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Abstract:

A common approach to synthetic data is to sample from a fitted model. We show that under general
assumptions, this approach results in a sample with inefficient estimators, and the joint distribution of
the sample is inconsistent with the true distribution. Motivated by this, we propose a general method
of producing synthetic data that is widely applicable for parametric models, has asymptotically effi-
cient summary statistics, and is easily implemented and highly computationally efficient. Our approach
allows for the construction of both partially synthetic datasets, which preserve certain summary statis-
tics, as well as fully synthetic data, which satisfy differential privacy. In the case of continuous random
variables, we prove that our method preserves the efficient estimator with asymptotically negligible
error and show through simulations that this property holds for discrete distributions as well. We
also provide theoretical and empirical evidence that the distribution from our procedure converges to
the true distribution. Besides our focus on synthetic data, our procedure can also be used to perform

hypothesis tests in the presence of intractable likelihood functions.

Key words and phrases: indirect inference, parametric bootstrap, simulation-based inference, statistical

disclosure control, differential privacy

1. Introduction

With advances in modern technology, the government and other research agencies can collect

massive amounts of data from individual respondents. These data are valuable for scientific
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progress and policy research, but they also come with increased privacy risk (Lane et al.,
2014). Numerous methods of generating synthetic data have been proposed to publish useful
information while preserving the confidentiality of sensitive information. For a survey, we
refer interested readers to Hundepool et al. (2012, Chapter 3). The goal of synthetic data is
to produce a new dataset that preserves the distributional properties of the original dataset,
while protecting the privacy of the participating individuals. There are two main types of
synthetic data: partially synthetic data, which allows for certain statistics or attributes to be
released without privacy while protecting the other aspects of the data, and fully synthetic
data, where all statistics and attributes of the data are protected.

There has also been an increased interest in developing synthetic data with formal privacy
guarantees, such as differential privacy (DP). Differential privacy (DP) was proposed in
Dwork et al. (2006) as a framework to develop formally private methods. Methods that
satisfy DP require the introduction of additional randomness beyond sampling to obscure
the effect of one individual on the output. Intuitively, DP ensures plausible deniability for
those participating in the dataset.

A common approach to synthetic data is that of Liew et al. (1985), which proposes to
draw synthetic data from a fitted model, which we also refer to as the parametric bootstrap.
This forms the basis of the multiple imputation method of synthetic data generation (Rubin,
1993; Raghunathan et al., 2003; Drechsler, 2011; Jiang et al., 2021). Another approach to
synthetic data samples from a conditional distribution, preserving certain statistics. The
most fundamental perspective of this approach is that of Muralidhar and Sarathy (2003),
who proposes drawing confidential variables from the distribution conditional on the non-

confidential variables.



1.1  Our contributions

1.1 Owur contributions

Related work on synthetic data largely fits into one of two categories: 1) sampling from a
fitted distribution or 2) sampling from a distribution conditional on sample statistics. Our
first result, Theorem [1| shows that in very general settings, the first approach results in a
sample with inefficient estimators, and whose distribution is “inconsistent.” In particular, we
show that the joint distribution of the synthetic sample does not converge in total variation to
the true joint distribution as the sample size increases. This result gives a strong indication
that the parametric bootstrap is not ideal for synthetic data generation. On the other hand,
sampling conditional on certain sample statistics can overcome these issues.

However, there are important limitations to the previous works which sample from a
conditional distribution. First, the previous approaches tend to be highly specific to the
model at hand and require different techniques for different models. Second, many of the
approaches are difficult to implement and computationally expensive, involving complex
iterative sampling schemes such as MCMC.

The approach we propose in this paper preserves summary statistics, but unlike previous
methods it is applicable to a wide variety of parametric models, easily implemented, and
highly computationally efficient. Our approach allows for the construction of both partially
synthetic datasets, which preserve the summary statistics without formal privacy methods,
as well as fully synthetic data which satisfy the strong guarantee of differential privacy (DP).

Our contributions are summarized as follows:

e We prove that the parametric bootstrap results in inconsistent synthetic data with

inefficient estimators.

e We propose a novel method, “one-step synthetic data,” which adds one extra step to



1.2 Organization

the parametric bootstrap. Our approach is easily applied as the computations only
require efficient estimators for the parameters and the ability to sample the model,

and the computational time is proportional to simply fitting the model.

e We prove that under regularity conditions, our synthetic data procedure preserves
an efficient estimator with an asymptotically negligible error. We call this “efficient

synthetic data,” as its estimators are also efficient.

e We prove that when conditioning on an efficient estimator, the distributions still con-
verge even if the parameters differ by O(n='/2). We argue that our method is an
approximation to a conditional distribution and this gives evidence that the one-step

synthetic data asymptotically has the same distribution as the original dataset.

e We investigate the performance of our procedure in several simulation studies, con-
firming the theoretical results, and offering numerical evidence that our assumptions

can likely be weakened.

1.2 Organization

The rest of the paper is organized as follows: In Section [2| we review some terminology
and set the notation for the paper. In Section [3, we prove the limitations of synthetic data
generated by the parametric bootstrap, showing that the distribution is inconsistent and
has inefficient summary statistics. We propose our one-step approach to synthetic data in
Section |4/ and in the case of continuous random variables, prove that it results in a sample
which preserves an efficient estimator with asymptotically negligible error. In Section [5, we
consider the distribution of the one-step synthetic sample, and prove that a related procedure

results in a consistent sample, giving evidence that the one-step procedure itself is consistent.
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1.3 Related work

In Section @ we perform several simulation studies illustrating 1) the efficiency of the one-
step synthetic data estimators, even in the case of discrete distributions, 2) the distributional
properties of the approach, 3) that the approach can give high quality DP synthetic data,
and 4) the one-step synthetic data can perform accurate and powerful hypothesis tests on
models with intractible likelihood functions. We end in Section [7] with some discussion.

Proofs and technical details are postponed to Section S3 of the Supplementary Materials.

1.3 Related work

The approach of sampling from a fitted model is often used to produce differentially private
synthetic data. Hall et al. (2013) develop DP tools for kernel density estimators, which can be
sampled to produce DP synthetic data. Machanavajjhala et al. (2008) develop a synthetic
data method based on a multinomial model, which satisfies a modified version of DP to
accommodate sparse spatial data. McClure and Reiter (2012) sample from the posterior
predictive distribution to produce DP synthetic data, which is asymptotically similar to the
Liew et al. (1985). |Ju et al. (2022) provide a general Metropolis-within-Gibbs algorithm that
can sample from the posterior predictive distribution, given DP summary statistics, for a wide
variety of models and privacy mechanisms. Liu (2016) also use a Bayesian framework: first,
they produce DP estimates of the Bayesian sufficient statistics, draw the parameter from the
distribution conditional on the DP statistics, and finally sample synthetic data conditional on
the sampled parameter. Zhang et al. (2017) propose a method of developing high-dimensional
DP synthetic data which draws from a fitted model based on differentially private marginals.
While not for the purpose of generating synthetic data, Ferrando et al. (2022) proposed using

the parametric bootstrap to do statistical inference on model parameters, given privatized



1.3 Related work

statistics.

Burridge (2003); Mateo-Sanz et al. (2004); Ting et al. (2005) generate partially synthetic
data, preserving the mean and covariance for normally distributed variables. There are also
tools, often based on algebraic statistics, to sample conditional distributions preserving cer-
tain statistics for contingency tables (Karwa and Slavkovié, |[2013; Chen et al., 2006; Slavkovié¢
and Lee, 2010).

While not focused on the problem of synthetic data, there are other notable works sam-
pling from conditional distributions. A series of works sample from distributions conditional
on sufficient statistics focused on the application of hypothesis testing (Lindqvist and Tarald-
sen, 2005, 2007, 2013; Lillegard and Engen, 1999; Engen and Lillegard, 1997; Lillegard and
Engen, 1999; Taraldsen and Lindqvist, 2018). Barber and Janson (2022) recently gave a
method of sampling conditional on an efficient statistic using the principle of asymptotic
sufficiency; they showed that their method results in asymptotically valid p-values for cer-
tain hypothesis tests.

In differential privacy, there are also synthetic data methods which preserve sample statis-
tics. Karwa and Slavkovié (2012) generate DP synthetic networks from the beta exponential
random graph model, conditional on the degree sequence. |Li et al. (2018) produce DP high
dimensional synthetic contingency tables using a modified Gibbs sampler. Hardt et al. (2012)
give a distribution-free algorithm to produce a DP synthetic dataset, which approximately
preserves several linear statistics.

