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Abstract

Score-based generative models (SGMs) sample from a target distribution by iteratively
transforming noise using the score function of the perturbed target. For any finite training
set, this score function can be evaluated in closed form, but the resulting SGM memorizes
its training data and does not generate novel samples. In practice, one approximates the
score by training a neural network via score-matching. The error in this approximation
promotes generalization, but neural SGMs are costly to train and sample, and the effective
regularization this error provides is not well-understood theoretically. In this work, we instead
explicitly smooth the closed-form score to obtain an SGM that generates novel samples
without training. We analyze our model and propose an efficient nearest-neighbor-based
estimator of its score function. Using this estimator, our method achieves competitive
sampling times while running on consumer-grade CPUs.

1 Introduction

Score-based generative models (SGMs) draw samples from a target distribution Ä1 by sampling Gaussian
noise and flowing it through a possibly noisy velocity field vt. This velocity field depends on the score function
of the perturbed target distribution Ät, which existing SGMs parameterize as a neural network and learn via
score-matching (Hyvärinen & Dayan, 2005) or denoising (Vincent, 2011; Ho et al., 2020). Although the target
distribution Ä1 (for example, the distribution over human face images) is typically assumed to be continuous,
in practice score-matching and denoising problems are solved using an empirical approximation Ä̂1 to the
target distribution constructed from a finite training set.

When Ä̂1 is the empirical distribution over a finite training set {xi}N
i=1, the perturbed target distribution Ät

is a mixture of Gaussians, whose score function ∇ log Ät(z) has a simple closed-form expression. This score
function is a vector pointing from z toward a distance-weighted average of all N rescaled training points and
is the exact solution to the score-matching problem (Miyasawa, 1961; Raphan & Simoncelli, 2011; Karras
et al., 2022). By evaluating this closed-form score during sampling, one obtains a training-free sampler for Ä̂1.
While this approach seems tempting at first glance, two flaws render it unsuitable for real-world applications:

1. Many applications involve large training sets, prohibiting O(N) computation of the closed-form score.

2. Flowing base samples through the closed-form velocity field simply outputs training samples xi,
which is not useful in practice.

Existing work avoids these issues by neurally approximating the score of Ät. By compressing training data into
the score model’s weights, neural score functions replace a sum over N training points with a neural network
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evaluation whose complexity does not depend directly on N . Moreover, neural SGMs generate novel samples
given finite training data thanks to approximation error (from limited model capacity) and optimization error
(from undertraining) in learning the score (Pidstrigach, 2022; Yoon et al., 2023; Yi et al., 2023). While neural
SGMs are successful, they are costly to train, and sampling them requires many (typically GPU-bound)
neural network evaluations. Furthermore, the form of the error that enables neural SGMs to generalize is
unknown, making it difficult to characterize the distribution from which these models sample in practice.

Our key insight is that the flaws of naïve closed-form SGMs (in particular, lack of generalization and poor
scalability) can be addressed without resorting to costly black-box neural approximations. To this end, we
make use of a well-known score formula and introduce smoothed closed-form diffusion models (smoothed
CFDMs), a class of training-free diffusion models that require only access to the training set at sampling time.
Smoothed CFDMs generate novel samples from a finite training set by flowing Gaussian noise through a
velocity field built from a smoothed closed-form score. Our method is efficient, has few hyperparameters, and
generates plausible samples in high-dimensional tasks such as image generation. By developing this algorithm,
we demonstrate that a closed-form score formula can be adapted to build a non-neural sampler that scales to
non-trivial generative tasks.

Our specific contributions are as follows:

1. In Section 4, we show that smoothing the exact solution to the score-matching problem promotes
generalization by encouraging the score function to point towards barycenters of training samples.

2. Using our smoothed score, in Section 5.1 we construct a closed-form sampler that generates novel
samples without requiring any training, and characterize the support of its samples.

3. In Section 5.4, we accelerate our sampler using a nearest-neighbor-based estimator of our smoothed
score, and show in Section 6.2 that in practice, one can aggressively approximate our smoothed score
at little cost to sample accuracy.

4. In Section 6, we scale our method to high-dimensional tasks such as image generation. By operating
in the latent space of a pretrained autoencoder, we generate novel samples from popular image
datasets at speeds competitive with existing GPU-bound methods while running on a consumer-grade
laptop with no dedicated GPU.

2 Related work

Diffusion models (Sohl-Dickstein et al., 2015; Song & Ermon, 2019; Ho et al., 2020) have recently achieved state
of the art performance in image (Rombach et al., 2022; Zhang & Agrawala, 2023) and video generation (Ho
et al., 2022a;b). They have also shown promise in 3D synthesis (Luo & Hu, 2021; Poole et al., 2022; Watson
et al., 2022; Lukoianov et al., 2024) and in crucial steps of the drug discovery pipeline such as molecular
docking (Corso et al., 2023) and generation (Hoogeboom et al., 2022; Schneuing et al., 2022). Despite this
progress, however, diffusion models remain costly to train and sample from (Shih et al., 2023). Prior work
has sought to accelerate the sampling of diffusion models via model distillation (Salimans & Ho, 2022),
operating in a pre-trained autoencoder’s latent space (Vahdat et al., 2021; Rombach et al., 2022), modifying
the generative process (Song et al., 2020), using alternative time discretizations for sampling (Zhang & Chen,
2023; Liu et al., 2022; Wu et al., 2023), or by parallelizing sampling steps (Shih et al., 2023). Latent diffusion
models also benefit from lower training expenses (Rombach et al., 2022), but publicly-reported training costs
for state-of-the-art diffusion models remain high (Bastian, 2022).

Recent works propose alternative diffusion-like models that discard the Markov chain and SDE formalisms
from earlier work. Liu et al. (2023) introduce a unified framework for flow-based generative modeling that
subsumes diffusion models and show that straightening their model’s flows enables few-step sample generation.
Heitz et al. (2023) use a similar objective to construct a straightforward graphics-inspired sampler, and
Delbracio & Milanfar (2023) concurrently generalize this framework to arbitrary data perturbations and
apply it to image restoration and generation tasks. All of these methods parametrize their flows by neural
networks that require extensive training.
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While diffusion models draw inspiration from mathematical theory (Feller, 1949; Stroock & Varadhan, 1969a;b;
1972), there have been limited attempts to develop a theoretical understanding of their behavior. Salmona et al.
(2022); Koehler et al. (2023) study the statistical limitations of diffusion models trained via score-matching,
De Bortoli et al. (2021); Lee et al. (2023) present convergence results for diffusion models with absolutely
continuous targets, and De Bortoli (2022) extends these results to manifold-supported distributions. However,
as diffusion models are trained on an empirical approximation to their target distributions, these results can
only show that a diffusion model converges to the empirical distribution of its training set, whereas one is
typically interested in generating novel samples.

Pidstrigach (2022) takes an initial step in this direction by studying the support of an SGM’s model distribution
and providing conditions under which an SGM memorizes its training data or learns to sample from the true
data manifold. Oko et al. (2023) further show that diffusion models can attain nearly minimax estimation
rates for the true data distribution provided its density lies in an appropriate function class. Yoon et al.
(2023) propose and empirically test a memorization-generalization dichotomy, which states that diffusion
models may only generalize when they are parametrized by neural networks with insufficient capacity relative
to the size of their training set. Yi et al. (2023) note that standard training objectives for diffusion models
have closed-form optima given finite training sets and show via experiments that the approximation error of
neural score functions enables existing diffusion models to generalize. Recently, Kadkhodaie et al. (2024)
study generalization in diffusion models using techniques from applied harmonic analysis and demonstrate
that SGMs trained on sufficiently large datasets learn a distribution that is effectively independent of the
training set, and Aithal et al. (2024) show that neural SGMs “hallucinate” by generating data that lies
outside the support of the target distribution because they learn smooth approximations to the ground truth
score function. Whereas these works study the generalization of existing SGMs, we construct a novel SGM
that explicitly perturbs the closed-form score to generalize without the indeterminate approximation error
and training costs of a neural score.

Recent works in graphics and vision have also noted that neural networks are unnecessary for tasks such as
novel view synthesis, where neural radiance fields (NeRFs) had previously achieved SOTA results (Barron
et al., 2022). In light of this, Kerbl et al. (2023) use efficiently optimized 3D Gaussian scene representations
to achieve SOTA visual quality in novel view synthesis while operating in real time. In this work, we adopt a
similar perspective and investigate the extent to which neural networks can be replaced with efficient and
well-understood classical approaches in generative modeling.

3 Preliminaries: The closed-form score

Flow-based generative models draw samples from a target distribution Ä1 by sampling from a known base
distribution Ä0 (typically N (0, I)) and flowing these samples through a velocity field vt from t = 0 to t = 1.
For an appropriately-chosen vt, the samples will be distributed according to the target distribution Ä1 at t = 1.
SGMs employ a vt that depends on the score function ∇ log Ät of the perturbed data distribution Ät. For
example, when Ä0 = N (0, I), one velocity field satisfying this property is v∗

t (z) = 1
t

(z + (1 − t)∇ log Ä∗
t (z))

(Liu et al., 2023), where Ä∗
t is the marginal distribution of the random variable z = tx + (1 − t)ϵ, whose

samples are target samples x ∼ Ä1 that have been rescaled by t and perturbed by Gaussian noise (1 − t)ϵ ∼
N (0, (1 − t)2I). The score function ∇ log Ä∗

t (z) is typically learned via score-matching or denoising.

In practice, one learns an SGM from a finite training set {xi}N
i=1. In this case, the target distribution Ä̂1 is

the empirical distribution over {xi}N
i=1, and for the field v∗

t defined above, the perturbed target distribution
Ä∗

t is a mixture of Gaussians with means txi and common covariance matrix (1 − t)2I. (We will subsequently
use the fact that Ä∗

t is a mixture of Gaussians to accelerate our sampler in Sections 5.2 and 6.2.) Its score
∇ log Ä∗

t (z) has a closed-form expression:

∇ log Ä∗
t (z) =

1

(1 − t)2
(kt(z) − z) , (1)

where kt(z) =
N�

i=1

softmax

�
−∥z − tX∥2

2(1 − t)2

�

i

txi, (2)
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in which we let ∥z − tX∥2 denote the vector whose i-th entry is ∥z − txi∥2. This ∇ log Ä∗
t (z) is a vector

pointing from z toward a distance-weighted average kt(z) of all N rescaled training points and is the exact
solution to the score-matching problem given finite training data. Equation 1 is well-known, having appeared
in the empirical Bayes literature as early as in Miyasawa (1961) and more recently in works such as Raphan
& Simoncelli (2011) and Karras et al. (2022, Appendix B.3). It has also inspired machine learning methods
such as denoising score-matching (Vincent, 2011) and score interpolation (Dieleman et al., 2022).

