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Abstract

Local differential privacy is a differential privacy paradigm in which individuals first
apply a privacy mechanism to their data (often by adding noise) before transmitting
the result to a curator. The noise for privacy results in additional bias and variance in
their analyses. Thus it is of great importance for analysts to incorporate the privacy
noise into valid inference. In this article, we develop methodologies to infer causal
effects from locally privatized data under randomized experiments. First, we present
frequentist estimators under various privacy scenarios with their variance estimators
and plug-in confidence intervals. We show a naïve debiased estimator results in inferior
mean-squared error (MSE) compared to minimax lower bounds. In contrast, we show
that using a customized privacy mechanism, we can match the lower bound, giving
minimax optimal inference. We also develop a Bayesian nonparametric methodology
along with a blocked Gibbs sampling algorithm, which can be applied to any of
our proposed privacy mechanisms, and which performs especially well in terms of
MSE for tight privacy budgets. Finally, we present simulation studies to evaluate
the performance of our proposed frequentist and Bayesian methodologies for various
privacy budgets, resulting in useful suggestions for performing causal inference for
privatized data.
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1 Introduction
Causal inference is a fundamental consideration across a wide range of domains in science,
technology, engineering, and medicine. Researchers study experimental or observational
data to unveil the causal effects of treatment assignment in an unbiased manner with valid
uncertainty quantification. A traditional gold standard for performing causal inference is
the classical randomized experiment (Imbens and Rubin, 2015). In this type of experiment,
a great deal of control and precautions can be taken so as to eliminate events that would
introduce instabilities and biases in causal inferences.

On the other hand, differential privacy (DP), introduced by Dwork et al. (2006), is
another growing domain in science and business, as privacy protection has become a core
concern for many organizations in the modern data-rich world. DP is a mathematical
framework that provides a probabilistic guarantee that protects private information about
individuals when publishing statistics about a dataset. This probabilistic guarantee is often
achieved by adding random noise to the data. One DP model is the central differential
privacy model, in which the data curators have access to the sensitive data and apply a DP
mechanism to the data to produce the published outputs. A weakness of this model is that
users are required to trust the data curators with their sensitive data. Another DP model is
local differential privacy (LDP). In this model, the users do not directly provide their data
to the data curator; instead, users apply the DP mechanism to their data locally before
sending it to the curator. LDP is a preferable model if the data curators are not trusted by
users. The LDP model has been adopted by various tasks and organizations, e.g., Google
(Erlingsson et al., 2014) and Apple (Apple, 2017), for more stringent privacy protection.

Drawing causal conclusions from privatized data can be challenging. While the added
random noise helps in safeguarding individuals’ privacy, it distorts the actual patterns in
the data. This distortion can lead to biased conclusions even in randomized experiments.
This issue becomes even more pronounced in the LDP method, where each data point is
individually altered before it is compiled. Therefore, when trying to understand cause-and-
effect relationships using this protected data, researchers must exercise extra caution to
ensure their interpretations remain accurate and unbiased.

In this article, we propose statistically valid causal inferential methodologies under three
distinct local privacy scenarios. The first scenario, which we refer to as a “joint scenario”,
assumes that all accessible variables are separately privatized. In the second and third
scenarios, which we term as “custom scenarios”, we are allowed to select the variables we
privatize with known and unknown treatment assignment probabilities. We then offer causal
inference methodologies to analyze such privatized data. Our main contributions are as
follows:

• We propose a “naïve” inverse probability weighting (IPW) estimator under the joint
scenario. We compute the bias of the IPW estimator and propose a debiasing technique.

• We propose efficient frequentist estimators that achieve the minimax optimal rate
under custom scenarios where we are allowed to select the variables we privatize.

• We also compute the asymptotic variance and construct asymptotic plugin nominal
confidence intervals for all frequentist estimators. We discuss their optimality under
each scenario.

• We develop a flexible and efficient Bayesian nonparametric methodology, along with a
data augmentation Gibbs sampler tailored for locally privatized observations, which
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can be applied to all scenarios that are considered in the frequentist analyses.
• We present simulation studies and empirical data analysis to evaluate the frequentist

and Bayesian methodologies at various privacy budgets, resulting in useful suggestions
for performing causal inference for privatized data.

• We propose a regression adjustment technique under the joint scenario in the Supple-
mentary Materials. We show both theoretically and empirically that it helps improve
the accuracy, but the gain is somewhat limited when the privacy budgets are tight.

The rest of the paper is organized as follows. Section 2 presents the preliminaries for the
Rubin Causal Model and LDP. In Section 3, we develop frequentist approaches to inferring
the causal effects of interest. Section 4 presents a Bayesian methodology for performing
valid causal inference with the privatized data. Section 5 provides simulation studies for
validating our methodologies developed in the previous sections, and Section 6 provides an
application of our methodologies to real-world data of a cash transfer program conducted
in Columbia. Section 7 concludes with some final discussion. The Supplementary Materials
contains proofs, technical details, and additional numerical results.

1.1 Related Work

While DP is a rapidly growing field, the literature on causal inference methodologies for
differentially privatized data remains sparse. The following work uses LDP for its DP
mechanism. Agarwal and Singh (2021) introduced an end-to-end procedure for covariates
cleaning, estimation, and inference, offering covariates cleaning-adjusted confidence intervals
under the local differential privacy mechanism.

Some researchers have developed causal inference methodologies under the central
DP model. D’Orazio et al. (2015) introduced the construction of central differential
privacy mechanisms for summary statistics in causal inference. They then presented new
algorithms for releasing differentially private estimates of causal effects and the generation
of differentially private covariance matrices from which any least squares regression may
be estimated. Lee et al. (2019) proposed a privacy-preserving inverse propensity score
estimator for estimating the average treatment effect (ATE). Komarova and Nekipelov
(2020) studied the impact of differential privacy on the identification of statistical models
and demonstrated identification of causal parameters failed in regression discontinuity design
under the central differential privacy. Niu et al. (2022) introduced a general meta-algorithm
for privately estimating conditional average treatment effects. Kusner et al. (2016) tackles
causal inference using a framework called the additive noise model (ANM), a more restrictive
causal model than the Rubin Causal Model.

In non-causal domains, Evans and King (2022) offered statistically valid linear regression
estimates and descriptive statistics for locally private data that can be interpreted as ordinary
analyses of non-confidential data but with appropriately larger standard errors. Schein et al.
(2019) presented an MCMC algorithm that approximates the posterior distribution over
the latent variables conditioned on data that has been locally privatized by the geometric
mechanism. Ju et al. (2022) proposed a general privacy-aware data augmentation MCMC
framework to perform Bayesian inference from privatized data.
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2 Preliminaries

2.1 Rubin Causal Model

Causal inference is of fundamental importance across many scientific and engineering
domains that require informed decision-making based on experiments. Throughout this
manuscript, we adopt the Rubin Causal Model (RCM) as our causal paradigm. In the
RCM it is critical to first carefully define the Science of a particular problem, i.e., to define
the experimental units, covariates, treatments, and potential outcomes (Imbens and Rubin,
2015). We consider N experimental units, indexed by i = 1, . . . , N , that correspond to
physical objects at a particular point in time. Each unit i has an observed outcome Yi
and treatment assignment Wi respectively. We consider a binary treatment Wi ∈ {0, 1}
with a fixed assignment probability, p = P (Wi = 1), which is assumed to be known by the
experimental design, and let Yi(w) denote a potential outcome for w ∈ {0, 1}. In this article,
we consider the N units as a random sample from a large super-population, and we are
interested in inferring the Population Average Treatment Effect (PATE): τ = E[Yi(1)−Yi(0)].
We invoke the common set of assumptions, which enable us to identify the PATE by the
estimators derived in this manuscript (Imbens and Rubin, 2015).

Assumption 1. 1. (Positivity) The probability of treatment assignment given the co-
variates is bounded away from zero and one: 0 < P (Wi = 1) < 1.

2. (Random Assignment) The potential outcomes are independent of treatment assignment:
{Yi(0), Yi(1)} ⊥⊥ Wi.

3. (Stable Unit Treatment Value Assumption [SUTVA]) There is neither interference
nor hidden versions of treatment. The observed outcome is formally expressed as:
Yi = WiYi(1) + (1−Wi)Yi(0).

2.2 Differential Privacy

In this article, we use the local differential privacy (LDP) model. Let D be the set of
possible contributions from one individual in database D. In this paper, we only consider
non-interactive local DP mechanisms. LDP is formally defined for any D as follows.

Definition 1 (Local Differential Privacy). An algorithm M is said to be ϵ-locally differen-
tially private (ϵ-LDP) if for any two data points x, x′ ∈ D, and any S ⊆ Range(M),

P (M(x) ∈ S) ≤ exp(ϵ)P (M(x′) ∈ S).

Intuitively, if an individual were to change their value from x to x′, the output distribution
of M would be similar, making it difficult for an adversary to determine whether x or x′
was the true value. The value ϵ is called the privacy budget and lower values indicate a
stronger privacy guarantee. Two important properties of differential privacy are composition
and invariance to post-processing. Composition allows one to derive the cumulative privacy
cost when releasing the results of multiple privacy mechanisms: if M1 is ϵ1-LDP and
M2 is ϵ2-DP, then the joint release (M1(x),M2(x)) satisfies (ϵ1 + ϵ2)-LDP. Invariance to
post-processing ensures that applying a data-independent procedure to the output of a DP
mechanism does not compromise the privacy guarantee: if M is ϵ-LDP with range Y , and
f : Y → Z is a (potentially randomized) function, then f ◦M is also ϵ-LDP. Invariance to
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post-processing is especially important in this paper, as all of our inference procedures can
be expressed as post-processing of more basic DP quantities.

One of the most commonly used DP mechanisms is the Laplace mechanism, which adds
noise to a function of interest. Importantly, the noise must be scaled proportionally to the
sensitivity of the function, which measures the worst-case magnitude by which the function’s
value may change between two individuals. Formally, the ℓ1-sensitivity of a function f :
D → Rk is ∆f = supx,y∈D ||f(x)− f(y)||1.

Proposition 1 (Laplace Mechanism). Let f : D → Rk. The Laplace mechanism is defined
as M(x) = f(x) + (ν1, ..., νk)

⊤, where the νi are independent Laplace random variables,
νi ∼ Lap(0,∆f/ϵ), where the density of the Laplace distribution, Lap(µ, b), is given by
f(ν|µ, b) = 1

2b
exp(− |ν−µ|

b
). Then M satisfies ϵ-LDP.

For a binary variable (e.g., treatment assignment), a common mechanism is the random-
ized response.

Proposition 2 (Randomized Response Mechanism). Let Zi ∈ {0, 1} be a binary variable.
The randomized response mechanism is defined as

M(Zi) =

{
Zi w.p. exp(ϵ)

1+exp(ϵ)

1− Zi w.p. 1
1+exp(ϵ)

,

which satisfies ϵ-LDP.

3 Frequentist Approach

3.1 Minimax Risk Lower Bound for PATE Estimation

In this section, we discuss frequentist estimators for τ under several privacy scenarios where
variables are privatized in different manners. According to Duchi et al. (2018), the minimax
lower bound of the mean-squared error (MSE) for one-dimensional mean estimation is
O((Nϵ2)−1). In Lemma 1, we show that this same lower bound applies to the MSE for
PATE estimation as well. We let Mϵ denote the set of all privacy mechanisms that satisfy
ϵ-LDP. To ensure bounded ℓ1-sensitivity, we assume Yi(w) ∈ [0, 1] for i = 1, . . . , N , and
{Yi(w)}Ni=1 are drawn according to some distribution Pw ∈ Pw, where Pw denotes a class of
distributions on the sample space of potential outcomes. Our restriction to Yi(w) ∈ [0, 1] is
for simplicity and clarity. This follows standard practice (e.g., Lei et al. (2017), Ferrando
et al. (2022) to name a few), and our discussions can be easily generalized to bounded
outcomes Yi(w) ∈ [a, b] with −∞ < a < b <∞ using shifting and scaling factors. We define
an estimator τ̂ as a measurable function that maps privatized inputs to a real value, that
is, τ̂ : XN → R, where X generally denotes the space of privatized inputs under various
privacy scenarios.

