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Abstract— This paper presents a data driven global linear
model of steady state walking dynamics. Instantaneous whole
body angular momentum is a physics informed aggregate quan-
tity used as a marker for dynamic balance during locomotion.
Gait dynamics are often modeled as hybrid and nonlinear. We
propose using Koopman Operators to model the gait stability
dynamics with a global, linear model. This is achieved by
augmenting the whole body angular momentum state variables
with learned observables, or basis functions, such that the
dynamics look linear in the lifted dimension. Considering that
the gait dynamics are periodic, a regularization term that
encourages the state transition matrix to be orthonormal is
added to the loss term when learning the observables. This
forces a periodic model to be learned and prevents the likelihood
of unstable poles. A low average MSE was obtained over 2
gait cycles for different population types, each with slightly
differing gait dynamics. Furthermore, this linear representation
enables the use of linear analysis tools that could have clinical
implications for assessing the gait of different patient groups.
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I. INTRODUCTION

The walking gait is a hybrid nonlinear system. It is hybrid
because it must switch between two distinct dynamical
phases - a swing phase where one foot is in contact with
the ground, and a double support phase where both feet
are in contact with the floor. Most gait dynamics models
must abruptly switch between these two sets of governing
dynamic equations once the leading foot makes ground
contact. Modeling such switching systems well has proven
difficult. Predicting multiple steps of gait requires multiple
transitions of diverse dynamic equations, leading to sig-
nificant prediction error. Here, we present an alternative
approach to hybrid dynamic modeling. Koopman Operator
has the potential to represent the hybrid, switched nature of
gait dynamics as a globally linear, unified dynamic model
[1]. No explicit switching would be required for predicting
multiple-steps of human gait.

Steady human locomotion requires the seamless interac-
tion of multiple motor and sensory systems to coordinate
individual body segments for forward progression while
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maintaining postural control [2]. For a bipedal system com-
prised of upper and lower extremity segments pinned at joints
with multiple degrees-of-freedom (DoFs), this dual objective
of forward translation of the whole-body center of mass
(CoM) and dynamic balance requires careful management
of body segment rotations. Accordingly, there is compelling
evidence that individual segment momenta about the whole-
body CoM are coordinated to tightly regulate whole-body
angular momentum (WBAM) in all three anatomical axes
with each stride [3], both in healthy individuals and when in
the presence of musculoskeletal or neurological impairment
[4]1[5]. The phenomenon of regulating WBAM through inter-
segmental coordination has even been successfully applied as
a control logic for bipedal robots [6][7][8][9], thereby em-
phasizing the utility and elegance of this locomotor variable
in aiding dynamic balance of a multi-DoF system. However,
the temporal patterns of WBAM are highly non-linear as
they reflect the net effect of multiple body segment momenta
around the body CoM [10]. Therefore, given the importance
of regulating WBAM to maintain balance while walking, a
global linear model of WBAM dynamics would have great
utility for analyzing human gait.

Recent successes have been made in the analysis of kine-
matic and kinetic measures of whole-body motion dynamics
modeled in the hidden and cell states of a Recurrent Neural
Network (RNN), followed by decomposing phase-averaged
projections of the principal components [11]. In that prior
work, the system dynamics are captured by the RNN, but
the modes found through PCA lack information about their
time evolution as it does not explicitly characterize that
feature. The gait there is characterized with PCA similar to
muscle activation synergies in the biomechanics and motor
control community, where a high dimensional feature space
is reduced with PCA [12][13][14]. This methodology has
shown promise; however, it requires a large amount of data
and the resulting model is still nonlinear [11].

To address these limitations, numerical methods have been
developed to approximate non-linear and potentially non-
periodic dynamics through the Extended Dynamic Mode De-
composition (EDMD) [15]. Both of these numerical methods
approximate the Koopman Operator, which linearizes non-
linear dynamics by lifting the state space[16]. EDMD utilizes
basis functions to lift the state space, including but not
limited to radial basis functions, polynomial, trigonometric,
machine-learned basis functions, or combinations thereof.
Machine learning-derived basis functions have the potential
to bypass the manual tuning required by the other methods,



while also minimizing the number of basis functions required
to achieve the same or higher accuracy [17]. Here we explore
the use of a Neural Network to learn the dynamics and
generate synthetic observables to extend the state space.
These observables are algebraic functions of the original
state, and do not capture the system dynamics alone.