We define a closed-form diffusion model (CFDM) to be the SGM that flows N (0, I) base samples through
this v∗

t (z) while evaluating the score ∇ log Ä∗
t (z) in closed form as needed during sampling. As this model can

only generate samples from the empirical distribution over training data, CFDMs are not useful in practice.

4 Smoothed closed-form diffusion models

Pidstrigach (2022); Yi et al. (2023) find that existing diffusion models generalize due to approximation error
incurred during score-matching. Rather than studying the generalization of neural SGMs, we take inspiration
from this observation and construct a training-free SGM that generalizes by explicitly inducing error in the
closed-form score.

4.1 Definition

Deep neural networks fit the low-frequency components of their target functions first during training, a
phenomenon known as “spectral bias” that results in excessively smooth approximations to the target
function (Rahaman et al., 2019). Hence, to model the bias of a neural SGM, we induce error in the score
function by smoothing it. To smooth a function f , one chooses a zero-mean noise distribution pϵ and replaces
f(z) with the convolution f̃(z) = E

ϵ∼pϵ

[f(z + ϵ)]. In practice, we compute the smoothed score function sÃ,t(z)

by fixing a smoothing parameter Ã g 0, drawing M noise samples ϵm ∼ pϵ, and computing

sÃ,t(z) =
1

(1 − t)2

�
1

M

M�

m=1

kt(z + Ãϵm) − z

�
. (3)

That is, we average the weights kt in Equation 2 over M small perturbations Ãϵm of z; as Ã → 0, we approach
the unsmoothed score in Equation 1. We do not add noise to the −z term in the score because it vanishes in
expectation. The smoothing procedure in Equation 3 is the key ingredient enabling our model to generalize
without a learned approximation to the score function. The smoothed score sÃ,t can then be inserted into an
SGM sampling loop to yield a closed-form sampler that generates novel samples.

To develop intuition for why this simple modification of the closed-form score promotes generalization, we
consider the behavior of the closed-form score as t → 1. Figure 1 depicts the closed-form score (Equation 1)
and its smoothed counterpart (Equation 3) at t = 0.95 for a simple case where the training data consists of
two points x0 (in blue) and x1 (in red). In this regime, the temperature (1 − t)2 of the softmax in Equation 2

(a) Closed-form score (b) Smoothed score

Figure 1: Effect of smoothing on the closed-form score (yellow streamplot). Colors represent distance weights
in kt(z); blue regions of space are drawn to the blue point on the left, and vice-versa.
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is low, and kt(z) is effectively equal to the nearest neighbor of z within the training set. Flowing points
z through a velocity field such as Liu et al. (2023)’s v∗

t (z) = 1
t

(z + (1 − t)∇ log Ä∗
t (z)) causes them to flow

towards their nearest training sample. As a result, an SGM based on this score function simply outputs
training data.

On the other hand, the small perturbations Ãϵm in Equation 3 occasionally push points z near the Voronoi
boundary between x0 and x1 into their neighboring Voronoi cell. Averaging kt over these perturbations yields
a score function that instead points towards the line segment connecting x0 and x1. An SGM based on the
smoothed score function will hence cause samples to flow towards weighted barycenters of the training points,
which promotes generalization, especially when the data lie on a manifold of sufficiently low curvature. We
will make these intuitions rigorous in the following section by proving Proposition 4.1, which will enable us to
constrain the support of our model’s samples.

4.2 Effect of smoothing the score

In this section, we show that as t → 1, the smoothed score points towards barycenters of these tuples
rather than towards training points, thereby enabling our sampler to generalize. We first note that via a
straightforward computation,

kt(z + Ãϵm) =
N�

i=1

softmax

�
−∥z − tX∥2 + Ãtui,m

2(1 − t)2

�

i

txi, (4)

where ui,m = −2ïϵm, xið is a scalar random variable. This shows that smoothing the score acts by perturbing
the distance weights −∥z − txi∥, so one can directly add scalar noise ui,m ∼ pu to these weights instead of
perturbing the inputs z with noise ϵm ∼ pϵ. To simplify our exposition, we will frame the remainder of our
results from this perspective.

We now show that smoothing the closed-form score yields a function sÃ,t(z) that points from z towards a

convex combination kÃ,t(z) of barycenters tc̄k = 1
M

�M
m=1 txi(k,m) of tuples tCk = (txi(k,m) : m = 1, ..., M) of

rescaled training points. In this notation, i(k, m) picks out an index i corresponding to one of the N training
points {x1, ..., xN } that depends both on the identity of the tuple tCk (represented by the argument k and
the index’s position in the tuple (represented by the argument m). In this way, the k-th tuple tCk contains
M training samples xi(k,m) for m = 1, ..., M . The weights of this convex combination depend not only on the
distance ∥z − tc̄k∥ between z and the barycenters tc̄k, but also on the variance of the tuples tCk and the

noise terms ūk = 1
M

�M
m=1 ui(k,m). Tuples of tightly-clustered points have low variance and hence receive

large weights in kÃ,t(z), whereas tuples of distant points have high variance and receive small weights in
kÃ,t(z). We prove the following proposition in Appendix B.1.

Proposition 4.1 (sÃ,t points towards barycenters of training points). The smoothed score sÃ,t(z) can be
expressed as:

sÃ,t(z) =
1

(1 − t)2
(kÃ,t(z) − z) , where

kÃ,t(z) =

NM�

k=1

softmax

�
−M

�
∥z − tc̄k∥2 + Var(tCk) + Ãtūk

�

2(1 − t)2

�

k

tc̄k. (5)

5 Sampling algorithm

5.1 Forward Euler scheme for sampling

Armed with the smoothed score sÃ,t, we are now in position to define our sampler. Following Liu et al. (2023),
we draw N (0, I) base samples and flow them through

vÃ,t(z) =
1

t
(z + (1 − t)sÃ,t(z)) , (6)
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Algorithm 1 Sampling

Input: Training set {xi}N
i=1, noise {ui,m}, step size h = 1

S
, initial sample z0 ∼ N (0, I)

for n = 0, ..., S − 1 do

tn = n
S

zn+1 ← zn + hvÃ,tn
(zn)

end for

return zT

from t = 0 to t = 1. We discretize this ODE using a forward Euler scheme, leading to Algorithm 1 for
sampling using the smoothed score.

The smoothed score in Equation 3 and Algorithm 1 jointly define our smoothed closed-form diffusion model;
given a smoothing parameter Ã, we call this a Ã-CFDM. Using Algorithm 1, we can sample from a Ã-CFDM
given access only to the training data {xi}N

i=1 and noise samples. Notably, no training phase or neural
network is needed for this procedure. By explicitly smoothing the closed-form score rather than relying on
a neural network’s approximation error, we can determine the support of our Ã-CFDM’s distribution. For
sufficiently small step sizes, our model’s samples will lie at the barycenters of tuples of training points.

Theorem 5.1 (Support of Ã-CFDM samples). All samples returned by Algorithm 1 are of form zS =
S

S−1 kÃ, S−1

S
(zS−1). As the number of sampling steps S → ∞ (equivalently, as the step size 1

S
→ 0), the model

samples converge towards barycenters zS = c̄k of M -tuples of training points.

We prove this theorem in Appendix B.2. While our sampler is easy to implement and training-free, it may
be costly if the number of training samples N and the number of sampling steps S are large. We address
these issues in the following sections. In Section 5.4, we show how to approximate our smoothed score using
efficient nearest-neighbor search. In Section 6.2, we demonstrate that one may take fewer sampling steps by
initializing the sampler at a non-zero start time at little cost to sample accuracy, and provide complementary
analysis in Section 5.2. This will permit our method to scale to high-dimensional real-world datasets while
achieving sampling times competitive with existing methods and running on consumer-grade CPUs.

5.2 Taking fewer sampling steps

As a CFDM’s distribution Ä∗
t is simply a time-dependent mixture of Gaussians centered at the training points,

it can be directly sampled at any time t by uniformly sampling a mixture mean txi and then sampling from a
Gaussian centered at txi. We use this fact to sample a Ã-CFDM with fewer steps by starting at T > 0 with
samples from its corresponding unsmoothed CFDM. As a Ã-CFDM does not have the same distribution as
an unsmoothed CFDM, this approximation incurs some error, which we bound in the following theorem.

Theorem 5.2 (Approximation error from starting at T > 0). Let ÄT
1−ϵ be the model distribution at t = 1 − ϵ

obtained by starting sampling a Ã-CFDM at T > 0 with samples from the unsmoothed CFDM, and let Ä0
Ã,1−ϵ

be the corresponding Ã-CFDM model distribution when sampling starting at T = 0. Then for any fixed T and
ϵ,

W2(Ä0
Ã,1−ϵ, ÄT

Ã,1−ϵ) = O(Ã). (7)

where W2 is the 2-Wasserstein distance.

Following De Bortoli (2022), we stop sampling at time 1 − ϵ for some truncation parameter ϵ > 0 to account
for the fact that the smoothed score sÃ,t blows up as t → 1 due to division by (1 − t)2. We prove this theorem
in Appendix B.3.

This result shows that initializing a Ã-CFDM with samples from the unsmoothed CFDM Ä∗
T at time T > 0

results in bounded error that scales linearly with Ã. Intuitively, increasing Ã causes the unsmoothed velocity
field v∗

t to be a worse approximation to the smoothed velocity field vÃ,t at any time t; Theorem 5.2 confirms
that the cost to sample accuracy is linear in Ã.
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5.3 Distribution of one-step samples under Gumbel weight perturbations

When the scalar noise ui,m perturbing the distance weights in Equation 4 is drawn from a Gumbel(0, 1)
distribution, we can precisely characterize the smoothed model’s distribution when performing single-step
sampling by starting sampling at the final Euler iteration in Algorithm 1.