Lemma 1. For ϵ ∈ [0, 1], there exists a constant c such that

cmin(1, (Nϵ2)−1) ≤ inf
Mϵ∈Mϵ

inf
τ̂

sup
P0∈P0,
P1∈P1,
p∈[0,1]

E[(τ̂ − τ)2] (1)
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Lemma 1 implies that the optimal estimator of the PATE estimation problem also has
the minimax lower bound O((Nϵ2)−1).

3.2 Joint Scenario with Known p

We first consider a scenario where all variables are jointly and separately privatized. The
observed outcomes are privatized by the Laplace mechanism. The privatized outcomes are
Ỹi = Yi + νYi , where νYi ∼ Lap(1/ϵy). The binary treatment variable Wi is privatized by the
random response mechanism.

W̃i =

{
Wi w.p. qϵw = exp(ϵw)

1+exp(ϵw)

1−Wi w.p. 1− qϵw = 1
1+exp(ϵw)

.

By composition, the joint release of (Ỹi, W̃i)
N
i=1 satisfies (ϵy + ϵw)-LDP. Ỹi is observed after

adding noise to Yi, which is either Yi(0) or Yi(1), but we cannot identify which it is through
the observed variables because Wi is also unobserved.

First, we propose estimators by plugging in the privatized observations into classical
formulas, then derive bias correction results of the plug-in estimators. We also provide
variance estimators, enabling asymptotically accurate plug-in confidence intervals.

We consider the following naïve inverse probability weighting (IPW) estimator τ̃naive.
This naïve IPW estimator is defined by plugging in privatized observations for the usual
IPW estimator.

τ̃naive =
1

N

N∑
i=1

{
W̃iỸi
ρ1

− (1− W̃i)Ỹi
ρ0

}
, (2)

where ρw = P (W̃i = w) for w = 0, 1. Note that ρw is a known marginal probability expressed
by p and qϵw . The following lemma quantifies the bias of the estimator (2).

Lemma 2. Under Assumption 1, the estimator (2) is biased for τ . The bias is

Bias(τ̃naive) =

(
1

Cp,ϵw

− 1

)
τ,

where Cp,ϵw = ρ0ρ1
p(1−p)(2qϵw−1)

with qϵw = exp(ϵw)/(1 + exp(ϵw)).

Let Êw = 1
Ñw

∑
i:W̃i=w Ỹi and V̂w = 1

Ñw−1

∑
i:W̃i=w(Ỹi − Êw)

2, where Ñw =
∑N

i=1 1(W̃i =

w) for w = 0, 1. In Theorem 3.1, we show that the estimator Cp,ϵw τ̃naive is unbiased,
consistent, and that we can construct asymptotically valid confidence intervals for PATE
based on this estimator.

Theorem 3.1. 1. (Unbiasedness & Consistency) Cp,ϵw τ̃naive is unbiased and consistent
for τ .

2. (CLT)
√
N(Cp,ϵw τ̃naive−τ) converges in distribution to a mean-zero normal distribution.

3. (Confidence Interval) The following interval is the nominal central confidence at the
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significance level α:Cp,ϵw τ̃naive − zα
2

√
Σ̂naive

N
,Cp,ϵw τ̃naive + zα

2

√
Σ̂naive

N

 ,

where Σ̂naive = C2
p,ϵw(

1
ρ1
V̂1 +

1
ρ0
V̂0 +

ρ0
ρ1
Ê2

1 +
ρ1
ρ0
Ê2

0 + 2Ê0Ê1).
4. (Convergence rate) The MSE of Cp,ϵw τ̃naive is O((Nϵ2yϵ2w)−1).

The details of the asymptotic normality and the confidence interval construction are
in Supplementary Material A.4. Setting ϵy = ϵw = ϵ/2 gives MSE of O((Nϵ4)−1), which
matches the minimax rate (1) in terms of N , but not in terms of ϵ. In the following
sections, we see that when we use a customized privacy mechanism, rather than a naïve joint
privatization, we can match the minimax lower bound. In the Supplementary Materials, we
introduce another class of frequentist estimators: the OLS estimator, specifically under the
joint scenario. We explore both the advantages and limitations of the OLS estimator in
comparison to the IPW estimator within this context.

3.3 Custom Scenario with Known p

In this section, we will tailor the privacy mechanism to the PATE estimation problem,
assuming that the value p is known (such as in most designed experiments). Specifically,
for unit i = 1, . . . , N , we privatize the following variable by the Laplace mechanism:
Ai =

WiYi

p
− (1−Wi)Yi

1−p
. The sensitivity of A is ∆A = max(1

p
, 1
1−p

). The privatized value of
A is Ãi = Ai + νAi , where νAi ∼ Lap(∆A/ϵa). Then, it is straightforward to show that the
following IPW estimator is unbiased and consistent.

τ̃IPW =
1

N

N∑
i=1

Ãi. (3)

Theorem 3.2. 1. (Unbiasedness & Consistency) τ̃IPW is unbiased and consistent for τ .
2. (CLT)

√
N(τ̃IPW − τ) converges in distribution to a mean-zero normal distribution.

3. (Confidence Interval) The following interval is the nominal central confidence at the
significance level α: τ̃IPW − zα

2

√
Σ̂IPW

N
, τ̃IPW + zα

2

√
Σ̂IPW

N

 ,

where Σ̂IPW = 1
N−1

∑N
i=1(Ãi − ÊA)

2 with ÊA = 1
N

∑N
i=1 Ãi.

4. (Convergence rate) The MSE of τ̃IPW is O((Nϵ2a)−1).

The details of the asymptotic normal distribution and the confidence interval construction
are provided in Supplementary Material A.5. We see in Theorem 3.2 that the lower bound
of the IPW estimator under the custom scenario matches the minimax lower bound for the
locally private PATE estimation (1), improving over the naïve estimator from Section 3.2.
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3.4 Custom Scenario with Unknown p

The estimator (3) is appealing in the sense of optimality when p is known, such as in
randomized experiments, however, their application is restricted when p is unknown. In
this regard, we proceed a step further to address situations in which p is inaccessible, while
Assumption 1 remains valid. Examples of this setting include A/B testing and clinical trials,
where marketers or doctors assign treatments with an undisclosed probability (that does
not depend on the covariate information).

We consider releasing the following quantities: B̃i = (B̃i,1, B̃i,2, B̃i,3), where

B̃i,1 = WiYi + νB1
i , B̃i,2 = (1−Wi)Yi + νB2

i , and B̃i,3 = Wi + νB3
i ,

where νBj

i ∼ Lap(1/ϵbj) for j = 1, 2, 3. We also let B̃i,4 = 1 − B̃i,3. By composition, the
joint release of (B̃i,1, B̃i,2, B̃i,3)

N
i=1 satisfies (ϵb1 + ϵb2 + ϵb3)-LDP.

Given these privatized quantities, we construct our difference-in-means (DM) estimator
as follows.

τ̃DM =

∑N
i=1 B̃i,1∑N
i=1 B̃i,3

−
∑N

i=1 B̃i,2∑N
i=1 B̃i,4

. (4)

Let ÊBj
= 1

N

∑N
i=1 B̃i,j, V̂Bj

= 1
N−1

∑N
i=1(B̃i,j − ÊBj

)2 for j = 1, 2, 3, 4 and Ĉovj,k =
1

N−1

∑N
i=1(B̃i,j − ÊBj

)(B̃i,k − ÊBk
) for j ̸= k. We have the following properties for τ̃DM :

Theorem 3.3. 1. (Consistency) τ̃DM is consistent for τ .
2. (CLT)

√
N(τ̃DM − τ) converges in distribution to a mean-zero normal distribution.

3. (Confidence Interval) The following interval is the nominal central confidence at the
significance level α: τ̃DM − zα

2

√
Σ̂DM

N
, τ̃DM + zα

2

√
Σ̂DM

N

 ,

where Σ̂DM = ê′Ŝê, with ê = (1/ÊB3 ,−1/(1− ÊB3),−ÊB1/Ê
2
B3
, ÊB2/(1− ÊB3)

2)′ and

Ŝ =


V̂B1 Ĉov1,2 Ĉov1,3 Ĉov1,4

Ĉov2,1 V̂B2 Ĉov2,3 Ĉov2,4

Ĉov3,1 Ĉov3,2 V̂B3 Ĉov3,4

Ĉov4,1 Ĉov4,2 Ĉov4,3 V̂B4

 .

4. (Convergence rate) The MSE of τ̃DM is O((N(ϵ2b1 + ϵ2b2 + ϵ2b3))
−1).

The details of the asymptotic normal distribution and the confidence interval construction
are provided in Supplementary Material A.6. Setting ϵb1 = ϵb2 = ϵb3 = ϵ/3 gives O((Nϵ2)−1),
which also matches the minimax lower bound of (1), indicating the optimality of the
estimator.
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3.5 Discussion on Frequentist Estimators

The three scenarios serve different purposes. While the joint scenario permits the release of
the entire synthetic dataset to analysts, it suffers from the privatization of multiple variables,
thereby compromising its optimality. As discussed in the Supplementary Materials, the OLS
estimator helps improve the efficiency under the joint scenario, however, the gain is limited
since we must pay additional privacy budgets for covariates. In the custom scenarios, access
to the complete dataset is unavailable, but the estimators attain the optimal rate of the
locally private PATE estimation. While both custom estimators achieve the minimax rate,
the estimator with known p is able to focus its privacy budget on a single quantity, which
gives improved finite sample performance; see Section 5.

When the sample size is small, or when privacy budgets are too tight, it is possible
that the point estimators and interval estimators are out of support of the estimand, as the
estimand is assumed to be bounded, but the observed private data are usually unbounded.
Therefore, we apply additional post-processing to clamp estimators to the closest end
of the support when they are out of bounds. For example, if the initial estimator is
τ̂ = 1.8, then we instead set τ̂ = 1.0. However, suppose the lower and upper bounds of
the estimated confidence interval are both clamped to the bounds of the support: in this
case, the estimated confidence interval is not useful at all. This is a limitation of frequentist
estimators arising from the trade-off between privacy and the accuracy of the analysis. This
clamping processing is not necessary to achieve all the statistical properties derived in the
paper. It only serves to reduce the MSE of the estimator by projecting the out-of-bound
estimator to the bound.

4 Bayesian Approach

4.1 Overview of the Bayesian Methodology

Following the Bayesian paradigm of Rubin (1978), we consider deriving the posterior
distributions of the causal estimands (Forastiere et al., 2016; Ohnishi and Sabbaghi, 2022a).
The key idea is the data augmentation (Tanner and Wong, 1987) to obtain the posterior
distribution of the causal estimands by imputing in turn the missing variables. The idea for
estimating causal effects in the Bayesian paradigm is outlined in Rubin (1978); Imbens and
Rubin (2015), but our unique challenges lie in the fact that neither treatment variable W
nor either potential outcome Y (0), Y (1) is observed.

To show how Bayesian inference proceeds in our framework, consider the follow-
ing joint distribution of all observed variables Õ and missing variables Y(0),Y(1),W:
P (Y(0),Y(1),W, Õ), where Õ = (Ỹ, W̃) for the joint scenario and Õ = Ã or B̃ for the
custom scenarios. As discussed in Section D, since causal effects are identifiable under
randomization without covariate adjustment and incorporating covariates requires additional
privacy costs for their release, we do not include covariates in our Bayesian methodologies,
but the extension should be straightforward (e.g., Maceachern (1999)). In what follows, we
focus on the joint scenario discussed in Section 3.2 to show the outline of our algorithm, but
it can easily be extended to the custom scenarios, as explained in Supplementary Material.