The eigenvectors and eigenvaleus comprising the modes
come directly from the linear state transition matrix. These
modes are spatio-temporal modes, where the eigenvectors
represent the spatial component and the temporal behavior
is determined by the eigenvalues. In this case, the time
evolution is in the linear dynamical space, which is distinct
from the neural network feature extraction.

Through this technique no manual data interventions are
needed as in prior works, such as regularizing to a single
phase. The periodicity of the system is identified through
the analysis. Furthermore, the model representation is global,
and switching between different dynamics is not needed.

The objective of the current work is to apply the Koopman
operator method to the modeling and analysis of human
gait described in terms of WBAM. We aim to represent the
hybrid, switched nature of gait dynamics as a globally linear
model in which no explicit switching of governing dynamics
is required. Once the human gait dynamics is represented
as a linear model in a lifted space, a wealth of linear
systems theory and dynamic analysis tools can be applied.
These include modal decomposition, spatiotemporal analysis,
and frequency-domain analysis. Linear models also facilitate
control system design. Model-Predictive Control (MPC), for
example, can be applied in a simple, straightforward manner
compared to nonlinear MPC.

Despite the salient features, constructing a globally valid
Koopman model requires an elaborate methodology. First,
finding an effective set of observables remains a challenge.
Second, the time horizon where a Koopman model can
provide accurate prediction is limited. Often, Koopman mod-
els contain unstable poles, which tend to deviate predicted
trajectories from the true trajectories in a short time. This
does not allow the Koopman model to predict a gait trajectory
over a long period of time. Specifically, it is unable to cover
multiple steps of gait, which includes repeated switching of
governing dynamics. This paper aims to solve this short time-
horizon problem, so that a Koopman linear model can predict
multiple-steps of gait dynamics. An effective regularization
method is presented and applied to the gait dynamics.

Here we estimate linear mode content of steady human
walking for comparing young healthy individuals with and
without one arm bound. We expect that WBAM will be
tightly regulated and constrained within a narrow range and
that EDMD analysis will reveal linear modes that define
WBAM for the purpose of characterizing individual gait
signatures of an aggregate variable describing balance, and
provide insight into how bipedal dynamic balance as a
control scheme can be modelled through linear modes.

The key contributions are as follows:

1) Create a linear dynamic model of human gait dynamics

(WBAM) using the Koopman Operator theory

2) Introduce a regularization term into the loss term
for learning the observables for accurately modeling
periodic dynamics

3) Characterize the system dynamic modes in terms of
spatial and temporal components, creating a new form
of gait signature

4) Use this new gait characterization of WBAM dynamics
for different cohorts, validating that it must be a highly
regulated for stable bipedal walking to occur

II. KOOPMAN OPERATOR REVIEW

In this section, we provide a brief overview of the Koop-
man Operator and the EDMD for obtaining an approximation
of the Koopman operator from data. First we consider the
discrete-time dynamical system.

Tep1 = f(2e). )]

where * € R"™ is the independent state variable vector
representing the system, f is a nonlinear self map function
f:R™ — R"™ and t is the current time step. Also consider
a real-valued nonlinear output function of the state variables,
g : R™ — R, which is called an observable. The Koopman
Operator is an infinite-dimensional linear operator acting on
the observable function g [16].

(Kg)(x) = g(f(x)) 2

where the Koopman Operator /C is linear even though the
dynamics of the system are nonlinear.

To obtain a finite-dimensional Koopman Operator from
data, the original state vector is augmented with a finite
number of observables. Collectively, the augmented state
vector z € R™ is formed

Tt
In+1(zt)
Int2(Tt) 3)

Zt =

Im (xt)

where m is the order of the lifted state space, corresponding
to the number of observable functions, which include the
independent state x; as the first n components. According
to the Koopman Operator theory, the time evolution of the
lifted state z; can be represented by:

Zt4+1 = AZt . (4)

where A € R™*™ is a linear operator that evolves the
process to the next time step 2;41.

The matrix A is to take as the last linear layer of the
network used to obtain the observables.

III. KOOPMAN MODELING OF HUMAN GAIT DYNAMICS

This section describes how the Koopman Operator method
is applied to human gait modeling based on WBAM. The
WBAM vector H consists of 3 components describing the
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Observables are learned using a neural network. The last linear layer of the network is taken as the A matrix. Modal analysis is performed on

the resulting A matrix, producing eigenvectors and eigenvalues which characterizes the gait spatially and temporally. The left out test data is then used to
compute the mode power, indicating the contribution of each mode in that particular data trajectory.

angular momenta about the three orthogonal axes in a human
reference frame (sagittal, coronal, and transverse-planes).