Proposition 5.3. Suppose we begin sampling a smoothed CFDM at iteration S − 1 of Algorithm 1 using
samples zS−1 ∼ Ä∗

tS−1
from the unsmoothed CFDM at tS−1. Suppose also that the perturbations ui,m to the

distance weights in Equation 4 are drawn from a Gumbel(0, 1) distribution. Then, as the number of Euler
steps S → ∞, the model samples zS are of the form zS = 1

M
XIÃ, where X ∈ RD×N is the matrix whose i-th

column is training sample xi ∈ RD and IÃ ∼ Multinomial(ÃÃ, M). The probability Ãi
Ã of training point xi is

given by Ãi
Ã = softmax

�
− 1

Ã
∥zS−1 − xi∥2

�
.

We prove this proposition in Appendix B.4. This result provides further intuition on the role of the smoothing
parameter Ã in determining the distribution of a smoothed CFDM’s samples: It is the temperature of the
softmax determining Ãi

Ã = softmax
�
− 1

Ã
∥zS−1 − xi∥2

�
. When Ã = 0, the softmax simply picks out the

training sample xi that is closest to zS−1. Conversely, as Ã → ∞, the event probabilities Ãi
Ã become uniform

and zS becomes the barycenter of M uniformly-sampled training points.

5.4 Fast score computation via approximate nearest-neighbor search

Each sampling step in Algorithm 1 requires the evaluation of the smoothed score sÃ,t(z) and hence a sum
over O(N) terms. For large datasets, each evaluation of sÃ,t(z) is therefore costly and places substantial
demands on memory.

In the t → 1 regime, the temperature of the softmax in Equation 4 is low, and the large sum is dominated by
the handful of terms corresponding to the smallest values of ∥z − txi∥2 − Ãtui,m. If Ã is sufficiently small,
these terms correspond to the nearest neighbors of z among the rescaled training points txi. This suggests
that we can approximate the smoothed score sÃ,t by subsampling terms in the O(N) sum while ensuring that
the nearest neighbors of z are included with high probability.

Noting that the closed-form score ∇ log Ä∗
t (z) =

∇Ä∗

t (z)
Ä∗

t
(z) is the score of a Gaussian kernel density estima-

tor (KDE) Ä∗
t , we employ Karppa et al. (2022)’s unbiased nearest-neighbor estimator for KDEs to estimate

the denominator, and take its gradient to obtain an unbiased estimate of the numerator. We provide details
on this estimator in Appendix A. Our estimator is computed using the K nearest neighbors of z in the
training set and L random samples from the remainder of the training set; we study the accuracy tradeoffs
associated with K and L in Section 6.2.

Figure 2: W2 between Ã-CFDM model
samples and true samples. We depict
model samples for Ã ∈ {0, 0.26, 1}.

Given this estimator for the closed-form score, we estimate the
smoothed score �sÃ,t via convolution against a smoothing kernel as
in Section 4.1. By using the approximate nearest neighbor search
algorithms implemented in Faiss (Douze et al., 2024), we are able
to scale our method to high-dimensional real-world datasets and
achieve sampling times competitive with neural SGMs while running
on consumer-grade CPUs; see Sections 6.3 and 6.4 for examples and
runtime metrics.

6 Results

6.1 Impact of Ã on generalization

We now show that a Ã-CFDM’s model distribution approaches the
true distribution Ä1 of its training samples xi ∼ Ä1 for appropriate
values of Ã. We fix a continuous target distribution Ä1 and draw
N = 5000 samples yi to serve as a discrete approximation to Ä1. We
then draw a smaller subset of n = 500 training samples xi and construct a Ã-CFDM on these samples while
varying Ã.
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For each Ã, we measure the 2-Wasserstein distance W2 between the Ã-CFDM’s generated samples and the true
samples yi ∼ Ä1, and use this as a tractable proxy for the distance between the Ã-CFDM’s model distribution
and the true distribution Ä1. We present the results of this experiment for the “Checkerboard” distribution
in Figure 2.

When Ã = 0, the support of our model’s samples (left side of Figure 2) coincides with the training samples xi.
The 2-Wasserstein distance between the model samples and true samples yi decreases for small values of Ã as
the model samples become convex combinations of nearby points in the training set; we depict model samples
for Ã = 0.26 in the center of Figure 2. However, as Ã grows large, the model samples spread out to fill the
convex hull of the training set (right side of Figure 2) and the distance between our model’s samples and true
samples yi grows rapidly. These results suggest that for appropriate values of Ã, our method can use a fixed
training set {xi}N

i=1 to generate novel samples that remain close to the target distribution Ä1. Experiments of
this type may be used to select appropriate values of Ã for a given application.

In Figure 3, we demonstrate that with an appropriate choice of Ã, our method can sample from a 2D
surface embedded in R3 given a sparse blue noise sampling of the surface; this is a low-dimensional case of a
manifold-supported distribution, which is typical in machine learning applications. Our method’s samples
(blue points) fill in the gaps between the sparse training samples (red points) while remaining close to the
true manifold. This occurs because Ã-CFDM samples are barycenters of tuples of nearby training points,
with Ã controlling the variance of these tuples. For appropriate values of Ã and sufficiently dense samplings
of training points, these barycenters will approximately lie on tangent planes to the surface, and hence lie
near the surface but away from the training data.

(a) σ = 0.2: 28.9% ↓ in W2 (b) σ = 0.375: 13.4% ↓ in W2 (c) σ = 0.4: 34.1% ↓ in W2

Figure 3: Sampling a Ã-CFDM (blue points) yields a dense point cloud given sparse mesh samples (red
points). We report % drop in W2 distance to a dense mesh sampling when using our Ã-CFDM’s samples
relative to the sparse training samples. We render these point clouds in Polyscope (Sharp et al., 2019).

6.2 Ablation and computational trade-offs

In this section, we investigate the impact of the start time T and the parameters of our nearest-neighbor-based
score estimator (9) on the distribution of our model’s samples.

Impact of T . As a CFDM’s distribution Ä∗
t is simply a time-dependent mixture of Gaussians centered at

training points, it can be directly sampled at any time t by uniformly sampling a mixture mean txi and then
sampling from a Gaussian centered at txi. We use this fact to sample a Ã-CFDM with fewer steps by starting
at T > 0 with samples from its corresponding unsmoothed CFDM. We show here that for practical values of
Ã, one can begin sampling at T close to 1 with little accuracy loss.

We fix a continuous target distribution Ä1, draw n = 500 training samples xi, and construct a Ã-CFDM on
these samples for Ã ∈ {0, 0.2, 0.4, 0.6, 0.8, 1.0}. We then vary the initial sampling times T and compute the
2-Wasserstein distance W2 between model samples generated starting at T = 0 and at T > 0. We compare
this to the average W2 distance between batches of Ã-CFDM samples generated by starting at T = 0 (which

8
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is nonzero due to randomness in sampling) and report the percent change in W2 relative to this baseline
value. We present the results of this experiment for the “Checkerboard” distribution in Figure 4.

Figure 4: % change in W2 between Ã-
CFDM model samples generated start-
ing at T = 0 and samples generated
starting at T > 0.

For Ã < 0.4, there is little accuracy loss when starting at T > 0,
even for start times close to 1. When Ã g 0.4, the accuracy of this
approximation begins to decline for start times T g 0.4, with large
reductions in approximation quality when both Ã and T are large.
As we have found that our model has performed best with Ã f 0.4 in
the applications considered in this work, this section’s results support
the use of few sampling steps in practice. The results in Sections
6.3 and 6.4 further support the use of late start times T for image
generation; we find in these experiments that we can start sampling
as late as T = 0.98 while maintaining good sample quality.

Impact of K and L on the NN-based score estimator. In
Section 5.4, we proposed an efficient score estimator based on fast
nearest-neighbor search. We now study the impact of the number
of nearest neighbors K and the number of random samples L from
the remainder of the training set on our model’s samples.

We fix a continuous target distribution Ä1, draw n = 500 training
samples xi, and construct a Ã-CFDM on these samples for Ã = 0.3;
this value is typical for real-world applications. We then vary the
number of nearest neighbors K and the number of random samples L used to compute the score estimator
Equation 9 and measure the 2-Wasserstein distance between model samples generated using the full smoothed
score and using the estimator Equation 9. We present the results of this experiment for the “Checkerboard”
distribution in Figure 5. We center the diverging color scheme at the W2 distance between two batches of
samples from a Ã-CFDM using the full smoothed score; this noise threshold encodes the inherent randomness
in our model’s samples across batches.

Figure 5: W2 between Ã-CFDM
model samples generated using
the full score and our NN-based
estimator for varying # of NN
K (horizontal axis) and # of ran-
dom samples L (vertical axis).

The error arising from the NN-based estimator is decreasing in K and L,
with especially poor approximation quality when using a single random
sample xℓ. However, the accuracy of the model samples approaches the
noise threshold for small values of K, L. For example, with K = L = 15
(which samples just 6% of the terms in kÃ,t), the W2 distance between
samples generated using the full score and the NN-based estimator is
0.1865, a value close to the noise threshold of 0.1791. In Sections 6.3 and
6.4, we additionally show that one can generate high-quality images while
subsampling kÃ,t at a far lower rate, thereby enabling our method to scale
to real-world datasets.

6.3 Image generation in pixel space

In this section, we use our Ã-CFDM to sample images in pixel space that
are similar to images from the “Smithsonian Butterflies” dataset,1 rescaled
to 128×128. We benchmark our model’s sample quality, training time, and
sampling time against a denoising diffusion probabilistic model (DDPM)
(Ho et al., 2020) and provide training details in Appendix C.1.

We display images from a held-out test set along with DDPM samples
and our model’s samples in Figure 6. Both our model and the DDPM
generate images that qualitatively resemble the test images, but as our
model can only output barycenters of training samples (see Theorem 5.1),
our samples exhibit softer details than the test and DDPM samples. Table 1 records sample quality metrics
and training and generation times for our method and the DDPM baseline. Our training-free method achieves

1Dataset available on Hugging Face: huggan/smithsonian_butterflies_subset
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(a) Ground truth images (b) DDPM samples (c) σ-CFDM samples

Figure 6: Ground truth images from Smithsonian Butterflies (left), DDPM samples (center), and Ã-CFDM
samples (right).

comparable sample quality to a DDPM that has been trained for 5.34 hours on a single V100 GPU, and
achieves over 2.9 times the sample throughput of a DDPM running on a V100 GPU while running on a
Macbook M1 Pro CPU with 16 GB of RAM.