While this paper is focused on producing synthetic data for parametric models, there are
several non-parametric methods of producing synthetic data, using tools such as regression

trees (Reiter, 2005; Drechsler and Reiter, |2008), random forests (Caiola and Reiter, 2010),



bagging and support vector machines (Drechsler and Reiter, 2011). Recently there has
been a success in producing differentially privacy synthetic data using generative adversarial
neural networks (Xie et al., [2018; Jordon et al., |2018; Triastcyn and Faltings, 2018; Xu
et al., 2019; Harder et al., 2021). We also mention a hardness result due to [Ullman and
Vadhan (2020)), which establishes that there is no polynomial time algorithm which can
approximately preserve all two-way margins of binary data; our focus on parametric models

side-steps this issue.

2. Background and Notation

In this section, we review some background and notation that we use throughout the paper.

For a parametric random variable, we write X ~ fy to indicate that X has probability
density function (pdf) fp. To indicate that a sequence of random variables from the model fy
are independent and identically distributed (i.i.d.), we write Xi,..., X, O fo, and denote
f# as the joint pdf of (Xi,...,X,). We use all of the following notations interchangeably:
X = (Xy)v, = (X1,...,X,)". We write R™" to denote the set of all n-tuples of elements
from R?.

Our notation for convergence of random variables follows that of Van der Vaart (2000).
Let X be a random vector, X, be a sequence of random vectors, and r, be a positive
numerical sequence. We write X, % X to denote that X, converges in distribution to X.
We write X,, = 0,(r,) to denote that X,,/r, 0. We write X, = O,(ry) to denote that
X,/ is bounded in probability.

For X ~ fy, we denote the score function as S(0,x) = Vglog fo(z), and the Fisher

information as 1(0) = Eg{S(,X)ST(0,X)}, where Ey denotes the expectation over the



random variable X when 6 is the true parameter. An estimator 6 : RO 5 O is efficient for
ii.d.

0 if for Xy,..., X, = fy, we have /n{0(X) — 0} N N{0,17'(0)}. As shorthand, we will

often write @y in place of 6(X).

3. Limitations of the Parametric Bootstrap for Synthetic Data

Sampling from a fitted model, also known as the parametric bootstrap, is a common approach
to synthetic data. However, the parametric bootstrap has considerable weaknesses when
used to generate synthetic data, in that it results in significantly worse approximations to
the true sampling distribution. In this section, we prove that the parametric bootstrap
gives inefficient sample statistics and results in “inconsistent” synthetic data, where we show
that the total variation distance between the true distribution and the parametric bootstrap
approximation does not go to zero as n — oo.

The ideal goal of synthetic data is to produce a new dataset Y which is approximately
equal in distribution to X, where the approximation is measured by total variation dis-
tance, TV(X,Y). At a minimum, we may expect that the distribution of Y approaches
the distribution of X as the sample size n grows. We begin with an example that shows
that the parametric bootstrap results in suboptimal asymptotics, calling into question the

appropriateness of the parametric bootstrap for the generation of synthetic data.

Example 1. Suppose that X; ..., X, s N(p,1). We use the estimator f(X) =n"'>" | X;

and draw Z, ..., Zy|(X) A N{iu(X),1}. We can compute Var{i(X)} = n~!, whereas
Var{i(Z)} = 2n~'. By using the synthetic data Z, we have lost half of the effective sam-
ple size. We can also derive (Z1,...,Z,)" ~ N(ul, I, +n~'11"), where 1 = (1,...,1)T

is a vector of length n. Using the formula for the Hellinger distance between Gaussian



distributions and Sylvester’s Determinant Theorem (Pozrikidis, 2014, p271), it is easily

calculated that the Hellinger distance between the distributions of X and Z is h(X,Z) =

5 [{/Fe(t) = /F-(0)} dt]/? = {1 — 2%/4(3)7V/2}1/2 > 17, regardless of the sample size n,
where f, and f, represent the marginal distributions of the samples X and Z respectively.
Recall that h*(X, Z) < TV(X, Z) indicating that the marginal distributions of X and Z do

not converge in total variation distance.

Example[1]is in fact one instance of a very general phenomenon. In Theorem |1, we show
that when () is an efficient estimator, then 6 is an inefficient estimator for 6, and the
distribution of Z is “inconsistent” in that the distributions of Z and X do not converge in
total variation, as n — oo.

For the formal statement of Theorem 1] we assume that the efficient estimators are locally
asymptotically efficient, a property that Beran| (1997) showed is sufficient to ensure that the
parametric bootstrap converges correctly.

Definition 1 (Local Asymptotic Equivariance). For € © C R?, let X1,..., X Z}vd fo, and

let 0(X) be an estimator for 6. Call H,(0) be the distribution of \/n(0(X) — 6), which we
assume converges to H(0) as n — oo. We say that 0 is a locally asymptotically equivariant

(LAE) estimator at 6y € © if for every convergent sequence h, — h, we have H,(6y +

hn//n) — H(6).

Theorem 1. Let Xy,..., X, R fo,- Suppose that é(i) is an efficient estimator, which is

LAE at 0. Sample Zy, ..., Z,|0(X) "~ g fox)- Then
1. V{0(Z) — 6y} 5 N{0,2171(6,)}, whereas /n{0(X) — 6y} 5 N{0,171(6y)}, and

2. TV{(Xy,...,X,),(Z1,...,Z,)} does not converge to zero as n — 0.
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The use of the total variation distance in Theorem [1| also has a hypothesis testing in-
terpretation: if the parameter 6, were known, then given either the sample (X;,...,X,,) or
(Z1,...,7Z,), we can always construct a test to discern between the two distributions with
power greater than its type I error. So, the samples X and Z never become indistinguishable.
In summary, Theorem |1/ shows that the parametric bootstrap is not ideal for the generation

of synthetic data.

rem 1. In part, the behavior established in Theorem 1] is because the synthetic data set is of
the same size as the original dataset. We argue that this is an tmportant restriction because
if a synthetic dataset is published, users will want to run their own analyses on the syn-
thetic dataset with the assumption that they would get similar results on the original dataset.
Modifying the sample size could substantially affect things like confidence interval width and
significance in these use cases. For example, if a much larger dataset were generated, then
0, would be closer to Ox-. Howewver, other aspects of the data would behave differently due to
the increased sample size, likely giving artificially narrow confidence intervals. On the other
hand, if a much smaller synthetic dataset were generated, its distribution would be closer
to the original sampling distribution, but confidence intervals will be too wide, which may
prevent users from finding significant features.

In the synthetic data literature, the problem illustrated in Theorem|1]is often addressed by
releasing multiple synthetic datasets and using combining rules to account for the increased
variability due to the synthetic data generation procedure (Raghunathan et al., 2003; Reiter
and Raghunathan, 2007; Reiter, 2002). However, it still remains that the synthetic data
do not follow the same distribution as the original dataset, and the combining rules are

often designed for only specific statistics. Furthermore, in the case of differentially private
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synthetic data, it has been shown that traditional combining rules do not give valid inference,

making the problem more complicated (Charest, 2011)).

4. One-Step Solution to Synthetic Data

In this section, we present our synthetic data procedure and show that it has efficient esti-
mators in Theorem [2l We also include a pseudo-code version of our approach in Algorithm
1}, to aid implementation.

While sampling from a fitted model is a common approach to synthetic data, we saw
in Theorem (1| that it results in inferior asymptotics of both the sample estimates as well as
the joint distribution of the synthetic data. Our approach avoids the asymptotic problem
of Theorem (1| by producing a sample (Y;)?_; such that Oy = Oy + 0,(n~Y/?), as proved in
Theorem . Then marginally, the asymptotic distributions of 0y and 6 are identical.

Our method is based around the ability to use the same random “seed” at different
parameter values. Intuitively, the seed is the source of randomness used to generate the
data and is independent of the model parameters. In Example 4, we see that for real-valued
continuous data, the seed can sampled from U(0, 1), and then transformed into the data
using the quantile function.

The intuition behind our approach is that after fixing the seed, we search for a parameter
6* such that when (Y;)7_, are sampled from fy-, we have that 6y = Ox + o0,(n""/2). To arrive
at the value 0%, we use one step of an approximate Newton method, described in Remark [2]

To facilitate the asymptotic analysis, we assume regularity conditions (R0)-(R4). (RO)
ensures that the seed has a known distribution, and that we have a method of transforming

the seed into the data (see Example [2 for an example). The assumption that €2 is bounded
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is very mild, as we can always use a change of variables to make the seed have bounded
support. (R1)-(R3) are similar to standard conditions to ensure that there exists an efficient
estimator, which are relatively mild and widely assumed in the literature (Serfling, 2009;
Lehmann, 2004). Assumption (R4) is likely much stronger than needed, but ensures that
several quantities, including the transformation Xy, vary smoothly in their parameters; this
assumption is important to allow for the interchange of several derivatives in the proof of
Theorem . Since (R4) requires that the density is continuous in x, this assumption also
limits Theorem [2/ to continuous distributions.