Under the super-population perspective, the observed and missing variables are con-
sidered as a joint draw from the population distribution. Bayesian inference considers
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the observed values of these quantities to be realizations of random variables and the
missing values to be unobserved random variables. We also assume these quantities are unit
exchangeable, then de Finetti’s theorem implies that there exists a vector of parameters, θ,
with the prior distribution P (θ) such that

P (Y(0),Y(1),W, Ỹ,W̃) =

∫
P (θ)

∏
i

P (Yi(0), Yi(1),Wi, Ỹi, W̃i | θ)dθ

=

∫
P (θ)

∏
i

P (Wi)P (W̃i | Wi)P (Yi(0), Yi(1) | θ)P (Ỹi | Yi(0), Yi(1),Wi)dθ,

(5)

which follows from the conditional independence of potential outcomes and W̃i given
Wi (Lemma 3 in the Supplementary Materials) and the random assignment assumption.
The distribution of Ỹi depends not only on Yi(0) and Yi(1) but also on Wi because the
DP mechanism is applied to the observed outcome Yi = WiYi(1) + (1 −Wi)Yi(0). Note
that we know the DP mechanisms for W and Y , that is, P (Ỹi | Yi(0), Yi(1),Wi) and
P (W̃i | Wi) have a known functional form. Therefore, the modeling effort is only required
for P (Yi(0), Yi(1) | θ). Under this modeling strategy, our Bayesian approach is a valid
inference for PATE. Note that PATE is a function of the parameters θ, which governs the
potential outcomes. Thus, it suffices to obtain the posterior draws of the posterior of the θ
for the posterior draws of PATE.

A significant insight from (5) is that the treatment assignment mechanism is not ignorable.
In conventional non-private settings, the treatment assignment model, represented as P (Wi),
is ignorable and falls out of the likelihood in Bayesian causal inference under randomization
or unconfoundedness assumptions (Li et al., 2023). Yet, in a DP context, these treatment
assignment variables are not directly observed. This necessitates the integration of both the
treatment assignment models and their respective privacy mechanisms into our inferences.
Additionally, a nuanced but crucial point is the necessity to model both Yi(0) and Yi(1).
Typically, Bayesian causal inference for PATE estimation is performed via observable
data (e.g., Zigler (2016); Stephens et al. (2023)). This is because the missing potential
outcome eventually gets marginalized out from (5) under the assumption of prior parameter
independence and unconfounded assignment, thus it does not influence parameter inference.
In our scenario, however, it is uncertain whether Yi(0) or Yi(1) has been privatized to yield
Ỹi. This uncertainty calls for a data augmentation strategy for both potential outcomes.

We adopt the Dirichlet Process Mixture (DPM) to model P (Yi(0), Yi(1) | Wi,θ) for its
flexibility. The DPM is a natural Bayesian choice for density estimation problems, which
fits our needs that require P (Yi(0), Yi(1) | Wi,θ) to be estimated without assuming strong
parametric forms. The following section and Supplementary Materials B provide technical
details of the DPM and the Gibbs sampler.

4.2 Algorithm Outlines

Equation (5) motivates the Gibbs sampling procedures to obtain the draws from the posterior
distribution of θ. This section describes the key steps of the Gibbs sampler. Each step
is derived from the corresponding components of (5). For inference of DPM parameters,
denoted by θ = (µ,Σ,u), we adopt an approximated blocked Gibbs sampler based on
the truncation of the stick-breaking representation (Ishwaran and Zarepour, 2000), due to
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its simplicity. In this algorithm, we set a conservatively large upper bound, K ≤ ∞, on
the number of components that units potentially belong to. Let Ci ∈ {1, ..., K} denote
the latent class indicators with a multinomial distribution, Ci ∼ Multinomial(u) where
u = (u1, ..., uK) denote the weights of all components of the DPM. More specific details
about the DPM are provided in the Supplementary Material. The algorithm proceeds as
follows.

1. Given Yi(0), Yi(1), draw each Wi from P (Wi = 1|−) = r1
r0+r1

, where rw = P (Ỹi |
Yi(w))P (W̃i | Wi = w)P (Wi = w) for w = 0, 1.

2. Given µ, Σ, u, Ci and Wi, draw each Yi(0) and Yi(1) according to:

P (Yi(Wi)|−) ∝ P (Yi(Wi) | µCi
Wi
,ΣCi

Wi
)P (Ỹi | Yi(Wi))

P (Yi(1−Wi)|−) ∝ P (Yi(1−Wi) | µCi
1−Wi

,ΣCi
1−Wi

).

3. Given µ, Σ, u, Yi(0) and Yi(1), draw each Ci from

P (Ci = k|−) ∝ ukP (Yi(0) | µk
0,Σ

k
0)P (Yi(1) | µk

1,Σ
k
1).

4. Let u′K = 1. Given α, C, draw u′k for k ∈ {1, ..., K − 1} from

P (u′k|−) ∝ Beta
(
1 +

∑
i:Ci=k

1, α+
∑

i:Ci>k

1

)
.

Then, update uk = u′k
∏

j<k(1− u′j).
5. Given C and u′, draw α from

P (α|−) ∝ P (α)
K∏
k=1

f

(
u′k

∣∣∣∣1 + ∑
i:Ci=k

1, α+
∑

i:Ci>k

1

)
,

where f is the pdf of u′k, the beta distribution. The standard Metropolis-Hastings
algorithm is used for this step.

6. Given Y(0), Y(1) and C, draw µ and Σ from

P (µk
0,Σ

k
0|−) ∝ H(µk

0, µ
k
1,Σ

k
0,Σ

k
1)
∏

i:Ci=k

P (Yi(0), Yi(1) | µk
0, µ

k
1,Σ

k
0,Σ

k
1).

Remark. The key steps of this algorithm are 1 and 2, which correspond to the data
augmentation steps, imputing the latent variables Yi(0), Yi(1) and Wi. In Step 1, the
probability P (Ỹi | Yi(w)) for w = 0, 1 indicates that Ỹi is observed via privatizing the
potential outcome Yi(w), which would have been observed if we observed Wi = w. In step 2,
given Wi, the corresponding potential outcome Yi(Wi) is considered to be privatized, but the
other missing potential outcome Yi(1−Wi) should not be associated with the observed Ỹi
within the iteration. Therefore, the posterior distribution of Yi(Wi) cannot be obtained in a
closed form as it is weighted by the privacy mechanism P (Ỹi | Yi(Wi)), whereas the missing
potential outcomes Yi(1−Wi) are just generated from the outcome model P (Yi(1−Wi) | θ).
We adopt the privacy-aware Metropolis-within-Gibbs algorithm proposed in Ju et al. (2022)
for the posterior draws of Yi(Wi). They proposed a generic data augmentation approach of
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updating confidential data that exploits the privacy guarantee of the mechanism to ensure
efficiency. Their algorithm has guarantees on mixing performance, indicating that the
acceptance probability is lower bounded by exp(−ϵy). Another advantage of their approach is
that we may utilize the outcome model to sample a proposal value from P (Yi(Wi)|θ) at the
current value of θ, rather than specifying a custom proposal distribution and step size for
the Metropolis-Hastings step. Finally, Steps 3–6 updates all the parameters of the DPM that
govern the potential outcomes, using standard techniques; see Section B of the Supplementary
Materials for details of the DPM, full details of the algorithm and the extension of the
algorithm to the custom scenarios, which requires slight modifications to Steps 1 and 2.

5 Simulation Studies
We evaluate the frequentist properties of our methodologies for various privacy budgets.
The evaluation metrics that we consider are bias and mean square error (MSE) in esti-
mating a causal estimand, coverage of an interval estimator for a causal estimand, and
the interval length. Bias, MSE and coverage are generally defined as

∑M
m=1 (τ − τ̂m) /M ,∑M

m=1 (τ − τ̂m)
2 /M and

∑M
m=1 1

(
τ̂ lm ≤ τ ≤ τ̂um

)
/M respectively, where M denotes the num-

ber of simulated datasets, τ denotes the true causal estimand, τ̂m, τ̂ lm and τ̂um denote the
estimate of the causal estimand, 95% lower and upper end of the interval estimator of the
causal estimand using dataset m = 1, . . . ,M . Our summary of the interval length is the
mean of the lengths of the intervals computed from M simulated datasets. For our Bayesian
method, the point estimator is the mean of the posterior distribution of a causal estimand,
and the interval estimator is the 95% central credible interval. We ran the MCMC algorithm
for 100, 000 iterations using a burn-in of 50, 000. The iteration numbers were chosen after
experimentation to deliver stable results over multiple runs.

5.1 Data-generating Mechanisms

For our simulations, we consider a Bernoulli randomized experiment with treatment assign-
ment and covariates for unit i generated according to:

Wi ∼ Bernoulli(0.5), Xi,1 ∼ Uniform(0, 1), Xi,2 ∼ Beta(2, 5), Xi,3 ∼ Bernoulli(0.7).

To generate potential outcomes, we adopt the Beta regression Ferrari and Cribari-Neto
(2004): Yi(w) ∼ Beta(µi(w)ϕ, (1− µi(w))ϕ), where µi(w) and ϕ are a location parameter
and scale parameter respectively with µi(w) = expit(1.0− 0.8X1 + 0.5X2 − 2.0X3 + 0.5w)
and ϕ = 50. We consider Xi,d to generate Yi but do not release the privatized X̃i,d. This
model is beneficial for our simulations because the generated data automatically satisfy
the following sensitivity: ∆Y = 1. Then, we obtain the private data Ỹi, W̃i, Ãi, B̃i by
applying the corresponding privacy mechanisms. The actual value of PATE can be obtained
in a closed form, which is necessary to calculate bias, MSE, and coverage. The details are
provided in the Supplementary Materials.
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Table 1: Evaluation metrics for IPW estimator under different privacy scenarios (N =
10000, Nsim = 2000). Nsim denotes the number of simulations. ϵtot denotes the total privacy
budget. “Custom (IPW)” and “Custom (DM)” columns are scenarios in Section 3.3 and 3.4
respectively.

Coverage Bias MSE Interval Width

ϵtot Joint Custom (IPW) Custom (DM) Joint Custom (IPW) Custom (DM) Joint Custom (IPW) Custom (DM) Joint Custom (IPW) Custom (DM)
0.1 94.55% 94.95% 99.8% 0.9025 −0.1873 0.9025 0.9872 0.0803 0.7608 1.889 1.091 1.988
0.3 94.7% 94.1% 98.05% 0.9025 −0.0221 −0.4396 0.7875 0.0091 0.2518 1.882 0.371 1.655
1.0 94.65% 94.6% 95.6% −0.2171 −0.0086 −0.1498 0.0568 0.0009 0.0201 0.915 0.117 0.553
3.0 95.3% 95.0% 95.3% −0.033 −0.0078 0.0076 0.0011 0.0002 0.0022 0.13 0.052 0.182

10.0 94.9% 94.95% 94.4% 0.0 0.003 0.0012 0.0001 0.0001 0.0002 0.043 0.038 0.057

Table 2: Evaluation metrics of Bayesian estimators for N = 10000, Nsim = 1000.
Coverage Bias MSE Interval Width

ϵtot Joint Custom (IPW) Custom (DM) Joint Custom (IPW) Custom (DM) Joint Custom (IPW) Custom (DM) Joint Custom (IPW) Custom (DM)
0.1 96.4% 93.8% 96.3% −0.0949 −0.0772 −0.0951 0.0099 0.0079 0.0099 0.34 0.319 0.341
0.3 96.9% 94.5% 94.6% −0.0953 −0.036 −0.0897 0.0099 0.0034 0.0094 0.342 0.22 0.334
1.0 93.4% 93.8% 92.2% −0.0691 −0.0069 −0.0511 0.0077 0.0006 0.0055 0.32 0.096 0.263
3.0 93.2% 92.2% 94.2% −0.0081 −0.0063 −0.0098 0.0006 0.0002 0.001 0.093 0.045 0.117

10.0 95.0% 93.5% 92.3% −0.0023 −0.0027 −0.0045 0.0 0.0 0.0001 0.026 0.022 0.036

5.2 Results

Table 1 presents the performance evaluation of our estimators under different scenarios for
N = 10000 with various privacy budgets for ϵtot. We let ϵtot = ϵa = ϵy + ϵw = ϵb1 + ϵb2 + ϵb3 ,
where ϵy = ϵw and ϵb1 = ϵb2 = ϵb3. All scenarios achieve about 95% coverage, except for the
custom scenario (DM) of ϵtot = 0.1, .03, which has some over-coverage. This may be because
the estimator for the asymptotic variance has a non-negligible estimation error with the
finite samples. The simulations in this section rely on the results of Section 3.2, 3.3, and 3.4
to build confidence intervals. The fact that the intervals have correct 95% coverage indicates
that the estimators 1) are in fact asymptotically normal, 2) are asymptotically unbiased,
and 3) have the stated asymptotic variance. For bias and MSE, we observe smaller bias
and MSE for larger privacy budgets. The custom scenario (IPW) yields lower MSE than
the joint scenario, which is also consistent with the discussion of the optimality in Section
3.2, 3.3, and 3.4, but the difference becomes negligible as ϵtot increases.