As 128 × 128 RGB images lie in 49,152-dimensional space, this experiment demonstrates that our method
scales to high-dimensional problems. As our method is able to generate plausible samples despite being
restricted to outputting barycenters of training samples, it also demonstrates that there exist image manifolds
for which our Ã-CFDM’s inductive bias is reasonable. However, we do not expect this inductive bias to be
suitable for most real-world image data, where barycenters of training samples typically lie off-manifold and
fail to resemble ground truth samples. To narrow this gap between theory and practice, we show in the
following section that by sampling in the latent space of an autoencoder, our method can generate plausible
and diverse images of human faces, comparing favorably with a VAE at marginally higher sampling costs.

Table 1: Metrics for sample quality and generation time in pixel space. Our Ã-CFDM achieves competitive
sample quality and generation time while requiring no costly training.

Method Metric Butterflies

DDPM

Inception score ↑ 1.87 ± 0.225
KID ³ 0.0220 ± 0.0038

Training time 5.24 h
Sampling time (GPU) 1.20 s

Ã-CFDM

Inception score ↑ 2.20 ± 0.150
KID ³ 0.0114 ± 0.0048

Training time 0 h
Sampling time (CPU) 0.4124 s

6.4 Image generation in latent space

Theorem 5.1 shows that in the limit of small step sizes, a Ã-CFDM’s samples are barycenters of nearby training
points. This is typically a poor prior for images in pixel space, but an appropriately-chosen autoencoder
may map the training data to a latent manifold that more closely satisfies this local linearity assumption.
To this end, we train the nuclear norm-regularized autoencoder proposed by Scarvelis & Solomon (2024),
which encourages latent vectors to lie on a low-dimensional manifold. We then sample from a Ã-CFDM
in the latent space of this pretrained autoencoder for the CelebA dataset (Liu et al., 2015) and discard
samples that are identical to their nearest latents from the training set. As our method relies on tractable
nearest-neighbor queries in the training set at sampling time, this is a feasible post-processing step for our
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(a) Ground truth samples (b) VAE samples (c) σ-CFDM samples

Figure 7: Ground truth images from CelebA (left), VAE samples (center), and Ã-CFDM samples (right).

sampler. We benchmark our method against a Variational AutoEncoder (VAE) (Kingma, 2013) trained for
the same number of epochs and employing the same architecture as the nuclear norm-regularized autoencoder.
We train both autoencoders using the log hyperbolic cosine reconstruction loss, which has been found to
improve sample quality in VAEs (Chen et al., 2019).

A VAE is an appropriate baseline for a latent Ã-CFDM because both models train a regularized autoencoder
to obtain well-structured latent representations, and then employ a training-free process to generate new
samples in latent space. A VAE’s sampling procedure is simple and data-independent: One draws a
normally-distributed latent and decodes it. However, one must use heavy regularization to ensure the
latent distribution is nearly Gaussian, and VAEs suffer from poor sample quality as a result. In contrast, a
Ã-CFDM’s data-dependent sampling procedure merely requires that the latent distribution be supported on
a manifold of sufficiently low curvature, so that barycenters of nearby latents continue to lie on this manifold.
We consequently expect that one may sample a Ã-CFDM in a weakly regularized latent space to obtain
better-quality decoded samples than a VAE while preserving the ability to sample on CPU without requiring
additional training.

We display our model’s samples, along with VAE samples and ground truth samples from the CelebA dataset
in Figure 7. Barycenters of natural images in pixel space typically do not resemble natural images unless they
are well-registered (as with the butterflies in Section 6.3), but operating in an autoencoder’s latent space
allows our method to generate plausible and diverse images of human faces. In particular, our method’s
samples exhibit greater qualitative diversity than the VAE samples, at times including features such as hats
and glasses that seldom or never appear in the VAE baseline’s samples.

Table 2: Metrics for sample quality and generation time in latent space. Our Ã-CFDM improves significantly
on a VAE’s sample quality at a marginal sampling cost on CPU.

Method Metric CelebA

VAE
Inception score ↑ 1.68 ± 0.08

KID ³ 0.108 ± 0.0066
Sampling time (CPU) –

Ã-CFDM
Inception score ↑ 2.22 ± 0.19

KID ³ 0.092 ± 0.0075
Sampling time (CPU) 44 ms

We report sample quality and generation time metrics, including inception scores (Salimans et al., 2016)
and kernel inception distances (KID) (Bińkowski et al., 2018) between generated samples and samples from
the CelebA test partition in Table 2. Our Ã-CFDM results in a 15.0% improvement in KID and 32.4%
improvement in inception score compared to the VAE baseline. While the VAE’s sampling cost, which
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amounts to the cost of generating Gaussian noise, is negligible, our method’s sampling time is just 44 ms
per sample. For the sake of fairness, this cost is amortized over the number of Ã-CFDM samples left after
discarding nearest neighbors to ensure novelty.

7 Conclusion and future work

In this work, we introduced smoothed closed-form diffusion models (smoothed CFDMs): a class of training-free
diffusion models requiring only access to the training set at sampling time. Smoothed CFDMs leverage the
availability of an exact solution to the score-matching problem—which alone does not yield generalization—
and explicitly induce error by smoothing. This results in a model that generalizes by provably outputting
barycenters of training points. Our method is efficient and scalable, and runs on a consumer-grade laptop
with no dedicated GPU.

Our results suggest that it is possible to design SGMs that generalize without relying on neural score
approximations. They also suggest that smoothness is among the inductive biases enabling neural SGMs
to generalize in spite of the uninteresting global optimum of their training objective, which only allows
for memorization. However, because our method generates barycenters of training points, its inductive
bias is unsuitable on its own for sparsely-sampled manifolds in high-dimensional space, which one typically
encounters in modern applications such as image generation. In this work, we partially address this shortfall
by using our method to sample in an appropriately-structured latent space, but our sample quality lags
behind that of state of the art neural SGMs. We therefore encourage further work to close this gap in sample
quality, and describe some potential directions for future work below.

State of the art SGMs are typically built upon convolutional architectures with self-attention layers, which
both feature unique inductive biases. Concurrent work by Kamb & Ganguli (2024) investigates the impact of
locality and equivariance constraints on the optimum of the score-matching objective, and Niedoba et al.
(2024) empirically investigate whether a locality bias can explain the behavior of neural denoisers. Combining
these constraints with our smoothing approach and explicitly modeling the inductive biases of self-attention
layers may yield further insights into the generalization of neural diffusion models and lead to new strategies
for building training-free diffusion models that generalize.

Most interesting image generation tasks are conditional. For instance, a user may provide a text prompt and
seek an image whose subject and style match the prompt. While state-of-the-art diffusion models typically
employ classifier-free guidance (Ho & Salimans, 2021) to introduce conditioning information, it is unclear how
to extend our training-free method to include an analogous form of guidance. On the other hand, Dhariwal &
Nichol (2021)’s classifier guidance would likely be a feasible addition to our method, amounting to augmenting
our velocity field (6) with the gradient of a pretrained classifier. As classifier guidance is known to improve
diffusion models’ sample quality, this may have the additional benefit of narrowing the gap between our
samples and those generated by state-of-the-art neural methods.
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A Details on nearest-neighbor estimator of closed-form score

Karppa et al. (2022) propose an unbiased estimator of a kernel density estimate KDE(z). Given a kernel
function Kh(z) with bandwidth h > 0 and a dataset {xi}N

i=1, their estimator first searches for the K-nearest
neighbors {xk}K

k=1 of z in the dataset, then draws L random samples {xℓ}L
ℓ=1 from the remainder of the

dataset, and approximates KDE(z) as follows:

�KDE(z) =
1

N

K�

k=1

Kh(xk, z) +
N − K

LN

L�

ℓ=1

Kh(xℓ, z) (8)

This estimator is unbiased for any subset of points xk ∈ {xi}N
i=1 drawn in the first stage. In particular, using

approximate nearest-neighbors (ANNs) rather than exact nearest neighbors of z increases the variance of
Equation 8 but does not introduce bias.

As the closed-form score ∇Ä∗
t is the score of a Gaussian KDE Ä∗

t with bandwidth h = 2(1−t)2, we approximate
the closed-form score using the following ratio estimator:

�∇ log Ä∗
t (z) =

�
�∇Ä∗

t (z)

Ä∗
t (z)

�
=

∇ �Ä∗
t (z)

�Ä∗
t (z)

, (9)

where �Ä∗
t (z) is Karppa et al. (2022)’s estimator Equation 8. Since the gradient operator is linear, both the

numerator and denominator in Equation 9 are unbiased estimates of their respective terms in the closed-form
score.

B Proofs

B.1 Proof of Proposition 4.1

For each k = 1, ..., NM , let tCk = (txi(k,m) : m = 1, ..., M) be an M -tuple of rescaled training points txi.
(The same point txi can appear multiple times in an M -tuple.)

Define the barycenters and variances of these tuples as follows:

tc̄k =
1

M

M�

m=1

txi(k,m), ūk =
1

M

M�

m=1

ui(k,m), Var(tCk) =
1

M

M�

m=1

∥txi(k,m) − tc̄k∥2. (10)

We will show that up to a constant factor, the smoothed score Equation 3 is itself the score of a mixture of
NM Gaussians. Rewriting the smoothed score in gradient form, we have:
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sÃ,t(z) =
1

(1 − t)2

1

M

M�

m=1

N�

i=1

softmax

�
−∥z − tX∥2 + Ãtui,m

2(1 − t)2

�

i

(txi − z)

= ∇z

1

M

M�

m=1

log
N�

i=1

exp

�
−∥z − txi∥2 + Ãtui,m

2(1 − t)2

�

= ∇z

1

M
log

M�

m=1

N�

i=1

exp

�
−∥z − txi∥2 + Ãtui,m

2(1 − t)2

�

= ∇z

1

M
log

NM�

k=1

exp

�
−

�M
m=1(∥z − txi(k,m)∥2 + Ãtui(k,m))

2(1 − t)2

�

= ∇z

1

M
log

NM�

k=1

exp

�
−M

�
∥z − tc̄k∥2 + Var(tCk) + Ãtūk

�

2(1 − t)2

�
(∗)

=
1

M
∇z log

NM�

k=1

exp

�
−M(Var(tCk) + Ãtūk)

2(1 − t)2

�
exp

�
−M∥z − tc̄k∥2

2(1 − t)2

�

=
1

M
∇z log

NM�

k=1

wk(t) exp

�
−M∥z − tc̄k∥2

2(1 − t)2

�

=
1

M
∇z log qt(z)

This shows that up to a constant factor 1
M

, the smoothed score sÃ,t(z) is the score of a large mixture of

Gaussians qt(z) =
�NM

k=1 wk(t) exp

�
− M(∥z−tc̄k∥2)

2(1−t)2

�
. The mean of each Gaussian is the barycenter tc̄k of some

M -tuple tCk of training points txi(k,m), and its common covariance matrix is (1−t)2

M
I. The time-dependent

mixture weights wk(t) ∝ exp
"

− M(Var(tCk)+Ãtūk)
2(1−t)2

�
are decreasing in the variance of the M -tuples tCk but

are subject to the presence of noise terms Ãtūk = Ãt
M

�
m ui(k,m).