In this section, we will prove that our procedure satisfies Oy =0y + op(n_l/ 2) for contin-

uous random variables which satisfy the regularity conditions (R0)-(R4).

(RO) Let (2, F, P) be a probability space of the seed w, where Q0 C R™ is a bounded sample
space, F is a g-algebra on €2, and P is a probability measure with a continuous density
7. Let Xy :  — R? be a measurable function, where 4 lies in a compact space © C RP.

Let fp : R — R=% denote the density of the random variable X4(w).

(R1) Let 6y € © C R? be the true parameter. Assume there exists an open ball B(6,) C ©
about fy, the model fj is identifiable, and that the set {z € R?| fy(x) > 0} does not

depend on 6.

(R2) The pdf fy(x) has three derivatives in 6 for all  and there exist functions g¢;(z), g;;(z),

gije(x) for i, j,k =1,...,p such that for all x and all 8 € B(6,),

9? fo(x)
96,00,

83f9(x)
< . - 7
< 95(), ‘8918@8&

‘ dfs(x)
00;

< gi(x),

< gijx(x).

We assume that each g satisfies [ g(z) dr < oo and Epgi(X) < oo for 6 € B(b).
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Furthermore, we assume that there exists functions h;;(x) for 4,j = 1,2,...,p such
that |S(0,2)S7(0,2)];; < hij(z) for all z and 6 € B(fy), and that Fph;;(X) < oo for

(R3) The Fisher information matrix 1(6y) = Eg,{S (0, X)S T (6y, X)} consists of finite en-

tries, and is positive definite.

(R4) The quantities Xo(w), 55-Xo(w), 75108 fo(2), z5%5-108 fo(), fo(z), and 55 fo(x) all

exist and are all continuous in 6, x, and w.

Assumption (RO) tells us that to produce a sample X ~ fy, we can first sample the seed
w ~ P and then transform the seed into Y := Xp(w). This procedure results in a sample
equal in distribution: X Ly. By (R4), Xy is assumed to be continuously differentiable in
6, so we have that the mapping Xy(-) is smooth as 6 varies.

An idealized version of our algorithm works as follows: given fy computed from the

original dataset, we first sample the seeds wy, ..., w, o P, and then while holding wy, ..., w,
fixed, solve for the value 0* which satisfies:
O{ X (w)} = Ox, (4.1)

thereby ensuring that the new sample has the same value of 6 as the original sample X.
Finally, we can produce our synthetic data Y; = Xg«(w;). This idealized version has been
previously employed when the statistic Oy is a sufficient statistic, and used mainly for the
task of hypothesis testing (Lindqvist and Taraldsen, 2005, 2007, 2013; Lillegard and Engen,
1999; Engen and Lillegard, 1997; Lillegard and Engen, 1999; Taraldsen and Lindqvist, 2018).

There are many settings where an exact solution to (4.1) exists, such as location-scale families

13



(Example. However, in general it may be challenging to find an exact solution to Equation

(4.1)), and a solution may not even exist.

Example 2. In the case of continuous real-valued random variables, we can be more explicit
about the “seeds.” Recall that for U ~ U(0,1), F,;*(U) ~ fo where F,(-) is the quantile
function. So in this case, the distribution P can be taken as U(0,1), and Xy(-) can be replaced
with F; ().

If fo is a location-scale family, where § = (m,s), then there exists an explicit solution
to (4.1). Just as above, we set Xo(-) = F, L (u;) = sFy 1 (wi) + m, where u; RS U(0,1),
and we used the location-scale formula for the quantile function. Suppose that m and S are
estimators of m and s such that m(ax + b) = am(x) + b and $(ax +b) = as(x). In the case

of the normal distribution, m is the sample mean, and § is the sample standard deviation.

Then, for wi, ... w, =" U(0,1), call Z; = Fy | (w;). Then
. S(X)
Yi={Z, —m(Z2)} —= X

satisfies m(Y) = m(X) and 5(Y) = 5(X). We see that Y; = Xg-(w;), where 0* = (m*, s*),

where m* = m(X) — m(Z)% and s* = &)

To avoid solving Equation (4.1) exactly, in Theorem [2| and Algorithm |1} we propose an
approximate solution which can be viewed as one step of an approximate Newton method,

as described in Remark 2!

rem 2 (One-step approximate Newton method). The “one-step” plugin value 6* proposed
in Theorem [2 can be viewed as one step of an approzimate Newton method, which tries

to solve 0 = %Z?:l S{éX,Xg(wi)}. If there is a unique solution to this score equation,
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then this can be viewed as an indirect way of formulating Equation . The approximate
Newton method would update 6,11 = 6, — I 1(0,)n 13", S{0x. Xy, (w;)}, where in Lemma
16 of the Supplementary Material, it is shown that 1(0) is the expected (matriz) derivative
of S{éX,Xg(w)} with respect to 0. Using Ox as an initial value, the one-step approzimate
solution is 0, = Ox — 1 (Ox)n " Yoy S{0x, Xy, (wi)}. Then, using a Taylor expansion for
05, where Z; = X5 (wi), we see that 0;—0x = I"H(0x)n Yoy S{0x. X (wi)} +o,(n1/2).
Substitution gives 0y, = Ox — (07 —0x) + 0,(n71?) = 20y — 0, + 0,(n"Y/2), which motivates
our choice of 0% = Proj@(2éx — éz) as the plugin value used in Theorem (the projection
15 only needed if 20y — 0y lies outside of the parameter space © ). Finally, note that 0* =

0o+0,(n~1/2), since Theorem established that both Ox and 6, are \/n-consistent estimators

Of 00.

The following Theorem shows that regardless of whether a solution to Equation (4.1)
exists, the one-step procedure preserves the efficient statistic up to op(n_l/ 2).

Theorem 2. Assume that (R0)-(R4) hold. Let Xq,...,X, iy fo, and let wy, ..., wy, iy

P. Set 0* = Projg <2éx - éz>, where 0 is an efficient estimator, (Z;)"_, = (X, (wi))iey,
and Projg(x) maps x to the nearest point in © in terms of Euclidean distance. Then for

(Y, = (Xg«(wi))™y, we have éy = éx + op(n_l/z).

Theorem 2| shows that our one-step approach to synthetic data outperforms the para-
metric bootstrap in terms of the first result in Theorem |1} whereas sampling from the fitted
model results in estimators with inflated variance, the one-step approach gives a sample
whose estimator fy is equal to fx up to an asymptotically negligible error of 0,(n=1/?).

The restriction of Theorem 2| to continuous distributions, due to (R4), cannot be weak-

ened with our current proof technique (which relies on a derivative with respect to x). How-
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Algorithm 1: One-Step Synthetic Data Pseudo-Code in R

Input: Seed w, efficient estimator fx, function theta_hat (y) to compute é(g), function

rsample(f) which samples n i.i.d. samples from fp using the seed w.

set.seed(w)
7 = rsample(éx)
0, — theta_hat(Z)
0* = 20x — 0
if 0* ¢ © then

L 0* = Projg(6)
set.seed(w)
8 Y = rsample(6*)

Output: Y7,...,Y,

o A W N =

3

ever, we offer numerical evidence through simulations that the result of Theorem 2| seems to
hold for discrete distributions as well. This suggests that it may be possible to weaken the

assumptions of Theorem

rem 3 (Seeds). When implementing the procedure of Theorem |2, it may be convenient to
use numerical seeds. For example in R, the command set.seed can be used to emulate the
result of drawing Z; and Y; with the same seed w;. In Algorithm |1, we describe the one-
step procedure in pseudo-code. One must be careful with this implementation to ensure that

rsample varies smoothly in 6.

rem 4 (DP fully synthetic data). The one-step procedure results in a sample Y, which is
conditionally independent of X, given Ox. This is called partially synthetic data because
all aspects of X are protected except for Ox. Partially synthetic data can be appropriate in
some settings, but in others we may require Y to satisfy a stronger privacy guarantee such as
differential privacy. We can easily use the one-step procedure to obtain a DP fully synthetic
sample by using a DP efficient estimator as Oy . |Smith (2011) showed that under conditions

similar to (R1)-(R3), there always ezists DP efficient estimators by using the subsample and
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aggregate technique. By the post-processing property of DP, the sample Y then has the same
DP guarantee that Ox has (Dwork et al., 2014, Proposition 2.1). Theorem |2 is still valid
when using a DP estimator for Ox as only the efficiency of Ox is used in the proof. In fact,
the estimator 0 applied to the intermediate sample Z need not be the same one as used for Ox.
For improved finite sample performance, it may be beneficial to use a non-private estimator
for 0, even when Ox satisfies DP. See Section where we investigate the performance

generating of DP synthetic data using Algorithm 1|

rem 5. As indicated in Remark [2, our plugin value 6* can be viewed as one step of an
approximate Newton method. QOur method can also be viewed as one step of the iterative
bootstrap, with a batch size of 1 (Guerrier et al., |2019), which is traditionally used to de-
bias an inconsistent estimator. Both of these perspectives indicate that iterating the procedure
could potentially reduce the error between 0y and O even further, and in some circumstances
even find an exact solution. We leave it to future work to study the benefits of this iterative

version, as well as conditions for convergence.

