)sti
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Theorem 4.6 (Compactness). Construction 4.3 is compact.

Proof. This follows by inspection. The master public key mpk consists of the group description and O(|U;,|) group
elements. Since the group description and each individual group element can be represented in poly(A) bits, the size
of the master public key is bounded by poly(A, |U, |, log L) bits. Likewise, the helper decryption key consists of the
master public key along with O(|U,|) group elements. Thus, the size of hsk; is also poly(A, |U,|,log L) bits. O

Theorem 4.7 (Incremental Aggregation). Construction 4.3 supports f-incremental aggregation for f(L,|U,|) =
O(L - [Up)).

Proof. We construct the AggregateUpdate algorithm as follows:

« AggregateUpdate(crs, st, (pk, S)): On input the common reference string
crs = (g> Z’ ga h’ {(Al'> Bia Pi> Ui)}iE[LJ B {WZ}ZES) 5

a state st (which could be L), and a public key (pk, S) (or the special symbol L), the update algorithm proceeds
as follows:

1. If st = 1, then the update algorithm initializes k = 0 and T® =1, \A/l.(k) =1forallie€ [L], Uv(‘,k) =1 for
allw € U, and Wl(fv) =1foralli € [L] and w € U,. Otherwise, the update algorithm parses

Wk

st = (k > f(k) > {Vi(k)}ie[L] > {0‘(4'k)}we‘1/(,1 > { i,w iE[L],WEWA)

2. If (pk, S) = L, then the algorithm outputs

mpk = (G,9.h, Z, 70 {0} o) . Vie[L]:hski = (mpk,i,S;, A B, VI (WS} ).

3. Otherwise, the update algorithm parses pk = (Tk+1, QOk+1 {Vi’kﬂ}#kﬂ) and updates the state as follows:
- Pl Z P LT

Foreachi € [L],if i # k+ 1 then Vi(kH) = Vi(k) - Vik+1. Otherwise, if i = k + 1, then set Vi(kH) = Vi(k).

For each w € U, if w ¢ Si,1, then U&,kﬂ) = U,E,k) - Ug41. Otherwise, if w € S, then U,E,kﬂ) = Uévk).

Foreachi € [L] andw € U, ifi # k+ 1 and w ¢ Si,q, then Wi’(f;l) = Wl(‘ﬁ) - Wr(ik+1)- Otherwise,

set W’(ﬁ,ﬂ) = W.(k).

4. Output the updated state

A (k+1)

_ 2 (k+1 (k+1)
st = (k+1, 7 (k+1) {V } el { o ie[L],wew)'

e {007}

To complete the proof, we show that this incremental aggregation procedure implements the same behavior as the
standard aggregation procedure. Specifically, we show inductively that for all k < L, the following properties hold
for the elements in the AggregateUpdate algorithm:

A

e T® = [Tje T

. ~(k
« Foralli e [L], Vi( ) = nje[k]\{i} Vij-
« Forallw e (LI)L, = ng[k] ‘weS; Uj.

« Foralli € [L] and w € Uy, W, iw = e[k (iywes; Wrij)-

By construction, all of these properties hold for k = 0. Moreover, the inductive step follows by inspection: namely,
each of the updates in Step 3 simply multiplies in the next component into the product (if present). When k = L, the

components T(®), V(L) U(L) and W( ) precisely coincide with the quantities in the Aggregate algorithm. Finally,
the intermediate state st always contams O(L - |'U,|) group elements, which proves the claim. O
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Theorem 4.8 (Static Security). Let L be a bound on the number of slots and let ¢ = 4 - dpay - L - K. If the g-set-
consistent bilinear Diffie-Hellman exponent assumption (Assumption 4.2) holds with respect to PrimeGroupGen, then
Construction 4.3 is statically secure (for up to L slots).

Proof. Our security proof relies on a partitioning strategy where we program the indices of the corrupted slots into
the common reference string. We begin by defining a sequence of hybrid experiments. Each of our experiments is
parameterized by a bit v € {0, 1} (and implicitly, by the security parameter A). We refer to Section 1.2 for a high-level
overview of the reduction strategy.

. Hyb:e‘;)lr This is the real security game where the challenger encrypts message p;. We recall the main steps here:

- Setup phase: At the beginning of the game, the adversary A specifies the number of slots 1 and
the indices of the corrupted slots C € [L].” (In the description, we will also define the indices of the
non-corrupted slots as N := [L] \ C.) The challenger then constructs the common reference string as
follows according to the specification of Setup:

« Specifically, the challenger initializes a counter ctr = 0 and an (empty) dictionary Dict.

« The challenger samples G = (G, Gr, p, g, e) < PrimeGroupGen(1%).

« Let O = {d;}ie[1] be an efficiently-computable progression-free and double-free set. As in Construc-
tion 4.3, we define f(i, j) :==d;+d;, & = {f(i,j) | i,j € [L] : i # j}, and dmax = 3 - max(D).

dmax Tt also computes

+ The challenger samples random exponents a,b ¢ Z, and sets = —a
h = i g*™™ " Then, for each index i € [L], the challenger also samples 5; & Z,, and

lets ; = a%. Then, it defines the following group elements:
_ Ali _ oyt _ 0 _ bt;
Ai=g" , Bi=g*h" , Pi=g" , U=g".

For each z € &, it also sets W, = gb“z.

« Finally compute Z = e(g, g)*. The challenger constructs the common reference string

Crs = (ga Z’ g, h’ {(Ais Bia Pi’ Ui)}iE[L] > {WZ}Z€8) (44)

and gives crs to A.
— Query phase: The challenger responds to the adversary’s key-generation queries as follows:

+ Key-generation query: Whenever algorithm A makes a key-generation query on a non-corrupted
slot index i € N, the challenger starts by incrementing the counter ctr = ctr+ 1 and samples r; - Z,,.
It then computes T; = ¢", Q; = P;', and V;; = A;i for j # i. The challenger sets the public key to
be pkg, = (T, Qi, {V,i} j»i) and responds with (ctr, pk,). It adds the mapping ctr — (i, pk,) to the
dictionary Dict.

ctr ctr

Recall that in the static security game, the adversary is not allowed to make any corruption queries.

— Challenge phase: In the challenge phase, the adversary specifies a challenge policy P* = (M, p) € Py,
where M € Zg *"and p: [K] — U, is a row-labeling function and two messages 1, i} € Gr.* In addition,
the adversary specifies a key for for each slot i € [L] as follows:

« For each corrupted slot i € C the adversary specifies a public key pk; = (T, Q;, {V},i} j#i) and an
attribute set S;. The challenger checks that IsValid(crs, i, pk;) = 1 and halts with output L if not.
Specifically, the challenger checks that e(T;, P;) = e(g, Q;) and for each j # i, that e(g, V; ;) = e(T;, Aj).

"We assume that the adversary A chooses a fixed value L = L(A) for each security parameter A. This is without loss of generality since any
algorithm A that succeeds with non-negligible advantage ¢ implies a (non-uniform) adversary 8 that chooses a fixed value of L = L(A) for
each security parameter A and succeeds with advantage at least /L.

8Recall that the policy family P, consists of policies (M, p) that depend on at most K(A) attributes (i.e., where the share-generation matrix
M has at most K rows). For ease of exposition, we will assume that M has exactly K rows (since we can always pad the share-generation matrix
M with dummy rows of all-zeroes).
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» For each non-corrupted slot i € N, the adversary specifies an index c; € [ctr]. The challenger looks
up the entry Dict[c;] = (', pk’). If i = i/, the challenger sets pk; = pk’. If pk; # pk’, the challenger
halts with output L.

For each slot i € [L], the challenger parses it as pk; = (T, Q;, {Vj,i} j#i). The challenger computes the
attribute-independent public key T and the attribute-independent slot key V; for each i € [L]:

T= 1_[ T; and Vizl_[Vl-,j.
jelL] J#i

Then, for each attribute w € Uy, it computes the attribute-specific public key U,, and the attribute-specific
slot key W; ,, for each i € [L] as follows:

Ov=[] U and Wiw= [] W
JE[L]:wgS; j#iWES;

The challenger then constructs the challenge ciphertext by sampling a secret exponent s <~ Z, and
hy, hy € G such that h = hyh,. It constructs the ciphertext components as follows:

+ Message-embedding components: First, let C; =y}, - Z° and C; = ¢°.

+ Attribute-specific components: Sample v, ..., 0, ¢ Z, for the linear secret sharing scheme and
T A
let v=[1,0,,...,0,]". Then, for each k € [K], sample s; < Z, let C35 = hzmkVUp_(s,f) and Cy i = g%,

where m;_denotes the k™ row of M.
« Slot-specific component: Let Cs = (h;T~1)°.
The challenger replies to A with the challenge ciphertext

ct* = ((M, p), C1, Ca, {Cs ., Caic Yre[k]s Cs)-

— Output phase: At the end of the game, the adversary outputs a bit v/ € {0, 1}, which is also the output
of the experiment.

. Hybiv): Same as Hybév), except the challenger makes the following syntactic changes:

- Setup phase: In the setup phase, the challenger additionally samples f;, <~ Z, for all i € [L] and
k € [K]. Then, instead of sampling b ¢~ Z,, the challenger sets

b= Z Z [51% lmax—2di

i€[L] ke[K]

Finally, instead of sampling the encryption randomness s € Z, in the challenge phase, the challenger
now samples s ¢ Z,, in the setup phase. For the corrupted slots i € C, the challenger now sets P; = g%
(instead of P; = g%).

- Query phase: When responding to a key-generation query for a slot i € N, instead of sampling r; < Z,
the challenger samples r/ ¢ Z, and sets r; = amo=di 4y,

— Challenge phase: After the adversary outputs its challenge policy P* = (M, p), the challenger computes
for each i € C avector v; € Zj with first entry 1 and which is orthogonal to every row m; of M where
p(k) € S;. Note that such a vector exists (see also Definition 2.2) since the attributes in S; (for a corrupted
slot) do not satisfy the challenge policy P* = (M, p). When generating the challenge ciphertext, the
challenger generates the attribute-specific components C; . and C, ;. as well as the slot-specific component

Cs using the following modified procedure:
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= Attribute-specific components: The challenger sets
sp=s- Z Pik - myv;
ieC:p(k)¢S;
and constructs the attribute-specific components as

C; k = gGmI Zit(] a‘lmuxﬂliv; . Uisﬂ

3 /S
(k) and C4)k—gk

« Slot-specific component: The challenger sets the slot-specific component as
.. dmax—d; e -571
C;:gSZieN“ [_]Tl SI_[Qi i
ieN ieC

Finally, the challenger rerandomizes the attribute-specific and slot-specific ciphertext components using
the following rerandomization procedure:

Rerand ({Us}wewr,, (M, p), {C; ., Cl  bkelx Ch):
1. Sample y, 0,05, ... 0y, & Zp and set v = [1,0,0,...,0,] and sl’< & Z, for each k € [K].
2. Compute the rerandomized ciphertext:

’

Csk = Cyp LI 0/)-(515) and Cu=Cj; -g% and Cs=Cig™".

3. Output ({C3 k, Cax tre[k] Cs)-

Figure 1: Ciphertext rerandomization algorithm.
The challenger then computes

({Cs.> Ca bie k- Cs) = Rerand ({Us }weasy, (M, p), {Cj . C i ke k1, Co)

and gives the rerandomized ciphertext to the adversary:
Ct* = ((M’ P), CI> C2> {C?),k’ C4,k}k€[K]’ CS)

— Output phase: At the end of the game, the adversary outputs a bit v/ € {0, 1}, which is also the output
of the experiment.

. Hybf:g 4 Same as Hybiv) except when constructing the challenge ciphertext, the challenger samples C; <- Gr.
Importantly, this distribution is independent of the message.

For a hybrid experiment Hyb and an adversary A, we write Hyb(A) to denote the output distribution of an execution
of Hyb with adversary A. In the following, we argue that each the output distribution of each adjacent pair of hybrid
is indistinguishable.

Lemma 4.9. For all adversaries A and all v € {0, 1}, there exists a negligible function negl(-) such that for all A € N,

|Pr[Hyb'") (A) = 1] = Pr[Hyb{" (A) = 1]| = negl (D).

real

Proof. We show that Hybfeva)I and Hybiv) are statistically close by showing that the adversary’s view (i.e., the crs from
the setup phase, the public keys in the query phase, and the challenge ciphertext ct* in the challenge phase) in the
two distributions is statistically close. We consider each phase separately.
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Setup phase. The only difference is how the challenger samples b and P;. In Hybgv), the challenger sets

b= Z Z ﬁlk max_Zdi’

ie[L] ke[K
where ;. ¢ Zy foralli € [L] and k € [K]. We consider the distribution of b:

« Since the challenger samples a <~ Z, and p is prime, the probability a is a zero to the polynomial x (dmax =2
-ie. a(@2d = 0 has probability at most ((dmax — 2d;)/p. Since D is efficiently-computable, it follows that
dmax < poly(L) = poly(2). Since p = 279 we conclude that (dpay — 2d;)/p = negl(1) and so, a%m=—2d jg
non-zero with overwhelming probability.

« Since each f; i is uniform over Z,, they are non-zero with overwhelming probability. In this case, the distribution
of each ﬂl_kl is independent and uniform over Z,.

Thus, with overwhelming probability, a®~2¢ % 0 and each f ._kl is an uniform (non-zero) value over Z,,. We conclude
that the distribution of b is statistically close to uniform over Z,, which is the distribution of b in Hyb(v) Next,

consider the distribution of P; for i € C. In Hyb(()v), the challenger sets P; = ¢% while in Hybiv), the challenger sets

P; = ¢°%, where s & Z, and §; & Z,. Aslong as s # 0, these two distributions are identical. Since s is sampled
uniformly, these two distributions are statistically close.

Query phase. The only change is how the challenger samples r; fori € N. In Hyb(v the challenger samples
ri & Zp. In Hybiv), the challenger samples r] < Z, and sets

_  dmax—d; ’
ri = a®mxT% 4l

These two distributions are identical.

Challenge phase. In Hybiv), the distribution of the attribute-specific and slot-specific ciphertext components can
be written as follows:

dmax —d;

T A —§F T/ dmax—d; ~ 4
Cap = g*™ Zicc @ Vi Uk L grmy Up:/f = g"mi (/) V+Ziec atmdivy) 1y ~(sitse)

p(k) p(k)
rFSk

C4,k = gsltgslrc = gsk

Cs=g% Ziew atimex = n T° 1_[ Q gV=¢ ( Y/s+3ic NadmaX‘d 1_[ T l_[ Q

ieN ieC ieN ieC

where y, 0, ..., 0;, & Zy, sl'c & Zy forall k € [K],and v/ = [1,0;,...,0;]. For each i € C, let (pk;, S;) be the public
key and set of attributes the adversary chooses for slot i € C. Parse pk; = (T;, Q;, Ri, {V},i} j#i), and let r; € Z,, be the
discrete log of T; (i.e., T; = g™). Without loss of generality, we can assume that for all i € C, IsValid(crs, i, pk;) = 1.

Otherwise, the output in both experiments is L. In Hybgv), the challenger sets P; = ¢g°%, so by construction of IsValid,
e(9. Qi) = e(T;, Pr) = e(g,9)*"".
In particular, Q; = gs‘si i Thus, we can rewrite Cs as

C; = g [yt Ziewalon ) [ gos [ 0% = gl Zuen ) T 15 ] g7

ieN ieC ieN ieC

s\=y/s+2ie qmax=d; —-s
=g ( Y/s+Zien ) l—[ TJ
jelL]

e —r—
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We claim now that the distribution in Hybgv) is equivalent to an execution of Hybfel;)l
assignments:

with the following variable

dmax—dj

and hZ = gY/s"'ZiECa ,

dmax—dj

hl = g_Y/s+ZieNa

and for all k € [K], s == s; + sl’<, and

k
_ (/9)V + Tiec @t divy

/s + Rieg e

For this assignment of variables, observe that

STV _ (/e e atmed YmLv (55451
hy " Vo) =9 U

gsm;(()//s)v/"'ziec admax—div;) ] U_(S;c*'s;c)

= Cak

g = gtk = Cyk, and (h,T~1)s = Cs, which coincides with the definitions in Hybfel;)r To complete the proof, it
Q)

real”

suffices to argue that this choice of assignments are distributed according to the specification in Hyb "’ . We analyze

each component as follows:

« In Hybgv) , the challenger samples y, s ¢~ Z,. As long as s # 0 (which happens with overwhelming probability),
then over the random choice of y, the distribution of y/s is uniform. Thus, with overwhelming probability over
the choice of s, the distribution of h; is uniform over G. Moreover,

hihy = gZieN atmax=diy 3, o atmax=di _ gzie[u amax=d;

=h,

since C and N are a partition of [L].

« Since the challenger samples s]'c & Zp, the distribution of s is also uniform over Z,, which matches the

b(V)

real”

distribution in Hy

« Write v = [01,0,...,0,] and v/ = [1,0,,...,0,,]. By construction, the first component of v’ and v; for alli € C
is 1. This means v; = 1, just as in Hybfeva)l. For i > 1, the challenger in Hybév) samples v/ ¢ Z,. Thus, as
long as y,s # 0, the distribution of y/s - v] is uniformly random (and independent of all other components).
Correspondingly, this means that the distributions of v, . . ., v, are independent and uniform over Z,, exactly as

required in Hybfe‘;)l. Since the challenger samples y, s <~ Z,, they are non-zero with overwhelming probability.

Thus, with overwhelming probability over the choice of a, y, and s, the challenge ciphertext Hybiv) is distributed

exactly according to the distribution in Hybf:a)]. We conclude that the adversary’s view in the two experiments are
statistically indistinguishable, and the claim holds. O

Analyzing Hybiv) and Hybgv). Next, we show that under the set-consistent decisional bilinear Diffie-Hellman

exponent assumption (Assumption 4.2), the output distributions of Hybiv) and Hybév) are computationally indis-
tinguishable. To simplify this analysis, we start by defining the following intermediate assumption which is implied
by Assumption 4.2. The structure of the intermediate assumption enables a more direct reduction. This intermediate
assumption can be viewed as a generalization of the parallel bilinear Diffie-Hellman exponent assumption introduced
in [Wat11]. In Appendix E (Lemma E.1), we show that the intermediate assumption directly reduces to (a suitably
parameterized version of) Assumption 4.2.

Assumption 4.10 (Intermediate Set-Consistent Bilinear Diffie Hellman Exponent). Let PrimeGroupGen be a prime-
order group generator. For a security parameter A and abit b € {0, 1} we define the (g1, g2)-intermediate set-consistent
bilinear Diffie-Hellman exponent game between an adversary A and a challenger as follows:

« On input the security parameter 1%, adversary A outputs a set S C [g; — 1].
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« The challenger samples G = (G, Gr, p, g, e) < PrimeGroupGen(1*) and exponents a,s, fi, . . PBg, & Zyp.
« The challenger then constructs the following components:
— For each i € [2¢,], it sets X; = g* and Z; = ¢**.
— For eachi € [2¢;] and j, k € [q2], it sets YW = gsﬂf, Xl.(j) = g“i/ﬁf, and Zl.(j’k) = g“isﬁk/ﬁi.
— Finally, it computes Q = e(g, 9)*"', Ty = e(g, ¢)°""*, and samples T; & Gr.
The challenger gives the following components to the adversary:
- G. 9, Y, {Xiticsulgi+12q:11» 1 Zgi-i}ielq-11\S» 1Zi}ie|qi+1.2q:]; and
- YD jergr X Yicrzg g ictan> 127 Yiengn g e Q5 [T ]
« The adversary outputs a bit b” € {0, 1} which is the output of the experiment.

We say the (qi, q2)-intermediate set-consistent bilinear Diffie-Hellman exponent assumption holds with respect to
PrimeGroupGen if for all efficient adversaries A, there exists a negligible function negl(-) such that for all 1 € N,

|Pr(b’ =1:b=0] —Pr[b’ =1:b=1]| = negl(})

in the (g1, g2)-intermediate set-consistent bilinear Diffie-Hellman exponent game.

Lemma 4.11. Let q = 4 - dpay - L - K. Suppose the q-set-consistent bilinear Diffie-Hellman exponent assumption (Assump-
tion 4.2) holds with respect to PrimeGroupGen. Then, the (q, q2)-intermediate set-consistent bilinear Diffie-Hellman
exponent assumption holds with respect to PrimeGroupGen for q; = dyax and qz = L - K.

Proof. We give the proof in Appendix E (see Lemma E.1). O

Lemma 4.12. Suppose Assumption 4.2 holds for ¢ = 4 - dmax - L - K with respect to PrimeGroupGen. Then, for all
efficient adversaries A, and all v € {0, 1}, there exists a negligible function negl(-) such that for allA € N,

|Pr[Hyb!" (A) = 1] = Pr[Hyb'") (A) = 1]| = negl(A).

rand

Proof. Take any v € {0, 1} and suppose there exists an efficient adversary A where

| Pr[Hyb!" (A) = 1] - Pr[Hyb\") (A) = 1]| = ¢

ran

for some non-negligible e. We use A to construct an adversary B for the (g1, g2)-intermediate set-consistent BDHE
assumption, where ¢; = dmay and g2 = L - K. In the following, we will refer to elements of the set [g2] = {1,...,q2}
by a pair of indices (i, k) € [L] X [K]. We now give the description of B:

« Setup phase: Algorithm B starts running algorithm A. Algorithm A starts by specifying the number of slots
1L and the indices of the corrupted slots C C [L]. Algorithm B then initializes the following quantities:

- Algorithm 8 initializes a counter ctr = 0 and an (empty) dictionary Dict to keep track of the key-generation
queries.

- Let D = {d;}ieq1] be an efficiently computable progression and double-free set. As in Construction 4.3,
we define (i, j) =d; +dj and the set & = {f (i, j) | i,j € [L] : i # j}. Let dmax = 3 - max(D).

Algorithm 8 sends the set
S=Du {dmax - di}iE[L] U {dmax - di + dj}i:#jE[L]
to the (g1, g2)-intermediate set-consistent BDHE challenger and receives the challenge:

- g > g’ Y’ {Xj}jesu[dmax+1s2dmax] > {deux*j}je[dmaxfl]\s 2 {Zj}je[dmax+1s2dmax]; and
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i ik ik), (i’ K
= (Y Yiepunkerxts 06" Ve tzdm\dmabiettlke K1 12 je 2\ (s (10200 21K and
- 0,T.

For emphasis, we color the components from the challenge in green. Next, algorithm B computes h =
[Tierr] Xdpu—d,- Then, for each slot i € [L], it computes

_ _ _ (oK)
A;j=X, and B;= 1_[ Xgpoo-dyrd, and Uj= 1_[ X e

JE[L]j#i Jje[L].ke[K]
Next, for each i € [L] it samples §; < Zy. Ifi € N,itsets P; = g5i, and if i € C, it sets P; = Y% . For each
z € &, algorithm B computes W, = [[c[1] kek] X(f!j’k)_zdrﬂ. Finally, algorithm B sets Z = Q™! and defines the
common reference string to be

crs = (g> Z! g, h’ {(Ai: BiaPi: Ui)}iG[L] 5 {M/Z}ZES) . (45)
Algorithm B gives crs to A.

Query phase: During the query phase, whenever algorithm A makes a key-generation query on a non-
corrupted slot index i € N, algorithm B starts by incrementing the counter ctr = ctr + 1 and samples r] & Z,,.
It then sets

5' /
“ AN r
Ti=X4,-a,9" and Q= (Xd.,h,x—d,gr') and Vi =Xg,-da, X s

for all j # i. Then B sets the public key to be pk,, = (T;, i, {V;,i} i) and responds with (ctr, pk
the mapping ctr — (i, pk,,,) to the dictionary Dict.

). It adds

ctr

ctr

Challenge phase: In the challenge phase, algorithm A specifies a challenge policy P* = (M, p), where
Me Zg *®and p: [K] — Uy is a row-labeling function, along with two messages g, 4; € Gr. In addition,
algorithm A specifies a key for for each slot i € [L] as follows:

- For each corrupted slot i € C, algorithm A specifies a public key pk; and an attribute set S;. Algorithm
B checks that IsValid(crs, i, pk;) and halts with output L if not.

— For each non-corrupted sloti € N, the adversary specifies an index ¢; € [ctr]. Algorithm B looks up the en-
try Dict[c;] = (i, pk’). If i = i, algorithm B sets pk; = pk’. If i # i’, then algorithm 8 halts with output L.

For each slot i € [L], algorithm 8 parses the associated public key pk; as pk; = (T;, Q;, {V; i} j2i). Algorithm
B then computes the attribute-independent public key T and attribute-independent slot key V; for each i € [L]

as follows:
T=]]7 and Vi=]]w;
jelL] j#i

Then, for each attribute w € Uj, it computes the attribute-specific public key U,, and the attribute-specific
slot key W; ., for each i € [L] as follows:

UWZ 1_[ U; and VVLW: 1_[ Wf(,-,j).
JE[L]:wgS; JEEWES;

Next, algorithm B constructs the challenge ciphertext. Since A is admissible, the attributes S; for all corrupted
indices i € C do not satisfy the challenge policy P*. Thus, for each i € C, there exists a vector v; with first
entry 1 and which is orthogonal to every row m; of M where p(k) € S;. Algorithm B now proceeds as follows:

- Message-embedding components: First, algorithm B sets C; = p},/T and C; =Y.
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— Attribute-specific components: For ease of notation, for each k € [K], we define the following sets
of indices Yl(k), Yz(k), and Y3:

Y =(ie[L]:pk)gS} and TV ={ieC:pk)¢S} and Y;=[L]x[K]  (46)

Then, algorithm B computes C;, as

I - )
C., = || || || 7 (1K), (G:K)) eV 1—[ 1—[ Z—mlvj
3k diax—2dj+d; doax—2d;+d; |?
;! !
e je® GEIEn iex® jex(o\(i}
’
and C4,k as

Co= []romyme

iEC:p(k)eS[

- Slot-specific component: Algorithm B computes C; as

c=[]r[le"

ieN ieC
Finally, algorithm 8 computes
({Cs.x: Cak e k). Cs) = Rerand ({Us }weary, (M, p). {C} 1. Cy i Sk k1 Ch)-
Algorithm 8B responds to A with the challenge ciphertext

ct” = ((M, p), C1, Co, {Cs & Cak Jke[k] Cs)-

« Output phase: At the end of the game, algorithm A outputs a bit v € {0, 1}, which B also outputs.

We start by showing that algorithm 8B is able to simulate all of the parameters for A using the group elements
from the (g1, g2)-intermediate set-consistent BDHE challenge. This will crucially rely on the progression-free and
double-free properties of the set D.

+ CRS components: First, we consider the components of the CRS.

- Computing h, A;, and B; for i € [L] requires knowledge of the elements X; 4., X, and Xy —di+d;
for all j € [L] \ {i}. These are precisely the components of the set S, so each of these components are
included as part of the challenge.

J.k)

max —2d j+d;

challenge contains X;i’k) foralli € [L], k € [K], and ¢ € [2dmax] \ {dmax}. Thus, it suffices to show that

Amax —2dj +d; € [2dmax] \ {dmax}. Since dmay = 3-max(D) and d;, d; € D C N, this means dpmax —2d; > 0

and diax + di < 2dmax. Correspondingly, this means that dyax — 2d; + d; € [2dmax]. It remains to argue

that dmax — 2d; + d; # dinax. Suppose otherwise. Then, it must be the case that d; = 2d;, which contradicts
the fact that O is double-free (Definition 2.6). Hence, dmax — 2d; + d; € [2dmax] \ {dmax}, and algorithm

B is able to construct U; for all i € [L].

— The component P; = Y% can be simulated using Y.
— Foreach z € & where & = {f(i,j) | i,j € [L] : i # j}, the term W, depends on Xc({j’k) for j € [L] and

max —2d j+2
k € [K]. As in the previous case, it suffices to show that dyax — 2d;j + z € [2dmax] \ {dm;X}. Since z € &, it
can be written as dy + dj» for some choice of i’ # j* € [L]. Thus, z < 2max(D). Since dmax = 3 - max(D),
this means dmax — 2d; > 0 and dmax + 2 < 2dmax. Hence, dmax — 2d; + z € [2dmax]. It remains to argue that
Amax—2dj+2z # dmax. Suppose otherwise. Then, it must be the case that 2d; = z. Since z € &, there exists i’ #
Jj' € [L] such that dy +dj» = z = 2d;, which contradicts the fact that D is progression-free (Definition 2.4).

Hence, dynax — 2dj + z € [2dmax] \ {dmax}, and algorithm B is able to construct W; for all z € &.

— Next, the component U; depends on XU(Z for all i, j € [L] and k € [K]. By construction, the
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— Finally, algorithm B sets Z = Q™! which can be computed from the challenge.

- Key-generation queries: Next, we consider the elements algorithm 8B uses to simulate public keys when
responding to the adversary’s key-generation queries. For each i € N, the elements T;, Q;, and Vj; for j # i
require knowledge of X, 4, X4, ~d,+d;> and X4,. Once again, these are the components of S, and thus part
of the challenge.

« Challenge ciphertext: Finally, we consider the components of the challenge ciphertext:

- To construct C; and C,, algorithm 8 requires T and Y, which are part of the challenge.

— To construct C;’k, algorithm B requires Z;‘(]]i\]f2)glji ‘(];i)) and Zg,, —24,+4, for alli € Yl(k), j € Yz(k), and

(j’, k") € Y3 where (j’, k) # (j, k). We consider the two terms individually:

max

» Consider Z;,  —24,+4, Where i € Yl(k) C[L]andj € YZ(k) C [L]. By construction, the challenge
contains Z; _; if £ € [dmax — 1] \ S and Z; for ¢ € [dmax + 1, 2dmax]. As argued previously, since
dmax = 3 - max(D) and d;, d; € D and D is double-free, it follows that

dmax - 2dj + di € [Zdrnax] \ {dmax}-

If dmax — 2dj + d; > dmax + 1, then we are done. It suffices to consider the case where dyax — 2d; +d; <
dmax — 1. In this case, the challenge contains Z;, 24,+4, as long as 2d; — d; € [dmax — 1] \ S. Since
dmax = 3 - max(D), it follows that 2d; — d; < 3 - max(D) = dmax. We only need to show that
2dj — d; ¢ S. Here, we consider three possibilities:

- Suppose 2d; — d; € D. Then, there exists some i’ € [L] such that 2d; = d; + dy. When i = i’, this
contradicts the assumption that D is double-free. When i # i’, this contradicts the assumption
that O is progression-free. Thus, this cannot happen.

- Suppose 2d; — d; = dmax — dy for some i’ € [L] & 2d; + dy # dmax + d;. This means that
2dj+dy —d; = dmax. Since D C N, we have d; > 0. Then diayx = 2dj+dy —d; < 3-max(D) = diax,
which is a contradiction.

- Suppose 2d; —d; = dmax —dy +djs for some i’ # j* € [L]. This means that 2d; +dy = dmax+d;+d;.
Similar to the previous case, we appeal to the fact that dyay = 3-max(D) to obtain a contradiction.

We conclude that whenever dmay — 2d; + d; < dax — 1, it holds that 2d; — d; ¢ S. In this case, the
challenge contains the term Z;,  —24,+4,, s required.

(J".k").(j.k))
max —2dj+d;
{dmax} and (', k") # (J, k). It suffices to argue that for all i € Yl(k) C[L]andj € Yz(k) C [L], it holds
that dmay — 2d;j +d; € [2dmax] \ {dmax}. As in the previous case, this follows when dyax = 3 - max(D)
and d;,d; € D, and D is double-free.

’
— To construct C4,k’

YR forall i € [L] and k € [K], algorithm B can construct this term.

» Consider Zc(l . By construction, the challenge contains Z ;(j SROGRD for all £ € [2dmax] \

algorithm B requires Y %) for all i € C where p(k) ¢ S;. Since the challenge contains

— To construct Cg, algorithm B needs Y, which is included in the challenge.

We conclude that the challenge contains all of the components algorithm B needs for simulating the CRS, the key-
generation queries, and the challenge ciphertext. To complete the proof, we show that depending on the distribution of
T, algorithm B either simulates an execution of Hybiv) or Hybfavn) g for A. Leta,s, fix € Zyfori € [L] and k € [K] be
the exponents sampled by the (g1, g2)-intermediate set-consistent BDHE challenger. Then, the challenge components
are defined as follows:

dmax

Y = gs X = gai . Zi = gais , Y(i,k) — gsﬁ"”‘ . X}i’k) — g“j/ﬁi,k ’ ZJ(_[,k),(i',k/) — gajsﬂi/’kl/ﬂi,k , 0= e(g,g)a )

We claim that algorithm 8 simulates an execution of Hybgv) or Hybf:n) 4 Where the exponents g, s, f; . are the cor-
responding ones sampled by the (g1, ¢2)-intermediate set-consistent BDHE challenger.
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CRS components. Consider first the components of the CRS. Then in an execution of Hyb(v) and Hyb(v) where
the randomness is a, s, { B }ie[1] ke[k]> the challenger constructs the components of the CRS as follows. First, the
challenger sets & = —a%m= and t; = a% It also computes

g@max—d;
h = ]_[ - ]_[ an\\\_dl’

ie[L] ie[L]
which matches the behavior of algorithm 8. Then, for each i € [L], the challenger would compute

Ai=gt’—g =Xy,

a

_ apt; _ —a%max qmax=d; _ gdmax—dj+d; _
Bi =g h'i = g 1_[ g - 1_[ g = deux*dﬁrd,!

JjelL] JelL].j#i Je[L].j#i

which matches the behavior of algorithm $. In both Hybiv) and Hybfavn) o> the challenger sets
—2d; 1 —2d;
b=y Z N 2y = % ﬁ—admax 2, @.7)
je[L] ke[K ]k (iyex, Fik
where Y3 = [L] X [K] from Eq. (4.6). The challenger then computes
U = gbt,- _ g(Zjellee[K] ﬁ,lk dm‘”"z‘if)adi _ gﬁ]ﬁ(adm“’“j*di)
jelL]ke[K] jelL]ke[K]

(k)
dmux*Zdj+di’

which again matches the behavior of 8. Next, for each i € [L], the challenger in Hybiv) and Hybf:n) gsetsP; = g% =y

if i € C and P; = g% if i € N. This is the same procedure used by algorithm B. Next, for each z € &, the challenger
would set

- ' - Amax—2d+2"
jelLlke[K] jelLke[K] ’

1
W, =g" = g(Zj SULIKEIK] 7

Finally, the challenger sets
—_ dmax —
Z=e(g,9)"=e(g.9) """ =07".

We conclude that algorithm 8 constructs the components in the CRS using the identical procedure as the challenger
in Hybgv) and Hyb"

rand”

b(V) b(V)

Key-generation queries. For the key-generation querles on indices i € N, the challenger in Hy rand

max=di 4 r; and then setting

and Hy
generates pk; = (T;, Q;, {Vj,i}j=i) by first sampling r] ¢ Z,, setting r; = a

d —d;
o T = gt = gat e

= deux*digrl{'

« Q;=P'= goi@™ ) - (x,  g"1)% Recall that i € N so P; = g
: dj max —dj 4

. ‘/}’i:A;l:gaJ(ad d+ri):X d+Xm

dmax

Again, algorithm 8 perfectly simulates the responses to the key-generation queries.
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Challenge ciphertext. We now analyze the challenge ciphertext components. First, we consider the distribution
of C;. We have two possibilities:

. Suppose T = e(g, 9)*™". Then algorithm B sets C; = yi%,/T = 1", - e(g, 9) "™ = y’, - Z°, which matches the
distribution of C; in Hyb(V)

« Suppose the challenger samples T ¢~ Gr. Then, C; = pi%/T is also uniform over Gr, and algorithm B simulated

the distribution of C; in Hybf:rz d
To complete the proof, it suffices to argue that the remaining components in the challenge ciphertext are simulated
exactly according to the specification of Hybiv) and Hybf:z 4 First, in Hybiv) and Hybf:n) 4 the challenger would set
C, = ¢g° = Y. which coincides with the behavior of algorithm 8. Next, consider C;, for k € [K]. In Hybiv) and

Hybf:: o the challenger would first set
R Z Pik -mpv; =s- Z Bik - mpv;, (4.8)

ieC:p(k)¢S; iex(®
using the definition of Y2(k> ={ieC:p(k) ¢S} from Eq. (4.6). Then, the challenger computes

dmax—djy* A —S) INEE dmax—dj . T y* A—S) gdmax—d;
Smk icc a iv; [ a tmvis _ 7 %k i mkv s (4.9)

=9 “plk) T Ppk) p(k)
ieC iex(®)

using the fact that in Hyb(v) and Hyb(v) the challenger chooses v; such that m; v; = 0 for all k € [K] where
p(k) € S;. Consider the term U By definition,

Up(k) = [ w=[]s" =[]

i€[L]:p(k)€S; iex(® iex®

using the definition of Yfk) ={ie[L]: p(k) ¢ S;} from Eq. (4.6). For ease of notation, let U;Z‘) = g% for some & € Zp.
Then, substituting in the definitions of b from Eq. (4.7) and s;. from Eq. (4.8), we have

= Z —bad"sz

e

Z —bﬁj,kadimzvjs by Eq. (4.8)
iex® jer(®

_ Bik gfmax—2dr+d
By ke

‘mvis by Eq. (4.7).
ieYl(k) jeYz(k) (j',k") Y3

We decompose & into the terms & where (j/, k") # (j, k) and the terms &, where (j’, k") # (j, k). Then, we have

5: Z Z Z ( ﬂjk dm“‘x_Zd'+d‘m£V}fs)+ Z Z _admax—zdj‘f'dim};vjs. (4.10)

iex(® jer ((/Jk/k)l)(q;c) Pre iex” jen}
#U

& &

We further decompose &, into terms & ; where i # j and terms & ; where i = j:

§2 — Z Z — dmax—2d +dlm V s = Z Z dimax 2d +dlm£vj;-s+ Z _admax—djm;cvzf‘s. (4.11)

iex® jer® iex® jer™\ (i} iex® ar(P
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From Eq. (4.6), we have that Tz(k) C Yl(k), SO we can write
§o2 = Z —atmdimlvis = Z —atm=dimy v, (4.12)
iex® nrk iex{®
Combining Eqs. (4.10) to (4.12), we can write

Bik  dmax-2d;+d; Tv".s)
J

N A

Ry (K e R oy (KT,
ie)," jel, U 13 ieY;" jel, { !
! (LK) #Gk) ! (KD #Gk)

- . . T *
&1 — —gfmax 2d1+dlm}£v;.s _ Z_mkvj
9 9 Ao —2+d;

iex® jer®\ (i} iex® jer®\ (i}
952,2 = 1—[ g—admax_dfmlzv;fs_

(k)
i€,

—mTv*
Z (K. | 7Y
dnmx 72d;‘+d1

Substituting back into Eq. (4.9) and using the fact that O % = gt = gh+8e we conclude that

pk)
;o A—s; admaxfdi_mvaS _ 5 E f admaxfdi-mTv’fs
e = U g KT = golgotlgo? g KVi
ey (k) ey (k)
i€Y, i€Y,
-1
— 41 480 gdmax=di.mTv’s amax=di ;T y*s
=99 g ki g ki
iexr® iex
o . *mTV*» JE g
AT ey g a
- dmax—2d;+d; dmax —2dj+d;
iEYl(k) jeYz(k) (' k') €eXs ieYl(k) jel‘z(k)\{i}

(k) #(ok)

This is precisely how algorithm 8 constructs C; , . Next, consider C} , . The challenger in Hybgv) and Hyb(v) sets

rand

. ; . T
C:lk — gsk — gs'ZiEC:p(k)ési Bik-mpv; _ 1_[ (Y(l,k))mk"i

H

iECip(k)ﬁSi
which is how algorithm 8 constructs C} , . Finally, consider C;. The challenger in Hybiv) and Hybfavn) 4 sets
—d; _5-1
¢y =g Zen ™ [T [ To ™. (4.13)
ieN ieC

By construction, for all i € N, the challenger sets T; = g% = g“dmardiﬂ i. Thus, we can write

1_[ Ti_s — 1_[ g_sadmax*di _Srl{ — g_s ZiEN admax*di 1_[ g—r;s’
ieN ieN ieN
Substituting back into Eq. (4.13), this means

Gy =g T [ 1 [T o

ieN ieC

-1 -1
_ S'Zi admax—di S‘Zi admax—di —rls -6;
=g = (9 - g9

ieN ieC
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which is how algorithm $ constructs C;. Finally, algorithm 8 computes

({C3,k> C4,k}k€[K]’ C5) = Rerand({ﬁw}weﬂ/p (Ma p)s {C;’ka C;,k}kE[KL Cé),

dmax s

which exactly coincides with the challenger’s behavior in Hybiv) and Hybfeva)l. We conclude that if T = e(g,9)% " °,

then algorithm B perfectly simulates an execution of Hybiv) whereas if T & Gr, algorithm B perfectly simulates
b(V)

an execution of Hyb__ .