Finally, by expanding the gradient in (∗), we straightforwardly obtain:

sÃ,t(z) =
1

(1 − t)2




NM�

k=1

softmax

�
− M

2(1 − t)2

�
∥z − tc̄k∥2 + Var(tCk) + Ãtūk

��

k

tc̄k − z




B.2 Proof of Theorem 5.1

Define

kÃ,t(z) =
NM�

k=1

softmax

�
− M

2(1 − t)2

�
∥z − tc̄k∥2 + Var(tC̃k) + Ãtūk

��

k

tc̄k (11)

so that sÃ,t(z) = 1
(1−t)2 (kÃ,t(z) − z). Then

18



Published in Transactions on Machine Learning Research (05/2025)

vÃ,t(z) =
1

t
(z + (1 − t)sÃ,t(z))

=
1

t

�
z +

1

(1 − t)
(kÃ,t(z) − z)

�

=
1

1 − t

�
1

t
kÃ,t(z) − z

�

Expanding the formula for the final Euler step using this expression for vÃ,t(z) and tS−1 = S−1
S

, we obtain:

zS = zS−1 +
1

S
vÃ,tS−1

(zS−1)

= zS−1 +
1

S
· 1

1 − S−1
S

�
1

S−1
S

kÃ, S−1

S
(zS−1) − zS−1

�

= zS−1 +
S

S − 1
kÃ, S−1

S
(zS−1) − zS−1

=
S

S − 1
kÃ, S−1

S
(zS−1)

=
S

S − 1

NM�

k=1

softmax

�
−MS2

2

�
∥zS−1 − S − 1

S
c̄k∥2 + Var(

S − 1

S
C̃k) + Ã

S − 1

S
ūk

��

k

S − 1

S
c̄k

→
S→∞

c̄k∗

In the final line, we use the fact that as S → ∞, the temperature of the softmax goes to 0 and picks out a
single index k∗ such that

k∗ = argmax
k

−
�
∥zS−1 − c̄k∥2 + Var(Ck) + Ãūk

�

= argmin
k

�
∥zS−1 − c̄k∥2 + Var(Ck) + Ãūk

�

B.3 Proof of Theorem 5.2

We divide the proof of this theorem into three propositions. We first sketch the proof and state the propositions,
and then prove each proposition in subsections below.

Our first result shows that flowing Ä0 through two similar velocity fields v∗
t , vÃ,t yields similar model

distributions Ä∗
T , ÄÃ,T at some terminal time T :

Proposition B.1. Suppose a measure Ä0 is pushed through velocity fields v∗
t , vÃ,t, and denote the respective

pushforward measures at time t by Ä∗
t , ÄÃ,t. Then,

W2(Ä∗
T , ÄÃ,T ) f

" T

0

´(t)
�

E
z∼Ä∗

t

∥v∗
t (z) − vÃ,t(z)∥2dt (12)

where ´(t) := exp
"� T

t
Lv∗

s
ds

�
and Lv∗

s
g 0 is the Lipschitz constant of v∗

s .

The result above applies to any two velocity fields, subject to some weak regularity conditions. To apply this
result to the unsmoothed and smoothed velocity fields v∗

t and vÃ,t, we bound ´(t) and E∥v∗
t (z) − vÃ,t(z)∥2 in

terms of Ã:

19



Published in Transactions on Machine Learning Research (05/2025)

Proposition B.2. Let v∗
t be velocity field of an unsmoothed CFDM, and let v∗

Ã,t be the velocity field Equation 6
of the corresponding Ã-CFDM. Then,

´(t) f exp

�
D2(2T − 1)

(1 − T )2

�
·
�

1 − t

1 − T

�2

(13)

and

�
E

z∼Ä∗

t

∥v∗
t (z) − vt(z)∥2 f C1

Ãt

2(1 − t)3
(14)

where D is the diameter of the training data and C1 is a constant depending on the training data and the
distribution pu of the scalar noise ui,m perturbing the distance weights in Equation 4.

Combining these results, we obtain the following bound on W2(Ä∗
T , ÄÃ,T ):

W2(Ä∗
T , ÄÃ,T ) = O(Ã). (15)

This shows that one can approximate a Ã-CFDM’s model samples at some time T > 0 by model samples from
its corresponding unsmoothed CFDM (i.e. a mixture of Gaussians) when the smoothing parameter Ã is small.

We now show that flowing two similar distributions Ä∗
T and ÄÃ,T through a Ã-CFDM’s velocity field from time

T to 1 − ϵ yields similar terminal distributions ÄT
Ã,1−ϵ, Ä0

Ã,1−ϵ. Following De Bortoli (2022), we stop sampling
at time 1 − ϵ for some truncation parameter ϵ > 0 to account for the fact that the smoothed score sÃ,t blows
up as t → 1 due to division by (1 − t)2.

Proposition B.3. Suppose Ä∗
T and ÄÃ,T are pushed through the velocity field vÃ,t of a Ã-CFDM, and let

ÄT
Ã,1−ϵ, Ä0

Ã,1−ϵ denote their respective terminal distributions at time 1 − ϵ. Then

W2(ÄT
Ã,1−ϵ, Ä0

Ã,1−ϵ) f O

��
1 − T

ϵ

�2

exp

�
D2(1 − 2ϵ)

ϵ2

��
W2(Ä∗

T , ÄÃ,T ), (16)

where D is the diameter of the training data.

By combining Equation 15 and Equation 16 and treating T and the truncation parameter ϵ as fixed, we
finally obtain a global upper bound on W2(ÄT

Ã,1−ϵ, Ä0
Ã,1−ϵ):

W2(ÄT
Ã,1−ϵ, Ä0

Ã,1−ϵ) = O(Ã) (17)

where ÄT
Ã,1−ϵ is the model distribution obtained by starting sampling at T > 0 with samples from the

unsmoothed CFDM and Ä0
Ã,1−ϵ is true model distribution of the Ã-CFDM.

B.3.1 Proof of Proposition B.1

Our proof for this proposition employs techniques similar to those used to prove Theorem 1 and Proposition
1 in Kwon et al. (2022).

We begin with the following well-known result (Santambrogio, 2015, Corollary 5.25):

Suppose that two measures Ä∗ and Ä are each pushed through velocity fields v∗
t , vt respectively and denote

the pushforward measures at time t by Ä∗
t , = Ä∗

t . Then:

1

2

d

dt
W 2

2 (Ä∗
t , Ät) = E

(x,y)∼µt

ïy − x, v∗
t (y) − vt(x)ð (18)
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where µt is the W2 coupling between Ä∗
t and Ät.

For any x, y we can use Cauchy-Schwarz and the triangle inequality to obtain the following bound:

ïy − x, v∗
t (y) − vt(x)ð f ∥y − x∥ · (∥v∗

t (y) − v∗
t (x)∥ + ∥v∗

t (x) − vt(x)∥) (19)

We can then bound ∥v∗
t (y) − v∗

t (x)∥ in terms of maximum of the Jacobian Dv∗
t of v∗

t on the line segment
[x, y] := {ty + (1 − t)x : 0 f t f 1} to obtain:

ïy − x, v∗
t (y) − vt(x)ð f

�
max

p∈[x,y]
∥Dv∗

t ∥
�

∥y − x∥2 + ∥y − x∥ · ∥v∗
t (x) − vt(x)∥ (20)

This constant is in turn upper-bounded by the Lipschitz constant Lv∗

t
of v∗

t on the convex hull of supp(Ä∗
t ) ∪

supp(Ät), so we in fact have:

ïy − x, v∗
t (y) − vt(x)ð f Lv∗

t
∥y − x∥2 + ∥y − x∥ · ∥v∗

t (x) − vt(x)∥ (21)

Adding E
(x,y)∼µt

back in, we get:

1

2

d

dt
W 2

2 (Ä∗
t , Ät) = E

(x,y)∼µt

ïy − x, v∗
t (y) − vt(x)ð

f Lv∗

t
E

(x,y)∼µt

∥y − x∥2 + E
(x,y)∼µt

∥y − x∥ · ∥v∗
t (x) − vt(x)∥

= Lv∗

t
W 2

2 (Ä∗
t , Ät) + E

(x,y)∼µt

∥y − x∥ · ∥v∗
t (x) − vt(x)∥

f Lv∗

t
W 2

2 (Ä∗
t , Ät) +

�
E

(x,y)∼µt

∥y − x∥2 ·
�

E
(x,y)∼µt

∥v∗
t (x) − vt(x)∥2

= Lv∗

t
W 2

2 (Ä∗
t , Ät) + W2(Ä∗

t , Ät) ·
�

E
x∼Ä∗

t

∥v∗
t (x) − vt(x)∥2

where we use Cauchy-Schwarz for random variables in passing from the third to fourth lines and then the fact
that Ä∗

t is one of the marginals of µt. Using the chain rule on the LHS and cancelling a factor of W2(Ä∗
t , Ät)

from both sides, we obtain the following differential inequality:

d

dt
W2(Ä∗

t , Ät) f Lv∗

t
W2(Ä∗

t , Ät) +
�

E
x∼Ä∗

t

∥v∗
t (x) − vt(x)∥2 (22)

We can now solve the differential inequality Equation 22 to obtain:

W2(Ä∗
T , ÄT ) f

" T

0

´(t)
�

E
x∼Ä∗

t

∥v∗
t (x) − vt(x)∥2dt (23)

where

´(t) := exp

�" T

t

Lv∗

s
ds

�
(24)
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B.3.2 Proof of Proposition B.2

We first estimate ´(t) = exp
"� T

t
Lv∗

s
ds

�
. As

v∗
t (z) =

1

t(1 − t)
k∗

t (z) − 1

1 − t
z, (25)

we can bound its Lipschitz constant by Lv∗

t
f 2 max

�
1

t(1−t) Lk∗

t
, 1

1−t

�
. Our next step is therefore to bound

Lk∗

t
. We will do so by bounding the spectral norm of the Jacobian ∥Jk∗

t (z)∥2 of k∗
t for any z ∈ RD.