5. Investigating the Distribution of the One-Step Samples

In Section |4, we showed that the one-step approach to synthetic data solves one issue of
the parametric bootstrap, by preserving efficient estimators. The second problem of the
parametric bootstrap was that the synthetic samples did not converge in total variation
distance to the true joint distribution. In this section, we give evidence that the distribution
of the one-step samples approximates the true joint distribution.

Consider the one-step procedure: Let Ox be given and draw wq,...,w, P Set

Zi = Xj, (w;) and call 6* = 20y — 0. Finally, set Y; = Xy« (w;), which we know satisfies
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U = 0y = Ox + 0,(n""/?) (under assumptions (R0)-(R4)). Now, suppose that we knew
the values 8* and ¢ beforehand and conditioned on them. The following Lemma shows
that Y7,...,Y,{0%,0(Y) = 9} ~ f2{y1,...,un | é(g) — §}. The approximation comes
from modifying the procedure slightly. Given both 6*, U € O, we produce Y7 as follows:

sample w; = P, and set Y% = Xp(w;). For this modified procedure, we have exactly

0* 0*
YO, Y

{0Y) =0} ~ foduyr, -y | é(g) — 9}, which we prove in Lemma . The
key difference between this modified procedure and the one in Theorem [2] is that here we
start with * and condition on é(Z) — ), whereas in the original procedure 0* is a function

of w.

Lemma 1. We assume (R0) and use the notation therein. Let 0,0% € © such that there exists

w which solves the equation 0{ Xy« (w)} = V. Let wy, ..., wn " P oand call VY = Xge(w;).

Then Y, ..., Y%

{0(Y") =0} ~ frdyr, - un | O(y) = 0}

Lemma (1| suggests that the conditional distribution of Y is related to the conditional
distribution of X. Theorem (3| shows that when this is the case, the marginal distributions
are also closely related. Theorem |3|is similar in spirit to a result of Le Cam et al. (1956)
which showed that efficient estimators are asymptotically sufficient, meaning that with large
n an approximate equivalent likelihood function can be constructed which only involves
the parameter and the efficient estimator. First, we need an additional assumption on the

distribution of 6(X).

(R5) Let fx be a randomized efficient estimator of §, with conditional density g,(fx|z).
We assume that there exists a sequence (M,)>, such that g,(fx|z) < M, for all
values of fx and z. Let go,(-) be the marginal density of §(X) based on the sam-

ple Xy,..., X, Y fo. We assume that there exists functions Gijk(zg) such that
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%bgg@,n(é) < nGip(9) for all ¥, all n > 1, and all § € B(f,), where

EﬁNgGijk(ié) < 0.

In (R5), we consider that fx is a randomized statistic, so we can also write g, (9 | X) to
represent the distribution of O given X (which we assume does not depend on 6, since Oy is
a statistic). Any deterministic statistic can be expressed as a limit of randomized statistics,
where the noise due to randomness goes to zero. For example, Barber and Janson (2022)
consider statistics which are zeros of the noisy score function, where the noise is normally
distributed and o,(n~1/2).

Theorem (3| shows that if we condition on the same efficient estimator, then consider-
ing the sample X generated from the true parameter 6 or Y generated from a sequence
0, = 0 + O(n~'/?), the marginal distributions of X and Y converge in KL divergence. By
Pinsker’s inequality, we know that TV(X,Y) < %KL(& ,Y'), establishing convergence in
total variation distance as well. Note that (R4) is not needed for Theorem [3. As such, this

theorem applies to both continuous and discrete distributions.

Theorem 3. Under assumptions (R0)-(R3), let 6 € © and let 0,, be a sequence of values in

O. Let é() be a randomized estimator based on a sample X1, ..., X, i fo, with conditional

distribution g, (9 | X) and marginal distribution gg,(), which satisfy (R5). Then the KL
divergence between the marginal distributions of X1,..., X, and Y1,..., Yy ~ fi {y1, ..., yn |

0(y) = 0(X)}, where 0(X) ~ go(9) is
KL (X1,...,Xa|IY1,....Y,) = o(n)||6, — 0]]* + O(n)||6,, — 0]|°.

In particular, if 0, — 0 = O(n=/2), then the above KL divergence goes to zero as n — oc.
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Noting that §* = 6 + O,(n"'/?) and combining Lemma (1| with Theorem 3| along with
the discussion at the beginning of this section suggests that the distribution of the one-step
synthetic data approaches the distribution of the original X as the sample size increases
giving consistent synthetic data. This suggests that the one-step synthetic data avoids the
problem of property 2 of Theorem [ which showed that the parametric bootstrap resulted
in inconsistent synthetic data.

In Section we show that in the case of the Burr distribution, the one-step synthetic
data is indistinguishable from the true distribution in terms of the Kolmogorov-Smirnov (K-
S) test, whereas for the parametric bootstrap the K-S test has significantly higher power,
indicating that the one-step synthetic data is asymptotically consistent, whereas the para-

metric bootstrap synthetic data is inconsistent.

6. Examples and Simulations

In this section, we demonstrate the performance of the one-step synthetic data in several
simulations. In Sections and [6.2, we produce synthetic data from the Burr distribution
as well as a log-linear model. In Section [6.3, we produce differentially private synthetic data
for the beta distribution. In Section we use our methods to derive a hypothesis test for

the difference of proportions under differential privacy.

6.1 Burr type XII distribution

The Burr Type XII distribution, denoted Burr(c, k), also known as the Singh-Maddala
distribution, is a useful model for income (McDonald, 2008). The distribution has pdf

f(z) = ckz* Y1 + 2¢)~**+D with support > 0. Both ¢ and k are positive. The Burr
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6.1 Burr type XII distribution

Table 1: Empirical power of the Kolmogorov-Smirnov test for Burr(2,4) at type I error .05.
(X;) are drawn ii.d from Burr(2,4), (Z;) are drawn i.i.d from Burr{fx}, and (Y;) are from
Algorithm [Il Results are averaged over 10000 replicates, for each n. Standard errors are
approximately 0.0022 for lines 1 and 3, and 0.0036 for line 2.

n: 100 1000 10000
(X;) 0.0471 0.0464 0.0503
(Z;) 01524 0.1541 0.1493
(Y;) 0.0544 0.0489 0.0485

distribution was chosen for our first simulation because 1) the data are one-dimensional,
allowing for the Kolmogorov-Smirnov (K-S) test to be applied, and 2) as it is not exponential
family or location-scale, deriving the exact conditional distribution, given the MLE é, is non-
trivial.

First, we will use this example to illustrate the notation of our theory. Suppose we are
given observations X;,..., X, N Bur(c, k), from unknown values of ¢ and k. Let 0 be the
MLE (not available in closed-form). The procedure works as follows: Let w; "y (0,1) for
i=1,...,n. We define the function Xy(w) = F, ' (w), where F, ' (w) = {(1 —w)~Vk - 1}1/e.
Then, we first set Z; = F é_xl (w;), and after computing 0, our synthetic data is Y; = Fj." (w;),
where 0* = max(?éx — 0y, 0), with the max applied to both entries of 6.

In the following, we conduct a simulation study to verify that the samples generated
using Algorithm [1] are indistinguishable from the original unknown distribution, as tested
via the K-S test.

For the simulation, we set ¢ = 2 and k = 4, and denote 6 = (¢, k). Let Oy11 be the
maximum likelihood estimator (MLE). We draw X; BV Burr(2,4), Z; BV Burr{fy.5(X)},
and (Y;)"; from Algorithm (I} The simulation is conducted for n € {100, 1000, 10000} with

results averaged over 10000 replicates for each n.

We calculate the empirical power of the K-S test, comparing each sample with the true
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6.2 Log-linear model for seatbelt data

Table 2: Recorded injuries according to seatbelt use, gender, and location. Source: |Agresti
(2003, Table 8.8). Originally credited to Cristanna Cook, Medical Care Development, Au-
gusta, Maine.