&)

As in [18][19], the state vector, x4, at time ¢, that locates the
dynamic state of the human gait is given by multiple-time
delay embeddings over a time window of length [.

H,
H;_y
H; 5 (6)

Ty =

H;_,

Time delay embeddings consist of past states and implicitly
provide information as to the recent past evolution of the
state. Here it was found that 2 time delay embeddings offered
the best prediction accuracy.

Observables were learned by training a neural network,
as in [17]. The state vector at the current time step x; is
fed forward in the network so that when combined with the
observables output from the observables function, g(,,), it
forms the augmented state. This augmented state is then input
into the final linear layer to get the predicted augmented state
at the next time step, as illustrated in Fig. 1.

The loss function used in training the observable functions
is given by:

L= Lstate + aLobs.
1 & 1 &
. 2 N 2
X — X o— X —
Ek | Zk+1 k1ll” + " Ek lg(wra1) — Graall

(7

n
Additionally, « is a weight on the observable loss term. Al-
pha starts at 0 and is linearly increased to 2 with each training

Lt}

epoch. The observable ”ground truth” value is expected to
be very inaccurate at the start of training since the network
weights are changing the most. More emphasis is placed on
this loss term as training progresses and there are smaller
weight changes.

A. Regularization Term to Enforce Periodicity

We also incorporate domain knowledge for this system
when learning the observables. Specifically, we exploit the
fact that angular momentum must be conserved. This means
that the state transition matrix must be orthonormal for the
state, angular momentum, to be conserved.

If

AAT =T ®)

then all eigenvalues are on the unit circle.

The proof is as follows. Eq.(8) implies that A is non-
singular and AT = A~! . Let A\ and W be eigenvalue and
eigenvectors of matrix A.

AW =AW ©))
Taking the squared norm yields,
[AW[[* = [[AW|> (10)
WTATAW = |\PWTW (11)
From (8), WT AT AW = WTW. Therefore,
IAI? =1 (12)

Thus, all eigenvalues have a magnitude of 1 and are
located on the unit circle as in Fig. 2. The regularization
term below is added to the loss function during training of

the observables to help enforce this constraint.
Lortho. = | AAT —I|| (13)

This regularization term has been used in the computer
science community such as in Neural photo editing [20]



Fig. 2. If (8) is satisfied, then all the eigenvalues are on the unit circle,
implying that only periodic modes are found.

but, to the author’s knowledge, it has never been used for
obtaining periodic modes in Koopman modeling.

If we use the regularization term defined in (13) then
periodic modes are obtained.

Thus, the resulting loss function is given by

L= Lstate + O4Lobs. + ﬁLm'tho‘ (14)

where [ is another tunable weight. If a significantly large
weighting factor 3 is used, then all eigenvalues will be on
the unit circle.

B. Modal Decomposition

Now that the linear Koopman model is obtained, we want
to characterize human gait based on linear modal analysis.
First, the state transition matrix A is decomposed to eigen
modes.

A=VvDV!

where D = diag.(A1,...,Ap), with the eigenvalues A;
of matrix A, the matrix V' consists of the corresponding
eigenvectors v;, and its inverse matrix is written as,

(15)

0
U

(16)

This allows us to examine the time evolution of each mode

separately. The i-th mode is given by
ﬁizt-i-l Z)\i{)izt,iz 1,...,m (17)

To quantify the signal strength of each mode, consider the

squared magnitude,
|Tizer1]?® = [Ail? |2, (18)

We are particularly interested in those periodic modes
having the eigenvalues on the unit circle, |A;| =1,

19)

|Oizeqa | = |52,

This implies that the power of each periodic mode is pre-
served through time. To evaluate the significance of each
periodic mode in experimental data, we characterize it by
taking the average power of each periodic mode over the
experimental data.

1 N-1
-2
¢ = ];) |9; 2]

Taking the summation over each subject group, we can
compare those subject groups in terms of the power of
periodic modes. The frequencies can be directly compared
with the eigenvalues. The frequency is calculated by

(20)

>\Im,j )
ARe,j

fi= T, arctan( 21

where T is the sampling frequency.