Thus, algorithm B succeeds with the same advantage of A, and the claim follows. O

By construction the adversary’s view in Hybf:n) 4 is independent of v. As such, for all adversaries A, the output distribu-
tions Hyb(o) (A) and Hyb<1> (A) are identically distributed. The claim now follows from Lemmas 4.9 and 4.12. O

rand rand
Summary. Putting all the pieces together (and invoking the generic compiler from a slotted registered ABE scheme
to a standard registered ABE scheme in Appendix C), we obtain the following corollary:

Corollary 4.13 (Bounded Registered ABE from Prime-Order Pairing Groups). Let A be a security parameter. Let
U ={U)})en be any (polynomial-size) attribute space, and let P = {P) }1en be a set of policies that can be described
by a linear secret sharing scheme over U of size at most K (i.e., each policy is over at most K attributes). Then, under
Assumption 4.2, for every polynomial L = L(A), there exists a statically-secure bounded registered ABE scheme with
attribute universe U, policy space P, and supporting up to L users with the following properties:

« The size of the CRS is L'*°(") . poly(2).

« The size of the auxiliary data maintained by the key curator is L - |U,| - poly(4,log L)

« The running time of key-generation is L - poly(A,logL).

« The running time of registration is L - poly(A, |U,|,logL).

« The size of the master public key and the helper decryption keys are both |U,| - poly(A,logL).
o The size of a ciphertext is K - poly(A,log L).

5 Adaptively-Secure Registered ABE via a Dual System Proof

Construction 4.3 from Section 4 gives an efficient construction of registered ABE where the size of the CRS scales
nearly linearly with the bound on the number of users (when instantiated with state-of-the-art progression-free
sets) and independently of the size of the attribute universe. In contrast, previous schemes that support monotone
Boolean formulas [HLWW23, ZZGQ23] required a CRS whose size scaled quadratically with the number of users
and linearly with the size of the attribute universe. The downside is the construction achieves a weaker notion of
static security (Definition 3.5). In this section, we show that using a dual system approach [Wat09, LW11] similar
to the one taken in [HLWW23, ZZGQ23], we can obtain adaptive security with a nearly-linear-sized CRS through the
use of progression-free sets. However, similar to previous adaptively-secure constructions, the CRS in this scheme
scales linearly with the size of the attribute universe.

5.1 Composite-Order Preliminaries

Similar to the registered ABE construction from [HLWW?23], our construction relies on a composite-order pairing
group. To incorporate progression-free sets into our construction, we will work over a composite-order pairing
group where the modulus N is a product of four primes. We recall the definition below and then state the concrete
computational assumptions we use in our construction.

Definition 5.1 (Four-Prime Composite-Order Bilinear Group [BGNO05]). A (symmetric) four-prime composite-order
bilinear group generator is an efficient algorithm CompGroupGen that takes as input the security parameter A and
outputs a description (G, Gr, p1, p2, p3, ps. g, €) of a bilinear group where py, ps, p3, p4 are distinct primes, G and Gr
are cyclic groups of order N = p;papspa, g is a generator of G, and e: G X G — Gr is a non-degenerate bilinear map.
We require that the group operation in G and Gy as well as the pairing operation be efficiently computable.
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Notation. Let G be a cyclic group with order N = pp,psps and generator ¢g. In the following, we will write
Gy = (gP2P*P+) to denote the subgroup of G of order p;. We define G, G3, G4 analogously. By the Chinese Remainder
Theorem, if g1, g2, g3, g4 are generators of Gy, G,, Gs, G4, respectively, then g1929394 € G is a generator of G, and
moreover, every element h € G can be uniquely written as g7"9,°9;°g;* where x; € Z,, for all i € {1,2,3,4}. In the
following description, we will say & € G has a non-trivial component in the G; subgroup if x; # 0.

Generalized subgroup assumptions. Security of our construction relies on several variants of the subgroup deci-
sion assumptions introduced by Lewko and Waters [LW10] for constructing adaptively-secure (hierarchical) identity-
based encryption, and subsequently by Lewko et al. [LOS*10] for constructing adaptively-secure attribute-based en-
cryption. The first four assumptions are special cases of the generalized subgroup decision assumption from [BWY11].
The final assumption is a variant of the corresponding assumption from [LW10, HLWW?23]. Finally, we state a simple
implication (Lemma 5.3) which is similar to one shown in [LW10] that will be useful in our security analysis.

Assumption 5.2 (Subgroup Decision Assumptions). Let CompGroupGen be a four-prime composite-order bilinear
group generator. Let (G, Gr, p1, pa, p3, P g €) < CompGroupGen(11), N = pipspsps, G = (G,Gr, N, g,e), and
g1 & Gy, g2 & Gy, g5 & Gs, and g4 & Gy. We now define several pairs of assumptions Dy, D; where each
distribution D, = (D, T;) consists of a set of common components D together with a challenge element T;,. We
say that such an assumption holds with respect to CompGroupGen if for all efficient adversaries A, there exists a
negligible function negl(-) such that for all A € N,

|Pr[A(D, Tp) = 1] = Pr[A(D,T1) = 1]| = negl(1),

where the probability is taken over the choice of the common components D, the challenge element Tj, and the
adversary’s randomness.

Assumption 5.2a: Sample r & Zy, and let
D=(G.91.95949), To=g1.  Ti=(9192)"

Assumption 5.2b: Sample s;3, 553, 7 € Zy;, and let

D = (G, 91,93 94, (9192)"", (9293)™") , To = (9193)" Ti = (919295)"
Assumption 5.2¢: Sample $;5, $p4, 7 €~ Zn;, and let

D = (G, 91,93 94, (9192)"", (9294)™*) , To = (9194)" Ti = (919294)"
Assumption 5.2d: Sample s, S23, 24, 7 €= Zp;, and let

D = (G, 91,93 94 (9192)7, (9293)°%, (9294)"*) , Ty=¢, Ty = (919394)"

Assumption 5.2e: Sample a,s, t3, t2, 1 & 7N, and let

s fz)’

D = (G. 41,92 95 94. 9795 . 9395 To=e(91,91)%, Ti=e(g9) .

Lemma 5.3 (Hardness of Factoring). Let CompGroupGen be a four-prime composite-order bilinear group generator
where Assumption 5.2d holds. Then, for all efficient adversaries A, there exists a negligible function negl(-) such that
forallA e N,

(G, Gr, p1. P2, P3, Pa» G» €) < CompGroupGen(14),

N =pipapsps, G = (G, Gr, N, g.e),
g1 & Gl,gs & Ga,g4 & Gy, 512, 523 & ZN

x — A(G. 91,95 94 (9192) (9293)™),

Pr|1 < gecd(x,N) <N : = negl(}).

In words, given (G, g1, 93, 94, (9192)°%, (9293)°®), no efficient adversary can output a non-trivial factor of N.
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Proof. This is a 4-prime analogue of [LW10, Lemma 5]. To show this, consider an adversary A where the probability
in Lemma 5.3 is ¢ for some non-negligible ¢. We use A to construct an adversary B that breaks Assumption 5.2d:

1. On input the challenge (G, g1, g3, g4, X1, X3, X4, T), algorithm B forwards (G, g1, 93, 9a, X1, Y3) to A. By con-
struction, we can write X7 = (9192)%2, X5 = (g293)°®, and Xy = (g294)** for some choice of exponents
512, $13, S14 € ZN.

2. Algorithm A outputs a value a. If ged(x,z) € {1, N}, then algorithm B halts with output L Otherwise,
algorithm B constructs f as follows:

« If X = 1for some i € {1,3,4}, then set f = N/a.
. IinN/a = 1for some i € {1,3,4}, then set f = a.

« Otherwise, output 1if T* = 1 or TN/® = 1 and 0 otherwise.

If algorithm B has not halted, then it sets i € {1,3,4} to be an index where giﬁ = 1 and outputs 1 if e(T, Xiﬁ ) =1
and 0 otherwise.

First, algorithm 8 perfectly simulates an execution of the game in Lemma 5.3 for algorithm A. Thus, with probability
at least ¢, algorithm A outputs a non-trivial factor & of N. We consider several possibilities:

« Suppose @ = p, or & = pyp3py. In this case, X%, Y%, Z% # 1 and similarly XN/@, YN/# zZN/® £ 1 Suppose T = ¢’
In this case, T* # 1 and TN/® # 1, so algorithm B always outputs 0. Suppose T = (g1g394)". In this case, either
T% =1 or TN/® = 1, so algorithm B always outputs 1.

« Suppose p;p; | a for some i € {1,3,4}. Then, algorithm B sets f = N/a. In particular, this means that p, 1 f.
Suppose there exists an index j € {1, 3,4} where gf = 1. Note such an index exists since other f =1 (anda = N

which is a trivial factorization). Since p, t f, this means that Xf € G;. Correspondingly, when T = ¢', this

means e(T, Xjﬁ) # 1 and algorithm B outputs 0. If T = (g193g4)", then e(T, Xjﬁ) = 1 and algorithm 8 outputs 1.

« Suppose p;pz | N/a for some i € {1, 3,4}. Then algorithm B sets = @, which means p; t . The claim now
follows as in the previous case.

We conclude that if T = ¢", algorithm B always outputs 0 and if T = (g19394)", then algorithm $ always outputs
1. Correspondingly, algorithm 8 breaks Assumption 5.2d with advantage ¢ and the claim follows. O

Progression-free sets in composite-order groups. Security of our composite-order construction will also rely
on a new hardness assumption related to progression-free sets. We state our assumption below and show that it
holds in the generic bilinear group model in Appendix D (Lemma D.8).

Assumption 5.4 (Progression-Free Indistinguishability). Let CompGroupGen be a four-prime composite-order
bilinear group generator. We define the following game between an adversary A and a challenger. The game is
parameterized by a security parameter A and a bit § € {0, 1}.

1. On input the security parameter 1%, algorithm A chooses an input length 1%, a progression-free and double-free
set D = {d;}ie1] together with a challenge index i* € [L]. Define the function f(i, j) := d; + d;.

2. The challenger samples a group (G, Gr, p1, p2, 3, P3, P1. g €) < CompGrou pGen(l/l). It then sets N = p1papspa
and samples g; & G; for i € {1,2,3,4}. The challenger first samples r & Zy and sets go3 = (g293)". The
challenger also samples exponents a,b,s, 7 € Zy. For i € [L], the challenger sets t; = a% and defines the
following elements for indices i, j € [L]:

bt,’tj

i bt; R bt; "
Al=gi , Ul=g" . Wn=9" , X=(09)' . Vi#zi Y=g, Ye=(919)"",
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Then the challenger computes the challenge elements
To=9,"g; and Ti =g (g295)"

The challenger then gives the following to A:
(§»91s93y94s923, {Abierngiy » (U berwr» Wi ) dimjernr » X0 {Yikierongey » Yor s T/f)~

3. Adversary A outputs a bit f € {0, 1}, which is the output of the experiment.

We say that the progression-free indistinguishability assumption holds with respect to CompGroupGen if for all
efficient adversaries A, there exists a negligible function negl(-) such that for all A € N,

|Pr[f/ =1:f=0] —=Pr[f =1:f=1]| = negl(1).

5.2 Adaptively-Secure Registered ABE with Progression-Free Sets

In this section, we give our construction of an adaptively-secure (slotted) registered ABE scheme for monotone
Boolean formulas with a sub-quadratic CRS by relying on progression-free sets.

Construction 5.5 (Slotted Attribute-Based Registration-Based Encryption). Let CompGroupGen be a four-prime
composite-order bilinear group generator. Let U = {U) } jen be a (polynomial-size) attribute space. Let P = {P) }1en
be a set of policies that can be described by a one-use linear secret sharing scheme over U (Definition 2.2). We
construct a slotted attribute-based registration-based encryption scheme ITrage = (Setup, KeyGen, IsValid, Aggregate,
Encrypt, Decrypt) with attribute space U and policy space P as follows:

« Setup(14, 111 11): On input the security parameter A, the size of the attribute space |1/;|, and the num-
ber of slots L, the setup algorithm starts by sampling (G, Gr, p1, p2, p3, pa» g, €) < CompGroupGen(1%). Let
G1, Gy, Gs3, G4 be the subgroups of G of orders py, pa, ps3, pa, respectively. The setup algorithm now constructs
the following quantities:

— Let N = py1popsps and let G = (G, Gr, N, g, ) be the (public) group description.

- Let D = {d;}ie[1] be an efficiently-computable progression-free and double-free set of size L (Theorem 2.5).
In the following, we define f(i, j) := d; + d; and the set & of all distinct pairwise sums of elements in D:

E={fG)lijelLl]:i#j}

B

- Sample generators g; < Gy, g3 < Gs, g4 < G4 and exponents a, f,a < Zy. Let h = g

— For each slot index i € [L], let t; = a%. Then, sample §; & Zy, 73, 7] € Zy. Define the slot components
as follows:

Ai=gigy ., Bi= gf’Af(g3g4)Ti . Pi=(g195)%.

For each attribute w € U, sample b,, < Zy. For each w € Uj, slot index i € [L], and cross term index
z € &, define the attribute-specific slot components U ,, and W, ,, as follows:

bayti b
Ui,w = 91 5 Wz,w = 91

z
wa

— Finally, the setup algorithm sets Z = e(g1, g1)* and outputs the common reference string

crs=(G, Z, g1, h, 93, 9a, {(A B, P) Yierr] > {Uiws Wawtwetiyic[L].ze&) (5.1)
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« KeyGen(crs, i): On input the common reference string crs (with components given by Eq. (5.1)) and a slot index
i € [L], the key-generation algorithm samples r; <~ Zx and computes

Ti:gzi > QLZPlrl s Ri=9;i~

Then for each j # i, it computes the cross terms Vj; = A;i. Finally, it outputs the public key pk; and the secret
key sk; defined as follows:
pk; = (T;, Qi, Ri, {V},i}j») and sk; =r;.

Note that this particular key-generation algorithm does not depend on the set of attributes.

« IsValid(crs, i, pk;): On input the common reference string crs (with components given by Eq. (5.1)), a slot index
i € [L], and a purported public key pk; = (T;, i, Ri, {Vj,i} i), the key-validation algorithm first affirms that
each of the components in pk; is a valid group element (i.e., an element in G). If so, it then checks

e(gs, T;) =1=e(g1,R;)) and e(T,P;) =e(g1,0Q;) and e(R;,P;) =e(g3 Q;).
Next, for each j # i, the algorithm checks that
e(g1,Vyi) =e(T;, Aj) and  e(gs,Vji) = e(Ri, Aj).

Finally, the algorithm checks that none of the public key components have a component in the G4 subgroup.
Namely for all j # i:
e(94, T;) = e(94, Qi) = e(ga, Ri) = e(gs, Vji) = 1

If all checks pass, the key-validation algorithm outputs 1; otherwise, it outputs 0.

Aggregate(crs, (pky, S1), ..., (pk;,Sp)): On input the common reference string crs (with components given by
Eq. (5.1)), a collection of L public keys pk; = (T;, Q;, Ri, {V;,i} j#i) together with their attribute sets S; € U, the
aggregation algorithm starts by computing the attribute-independent public key T and the attribute-independent

slot key V; for each i € [L]:
t=1]1 . %=]]v
jelL] j#i

Next, for each attribute w € U}, it computes the attribute-specific public key U,, and the attribute-specific slot
key W; ,, for each i € [L]:

O = ]—[ U Wi = H Wrij)w
J€[L]:wgS; j#iwES;

Finally, it outputs the master public key mpk and the slot-specific helper decryption keys hsk; where

mpk= (gagl; haZ> 7}\1’{(A]1/\1}W€'1/(,1) and hSki = (mpka i’Si’AisBi’ ‘}}i’{v}{fi,w}weﬂ/\)'

Encrypt(mpk, (M, p), #): On input the master public key mpk = (G, g1, h, Z, T, {Uw}we’u,l), a policy (M, p)
where M € ZIA(]X" and p: [K] — U, is an injective row-labeling function, and a message y € Gr, the encryption
algorithm starts by sampling a secret exponent s & Zn and hy, hy & Gy such that h = hyhy. Then, it constructs
the ciphertext components as follows:

- Message-embedding components: First, let C; = - Z° and C; = gj.

- Attribute-specific components: Sample vy,...,0, & 7 for the linear secret sharing scheme and
T A
let v = [s,0s,...,0,]". Then, for each k € [K], sample s, nx & Zy, and let Csx = hgl"vU[:(s]f)ng and

Cuk = (9194)°*, where mL € ZY, denotes the k™ row of M.

— Slot-specific component: Let C5 = (h;T71)*
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It then outputs the ciphertext
ct = ((M, p),C1, Ca, {Csk, Cakc Jkek] Cs)-

« Decrypt(sk, hsk, ct): On input the secret key sk = r, the helper key hsk = (mpk, i,S;, A;, B;, \71 {Vi/i,w}weﬂ,\)s
where mpk = (G, g1, h, Z, T, {va}we(w)’ and the ciphertext ct = ((M, p), C1,Cz, {Cs, C4)k}k€[K],C5) where
Me ZIA(]X" and p: [K] — U, is an injective row-labeling function, the decryption algorithm proceeds as follows:

— If the set of attributes S; is not authorized by (M, p), then the decryption algorithm outputs L.

— Otherwise, let I = {k € [K] : p(k) € S;} be the indices of the rows of M associated with the attributes
Si € Uj. Write the elements as I = {ky,..., kg }.

- Let Mg, be the matrix formed by taking the subset of rows in M indexed by I. Since §; is authorized, let
ws, € le be a vector such that wg Mg, = e;.

- Then, compute and output

Gy

e(Ca. B) 52

)wsivj

ce(Cs, 4) - e(Co ATV [T (e(Cakys A0 - e(Casey Wity )
1<j<||

Dot Dattrib

We will refer to Dgot as the slot-specific decryption component and Dqyyip as the attribute-specific decryption
component.

Correctness. We now show that Construction 5.5 satisfies completeness, correctness, compactness, and incremental
aggregation.

Theorem 5.6 (Completeness). Construction 5.5 is complete.

Proof. Fix a security parameter A and the number of slots L. Let crs < Setup(1%, 1%l 1), Take any index i € [L]
and let (pk;, sk;) < KeyGen(crs, i). By construction of KeyGen, we can write pk; = (Ti, Oi, R;, {Vj,i}j#), where

Ti=gf . Q=P , Ri=gy , Vy=A"

for some r; € Zy and where A; and P; are components from crs. We now consider each of the pairing checks in
IsValid and appeal to orthogonality:

- e(93.Ti) =e(g3.9,') =e(g3,91)" = 1.
« e(g1,Ri) = e(g1,95") = e(g1,93)" = 1.
« e(T;, P) = e(g}, Pi) = e(g1, P|") = e(g1, Q).
« e(R;, P;) = e(gy, Pi) = e(g3, P|') = e(g3, Qi).
. e(g91. Vi) =e(g1, A7) =e(g, Aj) = e(Ti, A).
. e(g5 Vi) =e(gs, A7) =e(gy, Aj) = e(R, Aj).
Finally, since T;, Q;, R;, T; j do not have non-zero components in the G4 subgroup, it follows that
e(94, T;) = e(9a, Qi) = (g4, Ri) = e(ga, Vji) = 1.
We conclude that IsValid(crs, i, pk;) outputs 1 and completeness holds. O

Theorem 5.7 (Correctness). Construction 5.5 is correct.
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Proof. Take any security parameter A € N, slot parameter L € N, and index i € [L]. Consider the following
components in the correctness experiment:

« Let crs « Setup(14, 1% 1) where
cas=(G. Z, g1, b, g3, ga» {(Ai Bi, P)Yie(r] > {Uiws Weow}wetdy ie[L] ze8) -

By construction, the slot components can be written as A; = g/’ gg", B; = g‘l"Aiﬁ (9394)7, and P; = (g193)%. The

b

attribute components can be written as U; ,, = glwt" and W,,, = gf‘”a

« Let (pk;, sk;) « KeyGen(crs, i). Then, we can write sk; = r; and pk; = (T;, Q;, R, {V; i} j#i) where
T=97 ., Qi=P' , Ri=gy , Vy =A;-i = (g193)"". (5.3)

- Take any set of public keys {pk;} ;z where IsValid(crs, j, pk;) holds. Since pk; satisfies the IsValid predicate,

we can write pk; = (Tj, Qj, R, {V¢,j}re[r]\(jy)- For each j € [L], let S; C U, be the attributes associated with
pk;. Let (mpk, hsky, ..., hsky) < Aggregate(crs, (pky, S1), ..., (pk;,Sr)). Then, the master public key mpk
and the i slot-specific helper decryption key hsk; can be written as follows:

mpk: (g:gh h’Z3 7A"{[JYW}WE(MA) and hSki = (mpkz i’Si’Ai:Bi’ ‘7i9 {VVi,W}WE(L{A);

where T = e T V= [1;4 Vi, and

Uwz 1—1 Ujw= n gl;wl‘j and m’W: n Wiy = 1—1 g?waf(i,j).

jelL]:wgs; jelL]:wgs; JHEWES; JEEWES;

« Take any message p € Gr and any policy (M, p) € ) where M € ZI]\(]X" and p: [K] — U, is an injective
row-labeling function. Let ct «— Encrypt(mpk, P, y1). Then,

= ((M’ P)> Cla CZ; {C?),k’ C4,k}k€[K]’ CS),

where
Ci=p-75, Cy=gi, = hy o Uyib9a"s Cak=(g19)™, Cs=hiT™.

We now show that Decrypt(sk;, hsk;, ct) outputs p. Let I = {k € [K] : p(k) € S;} be the indices of the rows of M
associated with the attributes S;. Write the elements of I as I = {ky, ..., k5 }. Let Mg, be the matrix formed by taking
the subset of rows in M indexed by I. By assumption, we know that S; satisfies the policy, so let ws, € Z]‘\Ifl be a vector
such that wg Ms, = e]. We break up the decryption relation (Eq. (5.2)) into several pieces and analyze them individually:

« Policy check: First, consider Darib = [T1<;<| (e(C3k Ai) - e(Cyg;s W,p(k ))) St/ First, since hy, U, b(k;) € G1,
we can write

T

mk_vA_ tmT

e(Ckyr Ai) =e(hz T U490 (9195)" )=e(hz,91) S ) CY A
celLlp(ky)ese

skjtltl' p(k;)

N Sk SUDg bk
e(Corp Wipaep) =[] e (91 ’, Wf(i,n,p(kj)) =[] etgngn® b,
t#i:p(k;)€S, t#i:p(k;)€S,

By construction, p(k;) € S; and by definition, t;t, = aditdi = gf (b0) 5o

=Sk titeb (ke —af g b k.
e(gr, g1) TP = 1_[ e(g1,91) KPPk,
te[L]:p(k;)¢Se t#i:p(kj)¢Se
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and so we can write .
N tim,_ v
e(CS,kjaAi)e(C4,kjsVvi,p(kj)) =e(hz g1) A

Finally noting that ejv = s, we have

~ i ti Yi<j< a)iy-mT_V
Dattrib = ]_[ (e(Csys A) - €(Cageys Wip(ie))) ™ = e(ha, gr) " =110
1<j<|1|

o Mew 5.4
= e(hz,gl)tlwgiMs" G4

= e(hz,_f]l)t"qv = e(hy, g1)*".
« Slot check: Next, consider the component Dg|ot = e(C5,A,-)e(C2,A;i‘7,-). Since h; € Gy,

e(Cs, A1) = e(BT75, A) = e(h, Ai)e(T™5, A;) = e(hs, g% g5 ) ]—[ e(T;, A1) ™5 = e(hy, g1)*" ]—[ e(Tj, A)~°
je[L] JelL]

e(Co, ATV) = e(g5, AT )e (g3, Vi) = e(g. 95" g5 e (g3, Vi) = e(gr, g0)™ " | [ e(gn, Vip)*.
J#i

Now, for all j € [L], IsValid(crs, j, pkj) = 1. Thus, for all j # i, we have e(g1,V; ;) = e(T}, A;). Thus, we can
now write

Dyiot = €(Cs, Ay)e(C, AliV;) = [e(hy, g1) " e(T;, Ay)~* 1_[ e(T;, A)~° | |e(g1.91)""" l_[ e(91,Vij)*
i J#i
= e(hy, 91)*"e(T;, Ai)) e(g1, 91)°"" (5.5)
=e(hy, g1)""e(gy, (giig;")_s)e(g1,gl)sriti
= e(hl,gl)“".

« Message reconstruction: Using the fact that h = hyh;, and combining Egs. (5.4) and (5.5), we have that
Dslot * Dattrib = e(hi, Q)Stie(hz, 91)”" =e(h, 5)$ti~
Next, using the fact that h = g{; , we have
e(Co, Bi) = e(g}, 97 AL (939)™) = e(g1,91)e(3}, (91'95)") = e(g1, 91) e (h, g1)*".
Thus, putting everything together, Eq. (5.2) becomes

C1 - Dstot - Dattrib _ K e(g1,91)*e(h, g1)*" _
e(Cy, By) e(g1,91)%e(h, g;)st

Theorem 5.8 (Compactness). Construction 5.5 is compact.

Proof. This follows by inspection. The master public key mpk consists of the group description and O(|,|) group
elements. Since the group description and each individual group element can be represented in poly (A1) bits, the size
of the master public key is bounded by poly (A, |U,|, log L) bits. Likewise, the helper decryption key consists of the
master public key along with O(|U),|) group elements. Thus, the size of hsk; is also poly(A, |U,|, log L) bits. O

Theorem 5.9 (Incremental Aggregation). Construction 5.5 suppose f-incremental aggregation for f(L,|U,|) =
O(L - |Uy ).

Proof. We construct the AggregateUpdate function as follows:
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« AggregateUpdate(crs, st, (pk, S)): On input the common reference string

crs=(G, Z, g1, h, g5, 9a, {(Ai, Bi, P) Yierr] > {Uiws Wewtwettyic[L]ze€) s

a state st (which could be L), and a public key (pk, S) (or the special symbol L), the update algorithm proceeds
as follows:

1. If st = 1, then the update algorithm initializes k = 0 and T®) = 1. Then, foralli € [L] and w € Uj,
Vi(k) =1, Uv(vk) =1, and Wl(‘ﬁ) = 1. Otherwise, the update algorithm parses

17 (k)

st = (k’ ’f<k)’ {f/l(k)} {U(k)}wé'u)[’ {M/l',w iE[L],WE'u}L) '

ie[L]’
2. If (pk,S) = L, then the algorithm outputs

mpk = (G, ¢, 1 Z, T4 {UF }yens,) and Vi€ [L] : hsk; = (mpk, i, Si As By V(W) ) ear,).

3. Otherwise, the update algorithm parses pk = (Tk+1, Qk+1> Re+1, {Vi,kﬂ}#kﬂ) and updates the state as
follows:
_ Pl ) Ly
— Foreachi e [L],ifi # k+ 1 then Vi(kH) = Vi(k) - Vik+1. Otherwise, if i = k + 1, then set Vi(kﬂ) = Vi(k).
— Foreachw € U, if w ¢ Sy, then (j,g,kﬂ) = vak) - Ug+1,0- Otherwise, if w € Sgy1, then U,E,k“) = U,(Vk).
— Foreachie [L] andw € U, if i # k+1and w ¢ S,q, then ‘/Vi,(fvﬂ) = Wl(fv) * Wr(ik+1),w- Otherwise,
4. Output the updated state
st= (k1 760 0D AOE Y e 0™ et o)

weUy’

To complete the proof, we show that this incremental aggregation procedure implements the same behavior as the
standard aggregation procedure. Specifically, we show inductively that for all k < L, the following properties hold
for the elements in the AggregateUpdate algorithm:

(k) —
. T( ) = l—lje[k]TJ
. 5 (k
« Foralli e [L], Vi( ) = [Tierin iy Vi
~(k
« Forall w € U, Uv(‘, ) = Hje[k]:wesj Ujw

« Foralli e [L] and w € 7/1/1, iw = Hje[k]\{l} weS; Wf(”)

By construction, all of these properties hold for k = 0. Moreover, the inductive step follows by inspection: namely,
each of the updates in Step 3 simply multiplies in the next component into the product (if present). When k = L, the
components T, V(L) U(L) and W( ) precisely coincide with the quantities in the Aggregate algorithm. Finally,
the intermediate state st always contams O(L - |U,|) group elements, which proves the claim. O

Theorem 5.10 (Security). Suppose Assumption 5.2 and Assumption 5.4 holds with respect to CompGroupGen. Then,
Construction 5.5 is secure.

Proof. Similar to the proof of [HLWW23, Theorem 5.9], our proof follows the dual-system methodology [Wat09, LW10].
Some of our description and structure is directed adapted from that of [HLWW23]. Specifically, in the proof, we
define two types of ciphertexts: normal ciphertexts (as output by the honest Encrypt algorithm) and “semi-functional
ciphertexts” Similarly, there are two types of slots: normal slots (where the slot parameters in the CRS are generated
according to the honest Setup algorithm) and “semi-functional slots.” The keys that are registered to a semi-functional
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slot can be used to decrypt normal ciphertexts and the keys registered to a normal slot can be used to decrypt semi-
functional ciphertexts. However, a key registered to a semi-functional slot is not able to decrypt a semi-functional
ciphertext. The proof leverages a hybrid argument where we iteratively replace the challenge ciphertext as well as
the components associated with each slot with semi-functional analogs. In the final hybrid experiment, the slots
parameters and the challenge ciphertext are semi-functional. In this setting, we show it is computationally infeasible
for the adversary to win the semantic security game. Before describing the hybrid argument, we give a high-level
description of the semi-functional ciphertexts and the semi-functional slot components in our construction. We
follow with a description of the main set of hybrid experiments.

+ Semi-functional ciphertext: Semi-functional ciphertexts contain an additional component in the G, sub-
group. Specifically, suppose ct = ((M, P), C1, Co, {Cs , Cag b ke[kT]> CS) «— Encrypt(crs, mpk, id, ). Then, a
semi-functional ciphertext has the following structure:

ct’ = ((M, P) > Cl s nggl , {Cikgg&k . C4’k}ke[K] ’ nggﬁ)

for some choice of exponents {3, {{5}, {5 € Zn. The exact definition of {3, {5, {5 in terms of other scheme
parameters is complex, so we defer their exact specification to the description of the hybrid experiments. Here,
our goal is to illustrate the general structure of the components of the semi-functional ciphertext.

« Semi-functional slot: The slot components (A;, B;, P;) for a semi-functional slot at index i € [L] are generated
like the normal slot components, except we also introduce G, components into B; and P;. Specifically, we
construct the semi-functional slot components as follows:

A; = gi"g? , Bi= Q?Af(gzge»fh)ri . Pi=(g19295)%.

Outer hybrids. We start by defining our primary sequence of hybrid experiments. The outer sequence is intended
to convey the general structure of the argument, and arguing indistinguishability between specific pairs of adjacent
distributions will require an additional sequence of hybrid experiments (which we defer to the subsequent sections).
Each of our hybrids is defined with respect to an (implicit) security parameter A, a bit v € {0, 1}, and an adversary A.

. Hybf(;)lz This is the real security game where the challenger encrypts message p;,. We recall the main steps here:

- Setup phase: In the setup phase, the adversary A sends the number of slots 1% to the challenger. The
challenger then samples the common reference string crs according to the specification of the real setup
algorithm:

= The challenger initializes a counter ctr <— 0 and an (empty) dictionary Dict to keep track of the
key-generation queries.

« The challenger samples (G, Gr, p1, p, p3, P> g €) < CompGroupGen(1%). Let N = p;p,psps and
G = (G, Gr, N, g, e) be the group description.

« Let D = {d;};c[r] be an efficiently-computable progression-free and double-free set. We define
f(i,j) =di+djandtheset & := {f(i,j) | i,j € [L] : i # j}.

« The challenger samples generators g; <~ Gy, g3 <~ G3, g4 < Gy as well as exponents a, ,a < Zy,

B

1
» For each slot i € [L], the challenger samples §;, 7;, rl.’ & Zx and sets t; = a%. Then, the challenger
constructs the slot components as follows:

andsets h =g

Ai=glgy . Bi=giAl(gsg)™ . Pi=(g195)".

For each attribute w € Uj, the challenger samples b,, < Zy. Then, for each w € Uj, slot index
i € [L], and cross term index z € &, the challenger constructs the attribute-specific slot components
Ui.w and W, ,, as follows:

booti b.,a*
Ui,w — glw i , WZ,W — glw .
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» Finally, the challenger computes Z = e(g1,g1)* and gives algorithm A the common reference string

Ccrs = (g» Z> 91 5 h’ 93 5 94’ {(Ai’ Bi, Pi)}iE[LJ 5 {Ui,w, WZ,W}WE(L(A,I'E[LJ,ZES) . (56)

— Query phase: The challenger responds to the adversary’s queries as follows:

+ Key-generation query: When algorithm A makes a key-generation query on a slot i, the challenger
starts by incrementing the counter ctr « ctr + 1 and samples r; ¢~ Zy. It then computes T; = g7,
Qi=P' Ri=g;,and V;; = A;i. The challenger sets the public key to be pke, = (T;, Q;, Ri, {V},i} i)
and responds with (ctr, pk,). It defines sk, = r; and adds the mapping ctr — (i, pk,, Sketr) to the
dictionary Dict.

ctr ctr>

« Corruption query: If the adversary makes a corruption query on an index 1 < i < ctr, the challenger
looks up the entry (i’, pk’, sk”) = Dict[i] and replies to A with sk’.

— Challenge phase: In the challenge phase, the adversary specifies a challenge policy P* = (M, p), where
Me Zﬁxn and p: [K] — U, is an injective row-labeling function, two messages i, u; € Gr, and for
each slot i € [L], a tuple (c;, S;, pk;). The challenger sets up the public keys pk; as follows:

« If ¢; € {1,...,ctr}, the challenger looks up the entry Dict[c;] = (i, pk’,sk’). If i = i/, the challenger
sets pk; = pk’. Otherwise, the challenger aborts with output 0.
« If ¢; = L, then the challenger checks that IsValid(crs, i, pk}) outputs 1. If not, the challenger aborts
with output 0. Otherwise, it sets pk; = pk].
For each public key pk;, the challenger parses it as pk; = (T;, Qi, Ri, {V i} j#i). Next, the challenger
computes the attribute-independent public key T and the attribute-independent slot key V; for each i € [L]:

T= 1—[ T Vi=l—[Vi,j~
JjelLl

J#i

Then, for each attribute w € Uj, it computes the attribute-specific public key U,, and the attribute-specific
slot key W; ,, for each i € [L] as follows:

Uw: 1—[ Uj,w s VVi,wz 1_[ Wf(i,j),w'
JE[L]:weS; J#i:wgS;

The challenger then constructs the challenge ciphertext by sampling a secret exponent s < Zy and
hi, hy € Gy such that k = hih,. It then constructs the challenge ciphertext components as follows:
« Message-embedding components: First, it sets let C; = y}, - Z° and C; = gj.

« Attribute-specific components: The challenger samples vy, ...,0, < Zy for the linear secret
sharing scheme and let v = [s,0s,...,0,]". Then, for each k € [K], it samples s, 7x < Zx and sets
Ty~
Gip = h;n"VU;(SIf) g9, and Cyx = (9194)%, where m;_denotes the k™ row of M.
« Slot-specific component: Let Cs = (h;T1)°.

It replies to A with the challenge ciphertext
ct” = ((M, p), C1, Co, {Cs.k, Cage Yrek], Cs)-

— Output phase: At the end of the game, the adversary outputs a bit v/ € {0, 1}, which is also the output
of the experiment.