When we have a tight privacy budget of ϵtot = 0.1, 0.3, the length of the confidence
intervals of the joint scenario are nearly 2, which is almost non-informative about the
estimand. With strict budget constraints and a small sample size, the analysis results may
tell us little about the estimands, even though their consistency and confidence intervals
are statistically valid. This is an inevitable trade-off between privacy protection and the
accuracy of the results. Custom (IPW) has the best finite sample performance, offering
informative intervals and small bias and MSE for all privacy budgets.

Table 2 compares our Bayesian methodology under the three scenarios. We see that the
Bayes estimator yields well-calibrated coverage probabilities and smaller MSE and bias for
most cases. The differences in MSE between frequentist estimators and Bayesian estimators
become negligible as ϵtot gets large (ϵtot = 3.0, 10.0). When the privacy budget is tight, the
Bayesian methodology outperforms the frequentist approach in all metrics. Specifically, the
interval length of the Bayes estimator for ϵtot = 0.1 is around 0.35 for all scenarios, which
is informative enough about the estimands. In the Supplementary Materials, we provide
additional simulation studies for smaller sample sizes, as well as those for the OLS estimator
under the joint scenario.
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Table 3: Empirical analysis evaluating privatized cash transfer programs in Colombia. In
the "Non-private" columns, "Freq" represents the standard IPW estimator, while "Bayes"
represents the standard Dirichlet process mixture models for non-private data.

Non-private Private

Joint Custom (IPW) Custom (DM)

Freq Bayes Freq Bayes Freq Bayes Freq Bayes

ϵtot Mean 2.5% 97.5% Mean 2.5% 97.5% Mean 2.5% 97.5% Mean 2.5% 97.5% Mean 2.5% 97.5% Mean 2.5% 97.5% Mean 2.5% 97.5% Mean 2.5% 97.5%
0.1 0.006 -0.042 0.054 0.005 0.001 0.008 1.0 -1.0 1.0 0.011 -0.178 0.145 0.019 -1.0 1.0 0.072 -0.135 0.244 1.0 -1.0 1.0 0.032 -0.137 0.193
0.3 0.006 -0.042 0.054 0.005 0.001 0.008 -1.0 -1.0 1.0 0.049 -0.082 0.190 0.010 -0.367 0.386 0.160 -0.038 0.389 -0.581 -1.0 1.0 0.049 -0.148 0.238
1.0 0.006 -0.042 0.054 0.005 0.001 0.008 -0.169 -0.898 0.559 0.041 -0.022 0.111 0.006 -0.118 0.131 0.073 -0.018 0.137 0.131 -0.546 0.809 0.054 -0.124 0.169
3.0 0.006 -0.042 0.054 0.005 0.001 0.008 0.008 -0.116 0.131 0.018 -0.007 0.044 0.005 -0.061 0.072 -0.002 -0.018 0.015 -0.038 -0.248 0.170 0.048 0.004 0.098

10.0 0.006 -0.042 0.054 0.005 0.001 0.008 0.006 -0.051 0.064 0.009 0.0 0.018 0.008 -0.048 0.064 -0.002 -0.009 0.006 -0.006 -0.066 0.054 0.015 0.002 0.027

6 Real Data Analysis
We applied our methodology to a real-world causal inference task. We analyzed a randomized
experiment that examined the impact of a cash transfer program on students’ attendance
rates (Barrera-Osorio et al., 2011). Conducted at San Cristobal in Colombia, the study
recruited households with one to five school children, randomly assigning children to either
participate in the cash transfer program or not with probability p = 0.628. The number
of recruited students is N = 5240. With known treatment assignment, we assessed the
treatment effect of the program on the attendance rate of the students, with eligible students
receiving cash subsidies if they attended school at least 80% of the time in a given month.

We utilized the privatization techniques as outlined in Section 3, setting ϵtot to values of
0.1, 0.3, 1.0, 3.0, and 10.0. Our methodologies were then benchmarked against non-private
baseline methods, which offer target values for our private estimates. For the non-private
frequentist baseline, we employed the standard IPW estimator.

Table 6 presents point mean estimators alongside the lower (2.5%) and upper (97.5%)
bounds for interval estimators across each methodology. For the interval estimators, we
used central confidence intervals for the frequentist approach and credible intervals for
the Bayesian approach. Both frequentist and Bayesian non-private interval estimators
highlighted a positive interval, indicating a significant effect. The point estimates showed a
0.6% increase in the frequentist non-private approach and a more modest 0.5% increase in
the Bayesian approach. Given these results, our expectation for the private methodologies
is, at best, to approximate the non-private values, since better inferences are unlikely with
privatized data. Note that as the experimental data is fixed, the only randomness in this
study is the privacy mechanisms.

The point estimates for both frequentist and Bayesian methodologies are similar to
their non-private results when ϵtot ≥ 3.0. In particular, we observe that the Custom
(IPW) scenario results in the narrowest confidence intervals. In the joint and custom (DM)
scenarios, the frequentist estimators deviated more from the non-private one, showing larger
intervals. The frequentist methodologies yield non-informative intervals when the privacy
budget is tightest ϵtot = 0.1. The Bayesian methodology demonstrated strong performance
across all scenarios. These observations align with our simulation studies, further validating
the efficacy of our methodologies.
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7 Concluding Remarks
In this article we proposed causal inferential methodologies to analyze differential private
data under the Rubin Causal Model. We considered three distinct local privacy scenarios
that have practical relevance: 1) jointly privatized variables with known p, 2) custom
privatized variables with known p, and 3) custom privatized variables with unknown p. We
showed that a naïve debiased estimator in the first scenario results in poor MSE compared
to the minimax lower bound. In contrast, we show that by using customized privacy
mechanisms, we can achieve the lower bound and obtain minimax optimal inference. We
also presented a Bayesian methodology and its sampling algorithm as an alternative to
the frequentist methodologies. We emphasize that despite the simplicity of the Laplace
and randomized response mechanisms we employ, our customized estimators attain the
minimax lower bound, thereby ensuring optimality across any privacy mechanisms. Thus,
the mechanism choice is of lesser concern. Additionally, our analyses can readily be extended
to other mechanisms that add independent noise with a zero mean and known variance.
Our Bayesian algorithm works effectively across a broad spectrum of privacy mechanisms if
the privacy mechanism has a known likelihood. Finally, we validated the performance of
our estimators via simulation studies and empirical analyses using real-world data.

A direction for future research is to develop an analytical framework for unbounded
variables. Our framework is restricted to bounded variables due to considerations of the
sensitivity of DP mechanisms.

Furthermore, the finite-sample performance of our estimators may be improved by more
carefully designing the noise adding mechanisms; one may investigate using truncated-
uniform-Laplace (Awan and Slavković, 2018), K-norm mechanisms (Hardt and Talwar,
2010; Awan and Slavković, 2021), or the minimax optimal noise mechanism for multivariate
mean estimation (Duchi et al., 2018).

Finally, another direction of future work would be to develop methodologies for the
PATE estimation in observational studies.
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A Details of Theorems and Proofs in Section 3

A.1 Conditional independence of {Yi(0), Yi(1)} and W̃i given Wi

We first state a subtle yet important lemma that we will use to prove subsequent theorems.

Lemma 3. The potential outcomes are conditionally independent of the privatized treatment
assignments given the actual treatment assignment:

{Yi(0), Yi(1)} ⊥⊥ W̃i | Wi.

This result holds because the DP mechanism flips the given treatment independently.
This result is subtle, but important because it plays a crucial role in proving the upcoming
theorems.

A.2 Proof of Lemma 1

Proof. We first acknowledge that

sup
P0=δ(0),
P1∈P1,
p=1

E[(τ̂ − τ)2] = sup
P1∈P1

E[(τ̂ − µ1)
2], (6)

where δ(0) denotes a point mass at 0 and µ1 = E[Yi(1)]. Equation (6) is equivalent to the
one-dimensional mean estimation problem in Duchi et al. (2018, Corollary 1). Therefore, by
Duchi et al. (2018), there exists some constant cl such that

cl min(1, (Nϵ2)−1) ≤ sup
P1∈P1

E[(τ̂ − µ1)
2],

Finally, we note that

inf
Mϵ∈Mϵ

inf
τ̂

sup
P0=δ(0),
P1∈P1,
p=1

E[(τ̂ − τ)2] ≤ inf
Mϵ∈Mϵ

inf
τ̂

sup
P0∈P0,
P1∈P1,
p∈[0,1]

E[(τ̂ − τ)2],

where the inequality holds as the right side is taking supremum over a larger set. Putting
everything together, we prove our claim.
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A.3 Proof of Lemma 2

Proof. Let p̄ = 1− p and q̄ϵw = 1− qϵw . The weak law of large numbers implies

1

N

N∑
i=1

W̃iỸi
p→ E[W̃iỸi]

= E[E[W̃iỸi | Wi]]

= E[E[W̃i | Wi]E[Yi | Wi]]

= E[P (W̃i = 1 | Wi)E[Ỹi | Wi]]

= E[P (W̃i = 1 | Wi)E[Yi | Wi]]

= p
(
P (W̃i = 1 | Wi = 1)E[Yi(1)]

)
+ p̄
(
P (W̃i = 1 | Wi = 0)E[Yi(0)]

)
= pqϵwµ1 + p̄q̄ϵwµ0,

where the second line follows from the law of total expectation and the third line follows
from Lemma 3. Similarly, we have

1

N

N∑
i=1

(1− W̃i)Ỹi
p→ pq̄ϵwµ1 + p̄qϵwµ0.

Therefore, we see that

τ̃naive
p→ 1

Cp,ϵw

τ,

and, since Cp,ϵw is a constant, we have

Cp,ϵw τ̃naive
p→ τ.

A.4 Details of Theorem 3.1

We provide the following central limit theorem.

Theorem A.1. The estimator Cp,ϵw τ̃naive is unbiased and consistent for τ . Furthermore,√
N(Cp,ϵw τ̃naive − τ) converges in distribution to

N

(
0, C2

p,ϵw

(
1

ρ1
V1 +

1

ρ0
V0 +

ρ0
ρ1
E2

1 +
ρ1
ρ0
E2

0 + 2E0E1

))
, (7)

where, for w = 0, 1,

Vw = Var(Ỹi|W̃i = w) =P (Wi = 0|W̃i = w)Var[Yi(0)] + P (Wi = 1|W̃i = w)Var[Yi(1)]

+ P (Wi = 0|W̃i = w)P (Wi = 1|W̃i = w)τ 2 +
2

ϵ2y
,
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and Ew = E(Ỹi|W̃i = w) = P (Wi = 0|W̃i = w)E[Yi(0)] + P (Wi = 1|W̃i = w)E[Yi(1)].

Proof. Consistency is proven in Section A.3.

Cp,ϵw τ̃naive =
Cp,ϵw

N

N∑
i=1

{
W̃iỸi
ρ1

− (1− W̃i)Ỹi
ρ0

}
=
Cp,ϵw

N

N∑
i=1

τ̃i.

Note that τ̃i is i.i.d. for i = 1, . . . , N , E[Cp,ϵw τ̃i] = τ , and the second moment is bounded
due to the sensitivity of Y . Thus, it is sufficient to derive the variance of τ̃i as Var[Cp,ϵw τ̃i] =
C2

p,ϵwVar[τ̃i].

Var[τ̃i] =
1

ρ21
Var[W̃iỸi] +

1

ρ20
Var[(1− W̃i)Ỹi]−

2

ρ0ρ1
Cov[W̃iỸi, (1− W̃i)Ỹi].