IV. EXPERIMENTS
A. Data

In the current analysis, existing data from 10 participants
were used, which originated from two previous projects at the
Northwestern University Prosthetics-Orthotics Center. Both
were approved by the Jesse Brown VA Medical Center IRB
under protocols #1569928 and #1462955. Data from two
groups are used: 1) able-bodied (AB) healthy adults (at least
18 years old) with both arms free to swing (n; = 5), 2) the
same able-bodied adults as in group (1) but with one arm
bound to the torso (AB bound) to restrict arm swing (n; =
5).

All participants were able to walk for 5 minutes or more
without fatigue. Any conditions or medication use affecting
balance restricted participation.

B. Experimental Protocol

All participants completed a single trial on an instrumented
treadmill (Motek, Enschede, Netherlands). The trial consisted
of 30 seconds of steady-state walking at 1.0 m/s. Body
segment mass, / and COM location were estimated using es-
tablished regression equations for biomechanical modelling
[21]. Kinematic data of a full-body marker set attached to
body landmarks [22] were collected with a 12-camera optical
motion capture system (Motion Analysis Corp., Rohnert
Park, CA) at 120 Hz, Data were then exported to Visual
3D (C-Motion, Germantown, MD) for filtering with a 4"
order low-pass (9Hz) Butterworth filter and application of a
personalized 12-segment biomechanical model [22]. From
these data, limb initial contacts and toe off events were
labelled with a velocity-based algorithm [23] and then cor-
rected manually if necessary. WBAM, or H, was estimated
by calculating the instantaneous angular momentum of each
segment about itself and the whole-body COM in all three
planes of motion and summing the values according to eq.
22.

H = ZIiwi =+ 7r; X m;v; (22)

i=1
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H was normalized by treadmill speed and the height and
mass of the participant. For each segment i, I; was the
moment of Inertia, w; was the angular velocity, r;, was the
distance from the segment COM to the whole-body COM.
The mass of each segment was defined as m; and the relative
velocity of the segment to the whole-body COM was v;. The
calculated whole body angular momentum values were down
sampled to 40 Hz for constructing the model.

C. Learning Observable Functions

Models were trained for individual subjects on 30 seconds
of data obtained during steady walking. A 70%-15%-15%
train-validation-test split was used. Data samples input to
the neural network consisted of WBAM, H, and H at the
previous two time steps, or two time embeddings. Two time
embeddings resulted in the best accuracy of those tested.
Likewise, 16 observables were found to produce accurate
models.

The loss function was mean squared error (MSE) and took
the form mentioned earlier in eq. 14 and the optimizer was
ADAM. The parameters for the neural network may be found
in Table Al in the appendix.

D. Prediction with Linear Dynamic Model

The last linear layer of the trained neural network was
taken as the state transition matrix A. Given an initial
measurement corresponding to left heel contact, eq. 4 was
used to propagate the system through 2 full gait cycles,
defined as left foot initial contact to the next initial contact of
the ipsilateral limb. The mean squared error at each time step
t was calculated for the three predicted angular momentum
components.

1 ~
E?nse,t - g”Ht - HtH2 (23)

where the estimated angular momentum H is the prediction
from the model and the ground truth is denoted as H.

V. RESULTS
A. Prediction Accuracy

Fig. 3 shows the prediction accuracy for one able-bodied
subject for 2 gait cycles when § = 0.1. We observed that
accurate models were produced for most individual subjects.

The MSE over 2 gait cycles for both groups are shown
in Fig. 6 for 5 trials per group type when 8 = 0.1. A
different person performed each trial in a group. The solid
line represents the average mean-squared error across the 5
trials and the shaded region shows the range of the error.
Fig. 6 shows that good prediction accuracy may be obtained
over 2 gait cycles for varying gait dynamics for subjects in
the able-bodied and able-bodied bound groups. We will now
discuss how 8 = 0.1 was found to produce the most accurate
models for these groups.

B. Regularization Term Effect

Fig. 4 shows the impact of the regularization term on the
resulting eigenvalues of the state transition matrix A, and the
prediction accuracy. When there is no regularization term,
when 5 = 0.0, it is possible to have unstable poles, as in the
top pole plot in Fig. 4. When the orthonormal regularization
term is too small, when # = 0.01, there is a pair of poles
corresponding to the saggital plane base frequency that is
not on the unit circle. The result is that the sagittal plane
signal decays, as seen in the middle of Fig. 4. When the
orthonormal regularization term is added in with sufficient
weight, the poles are pushed onto the unit circle, eliminating
the artificial signal decay.