Injury

Gender Location Seatbelt No Yes
Female  Urban No 7,287 996
Yes 11,587 759
Rural No 3,246 973
Yes 6,134 757
Male Urban No 10,381 812
Yes 10,969 380
Rural No 6,123 1,084
Yes 6,693 513

distribution Burr(2,4), at type I error .05. The results are presented in Table We see
that the (X;) have empirical power approximately .05, confirming that the type I error is
appropriately calibrated. We also see that the K-S test using (Y;) has power approximately
.05, indicating that the empirical distribution of the one-step samples (Y;) is very close to
the true distribution. On the other hand, we see that the K-S test with (Z;) has power .15,
significantly higher than the type I error, indicating that the parametric bootstrap samples
(Z;) are from a fundamentally different distribution than the (X;). This result is in agreement

with Theorem [1] and the results of Section

6.2 Log-linear model for seatbelt data

This example is based on a dataset of of 68,694 passengers in automobiles and light trucks
involved in accidents in the state of Maine in 1991. Table [2 tabulates passengers according
to gender (G), location (L), seatbelt status (S), and injury status (I). This example gives
numerical evidence that the result of Theorem [2| holds even for discrete distributions.

As in Agresti (2003), we fit a hierarchical log-linear model based on all one-way effects
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6.2 Log-linear model for seatbelt data

and two-way interactions. The model is summarized in Equation (6.2), where f1;;x, represents
the expected count in bin 4,5, k,£. The parameter A& represents the effect of gender, and
parameter )\gL represents the interaction between gender and location. The other main

effects and interactions are analogous.
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(a) Simulations corresponding to the log-linear
model with two-way interactions from Section

62

n

(b) Simulations for the beta distribution from
Section fx is the MLE. 67 and 6y both
satisfy 1-DP.

Figure 1: Average squared fs-distance between the estimated parameters and the true pa-
rameters on the log-scale. Averages are over 200 replicates for both plots. fx is from the
true model, 05 from the fitted model, and 6y from Algorithm .

10g fiijke = A+ AT + AL+ N+ A+ AT+ AGT + AT+ A+ M+ A (6.2)

For our simulations, we treat the fitted parameters as the true parameters, to ensure
that model assumptions are met. We simulate from the fitted model at sample sizes n €
{10%,103,10*,10°} and compare the performance in terms of the fitted probabilities for each

bin of the contingency table. The results are plotted in Figure[la), with both axes on log-scale.
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6.3 Differentially private beta distributed synthetic data

The “mean error” is the average squared /5 distance between the estimated parameter vector
and the true parameter vector, averaged over 200 replicates. To interpret the plot, note that if

!, where ¢ is a constant, then log(error) = ¢+ (—1)log(n).

the error is of the form error = cn™
So, the slope represents the convergence rate, and the vertical offset represents the asymptotic
variance. In Figure , we see that the curve for éy, based on one-step samples, approaches
the curve for Oy, indicating that they have the same asymptotic rate and variance. On the
other hand, the curve for 0 7, based on parametric bootstrap samples, has the same slope, but
does not approach the O curve, indicating that 0, has the same rate but inflated variance.
In fact, Theorem (1 indicates that Var(d;) ~ 2 Var(dy).

We see that our procedure approximately preserves the sufficient statistics, similar to
sampling from a conditional distribution. Previous work has proposed procedures to sample
directly from conditional distributions for contingency table data. However, these approaches
require sophisticated tools from algebraic statistics, and are computationally expensive (e.g.,
MCMC) (Karwa and Slavkovi¢, 2013). In contrast, our approach is simple to implement and
highly computationally efficient. Our approach is also applicable for a wide variety of models,

whereas the techniques to sample directly from the conditional distribution often require a

tailored approach for each setting.

6.3 Differentially private beta distributed synthetic data

In this example, we assume that Xi,..., X, kg Beta(a, 8), where o, f > 1, and our goal

is to produce differentially private (DP) synthetic data. Often, to ensure finite sensitivity,
the data are clamped to artificial bounds |[a, b], introducing bias in the DP estimate. Naive

bounds are fixed in n, resulting in asymptotically negligible noise, but O,(1) bias. In Section
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6.4 DP two sample proportion test

S2 of the Supplementary Material, we show that it is possible to increase the bounds in n
to produce both noise and bias of order o,(n~%/2), resulting in an efficient DP estimator. In
this section, we show through simulations that using this estimator along with Algorithm
results in a DP sample with optimal asymptotics.

For the simulation, we sample Xi,..., X, '~

Q.

2

" Beta(5h,3), with varying sample sizes,
n € {10%,10%,10%,10°}. We estimate 6y with the MLE. Using ¢ = 1, we clamp and add
Laplace noise to the sufficient statistics to obtain our privatized summary statistics (see
Section S2 of the Supplementary Material for details), and then obtain pp by maximizing
the log-likelihood with the privatized values plugged in for the sufficient statistics. We sample
AT/ R f4,,, and calculate the MLE 0,. We draw (Y;)™, from Algorithmusing Opp
in place of fx. In Figure we plot the mean squared /5 error between each estimate of 4
from the true value (5,3), over 200 replicates. From the log-scale plot, we see that Opp and
fy have the same asymptotic performance as the MLE, whereas 6, has inflated variance. See

Example for more explanation of this interpretation. Section S.4.1 of the Supplementary

Material contains additional simulations where the value of € is varied.

6.4 DP two sample proportion test

In this section, we illustrate how the one-step samples can be used to perform approximate
hypothesis tests. We base the simulation on a problem in differential privacy, where we are
given only access to DP summary statistics and are tasked with testing a hypothesis on
the generating distribution for the (missing) private data. Such settings result in complex
distributions which can be difficult to work with directly, making MCMC methods such as

in Barber and Janson (2022) cumbersome and potentially intractable. We show through
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6.4 DP two sample proportion test

s y = e
. < | -=+ One Step g LT,
c -~ PB . %) / e’
< 2 | . s 2 O N ld 1 !
S S ./ o 4 4
%A J c% o | / ’
D) / ’ o o . !
-_— O ~
— / 'C_d . /
g < Pd 7 2 <t .l Y
: y =31 S,
Q un 4 g ! v
QS - 3 Co
© o s N 1
S . 4 = I. -,-
=B _ - Ly - =+ One Step
Sl s---" s |--7 -- PB
S T T T T T S g T T T T T
0.00 0.05 0.10 0.15 0.20 0.30 0.31 032 033 034 0.35
t Oy
(a) Under the null hypothesis, the empirical cu-  (b) Empirical power at type I error .05. x = .3,
mulative distribution of both tests. 8x = 08y = 0y is varied along the z-axis. Results averaged
.3. Results based on 10,000 replicates. from 10,000 replicates for each value of 0y .

Figure 2: Simulations for the DP two sample proportion test of Section . In red is the
one-step test, and in blue is the parametric bootstrap test (abbreviated as PB). Sample sizes
are n = m = 200, privacy parameter is € = 1, and type I error is .05.

a simulation that the one-step samples give highly accurate p-values and improved power
compared to the parametric bootstrap.

Suppose we have two independent samples of binary data, one from a “control population”

and another from a “treatment population.” We denote Xi,..., X, Vs Bern(fx) as the
control sample, and Y7,...,Y,, S Bern(fy) as the treatment sample. Note that m used in

this example is not related to the dimension of (2, as stated in (RO).

It was shown in/Awan and Slavkovi¢ (2018) and |[Awan and Slavkovi¢ (2020) that the Tulap
distribution is the optimal DP mechanism to generate uniformly most powerful hypothesis
tests and uniformly most accurate confidence intervals for Bernoulli data. Thus, to satisfy e-
differential privacy, the data curators release the following noisy statistics: X = S Xi+ Ny

and Y = > Yi+ Ny, where Ny, Ny £ Tulap{0, exp(—¢), 0} and the sample sizes m and n

26



6.4 DP two sample proportion test

are released without modification. Recall that in the Tulap(m, b, q) distribution, m € R is
a location parameter, b € (0, 00) is related to the scale/shape with higher values increasing
the dispersion, and ¢ is a truncation parameter with 0 indicating that no truncation takes
place. In our case, N; 4 G1 — Go9 + U, where Gy, G> g Geom{1 — exp(—€)} and U ~
Unif(—1/2,1/2). We can think of X and Y as noisy counts for the control and treatment
groups, respectively.

Based only on the privatized summary statistics X and }7, we are to test Hy : O0x = Oy
versus H; : Ox<6fy. Without privacy, there exists a uniformly most powerful test, which is
constructed by conditioning on the total number of ones: >, X; + 37" Yj, a complete
sufficient statistic under the null hypothesis. However, with the noisy counts, it can be
verified that there is not a low-dimensional sufficient statistic. On the other hand, an efficient
estimator for fx = fy under the null hypothesis is 6(X,Y) = min[max{(X + Y)/(m +
n),0},1]. Note that deriving the exact distribution of (X,Y) | 8(X,Y) is fairly complex,
involving the convolution of distributions. However, the one-step method can easily produce
approximate samples from this conditional distribution. In what follows, we use the one-step
algorithm, given in Algorithm [1|and investigate the properties of a hypothesis test based on
this conditional distribution in comparison with a parametric bootstrap test.