Then,

Var[W̃iỸi] = E[Var[W̃iỸi | W̃i]] + Var[E[W̃iỸi | W̃i]]

= E[W̃ 2
i Var[Ỹi | W̃i]] + Var[W̃iE[Ỹi | W̃i]]

= p(W̃i = 1)Var[Ỹi | W̃i] + p(W̃i = 1)p(W̃i = 0)E[Ỹi | W̃i]
2

= ρ1Var[Ỹi | W̃i] + ρ0ρ1E[Ỹi | W̃i]
2

= ρ1V1 + ρ0ρ1E
2
1 .

Similarly, we have Var[(1− W̃i)Ỹi] = ρ0V0 + ρ0ρ1E
2
0 . The covariance is given by

Cov[W̃iỸi, (1− W̃i)Ỹi] = −E[W̃iỸi]E[(1− W̃i)Ỹi]

= −E[W̃iE[Ỹi | W̃i]]E[(1− W̃i)E[Ỹi | W̃i]]

= −p(W̃i = 1)E[Ỹi | W̃i = 1]p(W̃i = 0)E[Ỹi | W̃i = 0]

= −ρ0ρ1E0E1.

Putting all together, we prove the central limit theorem in Theorem A.1 and hence Theorem
3.1.

Next, we consider the decompositions of Ew and Vw. We have

Ew = E[Ŷi | Ŵi = w] = E[Yi | Ŵi = w] = P (Wi = 0|W̃i = w)E[Yi(0)] + P (Wi = 1|W̃i = w)E[Yi(1)],

which follows from Lemma 3. By the law of total variance and SUTVA,

Var[Yi | W̃i = 1] =
1∑

w=0

Var[Yi | W̃i = 1,Wi = w]P (Wi = w | W̃i = 1) + Var[E[Yi | W̃i = 1,Wi = w]].

The first term simplifies to

1∑
w=0

Var[Yi | W̃i = 1,Wi = w]P (Wi = w | W̃i = 1) =
p̄q̄ϵw

pqϵw + p̄q̄ϵw
Var[Yi(0)] +

pqϵw
pqϵw + p̄q̄ϵw

Var[Yi(1)].
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The second term simplifies to

Var[E[Yi | W̃i = 1,Wi = w]]

= E
[
(E[Yi | W̃i = 1,Wi = w]− E[(E[Yi | W̃i = 1,Wi = w]])2 | W̃i = 1

]
=

1∑
w=0

(
E[Yi(w)]−

p̄q̄ϵw
pqϵw + p̄q̄ϵw

E[Yi(0)]−
pqϵw

pqϵw + p̄q̄ϵw
E[Yi(1)]

)2

P (Wi = w | W̃i = 1)

=
pqϵw p̄q̄ϵw

(pqϵw + p̄q̄ϵw)
2
τ 2.

Therefore, we have

V1 := Var[Yi | W̃i = 1] =
p̄q̄ϵw

pqϵw + p̄q̄ϵw
Var[Yi(0)] +

pqϵw
pqϵw + p̄q̄ϵw

Var[Yi(1)] +
pqϵw p̄q̄ϵw

(pqϵw + p̄q̄ϵw)
2
τ 2.

Similarly, we have

V0 := Var[Yi | W̃i = 0] =
p̄qϵw

p̄qϵw + pq̄ϵw
Var[Yi(0)] +

pq̄ϵw
p̄qϵw + pq̄ϵw

Var[Yi(1)] +
pqϵw p̄q̄ϵw

(p̄qϵw + pq̄ϵw)
2
τ 2.

Finally, the order of the asymptotic variance is immediate from the fact that C2
p,ϵw =

O((ϵ2w)
−1), which proves Theorem 3.1 and Corollary 1

We now turn to estimating the asymptotic variance of Cp,ϵw τ̃naive in (7). We consider the
following estimators for Ew and Vw: Êw = 1

Ñw

∑
i:W̃i=w Ỹi and V̂w = 1

Ñw−1

∑
i:W̃i=w(Ỹi−Êw)

2,
where Ñw =

∑N
i=1 1(W̃i = w) for w = 0, 1.

Lemma 4. V̂w and Êw are consistent for Vw and Ew respectively. Also, we have

E[Êw | W̃i = w] = Ew and E[V̂w | W̃i = w] = Vw

Proof.

V̂1 =
1

Ñ1 − 1

∑
i:W̃i=1

(Ỹi − Ê1)
2

=
1

Ñ1 − 1

∑
i:W̃i=1

(Ỹi − E[Ỹi | W̃i = 1] + E[Ỹi | W̃i = 1]− Ê1)
2

=
1

Ñ1 − 1

∑
i:W̃i=1

{
(Ỹi − E[Ỹi | W̃i = 1])2 + (E[Ỹi | W̃i = 1]− Ê1)

2

− 2(Ỹi − E[Ỹi | W̃i = 1])(E[Ỹi | W̃i = 1]− Ê1)

}
=

Ñ1

Ñ1 − 1

1

Ñ1

∑
i:W̃i=1

(Ỹi − E[Ỹi | W̃i = 1])2 − Ñ1

Ñ1 − 1
(Ê1 − E[Ỹi | W̃i = 1])2.
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Therefore,

E[V̂1 | W̃i = 1] =
Ñ1

Ñ1 − 1
Var[Ỹi | W̃i = 1]− Ñ1

Ñ1 − 1
Var[Ê1 | W̃i = 1]

=
Ñ1

Ñ1 − 1
Var[Ỹi | W̃i = 1]− 1

Ñ1 − 1
Var[Ỹi | W̃i = 1]

= Var[Ỹi | W̃i = 1]

= V1.

We can follow the same procedure for E[V̂0 | W̃i = 0] = V0.

Using Êw and V̂w, we can construct the plug-in estimator for the asymptotic variance
and the nominal central confidence interval at the significance level α as:

(
Cp,ϵw τ̃naive − zα

2

√
Σ̂naive

N
,Cp,ϵw τ̃naive + zα

2

√
Σ̂naive

N

)
.

where Σ̂naive = C2
p,ϵw(

1
ρ1
V̂1 +

1
ρ0
V̂0 +

ρ0
ρ1
Ê2

1 +
ρ1
ρ0
Ê2

0 + 2Ê0Ê1), which is a consistent estimator
for the asymptotic variance in (7).

Finally, we discuss the optimality of the naïve estimator.

Corollary 1 (Convergence rate). The naïve estimator under the joint scenario has the
MSE O((Nϵ2yϵ

2
w)

−1).

Setting ϵy = ϵ2 = ϵ/2 gives O((Nϵ4)−1). While we do not match the minimax lower
bound of mean estimation in terms of ϵ when both W and Y are privatized, it should
be emphasized that the estimation of PATE is significantly harder than the usual mean
estimation when we do not know who belongs to which treatment group, especially using a
non-interactive LDP mechanism as in the joint scenario.

A.5 Details of Theorem 3.2

By the standard central limit theorem, we have

√
N(τ̃IPW − τ)

D→ N

(
0,
µ2
1 + σ2

1

p
+
µ2
0 + σ2

0

1− p
− τ 2 − µ0µ1 +

2∆A

ϵ2a

)
, (8)

where µw = E[Yi(w)] and σ2
w = Var[Yi(w)] for w = 0, 1. We can then construct the plug-in

estimator for the asymptotic variance and the nominal central confidence interval at the
significance level α as:

(
τ̃IPW − zα

2

√
Σ̂IPW

N
, τ̃IPW + zα

2

√
Σ̂IPW

N

)
.

where Σ̂IPW = 1
N−1

∑N
i=1(Ãi − ÊA)

2 with ÊA = 1
N

∑N
i=1 Ãi, which is an unbiased estimator

for the asymptotic variance in (8).
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A.6 Details of Theorem 3.3

First, we provide the following asymptotic results regarding this estimator.

Theorem A.2. τ̃DM is consistent for τ and
√
N(τ̃DM − τ) converges in distribution to

N

(
0, 4µ0µ1 +

σ2
0

1− p
+
σ2
1

p
+

2

ϵ2b1

(
µ0

1− p
+
µ1

p

)2

+
2

p2ϵ2b2
+

2

(1− p)2ϵ2b3

)
. (9)

Proof. First, we have

E[B̃i,1] = pµ1,E[B̃i,2] = (1− p)µ0,E[B̃i,3] = p,E[B̃i,4] = 1− p,Var[B̃i,1] = pσ2
1 + p(1− p)µ2

1 +
2

ϵ2b1
,

Var[B̃i,2] = (1− p)σ2
0 + p(1− p)µ2

0 +
2

ϵ2b2
,Var[B̃i,3] = p(1− p) +

2

ϵ2b3
,Var[B̃i,4] = p(1− p) +

2

ϵ2b3
,

Cov[B̃i,1, B̃i,2] = −p(1− p)µ0µ1,Cov[B̃i,1, B̃i,3] = p(1− p)µ1,Cov[B̃i,1, B̃i,4] = 0,

Cov[B̃i,2, B̃i,3] = 0,Cov[B̃i,2, B̃i,4] = p(1− p)µ0,Cov[B̃i,3, B̃i,4] = −p(1− p)µ0µ1.

By the central limit theorem, we have

√
N


1
N

∑N
i=1 B̃i,1 − E[B̃i,1]

1
N

∑N
i=1 B̃i,2 − E[B̃i,2]

1
N

∑N
i=1 B̃i,3 − E[B̃i,3]

1
N

∑N
i=1 B̃i,4 − E[B̃i,4]

 D→ N



0
0
0
0

 , S∗

 ,

where

S∗ =


Var[B̃i,1] Cov[B̃i,1, B̃i,2] Cov[B̃i,1, B̃i,3] Cov[B̃i,1, B̃i,4]

Cov[B̃i,2, B̃i,1] Var[B̃i,2] Cov[B̃i,2, B̃i,3] Cov[B̃i,2, B̃i,4]

Cov[B̃i,3, B̃i,1] Cov[B̃i,3, B̃i,2] Var[B̃i,3] Cov[B̃i,3, B̃i,4]

Cov[B̃i,4, B̃i,1] Cov[B̃i,4, B̃i,2] Cov[B̃i,4, B̃i,3] Var[B̃i,4]

 .

Define a function h(a, b, c, d) = a
c
− b

d
and ∇h = (∂h

∂a
, ∂h
∂b
, ∂h
∂c
, ∂h
∂d
), where

∂h

∂a
=

1

c
,
∂h

∂b
= −1

d
,
∂h

∂c
= − a

c2
,
∂h

∂d
=

b

d2
.

Note that

τ = µ1 − µ0 =
E[B̃i,1]

E[B̃i,3]
− E[B̃i,2]

E[B̃i,4]
= h

(
E[B̃i,1],E[B̃i,2],E[B̃i,3],E[B̃i,4]

)
,

and

τ̃DM =

∑N
i=1 B̃i,1∑N
i=1 B̃i,3

−
∑N

i=1 B̃i,2∑N
i=1 B̃i,4

= h

(
1

N

N∑
i=1

B̃i,1,
1

N

N∑
i=1

B̃i,2,
1

N

N∑
i=1

B̃i,3,
1

N

N∑
i=1

B̃i,4

)
.
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By applying the delta method, we have
√
N(τ̃DM − τ)

D→ N(0,Σ∗),

where Σ∗ = ∇h(E)′S∗∇h(E). ∇h(E) denotes ∇h evaluated at E = (E[B̃i,1],E[B̃i,2,E[B̃i,3],E[B̃i,4]).
Calculating Σ∗ proves our claim in Thereom A.2. The estimator of Σ∗ that we adopt in
Section 3.4 are a plug-in estimator with consistent estimators of ∇h(E) and S∗.

By Theorem A.2, the asymptotic variance of τ̃DM has the convergence rate O((N(ϵ2b1 +
ϵ2b2 + ϵ2b3))

−1). Setting ϵb1 = ϵb2 = ϵb3 = ϵ/3 gives O((Nϵ2)−1), which also matches the
minimax lower bound for the locally private mean estimation, indicating the optimality of
the estimator.