. Hybiv): Same as Hybfeva)I except for the following (primarily syntactic) changes:
- Setup phase: The challenger samples S, 2 <~ Zy and sets f = ff; + . It sets h = g'lg as in Hybfel;)l. In

addition, instead of sampling the secret exponent s during the challenge phase, the challenger samples
s € Zy during the setup phase and sets P; = (g5g5)% for all i € [L].
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— Challenge phase: When simulating the challenge ciphertext, the challenger sets h; = g{il and h; = gfz,

where f1, 2 € Zn are the exponents sampled during the setup phase. Then it constructs the challenge
ciphertext components as follows:

» Attribute-specific components: Sample vy, ..., v, & Zn andlet v/ = [1,0,,...,0,]". Then, for
each k € [K], sample s, nx < Zx and set

Mk

s\ BomT v ~—bo(k) ZielLlp(k)es; ti
Cik = (9190 . Cap = (g™ Cox S g

« Slot-specific component: Set

) R;
=" || 5=}
ie[L] Q'

. Hybg "); Same as Hybiv), except the challenge ciphertext is replaced by a semi-functional ciphertext. Simul-
taneously, the challenger add a G, component into the P; component. Namely, during the setup phase, the
challenger constructs P; as follows for each i € [L] as P; = ((g192)°g3)%. Then, in the challenge phase, after
the adversary has chosen its attribute sets S; and corresponding public keys pk; = (T, Q;, R;, {Vj i} j#i) for each
slot i € [L], the challenger constructs the challenge ciphertext components as follows:

- Message-embedding components: Let C; =y}, - Z° and C; = (g192)°.

— Attribute-specific components: Sample vy, ..., 0, & Zn and let v/ = [1,0,,...,0,]". Then, for each
k € [K], sample s, nk & 7Zn and set

s Ty ~~b YielL]; 5 Li
Coe = (190)% . Cage = ((grg2)°)Pemiy'c, o0 Zictroes i gne.

— Slot-specific component: Set
s Ri
Cs = ((9192)°)P 1_[ # :
ie[L] Q;"

. Hybg";) for each £ € [L]: Same as Hybév), except we change the first ¢ slots to be semi-functional. Specifically,
during the setup phase, for i < ¢, the challenger samples the slot components A;, B;, and P; as follows:

Ai=gigy o Bi=giA(9:9:907 . Pe=((9:19)°95)""
The remaining slot components A;, B;, and P; for i > ¢ are generated as in Hybgv).

. Hybf:g 4 Same as Hyb;? except when constructing the challenge ciphertext, the challenger samples C; <- Gr.
Importantly, this distribution is independent of the message.

For a hybrid Hybl.(v) and an adversary A, we write Hybgv) (A) to denote the output distribution of an execution of
Hybgv) with adversary A. We now show that the distributions of each pair of hybrids are indistinguishable.

Proof structure. The analysis from the initial experiment Hybfe:l)I to experiment Hybgz) as well as the final transi-
tion from Hybg VL) to Hybfavr? 4 follow very similarly to the hybrid experiments in the proof of [HLWW?23, Theorem 5.9].
As such, we defer their formal analysis (adapted to the use of progression-free sets) to Appendix A. The transition
between Hyb;'(/)) to Hybng) is where we will critically rely on the progression-free indistinguishability assumption
(Assumption 5.4), and we include its proof in the following section (Section 5.3). We start by stating the lemmas

asserting indistinguishability of each pair of adjacent hybrid experiments.

Lemma 5.11. Suppose Assumption 5.2a holds with respect to CompGroupGen. Then, for all efficient adversaries A
and v € {0, 1}, there exists a negligible function negl(-) such that for all A € N,

|Pr[Hyb " (A) = 1] = Pr[Hyb!" (A) = 1]| = negl(2).

real
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We give the proof of Lemma 5.11 in Appendix A.1.

Lemma 5.12. Suppose Assumption 5.2a holds with respect to CompGroupGen. Then, for all efficient adversaries A
and v € {0, 1}, there exists a negligible function negl(-) such that for all A € N,

| Pr[Hyb{" (A) = 1] = Pr[Hyb" (A) = 1]| = negl ().

We give the proof of Lemma 5.12 in Appendix A.2.
Lemma 5.13. For all efficient adversaries A, v € {0,1}, and A € N,

|Pr[Hyb{"” (A) = 1]| = | Pr[Hyb{}) (A) = 1]].
Proof. The slot components B; in Hybg,vo) are distributed identically to those in Hybév), so the experiments are
identical. O

Lemma 5.14. Suppose Assumption 5.4 and Assumption 5.2 hold with respect to CompGroupGen. Then, for all ¢ € [L],
all efficient adversaries A, and all v € {0, 1}, there exists a negligible function negl(-) such that for all A € N,

| Pr[Hyb{") | (A) = 1] - Pr[Hyb}? (A) = 1]| = negl(A).

We give the proof of Lemma 5.14 in Section 5.3.

Lemma 5.15. Suppose Assumption 5.2e holds with respect to CompGroupGen. Then, for efficient adversaries A, and
allv € {0, 1}, there exists a negligible function negl(-) such that for all A € N,

| Pr[HybS") (A) = 1] = Pr[Hyb(") (A) = 1]| = negl(4).

We give the proof of Lemma 5.15 in Appendix A.3.

Completing the proof. To complete the proof of Theorem 5.10, we observe that the distribution Hyb(v) is

rand
independent of the bit v € {0, 1}. Thus, for all adversaries A, it holds that Hybfgzd (A) = Hybfalr)]d (A). Combining
Lemmas 5.11 to 5.15, security follows via a hybrid argument. O

Summary. Putting all the pieces together (and invoking the generic compiler from a slotted registered ABE scheme
to a standard registered ABE scheme in Appendix C), we obtain the following corollary:

Corollary 5.16 (Bounded Registered ABE from Composite-Order Pairing Groups). Let A be a security parameter. Let
U = {U)})en be any (polynomial-size) attribute space, and let P = {P, }1en be a set of policies that can be described by
a one-use linear secret sharing scheme over U of size at most K (i.e., each policy is over at most K attributes). Then, under
Assumptions 5.2 and 5.4, for every polynomial L = L(A), there exists a bounded registered ABE scheme with attribute
universe U, policy space P, and supporting up to L users with the following properties:

« The size of the CRS is L' . || - poly(}).

« The size of the auxiliary data maintained by the key curator is L - |U,| - poly(A,logL).

« The running time of key-generation and registration is L - |U}| - poly(A,log L).

« The size of the master public key and the helper decryption keys are both |U,| - poly(A,logL).
« The size of a ciphertext is K - poly(A,log L).
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5.3 Proof of Lemma 5.14

In this section, we give the formal proof of Lemma 5.14. The difference between experiments Hybg";{l and Hybé)‘;)
(v)

is the distribution of the parameters for slot . In experiment Hyb, ,” ,, the parameters for slot £ are normal while

(v)

in experiment Hyb, /,

they are semi-functional.

Per-row randomization. Before giving the proof, we first remark on a key difference between Construction 5.5
and the previous dual-system registered ABE scheme from [HLWW?23, Construction 5.4]. Construction 5.5 introduces
per-row randomization in the ciphertexts. In more detail, the attribute-specific components Cs and C, of the
ciphertext in Construction 5.5 are each associated with an independent randomization factor s; < Zy. In contrast,
in the previous construction of [HLWW23], all of the attribute-specific components shared a single randomizing
exponent (in that case, there was also no need for C, ). As we discuss below, having independent randomizing
components for each row of the policy matrix is essential for proving security from Assumption 5.4:

+ In the progression-free indistinguishability assumption (Assumption 5.4), the Y; terms for i # j all live in the
G; subgroup. Only the Y- terms for the challenge index i* contains a component in the G; subgroup. Note
that this is inherent because if any Y; for i # i* contained a non-zero component in the G, subgroup, then the
assumption is trivially broken: namely, the adversary can decide whether the challenge element Ty contains
a G, component or not by by checking whether e(Y;, T) = e(Wjﬁ(i’i*),X).

« When giving a reduction to the progression-free indistinguishability assumption, the reduction algorithm (see
Lemma 5.19) will use the Y; terms from the challenge to simulate the attribute-specific components Cs ;. in
the challenge ciphertext. However, to leverage a similar statistical argument as that used in [HLWW23] (see
Lemma A.14), each component Cs ;. where p(k) ¢ S must be independently uniform in the G, subgroup (here
p: [K] — U, is the row-labeling function associated with the challenge policy and S;- is the set of attributes
associated with slot i*). If we take the [HLWW23] approach where the same exponent s € Zy is shared across all
of the attribute-specific ciphertext components Cs ., then the ciphertext components will be correlated in the G,
subgroup. This in turn breaks the final information-theoretic analysis (Lemma A.14). In contrast, with per-row
randomization, we are able to use Yii" to introduce a random G, component into each C; ;. where p(k) ¢ S;-. This
in turn allows us to (eventually) leverage a similar statistical argument as in the previous proof from [HLWW23].

We now proceed with the formal argument. We start by defining an additional sequence of (simpler) hybrid exper-
iments:

. iHybt(,’l(/)): Same as Hybgjl;)_1 except the challenger introduces a component in the G, subgroup in the challenge ci-

phertext components Cy x whenever p(k) ¢ S;. Specifically, the challenger constructs Cy . for k € [K] as follows:

- If p(k) ¢ Sy, it sets Cyx = ((9192)°9a) <.

- If p(k) € S, it sets Cy = (g194)° asin Hyb(v)

3,6-1°
. iHybE"I): Same as iHybE,‘g), except the challenger changes how it constructs Cs ;. in the challenge ciphertext:

Tv — =sskbp (i) ZDie[L)\(e}:p(k)es; Li .
o = {(glgz)s(ﬁzmkv skb[,(,\)[,)gl kbp(k) Zie[L\{£}:p(k)¢S; ng lfp(k) ¢S,

r =skbpi) Zie[Llp(k)es; ti . . .
(glgz)sﬁzm{,v 9, Skbp i) Lie[Ll:p(k)¢s; th]\ if p(k) € St.

. iHyb{(,’;): Same as iHybi(,J‘I) except the challenger sets Ay, = gi“ (9293)™ in the setup phase.
. iHybf,);): Same as iHyb;’;) except the challenger sets

‘ +=bpy SielLlpoes b ne
Cax = ((9192)5)’Bzmz‘v Cﬂj;w Die[Llp(kygs; b ng.
. iHybf,)z): Same as iHybt(,’;) except the challenger sets B, = gf‘Af (929394)™ in the setup phase.
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Hybrid A, B, Cs i for p(k) ¢ S, Justification Analysis
Hyb§?_1 9?9371 9?1‘15(9394)”’ (glyz)sﬁzmiv/ (9194)7skb”“‘) LieCu(e) ting
sBomT v/ s - S o
iHyb(V) 9?93% aAﬁ(!]agzl)T’ (9192) 2™ ((g192)°94) ) ~Skbotk) Liccpue) r”g'”‘ Assumption 5.2c  Lemma 5.17
. T —ssp b ieCp ti
|Hyb(v) g?g;" O’Aﬁ(g3g4)” (g1g2)° PemiY’ =Ko (k) e 'g, kbp(k) Ziccy g/ Statistical Lemma 5.18
! Ty b i ti .
|Hyb(”) 9" (9295)7t  9%AL (gag)t (9192)S<ﬁ2mkv kb ) g K p(k) ZicCy g/ Assumption54  Lemma5.19
'HYb(V) 9? (9293)1'} gy Af (9394)7 (glgz)sﬁzm < ((9192)°94) Skbp(k) Ziecute) [‘g;”‘ Statistical Lemma 5.20
’ JR, i _ . .
iHyb(Y g1 (g205)7  g¥AL (52059007 (9192)* P ((g192)°ga)~*kPp ) ZicCete figlk  Assumption 5.2 Appendix A4
, s(Bom! v/ —s;. 1) —SSkbo k) Ziee, ti ) o
iHybE»,‘;) 9: (g295) 7 gf’Af(gagzl)” (g192)°Prmi” "‘b/"“"’gl kbpik) Zrece gl Statistical Lemma 5.22
¢ T Ty — —ssgb icc, ti X
iHybE,;) gf 9: gf‘A‘f (929394)"¢ (9192)S(ﬁ2mkv skbp (k) ’f)gl sskbp(o) Liec, ngk Assumption 5.4 Lemma 5.23
s BomT v/ L S -
iHyby ") 9{’9? GEAY (9293907 (9192) PP ((g1g2)°gs) KPP Riecute 1 gk Spatistical Lemma 5.24
Hyb(V) 9?9? gi’Af(gzg3g4)f’ (9192 )%m v (9194)~ Skbp(o) Ziecpuiey ligzk Assumption 5.2¢  Lemma 5.25

Table 2: Structure of the slot parameters A,, B, and the challenge ciphertext components Cs ;. for p(k) ¢ S¢ in the inter-
mediate hybrid experiments in the proof of Lemma 5.14. We write C, to denote the set C, := {i € [L]\{¢}: p(k) ¢ S,}.
For each pair of adjacent hybrids, we indicate whether they are statistically indistinguishable or computationally
indistinguishable.

. iHybt(,’?: Same as iHyb{(,";) except the challenger samples Cs . as in iHyb{(,"{)

c (9192)5 ﬁgm V' =srbp k) t,)g;cekbmk ) ZielL]\ \{¢}:p(k)gS; hgm lfp(k) ¢S,
s b; i€ 2) i
(919 )s/fzmTv 1§k pk) 2 [L]:p(Kk)¢S; tg’Y/\ lfp(k) c Sl’~

. iHybt(,’?: Same as iHybt(,,‘;) except the challenger sets A, = g/ g}’ ‘ in the setup phase.

. |Hyb( Y): Same as lHyb except the challenger sets

_ s\ fom v ~~bpti) Zic(Llpkygs; i mi
Csk = ((9192)°)™ Cox "9y -

We provide a summary of the hybrid experiments in Table 2. We now show that each pair of adjacent hybrids are
either computationally or statistically indistinguishable.

Lemma 5.17. Suppose Assumption 5.2c¢ holds with respect to CompGroupGen. Then, for all ¢ € [L]
adversaries A, and all v € {0, 1}, there exists a negligible function negl(-) such that for all A € N,

, all efficient

|Pr[Hyb(V) (A)=1] - Pr[iHyb(V)(ﬂ) =1] | = negl(4).

Proof. The only difference between these two hybrids is how some of the challenge ciphertext components Cy ;. are
sampled. Suppose that there exists an efficient adversary A that can distinguish these two experiments with non-
negligible probability e. We use A to construct an adversary B that breaks Assumption 5.2c with the same advantage:

1. At the beginning of the game, algorithm B receives a challenge (G, g1, g3, g4, X, Y, T) where G = (G, Gr, N, g, e),
g1 € Gy, g5 € G3, g1 € Gy, X = (9192)°2, Y = (gags)®®* for some s;3, Sp4 & Zn, and either T = (g194)" or
T = (919294)" for some t & Zy. The components that depend on the challenge elements X, Y, T are colored
for clarity.

2. Algorithm 8 starts by running algorithm A to obtain the number of slots 1-. Algorithm $B then samples
a, Pr, o, a & Zn and sets Z = e(g1,91)%, = P1 + Bz, and h = gf.
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3. Let © = {d;};c[r] be an efficiently-computable progression-free and double-free set of size L. As in Construc-
tion 5.5, we write f(i,j) =d; +d; and & = {f (i, j) | i,j € [L] : i # j}.

4. For each slot i € [L], algorithm 8 samples &;, 7;, 7] & Zn, and sets t; = a%. It then constructs the slot
parameters as follows:

« Fori < ¢, algorithm 8B sets

Ai=glgy . Bi=giAlyngl , Pi=(Xgy)".
« For i > ¢, algorithm B sets

Ai=gigy . Bi=gial(gg)™ . = (Xgy)".

Then, for each attribute w € U, algorithm B samples b,, & Zn. For each w € U, slot index i € [L], and cross

(v)

term index z € &, algorithm B constructs the attribute-specific slot components U ,, and W, ,, as in Hyb,, :

. z
wlti wa

Uiw = gf s Wow = 9[17

Algorithm 8 gives the common reference string

Crs = (g’ Z, 91, ha g3, ga, {(ABBI" Pi)}iE[L] P {Uz’,w, WZ,W}WEW},iE[L],ZES)

to the adversary A. It also initializes a counter ctr = 0 and an (empty) dictionary Dict to keep track of the
key-generation queries.

v)

5. In the query phase, algorithm B responds to the adversary’s queries as in Hyb; ., and iHyb%). Namely, when
algorithm A makes a key-generation query on a slot i, algorithm 8 increments the counter ctr = ctr + 1
and samples r; ¢~ Zy. It then computes T; = g;', Q; = P|", R = g3, and V;; = A7 The challenger sets the
public key to be pk, = (T;, Qi, Ri, {V},i} j»i) and responds with (ctr, pk,). It defines sk = r; and adds the
mapping ctr — (i, pkg,, Sketr) to the dictionary Dict. If the adversary A makes a corruption query on an index
1 < i < ctr, the challenger looks up the entry (i’, pk’, sk”) = Dict[i] and replies to A with sk’.

6. In the challenge phase, after A specifies the challenge policy P* = (M, p), messages j;, i} € Gr, and for each

b and iHybt(,V):

slot i € [L], a tuple (c;, S, pk}). For each i € [L], algorithm B constructs pk; as in Hy 201

« If ¢; € {1,...,ctr}, the challenger looks up the entry Dict[c;] = (i, pk/,sk’). If i = i’, algorithm B sets
pk; = pk’. Otherwise, algorithm B aborts with output 0.
« If ¢; = 1, then algorithm B checks that IsValid(crs, i, pk}) outputs 1. If not, it aborts with output 0.
Otherwise, it sets pk; = pk;.
Finally, for each i € [L], algorithm 8 parses pk; = (T;, O, Ri, {V; i} j=i)-
7. Algorithm B parses the challenge policy as P* = (M, p) where M € Z{*" and p: [K] — U). Algorithm B
constructs the challenge ciphertext as follows:
+ Message-embedding components: Set C; = i}, - e(g1, X)* and C; = X.
«+ Attribute-specific components: Sample vy, ..., 0, & Zn andlet v = [1,0,,...,0,]". For each k € [K],

sample sg, nr <~ Zn. If p(k) € Sp, set Cqx = (g194)°*. Otherwise, set Cyx = T°*. Finally, algorithm B sets

_ om0k DiclLlpyes; ti mk
Cap = X0 Cy ‘g,

« Slot-specific component: Set

R;
Cs = X 1_[ —
ie[L] Q;'
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Algorithm 8B gives the challenge ciphertext to A:
ct” = ((M, p), C1, Co, {Cs & Cak ke[k] Cs).-
8. At the end of the game, algorithm A outputs a bit v' € {0, 1}, which 8B also outputs.

In the reduction, the exponent s;, < Zy plays the role of s & Zy in Hybéj,)_1 and iHyb{(,,‘é). Note that in the reduction,

Cy = p - e(91,(9192)°2)” = py, - e(g1, g1) ™2 = Z°2,

which matches the distribution in Hybé";,)_ ; and iHybt(,"(;). Similarly, the components Cs . and Cs are constructed exactly

as they would be in Hybg"?_1 and iHyb{%). Next, consider the distribution of B; for i < £. As long as sy4 is coprime
to paps (which holds with overwhelming probability over the choice of sy4 ¢~ Zy), then the distributions

{YTi = (9294)524Ti LT & ZN} and {(9294)“ LT & ZN}
are identical. Finally, consider the distribution of C4x when p(k) ¢ S;:

« If T = (g9194)" and r is coprime to p; p4 (which holds with overwhelming probability over the choice of r <~ Zy),

(v)

then T is identically distributed to (g;g4)* for uniform s. This matches the distribution of C4 4 in Hybs,”,

o If T = (g19294)" and r, s are coprime to p;psps (which holds with overwhelming probability over the choice
of r,s & Zy), then T% is identically distributed to ((g1g2)*gs)* for uniform s; <~ Zy. This matches the

distribution of C4x in iHybé(,,;) .

Thus, we conclude that the distinguishing advantage of algorithm B is negligibly smaller than the advantage of A.
The claim holds. m}

Lemma 5.18. For all¢ € [L], all adversaries A, and all v € {0, 1}, there exists a negligible function negl(-) such that
forall A € N,

Pr[iHyb{" (A) = 1] = Pr[iHyb}}) (A) = 1]| = negl(2).

Proof. We argue that these two experiments are statistically indistinguishable. The only difference in these two
experiments is the distribution of Cs . In the following, we write CS((;C) to denote the component Cs ;. computed

according to the specification in iHyb%) and C3(1k) to denote the component computed according to the specification

of iHybi(,"I). For each k € [K], we consider two possible cases:

« Suppose p(k) € S;. Then, by definition,
s = (g9192)* Zmlv'cl,:p(k) Bieltlp (s b g _ (5, 0,) 5P (g, g,)~kboth) Ticipotires, b gl
Célk) - (glgz)sﬂzml"'gl_skb”(k’ LielLlpes; ting'

3(,0/3 and C3(1k) is the extra g;skb” () Zuclulpres, f

challenger in both experiments sample n; <~ Zy, and moreover the only terms that depend on 7y, is Cs . in both
(0)
3,k

We conclude that CS((Q and C3( lk) are identically distributed in this case.

The only difference between C term in Cﬂ). However, since the

experiments, we conclude that the distribution of C,, and Cglk) in the G4 subgroup is uniform and independent.

« Suppose p(k) ¢ S;. Then, by definition

Cf;(;() — (glgz)sﬁzmb/ C;:p(k) DielLlp(k)es; ting — (glgz)sﬁzmlv’ ((9192)594)_3kbp(k) Zie[Llp(k)gs; ting 65

) (Bemiv’ =sicbpi te) =3Skbp (i) LielL\(eyp(es; ik
94 9y -

1
Cy = (9192
To show that these two distributions are statistically indistinguishable, consider the following “alternative”
sampling procedure for b, ) and 1, in iHyb%) :
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- Let ¢ € Zy be the unique value where £*) = 1 mod p;psp, and €)= ¢, (Zie[L]:p(k)es,- t,-)_1 mod p;.
The challenger samples b'p * & Zy and sets by k) = b’p @ £() In the following analysis, we will argue
that (%) is well-defined with overwhelming probability (i.e., 2ie[L]:p(k)gs; Li 1s invertible modulo p, with
overwhelming probability).

— Let £ € Zy be the unique value where &7 = 0 mod p;pyps and €7 = Skbpk) Zie[L]:p(k)es; i mod pa.
The challenger samples 7, & Zn and sets ng = .+ £,

We now argue that if b;} *) and ’71’< are uniform over Zy, then the same holds for bp(k) and 7. In other words,

b(")

the alternative sampling procedure exactly coincides with the actual sampling procedure in iHyb, ;.

— Since b/p(k) & 7, the distribution of byky = b'p(k) . §<b) is uniform as long as §(b) # 0 mod p,. First,

tp = a%, where a & Zy. Over the randomness of a & Zy, the probability that a% =0 mod p2 is at most

de/p2 = negl(A), since d; < max(D) = poly(L) = poly(A1). Next, consider the term
ti = Z adi .
ie[L]p(k)¢sS; ie[L]p(k)¢S;
By construction, the view of adversary A prior to the challenge phase is independent of the value of

a mod p,. In particular, the challenger in iHybf,!‘(;) can defer the sampling of a mod p; until after the
adversary has chosen the challenge policy (M, p). In this case, over the choice of a mod p,, the probability
that Xie(1):p(k)es, a% = 0 mod p, is at most max(D)/p; = negl(1). We conclude that with overwhelming
probability (over the choice of a), the distribution of b, x) is uniform over Zy.

— Since 7, & 7y and is independent of £, it follows that 7. is uniform over Zy:.

Now consider the view of the adversary in iHybf, g) under this particular variable substitution:

— First, consider the slot components Uy ,(xy and W, ,(x) for all i € [L], z € &. By definition,

bototi _ Ppti
Ui,p(k) =9 =9

bo (k) a* b @
Wepk) = 94 =9, >

since £®) = 1 mod p;. The remaining components in the CRS do not depend on 7 or by(x) and are
unaffected.

— Next, the components the challenger constructs when responding to key-generation queries do not depend
on the exponents i or b, (i), so their distributions (given the components in the CRS) are unchanged
with this substitution.

- Finally, consider the components in the challenge ciphertext. The components Cj, Cy, Cyf, Cs are all
unchanged (i.e., they are independent of 1, b, (x)). It suffices to consider the ciphertext component Cs.
By definition of b, x), we can write

_Skbp(k) Z t; = —Skb;(k) Z t; mod P1

i€[L]:p(k)¢S; ie[L]:p(k)gS;
-1
_Skbp(k) Z t; = _skb;)(k)tf Z t; Z i = —Skb;(k) te mod P2
ie[Lip(k)es: ie[Lip(k)es; ie[Lip(k)es:

Substituting into Eq. (5.7), we now have

Ty s . )
3 = (9192) ™ ((9192)*ga) ~5kbr) Ticturptioss ti gl

= ( )Sﬁzm;v' =sskb), ) Die[Llp(kyes; i =SSkb, o te —sibpey SieLipes; i MetSkbp) DielLlp(k)gs; b
=19192 R 9, 94 94

_ s(Bomlv' —sib! b)) TSSKUL ) BielLMerp(oes; i 1)

= (9192) Pk g, 94"
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Under this variable substitution, we have recovered the distribution in iHybg"I) (with b;) (k) ’71; & Zn). Thus,

the distributions of Cé(;c) and C;llg are statistically indistinguishable and the claim holds. O

Lemma 5.19. Suppose the progression-free indistinguishability assumption (Assumption 5.4) holds with respect to
CompGroupGen. Then, for all ¢ € [L], all efficient adversaries A, and all v € {0, 1}, there exists a negligible function
negl(-) such that for all A € N,

| Pr[iHyb{} (A) = 1] - Pr[iHyb{" (A) = 1]| = negl(A).

Proof. Suppose that there exists an efficient adversary A that can distinguish these two experiments with non-
negligible probability e. We use A to construct an adversary 8 that breaks Assumption 5.4 with the same advantage:

1. Algorithm B starts by running algorithm A to obtain the number of slots 1-. Let D = {d;}c[1] be an efficiently
computable progression-free and double-free set. We define f(i, j) := di+djand & = {f(i,j) | i, j € [L] : i # j}.

2. Algorithm B sends the input length 1, the set D, and the index ¢ to its challenger. It receives a challenge of
the form

(g,gl’g&gzbgz&{A;}ie[L]\{i*} AU ey W higjernr» X0 {Yidiengey » Yor s Tﬁ),
where G = (G, Gr, N, g, €). In the following, we highlight the variables from the challenge in green for clarity.
3. Algorithm B starts by sampling a, B, B2 < Zn. It sets Z = e(g1,91)% B = p1 + P2, and h = glﬂ.
4. For each slot i € [L], algorithm B samples §;, 7;, 7] & 7. Tt then constructs the slot components as follows:
« Fori < ¢, algorithm B sets
A= A;gf , Bi= gf‘A,ﬁ(gzagz;)” . Pi=(Xgs)”.
« For i = ¢, algorithm B sets
Ar=T , Br=giAl(gsg)™ . Pr=(Xgs)".
« For i > ¢, algorithm B sets
A= AEg? , Bi= gffAiﬁ(gng;)Ti , Pi=(Xgs)%.

Then, for each attribute w € U, algorithm B samples b, & Zn.Foreachi e [L]andz € &, algorithm 8B
constructs the attribute-specific slot components as

Ui,w = (Ui/)b:w 5 VVZ,W = (Wz/)bw
Algorithm 8 gives the common reference string

crs=(G.Z, g1, h, g3, g5, {(Ai, B P) Yierr]» {Uiws W bwetdyic[L] ze€)

to the adversary A. It also initializes a counter ctr = 0 and an (empty) dictionary Dict to keep track of the
key-generation queries.

5. In the query phase, algorithm B responds to the adversary’s queries as in iHybx) and iHybt(,,;). Namely, when
algorithm A makes a key-generation query on a slot i, algorithm 8 increments the counter ctr = ctr + 1
and samples r; ¢~ Zy. It then computes T; = ¢}, Q; = P/, R; = g5, and V;; = A”. The challenger sets the
public key to be pk., = (T;, Qi, Ri, {V},i} j=i) and responds with (ctr, pk,). It defines sk = r; and adds the
mapping ctr — (i, pk,, Sketr) to the dictionary Dict. If the adversary ‘A makes a corruption query on an index
1 < i < ctr, the challenger looks up the entry (i/, pk’, sk’) = Dict[i] and replies to A with sk’.
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6. In the challenge phase, after A specifies the challenge policy P* = (M, p) where M € Zﬁxn and p: [K] — U,
is an injective row-labeling function, two messages y;, yi7, and for each slot i € [L], a tuple (c;, S;, pk;). For
each i € [L], algorithm B constructs pk; as in iHybt(,;) and iHybt(,";).

« If ¢; € {1,...,ctr}, the challenger looks up the entry Dict[c;] = (i, pk/,sk’). If i = i’, algorithm B sets
pk; = pk’. Otherwise, algorithm B aborts with output 0.
« If ¢; = 1, then algorithm B checks that IsValid(crs, i, pk}) outputs 1. If not, it aborts with output 0.
Otherwise, it sets pk; = pk;.
Finally, for each i € [L], algorithm B parses pk; = (T;, Qi, Ri, {V; i} j=i)-
7. Algorithm B constructs the challenge ciphertext as follows:

+ Message-embedding components: First, algorithm 8 sets C; = p - e(g1, X)* and C; = X.
+ Attribute-specific components: Algorithm B samples vy, ...,0, < Zy and sets v/ = [1,0,...,0,]".
For each k € [K], it samples si, 5 € Zy and depending on whether p(k) € S;, proceeds as follows:

- If p(k) ¢ Sy, set

—sib

Csp = Xﬂzm;v’ 1—[ Y n(k)ng . G = (Xga)**.

A

i€[L]:p(k)¢S;

- If p(k) € Sy, set

T/ —
Cax = XPmY H U t0di + Cak = (9190
i€[L]:p(k)¢S;

« Slot-specific component: Algorithm B sets

Cs = xh H i
ie[] Q;'

Algorithm 8 gives the challenge ciphertext to A:

ct” = ((M, p), C1, Co, {Cs k, Cage Yrek]s Cs).

8. At the end of the game, algorithm A outputs a bit v € {0, 1}, which 8B also outputs.

We now analyze the advantage of algorithm 8. First, the progression-free indistinguishability challenger samples
r & Zx and sets g3 = (¢293)". It also samples exponents a, b, s, 7 & Zx and sets t; = a®% for i € [L]. It also sets

bt;t; sbt;

’ i ’ bt; ’ .
Al=gf . Ul=g"  Wi=g L X=(qige)® Vi Y=gt Y= (g192)"

We now consider the different components in the reduction and argue that algorithm 8 correctly simulates an

v)

execution of either iHybt(,!1 or iHybg";) depending on the structure of the challenge component T:

« CRS components: In the reduction, the exponents s, g, t; chosen by the challenger map to the analogous
exponents in the execution of iHybf,"I) and iHybt(,!;). We consider each of the components in the CRS individually:

- First, for i # ¢, algorithm B sets A; = Aggg" = gi" gg’{ where 7/ ¢ Zy. This matches the distribution of
A; in both experiments. When i = ¢, algorithm B sets A, =T. If T = gi*gg , then this corresponds to the

distribution of A, in iHybé,vl) If T = g} (g295)", then this matches the distribution of A; in iHybt(,’g).
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— Next, for i < ¢, algorithm B sets B; = ngiﬁ (g23g4)™. By construction, g3 = (g293)". As long as
r # 0 mod pz and r # 0 mod ps, then the distribution of ((g2g3)"g4)™ is distributed identically to (g2g3g3)™
over the choice of 7; € Zy. Importantly, the randomizing exponent z; is only used to randomize B; and
no other components. Thus, with overwhelming probability over the choice of r, the distribution of B;
in the reduction is distributed correctly. For i > ¢, the challenger constructs B; using the same procedure

as in iHybl(,‘I) and iHybt(,;).

— Next, the exponent s sampled by the challenger plays the same role in the simulation of lHyb(V) nd
1Hyb . As such, algorithm B in reduction sets P = (Xg3)% = ((9192)°g3)%, which matches the speci-
fication in |Hyb(v) and |Hyb(v)

— For the attribute-specific slot components, the reduction algorithm implicitly defines b,, := b’,b, where
b € Zy is the exponent chosen by the challenger. Since the challenger samples b < Zy, with over-

whelming probability, b is co-prime to N. As such, the distribution of b,, = b’,b is uniform over Zx when
b,, & Zn. Now, algorithm B defines

N bb’wt,- buti
= (U;)™ = =9 :
bb "tity btit; bypal D)
Wiy = Wrin)™) = T=g," =g

which coincides with the distribution in iHybf,,? and iHybt(,’;).

— Finally, the remaining components h and Z are constructed exactly as in iHybt(,, and lHyb(V).

+ Key-generation querieS' By construction, algorithm 8B responds to key-generation queries using the identical
procedure as in iHybt(,’ and |Hyb(v)

« Challenge query: We consider each term in the challenge ciphertext. Recall from above that the exponent

s € Zn chosen by the challenger plays its corresponding role in the simulated execution of lHyb(V) and lHyb(V)
First,

Cr =41y, - e(g1, X)* = p, - €(91,(9192)")" = p1y, - (91,90 = p1;, - Z°,
which matches the distribution in iHyb(1 and 1Hyb(’;) . Next, algorithm B constructs the components Cy, Cy,

and Cs exactly as required in iHyb{(,’l) and lHyb{(,J;). It suffices to consider the distribution of C; . We consider
the two possibilities:

- If p(k) ¢ S;, algorithm B computes

Tor —sgb’
Csg = shempv Y p(k)ng

ie[L]:p(k)#S;

Tv oSk “SkbLo i
= (qug2) ™y, [ Y, "y,

ie[LI\{¢}:p (k) ¢S;
. ml v’
= (9192) 7™ (g1g2) 7 r 0 [ 9
ie[L\{¢e}:p(k)eS;

by te) .~ SSkbpk) DielLN(eyp(kyes; B nie
= (g1go)*Pmi¥ —skbpi ) g @ g

ssbb’ —ssibbl, b P

>

which precisely coincides with the distribution of Cs in iHybé, and |Hyb(v).
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- If p(k) € Sy, algorithm B computes

T
C3,k = Xﬁzmkv 1—1 Ul psfk)g‘l
i€[L]:p(k)¢S;
T S —scb’
= (g1ga) e n (U]) "> 7pt gllk
ie[L]:p(k)¢S;

ml v/ skhb ti
= (gg)Pm [ g9 "l
i€[L]:p(k)€S;

_ sﬂngv’ =Skbp(k) Lie[Llp(k)es; L ni
= (9192) 9 9y >

which precisely coincides with the distribution of Cs ¢ in iHybt(,f;) b(’v).

and iHyb, ,

We conclude that with overwhelming probablhty, algonthm B either perfectly simulates an execution of |Hyb(v)

(when T = glf 3) and an execution of lHybt,,2 (whenT = g1 *(g293)%). Thus algorithm B breaks the progression-free
indistinguishability assumption with advantage ¢ — negl(1), which completes the proof. O

Lemma 5.20. For all¢ € [L], all adversaries A, and all v € {0, 1}, there exists a negligible function negl(-) such that
forall A € N,

Pr[iHyb! (A) = 1] - Pr[iHyb!} (A) = 1]| = negl(}).
Proof. This follows by a similar argument as the proof of Lemma 5.18. O

Lemma 5.21. Suppose Assumption 5.2b holds with respect to CompGroupGen. Then, for all ¢ € [L], all efficient
adversaries A, and all v € {0, 1}, there exists a negligible function negl(-) such that for all A € N,

Pr[iHyb{" (A) = 1] = Pr[iHyb}} (A) = 1]| = negl(2).

Proof. The analysis here closely parallels the proof strategy from [HLWW?23, Lemma 5.16]. Namely, the analysis
depends on whether the adversary knows the secret key associated with slot ¢ or not. Due to the similarities with
the proof from [HLWW23], we defer the formal argument to Appendix A.4. O

Lemma 5.22. Forall¢ € [L], all adversaries A, and all v € {0, 1}, there exists a negligible function negl(-) such that
forall A e N,

Pr[iHyb{? (A) = 1] = Pr[iHyb}") (A) = 1]| = negl(2).
Proof. This follows by a similar argument as the proof of Lemma 5.18. O

Lemma 5.23. Suppose the progression-free indistinguishability assumption (Assumption 5.4) holds with respect to
CompGroupGen. Then, for all ¢ € [L], all efficient adversaries A, and all v € {0, 1}, there exists a negligible function
negl(-) such that forall A € N,

| Pr[iHyb{" (A) = 1] - Pr[iHyb? (A) = 1] = negl(2).
Proof. This follows by a similar argument as the proof of Lemma 5.19. O

Lemma 5.24. For all¢ € [L], all adversaries A, and all v € {0, 1}, there exists a negligible function negl(-) such that
forall A e N,

Pr[iHyb{ ") (A) = 1] - Pr[iHyb" (A) = 1]) = negl(1).

Proof. This follows by a similar argument as the proof of Lemma 5.18. O
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Lemma 5.25. Suppose Assumption 5.2¢ holds with respect to CompGroupGen. Then, for all ¢ € [L], all efficient
adversaries A, and all v € {0, 1}, there exists a negligible function negl(-) such that for all A € N,

| Pr[Hyb{?) (A) = 1] = Pr[iHyb}}) (A) = 1]| = negl(2).
Proof. This follows by a similar argument as the proof of Lemma 5.17. O

Combining Lemmas 5.17 to 5.25, Lemma 5.14 now follows by a hybrid argument. O

6 Concrete Efficiency Evaluation

In Sections 4 and 5, we showed how to leverage progression-free sets to construct new registered ABE schemes with
a CRS whose size is nearly linear in the number of parties (when instantiated with the best-known progression-free
sets [Beh46, SS46, Elk10]). In this section, we present a simple comparison to show that the improvements also
translate into substantial concrete reductions in the size of the CRS in registered ABE schemes (when instantiated
with a asymptotically-worse, but concretely-efficient progression-free set [ET36]). To allow for an apples-to-apples
comparison where we specifically focus on the use of progression-free sets, we compare the following two schemes:

« The first construction is Construction 4.3, which gives a (statically-secure) registered ABE scheme that relies
on progression-free sets.