Recall that without privacy, the uniformly most powerful test uses the test statistic Y, and
threshold computed from the conditional distribution of Y'|X +Y under the null hypothesis.
With privacy, we use the test statistic }7, the noisy count of “ones” in the treatment group,
and compute the p-values based on Y | é()? , }7) In particular, we compare the performance
of this test versus the parametric bootstrap test, which uses the test statistic Y based on

the approximate sampling distribution, which is the convolution of Binom{m, é(f( ) }7)} and
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Tulap{0, exp(—¢), 0}.

For the simulation, we use the sample size n = m = 200, fix 0x = 0.3, set the privacy
parameter to € = 1, and base the simulation on 10,000 replicates. Under the null hypothesis,
where 0y = 0x, we plot the empirical cumulative distribution function (CDF) for the p-values
of the proposed test as well as for the parametric bootstrap test in Figure (a). Recall that
a properly calibrated p-value will have the CDF of U(0, 1). We see that the empirical CDF
of the p-values for the one-step test closely approximate the ideal CDF, whereas the p-values
of the parametric bootstrap test are overly conservative.

Next, we study the power of the one-step test versus the parametric bootstrap test in
Figure (b) For this simulation, we set n = m = 200, fix x = .3, and set ¢ = 1. We vary
the value of #y along the z-axis by increments of .001 and plot the empirical power of the
two tests, averaged over 10,000 replicates for each value of 6y. We see that the one-step
test offers a considerable increase in power over the bootstrap test. Section S.4.2 of the

Supplementary Material contains additional simulations where the value of € is varied.

7. Discussion

We proposed a simple method of producing synthetic data from a parametric model, which
approximately preserves efficient statistics. We also provided evidence in Section [5|that the
one-step synthetic data results in a distribution which approaches the true underlying distri-
bution. Both of these properties are in contrast to the common approach of sampling from
a fitted model, which we showed results in inefficient estimators and inconsistent synthetic
data. Our one-step approach is also widely applicable to parametric models and is both

easily implemented and highly computationally efficient. It also allows for both partially

28



synthetic data, as well as differentially private fully synthetic data by incorporating a DP
efficient estimator.

Besides synthetic data, there is also promise for using the one-step approach for hypoth-
esis tests as well. Barber and Janson (2022) showed that one can produce powerful and
accurate hypothesis tests by conditioning on an efficient statistic for the null model. How-
ever, their approach is likelihood-based and requires MCMC methods for implementation. In
problems with high-dimensional latent variables such an approach is inapplicable, for exam-
ple in differential privacy where the entire private database is latent. The one-step approach
offers a computationally efficient alternative, which we demonstrated in Section gives a
more accurate and powerful test than the parametric bootstrap.

In Section [5, we studied the distributional properties of a modified version of the one-step
method, which suggested that the one-step synthetic data converges to the true joint distri-
bution as the sample size increases. We also saw in Section that in the case of the Burr
distribution, the Kolmogorov-Smirnov test cannot distinguish between our synthetic sample
and the true distribution which generated the original sample, supporting the conjecture
that the one-step sample is consistent. In future work, we propose to formally prove that
the total variation distance between the one-step samples (rather than an approximation)
and the true sampling distribution goes to zero as the sample sizes goes to infinity. This will
provide additional theoretical justification for using the one-step method for synthetic data
and hypothesis tests. Future researchers may investigate whether the data-augmentation
MCMC algorithm of Ju et al. (2022) could enable the approach of Barber and Janson (2022)
to be applied to DP problems.

While our approach was focused on parametric models, similar to Theorem [1] there is
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a loss of “efficiency” when sampling from a non-parametric model as well. Similar to the
approach in this paper, it may be advantageous to sample from a non-parametric model
conditional on the sample having “similar” estimates as the original data. An interesting

future direction would be to formalize and investigate this direction.

Supplementary Material

Section S1 of the Supplementary Materials includes a brief introduction to differential pri-
vacy. Section S2 gives details for the derivation of the privatized beta estimates of Section
6.3, Proofs and technical details are provided in Section S3. Section S4 contains some

additional simulation results.
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Supplementary Material

Section S1 includes a brief introduction to differential privacy. Section S2 gives details
for the derivation of the privatized beta estimates of Section 6.3. Proofs and technical details

are provided in Section S3. Section S4 contains some additional simulation results.

S1. Background on Differential Privacy

In this section, we review the basics of differential privacy (DP), which was proposed by
Dwork et al.| (2006) as a framework to mathematically quantify the degree of privacy pro-
tection. To satisfy differential privacy, a method must introduce additional randomness into
the analysis, and the constraint of DP requires that for all possible databases, the change in
one person’s data does not significantly change the distribution of outputs. Consequently,

having observed the DP output, an adversary cannot accurately determine the input value of
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any single person in the database. Definition [2| gives a formal definition of DP. In Definition

, h: X" x X" — Z=° represents the Hamming metric, defined by h(z,2') = #{i | z; # x'}.

Definition 2 (Differential privacy: [Dwork et al. (2006)). Let the privacy parameter € > 0
and the sample size n € {1,2,...} be given. Let X be any set, and (Y,S) a measurable
space. Let M = {M, | x € X"} be a set of probability measures on (Y,S), which we call a
mechanism. We say that M satisfies e-differential privacy (e-DP) if M,(S) < e*My/(S) for

all S € S and all z,2’' € X™ such that h(z,z') = 1.

An important property of differential privacy is that it is invariant to post-processing.
Applying any data-independent procedure to the output of a DP mechanism preserves e-DP
(Dwork et al., 2014, Proposition 2.1). Furthermore, [Smith (2011) demonstrated that under
conditions similar to (R1)-(R3), there exist efficient DP estimators for parametric models.
Using these techniques, the one-step procedure can produce DP synthetic data by using a

DP efficient statistic.

rem 6. Besides Definition |2, there are many other variations of differential privacy, the
magjority of which are relaxations of Definition |2, which also allow for efficient estimators.
For instance, approzimate DP (Dwork et al.,|2006), concentrated DP (Dwork and Rothblum,
2016; |Bun and Steinke, 2016), truncated-concentrated DP (Bun et al., 2018), Renyi DP
(Mironov, |2017), and Gaussian DP (Dong et al., 2022) all allow for efficient estimators.
On the other hand, local differential privacy (Kasiwiswanathan et al., |2011; Duchi et al.,
2013) in general does not permit efficient estimators and would not fit in our framework.

For an axiomatic treatment of formal privacy, see Kifer and Lin (2012).

One of the earliest and simplest privacy mechanisms is the Laplace mechanism. Given

a statistic 7', the Laplace mechanism adds independent Laplace noise to each entry of the

39



statistic, with scale parameter proportional to the sensitivity of the statistic. Informally, the
sensitivity of T is the largest amount that 7' changes, when one person’s data is changed in

the dataset.

Proposition 1 (Sensitivity and Laplace Mechanism: Dwork et al. (2006)). Let the privacy
parameter € > 0 be given, and let T : X™ — RP be a statistic. The (1-sensitivity of T
is Ay (T) = sup||T(z) — T'(2')||1, where the supremum is over all x,x' € X™ such that
hz,2') = 1. Provided that A,(T) is finite, releasing the vector {Tj(x) + L;}]_, satisfies

e-DP, where Ly, ..., L, "% Laplace {A,(T)/€}.

S2. Deriving an Efficient DP Estimator for the Beta Distribution

We assume that Xi,..., X, b Beta(q, 3), where o, 8 > 1, and our goal is to produce

differentially private (DP) synthetic data. Recall that X; takes values in [0, 1] and has pdf
fx(z) =227 (1 — 2)~1/B(a, 8), where B is the Beta function.

Often, to ensure finite sensitivity, the data are clamped to artificial bounds [a, b], intro-
ducing bias in the DP estimate. Naive bounds are fixed in n, resulting in asymptotically
negligible noise, but O,(1) bias. However, we show that it is possible to increase the bounds
in n to produce both noise and bias of order 0,(n~'/2), resulting in an efficient DP estimator.
We show through simulations that using this estimator along with Algorithm 1 results in
a DP sample with optimal asymptotics. While we work with the beta distribution, this
approach may be of value for other exponential family distributions as well. We note that
the asymptotics of clamping bounds have appeared in other DP works, but which are not
immediately applicable to our setting (e.g., Smith, 2011; Kamath et al., 2020).