Fig. 5 shows the aggregate error results for all 5 subjects
for each subject group as a function of 3, the weight on the



orthonormal regularization term. Note that the error without
the orthonormal regularization term, when 8 = 0, was left
out since there were unstable poles in these cases, and
sometimes very high errors. 5 = 0.01 and § = 0.1 produced
the lowest errors on average for all two subject groups.
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Fig. 4. Eigenvalue plots and model prediction over 2 gait cycles with

different values of (3, or weighting on the orthonormal regularization term,
for a single able-bodied subject with one arm bound (top). 8 = 0 corresponds
to no regularization term. Increasing 8 pushes the poles towards the unit
circle. The average MSE across the 2 gait cycles for each value of 3 tested
is shown (bottom). 8 = 0.01 gave the most accurate prediction.

C. Eigenmodes

Fig. 7 shows the average eigevector mode power, ¢; for
the largest 3 modes for each subject group. For the high
accuracy models, the first 2 modes have eigenvalues equal
to 1, corresponding to the periodic modes. The first mode,
¢1 generally corresponds to the base frequency of H in
the frontal and transverse planes, [, and H,, respectively,
as calculated in eq. 21. The frequency of the second most
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values of S that produced the lowest error were 0.01 and 0.1.
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cycles. The shaded region represents the range of the MSE error of each
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active mode corresponds with the base frequency of H in
the saggital plane, H,. The other modes mostly help capture
the more subtly higher frequency components of the signal.

The mode power, or eigenvector activation, is fairly
consistent between the able-bodied and able-bodied bound
group, which consist of the same subjects. There is a slight
redistribution of the activation of the first and second modes
as the average activation of the first mode increases slightly
and the second mode decreases a little. The bounded arm
may be the cause of this difference.
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VI. DISCUSSION

Here we demonstrate the success of using EDMD and
Koopman Operators to model the human walking behavior
that is reflective of dynamic balance in bipedal gait. This
technique allowed expression of the spatial and temporal
linear mode content of these non-linear dynamics with high
accuracy. Our orthonormal regularization term was effective
in pushing decaying poles onto the unit circle so that
the periodic dynamics could be adequately captured. This
technique can also be applied to non-periodic systems, as
this regularization term is also a method to address the oc-
curence of unstable poles, a common problem when learning
observable functions.

The poles in the complex plane can quickly show the
behavior of the constructed model’s modes. Complex poles
along the perimeter of the unit circle indicate oscillatory
motions, and their magnitude indicates the frequency of
these oscillations. This is expected as angular momentum
is periodic during the gait cycle. Poles outside the unit circle
indicate unstable modes, which means that the predicted H
will diverge from the true H. Poles inside the unit circle
indicate that these modes will decay to zero. It would be
expected for steady walking that most of the poles lie along
the unit circle, to represent the superposition of different
frequencies.

A potential limitation of this work is that it assumes that
the human steady walking can be modeled as an autonomous
system. Participant differences as step-to-step variability as
related to the body system and neuromotor control may
play a significant role. However, here we have examined H,
which is a tightly regulated variable, in groups with physical
impairment but without neurological insult. Future work can
include constructing models for other population types and
comparing the resulting mode activations. The activations of
the most prominent modes may be plotted at each point in
time over a trajectory to show the spatial representation of
the signal evolve over time. While we have characterized the
dynamics of human gait, our technique could be translated
to modeling the control scheme of robotic bipedal gait
when aiming to maintain upright postural control during
forward progression via intersegmental angular momentum
cancellation. As regulation of H in human biological gait is
demonstrated across different types of ambulatory scenarios
to facilitate stable gait, the linear mode characterization
presented here could offer insight into a generalized control
scheme for robotic bipedal gait.

VII. CONCLUSION

This work presented a method for creating a linear
dynamic model of human balance while walking, in the
form of whole body angular momentum. This was enabled
through the use of Koopman Operators and the accuracy was
improved through the use of an orthonormal regularization
term. This method was demonstrated on steady walking
data from 2 different groups. Models were constructed for
individuals from each group and good accuracy was achieved
over 2 gait cycles for both groups. Modal analysis may be

performed on the resultant linear models, which allows a
comparison of different subject types.

APPENDIX I

TABLE Al
NN PARAMETER VALUES

# Dense Layers 4
# Dense Hidden Units 16
Learning rate le-3
Batch size 5
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