« The second construction is a (statically-secure) variant of Construction 4.3 with a quadratic-size CRS that we
describe in Construction B.3 (Construction B.3). Here, instead of sampling the exponents associated with each
slot from a progression-free set (as in Construction 4.3), the slot components are sampled randomly (similar to
earlier constructions [HLWW23, ZZGQ23]). As a result, the size of the CRS scales quadratically with the number
of users. Note that we do not directly compare against [HLWW23, ZZGQ23] because these schemes have a
dual-system proof and achieve adaptive security; the extra structure (in the forms of subgroups [HLWW23]
or subspaces [ZZGQ23]) needed to implement the dual-system proof results in additional overhead. Our goal
in this comparison is to highlight the efficiency gains from using progression-free sets, and for this reason,
we elect to compare two schemes that are essentially identical except for how the individual slot components
are chosen (from a progression-free set as in Construction 4.3 or randomly as in Construction B.3).

Evaluation methodology. In the following, we consider an instantiation of Constructions 4.3 and B.3 with the
asymmetric BLS-381 pairing curve [BGM17, SKSW20]. We write G, G, to denote the two base groups and Gr to
denote the target group. The group is defined over a 381-bit field (48 bytes), and the representation size of a G;, Gy,
and Gt element is 48 bytes, 96 bytes, and 576 bytes, respectively.

Instantiating the progression-free set. For Construction 4.3, we instantiate the progression-free set with the
classic ternary construction by Erdés and Turan [ET36]. To construct a progression-free set of size L, the set &
contains the first L integers whose ternary representation only uses the digits 0 and 1. Thus max(&) < L'°%:3, To
obtain a progression-free and double-free set of size L, we can use the approach from Corollary 2.7 and instantiate
with a progression-free set of size (L + 1)!°¢23, Note that when comparing concrete efficiency, we do not use the
asymptotically-better constructions from [Beh46, SS46, Elk10]. While these constructions satisfy max(&) = L1+,
if we consider the concrete size of the resulting progression-free sets for parameters of (practical) interest, they are
significantly worse than using the progression-free sets based on the ternary encoding. As an example if we set
L = 10° users, then the size of the largest element in the progression-free set from [Beh46] is 5.1 X 10'°, which is
over 600X larger than the progression-free set obtained using the Erdés-Turan scheme.

Working over asymmetric groups. As written, Constructions 4.3 and B.3 operate over symmetric pairing groups,
whereas the most efficient instantiations of pairing groups are asymmetric pairing groups. However, it is straight-
forward to translate both constructions to work using asymmetric pairing groups (and security will reduce to a
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corresponding asymmetric analog of the current assumptions). First, we describe how to assign the different com-
ponents of the CRS, the public keys, and the ciphertexts to G;, G,, and Gr. Since elements in G; have shorter
representations, we prefer assigning base-group elements to G; rather than G,.

« Common reference string: In Construction 4.3, the common reference string consists of

cs=(G. Z, g, h, {(Ai. Bi. P, U }ierr) » {We}zes) -

The same holds for Construction B.3, except the “cross-terms” {W, },cg are now {W; j}izje[1]. We assign the
components to G; and G, as follows:

- The following terms are computed in Gy: W, (or W, ;), A;, B;, and P;.

— The following terms are computed in G,: h and Uj.

- The following terms are computed in Gr: Z.

As described, Constructions 4.3 and B.3 set B; = g*h''. As described above, we assign h to G, but B; to G;.

However, since these components are sampled as part of Setup, the algorithm “knows” the discrete log f of h

+Bt; B

and thus it can compute B; = gf and h := g, where g; and g, are the generators of G; and Gy, respectively.

+ User public key: For each slot i € [L], the user’s public key in both schemes can be written as pk; =
(Ti> Qi9 {‘G,i}j#i)'
— The following terms are computed in G;: Q; and Vj;

- The following terms are computed in G,: T;.
« Master public key: In both schemes, the master public key can be written as mpk = (Q, g.hZ, T, {Uw}we'LIA)-

— The following terms are computed in G,: h, f‘, and UW.
— The following terms are computed in Gr: Z.

« Helper decryption key: For each slot i € [L], the helper decryption key in both schemes can be written as
hsk; = (mpk, i, Si, Ai, Bi, Vi, AW w} wesy )-

— The following terms are computed in G;: A;, B;, 17, Wlw
« Ciphertext: In both schemes, the ciphertext can be written as ct = ((M, P), C1,Co, {Cs, Cak }ke[k]> Cs).

— The following terms are computed in G;: Cy, Cs g, Cy, Cs.

- The following terms are computed in Gr: C;.

In Table 3, we report the number of group elements in each of these components as a function of the number of users
the scheme supports, the size of the policy, and the size of the attribute universe. Then, in Table 4, we give estimated
sizes for a concrete setting where we fix an attribute universe with 100 and policies over at most 25 attributes. Notably
for a system with 10° users, the use of progression-free sets reduces the CRS size by over 115X (from over 447 GB
to just 3.8 GB).

The Brown-Gallant-Cheon attacks. The curve BLS-381 provides roughly 128 bits of security. However, when
using bilinear Diffie-Hellman exponent assumptions (e.g., Assumption 4.2) where the challenge contains terms

of the form g%, g“z, ...,g*, the hardness of the assumption degrades with q. Specifically, Brown, Gallant, and
Cheon [BG04, Che06]. showed how to recover the secret exponent a from (g%, g“z, e ,g“q) with an algorithm that
runs in time ON(\/p/d + \/3) where d < q can be any factor of either p — 1 or p + 1 less than q and p is the group order.
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G lcrs| |mpk]| |hsk| |ct]

Gy (L+1)l&3 43[ 0 3+ |U| 0
Construction 4.3 G, L+1 2+ |U| 0 2K +2
Gr 1 1 0 1
Gy L*+3L 0 3+ |U| 0
Construction B.3 G, L+1 2+ |U| 0 2K +2
Gr 1 1 0 1

Table 3: Number of group elements needed to instantiate the slotted registered ABE schemes from Constructions 4.3
and B.3 as a function of the number of users L, the size of the attribute universe |U|, and the number of attributes K that
each policy can depend on. We instantiate Construction 4.3 with a progression-free set based on the ternary encoding.

L lers|  |mpk|  [hsk| et
Comtnctionss 0 soup  1OKB KB SKB
Commction s 10" s 10KB SKB 5KB
Comtrctionss 1 sgon 10KB SKB SKB
Comtntionss W ggrp  1OKB SKB KB

Table 4: Estimated size of different components of the slotted registered ABE schemes from Constructions 4.3 and B.3
as a function of the number of users L. For the comparisons, we fix the size of the attribute universe to be |U| = 100
and consider a policy over 25 attributes. For simplicity, we only report the size of the group elements in the respective
components (based on an instantiation with the BLS-381 pairing group). We do not include “auxiliary information”
such as the size of the group description G or the description length of the policy P.

Since d < g < p, the Brown-Gallant-Cheon attack effectively reduces the security by a factor 4/g.” Concretely, for
a scheme with L = 10° users, and policies with up to 25 attributes (i.e., corresponding to the last row of Table 4), the
largest power we give out in the CRS is g = dpay = (L +1)1°8:(3) ~ 232, Conservatively, in the target group, the largest
power the adversary could compute is 233 which results in a security loss of 17 bits (degrading security from 128 bits
to around 111 bits).! We can compensate for the Brown-Gallant-Cheon attack by working over a larger pairing group
(e.g., BLS-477 or BLS-581). Using a larger curve to achieve 128 bits of security would only affect the parameters by
a small constant factor. Given the margins from Table 4, using progression-free sets still yields significant reductions
in the CRS size relative to constructions that require a quadratic-size CRS.

7 Batch Arguments for NP from Composite-Order Bilinear Groups

In this section, we describe another setting where progression-free sets can be used to reduce the CRS size. Specifically,
we focus on the Waters-Wu non-interactive batch arguments (BARG) for NP [WW22]. Very briefly, a batch argument
for NP allows a prover to demonstrate that a set of L NP statements xy, ..., x, are true with a proof whose size scales

9Technically, if p — 1 and p + 1 do not contain small prime factors (i.e., neither p — 1 nor p + 1 is smooth), then the Brown-Gallant-Cheon attacks
would not apply. However, this may not be the case for elliptic curves used in practice, and in particular, is not true for the BLS-381 curve. In
these settings, these attacks will indeed reduce the security level of the scheme.
10 Alternatively, if we applied the Brown-Gallant-Cheon attack to our underlying assumption (Assumption 4.2), then the adversary is given gaq
where ¢ = 4 - dipay - £ - K = 2°% (Lemma 4.11). In this case, the security level of the assumption over the BLS-381 curve would be at most 99 bits.
Note however that an attack on the assumption does not necessarily translate to an attack on the construction.
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sublinearly with L. The base version of the Waters-Wu construction requires a CRS with size L2. The quadratic blowup
was due to the need to include “cross terms” in the CRS. Here, we show that using progression-free sets, we can reduce
the number of cross terms, and correspondingly, the size of the CRS, from L? to L'*°(!), Note here that in this setting, al-
ternative bootstrapping techniques [WW22, KLVW23] can also be used to reduce the CRS size, but these techniques all
rely on recursive composition and as such, need to make non-black-box use of the group. In contrast, using progression-
free sets, we can obtain a sub-quadratic CRS with minimal modifications to the original scheme. We believe this illus-
trates the general applicability of our techniques for reducing the parameter sizes in different cryptographic schemes.

7.1 Batch Arguments for NP

In this section, we recall the notion of a batch argument for NP. Our exposition is taken mostly verbatim from
[WW22, §2.1]. We consider the NP-complete language of Boolean circuit satisfiability. We assume that the Boolean
circuits are built from NAND gates. For a Boolean circuit C: {0,1}" x {0,1}* — {0,1} with t wires, we associate
wires 1, ..., n with the bits of the statement x;, ..., x,, and wires n+1, . . ., n+ h with the bits of the witness wy, ..., wy,
respectively. We associate wire t with the output wire. We measure the size s of C by the number of NAND gates it
has. By construction, t < n+ h +s. We now define the (batch) circuit satisfiability language we consider in this work:

Definition 7.1 (Circuit Satisfiability). We define Lcsar = {(C,x) | 3w € {0,1}" : C(x, w) = 1} to be the language
of Boolean circuit satisfiability, where C: {0,1}" x {0,1}"* — {0, 1} is a Boolean circuit and x € {0, 1}" is a statement.
For a positive integer L € N, we define the batch circuit satisfiability language Lgatchcsat,L as follows:

Loarchesar = {(Cox, .., x) | Vi€ [L] : 3w; € {0,1}" : C(xi, wy) = 13,
where C: {0,1}" x {0,1}" — {0, 1} is a Boolean circuit and x, ..., x; € {0,1}" are the instances.

Definition 7.2 (Batch Argument for Circuit Satisfiability). A non-interactive batch argument (BARG) for circuit
satisfiability is a tuple of three efficient algorithms IIgarc = (Setup, Prove, Verify) with the following properties:

« Setup(1%,1F,15) — crs: On input the security parameter A € N, the number of instances L € N, and a bound
on the circuit size s € N, the setup algorithm outputs a common reference string crs.

« Prove(crs,C, (x1,...,%1), (Wy,...,wr)) — m: On input the common reference string crs, a Boolean circuit
C: {0,1}" x {0, 1}h — {0, 1}, statements xy,...,x; € {0,1}", and witnesses wy,...,wy € {0, 1}h, the prove
algorithm outputs a proof x.

« Verify(crs, C, (x1,...,%r), 7) — b: On input the common reference string crs, the Boolean circuit C: {0, 1}"* X
{0, l}h — {0, 1}, statements xy, ..., x;, € {0, 1}" and a proof 7, the verification algorithm outputs a bit b € {0, 1}.

Definition 7.3 (Completeness). A BARG IIgarc = (Setup, Prove, Verify) is complete if for all A,L,s € N, all
Boolean circuits C: {0,1}" x {0,1}* — {0, 1} of size at most s, all statements x4, ...,x; € {0,1}", and all witnesses
wi,...,wr € {0,1}" where C(x;,w;) = 1 foralli € [L],

crs « Setup(1%,1%,1%);

Pr | Verify(crs, G, (x1,.... x1), ) = 1 7 « Prove(crs, C, (x1,...,%x1), (Wy,...,Wr))

=1.

Definition 7.4 (Somewhere Argument of Knowledge [CJJ21]). A BARG IIgarc = (Setup, Prove, Verify) is a some-
where argument of knowledge if there exists a pair of efficient algorithms (TrapSetup, Extract) with the following
properties:

. TrapSetup(l’l, 1L, 15, i*) — (crs*, td): On input the security parameter A € N, the number of instances L € N,
the size of the circuit s € N, and an index i* € [L], the trapdoor setup algorithm outputs a common reference
string crs* and an extraction trapdoor td.

« Extract(td, C, (xy,...,x1), ) — w* On input the trapdoor td, statements x;, . .., Xy, and a proof 7, the extrac-
tion algorithm outputs a witness w* € {0, 1}. The extraction algorithm is deterministic.
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We require (TrapSetup, Extract) to satisfy the following two properties:

« CRS indistinguishability: For a bit b € {0, 1}, and an adversary A, we define the CRS indistinguishability
game as follows:

1. On input the security parameter 1%, algorithm A outputs the number of statements 1%, the size of the
circuit 1°, and an index i* € [L].

2. If b = 0, the challenger gives crs « Setup(ll, 1L, 1°) to A. If b = 1, the challenger gives crs* «
TrapSetup(lA, 15,15, i%) to A.

3. Algorithm A outputs a bit b’ € {0, 1}, which is the output of the experiment.

Then, IIgarc satisfies CRS indistinguishability if for every efficient adversary A, there exists a negligible
function negl(-) such that for all A € N,

[Pr[b"=1:b=0] —Pr[b’ =1:b=1]| =negl(h)
in the above CRS indistinguishability game.

« Somewhere extractable in trapdoor mode: For an adversary A, we define the somewhere extractable
security game as follows:

On input the security parameter 1%, algorithm A starts by outputting the number of statements 1%, the
size of the circuit 1°, and an index i* € [L].

The challenger samples (crs*, td) « TrapSetup(1%, 1%, 1%, i*) and gives crs* to A.

Algorithm A outputs a Boolean circuit C: {0,1}" x {0,1}" — {0,1} of size at most s, statements
X1,...,Xr € {0,1}", and a proof 7. Let w* « Extract(td,C, (xq,...,wr), 7).

The output of the game is b = 1 if Verify(crs*, C, (x3,...,%r), 7) = 1 and C(x;+, w*) # 1. Otherwise, the
output is b = 0.

Then Ilgarc is somewhere extractable in trapdoor mode if for every efficient adversary A, there exists a
negligible function negl(-) such that for all A € N, Pr[b = 1] = negl(1) in the somewhere extractable game.

Definition 7.5 (Succinctness). A BARG IIgarg = (Setup, Prove, Verify) is succinct if there exists a fixed poly-
nomial poly(-,-,-) such that for all A,L,s € N, all crs in the support of Setup(l/l, 1%, 1%), and all Boolean circuits
C: {0,1}" x {0,1}" — {0, 1} of size at most s, the following properties hold:

« Succinct proofs: The proof 7 output by Prove(crs, C, -, -) satisfies || < poly(4,logL,s).
+ Succinct CRS: |crs| < poly(A, L, n) + poly(A,log L, s).

« Succinct verification: The verification algorithm runs in time poly(4, L, n) + poly(4,log L, s).

7.2 BARG for NP from Composite-Order Bilinear Maps

We now show how to use progression-free sets to reduce the size of the CRS in the BARG from [WW22]. For ease of
exposition, we just consider the construction from composite-order groups. Like [WW22], we work with a two-prime
composite-order group which we define formally below:

Definition 7.6 (Two-Prime Composite-Order Bilinear Group [BGN05]). A (symmetric) two-prime composite-order
bilinear group generator is an efficient algorithm CompGroupGen that takes as input the security parameter A and
outputs a description (G, Gr, p1, p2, g, €) of a bilinear group where py, p, are distinct primes, G and Gr are cyclic
groups of order N = p1p,, g is a generator of G, and e: G X G — Gr is a non-degenerate bilinear map (called the
“pairing”). We require that the group operation in G and G as well as the pairing operation be efficiently computable.
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Progression-free indistinguishability assumption. The security of our variant of the BARG from [WW22] will
rely on a new progression-free indistinguishability assumption. This is the analog of the progression-free assumptions
we introduced when reasoning about our registered ABE schemes (Assumptions 4.2 and 5.4). We state the assumption
here and in Appendix D (Lemma D.9), show that it holds in the generic group model.

Assumption 7.7 (Progression-Free Indistinguishability). Let CompGroupGen be a two-prime composite-order
bilinear group generator. For a security parameter A and a bit b € {0, 1}, we define the following game between an
adversary A and a challenger:

1. On input the security parameter 1%, algorithm A chooses an input length 1%, a progression-free and double-free
set D = {d;};e[1] together with a challenge index i* € [L]. Define the function f(i, j) := d; + d;.

2. Challenger samples a group (G, Gr, p1, p2. g, €). Let N = p1p, and gy, g2 be generators of the corresponding
subgroups. The challenger sets the public group description G = (G, Gr, N, g, €), and samples exponents
a,s & Zy. It also sets t; = a% for all i € [L]. Then, for each i, j € [L], it defines

. 201,
Al = git’ and B}(i,j) = gi J

It also defines Ty = g} and Ty = g*'". The challenger gives the challenge
(G 91, {AT iernngiy » B tinserrr» Th)
to A.
3. Algorithm A outputs a bit b” € {0, 1}, which is the output of the experiment.

We say that the progression-free indistinguishability assumption holds with respect to CompGroupGen if for all
efficient adversaries A, there exists a negligible function negl(-) such that for all A € N,

|Pr[b’ =1:b=0] —Pr[b’ =1:b=1]| = negl(A).

BARG for NP using progression-free sets. We now show how to adapt [WW22, Construction 3.3] to use
progression-free sets.

Construction 7.8 (BARG for NP with Progression-Free Sets). We construct a BARG for the language of circuit
satisfiability as follows:

« Setup(1%, 1%, 1%): On input the security parameter A, the number of instances L, and the bound on the circuit
size s, the setup algorithm proceeds as follows:

- Sample (G, Gr, p1, p2. g, €) « CompGroupGen(1*). Let Gy, G, be the subgroups of G of orders py, p,
respectively. Let N = pip, and G = (G,Gr, N, g, e).

- Let D = {d;}ie[1] be an efficiently-computable progression-free and double-free set. We define f(i, j) :=
d; + d; and the set of cross terms & = {f(i, ) | i,j € [L] : i # j}.

- Sample g; & G; and exponents a,s < Zy. For each i € [L], compute t; = a% and let A; = g". Let
A = [lieqr) Ai- Then, for each z € &, compute B, = gizaz.

Finally, output the common reference string
crs = (G, 91, A {Aitiern), {Bz}zeg)-

« Prove(crs,C, (x1,...,%1), (Wy,...,wr)): On input crs = (g,gl,A, {Ai}iern, {BZ}Zeg), a circuit C: {0, 1}" x
{0, l}h — {0, 1}, instances Xy, ...,x; € {0,1}", and witnesses wy, ..., wy € {0, 1}h, define t to be the number
of wires in C and s to be the number of gates in C. Then, for i € [L] and j € [¢], let y; ; € {0, 1} be the value
of wire j in C(x;, w;). The prover proceeds as follows:
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- Encoding wire values: For each k € [t], let U = [[;cr) A]™
(1-yik) Yjk
Bf(l])

- Validity of gate computation: For each NAND gate G, = (ki, k2, k3) € [t]® (where ¢ € [s]), compute
“Yiky Yjky ~Yjks

=11, B f(lJ)

— Validity of wire assignments: For each k € [], let Vi = [];4;

Output the proof 7 = ({Ug, Victkefe], {Wetees])-

« Verify(crs,C, (i, . ..,x1), 7): Oninputcrs = (G, g1, A, {Ai}ie[r], {Bz}zeg), acircuit C: {0, 1}7x{0,1}" — {0,1},
instances xi, ..., x; € {0,1}", and the proof = = ({Uk, Vietkelt)s {W}}ge[s]), the verification algorithm checks
the following:

Validity of statement: For each input wire k € [n], Ux = [];¢r) Afi'k.

Validity of wire assignments: For each k € [t],

e(A,Ug) = e(gl,Vk)e(Uk, Ur). (7.1)

Validity of gate computation: For each gate G, = (ky, kz, k3) € [t]°,

e(A,A) = e(Ur,. U, )e(A, Uy, e(g1, W) (7.2)

— Output satisfiability: The output encoding U; satisfies U; = A.
The algorithm outputs 1 if all checks pass, and outputs 0 otherwise.
Theorem 7.9 (Completeness). Construction 7.8 is complete.

Proof. Take any circuit C: {0, 1}" x {0, 1}h — {0, 1}, instances X, ..., x; € {0,1}" and witnesses wy, ..., wr € {0, 1}”
such that C(x;,w;) = 1for all i € [L]. Let ¢ be the number of wires in C and s be the number of gates in C. Let
crs « Setup(lh, 1£,1%) and 7 « Prove(crs, (x4, ...,X1), (W1,...,wr)). We show that Verify(crs, C, (x1,...,X), 7)
outputs 1. Let 7 = ({Uk, Vit ke[, {We}ee[s] ) Consider each of the verification relations:

« Validity of statement: By construction of Prove, Uxr = [];¢[r) Altl“’k. By definition, the first n wires in C
coincide with the wires to the statement, so y; x = x; for k € [n]. Thus, the first verification check passes.

« Validity of wire assignments: To show Eq. (7.1), take any k € [t]. Recall that Ux = [];¢[r) Aiyi’k = gsz'E 1 it
Now,
SZ Zt]y]k =5 Zty,k+s Zt,t]yjk,
ie[L] je[L] ie[L] i#j
and

Z tlylk Z 1Yk =g° Z tylk+s Ztltjylkyjk—s Z tylk+s Ztlt]ylky]k,

i€[L] ie[L] i#j i€[L] i#j

using the fact that y;x € {0,1} so yl.zk = Yik- Finally Vi = [];; B}l(ljy)’k)y”‘ = gi Ziy 11t (1= Yik) Yk Thus, we

can write
2 o (1—1y: . 2y 24, 2N by .
e(g1, Vi)e (Ui, Ug) = e(ga, g1)* 2z 111 7Yk Upscts" Bue a1 Yiets” Laey lit Uik
e(gl’gl)sz(Zis[Ll BYix+is titjYjk)

e(A Ug).
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« Validity of gate computation: Take any gate G, = (ki, k3, k3) € [t]°. Consider first the exponents for the
terms e(Ug,, U, ), e(A, Ug,), and e(A, A):

Z t1y1k1 Z tjyjkz = 32 Z t Yik,Yik, +Z tttjytkl Yjk,
ie[L] jelL] i€[L] i#j
2
s Z ti]ls Z LiYjks | =S Z t Yiks +Ztlt]yj ks
ie[L] jelL] ie[L] i#j
S o) 3 e o)
ie[L] ie[L] i#j

By definition y; x, = NAND(y;,, Yik,)- This means that for each i € [L], either (y;,yik, = 1 and y;x, = 0) or
(Yik,Yik, = 0 and y; k, = 1). This means that

Z 12 (Yik Yik, + Yiks) = Z t2.

ie[L] ie[L]
Combining the above relations in the exponent, we have that
e(A,A) e(g1, g)* Fretn T2 i)
e(Ug,, Uk,)e(A, Ug,) - e(g1, gl)sz(ZiE[L] 2+ %) tit; (Yik, yj,k2+yj,k3))

- l—l e(gl’Bf(i»j))l_yi’kl Yjiky ~Yiiks
i%j

= e(gl’ M)

« Output satisfiability: Since C(x;,w;) = 1, it follows that y;; = 1 for all i € [L]. By definition, U; =

[Tier) Al = [Tierz) Ai = A o
Theorem 7.10 (Somewhere Argument of Knowledge). Suppose the progression-free indistinguishability assumption
(Assumption 7.7) holds with respect to CompGroupGen. Then, Construction 7.8 is a somewhere argument of knowledge.

Proof. We start by defining the trapdoor setup and extraction algorithms:

. TrapSetup(l’l, 1L, 15, i*): On input the security parameter A, the number of instances L, the size of the circuit s,
and the index i*, the trapdoor setup algorithm proceeds as follows (with differences relative to Setup highlighted
in green):

1. Sample (G, Gr, p1, p2. g, €) «— CompGroupGen(1t). Let Gy, G, be the subgroups of G of orders py, p,
respectively. Let N = p1p; and G = (G, Gr, N, g, e).

2. Let D = {d;}ie1] be an efficiently-computable progression-free and double-free set. We define f(i, j) :=
d; + d; and the set of cross terms & = {f (i, j) | i,j € [L] : i # j}.

3. Sample g; < Gy and exponents a,s ¢~ Zy. For each i € [L] \ {i*}, compute #; = a¥ and let A; = g". Let
Aj = g*'"". Then, compute A = [];c[1] Ai. Then, for each z € &, compute B, = giz“z

Finally, output the common reference string crs = (g, 91, A {Ai}tier), {BZ}Zeg) and the trapdoor td = gs.

« Extract(td,C, (xy,...,%r), 7): On input the trapdoor td = g, the Boolean circuit C: {0,1}" x {0,1}"* — {0, 1},
statements xi,...,x; € {0,1}", and the proof 7 = ({U, Vk}ke AWe}eels) ), the extraction algorithm sets
w,’: =0if e(gs, Ug) = 1 and w,’: = 1 otherwise forallk =n+1,...,n+ h. It outputs w* = (w; ,,..., Wr*z+h)'

We now show the CRS indistinguishability and somewhere extractable in trapdoor mode properties.
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Lemma 7.11 (CRS Indistinguishability). If the progression-free indistinguishability assumption (Assumption 7.7) holds
with respect to CompGroupGen, then Construction 7.8 satisfies CRS indistinguishability.

Proof. Suppose there exists an efficient adversary A that has non-negligible advantage ¢ in the CRS indistinguishability
game. We use A to construct an adversary B for the progression-free indistinguishability assumption (Assumption 7.7):

1. Algorithm B starts by running A to receive the number of instances 17, the circuit size 1°, and a challenge index
i* € [L]. Algorithm B constructs an efficiently-computable progression-free and double-free set D = {d;};c[1]
of size L. As usual, we write f(i, j) := d; + d; and the set of cross terms & = {f (i, j) | i,j € [L] : i # j}.

2. Algorithm B sends 1L, D, and i* to the challenger. The challenger replies with the challenge
(G 91 A icwngy » By bizjerrr» T)-
3. Algorithm B sets A;» = T. For i # i*, it sets A; = A] and A = ﬂiE[L] A;. For z € &, algorithm B sets B, = B,.
Algorithm B gives crs = (G, g1, A, {Ai}ie[r], {Bz}zeg) to A.
4. After algorithm A outputs a bit b’ € {0, 1}, algorithm B outputs the same bit.
We now consider the advantage of 8. The progression-free indistinguishability challenger samples a, s <~ Zy, sets

2
) . 4
t; = a%, and sets Al = git‘ and B’ S

i) = 9 " We consider two possibilities:

« Suppose T = git"*. Then, the common reference string crs is sampled according to Setup(1%, 1%, 1°).

« Suppose T = g*!r". Then, the common reference string crs is sampled according to TrapSetup (14, 1%, 1°, i*).
We conclude that algorithm 8B wins the progression-free indistinguishability game with the same advantage as A. O
Lemma 7.12 (Somewhere Extractable in Trapdoor Mode). Construction 7.8 is somewhere extractable in trapdoor mode.

Proof. Take any adversary A and let (1%, 1%, ") « A(1%). Let (crs*, td) « TrapSetup(1%, 1%, 1%, i*). By construction,

ch* = (g> gl’As {Ai}iG[L]s {BZ}ZES) and td = gz’

where G = (G, G, N, g,e), N = p1p2, and g1, g2 are generators of the subgroups Gy, G,, respectively. Let C: {0, 1}" X
{0,1}" — {0, 1} be the Boolean circuit, x4,...,x; € {0,1}" be the statements, and 7 = ({Uk, Vi ke AWeeers))
be the proof the adversary outputs. Suppose Verify(crs®, (xi, ..., xr), 7) = 1. By construction of TrapSetup, we can
write A;» = g% = g, g;""* for some a;+; € Z,, and ;- € Z,. By construction of TrapSetup, a;+ = s - a%", where
s,a & Zy. Since di» < max(D) = poly (1), it follows that a;+» # 0 mod p, with overwhelming probability over the
choice of s,a € Zy. Then the following properties hold:

« For all k € [t], either Uy € Gy or U/ ggi*’z € Gy. This follows from the wire validity checks. Specifically,

suppose Uy = gf ! gfz € G. We can write A = g%iem “ g(;"*'z. Since verification succeeds, it must be the case that

e(A, Ur) = e(g1, Vi)e(Us, Ug).

Consider the projection into the order-p, subgroup of Gr. This relation requires that ;- » - f = 5 mod p,.
This means that either f, = 0 (in which case Uy € G) or f; = a;+ (in which case Ui/ ggi*’z € Gy).

« For each k € [t], if Uy € Gy, then set y = 0. If Uk/gg{"*'2 € Gy, then set yx = 1. Then, for all gates G, =
(k1, k2, k3) € [£]? in the circuit, yx, = NAND(yx,, Yi,)- This follows from the gate validity checks. In particular, if

verification succeeds, then Eq. (7.2) holds. From the above analysis, we can write Uy = gf k! gg k42 for all k € [t]
and some fi ; € Zy. Consider the projection of Eq. (7.2) into the order-q subgroup of Gr. This yields the relation

05,-2*,2 = (Yk, @i 2) (Yk, @i 2) + @i 2 (Yky @i 2) = aiz*’z(ykl Yk, * Yks)-

Since ;-5 # 0 mod p,, this means that 1 = yg, yk, + Yk, mod p;. Equivalently, yi, = 1 —yk, yr, = NAND (yx,, Y, )-
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o Let x; = (x41,...,Xi*n). For k € [n], yr = x;+ . This follows from the statement validity check. Namely, for
all k € [n], the verifier checks that Uy = Afj*‘k [Tizi Afi’k. Since A; € Gy for i # i*, it follows that if x;+ . = 0,
then Uy € G, (and yg = 0 = x;- ;). Otherwise, if x;+ ¢ = 1, then the component of Uy in G, is exactly g?i*’z, in
which case yr = 1 = x;+ .

« Finally y, = 1. This follows from the output satisfiability check. Namely, the verifier checks that U; = A =

gIZiQ[L] “ ggi*’z. If the verifier accepts, then this relation holds and y; = 1.

The above properties show that yy,...,y; € {0, 1} is a valid assignment to the wires of C on input x;+ and witness
W = (Yn+1s - - -» Yntn). Moreover, C(x;+, w) = y; = 1. To complete the proof, let w* « Extract(td,C, (x1,...,Xr), 7).
We claim that w* = w. In particular, for k € [h], if Up4x € Gy, then e(gz, Ux) = 1 and w; = 0 = ypx. Alternatively,
if U,Vrk/g;("*‘2 € Gy, then e(gz, Ux) = (g2, g2)*"* # 1, 50 w; = 1 = y4x. Thus, with probability 1 — negl(1) over the
randomness of TrapSetup, either Verify(crs*,C, (xy,...,xr), 1) = 0 or C(x,w") = 1 and the claim holds. o

By Lemmas 7.11 and 7.12, Construction 7.8 is a somewhere argument of knowledge. O
Theorem 7.13 (Succinctness). Construction 7.8 is succinct.

Proof. Take any A, L, s € N and consider a Boolean circuit C: {0,1}"x{0,1}"* — {0, 1} of size at most s. Let t = poly(s)
be the number of wires in C. We check each property:

« Proof size: A proof 7 consists of 2t + s elements in G, each of which can be represented in poly(A) bits. Thus,
the proof size satisfies |7| = (2t +s) - poly(4) = poly(4,s)

+ CRS size: The common reference string crs consists of the group description G, and L + 1 + |D| elements
in G. Using state-of-the-art progression-free sets (Corollary 2.7), we have that max(9D) < L“*°(1). Thus,
lers| = L0 . poly(A).

« Verification time: Checking the statements requires time Ln group operations. The remaining checks require
O(t +s) additional group operations. Thus, the total verification cost is poly(4, s) + poly(4, L, n) operations. O
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A Analysis of Construction 5.5

In this section, we provide the formal proofs of Lemmas 5.11, 5.12, 5.15 and 5.21 underlying the security analysis of
Construction 5.5. The structure of these proofs arguments directly parallels the corresponding proof from [HLWW?23,
Theorem 5.9]. As such, we reuse the prose and notation as the corresponding proofs from [HLWW23].

A.1 Proof of Lemma 5.11

This follows from an adaptation of the proof from [HLWW23, Lemma 5.10]. As noted previously, we reuse the same
or similar prose and exposition from [HLWW23]. These two experiments are statistically indistinguishable if all of
the public keys pk; the adversary specifies in the challenge phase either satisfy pk; = L or pk; is in the support of
the honest key-generation algorithm (i.e., for every i € [L], there exists r; such that pk; is the public key output by
KeyGen(crs, i)). We start by showing that under Assumption 5.2a, the only public keys pk; that an efficient adversary
can construct and which satisfy the validity check IsValid(crs, i, pk;) are those that are in the support of the honest
key-generation algorithm. To do so, we start by characterizing the set of possible strategies available to an efficient ad-
versary. Here, we extend the proof strategy of [HLWW23] by allowing our reduction to handle structured distributions.

Claim A.1. For a security parameter A, we define the following game between an adversary A and a challenger:
1. On input the security parameter 1%, algorithm A outputs 12 and 19 . We require that g* > 0.

2. Then, the challenger samples (G, Gr, py, P2, p3, pa» g, €) <« CompGroupGen(11). It sets N = pipopsps, G =
(G,Gr1, N, g,e) and samples g, & Gy, g5 & Gs, g4 & Gs, and a, 7 & Zy. Then, for alli € [Q], it sets Z; = gf'
and Z* = g2* gt. The challenger gives the tuple (G, g1, g3, 9a, {Zi }ic[0], Z°) to A.

3. Algorithm A outputs a tuple (A, B,C) € G>.
4. The challenger outputs b = 1 if the following relations are satisfied:
e(g3,A) =1=e(g1,B), e(A,Z") =€(g1,C) , e(B.Z") = e(g5,C) , e(9s,A) = e(9s, B) = €(95,C) =1, (A1)
and moreover, there does not existr € Zy such that A = g, B =g, andC = (Z*)".

Suppose Assumption 5.2a holds with respect to CompGroupGen. Then, for all efficient adversaries A, there exists a
negligible function negl(-) such that for all A € N, Pr[b = 1] = negl(A) in the above security game.
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Proof. Suppose there exists an efficient adversary A such that Pr[b = 1] = ¢ for some non-negligible ¢. We use A
to construct an adversary B that breaks Assumption 5.2a:

1. At the beginning of the game, algorithm B receives a challenge (G, g1, g3, g4, T), where G = (G,Gr, N, g, €),
g1 € Gy, g3 € G3, g4 € Gy, and either T = g7 or T = (g192)".

2. Algorithm 8 starts running algorithm A to obtain 19 and 1.

i q"
3. Algorithm B samples exponents y4, yp < Zy and for each i € [Q], computes Z; = g)l/“‘ and Z* = g)l/A g?;”.

4. Algorithm 8 starts running algorithm A on input (G, g1, g3, 94, { Zi }ie[ 0], Z*) to obtain a triple (4, B, C).

5. Algorithm B computes Z’ = C/ (AYZ. BY8) and outputs 1 if e(Z’, T) = 1 and 0 otherwise.

First, we argue that algorithm 8B perfectly simulates an execution of the security game from Claim A.1 for A. This
follows by construction: namely, in the reduction, the exponent y4 ¢~ Zy plays the role of a and the exponent
Y8 < Zn plays the role of 7 in Claim A.1. Thus, with probability at least ¢, algorithm A outputs a tuple (A, B,C)
such that Eq. (A.1) holds:

e(g3,A) =1=-e(g1,B), e(A,Z*) =e(g1,C), e(B,Z") = e(93,C) , e(gs, A) = (g4, B) = e(g4,C) = 1.

Moreover, there does not exist r € Zy such that A = g, B = g7, and C = (Z*)". We now argue that in this case, over
the choice of y4, yg < Zn, it will be the case that Z’ € G, \ {1} with overwhelming probability.

« First, we show that Z’ does not have any non-trivial component in the G, G; and G4 subgroups (i.e., Z’ € Gy).
First, Z’ is a product of A, B, C. Since e(g4, A) = e(gs, B) = e(g4,C) = 1, it holds that e(gs, Z’) = 1. We now

q
show that e(g1g3, Z’) = 1. First, using the fact that e(g;, C) = e(A,Z"), e(g3,C) = e(B,Z*), and Z* = g’l/A g’;B,
we can write

q* q*
" e(g19s.C) _ e(AZ9eB,Z) _e(Ag) gi%)e(B g gFF)
e(g193,2") = = =

e(9195 A% )e(g1g5, B'8)  e(g1gs, AYA )e(g195, BY8)  e(g1gs, A¥4 )e(grgs, B')

Next, since e(g1, B) = 1 = e(g3, A), we have

yq* Yq* «

. e(Ag* g")e(B.gi* gi") e(A g1)% e(B,gs)"®

e(g193,2') = o = o =1
e(g193, A4 )e(g1g3, B3)  e(g1, A)'a e(gs, B)VB

Hence, we conclude that e(g19394, Z’) = 1, so Z’' € G,. It remains to show that Z” # 1.

« Next, at least one of the group elements A, B, C must contain a non-trivial component in the G, subgroup.
Suppose otherwise: namely that A = (g193)™, B = (9193)"8, and C = (g193)’¢ for some ra,rp,rc € Zy. Note
that e(gs, A) = e(gs, B) = e(gs,C) = 1 so A, B,C cannot contain non-trivial components in the G4 subgroup.
Then, Eq. (A.1) imply the following:

ra mod py

. .

rg mod ps3
3 .

~ Since e(gs, A) = e(gs, g3)™ ™43 = 1, it must be the case that r4 mod ps = 0. Thus, A =g

— Since e(gy, B) = e(gy,g1)™ ™41 = 1, it must be the case that rg mod p; = 0. Thus, B=g¢
— Finally, e(g1,C) = e(A, Z*) means that e(gy, g;)"c ™04?1 = e(A, Z*) = e(gl,gl)”f\ ramod i - Apalogously,
e(gs,C) = e(B, Z*) means that e(gs, g3)"¢ ™37 = (B, Z*) = e(gs, g3)"®"® ™73, Putting these together,

this means that r¢ = yZ ra mod p; and r¢ = yprg mod ps. Take any r € Zy such that r = r4 mod p; and
r = rg mod ps. Then, we can write

_ re _ rcmodp; rcmodps _ yg ra mod p1_yprg mod p3 _ Yf‘ YBNr r
C=1(9193)" =g, 95 =9 95 =(9," 95 )" =(Z7)".
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This contradicts the assumption that there does not exist r € Zy such that A = g7, B= g}, and C = (Z*)".