Recall that n=! 37" log(X;) and n='>"" log(l — X;) are sufficient statistics for the
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beta distribution. We will add Laplace noise to each of these statistics to achieve differential
privacy. However, the sensitivity of these quantities is unbounded. First we pre-process the
data by setting X; = min{max(X;,t),1 —t}, where t is a threshold that depends on n. Then
the ¢;-sensitivity of the pair of sufficient statistics is A(t) = 2n~!|log(t) — log(1 — t)|. We
add independent noise to each of the statistics from the distribution Laplace{A(t)/e}, which
results in e-DP versions of these statistics. Finally, we estimate 6 = («, 3) by plugging in the
privatized sufficient statistics into the log-likelihood function and maximizing over 6. The
resulting parameter estimate satisfies e-DP by post-processing.

We must carefully choose the threshold ¢ to ensure that the resulting estimate is efficient.
The choice of ¢ must satisfy A(t) = o(n~'/?) to ensure that the noise does not affect the
asymptotics of the likelihood function. We also require that both P(X; < t) = o(n™'/?),
and P(X; > 1 —t) = o(n™/2) to ensure that X; = X; + 0,(n""/2), which limits the bias
to 0,(n"Y?). For the beta distribution, we can calculate that P(X; < t) = O(t%) and
P(X; > 1 —1t) = O(t?). Since we assume that a,3 > 1, so long as t = o(n"'/?) the
probability bounds will hold. Taking ¢ = min[1/2,10/{log(n)/n}] satisfies ¢t = o(n=/2),

and we estimate the sensitivity as

A(t) < 2n M log(t™h) < 2n 7 log{log(n)v/n} = O{log(n)/n} = o(n="?),

which satisfies our requirement for A. While there are other choices of ¢ which would satisfy
the requirements, our threshold was chosen to optimize the finite sample performance, so

that the asymptotics could be illustrated with smaller sample sizes.
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S3. Proofs and Technical Lemmas

For two distributions P and @ on R*, the Kolmogorov-Smirnov distance (KS-distance) is
KS(P, Q) = supg rectangte | P(12) — Q(R)|, where the supremum is over all axis-aligned rectan-
gles. If Fp and Fy are the multivariate cdfs of P and @, then ||Fp — Fglleo < KS(P, Q) <
28| Fp — Fgl|oo, s0 convergence in distribution is equivalent to convergence in KS-distance

(Smith, 2011). By definition, we have that TV (P, Q) > KS(P, Q).

Proof of Theorem 1. Call H, () be the distribution of v/n{0(Y) — 0} when §(Y) is based on
Yi,...,Y, R fo, and note that because 0 is an efficient estimator, we have that H,(0) —
N{0,717'(6)}. By the Skorohod Representation Theorem (Serfling, 2009, Section 1.6.3), there
exists U; ~ U(0,1) and measurable functions A, 4, : [0,1] — R? for all n € N such that 1)
An(Uy) ~ H, () for all n € N, 2) A(U;) ~ N{0,17'(6p)}, and 3) A,(U;) 3 A(U,). This
implies that A, (U1) < \/n{0(X) — 6} or equivalently that 6y + A, (U;)/v/n < 6(X).

Call S = {uy € [0,1]|A,(u1) — A(uq)}, which satisfies P(U; € S) = 1. Then for any
uy € S, An(uqp) is a convergent sequence which may be used in the role of A, in the definition

of LAE. So, using the fact that 0 is LAE, we will apply the Skorohod Representation Theorem

to the sequence of conditional random variables,

Vi{0(Z) — 0(X)Y{O(X) = 0y + Ay (wr)/v/n} ~ Hy{fo + An(ur)/v/n}.

Let Uy ~ U(0,1), independent of U;. For all u; € S, there exists measurable functions
B, B 1 [0,1] — R for all n € N which satisfy 1) Ba""(Us) ~ H, {0 + A (u1)//n}
for all n € N, 2) B(Uy) ~ N{0,17'(6y)}, and 3) B,’?"(ul)(Ug) “% B(U,). Note that since

P(U; € S) = 1, the above points about the B,’s still hold when replacing u; with U; and
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considering the randomness over both U; and Us.
d

By construction, we have that A,(U;) = \/_{9( ) — 0o} as well as B;?"(ul)(Uz)

V{0(2)—0(X)}] { (X)=06y+ A (ul)/\/_} Thus, the following joint distributions agree:

A (Uh) o vR{(X) — 60}
B (u,) Vr{0(Z) - 0(X)}

By the continuous mapping theorem, we have that

Vi(B(Z) — b0) = Vn{(X) — 6o} + Vi{d(Z) - 0(X)}
£ AT + B (1)
= A(Uy) 4 B(Us)

£ N{0,217(6y)},

iid.

where in the last step, we used the fact that A(Uy), B(Uy) "~ N{0,17'(6y)}, since U; and
U, are independent. This concludes the proof for part 1.

For part 2, we lower bound the total variation distance between the distributions of X
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and Z as follows:

TV (X,Z) > TV {\/ﬁ(éx — 0o), /n(0x — 90)} (83.1)
> KS {ﬂ(éx —9y), Vn(Bx — e@} (53.2)
> KS [N{0,17"(65)}, N{0,21 7' (6o)}] (S3.3)

_KS [\/ﬁ(éx — 0,), N{0, 1—1(90)}] (S3.4)
_KS [\/ﬁ(éz — 6y), N{o, 2[*1(90)}] (93.5)
= KS [N{0,17"(60)}, N{0,21 " (6p)}] + o(1) (S3.6)
> 0 {—log(®)/V2} — @ {—Vlog(8) } + o(1) (S3.7)
> .083 4 o(1) (S3.8)

where is by the data processing inequality, uses the KS-distance as a lower
bound on total variation, applies two triangle inequalities since KS-distance is a metric,
and uses the asymptotic distributions of éx and éz.

To establish , consider the following. Denote 02 = (I7!(6y))1.1. Then consider the
sequence of rectangles R; = {x € R* | —(i+1)0 <21 < —y/log(4)o, and —i < z; <i,Vj #
1}. Note that R; C Riyy and U2, R, = {z € R | ; < —+/log(4)s}. Denote by P the
probability measure for N{0,2/7'(6y)} and @ the probability measure for N{0,17'(6,)}.

Then
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KS [N{0, 17 (60)}, N0, 21 (60)}] = lim |P(R:) — Q(R)|

lim P(R;) — lim Q(R;)
71— 00 1—00

(Un)-e(0n)
o {3} o o)

> 083,

where the value y/log(4) was chosen as it is the maximizer of ®(—t/v/2) — ®(t). O

For the following proofs, we will overload the d% operator when working with multivariate
derivatives. For a function f : RP — R, we write d% f(0) to denote the p x 1 vector of partial

derivatives (8%]_]“(9))?:1. For a function g : R? — RY, we write d%g(@) to denote the p x ¢

matrix (%gk(e))ggzl.

Lemmas 2| and [3] are used for the proof of Theorem 2. Parts 1 and 2 of Lemma [2| can be
rephrased as the following: 6 is efficient if and only if it is consistent and n ! Yo, S (0, X;) =
op(nfl/ 2). The third property of Lemma [2| is similar to many standard expansions used in

asymptotics, for example in [Van der Vaart (2000). However, we require the expansion for

arbitrary efficient estimators, and include a proof for completeness.
Lemma 2. Suppose Xi,..., X, g foo, and assume that (R1)-(R3) hold. Let Ox be an

efficient estimator, which is a sequence of zeros of the score function. Suppose that Oy is a

Vv/n-consistent estimator of 6y. Then
1. [f n_l Z?:l S(§X7X1) = Op<n_1/2>, then gX — éX = Op(n_l/Q)_
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2. 1If 5){ is efficient, then n=t > "1 | S(gx,Xi) — op(n*1/2),
3. 1fOx is efficient, then G = 0y + I (6o}~ S, S(00, X,) + 0y(n™1%).

Proof. As Ox and fy are both \/n-consistent, we know that Ox — Ox = O,(n"1/?). So, we

may consider a Taylor expansion of the score function about Oy = Ox.

nty " S(0x, X))
=1

n . d
_ 1 E : -1 E :
=n 2 S(QX,X,) + {@n S(Q,Xz)

i=1

0=0x

A } (Ox — Ox) + Op(n™")
(33.9)

=0+ {dienl ; S(0, Xi)‘ezéx + Op(nl/z)} (5)( — éX)
= {~1(60) + 0,(1)} (fx — Ox),

where we used assumptions (R1)-(R3) to justify that 1) the second derivative is bounded
in a neighborhood about 6y (as both Oy and §X converge to 6), 2) the derivative of the
score converges to —1(fy) by [Lehmann (2004, Theorem 7.2.1) along with the Law of Large
Numbers, and 3) that () is finite, by (R3).