To this end, we first note that for any z ∈ RD, this Jacobian has the form of a weighted covariance matrix:

Jk∗
t (z) =

1

(1 − t)2

N�

i=1

wi(z)(txi − k∗
t (z))(txi − k∗

t (z))¦,

where wi(z) is the i-th component of the weight vector softmax
"

− ∥z−tX∥2

2(1−t)2

�
. To upper bound its spectral

norm, we first apply the triangle inequality and use the absolute homogeneity of norms:

∥Jk∗
t (z)∥2 =

�����
1

(1 − t)2

N�

i=1

wi(z)(txi − k∗
t (z))(txi − k∗

t (z))¦

�����
2

f 1

(1 − t)2

N�

i=1

wi(z)∥(txi − k∗
t (z))(txi − k∗

t (z))¦∥2.

But it is well-known that the spectral norm of a rank-1 matrix uv¦ is given by ∥uv¦∥2 = ∥u∥2∥v∥2, so in fact

∥Jk∗
t (z)∥2 f 1

(1 − t)2

N�

i=1

wi(z)∥txi − k∗
t (z)∥2

2. (26)

Now, because k∗
t (z) is a convex combination of the txi, it lies in the convex hull of the txi. The diameter of a

convex hull is bounded by the diameter of its extreme points, so if D = diam({xi}) and tD = diam({txi}),
then ∥txi − k∗

t (z)∥2
2 f (tD)2. Substituting this back into equation 26 and using the fact that the wi(z) sum

to 1 for any z, we obtain the bound ∥Jk∗
t (z)∥2 f

"
tD
1−t

�2

. This bound holds for all z ∈ RD, so it follows that

Lk∗

t
f

"
tD
1−t

�2

.

Hence Lv∗

t
f 2 max

�
tD2

(1−t)3 , 1
1−t

�
.

We now use this bound on Lv∗

t
to estimate ´(t). Let s̄ ∈ [0, T ] denote the time from which s̄D2

(1−s̄)3 g 1
1−s̄

.

Then s̄ = 1
2 (D2 − D

√
D2 + 4 + 2). Decomposing the integral that defines log ´(t), we obtain:
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" T

t

Lv∗

s
ds =

" s̄

t

Lv∗

s
ds +

" T

s̄

Lv∗

s
ds

f 2

" s̄

t

1

1 − s
ds + 2D2

" T

s̄

s

(1 − s)3
ds

= 2 log

�
1 − t

1 − s̄

�
+ D2

�
2T − 1

(1 − T )2
− 2s̄ − 1

(1 − s̄)2

�

f 2 log

�
1 − t

1 − T

�
+ D2

�
2T − 1

(1 − T )2
− 4

D2 − D
√

D2 + 4 + 1

(D2 − D
√

D2 + 4)2

�

Substituting this bound into ´(t) = exp(
� T

t
Lv∗

s
) and simplifying, we obtain:

´(t) f C(T ) ·
�

1 − t

1 − T

�2

(27)

where C(T ) = exp
"

D2
"

2T −1
(1−T )2 − 4 D2−D

√
D2+4+1

(D2−D
√

D2+4)2

��
= exp

"
D2(2T −1)

(1−T )2

�
and D2 =: C0 depends only on the

training data.

We now estimate
�

E
x∼Ä∗

t

∥v∗
t (x) − vt(x)∥2.

We first observe that v∗
t (z) − vt(z) = 1

t(1−t) (k∗
t (z) − kt(z)). Once again letting X ∈ RD×N be the matrix

of training data and w∗(z) = softmax
"

− ∥z−tx∥2

2(1−t)2

�
∈ RN , w̃m(z) = softmax

"
− ∥z−tx∥2+Ãtui,m

2(1−t)2

�
∈ RN be the

vector of weights, we have that k∗
t (z) = tXw∗(z) and hence

∥v∗
t (z) − vt(z)∥ =

1

1 − t
∥X(w∗(z) − 1

M

M�

m=1

w̃m(z))∥ f 1

1 − t
∥X∥ · 1

M

M�

m=1

∥w∗(z) − w̃m(z)∥. (28)

Once again using the Lipschitz continuity of w(z), we obtain the bound

∥w∗(z) − w̃m(z)∥ f Ãtui,m

2(1 − t)2
, (29)

and by substituting this into our bound for ∥v∗
t (z) − vt(z)∥, we obtain:

∥v∗
t (z) − vt(z)∥2 f t2Ã2∥X∥2ū2

i

4(1 − t)6
, (30)

where ūi = 1
M

�
m ui,m. As this bound holds for all z, it also holds in expectation, so we finally conclude that

�
E

x∼Ä∗

t

∥v∗
t (x) − vt(x)∥2 f tÃ∥X∥ūi

2(1 − t)3
. (31)

B.3.3 Proof of Proposition B.3

We now begin with the differential inequality

d

dt
W2(Ä∗

t , Ät) f Lv∗

t
W2(Ä∗

t , Ät) +
�

E
x∼Ä∗

t

∥v∗
t (x) − vt(x)∥2, (32)
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that we derived in the proof of Proposition B.1, which bounds the rate of change in W2(Ä∗
t , Ät) when flowing

Ä∗
t and Ät through two velocity fields v∗

t and vt, respectively. As we now consider the case where Ä∗
T and ÄÃ,t

both flow through the smoothed velocity field vÃ,t from time T to 1 − ϵ,
�

E
x∼Ä∗

t

∥v∗
t (x) − vt(x)∥2 = 0 and the

differential inequality becomes:

d

dt
W2(Ä∗

t , ÄÃ,t) f LvÃ,t
W2(Ä∗

t , ÄÃ,t). (33)

Solving this differential inequality, we obtain

W2(ÄT
Ã,1−ϵ, Ä0

Ã,1−ϵ) := W2(Ä∗
1−ϵ, ÄÃ,1−ϵ) f ˜́(T )W2(Ä∗

T , ÄÃ,T ) (34)

where ˜́(T ) = exp
"� 1−ϵ

T
Lvs,Ã

ds
�

. Using the same bounds as in our proof of Proposition B.2 while noting

that vÃ,t is at least as smooth as v∗
t , we obtain

˜́(T ) f exp

�
2 log(

1 − T

ϵ
) + D2

�
1 − 2ϵ

ϵ2
− 4

D2 − D
√

D2 + 4 + 1

(D2 − D
√

D2 + 4)2

��

=

�
1 − T

ϵ

�2

exp

�
D2

�
1 − 2ϵ

ϵ2
− 4

D2 − D
√

D2 + 4 + 1

(D2 − D
√

D2 + 4)2

��

= O

��
1 − T

ϵ

�2

exp

�
D2(1 − 2ϵ)

ϵ2

��

where D2 is the diameter of the training data, which we treat as constant for a given CFDM.

Substituting this into Equation 34, we obtain

W2(ÄT
Ã,1−ϵ, Ä0

Ã,1−ϵ) f O

��
1 − T

ϵ

�2

exp

�
D2(1 − 2ϵ)

ϵ2

��
W2(Ä∗

T , ÄÃ,T ). (35)

B.4 Proof of Proposition 5.3

We showed in Theorem 5.1 (see Appendix B.2) that as the number of sampling steps S → ∞, the samples
from a smoothed CFDM converge towards barycenters zS = c̄k∗ of M -tuples of training points for indices k∗

such that:

k∗(zS−1) = argmax
k

−
�
∥zS−1 − c̄k∥2 + Var(C̃k) + Ãūk

�
(36)

Using an equivalent expression for k̃Ã,t, these barycenters can also be written as

zS = c̄k∗ =
1

M

M�

m=1

xi∗(zS−1,m), (37)

where
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i∗(zS−1, m) = argmax
i

−
�
∥zS−1 − xi∥2 + Ãui,m

�

= argmax
i

−
�

1

Ã
∥zS−1 − xi∥2 + ui,m

�

If ui,m ∼ Gumbel(0, 1), then by applying the Gumbel max-trick, we conclude that i∗(zS−1, m) ∼
Categorical(Ãi

Ã). This is a distribution over the indices i = 1, ..., N of training samples, with event probabilities
given by

Ãi
Ã = softmax

�
− 1

Ã
∥zS−1 − xi∥2

�

i

(38)

If we represent xi∗ as Xei∗ , where X ∈ RD×N is the matrix whose i-th column is training sample xi and
ei∗ ∈ RN is the i∗-th standard basis vector, then

zS =
1

M

M�

m=1

xi∗(zS−1,m)

=
1

M

M�

m=1

(Xei∗)

=
1

M
X

M�

m=1

ei∗

=
1

M
XIÃ

But IÃ :=
�M

m=1 ei∗ is a realization of a Multinomial(ÃÃ, M) random variable; this fact completes the proof
of Proposition 5.3.

C Additional Experimental Details and Results

In this appendix, we provide details for our pixel space and latent space image generation experiments.

C.1 Pixel space DDPM training details

Our training data is drawn from the dataset huggan/smithsonian_butterflies_subset, which is publicly
available on huggingface and contains 1000 images of butterflies. We extract RGB images from the image

column of their dataset and reshape them to 128 × 128 before using them in our experiments. We construct
an 80/20 train-test split and use the train partition to train the DDPM and to construct our Ã-CFDM, and
use the test partition to compute metrics.

We use the DDPM implemented in the lucidrains library denoisingdiffusionpytorch as our baseline.
We use their UNet with dim_mults=(1, 2, 4, 8) as a backbone. We use 1000 time steps during training,
and use DDIM sampling with 100 time steps during sample generation. We train the diffusion model with a
batch size of 8 at a learning rate of 5 × 10−5 for 20,000 iterations.