« Thus, at least one of A, B, C must contain a non-trivial component in the G, subgroup. Denote these by ggl, glz"
and ggl, respectively. We have that at least one of @’, b’, ¢’ # 0 mod p,. Next, by the Chinese Remainder Theorem,
the exponents y4 and yp are uniform over Zy, so y4 mod p; and yg mod p, are uniform over Z,, and more
importantly, independent of the view of the adversary, as they are not revealed by {Z;};c[0}, Z*. Thus, we can

_ q —b *
write the G, components of Z’ as gg @A Consider the exponent ¢ — ayZ —byg mod p,. Since a, b, c are not

all identically 0, this is a non-zero polynomial in y4, yg with degree at most ¢*. By the Schwartz-Zippel lemma,

*

Pric— ayj{ —byg=0mod p : ya,yB < Zp,| < Z— = negl(Q),
2

since g* = poly(4). Correspondingly, this means that with probability 1 — negl(1), Z’ has a non-trivial G,
component.

Putting the pieces together, if algorithm A succeeds, then with overwhelming probability, Z* € G, \ {1}. In this case,
if T =g}, thene(Z’,T) =1andif T = (g192)", then e(Z’,T) # 1 (unless r = 0). Correspondingly, algorithm 8 breaks
Assumption 5.2a with probability ¢ — negl(2). O

Using Claim A.1, we now show that the only public keys pk; the efficient adversary can construct that pass the
validity check are those in the support of the honest key-generation algorithm.

Lemma A.2. For each index i € [L], let pk] be the public key algorithm A outputs for slot i in the challenge phase
in HybfeQI. Suppose Assumption 5.2a holds with respect to CompGroupGen. Then, for all indices i € [L], all efficient

adversaries A, and all b € {0,1}, ifIsValid(crs, i, pk;) = 1, then with probability 1 — negl(A), there exists r; € Zy such
that pk; is the public key output of KeyGen(crs, i; ;).

Proof. Take any index i € [L]. Let pk] be the public key algorithm A chooses for index i in Hyb(V)

. Parse
|
pk; = (Ti, Qi R;, {Vj,i}#i). Suppose IsValid(crs, i, pk}) = 1. h

- We first show that there exists r; € Zy such that T; = ¢}', R; = g', and Q; = P’ where P; = (g1g3)% is the
component from the CRS. Suppose otherwise. Then, we use A to construct an efficient algorithm $ that wins
the game in Claim A.1:

1. At the beginning of the game, algorithm B sets Q = 0 and ¢* = 1 and outputs 19 and 17". It receives
a tuple (G, g1, 93, g4, Z¥) from the challenger, where G = (G,Gr, N, g,e) and Z* = (glg3)‘$ for some
8 & Zy. (Technically, the challenger sets Z* = g%g: where a, 7 ¢ Zy, but it is easy to see that these two
distributions are identical via the Chinese Remainder Theorem).

2. Algorithm B starts running algorithm A and receives the number of slots 1-. Algorithm B guesses an
index i* & [L] and uses (G, g1, g3, g4) to construct the components of crs according to Setup(1%, 1144l 1L),

It uses Z* in place of P;- in crs. All of the other components are sampled according to the procedure in
Setup. Algorithm B gives crs to A.

3. Algorithm 8B responds to the key-generation queries exactly as described in Hybf;)[. All of the logic only
requires knowledge of the crs (and none of the specific exponents).

4. During the challenge phase, algorithm 8 constructs the public keys pk; for each i € [L] using the same

procedure as in Hybf(;)l. Again, the procedure here only depends on the components of the crs and does not
require any knowledge of exponents. It parses pk;. = (T, Qi+, R, {V i» }J-#i*) and outputs (T, R+, Qj+).

By construction, algorithm B perfectly simulates the distribution of the common reference string. Thus, with
probability ¢, there exists an index i € [L] where IsValid(crs, i, pk;) = 1 and there does not exist r; € Zx where
pk; = KeyGen(crs, i; 1;). Since i* is perfectly hidden from A, with probability 1/L over the choice of i*, it holds
that i = i*. I IsValid(crs, i*, pki.) = 1, then

e(gs, Tix) = 1 =e(g1, Ri) , e(Ti+, Pir) = e(g1, Qi) , e(Ri=, Pi) = e(93, Qi),
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and
e(94, Ti+) = e(94,Qir) = e(gs, Rix) = 1.

Suppose now that there does not exist rj+ € Zy where Tj» = g:i*, Ry = g;"*, and Q; = P;’* Then 8 wins
the game in Claim A.1. Correspondingly, if algorithm A outputs a malformed key with probability ¢, then
algorithm B succeeds with probability ¢/L, which proves the claim.

« Next, we show that for all j # i, there exists r;; € Zy such that T; = g, R; = g;, Vj; = A;j'i where A; is
the component from the CRS. Against, suppose this was not the case. Once again, we use A to construct an
adversary B that wins the game in Claim A.1:

1. Algorithm B starts running algorithm A and receives the number of slots 1-. Let D = {di}ie[1) be an
efficiently-computable progression-free and double-free set. As usual, we define f(i, j) := d; + d; and the
set & == {f(i,j) | i,j € [L] : i # j}. Let dypax = max(D). Algorithm B sets Q = 2dmax and ¢* = d; and
outputs 19 and 19"

2. Algorithm 8 receives a tuple (G, g1, 93, ga, {Zi }ie[0], Z£") from the challenger, where G = (G, Gr, N, g, ),
Z; = g‘fi and Z* = g‘lzq* g;j , and where the challenger sampled a, 7; & Zn.

3. Algorithm B now constructs the crs according to Setup (14, 1141, 11). Specifically, algorithm B samples
a,p ¢ Zy. Then, for each i € [L], it samples &;, 7;, 7, < Zy and for each w € Uj, it samples b,, < Zy.
Algorithm 8B sets A; = Z* and the remaining elements for i € [L], w € U),and z € & as

Ai=Zagy . Bi=giAl(gg0)™ . Pi=(q199)" . Upw= Zy o Wew=20".

Finally, algorithm 8B sets h = gf and Z = e(g1, 91)* and gives crs to A where
crs = (ga Zs gl 5 ha 93, g4s {(AbBl'a Pi)}iE[L] 5 {Ui,Wa WZ,W}WEWA,iE[L],ZES) .

4. Algorithm B responds to the key-generation queries exactly as described in Hybf;)[. All of the logic only
requires knowledge of the crs (and none of the specific exponents).
5. During the challenge phase, algorithm 8 constructs the public keys pk; for each i € [L] using the same

procedure as in Hybﬁ:a)l. Again, the procedure here only depends on the components of the crs and

does not require any knowledge of exponents. Finally, algorithm B samples a random i* & [L], parses
pk; = (T, Qi#, Ri», {Vj,i+ } j#i+) and outputs (Tj+, R+, Vj ;+).

We claim that algorithm B perfectly simulates an execution of Hybr(eva)] for A, where the exponents a,7; < Zy
sampled by the challenger for Claim A.1 plays the role of the corresponding exponents in Hyb:;)[. It suffices

d; T,
to consider the distribution of A;. In the reduction, algorithm B sets A; = Z* = g’ g;’ , which is precisely the

distribution of A; in Hybfeva)l. Thus, with probability e, there exists an index i € [L] where IsValid(crs, i, pk;) =1
and there does not exist r; € Zy where pk; = KeyGen(crs, i; ;). Since i* is randomly sampled at the very end,
with probability 1/L over the choice of i*, it holds that i = i*. If IsValid(crs, i*, pk}.) = 1, then

6(93, ’Tl*) =1= e(glsRl—*) 5 e(’Tl*sAj) = e(gls ‘/j,l-*) 5 e(Ri*sAj) = e(g?): ‘/j,l-*)s

and
e(94, Tx) = e(gs, Ri) = (g, Vjr) = 1.

Suppose now that there does not exist r;; € Zy where Tjx = g:j”'*, Ry = ggj”'*, and Vj» = A;j’i*. Since
Aj = Z*, we conclude that algorithm 8 wins the game in Claim A.1. Correspondingly, if algorithm A outputs
a malformed key with probability ¢, then algorithm B succeeds with probability ¢/L, which proves the claim.
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Thus, we have shown that for all tuples (i, pk}) where IsValid(crs, i, pk}) = 1 and which are output by an efficient
adversary A, it must be the case that there exists r;,r;; € Zy for all j # i such that

T 91 = gl and Ri = g;l = ggj,i and Qi - Prz and ij,i — A;j’i.

1

The requirement on T; ensures that r; = r;; mod p; for all j # i. Similarly, the requirement on R; ensures that
ri = rj; mod ps. By construction, each of the A;’s are contained in G; X Gs. Then,
; . . rji mod pip i d i
T,=gy and Ri=g; and Q;=P and Vj;=A7" =A% = ATOCPE = AT
for all j # i, and the claim follows. O

Returning now to the proof of Lemma 5.11, we can first appeal to Lemma A.2 to conclude that for all efficient
adversaries A, in Hybieva)], the public keys pkj, ..., pk} chosen by A in the challenge phase are either L, do not satisfy
the IsValid predicate, or are in the support of the honest key-generation algorithm. Thus, if the challenger does
not abort, then it must be the case that for all i € [L], there exists r; € Zx such that pk; is the public key output of
KeyGen(crs, i;r;). In particular, all of the keys pk; sampled by the challenger in an (honest) key-generation query

already satisfy this property. Thus, for each i € [L], we can write
Ti=gy . Qi=P' , R=gy ., V=A} (A.2)

Then, in both Hyb(v) and Hyb(v), the following relations hold:
real 1
> bw Zie wes; Li
T= 1_[ T; = 1_[ 91 and U, = l—[ Uiw =9, [Ehwesy T (A.3)
ie[L] i€[L] i€[L]:weS;

We now consider the components in the two experiments:

« Inboth experiments, h, hy, h, is uniform over G, subject to the constraint & = h; h;. Moreover, since B, B, < Zn,

B = p1 + p2 is also uniform over Zy in Hybiv), so the distribution of f matches that in Hybfe‘;)l.

(v)

- Consider the distribution of P; in the two experiments. In Hyb

5; mod p; 6; mod
Py = (g1g3)% = g " gy P,

Since §; is uniform over Zy (and independent of all other quantities), §; mod p; and §; mod ps are independently
uniform over Z,, and Z,,, respectively, by the Chinese Remainder Theorem. In Hyb(v)

6; mod &; mod
(9193)51 _gs mo plg mo p3

Since J; is still uniform over Zy (and independent of all other quantities), the distribution of s§; mod p; is
uniform over Z,, as long as s # 0 mod p; (which holds with overwhelming probability since s <~ Zy). As such,
the distribution of P; in these two experiments is statistically indistinguishable.

« Consider the attribute-specific components Cs . in the challenge ciphertext. In Hybiv), for each k € [K],

m! v’ -b ielL1: ;. b Mk

C3,k — (gi)ﬁz £ (C4,k) p(k) Dic[L]:p(k)eS; ig]
s\ fom] v —sib iclL]: i Mk

(91) My (9194) kbp(k) Zic[Llp(k)es; ig]

Since h, = gf ? and appealing to Eq. (A.3), this can be rewritten as

v A/
Cos = by U, gl
where v’ = sv' = [s,502,...,50,]" and 0, = nk = skbp(k) Zie[r]p(k)es; ti- In Hybgv), the challenger samples
V2.« y Uny Nk & 7Zn. Moreover, since Nk is only used to randomize Cs, the distribution of ’71,< in the above

expression is uniform over and independent over Zy. We conclude that the distribution of Cs in Hybiv)

(V)

matches the distribution in Hyb | with the substitution v > v” and nx - n,.
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« Finally, consider the slot-specific component Cs in the challenge ciphertext in Hybiw. By Eq. (A.2),

rio; !

5;1 p.ioi Sti T'i
Q; _ 5 _91 95 _
Ri ggz g;i 1
Bv E : (v)
y Eq. (A.3), in Hyb; ™,
R; s A
G=@?| [ 5=|=m ] o =mi
ie[L] Q;" ie[L]
Thus, Cs is distributed identically to Hyb(v)l. m|
rea

A.2 Proof of Lemma 5.12

This follows from an adaptation of the proof from [HLWW23, Lemma 5.13]. As noted previously, we follow and
reuse much of the same prose and exposition from [HLWW23]. Suppose there exists an efficient adversary A that

distinguishes between Hybiv) and Hybgv) with non-negligible advantage ¢. We use A to construct an adversary 8
that breaks Assumption 5.2a with the same advantage:

1. At the beginning of the game, algorithm B receives a challenge (G, 91,93, gs, T) where G = (G, G, N, g, ¢),
g1 € Gy, g3 € G3, g4 € Gy, and either T = g; or T = (g19,)° for some s & Zn. The components that depend
on the challenge element T are colored for clarity.

2. Algorithm 8 starts running algorithm A and receives the number of slots 1L, Then, algorithm B samples
o, Br, Br,a & Zy. It sets Z = e(g1,g1)*, f = p1 + o, and h = gf.

3. Let O = {d;};e[r] be an efficiently-computable progression-free and double-free set. As usual, we define
f(i, j) = di +d; and the set of cross terms & = {f (i, j) | i,j € [L] : i # j}.

4. For each slot i € [L], algorithm B samples &;, 7;, 7; & 7Zn and sets t; = a%. It then constructs the slot
components as follows:

Air=glgy . Bi=giAl(gsg) . Pi=(Tgs)*.

Then, for each attribute w € U, algorithm B samples b,, & Zn. For each w € Uy, slotindex i € [L], and cross
term index z € &, algorithm B constructs the attribute-specific slot components U; ,, and W, ,, as in Hybiv):

b ti b.,a*
Ui,w =9 s M/z,w =9 “ .
Algorithm 8 gives the common reference string

crs=(G, Z, g1, h, 95, 94, {(Au B, P) Yierr] > {Uiws Warwbwetty ie[L].ze8)

to the adversary A. It also initializes a counter ctr = 0 and an (empty) dictionary Dict to keep track of the
key-generation queries.

5. In the query phase, algorithm 8 responds to the adversary’s queries as in Hybgv) and Hybgv). Namely, when
algorithm A makes a key-generation query on a slot i, algorithm 8 increments the counter ctr = ctr + 1
and samples r; ¢~ Zy. It then computes T; = g}', Q; = P/, R; = g;/, and V}; = A;". The challenger sets the
public key to be pk, = (T;, Qi, R;, {V},i} j»i) and responds with (ctr, pk,). It defines sk = r; and adds the
mapping ctr — (i, pkg,, Sketr) to the dictionary Dict. If the adversary ‘A makes a corruption query on an index
1 < i < ctr, the challenger looks up the entry (i’, pk’, sk’) = Dict[i] and replies to A with sk’.
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6. In the challenge phase, after A specifies the challenge policy P* = (M, p) where M € ZIIf]X” and p: [K] — U,
two messages yig, j1; € Gr, and for each slot i € [L], a tuple (c;, S;, pk;). For each i € [L], algorithm 8B constructs

the public key pk; as in Hyb!" and Hyb!":

« If ¢; € {1,...,ctr}, the challenger looks up the entry Dict[c;] = (i, pk/, sk’). If i = i’, algorithm B sets
pk; = pk’. Otherwise, algorithm B aborts with output 0.

« If ¢; = 1, then algorithm B checks that IsValid(crs, i, pk}) outputs 1. If not, it aborts with output 0.
Otherwise, it sets pk; = pk;.

Finally, for each i € [L], algorithm B parses pk; = (T;, Qi, Ri, {V; i} j=i)-
7. Algorithm B then constructs the challenge ciphertext as follows:

+ Message-embedding components: Set C; = 1}, - e(g1, 7)* and C, = T.

« Attribute-specific components: Sample vy, ...,0, < Zy and let v/ = [1,0,,...,0,]". For each k € [K],
sample s, . <~ Zy and set

Ty —b > . b
_ p(k) LiclLlp(k)es; L Mk _
Cage = TH™Y'C G Cak = (9198

« Slot-specific component: Set

Algorithm 8B gives the challenge ciphertext to A:
ct* = ((M, p), C1, Cao, {Cs k, Caj Ykek], Cs)-

8. At the end of the game, algorithm A outputs a bit v' € {0, 1}, which 8B also outputs.

Observe that e(g1, T)* = e(g1,91)** regardless of whether T = g5 or T = (g192)°. If T = g3, then algorithm 8 perfectly

simulates an execution of Hybg i Alternatively, when T = (g192)°, algorithm B perfectly simulates Hybg"g). Thus,
algorithm B breaks Assumption 5.2a with the same advantage ¢. O

A.3 Proof of Lemma 5.15
This follows from an adaptation of the proof from [HLW W23, Lemma 5.33]. As noted previously, we reuse the same

prose and exposition from [HLWW?23]. Suppose there exists an efficient adversary A where

| Pr[HybS") (A) = 1] - Pr[Hyb\") (A) = 1]| = ¢

ran

for some non-negligible e. We use A to construct an adversary B that breaks Assumption 5.2e with the same advantage:

1. First, algorithm B receives a challenge (G, g1, 92, 93,94, X, Y, T) where G = (G,Gr, N, g,¢), g1 € Gy, g2 € Gy,
g3 € G3, 94 € Gy, X = g’l”ggl, Y = gig)z/2 for some a, y1, 2 & 7N, and either T = e(g1,g1)* or T = e(g,9)",
where r <~ Zy. The components that depend on the challenge elements X, Y, T are colored for clarity.

2. Algorithm 8 starts running algorithm A and receives the number of slots 1°. Then, algorithm B samples
Bi,Br,a & Zy and sets Z = e(g1,X), f = p1 + P2, and h = g?-

3. Let D = {d;}ie[1) be an efficiently-computable progression-free and double-free set. As usual, we define
fi,j) =di+djand & = {f(i,j) | i,j € [L] : i # j}.
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4. For eachslot i € [L], sample 6, 7;, 7] ¢~ Zy and compute t; = a% . Algorithm B constructs the (semi-functional)
slot components as follows:

A; = giig;i , Bi= XAiﬁ(g29394)Ti , Pi=(Ygs)

Then, for each attribute w € U, algorithm B samples b,, & Zn. For each w € U, slot index i € [L] and
cross term index z € &, algorithm B constructs the attribute-specific slot components U; ,, and W ,, as follows:

biti b.,a*
Ui,w = gl 5 m,w = gl “ .
Algorithm 8B gives the common reference string

Crs = (g’ Z’ 91, ha g3, ga, {(AbBi’ Pi)}iE[LJ P {Ui,Wa WZ,W}WE‘ZJ},iE[LJ,ZES)

to the adversary A. It also initializes a counter ctr = 0 and an (empty) dictionary Dict to keep track of the
key-generation queries.

5. In the query phase, algorithm 8 responds to the adversary’s queries as in Hybgl) and Hybf:n) 4- Namely, when
algorithm A makes a key-generation query on a slot i, algorithm 8 increments the counter ctr = ctr + 1
and samples r; < Zy. It then computes T; = g}', Q; = P/, R; = g3/, and V}; = A;i. The challenger sets the
public key to be pk, = (Ti, Qi, Ri, {V;,i}j2i) and responds with (ctr, pk,,). It defines skc; = r; and adds the
mapping ctr — (i, pk,, Sketr) to the dictionary Dict. If the adversary (A makes a corruption query on an index
1 < i < ctr, the challenger looks up the entry (i’, pk’, sk’) = Dict[i] and replies to A with sk’.

6. In the challenge phase, after A specifies the challenge policy P* = (M, p) where M € Zﬁx" and p: [K] — U,

is an injective row-labeling function, two messages y;, yi7, and for each slot i € [L], a tuple (c;, S;, pk;). For
.

rand’

each i € [L], algorithm 8B constructs pk; as in Hybng) and Hyb

« If ¢; € {1,...,ctr}, the challenger looks up the entry Dict[c;] = (i, pk’, sk’). If i = i/, algorithm B sets
pk; = pk’. Otherwise, algorithm 8B aborts with output 0.

« If ¢; = 1, then algorithm B checks that IsValid(crs, i, pk}) outputs 1. If not, it aborts with output 0.
Otherwise, it sets pk; = pk;.

Finally, for each i € [L], algorithm B parses pk; = (T;, Qi, R, {V} i} j=i)-
7. Algorithm B constructs the challenge ciphertext as follows:

+ Message-embedding components: First, algorithm B sets C; =y, - T and C, = Y.

«+ Attribute-specific components: Algorithm B samples vy, ..., v, & Zn and sets v/ = [1,0,,...,0,] .
For each k € [K], it samples s, i < Zy and sets

Ty —b i . 5. L
_ _ p(k) Ziie[L):p(k)es; ti Nk
Cak = (qrga)™ . Cayp = YPmerc, r® Seltirmit gl

« Slot-specific component: Algorithm 8 sets

R.
Cs =/ 1_[ 5171
ie[L] Q;"

Algorithm 8 gives the challenge ciphertext to A:
Ct* = ((Ma P)> Cl’ CZ’ {C?),k; C4,k}kE[K]’ CS) .

8. At the end of the game, algorithm A outputs a bit v/ € {0, 1}, which 8 also outputs.
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In the reduction, the exponents & mod p; and s mod p; play their corresponding roles in HybéVL) and Hyb(v) The

, rand”
exponent y; mod p; (in Y) plays the role of s mod p,. We now argue that algorithm 8 perfectly simulates an execution

of either Hyb?(’v) and Hyb(

rand*

« CRS components: First, Z = e(gl,X) = e(g1.9%") = e(g1. g1)*. Consider the remaining components of the
CRS. Algorithm 8B sets A; = gii 9? where t; = a% and T] & Zx, which matches the distribution in Hybg‘g and
Hybfavn) 4 Next, algorithm B sets

Y1+

B; XA (929394)" = g} 9”Aﬂ (g293)" = g1 A "(9394)".

Since 7; & Zy, the distribution of Y1 + 7; is also uniform over Zy. Moreover, no other term depends on the
value of 7;, so the distribution of B; is correctly simulated. Finally, algorithm 8 sets

P; = (Yg3)% = ((9?952)93)5’}

which matches the distribution in Hyb(v) and Hybf:n) 4 When y2 mod p; plays the role of s mod p,. Since the

challenger samples y, < Zy;, this matches the distribution of s in Hyb(v) and Hybfavn) 4 Finally, the attribute-
b(V)

specific components in the CRS are sampled exactly as in Hyb( L orHyb .

+ Key-generation queries By construction, algorithm 8 responds to key-generation queries using the identical
procedure as in Hyb; and Hyb(

rand”

+ Challenge query: By construction, the challenge ciphertext components Cz, Cs k, Cyk, Cs are distributed exactly
as in Hybglg or Hybf;g 4 Where y, mod p; plays the role of s mod p;. Consider now the distribution of C;:

- IfT =e(g1,92)*°, then C; = i - T = iy - Z°. This corresponds to the distribution in Hybng).
- If T = e(gy,g2)", where r & Zy;, the distribution of C; is uniform in Gz, which corresponds to the

distribution in Hyb(v)

rand”
We conclude that algorithm 8 either simulates an execution of Hyb(v) or Hyb(v) g~ Thus, algorithm B breaks
Assumption 5.2¢ with the same distinguishing advantage as A and the claim follows. O
A.4 Proof of Lemma 5.21

Our analysis follows a very similar style as the proof of [HLWW?23, Lemma 5.16]. Like the proof from [HLWW23],
our analysis depend on whether the adversary knows the secret key associated with slot £ or not. We begin with
a general sketch of our argument (with some of the prose taken directly from [HLWW23]).

Proof overview. Let (c;, S;, pk}) be the tuples adversary A outputs for each slot i € [L] in the challenge phase.
Let ctr be the number of key-generation queries the adversary has made at the beginning of the challenge phase.
We say that event NonCorrupt occurs if

¢, € {1,...,ctr} and A did not make a corruption query on index c,,

Let pky, ..., pk; be the public keys the challenger constructs during the challenge phase. If event NonCorrupt occurs,
then the public key pk, was honestly sampled by the challenger in a key-registration query, and moreover, the

adversary did not corrupt the key to learn its associated secret key. We write NonCorrupt to denote the complement
of event NonCorrupt. Now, we can write

Pr [iHyb(V) (A) = 1] =Pr [iHyb(V) (A)=1A NonCorrupt] +Pr [lHyb(V) (A)=1A NonCorrupt]

Pr [iHyb(V) (A) = 1] =Pr [iHyb(V) (A)=1A NonCorrupt] +Pr [lHyb(V) (A)=1A NonCorrupt]
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It suffices then to show that
‘Pr [iHyb(v) (A)=1A NonCorrupt] Pr [lHyb(v) (A)=1A NonCorrupt” = negl(4) (A4)
)Pr [iHyb(V) (A)=1A NonCorrupt] Pr [lHyb(V) (A)=1A NonCorrupt” = negl(A). (A.5)

Lemma 5.21 then follows by the triangle inequality. Our proof strategy for showing Eqs. (A.4) and (A.5) will construct
a sequence of hybrid experiment culminating in an information-theoretic step that ensures the adversary cannot tell
that £' slot has switched from normal mode to semi-functional mode. These two information-theoretic components
critically relies on different admissibility properties on the adversary:

« If event NonCorrupt occurs, then the adversary does not know the secret key sk, = r, associated with slot
¢ (ie., r; € Zy is the secret exponent the challenger sampled when responding to the c;h key-generation
query). The final information-theoretic argument (Lemma A.7) in the proof of Eq. (A.4) critically relies on
the distribution of r, mod p; being uniform and hidden from the view of the adversary. The full sequence of
hybrids is described in the proof of Claim A.3.

« If event NonCorrupt occurs, then the adversary may know the secret key sk, = r; associated with slot ¢, and
as such, we cannot rely on the same information-theoretic argument as above. In this case, the admissibility
requirement ensures that the set of attributes Sy associated with slot £ do not satisfy the challenge policy. The final
information-theoretic argument (Lemma A.14) in the proof of Eq. (A.5) relies on information-theoretic security of
the underlying linear secret sharing scheme. The full sequence of hybrids is described in the proof of Claim A.11.

Analysis for the case where slot ¢ is not corrupted. We now show that Eq. (A.4) holds. As noted previously,
when the public key pk, associated with slot £ is not corrupted, our analysis will (eventually) rely on the secret key
sk, = rp associated with slot ¢ being hidden to argue that the semi-functional slot components look computationally
indistinguishable from normal slot components. We state the precise claim below:

Claim A.3. Suppose Assumption 5.2b holds with respect to CompGroupGen. Then, forall¢ € [L], all efficient adversaries
A, and all b € {0, 1}, there exists a negligible function negl(-) such that for all A € N,

|Pr[iHyb(V) (A) =1 A NonCorrupt] — Pr[iHyb(V) (A)=1A NonCorrupt]| = negl(A).
Proof. To prove this claim, we introduce an additional sequence of (simpler) hybrid experiments:

. ncHyb( "): Same as lHyb except during the challenge phase, the challenger constructs the challenge ciphertext
as follows

— If event NonCorrupt did not occur, then the experiment halts with output 0.

- Otherwise, if event NonCorrupt occurs, let pk, be the public key associated with slot ¢. Since NonCorrupt
occurs, the public key pk, was constructed by the challenger in response to the c} " key-generation query
the adversary made in the query phase. Let r, € Zx be the randomness the challenger used to construct
pk, (i.e., this is the secret key stored in Dict[c,]). Then, pk, = KeyGen(crs, £; r¢). The challenger constructs

the challenge ciphertext exactly as in iHyb( 4

03 » €xcept it computes Cs as follows:

\ B R
= (9999 || 5
ie[L1\{¢} Q;"

The other components of the challenge ciphertext are constructed as in iHybg). The output of the

experiment is the output of A, exactly as in 1Hyb(v)

Importantly, in this experiment, the only component that depends on the exponent 6§, € Zy is P;. The challenge
ciphertext no longer depends on &;.
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Hybrid B, p, Justification

lHyb(V) 97 (3907 ((9192)°95)%

ncHyb(V) g‘f’Af (9390)"  ((9192)°93)% Identical Lemma A.4
ncHyb(V> gf’Af (g394)™ (919293)° Statistical Lemma A.5
ncHyb(V) “Aﬁ(ggg4)7’ (g193)°% Assumption 5.2b  Lemma A.6
ncHyb(V) “A/ (g29394)™ (glg3)5" Statistical Lemma A.7
ncHyb(V) g"‘Aﬁ (g29394)™ (919293)% Assumption 5.2b  Lemma A.9
ncHyb(V> "‘Aﬁ (g29394)"  ((9192)°g3)"" Statistical Lemma A.10
iHybt(,’Z) gf‘Af (g29394)"  ((9192)° 93)5‘-’ Identical Lemma A.10

Table 5: Structure of slot parameters Bg, P in the hybrid experiments for analyzing the NonCorrupt branch
(Claim A.3). For each pair of adjacent hybrids, we indicate whether they are identically distributed, statistically
indistinguishable, or computationally indistinguishable. The highlighted row is the information-theoretic step that
relies on event NonCorrupt occurring (i.e., that the adversary does not know the secret key for slot ¢).

. ncHyb : Same as ncHybt,O , except the challenger sets P; = (¢192g3)° in the setup phase.

. ncHybt(,’;): Same as ncHybf,"i) except the challenger sets P, = (g1g5)°" in the setup phase.

. ncHyb(V) Same as ncHyb(V) except the challenger sets B, = g‘f‘A'f(ggg;;gg,)T‘ in the setup phase.
. ncHybt(,";): Same as ncHybf,!‘;) except the challenger sets P; = (g1g.¢3)° in the setup phase

. ncHyb{(,!‘;): Same as ncHybf,";) except the challenger sets P; = ((g192)°g3)° in the setup phase

We provide a summary of the hybrid experiments in Table 5. We now show that each pair of adjacent hybrids are
computationally indistinguishable.

Lemma A.4. For all adversaries A andv € {0, 1}, Pr[iHyb(V) (A) =1 A NonCorrupt] = Pr[ncHyb(V) (A) =1].

Proof. By construction, the output of ncHyb(V) (A) is 1 only if event NonCorrupt occurs. By definition of NonCorrupt,
this means pk, = (D, Q¢ Ry, {Vj,[}jﬁ) = KeyGen(crs, £; r¢). By construction of KeyGen, this means that

Qe =P = ((9192)°)95)"
and R, = g;'. In particular, this means that

Re _ g5
Q¥ (G192)7 gy

= (g192) """,

Thus, if event NonCorrupt occurs, then Cs in ncHyb(0 satisfies

_ R; R R; R;
Cs = (gﬂz)sﬁl (9192) """ 1—[ 7| (9192)5131 % 1—[ —7|= (g1gz)sﬁ‘ l_[ —= |-
ie[LI\{e} Q;" Q," ) \ielL\{ty Q ie[L] Q;"
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This is exactly the distribution of Cs in iHyb(V) (A). Therefore, conditioned on event NonCorrupt, the output
distribution of ncHyb(V) (A) is identical to the output distribution of lHyb(V) (A). Correspondingly,
Pr[ncHyb(v) (A) = 1] = Pr[NonCorrupt] -Pr[iHyb(V) (A) =1 | NonCorrupt]
= Pr[iHyb(v) (A) =1 ANonCorrupt],
and the claim follows. o

Lemma A.5. Forall¢ € [L], all adversaries A and all v € {0, 1}, there exists a negligible function negl(-) such that
[ncHyb!? (A) = 1] - Pr[ncHyb} (A) = 1]| = negl(2).

Proof. The only difference between ncHybf,) and ncHyb(V) is the distribution of P;. In ncHyb{,1 , Pr = (919293)%

whereas in ncHybt,O , P = gf"sg(s'sg(s’. In both experiments, §, < Zy;, so as long as s mod p; and s mod p, are

both non-zero, then these two distributions are identical. Since s < Zy, s mod p; and s mod p; are non-zero with
probability at least 1 —1/p; — 1/p; = 1 —negl(A). Thus, the marginal distribution of P, is statistically indistinguishable
in ncHyb(0 and ncHyb(‘I). None of the other components in ncHybE,’g) and ncHyb{(,’Z) depend on the exponent &, so
the outputs of the two experiments are statistically indistinguishable. O

Lemma A.6. Suppose Assumption 5.2b holds with respect to CompGroupGen. Then, for all ¢ € [L], all efficient
adversaries A, and all v € {0, 1}, there exists a negligible function negl(-) such that for all 1 € N,

|PrlncHyb} ) (A) = 1] - Pr[ncHyb{ (A) = 1]| = negl(4).
Proof. Suppose there exists an efficient adversary A where
|Pr[ncHyb(V) (A)=1] - Pr[ncHyb(V) (A)=1 | =¢
for some non-negligible e. We use A to construct an adversary B for Assumption 5.2b:

1. At the beginning of the game, algorithm 8 receives a challenge (G, g1, g3, g4, X, Y, T) where G = (G,Gr, N, g, e),
g1 € G1, 95 € Gs, gu € Gy, X = (g192)%2, Y = (g2g3)*® for some s12, 5235 < Zy;, and either T = (g1g3)° or
= (919293)° for some & & Zy. The components that depend on the challenge components X, Y, T are colored

for clarity.

2. Algorithm B starts running algorithm A and receives the number of slots 1°. Let D = {d;};c (L] be an efficiently-
computable progression-free and double-free set. We define f(i, j) := dij+djand & = {f (i, j) | i, j € [L] : i # j}.

3. Algorithm B samples a, f1, o, a € Zn. It sets Z = e(g1,91)%, p = p1 + P2, and h = gf.

4. For each i € [L], algorithm B samples J;, 7, 7/ & Zy and computes t; = a%,

« Fori < ¢, algorithm 8B sets

A= 9?9;’{ , Bi= gth,ﬁ(Ygz;)Ti . Pi=(Xgs)%
« For i = ¢, algorithm B sets

Ar=g"(g29)% . Be=giAL(gsg)™ . P =T.
« Fori > ¢, algorithm B sets

Ai=glg ., Bi= 9?Al-ﬁ(9394)fi ., Py=(Xgs)%.
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Then, for each attribute w € U, algorithm B samples b,, < Zy. For each w € Uj, slot index i € [L], and

cross term index z € &, algorithm B then constructs the attribute-specific slot components U; ,, and W, as

V).

in ncHybt(,"I) ncHyb{(,’2 :

b,,a*

bw'ti
Ui,W :gl 5 M/Z,W :gl
Algorithm 8B gives the common reference string

crs=(G.Z, g1, h, g3, g5, {(Ai, B P) Yierr]» {Uiws Wb wettyic[L] ze€)

to the adversary A. It also initializes a counter ctr = 0 and an (empty) dictionary Dict to keep track of the
key-generation queries.

5. In the query phase, algorithm B responds to the adversary’s key-generation queries as in ncHyb{(,’];) and

ncHyb{(,’;). Namely, when algorithm A makes a key-generation query on a slot i, algorithm $ increments the
counter ctr = ctr + 1 and samples r; < Zy. It then computes T; = g7, Q; = P;", R; = g5, and V;; = A;". The
challenger sets the public key to be pk ., = (T;, Qi, Ri, {V} i} j2:) and responds with (ctr, pk,,,). It defines sk¢ = 7;
and adds the mapping ctr — (i, pkg,, sketr) to the dictionary Dict. If the adversary A makes a corruption query
on an index 1 < i < ctr, the challenger looks up the entry (i’, pk’, sk”) = Dict[i] and replies to A with sk’.

6. In the challenge phase, after the adversary specifies a challenge policy P* = (M, p), where M € Zﬁxn and
p: [K] — U, is an injective row-labeling function, two messages yig, y1j € Gr, and for each slot i € [L], a tuple

(1, Si, pk}), algorithm B constructs pk; as in ncHybl(,’? and ncHybl(,’;):

« If ¢; € {1,...,ctr}, the challenger looks up the entry Dict[c;] = (i, pk’,sk’). If i = i’, algorithm B sets
pk; = pk’. Otherwise, algorithm 8B aborts with output 0.

« If ¢; = 1, then algorithm B checks that IsValid(crs, i, pk}) outputs 1. If not, it aborts with output 0.
Otherwise, it sets pk; = pk;.

Finally, for each i € [L], algorithm 8 parses pk; = (T;, O, Ri, {V; i} j=i)-
7. Algorithm 8B constructs the challenge ciphertext as follows:

+ Message-embedding components: Set C; = 1}, - e(g1, X)* and C; = X.

« Attribute-specific components: Sample vy, ..., 0, & Znandlet v = [1,0,,...,0,]". For each k € [K],
algorithm B samples s, nr <~ Zn. If p(k) € S;, algorithm B sets Cy i = (g194)°*. Otherwise, if p(k) € Sy,
it sets Cyr = (Xg4)%. Next, algorithm B sets

_ om0k DiclLlptoes; B mk
Csp = XPmv'c, ) g

« Slot-specific component: Algorithm B sets

R;
x| ] 2
ielLl\tey Q;'
Algorithm 8 gives the challenge ciphertext to A:
ct” = (M, p), C1, Co, {C3, Cac Yre[k7 Cs)-

8. At the end of the game, algorithm A outputs a bit v € {0, 1}, which B also outputs.
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In the reduction algorithm, the exponent s;; plays the role of s in ncHybg, and ncHyb( Y) Next, consider the dis-
tribution of B; for i < £. As long as sz3 # 0 mod p; and sp3 # 0 mod ps (which holds with overwhelrmng probability
over the choice of sy5 & Zy), then the distributions

{Y™ = (g295)™" : 7 & Zn} and  {(g295)" : 1 € Zn}

are identical. Note this is the only place where 7; is revealed in the G; or Gs subgroups. Thus, with overwhelming

probability over the choice of sy3, algorithm B constructs B; according to the same distribution as ncHybl(,’q) and
ncHybg);). Finally, consider the distribution of Pp:

« If T = (919293)° for some § & Zy, then algorithm B simulates the distribution in ncHyb(V).