Let ÊBj
= 1

N

∑N
i=1 B̃i,j, V̂Bj

= 1
N−1

∑N
i=1(B̃i,j − ÊBj

)2 for j = 1, 2, 3, 4 and Ĉovj,k =
1

N−1

∑N
i=1(B̃i,j − ÊBj

)(B̃i,k − ÊBk
) for j ̸= k. Then, we construct the plug-in estimator for

the asymptotic variance and the nominal central confidence interval at the significance level
α as: (

τ̃DM − zα
2

√
Σ̂DM

N
, τ̃DM + zα

2

√
Σ̂DM

N

)
.

where Σ̂DM = ê′Ŝê, with ê = (1/ÊB3 ,−1/(1− ÊB3),−ÊB1/Ê
2
B3
, ÊB2/(1− ÊB3)

2)′ and

Ŝ =


V̂B1 Ĉov1,2 Ĉov1,3 Ĉov1,4

Ĉov2,1 V̂B2 Ĉov2,3 Ĉov2,4

Ĉov3,1 Ĉov3,2 V̂B3 Ĉov3,4

Ĉov4,1 Ĉov4,2 Ĉov4,3 V̂B4

 .

This is a consistent estimator for the asymptotic variance in (9).

B Bayesian Methodology

B.1 Details of the DPM

We say the probability measure H is generated from a Dirichlet Process, DP(α,H0), with a
concentration parameter α > 0 and a base probability measure H0 over a measurable space
(Θ,S) (Ferguson, 1974) if, for any finite partition (S1, ..., Sk) of S, we have(

H(S1), ..., H(Sk)
)
∼ Dir

(
αH0(S1), ..., αH0(Sk)

)
,
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where Dir(α1, ..., αk) denotes the Dirichlet distribution with positive parameters α1, ..., αk.
The DPM is specified as

{Y1(0), Y1(1)}, ..., {YN(0), YN(1)} | Φ1, ...,ΦN
ind∼ p(Yi(0), Yi(1)|Φi),

Φ1, ...,ΦN |H
ind∼ H,

H
ind∼ DP (α,H0).

We write ind∼ to say independently distributed. This model has unit-level parameters Φi for
i = 1, ..., N , but the discreteness of the Dirichlet process (DP) distributed prior implies that
the vector Φ = (Φ1, ...,ΦN ) can be rewritten in terms of its unique values Φ∗ = (Φ∗

1, ...,Φ
∗
K).

In particular, this can be represented in the following stick-breaking process.

H =
∞∑
k=1

ukδΦk
, uk = vk

∏
l<k

[1− vl], vl
ind∼ Beta(1, α).

More specifically, the outcome model is specified by the following model.

P (Yi(w)|µ,Σ) ∝
∞∑
k=1

ukTN(µk
w,Σ

k
w, 0, 1), (10)

where TN(µ, σ2, u, l) denotes the truncated normal distribution with the mean, variance,
upper bound and lower bound parameters. The atoms Φk = (µk

0, µ
k
1,Σ

k
0,Σ

k
1) and the weight

parameters uk are nonparametrically specified via DP(α,H0). This can be regarded as the
infinite mixture of normal distributions, where µk

w and Σk
w is the location parameter and

variance parameter of each component respectively.
For inference, we adopt an approximated blocked Gibbs sampler based on a truncation

of the stick-breaking representation of the DP proposed by Ishwaran and Zarepour (2000),
due to its simplicity. In this algorithm, we first set a conservatively large upper bound,
K ≤ ∞, on the number of components that units potentially belong to. Let Ci ∈ {1, ..., K}
denote the latent class indicators with a multinomial distribution, Ci ∼ MN(w) where
u = (u1, ..., uK) denote the weights of all components of the DPM. Conditional on Ci = k,
(10) is greatly simplified to

P (Yi(w)|µ,Σ) ∝ TN(µk
w,Σ

k
w, 0, 1).

Ishwaran and James (2001) showed that an accurate approximation to the exact DP is
obtained as long as K is chosen sufficiently large. The DPM provides an automatic selection
mechanism for the number of active components K∗ < K. To ensure that K is sufficiently
large, we run several MCMC iterations with different values of K. If the current iteration
occupies all components, then K is not large enough, so we increase K for the next iteration.
We conduct this iterative process until the number of the occupied components is below K.
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B.2 Detailed Steps of Gibbs Sampler

In this section we present the detailed steps of the Gibbs sampler that is described in Section
4.2. The algorithm is inspired by Schwartz et al. (2011) and Ohnishi and Sabbaghi (2022b).

1. Given Yi(0), Yi(1), draw each Wi from

P (Wi = 1|−) =
r1

r0 + r1
,

where, for unit i with W̃i = 0,

r0 = Lap(Ỹi | Yi(0), 1/ϵy)qϵw(1− p) and r1 = Lap(Ỹi | Yi(1), 1/ϵy)(1− qϵw)p,

and for unit i with W̃i = 1,

r0 = Lap(Ỹi | Yi(0), 1/ϵy)(1− qϵw)(1− p) and r1 = Lap(Ỹi | Yi(1), 1/ϵy)qϵwp.

where Lap(y | µ, σ) is the pdf of the laplace distribution evaluated at y with the
location parameter µ and scale parameter σ.

2. Given µ, Σ, u, Ci and Wi = w, draw Yi(1− w) according to:

Yi(1− w) ∼ TN(µCi
1−w,Σ

Ci
1−w, 0, 1),

where TN(µ, σ2, u, l) denotes the truncated normal distribution with the mean, vari-
ance, upper bound and lower bound parameters.
Then, draw Yi(w) using the following Privacy-Aware Metropolis-within-Gibbs sampler
Ju et al. (2022):
(a) Draw a proposal: y∗ ∼ TN(µCi

w ,Σ
Ci
w , 0, 1).

(b) Accept the proposal with probability α = min
(
1, Lap(y∗|Ỹi,1/ϵy)

Lap(yprev|Ỹi,1/ϵy)

)
,

where yprev is the value of Yi(w) in the previous step.
3. Given µ, Σ, u, Yi(0) and Yi(1), draw each Ci from

P (Ci = k|−) ∝ ukTN(Yi(0) | µk
0,Σ

k
0, 0, 1)TN(Yi(1) | µk

1,Σ
k
1, 0, 1).

This is a multinomial distribution.
4. Let u′K = 1. Given α, C, draw u′k for k ∈ {1, ..., K − 1} from

P (u′k|−) ∝ Beta
(
1 +

∑
i:Ci=k

1, α+
∑

i:Ci>k

1

)
.

Then, update uk = u′k
∏

j<k(1− u′j).
5. Given C and u′, draw α from

P (α|−) ∝ P (α)
K∏
k=1

f

(
u′k

∣∣∣∣1 + ∑
i:Ci=k

1, α+
∑

i:Ci>k

1

)
,

where f is the pdf of u′k, the beta distribution. The Metropolis-Hastings algorithm is
used for this step with a proposal distribution TN(αprev, 1.0, 0,∞). αprev is the value
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of α in the previous step.
6. Given Y(0), Y(1) and C, draw µ and Σ from

(a) If Nk =
∑N

i=1 1(Ci = k) > 0, draw Σk
w from IG(2 + 0.5Nk, 0.2

2 + 0.5skw) where
skw =

∑
i:Ci=k(Yi(w)− µk

w)
2 for w = 0, 1. If Nk = 0,then draw Σk

w from the prior
IG(2, 0.22).

(b) If Nk > 0, draw µk
w from

TN

(
0.5 ∗ Σk

w + 9.0sw
Σk

w + 9.0Nk

,
9.0Σk

w

Σk
w + 9.0Nk

, 0, 1

)
,

where sw =
∑N

i=1 Yi(w). If Nk = 0, draw µk
w from

TN(0.5, 9.0, 0, 1).

We use a common choice of the base measure H0: the Normal-Inverse-Gamma
conjugate N(µ0, σ

2
0)N(µ0, σ

2
0)IG(a0, b0)IG(a0, b0). The specific values of the hy-

perparameters in this step are: µ0 = 0.5, σ0 = 3.0, a0 = 2.0 and b0 = 0.22 for
both w = 0, 1.

B.3 Modifications for Custom Scenario in Section 3.3

We need to modify Step 1 and 2 for the custom scenarios. Particularly,
1. Given Yi(0), Yi(1), draw each Wi from

P (Wi = 1|−) =
r1

r0 + r1
,

where rw = P (Ãi | Yi(0), Yi(1),Wi = w)P (Wi = w) for w = 0, 1. Specifically, since
Ãi is generated by privatizing either −Yi(0)/(1 − p) or Yi(1)/p given the value of
Wi, P (Ãi | Yi(0), Yi(1),Wi = w) = Lap(Ãi | −Yi(0)/(1 − p),∆a/ϵa) for Wi = 0, and
P (Ãi | Yi(0), Yi(1),Wi = w) = Lap(Ãi | Yi(1)/p,∆a/ϵa) for Wi = 1.

2. Given µ, Σ, u, Ci and Wi, draw each Yi(0) and Yi(1) according to:

P (Yi(Wi)|−) ∝ P (Yi(Wi) | µCi
Wi
,ΣCi

Wi
)P (Ãi | Yi(Wi))

P (Yi(1−Wi)|−) ∝ P (Yi(1−Wi) | µCi
1−Wi

,ΣCi
1−Wi

).

Specifically, P (Ãi | Yi(Wi)) = Lap(Ãi | −Yi(0)/(1 − p),∆a/ϵa) for Wi = 0 and
P (Ãi | Yi(Wi)) = Lap(Ãi | Yi(1)/p,∆a/ϵa) for Wi = 1. The privacy-aware Metropolis-
within-Gibbs algorithm (Ju et al., 2022) is used for the draw of Yi(Wi).

B.4 Modifications for Custom Scenario in Section 3.4

Under the custom scenario in Section 3.4, we do not have access to p. Therefore, we need
an additional step to infer p. Specifically, with a prior distribution p ∼ Beta(1, 1), we add
the following step.

0. Draw p ∼ Beta
(
1 +

∑N
i=1 1(Wi = 1), 1 +

∑N
i=1 1(Wi = 0)

)
.

Then we proceed as follows.
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Figure 1: Distributions of Y (0) and Y (1) for simulation studies.

1. Given Yi(0), Yi(1) and p, draw each Wi from

P (Wi = 1|−) =
r1

r0 + r1
,

where

rw = pw(1− p)1−wP (B̃i,1 | Yi(0), Yi(1),Wi = w)P (B̃i,2 | Yi(0), Yi(1),Wi = w)

× P (B̃i,3 | Yi(0), Yi(1),Wi = w)

for w = 0, 1. Specifically, considering the privatization of B̃i,1, B̃i,2 and B̃i,3, we
have P (B̃i,1 | Yi(0), Yi(1),Wi = 0) = Lap(B̃i,1 | 0, 1/ϵb2), P (B̃i,2 | Yi(0), Yi(1),Wi =
0) = Lap(B̃i,2 | Yi(0), 1/ϵb2), P (B̃i,3 | Yi(0), Yi(1),Wi = 0) = Lap(B̃i,3 | 0, 1/ϵb3),
P (B̃i,1 | Yi(0), Yi(1),Wi = 1) = Lap(B̃i,1 | Yi(1), 1/ϵb1), P (B̃i,2 | Yi(0), Yi(1),Wi =
1) = Lap(B̃i,2 | 0, 1/ϵb2) and P (B̃i,3 | Yi(0), Yi(1),Wi = 1) = Lap(B̃i,3 | 0, 1/ϵb3).

2. Given µ, Σ, u, Ci and Wi, draw each Yi(0) and Yi(1) according to:

P (Yi(Wi)|−) ∝ P (Yi(Wi) | µCi
Wi
,ΣCi

Wi
)P (B̃i | Yi(Wi))

P (Yi(1−Wi)|−) ∝ P (Yi(1−Wi) | µCi
1−Wi

,ΣCi
1−Wi

).

Specifically, P (B̃i | Yi(Wi)) = P (B̃i,2 | Yi(0)) = Lap(B̃i,2 | Yi(0), 1/ϵb2) for Wi = 0
and P (B̃i | Yi(Wi)) = P (B̃i,1 | Yi(1)) = Lap(B̃i,1 | Yi(1), 1/ϵb1) for Wi = 1. The
privacy-aware Metropolis-within-Gibbs algorithm (Ju et al., 2022) is used for the draw
of Yi(Wi).