We center and normalize the training data to lie in the unit ball before using it to construct our Ã-CFDM.
We set M = 2 and Ã = 0.1 for this experiment, and compute the smoothed score exactly rather than using
our nearest neighbor-based estimator from Section 5.4 due to this dataset’s relatively small size. We start
sampling at T = 0.98 and use step size 0.01. We filter out model samples whose Euclidean distance is within
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10−6 of their nearest neighbor in the training set; with these hyperparameters, roughly 60% of the model
samples remain after this filtering step.

We compute our metrics using the torchmetrics implementation of the kernel inception distance (KID) and
inception score. We compute KID scores with subset_size=50 between 500 randomly-chosen images from
the test partition and our CFDM and DDPM samples.

C.2 CelebA latent space generation details

Our method uses the nuclear norm-regularized autoencoder from Scarvelis & Solomon (2024). This autoencoder
operates on 256 × 256 images from the CelebA dataset. To reduce the memory and compute costs of our
autoencoder, we perform a discrete cosine transform (DCT) using the torch-dct package and keep only the
first 80 DCT coefficients. We then pass these coefficients into the autoencoder.

The autoencoder consists of an encoder f¹ followed by a decoder gϕ. The encoder f¹ is parametrized as a
two-layer MLP with 10,000 hidden units; the latent space is 700-dimensional. The decoder gϕ consists of a
two-layer MLP with 10,000 hidden units and 3 ∗ 80 ∗ 80 = 19200 output dimensions, followed by an inverse
DCT, and finally a UNet. We set the regularization parameter to ¸ = 4 (see (Scarvelis & Solomon, 2024,
Appendix B.3) for details on the training objective) and use a log-cosh reconstruction loss (Chen et al., 2019)
for improved sample quality. We train for 100 epochs at a learning rate of 10−4 using the AdamW optimizer
(Loshchilov & Hutter, 2017).

We then sample our Ã-CFDM in the latent space of this pre-trained autoencoder. We center and normalize
the training data to lie in the unit ball before using it to construct our Ã-CFDM. We set M = 2 and Ã = 0.025
for this experiment and use the nearest neighbor-based score estimator described in Section 5.4. We start
sampling at T = 0.99 and use step size 0.01. We filter out model samples whose Euclidean distance is within
10−6 of their nearest neighbor in the training set; with these hyperparameters, roughly 34% of the model
samples remain after this filtering step.

Our baseline is a VAE with the same architecture as the nuclear norm-regularized autoencoder and the
same log-cosh reconstruction loss. We set the regularization strength at 10−3 and train for 100 epochs at a
learning rate of 10−4 using the AdamW optimizer. At sampling time, we decode Gaussian samples drawn
from N (0, 10I); we find that this results in improved sample quality relative to sampling from a standard
normal distribution.

We compute our metrics using the torchmetrics implementation of the kernel inception distance (KID) and
inception score. We compute KID scores with subset_size=50 between 500 randomly-chosen images from
the test partition and our CFDM and DDPM samples.

D Impact of M on model samples

In this appendix, we demonstrate the impact of M – the number of noise samples used to computed the
smoothed score Equation 3 – on a Ã-CFDM’s model samples. In Figure 8, we use a simple training set of
2 points (in blue), fix Ã = 1, generate 100 Ã-CFDM samples (in red) for different values of M . Note in
particular that for large values of M , the model samples cluster around the centroid of the two training
points. We conjecture that this phenomenon may be explained by the law of large numbers: As M → ∞,
1

M

�M
m=1 kt(x + Ãϵm) → Eϵkt(x + Ãϵ), which is a deterministic quantity lying on the line segment connecting

the two training points. In this regime, the reasoning used in the proof of Theorem 5.1 suggests that
conditional on the second-to-last sampling iterate zS−1, the output of a Ã-CFDM becomes deterministic and
all randomness in the model samples originates from zS−1.

In Figure 9, we carry out a similar experiment with a training set consisting of 500 samples from the
checkerboard distribution and Ã = 0.3. Note that for large values of M , the model samples recede from
boundary of the convex hull of the training data; we conjecture that this is an instance of the same phenomenon
as in Figure 8.
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We finally experiment with the impact of M on the latent sampling algorithm introduced in Section 6.4. We
fix all hyperparameters but M to the values described in Appendix C.2 and use our Ã-CFDM to sample
with M ∈ {2, 4, 6, 8}. We depict grids of decoded samples in Figure 10 and report sample quality metrics in
Table 3. Using small values of M tends to yield increased sample diversity while keeping sampling costs low,
whereas large values of M yield a greater proportion of samples which qualitatively resemble barycenters
of face images. This is also likely an instance of the phenomenon illustrated in Figure 8, in which model
samples cluster around centroids of training samples for large values of M .

Table 3: Metrics for Ã-CFDM sample quality and generation time in latent space as a function of M .

Value of M Metric CelebA

M = 2
Inception score ↑ 2.18 ± 0.22

KID ³ 0.091 ± 0.0071
Sampling time (CPU) 41 ms

M = 4
Inception score ↑ 2.13 ± 0.16

KID ³ 0.095 ± 0.0077
Sampling time (CPU) 52 ms

M = 6
Inception score ↑ 2.03 ± 0.17

KID ³ 0.098 ± 0.0088
Sampling time (CPU) 97 ms

M = 8
Inception score ↑ 2.11 ± 0.19

KID ³ 0.095 ± 0.0073
Sampling time (CPU) 368 ms

Figure 8: Ã-CFDM samples (in red) generated given two training points (in blue) for various M .

E Comparison of Gaussian and Gumbel noise for latent space sampling

In this appendix, we briefly illustrate our method’s robustness to the distribution of noise used for smoothing
the closed-form score. We use our Ã-CFDM to sample CelebA images in latent space using the same
hyperparameters as described in Section C.2, and compare the effects of smoothing the closed-form score
with Gaussian noise and with Gumbel noise whose first two moments match those of the Gaussian noise. We
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Figure 9: Ã-CFDM samples (in red) generated given 500 training samples from the checkerboard distribution
(in blue) for various M .

depict grids of decoded samples in Figure 11 and report sample quality metrics in Table 4. Our method is
robust to the distribution of smoothing noise, with Gaussian and Gumbel noise resulting in similar sample
quality metrics and qualitatively similar samples.

Table 4: Metrics for Ã-CFDM sample quality and generation time in latent space when smoothing with
Gaussian and Gumbel noise with matched mean and covariance.

Noise distribution Metric CelebA

Gaussian
Inception score ↑ 2.18 ± 0.22

KID ³ 0.091 ± 0.0071
Sampling time (CPU) 41 ms

Gumbel
Inception score ↑ 2.22 ± 0.19

KID ³ 0.092 ± 0.0082
Sampling time (CPU) 50 ms

F Adding noise to the velocity field does not induce generalization

The proof of Theorem 5.1 shows that in the limit of small step sizes, a Ã-CFDM outputs barycenters of
training samples in its final sampling iteration. This is true regardless of the position of the second-to-last
iterate zS−1. Consequently, adding noise to the velocity field at each sampling step, as is typical for the
Euler-Maruyama scheme to simulate stochastic differential equations (SDEs), does not fundamentally change
the result of Theorem 5.1: “SDE sampling” for a Ã-CFDM would still output barycenters of training samples,
provided the noise variance vanishes as t → 1. (If the noise variance does not vanish at the final sampling
iteration, then the sampler will return noisy samples as some noise remains present in the final iteration.)

Furthermore, adding noise to an unsmoothed CFDM’s velocity field is insufficient to induce generaliza-
tion. Theorem 5.1 also shows that the output zS of our sampler is of the form S

S−1 kÃ, S−1

S
(zS−1). This

would not change if the velocity field were augmented with noise that vanishes in the final sampling it-
eration; only zS−1 would change. When the smoothing parameter Ã = 0, kÃ, S−1

S
(zS−1) = k S−1

S
(zS−1) =
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(a) M = 2 (b) M = 4

(c) M = 6 (d) M = 8

Figure 10: Ã-CFDM samples drawn in latent space with M ∈ {2, 4, 6, 8}.

�N
i=1 softmax

"
− ∥z− S−1

S
X∥2

2(1− S−1

S
)2

�
i

S−1
S

xi. For sufficiently small step sizes, the temperature of this softmax is

nearly 0, which implies that the unsmoothed CFDM outputs a training sample in its final iteration, regardless
of the penultimate sample zS−1. It follows that augmenting the velocity field vt of an unsmoothed CFDM
with noise does not induce generalization.

We demonstrate this empirically in Figure 12, in which we sample from an unsmoothed CFDM constructed
from 500 empirical samples from the 2D checkerboard distribution, and from the same CFDM whose velocity
field at time t is augmented with Gaussian noise with covariance

√
0.1(1 − t)I. The step size in these

experiments is 10−2. Adding noise to the velocity field does not induce generalization, and the model samples
are numerically identical to training samples in each case: the chamfer distance between the noiseless CFDM’s
model samples and the training samples is 6.41 × 10−4, and the chamfer distance between the noisy CFDM’s
model samples and the training samples is 6.59 × 10−4.

G Impact of step size on generalization

In this section, we demonstrate empirically that an unsmoothed CFDM memorizes its training data, even
when sampled with relatively few iterations.
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(a) Gaussian noise (b) Gumbel noise

Figure 11: Ã-CFDM samples drawn in latent space using Gaussian noise (left) and Gumbel noise (right) with
matched means and covariances to smooth the closed-form score.

(a) Noiseless velocity field (b) Noisy velocity field

Figure 12: Augmenting an unsmoothed CFDM’s velocity field with Gaussian noise that vanishes in the final
step does not induce generalization.

We first show that sampling an unsmoothed CFDM with large step sizes may in principle lead to generalization.
To do so, we employ similar arguments as in the proof of Theorem 5.1 in Appendix B.2. In particular, if
Ã = 0, then the smoothed velocity field vÃ,t(z) can be expressed as v0,t(z) = vt(z) = 1

1−t

�
1
t
kt(z) − z

�
. By

expanding the formula for the final Euler step using this expression for vt(z) and tS−1 = S−1
S

in the same
way as in Appendix B.2 but substituting the softmax weights from the definition of kt(z) in equation 2, one
sees that the final iterate zS will be of the form

zS =
N�

i=1

softmax

�
−

S2∥z − ( S
S−1 )X∥2

2

�

i

xi.