« If T = (g1g3)° for some & & Zy;, then algorithm B simulates the distribution in ncHyb{(,’;).
Thus, we conclude that algorithm $ breaks Assumption 5.2b with advantage at least ¢ — negl(4). O

Lemma A.7. Forall ¢ € [L], all adversaries A, and all v € {0, 1}, there exists a negligible function negl(-) such that
[ncHyb{ (A) = 1] - Pr[ncHyb} (A) = 1]] = negl(1).

Proof. We show that the distributions ncHyb(V) (A) and ncHyb(V) (A) are statlstlcally close. Let (cg, Se, pk;) be the
tuple the adversary chooses for slot £ during the challenge phase. Let r, <~ Zy be the randomness the challenger
used to answer the c}h key-generation query. For either experiment to output 1, event NonCorrupt must occur, which
means the adversary does not issue a corruption query on index c,. Correspondingly, the challenger never gives r,
to the adversary. This property will be critical for arguing that the two distributions are statistically indistinguishable.

Consider the distributions ncHyb<V) (A) and ncHyb(V) (A). By construction, the only difference between them is
the distribution of component B, in the G, subgroup:

ncHybE,Z) : By = ngf(g3g4)T"
ncHybf,’g) : By = g‘lef(gzggg4)T”
In both experiments, A, = gi’ (9293)%. Suppose that 7, # 0 mod p,. Since 7, ¢~ Zy, this holds with probability
1—1/pz =1 — negl(A). Consider the following relabeling of the variables ; and r; in ncHyb(V)
« Let 0 € Zy be the unique value where o = 0 mod p1p3ps and o = (Tt’,)’ln mod ps.

« Suppose we now set f; = f§ + o and r, = r; + o where f§|,r’ ¢ Zy. Observe that the distribution of f; and
re is still uniform over Zx under this relabeling.

Consider now the other components in the adversary’s view in ncHyb{(,;) with the above relabeling. It suffices to
only consider the components that depend on f; or r; since the other components are unchanged. Note also that

by design, i = f; mod pipsps and r, = r; mod p1p3ps.

« Consider the components in the common reference string. First, h = gﬂ e - gﬁ P2 Next A; =

i#fand Ay = g1 *(g2g3)". Consider the distribution of each B;:

91 g3 for all

~ Ifi < £, then B; = g7AP " (g29394)7 = g2 A (g29394)".
- Ifi = ¢, then

ff(ﬁ1+ﬁ2)gfg(ﬁl*'ﬁz)gfg(ﬁﬁ'ﬁz)

Be = %AV (g390)™ = g%, (g394)™ = g Aﬁl P (g29590)™,

since 1 = f; mod pipsps and fy = B + (7,) 'z, mod p,.
- Ifi > ¢, then B; —g”‘Aﬂ1 ﬁz(g ga)" —gO’Aﬁ1 ﬁz(ggg‘;)“.
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The remaining components in the CRS do not depend on either f; or r;, and are thus unchanged.

+ Consider the components in the key-generation queries. The only key- generation query that is affected by this
change of variables is the c!" query. When the adversary makes the c!!' key-generation query, the challenger
constructs the pubhc key pk = (D, Qe Re, {Ve} jﬂ) using randomness re. Under the above substitution this
means T; = g1 = g1 ,Qp = =P' R, = 93 = g3 ,and Vj, = A re for all j # ¢ since r, = r; mod p;ps,
and the components P, and A for j # ¢ do not contain any non- tr1v1al components in the G, subgroup. Here,
it is critical that P, = (g1¢3)% in ncHybt(,’;) does not contain any components in Gy,.

« Finally, consider the components in the challenge ciphertext. The components Cy, Cy, Cs ., Cax for k € [K ] are
all unchanged (i.e., they are independent of 5 and r;). Consider now ciphertext component Cs. In ncHybt, -

_ R; R;
= (9192)*" (9192) ™" l_[ 5 | = = (g192)*"1(g1g2) " 1_[ —7 |
elLI\{ey Q;" ie[LI\{e} Q;"

since f; = ] mod p; and r, = r; mod p;, and
sP1—sre =s(fy+0) —s(r; +0)) =sp; — sr, mod p,.

Observe now that this is precisely the distribution in ncHyb<V) (with the relabeling f; + f] and r; + r;). Thus,

whenever 7, # 0 mod ps, hybrids ncHyb( v, and ncHyb( ¢3 are identically distributed. Since this holds with probability
1 - negl(1) over the choice of 7;, the claim holds. Note that this argument critically relies on the fact that r, is not
given to the adversary in the game, as this allows us to reinterpret r, as r;, = ry, + 0. O

Lemma A.8. Suppose Assumption 5.2b holds with respect to CompGroupGen. Then, for all ¢ € [L], all efficient
adversaries A, and all v € {0, 1}, there exists a negligible function negl(-) such that for all A € N,

|PrlncHyb! ) (A) = 1] - Pr[ncHyb{}) (A) = 1]| = negl(4).
Proof. This follows by a similar argument as in the proof of Lemma A.6. O

Lemma A.9. Forall¢ € [L], all adversaries A and all v € {0, 1}, there exists a negligible function negl(-) such that
forall A € N, |Pr[ncHyb(v) (A)=1] - Pr[ncHyb(V)(ﬂ) =1] | = negl(4).

Proof. This follows by a similar argument as in the proof of Lemma A.5. O
Lemma A.10. For all adversaries A and all v € {0, 1}, Pr[iHyb(V) (A) =1 A NonCorrupt] = Pr[ncHyb(V) (A) =1].
Proof. This follows by a similar argument as in the proof of Lemma A 4. O

Combining Lemmas A.4 to A.10, Claim A.3 now follows by a hybrid argument. O

Analysis for the case where slot ¢ is corrupted. Next, we show that Eq. (A.5) holds. As noted previously, when
slot ¢ is corrupted (and the adversary knows the associated secret key), we are guaranteed that the set of attributes
Sy associated with slot £ does not satisfy the challenge policy. Our analysis here will (eventually) rely on the security
of the linear secret sharing scheme to argue that that the semi-functional slot components look computationally
indistinguishable from normal slot components. We state the precise claim below:

Claim A.11. Suppose Assumption 5.2b and Assumption 5.2c holds with respect to CompGroupGen. Then, forall ¢ € [L],
all efficient adversaries A, and all b € {0, 1}, there exists a negligible function negl(-) such that for all A € N,

Pr[iHyb(V) (A) =1 A NonCorrupt] — Pr[iHyb(V) (A) =1 A NonCorrupt]| = negl(2).
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Proof. Similar to the proof of Claim A.3, we introduce an additional sequence of hybrid experiments:

. cHyb : Same as |Hyb( except during the challenge phase, when constructing the challenge ciphertext, the
challenger performs several additional checks:

— If event NonCorrupt occurs, then the experiment halts with output 0.

- Let pk, be the public key associated with slot £ and S, C U, be the set of associated attributes. Let
P* = (M, p) be the challenge policy where M € Zﬁx" and p: [K] — U, is an injective row-labeling
function. Let I = {k € [K] : p(k) € S;} be the indices of the rows of M associated with the attributes in
S¢, and let My be the corresponding submatrix of M. Since event NonCorrupt does not occur, this means
that S, does not satisfy the policy (M, p), so e] is not in the row-span of M;. This means that there exists
a vector v* € Z?\[ such that M;v* = 0 mod N and e{v* # 0 mod N. In this experiment, the challenger
computes v* € Z3; using Gaussian elimination.

- Ife]v’ = 0 mod p,, the experiment halts with output 0.

The rest of the experiment proceeds as in iHybt(,’g).

. cHyb( *). Same as cHyb( V) except the challenger changes how it constructs the Cs . components in the challenger
c1phertext
— Sample ¢ & Zn and oy, ..., 0y, & Zn and let ¥/ = [B2 = &ul, 0, ..., an]".

V) o bp(k) ZiclLlp(k)es; ftgﬂk

- For each k € [K], sample ;. <~ Zy and set C3; = ((glgz)s)mk v 4k

All of the other components are constructed exactly as in cHybt(,"(;).
. cHyb{(,’g): Same as cHybE,]‘I) except the challenger sets B, = g‘fA/;(gzg3g4)T" in the setup phase.

. cHyb : Same as cHyb
ciphertext

¢.2 > €xcept the challenger changes how it constructs the C; x components in the challenge

- Sample vy,...,0, & Zy and let v/ = [1,0,...,0,]".

b i [L1p(kygs; T
— For each k € [K], sample n; < Zy and set C3y = ((g1gz)s)ﬁmlzv C4’kp(k) Rieltlpthies; 9i"

We provide a summary of the hybrid experiments in Table 6. We now show that each pair of adjacent hybrids are
computationally indistinguishable.

Lemma A.12. Suppose Assumption 5.2d holds with respect to CompGroupGen. Then, for all ¢ € [L], all efficient
adversaries A, and all v € {0, 1}, there exists a negligible function negl(-) such that

|Pr[iHyb(V) (A) =1 A NonCorrupt] — Pr[cHyb(V) (A) = l]| = negl(A).
Proof. Suppose there exists an efficient adversary A where
|Pr[iHyb(V) (A) =1 A NonCorrupt] — Pr[cHyb(V) A =1 | =¢

for some non-negligible ¢. Since these two experiments are identical except the additional check of whether
elv* = 0 mod p,, this means that with probability at least ¢, algorithm A outputs a challenge (M, p) such that
elv* # 0 mod N but e]v" = 0 mod p;, where v* is the vector derived from (M, p) according to the specification of
cHybg‘(’)). We use A to construct an adversary B that outputs a nontrivial factor of N given the inputs of Lemma 5.3
with probability ¢ — negl(1). Security can in turn be based on the hardness of Assumption 5.2d (Lemma 5.3).
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Hybrid B, Cs Justification

iHybgy A7 (9390 (9192)° P ((g192)°9a) ~Kbr Zietvrpwres; teglk

cHyb(y  gAL (g3ga)™ (9192)5/32‘“ ((9192)394) $Kbptho Zicttrpwssi gl Assumption 5.2d  Lemma A.12
CHyb(V) D{Aﬁ(%fh)” (9192)"™ V) ((g1g2) ga) ~Kbrk) Ziciirpoes, gyt Identical Lemma A.13
CHbe GEAL (929390 (9192)™ VY ((g1g2)°ga) ~kbow) Ticterowss; tigle Statistical Lemma A.14
cHyb! ") 4 Gaga  (arg Y (gugeysan) o Tactiis gt ldentical  Lemma A15

|Hyb(v) g’l”A'f(gzg3g4)T’ (glgz)sﬁzml"/ ((glgz)sg4)_skbp(k) Lie[Llp(k)s; tigzk Assumption 5.2d  Lemma A.16

Table 6: Structure of the slot parameter B, and the challenge ciphertext component Cs . (for p(k) ¢ S;) in the hybrid
experiments for analyzing the NonCorrupt branch (Claim A.11). For each pair of adjacent hybrids, we indicate
whether they are identically distributed, statistically indistinguishable, or computationally indistinguishable. The
highlighted row is the information-theoretic step that relies on event NonCorrupt occurring (i.e., that the set of
attributes S, associated with slot £ does not satisfy the challenge policy P*). Note that two of the hybrid experiments

either introduce or remove an abort condition (cHyb{%) and cHyb(V)) without changing the distribution of By, and Cs .

1. At the beginning of the game, algorithm 8 is given a challenge (G, g1, 93, g4, X, Y) where G = (G, Gr, N, g, e),
g1 € Gy, g5 € G3, g4 € Gy, X = (9192)°2, Y = (g2g3)*® for some s13, S23 < Zn. The components that depend
on the challenge elements X, Y are colored for clarity.

2. Algorithm B starts running algorithm A and receives the number of slots 1-. Let D = {d;}c[1] be an efficiently-
computable progression-free and double-free set. We define f(i, j) := di+djand & = {f (i, j) | i, j € [L] : i # j}.

3. Algorithm B samples a, f1, o, a € Zn. It sets Z = e(g1,91)%, p = p1 + P2, and h = gf.
4. For each i € [L], algorithm B samples J;, 7, 7] & 7y and set t; = a%i
« For i < ¢, algorithm 8B sets
Air=glgy . Bi=glAl(Yg)" . Pr=(Xgs)™.
« For i = ¢, algorithm B sets
Ar =gy Y% | By= gaA'B(9394)Tf , Pr=(Xgs)%.
« Fori > ¢, algorithm & sets
Ar=gligh | Bi=g AP (g9 . Pi=(Xgs)"
i=9195 » Bi=giA;(g394)" , Pi=(Xgs)".

For each attribute w € U, it samples b,, <~ Zy. In addition, for each w € Uj, slot index i € [L], and cross
term index z € &, algorithm B constructs the attribute-specific slot components U; ,, and W, ,, as in iHybf,?:

bti b.,a*
Ui,w — glw i R "Vz,w — glw

Algorithm 8 gives the common reference string
crs=(G.Z, g1, h, g3, g1, {(A, B P Yierr]» {Uiws Wanbwettyic[L] z¢8)

to the adversary A. It also initializes a counter ctr = 0 and an (empty) dictionary Dict to keep track of the
key-generation queries.
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5. In the query phase, algorithm 8 responds to the adversary’s queries as in iHybt(,";) and cHyb%). Namely, when
algorithm A makes a key-generation query on a slot i, algorithm 8 increments the counter ctr = ctr + 1
and samples r; - Zy. It then computes T; = ¢}', Q; = P/, R; = g;/, and V}; = A;". The challenger sets the
public key to be pk, = (T;, Qi, Ri, {V},i} j»i) and responds with (ctr, pk,). It defines sk = r; and adds the
mapping ctr — (i, pkg,, Sketr) to the dictionary Dict. If the adversary ‘A makes a corruption query on an index
1 < i < ctr, the challenger looks up the entry (i’, pk’, sk”) = Dict[i] and replies to A with sk’.

6. In the challenge phase, after A specifies the challenge policy P* = (M, p), the messages i, /11 € Gr, and for

each slot i € [L], a tuple (c;, Sy, pk}). Algorithm B computes v* from M as described in cHyb
ged(N, ejv").

00 > and outputs

The exponent s;; € Zy plays the role of s € Zy in lHyb(V) and cHyb(V) Next, consider the distribution of B; for
i < ¢ as well as the distribution of A;. As long as s;3 is coprime to pyps, (which holds with overwhelming probability
over the choice of s;3 < Zy), then the distributions of B; and A, are distributed exactly as required in |Hybt(,33) and
cHyb . All remaining components are simulated exactly as in |Hyb( 3) and cHyb[ o » 50 with probability at least

€— negI(A) algorithm A outputs (M, p) such that e]v* # 0 mod N but ev' =0 mod p2. In this case, ged(N, e]v")
yields a non-trivial factor of N, and algorithm 8 wins the game in Lemma 5.3 with the same advantage. O

Lemma A.13. Forallt € [L], all adversaries A, and all v € {0, 1}, Pr[cHyb(V) (A)=1] = Pr[cHyb(V) (A) =1].

Proof. Without loss of generality, we can assume that NonCorrupt does not occur and moreover, e;v* # 0 mod p,. Oth-
erwise, the output in both experiments is 0. The only difference between the two distributions is the distribution of the

challenge ciphertext components Cs k. In cHyb the challenger replaces f,v’ with ¥ + £0*. By definition, in cHyb

.10 10

V + V= [Bo, 05 + Eus, .., 0 + Eur ] = BV,
where V' = [1, oy, ... ,07/], and the distribution ofdy,...,d, areindependent and uniform over Zy (since 9, ..., 9, &
Zy). This is precisely the distribution of C5 ¢ in cHyb(V) O

Lemma A.14. For all ¢ € [L], all adversaries A, and all v € {0, 1}, there exists a negligible function negl(-) such that
forall A e N,

Pr[cHyb{Y (A) = 1] - Pr[cHyb\} (A) = 1]| = negl(1).

Proof. We show that the distributions cHyb(V) (A) and cHyb(V) (A) are statistically indistinguishable. This argument
will rely on the fact that the attributes S, associated with slot £ do not satisfy the challenge policy. By construction,

the only difference between the two experiments is the distribution of component B, in the G, subgroup. In cHyb( Y

0,10
B, = gf’Af(ggg4)ff while in cHybt(,;), By = gf’Af(ggggg4)Tf. In both experiments, A, = gi’ (gzgg)ft” = g“d! (g293)™. We

start by defining a few quantities that will be useful in our analysis:

« Let P* = (M, p) be the challenge policy where M € ZI]SX" and p: [K] — U, is the injective row-labeling
function.

« Let S; € U, be the set of attributes associated with slot ¢, and let I = {k € [K] : p(k) € S;} be the indices of
the rows of M associated with the attributes in S,. Let M be the corresponding submatrix of M.

o« Letv* e Zy, be the vector where M;v* = 0 mod p, and e]v* # 0 mod p,.
Moreover, we have the following:

« Since the challenger in the two experiments sample s¢, 7, <~ Zy;, it follows that 7, # 0 mod p; and s; # 0 mod p,
with overwhelming probability.
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« Next, we show that ZlE[L]:p(k)¢Si ti = 2ic[L]:p(k)es; a% # 0 mod p; forall k € I. By construction, in experiments

cHyb(V) and cHyb ¢z » the value of a mod p, is information-theoretically hidden to the view of A (specifically,
the quantities A;, U;.,, W, 4 that depend on a are only given out in the G, subgroup). In particular, this means
that the labeling function p as well as the attribute sets S; for all i € [L] chosen by the adversary are independent
of the value of a mod p,. In fact, the challenger in these two experiments can defer the sampling of a mod p;
until after the adversary chooses p and S; for all i € [L]. Since the challenger samples a <~ Zy;, the value of
a mod p; is uniform over Z,. By the Schwartz-Zippel lemma, the probability that >;c(1).p(x)es; a% =0 is then
at most max(D)/pz = poly(L)/p2 = negl(A). The claim now follows by a union bound over all indices k € I.
Consider the following relabeling of the variables in cHyb{(,!‘I):

« Let 0'#) € Zy be the unique value where 6'%) = 0 mod p;psps and o'#) = (r;) "', mod p,. Suppose we write
B = B+ P for some B & Zy.

« Let ¢¥) € Zy be the unique value where ¢'¥) = 0 mod p;psps and (&) = (U;‘)_la(ﬂ) mod p,. Suppose we
write £ = & + o(¥) for some & & Zy.

« For each k € [K], let O'lib) be the unique value where

O'lib) =0 mod pipsps and o®) = Sk Z ti| o m; v mod ps.

k
ie[Lip(k)eS;

; _ (b) ,
Suppose we write b, k) = bp(k) +o, for some bp(k) & Zn.

By construction, these substitutions preserve the distribution of f;, £, and b, (k) in cHybg‘I). Consider the remaining
components in the adversary’s view under this variable substitution:

« Consider the components in the common reference string. First, h = gﬂ o gﬁ P2 Next A= gi" gg‘/’ for all

i#tand A, = g1 *(g293)™. Consider the distribution of each B;:
- If i < ¢, then B; = ¢§ Aﬁ1 b2 (929394)" = g Aﬂ1 K& (929394)".
- Ifi =¢, then

glAﬁl ﬁZ(gSg4)T¢> _ ga te(fr+h2) T{<ﬁ1+ﬁ2) Te(ﬂl"'ﬁz)(g 90"

= ¢ AP (gagaga)™,
since f, = B, mod pipsps and B, = B, + (7,) 'z, mod p,.
- If i > ¢, then B; = ¢} Aﬁ1+ﬁzg3’ = g"‘Aﬁ1 P2 (9394)™.

Consider the slot components U; ,(x) and W, ) for each i € [L], z € &, and k € [K]. By definition,

bpoti _ Bp i
Uipk) = 9, =9

bo (k) a* AL
Wep (k) = 9y =9,

The remaining components in the CRS do not depend on fs, &, or b, (x), and are thus unchanged.

« Next, the components the challenger constructs when responding to key-generation queries do not depend
on the exponents B, £, or b, k), so their distributions (given the components in the CRS) are unchanged with
this substitution.
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« Finally, consider the components in the challenge ciphertext. The components Cy, Cy, C4f, Cs for k € [K] are
all unchanged (i.e., they are independent of f3;, &, b, (x)). It suffices to consider the ciphertext components Cs .
First, since ff, = ) + o) andE=¢ + (vi‘)‘la(ﬂ), we have

V = [fs— &, 05, ..., 0,] = [B5 — &0, 05,...,0,] mod N.
We now consider two possibilities:

— Suppose p(k) € S;. This means that k € I so m; v* = 0 mod N. Moreover, Cy x = (g194)°*, so we can write
Cs as

_ sym! (V+&v*) ~~bptl) DielLlp(es; b ne
Csx = ((g1g2)")™ ¥+ )C4,k 94
_ s\yml v’ ~~bptk) DielLlpkres; i ni
= ((9192)°)" " C, 9y

T (o4 gt o -b’ Z . 7
(k) “~i€[L]:p(k)gS
= ((g192)")™ Ve, 7 A

— Suppose p(k) ¢ S;. First, we have

§mLV* - Skbp(k) Z t; = ‘f'miv* - skb;(k) Z t; mod pP1p3ps.
i€[L]:p(k)¢S; i€[L]:p(k)¢S;

We show the same relation also holds modp,. Under our change of variables, we have

-1

Emyv" — sebyk) Z t; = (& +0)mpv* - s by + | s Z t;| o®mv* Z t
i€[L]:p(k)¢S; i€[L]:p(k)€S; i€[L]:p(k)¢S;

= §/m}<v* — skb;)(k) Z t; (mod p2)
i€[L]:p(k)eS;

Since p(k) ¢ S, we have that Cyx = ((g192)°gs)**. We can now rewrite Cs ;. as

T *y =b 2ielL): i
Csp = ((glgz)S)mk(V +&V )C4,kp(k) [L]:p(k)€S; ng

T (o * —s . ) .
= ((9192)*)™ V¥V ((g1g5)* ga) ~Skbot) Zicttrpoes; i gk

_ ((gng)S)mL({/+§v*)—skbp(k) SiclLlp()es; ting—Skbp(k) Zie[Llp(k)gs; Li
= ((glgz)S)ml({"+§/V*)‘Skb}z<k> ZielLlp(k)es; ting_skb;?(H LielLlp(kyes; Li
T (o a2y Y DielLlp(k)es; b

= ((glgz)S)mk(v +&'v )C4,kp(k) Ll:p(k)es ng
Observe now with this relabeling of variables, we have recovered the ciphertext distribution in cH b(") (with

g p YD¢2
randomness f3;, £’ and b;( k))' Thus, the distributions cHybg’;) and cHyb{(,"I) are statistically indistinguishable. O
Lemma A.15. Forallt € [L], all adversaries A, and all v € {0, 1}, Pr[cHybg’g) (A)=1] = Pr[cHybg’g) (A) =1].
Proof. This follows by the same argument as in the proof of Lemma A.13. O

Lemma A.16. Suppose Assumption 5.2d holds with respect to CompGroupGen. Then, for all ¢ € [L], all efficient
adversaries A, and all v € {0, 1}, there exists a negligible function negl(-) such that

|PrlcHyb!; (A) = 1] - Pr[iHyb{"; (A) = 1]| = negl(4).

Proof. This follows by a similar argument as in the proof of Lemma A.12. O
Combining Lemmas A.12 to A.16, Claim A.11 now follows by a hybrid argument. O
By Claims A.3 and A.11, Egs. (A.4) and (A.5) both hold. Lemma 5.21 now follows by the triangle inequality. O
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B Statistically-Secure Registered ABE without Progression-Free Sets

For completeness (and comparison purposes; see Section 6) we describe an analogue of our statically-secure registered
ABE scheme (Construction 4.3) without progression-free sets. This allows us to base security on the less structured
parallel Diffie-Hellman exponent assumption from [Wat11]; on the flip side, the size of the CRS is quadratic in the
number of users (but still independent of the size of the attribute universe). This construction highlights our approach
for reducing the CRS size by employing a partitioning-based proof strategy (which can be leveraged independently
of using progression-free sets).

Parallel Diffie-Hellman exponent assumption. We start by reviewing the parallel Diffie-Hellman exponent
assumption introduced by Waters [Wat11] in the context of constructing ciphertext-policy attribute-based encryption
(in the centralized model).

Assumption B.1 (Parallel Diffie-Hellman Exponent Assumption [Wat11, adapted]). Let PrimeGroupGen be a prime-
order group generator. For a security parameter A and a bit b € {0, 1}, we define the (g1, g2)-parallel Diffie-Hellman
exponent game between an adversary A and a challenger as follows:

1. The challenger starts by sampling G = (G, Gr,p,g,e) « PrimeGroupGen(1%). It also samples exponents
exponents a, s, fi, . .. fg, < Z,. Then the challenger computes the following quantities:

o LetY =g°.

. Foreachi € [2q1] \ {q:1}, let X; = ¢

- For each j € [qz], let YY) = g*/7 and for each i € [2q1] \ {q1}, let Xi(j) = gai/ﬁj'
« Foreachi € [2¢1] \ {q1} and j, k € [q2] where j # k, let Zi(j’k) _ gaisﬁk/ﬁj.

Finally the challenger computes T, = e(g, 9)*"'® and samples T; & Gr. It then gives the following challenge
to the adversary

) (k)
(Q, 9. Y, (Xiticzanviary > YV X Y jetgvietzanan s 1207 Yiskictza i) )

2. The adversary outputs a bit b’ € {0, 1} which is the output of the experiment.

We say that the (g1, q2)-Parallel Diffie-Hellman Exponent assumption holds with respect to PrimeGroupGen if for
all efficient adversaries A, there exists a negligible function negl(-) such that for all A € N,

|Pr[b' =1:b=0] —Pr[b’ =1:b=1]| = negl(})
in the (g1, g2)-parallel Diffie-Hellman exponent game.

Remark B.2 (Comparison to [Wat11]). Note that the original assumption formulation from [Wat11, §2.4.1] corre-
sponds to the particular case where q; = g,. Allowing different values ¢, ¢, simplifies the analysis of our construction.
For completeness, we prove that our variant of the parallel BDHE assumption holds in the generic bilinear group
model in Appendix D (Lemma D.7).

Slotted registered ABE without progression-free sets. We now give the analog of Construction 4.3 without
relying on progression-free sets. This construction can also be viewed as a prime-order analog of the composite-order
scheme from [HLWW23].

Construction B.3 (Slotted Attribute-Based Registration-Based Encryption). Let PrimeGroupGen be a prime-order
bilinear group generator, let U = {U) } e be a (polynomial-size) attribute space, and let P = {#; } 1en be a set of poli-
cies that can be described by a linear secret sharing scheme (Definition 2.2) over U, where each policy P € P, is defined
over a maximum of K = K(A) attributes. We construct a slotted attribute-based registration-based encryption scheme
ITrage = (Setup, KeyGen, IsValid, Aggregate, Encrypt, Decrypt) with attribute space U and policy space P as follows:
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Setup(1%, 1¥): On input the security parameter A, and the number of slots L, the setup algorithm starts by sam-
pling G = (G, Gr, p, g, ) < PrimeGroupGen(1%). The setup algorithm now constructs the following quantities:

— Sample random exponents a <~ Z, and set o = —a**!. Compute h = [Ticr g““H

— For each slot index i € [L], sample exponents u;, §; <~ Z,, and let t; = a’. Then, define the following group
elements:
Ai=g" , Bi=g%h" , Pi=g” , U=g"“.
Then, for each i, j € [L] where i # j, compute the “cross term” W; ; = gl
— Finally, let Z = e(g, g)*. Output the common reference string

Crs = (g’ Z’ g, ha {(AisBi’Pia Ui)}iE[L] > {‘/Vl,j}j:#l) (Bl)

The associated message space M, is defined to be M, = Gr.

KeyGen(crs, i): This is the same algorithm as in Construction 4.3. Namely, on input the common reference
string crs (with components given by Eq. (B.1)) and a slot index i € [L], the key-generation algorithm samples
r; & Z, and computes

Ti=9" , Q=P

Then for each j # i, it computes the cross terms V;; = A;". Finally, it outputs the public key pk; and the secret
key sk; defined as follows:

pk; = (T, Qi {Vj.i}j»1) and ski=r;.
Note that this key-generation algorithm does not depend on the set of attributes.

IsValid(crs, i, pk;): This is the same algorithm as in Construction 4.3. Namely, on input the common ref-
erence string crs (with components given by Eq. (B.1)), a slot index i € [L], and a purported public key
pk; = (Ti, Qi, {V} i} j#i), the key-validation algorithm first affirms that each of the components in pk; is a valid
group element (i.e., an element in G). If so, it then checks

e(’na Pl) = e(g> Ql)
Next, for each j # i, the algorithm checks that

e(g, Vi) = e(Ti Aj)

If all checks pass, it outputs 1; otherwise, it outputs 0.

Aggregate(crs, (pky, S1), ..., (pky, Si)): On input the common reference string crs (with components given by
Eq. (B.1)), a collection of L public keys pk; = (T;, Qi, Ri, {V} i} i) together with their attribute sets S; € U, the
aggregation algorithm starts by computing the attribute-independent public key T and the attribute-independent

slot key V; for each i € [L]:
T= 1_[ T; and f/izl—[Vi,j.
jelLl Jj#i
Next, for each attribute w € U}, it computes the attribute-specific public key U,, and the attribute-specific slot
key W;,, for each i € [L]:
Oo= [] U and Wiw= [] wy
JE[L]:w¢S; J#i:wgS;

Finally, it outputs the master public key mpk and the slot-specific helper decryption keys hsk; where

mpk = (g, g> h, Za T’ {UW}WE(U,{) and hSki = (mpks i’ Si’Ab Bl" ‘71'> {VVLW}WE'L(A)’

90



« Encrypt(mpk, (M, p), #): On input the master public key mpk = (G, g,k Z, T, {Uw}we(L{A), a policy (M, p)
where M € Zf *"and p: [K] — U, is a row-labeling function, and a message p € Gr, the encryption algorithm
starts by sampling a secret exponent s ¢~ Z, and hy, h, € G such that h = hihy. Then, it constructs the
ciphertext components as follows:

- Message-embedding components: First, let C; = - Z° and C; = ¢°.

— Attribute-specific components: Sample vy, ..., 0, & Z, for the linear secret sharing scheme and let
T A
v = [L,0...,0,]". Then, for each k € [K], sample s; < Z, and let Cs = hzmka;(s]f) and Cyy = g%,

where m; € Zj, denotes the k™ row of M.
— Slot-specific component: Set Cs = (h;T~)*

It then outputs the ciphertext
ct= ((Ma p)’ Cl’ C2a {C?),ks C4,k}k€[KJ’ C5) .

« Decrypt(sk, hsk, ct): On input the secret key sk = r, the helper key hsk = (mpk, i, S;, A;, B;, V., {Wi,w}we'm),
where mpk = (G, ¢,h, Z, T, {Uw} weas;), and the ciphertext ct = ((M, p), Cy, Ca, {Cs Cujtkeik] Cs) where
Me Zf *™and p: [K] — U, is a row-labeling function, the decryption algorithm proceeds as follows:

— If the set of attributes S; is not authorized by (M, p), then the decryption algorithm outputs L.

— Otherwise, let I = {k € [K] : p(k) € S;} be the indices of the rows of M associated with the attributes
Si € Uj. Write the elements as I = {kq,..., kg }.

— Let Mg, be the matrix formed by taking the subset of rows in M indexed by I. Since S; is authorized, let
ws, € Zgl be a vector such that wg Mg, = e;.

— Then, compute and output
ryy W ©Si.j
-e(Cs, Aj) - e(Co, AT V;) - 1—[ (e(Cs,kj,Ai) “e(Cy;s Vvi,p(kj))) .

1
e(Ca, By) 1<j<|1]

Dot Datrib

We will refer to Dgot as the slot-specific decryption component and Daib as the attribute-specific decryption
component.

Correctness. We now show that Construction B.3 satisfies completeness, correctness, compactness, and incremental
aggregation.

Theorem B.4 (Completeness). Construction B.3 is complete.

Proof. Take any security parameter A € N and the number of slots L € N. Let crs < Setup(1%, 1*). Then, we can write

cs= (G, Z, g, h, {(Ai, Bi, P, U Yiery > AWij} jei) -

Take any index i € [L] and let (pk;,sk;) « KeyGen(crs,i). By construction of KeyGen, we can write pk; =
(T3, Qi, {V i} j#i), where

Ti=g" . Q=P ., V=A"

for some r; € Zy. We now consider each of the pairing checks in IsValid:

« e(T;, P;) = e(g"", Pi) = e(g, P]") = e(g, Qy).
- e(g. Vi) =e(g. A7) = (g, Aj) = e(T, A)).

Since all of the pairing checks pass, IsValid(crs, i, pk;) outputs 1 and completeness holds. O
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Theorem B.5 (Correctness). Construction B.3 is correct.

Proof. Take any security parameter A € N, attribute space U, slot length L € N, and index i € [L]. Consider the
following components in the correctness experiment:

« Let crs « Setup(1%, 1%) where crs = (G.Z,9g,h, {(A, Bi, P, Up}ie[r]» {Wij}j=i). By construction, the slot
components can be written as A; = ¢'i, B; = g*h’i, and P; = ¢%. The attribute components can be written as
U; = g% and W; ; = g% (where t; = a').

- Let (pk;, sk;) « KeyGen(crs, i). Then, we can write sk; = r; and pk; = (T;, Qi, {V},i} j2i) where
Ti=g" . Q=P , V;=A'= gl (B.3)
- Take any set of public keys {pk; } ; where IsValid(crs, j, pk;) = 1holds. Since pk; satisfies the IsValid predicate,
we can write pk; = (T}, Qj, {Vej}e2j)-
« Foreach j € [L], let S; C U, be the attributes associated with pk;.

« Let (mpk, hsky, ..., hskg) < Aggregate(crs, (pky,S1), . .., (pk;,Sr)). Then, the master public key mpk and the
ih slot-specific helper decryption key hsk; can then be written as follows:

mpk = (G, g, b, Z, T, {Uw}wea;) and hsk; = (mpk, i, Si, Ay, Bi, Vi {Wi o} wesy)s

where T = [Tier) T Vi= [1j%i Vi), and

U, = l_[ Uj = n g

JE[L]:weS; JE[L]:wgS;
~ o
o= T1 W= [ o

JEEWES; JELEWES;

+ Let (M, p) be the challenge policy where M € Zg *"and p: [K] — U, is a row-labeling function. Take any
message y € Gr. The challenge ciphertext ct can be written as

ct= ((M’ p)’ C1> CZ’ {C3,k’ C4,k}kE[K]s CS)
s s mLV =Sk s, sT—s
where Cy = p1- 2%, C; = ¢°, Ca = hy © U ), Cap = g%, and Cs = BT
We now show that Decrypt(sk;, hsk;, ct) outputs p. Let I = {k € [K] : p(k) € S;} be the indices of the rows of M

associated with the attributes S;. Write the elements of I as I = {ky, ..., kj;}. Let Mg, be the matrix formed by taking

the subset of rows in M indexed by I, and let ws, € Z%l be a vector such that w; Ms, = e]. We break up the decryption
relation (Eq. (B.2)) into several pieces and analyze them individually:

« Policy check: First, consider Darib = [11<j<|1 (€(Cs,»Ai) - €(Cag, Wi,p(kj)))wsi’j. By definition,

T
mkv

ok stml v _ .
Jj Up(skk;),gti) =e(hz,9) timy l—[ e(g,9) Sk titte

S
e(Ca Ar) = ¢ (hz
eelLlp(k))ese

A . t; .
e(Caky Wip(k)) = 1_[ e (g™, W) = 1_[ e(g,g)"™"™
t#i:p(k;)€Se t#i:p(k;)¢Se
By construction, p(k;) € S;, so the latter terms cancel out and we can write

T
stim, v
1 k] .

e(Csx;, ADe(Cak;n Wip(k;)) = e(hz, g)
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Finally noting that ejv = 1, we have

Dattrib = n (e(Csky Ar) - €(Caey Wip (i)
1<j<]1]

Sti Yi<j<|r) @S, My V
e(hy, g) Pk

T
e(hz, g)st,wsl_Msiv

e(hz,g)stier — e(hz,g)Sti.

« Slot check: Next, consider the component Dgjor = e(C5,A,~)e(C2,A:"f/I-). By definition

e(Cs, A)) = e(RT7,6") = e(h1,g)*" [ | e(Ty.9) " = e(hs, )" [ | (1,40

jelL] JeIL]
e(Co ATV) = e(g", g™ Vi) = e(g. 9™ | | e(g. Vi)*.
Jj#i

Now, since we know for all j € [L], IsValid(crs, j, pkj) = 1, we have that for all j # i, e(g, Vi ;) = e(T}, A)).
Thus, using Eq. (B.3), we can now write

Dyjor = €(Cs, Ai)e(Co, AT'V;) = |e(hi, 9)"e(T;, A~ | | e(T;, 4
J#i
e(h1,9)*e(T;, Ai) *e(g,9)°""

e(hi,9)*e(g", ") e(g.9)°"" = e(h1,9)*"

(e(g, 9 [ etovipy®

J#i

+ Message reconstruction: Using the fact that h = hyh,, and combining the above relations, we have that
Dslot * Dattrib = e(hi, g)Stie(hb g)Sti =e(h, S)Sti~
Next, we can see that have
e(Cz, B;) = e(g".g"h") = e(g.9)"e(h. g)*".
Thus, putting everything together, Eq. (B.2) becomes
C1 - Dyiot * Dattrib _ p-e(g,g)“e(h, g)“" _
e(Cz, By) e(g.9)e(h, g)*"

Theorem B.6 (Compactness). Construction B.3 is compact.

Proof. This follows by inspection. The master public key mpk consists of the group description and O(|U,|) group
elements. Since the group description and each individual group element can be represented in poly(A) bits, the size
of the master public key is bounded by poly (4, |U,|,log L) bits. Likewise, the helper decryption key consists of the
master public key along with O(|U)|) group elements. Thus, the size of hsk; is also poly(A, |U,|, log L) bits. O

Theorem B.7 (Incremental Aggregation). Construction B.3 supports f-incremental aggregation for f(L,|U,|) =
O(L - [Up ).