C Simulation Details

C.1 Beta GLM

Under the data-generating processes and the re-parameterizations of the Beta regression
provided in Section 5.1, we generated 1000000 samples for Y (0) and Y (1) to see what the
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Table 4: Evaluation metrics of frequentist estimators for N = 100, Nsim = 2000.
Coverage Bias MSE Interval Width

ϵtot Joint Custom (IPW) Custom (DM) Joint Custom (IPW) Custom (DM) Joint Custom (IPW) Custom (DM) Joint Custom (IPW) Custom (DM)
0.1 94.75% 94.5% 100.0% 0.9025 −1.0975 −1.0975 0.9977 0.8231 0.7357 1.895 1.881 2.0
0.3 93.4% 94.95% 100.0% 0.9025 −0.6965 0.9025 0.9827 0.4956 0.7877 1.869 1.803 2.0
1.0 94.8% 95.45% 99.8% −0.0535 −0.2887 0.9025 0.7787 0.084 0.7476 1.883 1.137 1.986
3.0 94.65% 94.70% 97.6% −0.3555 0.1052 −0.844 0.1037 0.0176 0.2508 1.237 0.518 1.673
10 95.85% 95.0% 95.7% 0.1429 0.1127 −0.1147 0.0115 0.0092 0.0226 0.433 0.38 0.591

Table 5: Evaluation metrics of Bayesian estimators for N = 100, Nsim = 1000.
Coverage Bias MSE Interval Width

ϵtot Joint Custom (IPW) Custom (DM) Joint Custom (IPW) Custom (DM) Joint Custom (IPW) Custom (DM) Joint Custom (IPW) Custom (DM)
0.1 100.0% 100.0% 100.0% −0.0961 −0.0958 −0.0966 0.00927 0.00938 0.00937 0.616 0.614 0.575
0.3 100.0% 100.0% 100.0% −0.0958 −0.0886 −0.097 0.00922 0.00889 0.00948 0.616 0.602 0.586
1.0 100.0% 100.0% 100.0% −0.0952 −0.0691 −0.0951 0.00932 0.00939 0.00961 0.615 0.528 0.58
3.0 99.5% 97.6% 99.5% −0.0657 −0.0403 −0.0864 0.01055 0.00734 0.01126 0.521 0.367 0.54
10 94.4% 96.7% 94.3% −0.0155 −0.0256 −0.0259 0.00343 0.00241 0.00676 0.232 0.198 0.304

data looks like. Figure 1 shows the distributions of each potential outcome. Also, the
expectations of each potential outcome are expressed as:

E[Y (0)] = EX1,X2,X3 [µ(0)]

= EX1,X2,X3

[
exp(1.0− 0.8X1 + 0.5X2 − 2.0X3)

1 + exp(1.0− 0.8X1 + 0.5X2 − 2.0X3)

]
= 0.359613,

E[Y (1)] = EX1,X2,X3 [µ(1)]

= EX1,X2,X3

[
exp(1.5− 0.8X1 + 0.5X2 − 2.0X3)

1 + exp(1.5− 0.8X1 + 0.5X2 − 2.0X3)

]
= 0.457068.

We refer readers to Ferrari and Cribari-Neto (2004) for further details about the Beta
regression.

C.2 Additional Simulations

Table 4 – 7 display the simulation results for smaller sample sizes of N = 100 and N = 1000.
All scenarios achieve roughly 95% coverage. Regarding Bias and MSE, custom scenarios
demonstrate superior performance compared to the joint scenario, consistent with the
observations in the main manuscript for N = 10000. As expected, the MSE of the
frequentists estimators for N = 1000 is about 10 times that of N = 10000, and N = 100 is
about 10 times that of N = 1000, which confirms the validity of the convergence rates we
derived. All discussions regarding the comparison between the frequentist and Bayesian
estimators in the main manuscript are applicable to the case of N = 100, 1000. Please refer
to Section 5 in the main manuscript for a detailed discussion on this matter.
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Table 6: Evaluation metrics of frequentist estimators for N = 1000, Nsim = 2000.
Coverage Bias MSE Interval Width

ϵtot Joint Custom (IPW) Custom (DM) Joint Custom (IPW) Custom (DM) Joint Custom (IPW) Custom (DM) Joint Custom (IPW) Custom (DM)
0.1 94.40% 94.55% 100.0% −1.0975 −0.2006 0.1042 1.0006 0.4808 0.7886 1.887 1.781 1.999
0.3 95.05% 95.85% 99.55% 0.9025 0.1541 0.9025 0.9411 0.0857 0.7609 1.901 1.148 1.987
1.0 94.20% 95.20% 98.0% −1.0975 −0.1484 0.0074 0.3919 0.0089 0.2192 1.737 0.369 1.618
3.0 95.15% 94.65% 96.3% −0.0214 0.0245 −0.0585 0.0111 0.0018 0.0216 0.411 0.164 0.586
10 94.55% 95.05% 94.65% −0.0082 −0.0189 0.0671 0.0012 0.0009 0.0022 0.137 0.12 0.181

Table 7: Evaluation metrics of Bayesian estimators for N = 1000, Nsim = 1000.
Coverage Bias MSE Interval Width

ϵtot Joint Custom (IPW) Custom (DM) Joint Custom (IPW) Custom (DM) Joint Custom (IPW) Custom (DM) Joint Custom (IPW) Custom (DM)
0.1 100.0% 100.0% 100.0% −0.0973 −0.0935 −0.0987 0.0096 0.0094 0.0099 0.45 0.448 0.462
0.3 100.0% 99.1% 100.0% −0.0972 −0.0787 −0.0974 0.0096 0.0088 0.0099 0.455 0.411 0.463
1.0 100.0% 94.0% 100.0% −0.0928 −0.0365 −0.0916 0.0093 0.0046 0.0099 0.445 0.259 0.433
3.0 96.1% 92.3% 95.7% −0.0265 −0.0173 −0.0469 0.004 0.0015 0.0056 0.258 0.134 0.303
10 92.7% 95.5% 92.0% −0.0103 −0.0074 −0.0144 0.0004 0.0003 0.0009 0.078 0.061 0.107

D Regression Adjustment

D.1 Overview

In the context of randomized experiments, causal effects τ can be identified solely using the
treatment assignment and outcome variables. Also, as demonstrated in prior sections, our
custom frequentist estimators achieve minimax optimality without the need for covariates.
However, there is a clear rationale for incorporating covariates when deducing causal effects
in randomized settings: they can enhance the efficiency of inference by leveraging pertinent
individual data. This enhancement method is termed regression adjustment (Lin, 2013).
Nevertheless, applying regression adjustment within LDP presents challenges. Specifically,
it could incur additional privacy costs for the covariates, and these costs could escalate
significantly for high-dimensional covariates. In this section, we present another type of
frequentist estimator for the joint scenario, namely the OLS estimator. We explore its
advantages and constraints, compared to the IPW estimator in the same scenario.

Assume that the observed covariates are privatized by the Laplace mechanism. We
assume Xi,j ∈ [0, 1] for i = 1, . . . , N and j = 1, . . . , d to ensure bounded ℓ1-sensitivity. The
privatized outcomes and covariates are X̃i,j = Xi,j + νXi,j, where νXi,j ∼i.i.d Lap(d/ϵx). By
composition, the joint release of (Ỹi, X̃i,1, . . . , X̃i,d, W̃i)

N
i=1 satisfies (ϵy + ϵx + ϵw)-LDP.

Without privacy considerations, it is well known that the covariate adjustment can
further improve the efficiency, even without assuming a correctly specified outcome model
(Lin, 2013). Specifically, we propose the following plug-in OLS estimator.

τ̃OLS = α̃(1) − α̃(0) + X̄(β̃(1) − β̃(0)), (11)

where X̄ = 1
N

∑N
i=1 X̃i and (α̃(w), β̃(w)) = argminα,β

∑
i:W̃i=w(Ỹi − α − X̃ ′

iβ)
2 for w = 0, 1.

Note that, under some regularity conditions (Lehmann and Casella, 1998, p. 440), (α̃(w), β̃(w))

converges to (α̃∗
(w), β̃

∗
(w)), defined as

(α̃∗
(w), β̃

∗
(w)) = argmin

α,β
E[(Ỹi − α− X̃ ′

iβ)
2 | W̃i = w].

We investigate the potential bias of the naïve OLS estimator and propose a bias-corrected
version. The following theorem states that the naïve OLS estimator (11) is an inconsistent
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estimator for τ , but multiplying by the same factor Cp,ϵw makes it consistent. The central
limit theorem has also been developed.

Theorem D.1. 1. (Consistency) Cp,ϵw τ̃OLS is consistent for τ .
2. (CLT)

√
N(Cp,ϵw τ̃OLS − τ) converges in distribution to

N

(
0, C2

p,ϵw

(
MSE1

ρ1
+

MSE0

ρ0

))
, (12)

where MSEw = E[(Ỹi − α̃∗
(w) − X̃ ′

iβ̃
∗
(w))

2 | W̃i = w] for w = 0, 1.
3. (Confidence Interval) The following interval is the nominal central confidence at the

significance level α:

(
Cp,ϵw τ̃OLS − zα

2

√
Σ̂OLS

N
,Cp,ϵw τ̃OLS + zα

2

√
Σ̂OLS

N

)
,

where Σ̂OLS = C2
p,ϵw

(
M̂SE1

ρ1
+ M̂SE0

ρ0

)
and M̂SEw = 1

Ñw

∑
i:W̃i=w(Ỹi − α̃(w) − X̃iβ̃(w))

2 for
w = 0, 1.

Proof. Consider the objective function

Q(α(w), β(w)) = E[(Ỹi − α(w) − X̃
′

iβ(w))
2 | W̃i = w]

= E[(Ỹi − γ(w) − (X̃
′

i − µX̃)β(w))
2 | W̃i = w],

where γ(w) = α(w) + µX̃β(w). Note that, for both w = 0, 1,

µX̃ = E[X̃i | W̃i = w] = E[Xi | W̃i = w] = E[Xi] = µX .

The second equality follows from the independence of noise νXi , and the third equality
follows from the randomized assignment of Wi and the independence of the randomized
response mechanism. Minimizing the right-hand side over γ(w) and β(w) leads to the same
values for α(w) and β(w) as minimizing the left-hand side over α(w) and β(w), with the least
squares estimate of γ∗(w) = α∗

(w) + µX̃β
∗
(w).

Q(γ(w), β(w))

= E[(Ỹi − γ(w) − (X̃
′

i − µX)β(w))
2 | W̃i = w]

= E[(Ỹi − γ(w))
2 | W̃i = w] + E[((X̃ ′

i − µX̃)β(w))
2 | W̃i = w]− 2E[(Ỹi − γ(w))(X̃

′

i − µX̃)β(w) | W̃i = w]

= E[(Ỹi − γ(w))
2 | W̃i = w] + E[((X̃ ′

i − µX̃)β(w))
2 | W̃i = w]− 2E[Ỹi(X̃

′

i − µX̃)β(w) | W̃i = w].

The last two terms do not depend on γ(w). Thus, minimizing Q(γ(w), β(w)) over γ(w) is
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equivalent to minimizing E[(Ỹi − γ(w))
2 | W̃i = w] over γ(w), which leads to the minimizer

γ̃∗(1) = E[Ỹi|W̃i = 1] = E[Yi|W̃i = 1]

=
1∑

w=0

E[Yi|W̃i = 1,Wi = w]P (Wi = w | W̃i = 1)

=
p̄q̄ϵw

pqϵw + p̄q̄ϵw
E[Yi(0)] +

pqϵw
pqϵw + p̄q̄ϵw

E[Yi(1)].

Similarly, we have

γ̃∗(0) =
p̄qϵw

p̄qϵw + pq̄ϵw
E[Yi(0)]−

pq̄ϵw
p̄qϵw + pq̄ϵw

E[Yi(1)].