If the number of sampling iterations S is small, then the temperature of this softmax may be sufficiently
large that zS is a non-trivial convex combination of training samples. However, we demonstrate empirically
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that this does not occur in practice, even for relatively small S. We construct an unsmoothed CFDM using
500 samples from a 100-dimensional standard Gaussian distribution to mimic the high-dimensional data that
is typical of real-world applications, sample it with a number of iterations ranging from S = 1 to S = 100,
and compute the chamfer distance between the model samples and the training samples for each value of
S. We depict the result of this experiment in Figure 13. An unsmoothed CFDM memorizes its training
data when sampled with as few as 5 iterations, demonstrating that in practice, large step sizes alone are
insufficient to cause a CFDM to generalize.

Figure 13: An unsmoothed CFDM memorizes its training data when sampled with as few as 5 iterations.

H Comparing neural SGMs to σ-CFDMs.

In this section, we present some preliminary findings on the relationship between the inductive bias of
neural SGMs and that of our proposed Ã-CFDM. We first show that in low-dimensional problems, one may
approximate the velocity field of a neural SGM with that of a Ã-CFDM for an appropriate choice of Ã. We
then show that this is no longer the case for high-dimensional image datasets such as MNIST with the velocity
field vt(z) parametrized by a Unet. Our strategy will be to extract kt(z) from a neurally-parametrized vt(z)
and show that in contrast to a Ã-CFDM, the neural kt(z) does not output convex combinations of training
samples for t ≈ 1.

H.1 2D datasets

For this experiment, we train a simple 3-layer MLP on the flow-matching objective from (Liu et al., 2023),
whose theoretical optimum is attained by the velocity field vt(z) := 1

t
(z + (1 − t)∇ log Ä∗

t (z). (Recall that for
all 0 f t f 1, Ä∗

t is a mixture of Gaussians centered at rescaled training samples with common covariance
(1 − t)2I.) Our MLP has 64 neurons in each hidden layer and uses Softplus activations. We train this MLP
for 20k epochs at a learning rate of 10−3 using AdamW, and take the target distributions to be the empirical
distribution over fixed sets of 500 samples from the 2D “Checkerboard” dataset used throughout this paper
and a 2D “spirals” dataset, respectively.

We then sweep over Ã ∈ [0, 2] and construct a Ã-CFDM on the same 500 training samples for each value of Ã.
For each value of Ã, we then sweep over t ∈ (0, 1), draw batches of samples from Ä∗

t , and compute the average
squared L2 distance between the neural velocity field vt and the velocity field vÃ,t defined in equation 6. We
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report the average squared L2 distance across t for each value of Ã in Figure 14. The unsmoothed CFDM’s
velocity field v∗

t is a poor approximation to the neural SGM’s velocity field, indicating that the neural SGM
does not learn the closed-form score for its training set. However, smoothing the CFDM significantly improves
the quality of the approximation, with Ã = 0.45 achieving an 88.8% reduction in squared L2 error against
the neural velocity field relative to the unsmoothed velocity field on the checkerboard dataset, and Ã = 0.15
achieving an 81.1% reduction in squared L2 error on the spirals dataset.

(a) “Checkerboard” dataset (b) “Spirals” dataset

Figure 14: An unsmoothed CFDM’s velocity field is a poor approximation to a neural SGM trained on the
same dataset, but smoothing it significantly improves the quality of the approximation.

In Figure 15, we compare samples drawn from the neural SGM (in red) to samples drawn from a Ã-CFDM
with the optimal values of Ã = 0.45 and Ã = 0.15 for the checkerboard and spirals datasets, respectively.
While each distribution’s samples are qualitatively similar, we note in particular that the Ã-CFDM places
less mass near extreme points of the support of the training data. We observed a similar phenomenon in
Appendix D and conjectured that it results from 1

M

�M
m=1 kt(x + Ãϵm) converging towards a deterministic

quantity for sufficiently large values of M . We further conjecture that this phenomenon may partially explain
why neural SGMs generalize better on high-dimensional image generation problems, as they place more mass
near extreme points of the data distribution and less mass on barycenters of training samples, which typically
do not resemble natural images.

Finally, in Figure 16, we compare the velocity fields of a neural SGM and an appropriately-smoothed Ã-CFDM
for the checkerboard and spirals datasets at three times: t ∈ {0.1, 0.5, 0.9}. We normalize the velocity fields
in the top row of each subfigure to facilitate a comparison of the direction of each velocity field, and depict
the difference of the non-normalized velocity fields in the bottom rows. Smoothing a CFDM yields a velocity
field that accurately approximates the corresponding neural SGM’s velocity field for t close to 0, but the
accuracy of this approximation deteriorates as t → 1.

H.2 MNIST

In this section, we will show that if one parametrizes vt by a Unet and trains it on a high-dimensional image
dataset such as MNIST, the resulting model does not behave like a Ã-CFDM. Because sample estimates of
the squared L2 distance between the neural vt and a Ã-CFDM’s vÃ,t are noisy in high dimensions, we do
not employ the strategy from the previous section to compare a neural SGM and our Ã-CFDM, but instead
study the extent to which a neural SGM points towards convex combinations of training samples in image
generation problems.
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(a) “Checkerboard” dataset, σ = 0.45 (b) “Two Spirals” dataset, σ = 0.15

Figure 15: A Ã-CFDM generates samples that are qualitatively similar to a neural SGM on low-dimensional
datasets, but sends less mass near extreme points of the data distribution.

Given a velocity field vt(z) := 1
t
(z + (1 − t)∇ log Ä∗

t (z)), where ∇ log Ä∗
t (z) = 1

(1−t)2 (kt(z) − z), one may

extract the corresponding kt by substituting the formula for ∇ log Ä∗
t (z) into the formula for vt and rearranging.

Equation 4 and Proposition 4.1 show that if kÃ,t(z) is extracted from either of the unsmoothed or smoothed
scores sÃ,t (Ã = 0 and Ã > 0, resp.), then it must output convex combinations of rescaled training samples

for any z: kÃ,t(z) =
�N

i=1 wi(z)txi with wi(z) g 0 and
�N

i=1 wi(z) = 1. We will show that for t → 1, the kt

function extracted from a neural SGM’s velocity field vt is not well-approximated by convex combinations of
rescaled training samples. This will imply that unlike a Ã-CFDM, a neural SGM’s score function does not
point towards convex combinations of training data.

To this end, we train a Unet on the flow-matching objective from (Liu et al., 2023), whose theoretical optimum
is attained by the velocity field vt(z) := 1

t
(z + (1 − t)∇ log Ä∗

t (z)). The training set consists of the 60k images
of handwritten digits from the MNIST train partition. We train for 10 epochs at a learning rate of 10−4

using AdamW.

We then draw a batch of 512 samples xk from the MNIST test partition, fix a value of t ∈ (0, 1), and compute
noisy samples of the form zt,k = txk + (1 − t)ϵ, where ϵ ∼ N (0, I). We compute the neural SGM’s kt(zt,k) for
each noisy sample, and use projected gradient descent to regress each kt(zt,k) on the set of rescaled training
samples txi subject to the constraint that the weights lie in the probability simplex. If the neural SGM is
well-approximated by a Ã-CFDM, then we would expect the MSE of this regression to be close to 0.

In the left panel of Figure 17, we depict the average MSE of the regression of each 1
t
kt(zt,k) onto the convex

hull of the training samples xi as a function of t. (We rescale kt(zt,k) by 1
t

to enable a direct comparison
to the convex hull of the training samples xi; otherwise, the MSE values for small t would be small simply
because the data has been scaled by t.) For small values of t, the function 1

t
kt extracted from neural SGM

is well-approximated by a convex combination of training samples xi, as one would expect for a Ã-CFDM.
However, the quality of this approximation deteriorates as t → 1. This indicates that by pointing towards the
convex hull of the training data, a neural SGM behaves like a Ã-CFDM for t → 0, but that this behavior
vanishes as t → 1.

If a neural SGM fails to behave like a Ã-CFDM for t → 1, then how does it instead behave? The right panel
of Figure 17 indicates that for t → 1, the kt extracted from a neural SGM approximates an optimal denoiser
for test data. In particular, by computing kt(zt) for a noisy test sample zt = tx + (1 − t)ϵ, one recovers the
rescaled test sample tx. Because test samples often lie outside the convex hull of a neural SGM’s training data,
this behavior cannot be replicated by a Ã-CFDM. This provides evidence of a neural SGM’s generalization
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capabilities by showing that its score points towards regions of the support of the target distribution that are
outside the convex hull of the training data.

We further illustrate this phenomenon in Figure 18. When t = 0.2, the output of the neural SGM’s kt(z) on
noisy data is well-approximated by a convex combination of training samples, as the theory of Ã-CFDMs
predicts. In contrast, when t = 0.8, a neural SGM’s kt(z) behaves like an optimal denoiser for test data,
mapping noisy test samples to their clean counterparts. While a comprehensive study of the generalization of
neural SGMs is out of scope for this work, we point to concurrent work such as Kamb & Ganguli (2024),
which studies closed-form solutions to the score-matching problem under locality and equivariance constraints
to better understand the generalization of SGMs parametrized by convolutional architectures.
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(a) “Checkerboard” dataset, σ = 0.45

(b) “Two Spirals” dataset, σ = 0.15

Figure 16: Smoothing a CFDM yields a velocity field that accurately approximates a neural SGM’s velocity
field for small times, but the accuracy of the approximation deteriorates as t → 1.
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(a) A neural SGM’s kt is close to the
convex hull of the training data for
small t, but not for t → 1.

(b) A neural SGM’s kt behaves like an
optimal denoiser for test data as t → 1.

Figure 17: A neural SGM’s kt behaves like a Ã-CFDM’s kt for t → 0. However, as t → 1, it instead behaves
like an optimal denoiser for test data.

Figure 18: Row 1 shows that for small t, a neural SGM’s kt(z) outputs convex combinations of training
samples, as one expects for a Ã-CFDM. In contrast, Row 2 shows that for large t, a neural SGM’s kt(z)
behaves like an optimal denoiser for test data, mapping noisy test samples to their clean counterparts
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