Proof. We construct the AggregateUpdate algorithm as follows:
« AggregateUpdate(crs, st, (pk, S)): On input the common reference string
crs=(G. Z, g, h, {(Ai, B, P, U Yiern > {Wij}jsi)s

a state st (which could be L), and a public key (pk, S) (or the special symbol L), the update algorithm proceeds
as follows:

93



1. If st = 1, then the update algorithm initializes k = 0 and T = 1, Vi(k) =1forallie [L], U,E,k) =1 for
all w € U, and Wl(fv) =1foralli € [L] and w € U,. Otherwise, the update algorithm parses

17 (k)

st = (k s f(k) s {Vi(k)}ie[L] 4 {Ua(vk)}we(l/a ’ { iw ie[L],we‘L(A)

2. If (pk,S) = L, then the algorithm outputs

mpk = (G, g,h, 2, T®, {0} . Vie[L]:hsk; = (mpk,i, i, Ay, By, V5, (%)

e"[,[/-{ WErL{A).

3. Otherwise, the update algorithm parses pk = (Tk+1, Ok+1> {Vik+1} i¢k+1) and updates the state as follows:
e S N O

Foreachi € [L],ifi # k+ 1 then Vi(kﬂ) = Vl.(k) - Vik+1. Otherwise, if i = k + 1, then set Vi(kﬂ) = \7i(k).

For each w € U, if w ¢ Si,1, then U(kﬂ) = U(k) - Ug41. Otherwise, if w € S, then Uv(‘,kﬂ) = Uv(vk).

Foreachi€ [L] andw € U, if i # k+ 1 and w ¢ S, then W(k+1) Wl(fv) - Wi k+1. Otherwise, set

W =

4. Output the updated state

U&kﬂ)} {W(k+1)}

ie[L] > { ie[L] we(L{A)

wely ’

st= (k +1, T+ {V(k“)}

To complete the proof, we show that this incremental aggregation procedure implements the same behavior as the
standard aggregation procedure. Specifically, we show inductively that for all k < L, the following properties hold
for the elements in the AggregateUpdate algorithm:

(k) —
* T( ) = nje[k]TJ
. 5 (k
« Foralli e [L], Vi( ) = nje[k]\{i} Vij-
« Forallw e Uy, U Hje[k] wgs; Uj-

« Foralli € [L] and w € Uy, W, iw —H]e[kj\{}wes Wi, ;.

By construction, all of these properties hold for k = 0. Moreover, the inductive step follows by inspection: namely,
each of the updates in Step 3 simply multiplies in the next component into the product (if present). When k = L, the
components 7%, V<L) U, and W( ) precisely coincide with the quantities in the Aggregate algorithm. Finally,
the intermediate state st always contalns O(L - |'U,|) group elements, which proves the claim. O

Theorem B.8 (Static Security). Let L be a bound on the number of slots. Let g = L+ 1 and g, = L - K. If the
(q1, q2)-parallel bilinear Diffie-Hellman exponent assumption (Assumption B.1) holds with respect to PrimeGroupGen,
then Construction B.3 is statically secure (for up to L slots).

Proof. Similar to Section 4, our security proof relies on a partitioning strategy where we program the indices of the
corrupted slots into the common reference string. We begin by defining a sequence of hybrid experiments. Each
of our experiments is parameterized by a bit v € {0, 1} (and implicitly, by the security parameter A).

. Hybfe‘;)lz This is the real security game where the challenger encrypts message ;. We recall the main steps here:

— Setup phase: In the setup phase, the adversary A specifies the number of slots 1- and the indices of the
corrupted slots C C [L]. In the following, we also define the indices of the non-corrupted slotsas N := [L]\
C. The challenger then samples the common reference string crs according to the specification of Setup:

« The challenger initializes a counter ctr = 0 and an (empty) dictionary Dict.
« The challenger samples G = (G, Gr, p, g, €) < PrimeGroupGen(1%).
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» The challenger samples a ¢~ Z, and set & = —a"*'. It also computes h = [;c(1 g“"""". Then, for

each slot i € [L], the challenger samples u;, §; < Zp, and sets t; = a'. Then, it defines the following
group elements:
Ai=g" , Bi=g"h" , Pi=g" , U=g"
Then, for each i, j € [L] where i # j, it also sets W; ; = g"/.
« Finally, compute Z « e(g, g)*. The challenger constructs the common reference string

crs=(G, Z, g, h, {(Ai, B, P, U Yierr) > {Wij}jsi) (B.4)

and gives crs to A.
— Query phase: The challenger responds to the adversary’s key-generation queries as follows:

« Key-generation query: Whenever algorithm A makes a key-generation query on a non-corrupted
slot index i € N, the challenger starts by incrementing the counter ctr = ctr + 1 and samples r; <~ Z,,.
It then computes T; = ¢", Q; = P;’, and V; = A;i for j # i. The challenger sets the public key to
be pkg, = (T, Qi, {V},i} j»i) and responds with (ctr, pk,). It adds the mapping ctr — (i, pk,) to the
dictionary Dict.

ctr

Recall that in the static security game, the adversary is not allowed to make any corruption queries.

— Challenge phase: In the challenge phase, the adversary specifies a challenge policy P* = (M, p) € P,
where M € ng" and p: [K] — Uy is a row-labeling function and two messages p;, i} € Gr.'' In
addition, the adversary specifies a key for for each slot i € [L] as follows:

« For each corrupted slot i € C the adversary specifies a public key pk; = (T;, Q;, {V},i} j»i) and an
attribute set S;. The challenger checks that IsValid(crs, i, pk;) = 1 and halts with output L if not.
Specifically, the challenger checks that e(T;, P;) = e(g, Q;) and for each j # i, thate(g, V;;) = e(T;, Aj).

» For each non-corrupted slot i € N, the adversary specifies an index c; € [ctr]. The challenger looks
up the entry Dict[c;] = (', pk’). If i = i/, the challenger sets pk; = pk’. If pk; # pk’, the challenger
halts with output L.

For each slot i € [L], the challenger parses it as pk; = (T;, Q;, {Vj,;} j=i). The challenger computes the
attribute-independent public key T and the attribute-independent slot key V; for each i € [L]:

T=]]1 and Vi=]]vy;

jelL] J#i

Then, for each attribute w € Uy, it computes the attribute-specific public key U,, and the attribute-specific
slot key W; ,, for each i € [L] as follows:

Uwz [] U and Wiw= [] Wiy

€[L]:weS; J#i:wgS;

The challenger then constructs the challenge ciphertext by sampling a secret exponent s - Z, and
hy, hy € G such that h = hyhy. It constructs the ciphertext components as follows:

+ Message-embedding components: First, let C; =y, - Z° and C; = ¢°

+ Attribute-specific components: Sample v,,...,0, ¢ Z, for the linear secret sharing scheme and
let v.=[1,0;,...,0,]". Then, for each k € [K], sample s < Z,, let Csy = h i Up(s,f) and Cyr = g%,

where m;_denotes the k™ row of M.
« Slot-specific component: Let Cs = (h,T1)*.
The challenger replies to A with the challenge ciphertext
= ((M, ), C1, C2, {C3., Ca e Yre k1> Cs) -

1 As in the proof of Theorem 4.8, we will assume that M has exactly K rows (which we can ensure by padding M with all-zero rows).
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— Output phase: At the end of the game, the adversary outputs a bit v/ € {0, 1}, which is also the output
of the experiment.

. Hybiv): Same as Hybgv) , except the challenger makes the sfollowing syntactic changes:
- Setup phase: In the setup phase, the challenger samples ;. < Z,, for each i € [L], k € [K]. Then it sets

aLH—i

for all i € [L]. Finally, instead of sampling the encryption randomness s € Z,, in the challenge phase, the
challenger now samples s <~ Z, in the setup phase. For the corrupted slots i € C, the challenger now
sets P; = ¢°” (instead of P; = ¢%).

- Query phase: When responding to a key-generation query for a slot i € N, instead of sampling r; & Z,,
the challenger samples r] & Z, and sets r; = a7 + /.

— Challenge phase: After the adversary outputs its challenge policy P* = (M, p), the challenger computes
for each i € C avector v; € Zj with first entry 1 and which is orthogonal to every row m; of M where
p(k) € S;. Note that such a vector exists (see also Definition 2.2) since the attributes in S; (for a corrupted
slot) do not satisfy the challenge policy P* = (M, p). When generating the challenge ciphertext, the
challenger generates the attribute-specific components C; i and C, ;. as well as the slot-specific component
Cs using the following modified procedure:

» Attribute-specific components: The challenger sets
Sp=S- Z Bik - myvy
ieC:p(k)¢S;

and constructs the attribute-specific components as

T Ltl-iys A —S) Sk
Chpm g TN O and €y =g

» Slot-specific component: The challenger sets the slot-specific component as
+1—i -51!
¢i =g e 1 [ 0"
ieN ieC

Finally, the challenger rerandomizes the attribute-specific and slot-specific ciphertext components using
the following rerandomization procedure:

Rerand ({Un }wersy, (M, p), {C} 1. Cy i dkerx)> C5):

1. Sample y,v},0},...0), € Z, and set v/ = [1,0},0},...,0,] and s, & Z, for each k € [K].
2. Compute the rerandomized ciphertext:

Csp = Cé,k .g)’ml‘/ . (A];(Slf) and Cyp = Cﬁ’&,k -gsl'c and Cs=Cig™".

3. Output ({Csk, Cak }rek]> Cs)-

Figure 2: Ciphertext rerandomization algorithm.
The challenger then computes

({Csk, Cag bre(k, Cs) = Rerand ({Uw }weasy» (M, p), {C5 1 Clh it kelk, C5)

and gives the rerandomized ciphertext to the adversary:

ct* = ((M, p), C1, Ca, {Cs ., Caic Yre[k]s Cs)-
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— Output phase: At the end of the game, the adversary outputs a bit v/ € {0, 1}, which is also the output
of the experiment.

. Hyb(;’) Same as Hybgv) except when constructing the challenge ciphertext, the challenger samples C; <~ Gr.

Importantly, this distribution is independent of the message.

For a hybrid experiment Hyb and an adversary A, we write Hyb(A) to denote the output distribution of an execution
of Hyb with adversary (A. In the following, we argue that each the output distribution of each adjacent pair of hybrid
is indistinguishable.

Lemma B.9. For all adversaries A and all v € {0, 1}, there exists a negligible function negl(-) such that for all A € N,

|Pr[Hyb " (A) = 1] - Pr[Hyb!" (A) = 1]| = negl(2).

real

Proof. We show that Hybfeva)I and Hybgv) are statistically close by showing that the adversary’s view (i.e., the crs from
the setup phase, the public keys in the query phase, and the challenge ciphertext ct* in the challenge phase) in the
two distributions is statistically close. We consider each phase separately.

Setup phase. The only difference is how the challenger samples u; and P;. In Hybiv), the challenger sets

1 >
ui = aL+1 i

o Pik
where f; i ¢ Zy foralli € [L] and k € [K]. We consider the distribution of u;:

- Since the challenger samples a <~ Z,, and p is prime, the probability that a“*'~* = 0 mod p is at most (L+1—i)/p
(since a polynomial of degree L + 1 — i can have at most L + 1 — i roots over Z,). Since p = 27%W) we conclude
that (L +1 — i)/p = negl(1) and so at*!~* is non-zero with overwhelming probability.

« Since each f; i is uniform over Z,, they are non-zero with overwhelming probability. In this case, the distribution
of each ﬂl_kl is independent and uniform over Z,.

Thus, with overwhelming probability, a’*'~% # 0 for all i and each ﬂ & isan independent and uniform (non-zero)
value over Z,. We conclude that the distribution of u; is statistically close to independently uniform over Z,, which is

the distribution of ; in Hyb:eva)l. Next, consider the distribution of P; for i € C. In Hybgv), the challenger sets P; = g%

while in Hybiv), the challenger sets P; = g°%, where s & Z, and §; & Z,. Aslong as s # 0, these two distributions
are identical. Since s is sampled uniformly, these two distributions are statistically close.

Query phase. The only change is how the challenger samples r; for i € N. In Hyb(v) the challenger samples

ri & Zp. In Hybiv), the challenger samples r] < Z, and sets
ri=a* 4 rl,

These two distributions are identical.

Challenge phase. In Hybiv), the distribution of the attribute-specific and slot-specific ciphertext components can
be written as follows:

C3,k — gsm}z Yiec aL”’iv; X Up_(slf) . gymZV’ . [A]p_(slf) gsmk((y/s) V'+Yiec alt1-ty* )U ((]:)1<+Sk)

* o
Sk+Sk

C4,k = gsl*cgsl/c =g

Cs =g Zev e 1[0/ g7 = ¢ s(-r/s+Bien at) [15]]e”

ieN ieC ieN ieC
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where y,0),..., 0}, & Zp, sl’c & Z, forallk € [K],and v/ = [1,0,,...,0;,]. For each i € C, let (pk;, S;) be the public
key and set of attributes the adversary chooses for slot i € C. Parse pk; = (T;, Qi Ri, {V},i} j#i), and let r; € Z, be the
discrete log of T; (i.e., T; = g"). Without loss of generality, we can assume that for all i € C, IsValid(crs, i, pk;) = 1.

Otherwise, the output in both experiments is L. In Hybgv), the challenger sets P; = g°%, so by construction of IsValid,

e(g’ Ql) = e(Ti,Pi) = e(g’ g)s5iri.

In particular, Q; = gs‘si i Thus, we can rewrite Cs as

_ +1—i 5! _ L+1—i .
C5 _ gs( Y/s‘*'ZieNaL 1 ) TS Q i gs( Y/stYien a ) T~$ g—sr,
= g (vt Bie 1) [17°
jelL]

L+1—i)j_

— 93(—V/s+2,-g/v a =S
We claim now that the distribution in Hybgv) is equivalent to an execution of Hyb:e:l)I with the following variable
assignments:

hy = g VI Zen @™ and by = gt/st R @

and for all k € [K], s; = sz + s]'c, and
/s + Tiecd v

Y/s+ 2iec al+1-i

For this assignment of variables, observe that

SMV A g _ S(Y/S+Ziec aL+l—i)mTv A —(sg+sy)
hy " Upiy =9 “Uph)
T , . Ltl—iyx A —(si+s7)
— gsmk((y/s)v +Xicc @ vl) . Up(k;{ k) _ C3,k;

g% = g™k = Cyy, and (b T~1)* = Cs, which coincides with the definitions in Hybfe‘;)l. To complete the proof, it

suffices to argue that this choice of assignments are distributed according to the specification in Hybi:a)]. We analyze
each component as follows:

« In Hybiv), the challenger samples y, s ¢~ Z,. As long as s # 0 (which happens with overwhelming probability),
then over the random choice of y, the distribution of y/s is uniform. Thus, with overwhelming probability over
the choice of s, the distribution of h; is uniform over G. Moreover,

L+1-i L+1-i

= gZielLl a = h,

it Yieca

hihy = gZieNaL

since C and N are a partition of [L].

7’

! & Zp, the distribution of s is also uniform over Z,, which matches the

« Since the challenger samples s
distribution in Hyb:e‘;)l.
» Write v = [01,05,...,0,] and v/ = [1,0,,...,0;]. By construction, the first component of v and v} for all i € C

is 1. This means v; = 1, just as in Hybfevzl. For i > 1, the challenger in Hybgv) samples o/ < Z,. Thus, as
long as y,s # 0, the distribution of y/s - v} is uniformly random (and independent of all other components).
Correspondingly, this means that the distributions of vy, . . ., v, are independent and uniform over Z,, exactly as

required in Hybfe:l)l. Since the challenger samples y, s ¢ Z,, they are non-zero with overwhelming probability.

Thus, with overwhelming probability over the choice of g, y, and s, the challenge ciphertext Hybiv) is distributed
exactly according to the distribution in Hybf;)]. We conclude that the adversary’s view in the two experiments are

statistically indistinguishable, and the claim holds. O
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Lemma B.10. Letgq; = L+ 1 and q2 = L - K. Suppose the (q1, q2)-parallel bilinear Diffie-Hellman exponent assumption
(Assumption B.1) holds with respect to PrimeGroupGen. Then, for all efficient adversaries A, and all v € {0, 1}, there
exists a negligible function negl(-) such that for all A € N,

|Pr[Hyb{" (A) = 1] = Pr[Hyb "), (A) = 1]| = negl(2).
Proof. Take any v € {0, 1} and suppose there exists an efficient adversary A where

|Pr[Hyb{" (A) = 1] = Pr[Hyb " (A) = 1]| = ¢

rand

for some non-negligible ¢. Without loss of generality, we assume that for each security parameter A, algorithm A
always chooses a fixed number of slots L = L(A). We can formally model this by viewing the value of L as non-uniform
advice. We use A to construct an adversary 8 for the (qi, g2)-parallel bilinear Diffie-Hellman exponent assumption,
where ¢; = L+ 1 and g, = L - K. In the following, we will refer to elements of the set [g2] = {1,..., ¢z} by a pair of
indices (i, k) € [L] X [K]. We now give the description of B:

« Initialization: At the beginning of the game, the challenger gives 8B the parallel bilinear Diffie-Hellman
challenge:

- G, 9, Y, {Xj}jela(ren) |\ {L+1} 5 {Y“’k),XU'k)}je[z(L+1)]\{L+1},(i,k>e[L]x[K]; and
J
k), (i k'
- {Z}(‘l’ M ))}je[2(L+1)]\{L+1},(i,k)¢(i’,k’)e[L]><[K],T
For emphasis, we color the components from the challenge in green.

+ Setup phase: Algorithm B starts running algorithm A. Algorithm A starts by specifying the number of slots
1£ and the indices of the corrupted slots C C [L]. Algorithm B then initializes a counter ctr « 0 and an (empty)
dictionary Dict to keep track of the key-generation queries. Next, algorithm 8 computes h = [];c[1] XL+1-i-
Then, for each slot i € [L], it computes

ik
A;=X; and B;= l_[ Xiv1-j+i and  U; = I—[ Xéilli
jelLlj#i ke[K]

Next, for each i € [L] it samples §; < Zy. Ifi € N, itsets P; = g5i, and if i € C, it sets P; = Y%. For each
Jj € [L] where j # i, algorithm B computes W; ; = [xc(k] XL(i’lk_)].H. Finally, algorithm B sets Z = e(X1, X;) ™!
and defines the common reference string to be

crs=(G. Z, g, h, {(Ai, B, P, U Yierr)» {Wij}jei) - (B.5)
Algorithm 8 gives crs to A.

+ Query phase: During the query phase, whenever algorithm A makes a key-generation query on a non-
corrupted slot index i € NV, algorithm B starts by incrementing the counter ctr = ctr + 1 and samples r; < Z,,.
It then sets

S ’

T, =X and Q;= (XL+l—igr’{) and Vj; = Xp41-44j 'X;'}

for all j # i. Then B sets the public key to be pk, = (T;, i, {V;,i}»i) and responds with (ctr, pk
the mapping ctr — (i, pk,,,) to the dictionary Dict.

). It adds

ctr

ctr

« Challenge phase: In the challenge phase, algorithm A specifies a challenge policy P* = (M, p), where
Me Zg *" and p: [K] — U, is a row-labeling function, along with two messages i, p1; € Gr. In addition,
algorithm A specifies a key for for each slot i € [L] as follows:

- For each corrupted slot i € C, algorithm A specifies a public key pk; and an attribute set S;. Algorithm
B checks that IsValid(crs, i, pk;) and halts with output L if not.

99



— For each non-corrupted slot i € N, the adversary specifies an index ¢; € [ctr]. Algorithm B looks up the en-
try Dict[c;] = (i, pk’). If i = i, algorithm B sets pk; = pk’. If i # i’, then algorithm 8 halts with output L.

For each slot i € [L], algorithm 8B parses the associated public key pk; as pk; = (T;, Q;, {V},i} j#i). Algorithm
B then computes the attribute-independent public key T and attribute-independent slot key V; for each i € [L]

as follows:
T = l_[ T, and w:ﬂvi,j.
jelL] j#i

Then, for each attribute w € Uj, it computes the attribute-specific public key U,, and the attribute-specific
slot key W; ,, for each i € [L] as follows:

UW = l_[ Uj and I/’Vl‘,w = l—l VV,',J'.

jelL]:wes; jEiweS;

Next, algorithm B constructs the challenge ciphertext. Since A is admissible, the attributes S; for all corrupted
indices i € C do not satisfy the challenge policy P*. Thus, for each i € C, there exists a vector v; with first
entry 1 and which is orthogonal to every row m; of M where p(k) € S;. Algorithm 8B now proceeds as follows:

— Message-embedding components: First, algorithm B sets C; = ), /T and C; =Y.

— Attribute-specific components: For ease of notation, for each k € [K], we define the following sets
of indices Yl(k) and Yz(k) :

YM =(ie[L]:p(k) ¢S} and Y ={ieC:p(k)¢S) (B.6)

Then, algorithm B computes C; , as

*

/o (k") (j.k)) —mv;
C3J<_ H 1_[ 1_[ (ZL-H—[ )

iex® jex(® Ke[K]
(LK) # (k)

’
and C4’k as

Ce= |1 (v (R0 mei,

iEC:p(k)éSi

- Slot-specific component: Algorithm B computes C; as

c=]]r HQI_"S;I.

ieN ieC
Finally, algorithm B computes
({Cs.> Cabie k- Cs) = Rerand ({Us }weary, (M, p), {C} 4. C Sk k1, Ch)-
Algorithm 8B responds to A with the challenge ciphertext

ct* = ((M, p), C1, Ca, {C3 k., Cajc Yre[k)s Cs)-

« Output phase: At the end of the game, algorithm A outputs a bit v/ € {0, 1}, which B also outputs.

We start by showing that algorithm 8 is able to simulate all of the parameters for A using the group elements from
the (g1, g2)-parallel bilinear Diffie-Hellman exponent assumption.
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« CRS components: First, we consider the components of the CRS.

- Computing h, A;, and B; for i € [L] requires knowledge of the elements X;, X;,;—;, and X;,,_;; for all
i€ [L]andj € [L]\ {i}. Since j # i, the required indices are all contained in the set [2(L + 1)] \ {L + 1}.

— Next, the component U; depends on XL-H) foralli € [L] and k € [K]. Since L+ 1 —i € [L], all of these
components are contained in the challenge.

— The component P; = Y% can be simulated using Y.

— Next, recall component W; ; is constructed as [ [e[x] X L +1 4+ By construction, algorithm B only needs
to construct W ; for i # j. Since i,k € [L], it follows that L+ 1 —i+ j € [2(L +1)] \ {L + 1}, so these
components are also contained in the challenge.

— Finally, algorithm B sets Z = e(X}, X;)~!. Both X; and X are contained in the challenge.

» Key-generation queries: Next, we consider the elements algorithm B uses to simulate public keys when
responding to the adversary’s key-generation queries. For each i € N, the elements T;, Q;, and V;; for j # i
require knowledge of X;,,_;, X;, and X;,_;;;, where i, j € [L]. By the same analysis as above (for the CRS
components), all of these components are included in the challenge.

« Challenge ciphertext: Finally, we consider the components of the challenge ciphertext:

— To construct C; and Cy, algorithm B requires T and Y, which are part of the challenge.

- To construct C;,, algorithm 8 requires ZL+llkl ) for all i € Y(k) j € YZ(k), and k' € [K] where

(i,k’) # (j, k). First, L+ 1—i € [L] C [2(L+1)] \ {L+1}. Aslong as (i,k’) # (j, k), then this component
is contained in the challenge.

’
To construct C4 o

YR forall i € [L] and k € [K], algorithm B can construct this term.

algorithm B requires Y %) for all i € C where p(k) ¢ S;. Since the challenge contains

— To construct Cg, algorithm B needs Y, which is included in the challenge.

We conclude that the challenge contains all of the components algorithm $ needs for simulating the CRS, the key-
generation queries, and the challenge ciphertext. To complete the proof, we show that depending on the distribution
of T, algorithm B either simulates an execution of Hybiv) or Hybfavn)d for A. Let a,s, fix € Zy fori € [L] and k € [K]
be the exponents sampled by the (g1, q2)-parallel bilinear Diffie-Hellman exponent challenger. Then, the challenge
components are defined as follows:

Y=g, X; = gai , y (k) — gsﬂi,k , X;i’k) — gaj/ﬁi.k , Z;i’k)«(i’«k') — gajsﬁi’,k//ﬁi,k'

We claim that algorithm B simulates an execution of Hybgv) or Hybf:r? 4 Where the exponents a, s, fx are the cor-
responding ones sampled by the (g1, q2)-parallel bilinear Diffie-Hellman challenger.

b(V) b(V)

CRS components. Consider first the components of the CRS. Then in an execution of Hy and Hyb_ , where
the randomness is a, s, { ﬁ, k}ie[L] ke 1> the challenger constructs the components of the CRS as follows First, the
challenger sets & = —a**! and t; = a% It also computes

which matches the behavior of algorithm 8. Then, for each i € [L], the challenger would compute

Ai=g"=g" =X

B :gaht,- — gfaL*1 1—[ ga’““*f _ 1—[ al+i-ii l_[ Xpor .

JEIL] JEL]:j#i JE[L]:j#i
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which matches the behavior of algorithm 8. In both Hybiv) and Hyb::r? o the challenger sets

_aL+1—i (B7)

The challenger then computes

; Zke[K] .LGHH) L-(a"17h) (i.k)
Ui = gut = g( Pik = 1_[ gﬁl.k = 1_[ XL-H -
ke[K] ke[K] l

which again matches the behavior of 8. Next, for each i € [L], the challenger in Hybiv) and Hybf;/z g sets Py = g% = v%

ifi € C and P; = g% if i € N. This is the same procedure used by algorithm B. Next, for each j # i € [L], the
challenger would set

L+1 j

_ oty _ |\ ZkelK] B (Gt (k)
M/i,] - g Y= g( 1_[ gﬁjk 1_[ XL+1 JHit
ke[K

ke[K]

Finally, the challenger sets

L+l L _ _
Z=e(g.9)" =e(g.9)7 =e(g°g*) " =e(X, X))\

We conclude that algorithm 8 constructs the components in the CRS using the identical procedure as the challenger
in Hybiv) and Hyb(v)

rand”

b(")

Key-generation queries. For the key-generation queries on indices i € N, the challenger in Hybiv) and Hyb_ ",

generates pk; = (T;, Q;, {V;,i}j=i) by first sampling r] & Z,, setting r; = a“*'~" + r/ and then setting
L+1 1

s Ti=gi=g"" "i=Xp g

. Q=P =glila P = (X041-1g7)%. Recall that i € N so P; = g%

’

r
XL+1 1+ijl

L+1- iy )

. ij,i = A;l = gaj (a

Again, algorithm 8B perfectly simulates the responses to the key-generation queries.

Challenge ciphertext. We now analyze the challenge ciphertext components. First, we consider the distribution
of C;. We have two possibilities:

« Suppose T =e(g,g )@ Then algorithm B sets C; =y}, /T = p1j, - e(g, g)_“ulS =y}, - Z°, which matches the
distribution of C; in Hyb\".

« Suppose the challenger samples T <~ Gr. Then, C; = pi,/T is also uniform over Gr, and algorithm B simulated

the distribution of C; in Hybi;) "

To complete the proof, it suffices to argue that the remaining components in the challenge ciphertext are simulated
exactly according to the specification of Hybiv) and Hybi;) 4 First, in Hybiv) and Hybgn) - the challenger would set
C, = ¢g° = Y. which coincides with the behavior of algorithm 8. Next, consider C;, for k € [K]. In Hybiv) and

Hybg’z o the challenger would first set

SE=S- Z Pik -mpv; =s- Z Bik - mpv;, (B.8)

i€C:p(k)¢S; iex(®
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using the definition of Y2(k> ={ieC:p(k) ¢S;} from Eq. (B.6). Then, the challenger computes

L+l=iy A —s* A —s% L+1—i T % A —g¥ L1—i T

k U k a ~mkvis - U k a ~mkvis B9

pk) = Zptey 1 19 p(k) g : (B.9)
ieC ieYZ(k)

Cé, L= gsm£ Zieca

using the fact that in Hyb(V) and Hyb(V) the challenger chooses v; such that m; vi = 0 for all k € [K] where
p(k) € S;. Consider the term U By definition,

U= ] U=]]g"
ie[L]:p(k)gs; ex™®

using the definition of Yl(k) ={ie[L]: p(k) ¢ S;} from Eq. (B.6). For ease of notation, let Up_(s,}) = g* for some & € Z,,.
Then, substituting in the definitions of u; from Eq. (B.7) and s; from Eq. (B.8), we have

by Eq. (B.8)

Il
|
>
N
=
=)
=~
<
~
“

Dk Sy lm}cv*s by Eq. (B.7).
ﬁl,k'

iex® jex(® k'e[K]
We decompose ¢ into the terms & where (i, k”) # (j, k) and the terms & where (i, k") = (j, k) (also meaning i = j).

Then, we have
&= Z Z Z ( ?k/ L+1= ’mkvjs)+ Z —aL”_"va;‘s.
oo Ke[K] k

iex” jex; NPy iex®nr{®
(LK) #(j.k)

& &

From Eq. (B.6), we have that Yz(k) C Yl(k), SO we can write

_ L+1—i T % _ L+1—i T %
&= Z —a m;v;s = Z —a m, v;s.

ier® ny® ier(®

Substituting back into Eq. (B.9) and using the fact that (A]p_(sg‘) = g% = 5%, we conclude that

C, l)—(j() gaL+17i m v —g§19§2 l_[ gaL+1*i_m'I£V;‘S

e e
_ L+1 i, L+1 i 1.nT
=[] ¢ ﬂ g

zeY(k) 16Y<k)

T *
7 (k). (k) “‘kvf
+1 i :

iex® jex® ke K]
! (L.k")#(jk)

This is precisely how algorithm 8 constructs C; . Next, consider C; , . The challenger in Hybiv) and Hybf:n) 4 sets

Czllk = gs’t = gS-Ziec:p(k>e5,- Bik-miv; _ l_[ (Y(">k))m£",
ieCip(k)¢S;
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which is how algorithm B constructs Cz/;,k' Finally, consider C;. The challenger in Hybiv) and Hybfavn) 4 sets

. -i _ -6
C; — gs ZieNaL’fl I—[ Tl s 1_[ Qi i (BlO)
ieN i€eC
By construction, for all i € N, the challenger sets T; = g = g““H“ i. Thus, we can write
ieN ieN ieN

Substituting back into Eq. (B.10), this means

Cg — gs~ZieN¢1L+l_i l_[ Ti_s l_[ Q;(S;l

ieN ieC

— S Diena! ( S'ZieNaLﬂii)il -ris 1—51.'1
g g il;l/g g Q;
= I—[ Y I_[ Q;(S;l,

ieN ieC

which is how algorithm $ constructs C;. Finally, algorithm 8 computes
({Ca,k, C4,k}ke[K], CS) = Rerand({UW}WE(L(/p (M, ,0), {Céjk, C;,k}ke[K]y Cf;),

which exactly coincides with the challenger’s behavior in Hybiv) and Hyb::a)]. We conclude that if T = e(g, g)“LHS,
then algorithm B perfectly simulates an execution of Hybiv) whereas if T ¢ Gr, algorithm B perfectly simulates

an execution of Hybf:z 4 Thus, algorithm B succeeds with the same advantage of A, and the claim follows. O

By construction the adversary’s view in Hybfavn) 4 is independent of v. As such, for all adversaries A, the output distribu-
tions Hybfgz 4(A) and Hyb(l) (A) are identically distributed. The claim now follows from Lemmas B.9 and B.10. O

rand

C Incremental Aggregation for Registered ABE

As discussed in Appendix C, a naive application from a slotted registered ABE scheme to a standard registered ABE
scheme (that supports dynamic user registrations; see Definition 3.1) would require the key curator to keep track
of every user’s public key. In our slotted registered ABE scheme, the size of each user’s key contains O(L) group
elements, where L is the number of slots. As such, if the key curator has to keep store every users’ public key,
then its storage requirement would scale quadratically as O(L?). Here, we show that if we apply the [HLWW23]
transformation to a slotted registered ABE scheme that supports incremental aggregation, then we can reduce the size
of the key curator state. In particular, transforming our particular slotted registered ABE schemes (Constructions 4.3
and 5.5) to a full registered ABE scheme that supports up to L users only requires the key curator to store O(L) group
elements. We start by recalling the transformation (taken nearly verbatim) from [HLWW23]:

Construction C.1 (Slotted Registered ABE to Registered ABE [HLWW23, Construction 6.1]). Let A be a se-
curity parameter. Let IIspape = (SRABE.Setup, sSRABE.KeyGen, sRABE.IsValid, SRABE.Aggregate, sSRABE.Encrypt,
sRABE.Decrypt) be a slotted registered ABE scheme with attribute universe U = {U,},en and policy space
P = {Par}ren. We now construct a registered ABE scheme Ilgage = (Setup, KeyGen, RegPK, Encrypt, Update,
Decrypt) that supports a bounded number of users and over the same attribute space U and policy space #. In the
description, we adopt the following conventions:

« Without loss of generality, we assume that the bound on the number of users L = 2 is a power of two. Rounding
the bound to the next power of two incurs at most a factor of 2 overhead.
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« The registered ABE scheme will internally maintain ¢ + 1 slotted ABE schemes, where the k™" scheme is a
slotted scheme with 2* slots (for k € [0, £]). We assume that the message space M} associated with I gage
is a deterministic function of the security parameter A € N.

« The auxiliary data aux = (ctr, Dicty, Dictz, mpk) consists of the following components:

— A counter ctr that keeps track of the number of registered users in the system.

— A dictionary Dict; that maps a scheme index k € [0, ¢] and a slot index i € [2¥] to a pair (pk, S) which
specifies the public key and attribute set currently assigned to slot i of scheme k.

A dictionary Dict, that maps a scheme index k € [0, £] and a user index i € [L] to the helper decryption
key associated with scheme k and user i.

- The current master public key mpk = (ctr, mpk, ..., mpk,).

If aux = L, we parse it as (ctr, Dicty, Dict,, mpk) where ctr = 0, Dicty, Dict; = @, and mpk = (0, L,. .., L). This
corresponds to a fresh scheme with no registered users.

We construct our registered ABE scheme as follows:

« Setup(14, 11"l 11): On input the security parameter A the size of the attribute universe U, and a bound on
number of users L = 2/, the setup algorithm runs the setup algorithm for £ + 1 copies of the slotted RBE scheme.

Specifically, for each k € [0, £], it samples crsy «— sRABE.Setup(lA, 11Ul 12k) and outputs crs = (crsg, . . ., Crsp).
The message space associated with crs is the message space M associated with crsy, ..., crs; (recall that we
assume that the message space M} associated with each output of SRABE.Setup is a deterministic function
of the security parameter A).

« KeyGen(crs, aux): On input the common reference string crs = (crs, . .., crs;) and the auxiliary data aux =
(ctr, Dicty, Dict,, mpk), the key-generation algorithm generates a public/secret key-pair for each of the £ + 1
underlying schemes. Specifically, for each k € [0,£], let i = (ctr mod 2¥) + 1 € [2¥] be a slot index for
the k™" scheme, and sample a key (pkg, skk) < sRABE.KeyGen(crsy, ix). Output pk = (ctr, pky, ..., pk,) and
sk = (ctr, sko, ..., ske).

« RegPK(crs, aux, pk, Spk): On input the common reference string crs = (crsy, ..., crsy), the auxiliary data
aux = (ctrayy, Dicty, Dicty, mpk), where mpk = (ctrau, mpk,, ..., mpk,), a public key pk = (ctry, pky, - . ., pk,),
and an associated set of attributes Spy), the registration algorithm proceeds as follows:

— For each k € [0, ], let i; = (ctrau, mod 25) + 1 € [2¥] be the slot index for the k™ scheme.

- For each k € [0, £], check that SRABE.IsValid(crs, ix, pk;) = 1. In addition, check that ctryy, = ctrp. If
any check fails, the algorithm halts and outputs the current auxiliary data aux and master public key mpk.

— Then for each k € [0, £], the registration algorithm updates Dict; [k, ix] < (pk, Spk). In addition, if i; = 2k
(i.e., all of the slots in scheme k are filled), the registration algorithm additionally does the following:

« Compute
(mpk', hsk;(!l, e, hsk;C zk) «— sRABE.Aggregate (crsk, Dicty [k, 1],..., Dicty [k, Zk]) .

« Update Dicty[ctr+1 -2 +i,k] = hsk;c’l. for each i € [2¥].
» If i # 2K, mpk/ = mpk, is unchanged.
— Define the new master public key mpk” = (ctrayx + 1, mpkj, ..., mpk}).
— Finally, the registration algorithm outputs the new master public key mpk’ and auxiliary data aux’ =

(ctraux + 1, Dicty, Dicty, mpk’).

« Encrypt(mpk, P, ): On input the master public key mpk = (ctr, mpk,, ..., mpk,), the access policy P € $,, and
a message y € M}, the encryption algorithm computes ct; < sRABE.Encrypt(mpk,, P, i) for each k € [0, £];
if mpk, = L, then it sets ct; = L. Then it outputs ct = (ctr, cto, ..., ct;).
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« Update(crs, aux, pk): On input the common reference string crs = (crsy, .. ., crs;), the auxiliary data aux =
(ctraux, Dicty, Dict, mpk), and a public key pk = (ctrpy, pky, . . ., pk,), the update algorithm outputs L if ctry, >
ctraux. Otherwise, for each k € [0, ¢], it sets hskg = Dicty[ctrpy + 1, k] and replies with hsk = (hskq, ..., hsk;).

« Decrypt(sk, hsk, ct): On input a secret key sk = (ctrg, sk, ...,ske), a helper key hsk = (hsk,..., hsk;),
and a ciphertext ct = (ctrg, cto, ..., cty), the decryption algorithm outputs L if ctry < ctrge. Otherwise,
it computes the largest index k on which ctr and ctr’ differ (where bits are 0-indexed starting from the
least significant bit). If hsky = L, then the decryption algorithm outputs GetUpdate. Otherwise, it outputs
sRABE.Decrypt(skg, hskg, cty).

Correctness and security. We refer to [HLW W23, §6] for the correctness and security analysis of Construction C.1.
While [HLWW?23] only analyzing the transformation as applied to fully secure slotted registered ABE scheme, the
same analysis also applies to a statically-secure slotted registered ABE scheme. In this case, the transformed scheme
inherits the same security properties as the slotted scheme (i.e., if we apply Construction C.1 to a statically-secure
slotted registered ABE scheme, then we obtain a statically-secure registered ABE scheme).

Leveraging incremental aggregation. We now show that if the slotted registered ABE scheme supports incremen-
tal aggregation (Definition 3.8), then the key curator can incrementally update its state as users join (instead of leading
to store all of the users’ public keys until one of the underlying slotted schemes fills up). As noted earlier, when applied
to our constructions, incremental aggregation brings the storage requirements of the key curator from Q(L?) to O(L).