Then, we have

γ̃∗(1) − γ̃∗(0) =
(qϵw − q̄ϵw)pp̄

(p̄qϵw + pq̄ϵw)(pqϵw + p̄q̄ϵw)
(E[Yi(1)]− E[Yi(0)])

=
(qϵw − q̄ϵw)pp̄

(p̄qϵw + pq̄ϵw)(pqϵw + p̄q̄ϵw)
τ

=
1

Cp,ϵw

τ.

Finally, noting the fact that γ̃∗(w) = α̃∗
(w) + µX̃ β̃

∗
(w) and, under some regularity conditions,

(α̃(w), β̃(w)) converges to (α̃∗
(w), β̃

∗
(w)),

τ̃OLS = α̃(1) − α̃(0) +
¯̃X(β̃(1) − β̃(0))

p→ γ̃∗(1) − γ̃∗(0) =
1

Cp,ϵw

τ.

Thus, by the continuous mapping theorem, Cp,ϵw τ̃OLS is a consistent estimator for τ .
Next, we obtain the central limit theorem. Again, it is convenient to parameterize

the model using (γw, βw) instead of (αw, βw). In terms of these parameters, the objective
function for W̃i = w is ∑

i:W̃i=w

(
Ỹi − γ − (X̃i − µX̃)β

)2
.

The first order conditions for the estimators (γ̃w, β̃w) are∑
i:W̃i=w

ψ(Ỹi, X̃i, γ̃w, β̃w) = 0,
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where ψ(·) is a two-component column vector:

ψ(y, x, γ, β) =

(
y − γ − (x− µX̃)β

(x− µX̃)(y − γ − (x− µX̃)β)

)
.

The standard M-estimation results imply that, under standard regularity conditions, the
estimator is consistent and asymptotically normally distributed:√

Nw

(
γ̃w − γ̃∗w
β̃w − β̃∗

w

)
D→ N

((
0
0

)
,Γ−1

w ∆w(Γ
′
w)

−1

)
,

where Nw =
∑N

i=1 1(W̃i = w) and the two components of the covariance matrix are

Γw = E
[

∂

∂(γ, β)
ψ(Ỹi, X̃i, γ, β) | W̃i = w

]∣∣∣∣
(γ̃∗

w,β̃∗
w)

= E
[(

−1 −(X̃i − µX̃)

−(X̃i − µX̃)
′ −(X̃i − µX̃)

′
(X̃i − µX̃)

)
| W̃i = w

]
= E

[(
−1 0

0 −E[(X̃i − µX̃)
′
(X̃i − µX̃)]

)
| W̃i = w

]
,

and

∆w = E
[
ψ(Ỹi, X̃i, γ̃

∗
w, β̃

∗
w) · ψ(Ỹi, X̃i, γ̃

∗
w, β̃

∗
w)

′ | W̃i = w

]
= E

[
(Ỹi − γ̃∗w − (X̃i − µX̃)β̃

∗
w)

2 ·
(

−1

(X̃i − µX̃)
′

)(
−1

(X̃i − µX̃)
′

)′

| W̃i = w

]
.

The variance of γ̃w is the (1, 1) element of the covariance matrix. Because Γw is block
diagonal, the (1, 1) element is equal to

MSEw = E[(Ỹi − γ̃∗w − (X̃i − µX̃)β̃
∗
w)

2 | W̃i = w]

= E[(Ỹi − α̃∗
w − X̃

′

i β̃
∗
w)

2 | W̃i = w].

Therefore, we have

√
Nw

(
γ̃w − γ̃∗w
β̃w − β̃∗

w

)
D→ N

((
0
0

)
,MSEw

(
1 0

0
(
E[(X̃i − µX̃)

′
(X̃i − µX̃)]

)−1

))
,

which implies
√
N(γ̃(w) − γ̃∗(w))

D→ N

(
0,

MSEw

P (W̃i = w)

)
. (13)

As shown before, τ = Cp,ϵw(γ̃
∗
1 − γ̃∗0). Also, Cp,ϵw τ̃OLS = Cp,ϵw(γ̃1 − γ̃0) = Cp,ϵw{α̃1 −

α̃0 +
¯̃X(β̃1 − β̃0)} is the consistent estimator for τ . Noting that β̃1, β̃0, γ̃1 and γ̃0 are all
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Table 8: Evaluation metrics for the naïve and OLS estimators (N = 1000, Nsim = 2000)
under the joint scenario. Nsim denotes the number of simulations. ϵtot denotes the total
privacy budget, ϵtot = ϵx + ϵy + ϵw.

Coverage Bias MSE Interval Width

ϵtot (ϵx, ϵy, ϵw) Naïve OLS Naïve OLS Naïve OLS Naïve OLS
3 (1, 1, 1) 95.3% 95.7% −0.00266 −0.00329 0.0405 0.0371 0.798 0.770
9 (3, 3, 3) 95.4% 96.4% −0.00105 −0.000422 0.00208 0.00126 0.181 0.142

30 (10, 10, 10) 95.0% 96.8% −0.000547 −0.000282 0.000906 0.000177 0.120 0.058
0.3 (0.1, 0.1, 0.1) 95.5% 95.5% −0.129 −0.128 0.989 0.984 1.909 1.910

3 (2, 0.5, 0.5) 94.5% 94.5% −0.00703 −0.00837 0.378 0.375 1.748 1.749
3 (0.5, 2, 0.5) 95.2% 95.4% −0.00576 −0.00406 0.0484 0.0373 0.857 0.754
3 (0.5, 0.5, 2) 95.4% 95.0% −0.00238 −0.00263 0.0575 0.0565 0.929 0.923
3 (0.5, 1.25, 1.25) 94.6% 94.5% 0.00480 0.00276 0.0210 0.0187 0.547 0.518
3 (1.25, 0.5, 1.25) 95.3% 95.2% −0.00101 −0.00246 0.103 0.101 1.232 1.225
3 (1.25, 1.25, 0.5) 94.6% 95.7% 0.00137 0.00150 0.102 0.0889 1.195 1.144

asymptotically independent, the asymptotic distribution of τ̃OLS is expressed as

√
N(Cp,ϵw τ̂OLS − τ)

D→ N

(
0, C2

p,ϵw

(
MSE1

ρ1
+

MSE0

ρ0

))
.

D.2 Simulation setups for Regression Adjustment

We empirically evaluate the frequentist properties of the OLS estimator developed in Section
D. We consider the joint privacy mechanism in Section 3.2 and use the same data-generating
mechanisms in Section 5. We release Xi,d after applying the Laplace mechanism. Specifically,
the generated covariates satisfy the following sensitivity: ∆X = 3. Accordingly, we add the
Laplace noise Lap(3/ϵy) to Xi,k for k = 1, 2, 3. Then, we obtain the private data X̃i,k, Ỹi, W̃i.
By composition, this privacy mechanism guarantees that (Ỹi, W̃i) satisfies (ϵy + ϵw)-DP and
(X̃i,k, Ỹi, W̃i) satisfies (ϵx + ϵy + ϵw)-DP.

D.3 Results

Tables 8 and 9 present the performance evaluation of the naïve and OLS estimators for
N = 1000, 10000 with various privacy budgets for ϵx, ϵy and ϵw. We let ϵtot = ϵx + ϵy + ϵw.
Both estimators achieve about 95% coverage for N = 1000, 10000 as expected. For bias and
MSE, we observe smaller bias and MSE for larger privacy budgets. For the same levels of
privacy budgets, both bias and MSE improve when N increases, which empirically supports
our consistency and asymptotically unbiased properties of the estimators.

When we have a tight privacy budget of (ϵx, ϵy, ϵw) = (0.1, 0.1, 0.1), the length of the
confidence interval of the frequentist estimators is nearly 2, which is almost non-informative
about the estimand. When N increases, the interval length gets smaller and becomes
informative enough for some allocations, e.g., (ϵx, ϵy, ϵw) = (1.25, 0.5, 1.25). However, with
strict budget constraints and a small sample size, the analysis results may tell us little about
the estimands, even though their consistency and confidence intervals are statistically valid.
This is an inevitable trade-off between privacy protection and the accuracy of the results.
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Table 9: Evaluation metrics for the naïve and OLS estimators (N = 10000, Nsim = 2000)
under the joint scenario.

Coverage Bias MSE Interval Width

ϵtot (ϵx, ϵy, ϵw) Naïve OLS Naïve OLS Naïve OLS Naïve OLS
3 (1, 1, 1) 95.4% 95.2% −0.00174 −0.00196 0.00407 0.00376 0.252 0.243
9 (3, 3, 3) 94.7% 94.7% −0.000154 −0.000149 0.000216 0.000136 0.0573 0.0454

30 (10, 10, 10) 94.6% 96.3% 0.000213 −0.0000316 0.0000962 0.0000184 0.0380 0.0183
0.3 (0.1, 0.1, 0.1) 94.4% 94.3% −0.104 −0.101 0.919 0.921 1.883 1.885

3 (2, 0.5, 0.5) 94.9% 95.1% −0.00380 −0.00358 0.0535 0.0520 0.915 0.906
3 (0.5, 2, 0.5) 95.7% 95.7% 0.00112 0.000358 0.00466 0.00356 0.271 0.237
3 (0.5, 0.5, 2) 95.9% 95.9% 0.000703 0.000989 0.00524 0.00512 0.295 0.292
3 (0.5, 1.25, 1.25) 95.9% 95.9% 0.00133 0.00124 0.00187 0.00170 0.173 0.163
3 (1.25, 0.5, 1.25) 95.1% 95.0% −0.000968 −0.000691 0.0106 0.0104 0.405 0.401
3 (1.25, 1.25, 0.5) 95.4% 95.4% 0.00247 0.00279 0.00957 0.00848 0.391 0.369

D.4 Discussions

In the simulations, we consider different divisions of the same overall privacy budget, ϵtot = 3,
which suggests an allocation strategy of the budget. Among all the budget allocations
with ϵtot = 3, we see that (ϵx, ϵy, ϵw) = (0.5, 1.25, 1.25) achieves the lowest MSE for both
naïve and OLS estimators. Thus, it seems reasonable to assign a strict budget to X,
and larger budgets to Y and W . We also see that for most allocations with budgets
ϵtot ≤ 3, there is minimal gain in MSE for the OLS over the naïve estimator. However,
for (ϵx, ϵy, ϵw) = (10, 10, 10), (3, 3, 3), (0.5, 2, 0.5), we see that the OLS estimator does
significantly outperform the naïve estimator in terms of MSE. This result follows from the
fact that the regression adjustment technique in randomized experiments (Freedman, 2008;
Lin, 2013) helps reduce the variance of the OLS estimator, leading to better MSE. Intuitively,
the regression adjustment works for (ϵx, ϵy, ϵw) = (10, 10, 10) because the privatized data
contains smaller noise, and X̃ still contains some information to explain Ỹ . When the total
budget is smaller (ϵtot ≤ 3), however, the gain is limited.

We here further discuss some limitations to the gains in precision of the estimator for the
PATE from including covariates from theoretical perspectives. In large samples, including
covariates in the regression function under usual randomized experiments will not lower the
precision (Imbens and Rubin, 2015). However, DP mechanisms under randomization pose
unique challenges. First, MSEw in Theorem D.1 can be written as follows:

MSEw = Var[Yi|W̃i = w] + E[Yi|W̃i = w]2 +
1

ϵ2y
− E[Ỹ ′

i X̃i(X̃
′
iX̃i)

−1X̃ ′
iỸi|W̃i = w]. (14)

The last term, E[Ỹ ′
i X̃i(X̃

′
iX̃i)

−1X̃ ′
iỸi|W̃i = w], is effectively the gain in precision from

including covariates. This term implies that the gain is zero when X̃i and Ỹi are orthogonal,
but is always positive otherwise. As adding large independent noise to Xi and Yi makes
the privatized observations less correlated, the gain becomes negligible when ϵx and ϵy are
small. We also note that the first two terms in (14) are bounded due to the sensitivity of Y ;
however, the last two terms are unbounded, making them the dominant precision factors,
especially when ϵx and ϵy are small. Therefore, the gain from adding covariates in inference
is actually limited in our LDP scenarios.
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