Lemma C.2 (Incremental Aggregation). Suppose SRABE supports f-incremental aggregation for some function
f(L,|U,|). Then, we can modify Construction C.1 to only require maintaining an auxiliary state aux of size at most

Jaux| = f(L [243]) - poly(A,log L) + L - poly(, [43].log L).

Proof. We consider a functionally-equivalent version of Construction C.1 where we replace Dict; in aux (that maps
indices to public keys) with the aggregation state. Namely, the structure of aux is now:

aux = (ctrayx, (sto, . .., sty), Dicty, mpk).

The internal states are all initialized to L: sty = st; = --- = st; = 1. We now define the RegPK(crs, aux, pk, Spi)
algorithms as follows:

+ RegPK(crs, aux, pk, Spi): On input the common reference string crs = (crsy, . .., crs;), the auxiliary data aux =
(ctraux, (sto, . . ., stg), Dicty, mpk), where mpk = (ctrayy, mpky, ..., mpk,), a publickey pk = (ctrpy, pky, . . ., pk,),
and an associated set of attributes Spy, the registration algorithm proceeds as follows:

— For each k € [0, ¢], let iy = (ctrauy mod 25) + 1 € [2X] be the slot index for the k™ scheme.

— For each k € [0, £], check that SRABE.IsValid(crs, ix, pk;) = 1. In addition, check that ctryy, = ctrp. If
any check fails, the algorithm halts and outputs the current auxiliary data aux and master public key mpk.

— Then for each k € [0,f], compute st; < sRABE.AggregateUpdate(crsy, sty, (pky, Spk)). In addition, if
ir = 2K (i.e., all of the slots in scheme k are filled), the registration algorithm additionally does the following:

» Compute
(mpk;c, hsk;c’l, o hsk;c 2k) «— sRABE.AggregateUpdate (crsg, stg, L) .

« Update Dicty[ctr+1 - 2% +i, k] « hsk;c’i for each i € [2X]. Finally, set sty = L.
If i # 2, then mpk; = mpk, is unchanged.
— Define the new master public key as mpk’ = (ctraux + 1, mpky, ..., mpkj).

— Finally, the registration algorithm outputs the new master public key mpk’ and auxiliary data aux’ =
(ctraux + 1, (sto, . . ., st¢), Dicty, mpk”).
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Essentially, we have simply replaced the dictionary Dict; with the intermediate state of each of the underlying slotted
schemes. We now argue the correctness and efficiency properties:

« Correctness: Correctness follows by the incremental aggregation property: namely, the modified incremental
registration algorithm implements exactly the same functionality as the original non-incremental registration
algorithm (Definition 3.8).

» Size of auxiliary data: First, by compactness of registered ABE, the size of each master public key mpk; and
helper decryption key hsky ; have size bounded by poly(A, |U,|,log L). There are O(L) such keys at any point
in time. Moreover, each of the underlying states st; has size bounded by f(L, |2, |) - poly(4). Thus, the total
size of the auxiliary data is at most L - poly(A, |U,|,log L) + f (L, |U,]) - poly(A,logL). O

D Validating Assumptions in Generic Group Model

We now show that the complexity assumptions we use in this work (Assumption 4.2, Assumption 5.4, Assump-
tion 7.7,Assumption B.1) hold in the generic (bilinear) group model. First, we recall the generic (bilinear) group
model [Sho97, BBGO05, Boy08].

Definition D.1 (Generic Bilinear Group Model). For a positive integer N € Z, let £ C {0,1}* be a set of strings
of bounded length and cardinality at least N. The generic (symmetric) bilinear group model is initialized with two
random injective mappings o, or: Zy — £ (which map a discrete log over Zy to an associated label in £). Here o
corresponds to the labeling function associated with the base group while or is the labeling function associated with
the target group. In the generic group model, we assume that the parties have oracle access to the generic bilinear
group oracle which supports the following operations:

- Base group encoding: On input x € Zy, the oracle responds with o (x).

« Base group operation: On input two labels ¢, £, € L, if £, £, are in the image of o, then the oracle replies
with o(o71(6) + 07 1(£,)). If either ¢, or £, are not in the image of o, then the oracle replies with L.

« Target group encoding: On input x € Zy;, the oracle responds with receives o7 (x).

+ Target group operation: On input two labels #, £, € L, if £, £, are in the image of or, then the oracle replies
with o7 (05 L) + oy 1(&,)). If either £ or ¢, are not in the image of o7, then the oracle replies with L.

« Pairing: On input two labels £, £, € L, if £}, £; are in the image of o, then the oracle replies with or(c71(#) -
o7 1(&)). If either #; or £, are not in the image of o, then the oracle replies with L.

Notation. We will write g to denote the label for o(1) and ¢g* to denote o(x). Similarly, we write e(g, g) to denote
or(1) and e(g, g)* to denote or(x). We write G and Gy to denote the groups induced by the labeling functions o
and o7, respectively (i.e., G = {o(x) : x € Zn} and G = {or(x) : x € Zx}). To analyze our assumptions, we follow
the methodology from [BBG05, KSW08, KSW13] by enumerating a set of sufficient conditions for security to hold
unconditionally in the generic bilinear group model. We begin with a notion of independence and then give the
theorem statements we use in our analysis.

Definition D.2 (Independence of Polynomials). Let N = [[;c[,,) p:i be a positive integer that is a product of m > 1
distinct primes p;. Let P = {P;};c (x| be a collections of polynomials where each P; € Zy[Xj, ..., X,] is an n-variate
polynomials over Zy. By the Chinese Remainder Theorem, we can view each polynomial P; as defining a tuple of
m polynomials Py € Zp, [X1,...,Xp], ..., Pim € Zp,, [ X1, ..., X,] and where P; j(x1,...,%,) = Pi(xy,...,x,) mod p;
for all j € [m]. We say that a polynomial f € Zx[X,...,X,] (with associated components fi, ..., f;) is dependent
on P if there exists coefficients «; € Zy such that

Vjelml: fj(Xe,.... Xn) = Y @iPyj(Xs,...,Xy) mod p;.
ie[k]

We say f is independent on % if f is not dependent on P.
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Theorem D.3 (Generic Hardness in Prime-Order Groups [BBGO05, Theorem A.2]). Let p be a prime. Let P = {P;};e[k]
and Q = {Q;}je[e] be collections of polynomials where each Py, Q; € Z,[X, ..., Xy] is an n-variate polynomial over Zy
andPy = Qy = 1. Let Ty, Ty € Zp[X1,...,Xn] be two challenge polynomials. Then, for a bitb € {0,1} and an adversary
A, define the following experiment in the generic bilinear group model of order p:

« At the beginning of the game, the challenger samples x1,...,x, < Z,. For each i € [k], it computes &; =
o(Pi(x1,...,%n)), {’]’. =o07(Qj(x1,...,%xn)), 0 = or(To(x1, ..., xn)), and 71 = or(Ty (X1, . . ., Xn)).

« The challenger gives (p, {t;}ie[k], {ti}jerers 7p) to the adversary.
« The adversary outputs a bit b’ € {0, 1}, which is the output of the experiment.

Let P? = {P;P; : i, j € [k]}. Suppose that the total degree of P;, Q;, To, Ty is at most d and the polynomials T, T, are
independent of P* U Q. Then, for all adversaries A making at most q queries to the generic group oracle, it holds that

(g+k+¢£+2)%(2d)
p

IPr[p’ =1:b=0] -Pr[ =1:b=1]| <

in the above distinguishing experiment.

Theorem D.4 (Generic Hardness in Composite-Order Groups [KSW13, Theorem A.2, adapted]). Let N =[] c(m] Pj
be a product of distinct primes where each p; > 24, Let P = {Pi}iejk) and Q = {Qi}ic[e) be collections of linearly
independent polynomials where each P;, Q; € ZN|[Xi,...,X,] is an n-variate polynomial over Zy. We assume that
Py = Qy = 1. As in Definition D.2, we write P; ; and Q; ; to denote the action of the polynomial P; and Q;, respectively,
modulo p;. Let Ty, Ty € Zn[Xy, ..., Xn] be two challenge polynomials. Then for a bit b € {0,1} and an adversary A,
define the following experiment in the generic bilinear group model of order N:

« At the beginning of the game, the challenger samples x, .. ., x, < Zn. For each i € [k] and j € [£], it computes
b =o(Pi(x1,...,%n))
{’J'- =or(Qj(x1,...,%,))
10 = 0(To(x1,...,%xn))
71 =0(T1(x1, ..., %n))-
« The challenger gives (N, {€i}ic[k], &} jerers 7p) to the adversary.
« The adversary outputs a bit b’ € {0, 1}, which is the output of the experiment.
For an adversary A, define its advantage 8.z to be
Sa=|Pr[b’=1:b=0] -Pr[b' =1:b=1]|
in the above distinguishing experiment. Let P := {P;P; : i, j € [k]}. For a bitb € {0, 1}, let
S® = P2UQU{T,P; : i € [K]}.
For an index i € [k], define Sl.(b) = S\ {TyP;}. Suppose now the following properties hold:
« The total degree of P;, Q;, Ty, Ty is at most d.
« Foralli € [k] andb € {0, 1}, the polynomial Ty, is independent of P.
« Foralli € [k], if TyP; # T\ P;, then for all b € {0, 1}, the polynomial Ty, P; is independent ofSl.(b).

« Forallb € {0,1}, the polynomial sz is independent ofS(b).
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Then, for all adversaries A making at most q queries to the generic group oracle, if A has distinguishing advantage d #
in the above distinguishing experiment, then there is an algorithm that runs in time polynomial in A and the running
time of A that outputs a non-trivial factor of N with success probability at least S7 — O((q + k + £)?d/2%).

Remark D.5 (Comparison with [KSW13, Theorem A.2]). The conditions we give in Theorem D.4 differs slightly
from the corresponding theorem statement from [KSW13, Theorem A.2].!? The corresponding theorem statement
from [KSW13] only requires that

{sz} U {TbPi}i:ToPiiTlPi is independent of {TbPi}i:ToP,-:TlP,— uriuQ (D.1)

whereas we additionally require that sz to be independent of T, P; for all i € [k] (in addition to P? U Q) rather than
just the indices i € [k] where ToP; = T P;. This condition is necessary, as the presence of such a dependence can be

used to break the assumption. For instance, consider the following distribution in two-prime composite-order group:
Pi(X1,Xz) = [Xi, X1] . To(X1,Xe) = [X1,0] . Ti(X1,Xz) = [Xz,0].

Here, we write each polynomial in terms of its decomposition under the Chinese Remainder Theorem. Namely, in this
example, To(X3, X2) = X; mod p; and Ty(X;, Xz) = 0 mod p,. By construction, ToP; # T;P;. Thus, to satisfy Eq. (D.1)
from [KSW13], it suffices to show that {sz, T,P1} is independent of PZ, but this is immediate since P? is a non-zero
polynomial modulo p; while sz and T, P; are the identically-zero polynomial modulo p,. At the same time, given
the challenge (N, #1, 7p), the adversary can simply use the pairing oracle to check whether e(¢;, 1) = e(zp, 7). When
b = 0, this check always passes whereas if b = 1, this check passes with probability 1/p, < 2~*. For completeness,
we give a proof of our amended theorem in Appendix D.1.

Theorem D.6 (Generic Hardness of Assumption 4.2). Let A be a security parameter. Then, for every polynomial
q = q(A), and every prime p > 2*, Assumption 4.2 holds in the generic bilinear group model of order p.

Proof. We will use Theorem D.3. Take any set S C [¢q — 1]. The components given out in Assumption 4.2 can be
expressed as polynomials over the formal variables §, 4, 7. Specifically, the polynomials in the base group are defined
as follows:

1,38, {di}iesu[q+1,2q] > {§&q_i}ie[q—1]\s, {§di}ie[q+1,2q]- (D.Z)

The assumption also gives out a polynomial 49 in the target group. The challenge polynomials are
To(5,4,7) =849 and Ty(54,7) =7,

Certainly, Ty and Ty are independent of a7 (since they are different monomials). It suffices to check that Tj and T; are
independent of the pairwise products of the monomials in Eq. (D.2). Since none of the monomials in Eq. (D.2) depend
on 7, the claim holds for T;. We now claim that we cannot none of the pairs of monomials in Eq. (D.2) multiply to
§a1. We can partition the elements in Eq. (D.2) into two sets:

« The monomials of the form &’ for i € {0} US U [q +1,2q].
« The monomials of the form $49~" fori € [q — 1] \ S and 34’ for i € [q + 1, 2q].

The only possible way to form the monomial §49 is to multiply a monomial from the first set (possibly 1) with a
monomial from the second set. Let 4 and §4” be these two monomials, where i; € {0} USand g —i, € [g—1] \ S.
Moreover, it must be the case that i; + i, = g, which means that i; € {0} US and i; € [g— 1]\ S. Since the sets {0} U S
and [g — 1] \ S are disjoint, this is a contradiction. We conclude that T is independent of the pairwise products of
the polynomials in Eq. (D.2) so the claim now follows from Theorem D.3. O

Lemma D.7 (Generic Hardness of Assumption B.1). Let A be a security parameter. Then, for all polynomials q; = q1(A),
q2 = q2(1) and every prime p > 2%, Assumption B.1 holds in the generic bilinear group model of order p.

2Note that we are specifically referring to the journal version [KSW13], which corrects an earlier version of the theorem statement from [KSW08].
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Proof. As written, Assumption 4.10 requires publishing inverses of group elements, which does not fall under the
structure of Theorem D.3. However, we can apply a simple change of basis to avoid having to give out inverses. First,
recall that the challenge components in Assumption 4.10 consists of the group elements

a'lp; a'fr/Bj

(9’ g' 49" Yietzantan > 1979 P et icrzan () - {6° }j;tk,ie[Zq]]\{ql})

and the challenge terms Ty = e(g, 9)*"" or T; = e(g, g)". Consider the assumption where we replace the generator
g with § = g“Ilela21 P where u & Zy,. Note that g is a random generator (since u - Z,,). With respect to the new
generator g, the challenge components can now be written as

usaiﬂk Ht#j )Bt

(gi 3 AT Victzgvta - 87,9 P jegorictzqvian - {9 }j;ek,ie[qu]\{ql}) ’

and the challenge terms are Ty = e(g, §)**"" and T; = e(§, §)". We now use Theorem D.3 to analyze this version of the
assumption. The components given out in Assumption B.1 can be expressed as polynomials over the formal variables
W,58,4, P, ..., Pg,, T Specifically, let £ = @ [] (4,1 Bj- Then the polynomials in the base group are defined as follows:

ga §§a {gdl}l’E[qu]\{ql} > {fgﬂ], ﬁal I_lt¢j ﬁt}jG[qz],i€[2q1]\{q1} s {ﬁ§dlﬁk Ht#j ﬁt}j;’:k,ie[qul\{ql}. (D?))
as well as the challenge polynomials
To(8,5,8, 1, .., P 7) = 867 and  Ty(@,8.d, B, ..., By, 7) = EXF.

By construction, T; is independent of all of the monomials in Eq. (D.3) (since none of them depend on 7), so it suffices
to show that Tj is independent of the pairwise products of the monomials in Eq. (D.3). By construction, at least one
of the monomials in the pairwise product must contain §. We now consider the possibilities:

« Suppose we use §§ To obtain the monomial §2§&q1, we would need to multiply by the monomial fﬁq‘, which
is not given out in the assumption.

« Suppose we use f§ﬁ ; for some j € [g2]. To obtain the monomial fz§&q1, we would need to multiply by the

monomial R R R
£a® /B, = aa® 1_[ B,
t#j

which is not given out in the assumption.

« Suppose we use ﬁ§diﬁk [1:s) ﬁt for some i € [2¢1] \ {q1} and j # k. Then, to obtain the monomial §2§dq1 we
need to multiply by the monomial

Ear=fafi | | e = €am B/ B = aa® "B | | B

1) t#k
which is not given out in the assumption.

We conclude that Tj is linearly independent of the pairwise products of the monomials in Eq. (D.3). Finally, the
polynomials in Eq. (D.3) have degree at most O(q; + g2). Since q1, g2 = poly(4), and the number of terms is O(q; +q2),
the claim follows from Theorem D.3. O

Lemma D.8 (Generic Hardness of Assumption 5.4). If factoring a product of four primes (each of size 2*) is compu-
tationally hard, then Assumption 5.4 holds in the generic bilinear group model of order N where N is a product of four
primes (each of size 2%).

Proof. We will use Theorem D.4. Take any polynomial input length L = L(A), any progression-free and double-free set
D = {d;}ic[r) and a challenge index i* € [L]. We start by enumerating the component given out by Assumption 5.4.
We express these components in their representation under the Chinese Remainder Theorem. Specifically, since we
are working over a composite-order group with modulus N = p;p,psps, we write [X1, X2, X3, X4] to denote the variable
X over Zy; where X = X; mod p; for all i € {1,2,3,4}. The components given out in Assumption 5.4 can be expressed

as polynomials over the formal variables §, 4, b, 7, $»3:
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. foralli € [L]\{i*}, A} = [4%,0,0,0];

. foralli € [L], U/ = [ba%,0,0,0];

. forallz € & W/ = [baZ,0,0,0];

« X =15,50,0];

. foralli e [LI\{i*}, Y; = [$ba%,0,0,0] and Y;- = [$ba%", $ba%,0,0];

. generators G1 = [1, 0, 0, 0], G3 = [0, 0, 1, 0], G4 = [0, 0, 0, 1], and Gz3 = [0, §23, §23, 0]

Finally, the challenge polynomials are constructed as

To(5, 4, b, %, 53) = [a%,0,7,0] and Ty (5,4, b, 7, 53) = [a%",2,7,0].

We now consider the conditions in Theorem D.4. First, it is easy to see that Ty and T; are independent of the other
monomials given out in the challenge (since Ty and Tj are the only polynomials that depend on the formal variable
7). Next, we consider the pairwise products T, P (where P is one of the other polynomials in the challenge). We only
consider T, P when TyP # T; P. By construction, Ty and T; are identical in the p;, p3, and p4 subgroups and only differ
in the p, subgroup. As such, the only element P for which ToP # T; P are the challenge polynomials that are nonzero in
the G, subgroup. These are the components X, Y+, and Gp3. We check each of the linear independence requirements:

1. T, X is independent of S)((b) (where S)(f’) is the set as defined in Theorem D.4).

o First T, X = [§ddi*, 0,0, 0] Observe that since this element does not include I;, so it is independent of any
pairwise product that involves U/, W/, Y;, ;. Since X is the only remaining element with § in Gy, the
only non-independent pairwise products must contain X. Since XA; = [8a%.0,0,0] for i # i*, these are
linearly independent of TyX, as required.

e Next, T}, X = [§ddi* ,$%,0,0]. This follows analogously to the above case; in particular, none of the pairwise

products produce §d

di in the p; subgroup, linear independence holds.

2. TpY;+ is independent of Sll;_*

First, Ty Y, = [$ba%%*,0,0,0]. The monomial §ba%% in the p1 subgroup is degree 1 in § and b. The only

pairwise products with this property are XU/, XW,, Y;A’, and TyY;. We consider each term separately:

Foralli € [L], in the p; subgroup, XU, = $hadi. Since d;,di» € D and D is double-free, there does
not exist any i € [L] where d; = 2d;+. As such, XU/ is independent of TY;.

For all z € &, in the p; subgroup, XW, = §l;dz, where z = d; + d; for some i # j. Since d;, dj, dp» € D
and O is progression-free, it follows that z = d; + d; # 2d;-. Thus, XW, # §I;d2di*, and XW, is
independent of TyY;.

Foralli € [L] and j # i*, in the p; subgroup, YiA} = §bad*4i. Since D is double-free if i # Jj, then
di+d; # 2d;. If i = j, then i, j # d;-. Since the elements of D are distinct, once again d; + d; # 2d;-.
Thus, Yl-A;. is independent of TyY;.

Finally, TyY; in the p; subgroup has value $ba%*d for i # i*. Since d; # d;» when i # i*, this value
is again independent of Ty Y;-.

A A

e Next, T1Y; = [§l;a2di*, shats %,0,0]. This analysis fqllows as in the previous case. Namely, none of the

52d,

allowed pairwise products produce the monomial §ba“*" in the p; subgroup.

3. TpGys is independent of SZB.

« First, TyGa3 = [0, $23, $237, 0]. By construction, the only pairwise product that contains the monomial $,37
is TyGo3, so the claim holds.
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o Next, T1Gos = [0, §237, $237, 0]. This follows analogously to the the above case.

To complete the proof, we argue that sz is independent of the other pairwise products. In both cases, sz contains
the monomial 72 in the p3 subgroup. None of the other challenge components depend on #, so linear independence
is immediate. Finally, the maximum degree of the monomials appearing in the challenge is bounded by O(max(D)).
Since max(D) is polynomially-bounded, the claim now follows. O

Lemma D.9 (Generic Hardness of Assumption 7.7). If factoring a product of two primes (each of size 2*) is compu-
tationally hard, then Assumption 7.7 holds in the generic group model of order N where N is a product of two primes
(each of size 2*).

Proof. We will use Theorem D.4. Take any polynomial input length L = L(A), any progression-free and double-free set
D = {d;}ic[r) and a challenge index i* € [L]. We start by enumerating the component given out by Assumption 7.7.
We express these components in their representation under the Chinese Remainder Theorem. Specifically, since we
are working over a composite-order group with modulus N = p;p,, we write [%1, X2] to denote the variable x over Zj;
where X = x; mod p; for all i € {1, 2}. The components given out in Assumption 7.7 can be expressed as polynomials
over the formal variables §, a:

. foralli e [L]\{i*}, A] = [8a%,0];
« foralli# je[L], B;’j = [§%a9+4 0];
« generator G; = [1,0].
Finally, the challenge polynomials are constructed as
Ty(5,4) = [$a%",0] and Ti(§ 4) = [8a%,5a%].

We now consider the conditions in Theorem D.4. First, it is easy to see that Ty and T; are independent of A; for all
i # i*, and also with B; ; since each B; ; is quadratic in § while Ty, T; are linear in §. They are also independent of G;.
Next, ToP = T; P for all monomials P appearing in the challenge. Thus, to invoke Theorem D.4, it suffices to show
that sz is independent of the other pairwise products.

1. Consider T? = [§24%47 0]. The only pairwise products of A} and B; ; that are degree-2 in § are of the form AjA’,
for i, j # i* and those of the form G B; ; for i # j We consider each case separately.

« Take any i, j # i*. Then, A;A; = [§2a%%4 0].If i = j # i*, this is [§24°%, 0]. Since the elements of D are
distinct and i # i¥, §26%% # §24°%* If i # j, then AJA) = [§24%+4 0]. Since D is progression-free, this
means that d; + d; # 2d;- and linear independence holds.

+ Takeany i # j € [L]. Then, G1B; ; = [$2a%*4,0]. Since D is progression-free, it follows that d; +d; # 2d;-,
so linear independence again holds.

2. Consider T2 = [§%4?4", 5?34 ). Since T? is the only element that has a non-trivial p, component, it is linearly
independent of the pairwise products of all other components.

The maximum degree of the monomials appearing in the challenge is bounded by O(max(9)). Since max(D) is
polynomially-bounded, the claim now follows via Theorem D.4. O

D.1 Proof of Theorem D.4

In this theorem, we provide a proof of Theorem D.4. Our analysis follows an identical strategy as [KSW13, Theo-
rem A.2], except we incorporate the final condition in Theorem D.4 into the analysis. As discussed in Remark D.5,
the extra condition is required to argue hardness in the generic group model.

Proof of Theorem D.4. Let N be a product of m distinct primes py, . . ., pm. We define a sequence of hybrid experiments:
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. Hyb(()v): This is the real game with bit v € {0, 1} in Theorem D.4. Specifically, in this experiment, the challenger
samples random variables xy, ..., x, & 7, and constructs the group elements as polynomials of (x1, ..., x,)
as described in Theorem D.4. The challenge component is set to be 7,. The challenger associates a fresh handle
with each distinct group element and answers generic group queries according to the specification of the
generic bilinear group oracle (Definition D.1).

. Hybiv): In this hybrid, rather than sampling x;, . .., x, <~ Zy, the challenger instead associates each variable
x; with a formal variable X;. Each label now maps onto a vector of m formal polynomials on Xy, . . ., X,, where
the i formal polynomial is an element of Zp,;[X1, ..., %n]. The group operation computes an element-wise sum
of formal polynomials while a pairing operation computes an element-wise product of formal polynomials. The
challenger associates distinct labels to each distinct vector of formal polynomials (in the variables %y, . . ., x,).

. Hybgv): In this hybrid, instead of associating labels with a vector of polynomials Z, [X;,..., %] X -+ X
Zp,,[%1, ..., %], the challenger associated each label with a vector of polynomials over Zy[%y, ..., %] X -+ X
ZN[%1, ..., Xk]. Specifically, each of the polynomials has coefficients over Zy rather than Zp,. As before, the
challenger associates distinct labels to each distinct vector of formal polynomials.

Lemma D.10. Let A be an adversary that makes at most Q queries to the generic group oracles. Then for all bitsv € {0,1},
|Pr[Hyb{" (A) = 1] = Pr[Hyb!" (A) = 1]| < O((q + k + £)*t/2%).

Proof. Observe that if two polynomials are equal, they will be equal at all points. Thus, these two hybrids only differ
when two distinct polynomials fi, f, (in the variables x4, . . ., X,) evaluate to the same value modulo every p;. In this
case, the challenger would return the same handle in Hyb(()v), but different handles in Hybiv). Since the maximum
degree of the polynomials is ¢, the maximum degree of any polynomial appearing in the generic bilinear group
encoding table is 2t (specifically, the only operation that can increase the degree of the polynomial is the pairing
operation). Since xi,...,x, ¢ Zy are sampled uniformly over Zy (and thus, over each Z,,), the probability that
a pair of non-identical polynomials fi, f; (over Zj,) satisfy fi(x1,...,xn) = fa(x1,...,%,) mod p; is at most 127: < ;—j,
since p; > 2%. Since there are at most g + k + ¢ polynomials in the table (from the ones introduced by the adversary’s
queries and the ones from the assumption), we can union bound over all (qHZCH) pairs of polynomials. Thus, the

statistical distance between these two experiments is at most O((q + k + £)?t/2%). o

Lemma D.11. Let A be an adversary where
|Pr[Hyb\" (A) = 1] = Pr[Hyb{" (A) = 1]| = .
Then there exists an algorithm B which finds a nontrivial factor of N with probability e.

Proof. Since Hybiv) and Hybéw differ only in the setting where the table contains a pair of labels mapping onto
two vectors (fi1,...,fin) and (fo1,. .., fon) where for some index j € [n], it holds that f;; = f;; mod p; but
fij # foj mod N. When this happens, fi; — fo; = 0 mod p; but fi; — fo; # 0 mod N, so computing the greatest
common division between the coefficients of the difference f; ; — f5; and N will yield a non-trivial factor of N. O

Lemma D.12. For all adversaries A, Pr[HybéO) A)=1] = Pr[Hybgl)(ﬂ) =1].

Proof. By definition, these two experiments are identical unless the adversary A is able to construct a formal poly-
nomial involving the challenge polynomial T, that is identical to the all-zeroes polynomial for one value of v € {0, 1}
but not for the other value 1 — v. Let X4, . . ., X, be the formal variables in an execution of Hybéo) and Hybgl). Initially,
the tables D contain the polynomials P;, ..., Pr as well as the challenge polynomial T,. The table D contain the
polynomials Q, ..., Q. Define the sets P = {P;};ex] and Q = {Q;} e[, and S =P2UQU{T,P; :i € [k]} asin
Theorem D.4. We now consider two possibilities:
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+ Consider a polynomial f, in the base group. By construction, we can write f, as

Flin ) = D @B, %) + BTG, o %),

where a;, f € Zy (note that we do not need an affine term since P; = 1). If f,, = 0 for some value of v € {0, 1},
then T, is not linearly independent of # which contradicts the requirement in Theorem D.4.

« Consider a polynomial f, in the target group. By construction, we can write f, as
f= Z o PPy + Y BiQi+ Z yiPiT, + T2,
i,jelk i€[¢]

where a; j, B, yi, € Zy. Suppose that f, = 0 for some v € {0,1} and fi_, # 0. We consider two cases. If § # 0,
then we can write T2 as a linear combination of the elements of S(*). This contradicts the requirements in
Theorem D.4. Suppose instead that § = 0. Then,

= > PP+ Y Qi+ > yiPiT, = 0.

ijelk] ie[e] ic[k]

Let i* be the first index for which TyP;+ # T;P» mod N. Such an index must exist since f, = 0 but fi_, # 0. In

this case, we have expressed Pj+T), as a linear combination of polynomials in the set SWN\T,P; = Si(*v), which
contradicts the premise in Theorem D.4.

Thus, if P, Q, Ty, T; satisty the requirements in Theorem D.4, then algorithm A is not able to construct a polynomial
fv where f, = 0and fi_, # 0. The claim holds. O

Combining Lemmas D.10 to D.12, Theorem D.4 holds. O

E Analyzing the (qi, ¢»)-Intermediate Set-Consistent BDHE Assumption

In this section, we show that the (q1, g2)-intermediate set-consistent bilinear Diffie-Hellman exponent assumption
(Assumption 4.10) is implied by the g-set-consistent bilinear Diffie-Hellman exponent assumption (Assumption 4.2).
Specifically, we prove the following statement, which implies Lemma 4.11 as a special case.

Lemma E.1. Let g = q(1) be any polynomial. Suppose the q-set-consistent bilinear Diffie-Hellman exponent assumption
(Assumption 4.2) holds with respect to PrimeGroupGen. Then, the (q1, q2)-intermediate set-consistent bilinear Diffie-
Hellman exponent assumption (Assumption 4.10) holds with respect to PrimeGroupGen for any q1, g2 where 4q1q2 = q.

Proof. Take any q1,q2 € N where g = 4¢1¢g2. Suppose A is an efficient adversary for the (qi, q2)-intermediate
set-consistent BDHE assumption (Assumption 4.10) that succeeds with non-negligible advantage . We use A to
construct an algorithm 8 for the g-set-Consistent BDHE game. At a high level, algorithm 8 simulates the “parallel”
terms containing f; using disjoint intervals of the powers of a. In the following description, we write i mod 4q; to
refer to the (unique) representative of i in the interval [—2gs, 2q2 — 1]. We now describe the algorithm B:

1. Algorithm 8 start by running algorithm A. Algorithm ‘A outputs a set S C [q; — 1].
2. Algorithm B constructs the sets
So={4q2-ili€S} and S={i€[q-2qz]|imod4q;isodd and negative}.
It sets S’ = S) U 7 and gives S’ to the challenger.
3. The challenger replies with the challenge
G,9,Y, {Xi/}iesfu[qH,Zq]’ {Z:]*i}ie[q—l]\S” {Zi/}[qn,zq] O T (E.1)

For emphasis, we color these terms in green.
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4.

5.

Algorithm 8B samples random exponents ao, £, . . ., B, & Zy. It then constructs the following elements:

o ItsetsY =Y.

« Foreachi € SU [q; +1,2q;], it sets X; = (X;qzi)a‘l).
q1-i

« Foreachi e [g; — 1]\ S, it sets Zg _; = (Z(’ka)a" .Foreachi € [q; +1,2q], it sets Z; = (Z:lqzl.)a“.

o ItsetsQ = (Q’)agl.

To construct the parallel terms containing f;, the challenger proceeds as follows:

« For each j € [gz], the challenger sets Y) = (Zéjfl)ﬂ}.
« Foreachi € [2q;] \ {q1} and j € [q], the challenger sets Xl.(j) = (Xziqzif(zjfl))aé/ﬂ}.
« Foreachi € [2q1] \ {q1} and j # k € [q2], the challenger sets Zi(j’k) = (Z;qzm(k_j))aéﬁ’;/ﬁ}.

Finally, algorithm B sets T = 7'%" and gives the following components to A:
M Q, g, Y, {Xi}iESU[q1+1,2q1] > {qu—i}ie[ql—l]\s, {Zi}ie[q1+1,2q1]; and
j () (k)
» (Y ergrs G Vg g setel > 127 hezanvan. e Q0 T

Algorithm A outputs a bit b’ € {0, 1}, which B also outputs.

First, we argue that the components algorithm B uses to simulate the challenge are indeed provided by the challenger.
We consider each set of components.

First, consider the components X; and Z; when i € [gq; + 1,2q;]. These depend on the values of X4’q2i, Z;qzi.
Since i € [q; + 1,2q], it follows that 4q2i > 4q2(q1 + 1) = g + 49, > g + 1 and 4q;i < 8q19, = 2q. Thus,

4q,i € [q + 1, 2q], and correspondingly, X}, and ijm are included in Eq. (E.1).

Consider the components X; where i € S. These depend on the values of X i Since i €S, this means
4q,i € S; € ', and so the component is included in Eq. (E.1).

Consider the components Z,, _; for i € [g; — 1] \ S. These depend on the values of Z(;_4q2i. Since 4q2i < q — 1,
it suffices to show that 4q,i ¢ S’. Since q = 4q1¢;, it follows that g — 4g,i = 0 mod 4q,, so q — 4q3i ¢ S]. Since

i ¢S, it follows that 4g,i ¢ S, and the claim holds.

Consider the components Y) for j € [g,]. These depend on the values of Zyiy = Z(;—(q—(zj—l))' Since

q—(2j—1) € [q—1], it suffices to show that ¢ — (2j — 1) ¢ S’. Since 2j — 1is odd, ¢ — (2j — 1) ¢ S;. Moreover,
since j € [gz], 2j — 1 < 2q;. This means that ¢ — (2j — 1) > g — 2q2, s0 ¢ — (2j — 1) ¢ S, and the claim holds.
Consider the components Xl.(j) fori € [2¢1] \ {¢q1} and j € [g2]. These depend on the values ofngzi_(zj_”.

— When i € [q; + 1, 2q], it follows that 4q2i — (2j — 1) > 4q1q2 +4q2 — (2j — 1) > g+ 1 forall j € [g2]. As

such X;qzi—(zj'—l) is included in Eq. (E.1).

— Wheni € [q; — 1], then
4q2i — (2j = 1) £ 4q2(q1 — 1) = (2j - 1) =q—4q2 — 2j +1 < g — 2q>.
We will show then that 4¢,i — (2j — 1) € §; C §’. First,
4q2i — (2j — 1) = —(2j — 1) mod 4q;.
Since 2j—1 < 2q,, we conclude that 4g,i— (2j—1) mod 44, is odd and negative, so 4q;i—(2j—1) € S] € &,

as required.
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« Consider the components Zi(j’k) fori € [2¢1]\{q1} and j # k € [g2]. These depend on the values széiqzi+2(k—j)'

— When i € [q; + 1,2q;], it follows that 4q,i + 2(k — j) > 4q1q2 + 4q2 + 2(k — j) > g+ 1 for all j, k € [q.].
Assuch Z] .., . isincluded in Eq. (E.1).
q2i+2(k—j)
— Wheni € [q; — 1], then
dqpi+2(k—Jj) <4q1q2 —4q2 +2(k - j) < q - 42+ 2(q2 - 1) < g - 2¢s.
Thus, we need to show that q — 4q2i — 2(k — j) ¢ S’. First,
q — 4qzi — 2(k — j) = —2(k — j) mod 4q;.

This is always even so g — 4q2i — 2(k — j) ¢ S}, and moreover, since k # j and j, k € [q;], this means that
q — 4q2i — 2(k — j) # 0 mod 4q.. Hence, ¢ — 4¢2i — 2(k — j) ¢ S, as required.

Thus, we conclude that algorithm 8 is able to simulate all of the components for A using its challenge. Let a’,s” € Z,
be the exponents the challenger samples to construct the g-set-consistent BDHE challenge. Then

X/ = 9" and VA =¢@' and Y =¢ and Q =e(g9) @)

We claim that 8B perfectly simulates an instance of the (g;, g2)-intermediate set-consistent BDHE challenge with
randomness

a=ay-(a)** and s=s and Vj€|[q]:p;= B; - (a)¥ 1. (E.2)
Since algorithm B samples a’, § & Z,, the resulting distributions of a and f31,. . ., fi;, are uniform and independent
over Z,, exactly as required in the (qi, g2)-intermediate set-consistent BDHE game. It suffices to argue that the

challenge constructed by algorithm B is consistent with the variable assignment in Eq. (E.2). We consider each
components separately:

« Foralli e SU [q1 +1,2q1], we have X; = (Xiqzl.)a6 = g“é(“/)4qzi = g“i.

« Foralli e [q—1]\S, we have
Zq = (Z’ \ _)agri _ g(a')(q%qzi)agl‘is _ g(a')<4q1qz*4qzi)a(‘]‘1"’s — g((a’)‘l‘Izao)CIris _ gaql’is
1= q—4qzi :

For i € [g; +1,2q:], we have Z; = (Z] )“5 = g(“'>4q2iaés = gd's

4qyi

- Wehave Y = V' = ¢g* and Q = ()% = e(g,) )"’ = e(g,g)( @)™ = ¢(g, g)o".

For all j € [g2], we have vy = (Zéjq)ﬂ} — g(af)zj—lsﬁ} = gSﬁj,

Foralli € [2q:] \ {¢q1} and j € [q¢2], we have

X = (Xziq,zif(ijl))aé/ﬁ} = g @Gy _ (@) ea) (@27 8) Z gdlip
+ Foralli € [2q1] \ {q:} and j # k € [g],
Z0) = ( Zﬁ;qm(kﬂ)aéﬂ;/ﬁ} _ gD saip g g((a’)4‘“ao)"s~((a’)Zk’lﬁ,Q)/((a’)zf’lﬁ}) _ g@sPelb

Finally, if 7" = e(g, g)(¢"*, then
T=(1)%" =e(g.9)")"%"s = e(g.g) """ %' = ¢(g,9)°"",

which corresponds to the (g1, qz2)-intermediate set-consistent BDHE distribution where b = 0. If the challenger
sampled 7" < Gr, then T = (T’)“g1 is also uniform over Gr, so long as agl # 0. Since ¢; = poly(1) and algorithm 8B
samples ay <~ Z,, the probability that al' = 0 is at most g1 /p = negl(A). In this case, algorithm B perfectly simulates
the (¢1, q2)-intermediate set-consistent BDHE distribution where b = 1. We thus conclude that the advantage of
algorithm B is negligibly close to the advantage of A, and the claim follows. O
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