To establish property 1, note that the left hand side of Equation is op(nfl/ 2)
implying that (6x — ) = 0,(n"1/2). For property 2, recall that by Lehmann| (2004, page
479), if Oy and fx are both efficient, then (Ax —fx) = 0,(n~/2). Plugging this into the right

hand side of Equation (S3.9) gives n=' 37" S(0x, X;) = 0,(n""/?), establishing property 2.
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For property 3, we consider a slightly different expansion:

0p(n~'?) —1259 X;)

-1 -1
—n ZSGO, +d—90n ;seo, )0 — 6o) + O,(n7Y),

=n"t Z S (00, X;) + {=1(60) + 0,(1)}(0 = 0p) + Op(n~")

where we used property 2 for the first equality, expanded the score about Ox = 0 for the
second, and justify the O,(n™") by (R2). By (R1)-(R2) and Law of Large Numbers along
with Lehmann (2004, Theorem 7.2.1), we have the convergence of the derivative of score to

—1I(6y). By (R3), I(6,) is invertible. Solving the equation for fy gives the desired result. [

Lemma 3. Assume that (R0)-(R4) hold, and let wy, ..., wy "% P. Then

n! Z d%S{H, Xp(wi)} = 0,(1).

Proof. First we can express the derivative as

n! Z d%S{H, Xp(w;)}

OCZH.

= Z { S{a, Xo(w:)} + %S{G,Xa(wi)}}

The result follows from the Law of Large Numbers, provided that

=0.

a=0

Ep {%S{Q, Xp(w)} + %5{9, Xa(m}}
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The expectation of the first term is —1(6), by Lehmann (2004, Theorem 7.2.1). For the

second term, we compute

B g 500, X} _, = [ G500, Xalw))| ) ao ($3.10)
di 516, Xa(w)} 7lw) do| (83.11)

_ % [ 8@ dr] (3.12)

_ /Rd%sw D) fale)|  do (S3.13)

[ 56.2) {% fal@) QZH}T da (S3.14)

_ RdS(e,x){dif}gfzg)}T folz) dz ($3.15)

- /R d S(6,2)ST(0, ) fo(x) dv (S3.16)

= Ex {S(6,X)ST(0,X)} (S3.17)

_1(0), (53.18)

where for (S3.11) we use the boundedness of © from (R0) and (R4) to interchange the
derivative and integral; for (S3.12)), we apply a change of variables, using the fact that f,(w)
is the density for the random variable X, (w); and for (S3.13), we use (R2) and the dominated

convergence theorem to change the order of the derivative and integral again. O

Proof of Theorem 2. We expand 6, about Oy using part 3 of Lemma :

Oz =0x + T "{0xyn ") S{x, X, (wi)} + 0p(n'/?) (S3.19)

i=1
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The score can be expanded about Oy = Oo:

n Y S{0x, X5 (wi)}
i=1

=S 80, Xy (wi)} + d% WY S0 X} | 1 — )

i=1

=07t S {00, Xog(wi)} + 0p(1)0,(n12),

=1

where 0 is between 0y and 0y; by Lemma , we justify that the derivative is o0,(1).
Combining this derivation along with the fact that I=(dx) = I~*(6,) + 0p(1) by the

continuous mapping theorem, we have the following equation:

07 =0x + T (0)n" ) S{b0, X, (wi)} + 0,(n"/?). (S3.20)

i=1

Using the same techniques, we do an expansion for by about 0% = 20x — 0:

Oy = 0"+ 170" S{0%, Xo-(wi)} + 0,(n~'/?) (S3.21)
=1

=0+ T (6o)n " S{b0, Xy (wi)} + 0p(n~/?) (S3.22)
=1

= 0" + (05 — Ox) + 0,(n"V/?) (S3.23)

= Ox + 0,(n"V/?), (S3.24)

where line (S3.22)) is a similar expansion as used for equation (S3.19), in line (S3.23) we
substituted the expression from (S3.20), and line (S3.24]) uses the fact that as n — oo,

0* = Qéx — éz with probability tending to one. Indeed, since Qéx - éZ is a consistent
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estimator of 6y, we have that as n — oo, P(Zéx —0, ¢ Q) > P{29X —0, € B(6y)} — 1. O

Proof of Lemma 1. For a fixed § € O, for w ~ P, the random variable Y = Xy(w) is dis-
tributed with probability measure PX,': for any measurable set F, P(Y € E) = PX, '(E).
We denote by P§5 the joint probability measure on 2", and (PX, 1™ the joint probability
measure on R4",

Given 6* € O, our goal is to derive the probability distribution of the random variables
X+ (w1), - .., Xg+(w,) conditioned on the event that {wy, . .., w, | {Xe(w;)} = 9}. However,
this event may have zero probability. Instead, we will condition on Sg g = {wi, ., wy |
U{Xy-(w)} € Bs(9)}, where Bs(9) = {0 | ||[J — || < 6}, which has positive probability. At
the end, we will take the limit as 6 — 0 to derive the desired distribution.

Let E C R™"he a measurable set. Then

P{Xe*(w1)7 e 7X9*(wn) € E ‘ wh' . 7wn € Sg*,@}

:P(wl,...,wn GXQ_*lE|UJ1,...,Wn 653*19)
PUXGIENSD )
= -
(PX;(EN X85, )
PX XSy )

where we used the definition of conditional probability and the fact that X,." Xp- Sg* ;=95 g* 5
This last expression shows that Xp«(w;),..., Xp«(w,) conditioned on w € Sg* 5 is dis-
tributed as fii{vi,...,yn | é(g) € Bs(1)}. This derivation is valid for all § > 0. Taking the

limit as § — 0 gives the desired formula:

YL YO = 0(X) ~ fidv, -y | 0(y) = 0(X))-
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]

Proof of Theorem 3. While the distributions g depend on n, we will suppress this dependence
for notational simplicity. We can then express the desired KL divergence as follows:

First, by the data processing inequality, we can add in the random variable 9(& ) = é(X)
to get an upper bound on the KL divergence. We then have closed formulas for the joint

distributions {X1,..., X,,,0(X)} and {Y3,...,Y,,0(X)}.

KL (X1, ..., X,|[Y3,...,Y,) (S3.25)
< KL {Xl, o ,Xn,é(X)HYl, " ,Yn,é(g)} (S3.26)
=KL [fg{z | 9(&)}99{67(1’)}‘ fo{z | 9(&)}99{9@)}] (53.27)
o o Fo(X | 9)go(0))

- EﬁNQHK)EXNfe log {fen (X | ﬁ)ge("&) } (53.28)

_ g, o ) S99 ] X)

- EﬂNQHK)EX'\er log {fen (X | 19)90(19) } (53.29)

= Ej_y1x Exer, log [ folX)g0 L) ] (S3.30)

- {fo.(X)g(V | X) /g0, (0)}g0(V)

_ g, o ) S209(0 | X)

= Eﬁ,\,g(-'X)EXNfQ log {fgn (&)g(é ‘ X) } (8331)
+ B o0 Ex~r, log {ggn_(?)} (S3.32)

A PP
IR 6 X0 o ) NN )
- EKNfel g { f@(&) } + Eﬂwggl g { 99(19) } ) (8333>

where line (S3.28) simply applies the definition of KL divergence, and line (S3.30) uses

the definition of conditional distribution.
At this point, we need to compute the two expectations of line (S3.33|), and show that

everything cancels except for an 0,(1) term.
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We write £(0 | z) =", log fy(z;). Using our assumptions, we can expand £(6,, | z):

(6, | 2) = €0 2) + (B~ 0) VL | ) + (6, — )T V(6 | 2)(6, — 6)

+ %5* Z(@n —0);(6,, — 0);(0, — )i Zgz’jk(xs)a

1,5,k s=1

%4(0|z)
96,605,

where [€*| < 1 and g;jx(x) is an upper bound for ) for a ball about 6, which exists
by (R3). These expansions are based on those from Serfling| (2009). Applying Ex. s, to this

derivation gives

Bxeplog { D} =0 506, - 0)71(0)60, ~ )

~—

+ 0% D {Bgign(@)} (0 — 0)i(6n = 0);(60 — O, (S3.34)

.5,k

- %”(en —0)"1(0)(0, — 0) + O(n)|6,, — 0]

where the first term is zero as the expected value of the score function is zero by (R3), the
second term uses Lehmann (2004, Theorem 7.2.1) and (R3). The O(1) factor in the third
term is based on the fact that [£*| < 1. Finally, note that >, ;, {Egix(2)}(0n — 0)i(0, —
0);(0n — 0)r < p*sup; ;1 {Egijk(x)}|bn — 0|2, = O(1)[|6,, — ]|>. Note that all norms are
equivalent in R?, so they can be interchanged up to a factor of O(1).

Next, we will derive a similar formula for log gy« (19)

log ga, (V) = log go (V) + V log go (V) (6, — 0)

+ %(en — 0)TV2log go(9) (6, — 0) (53.35)

56 D (00— 000 — 0),(6, — 0):Ciy (D),

i7j7k
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where |5 < 1. In order to apply the expectation Ej_, to this equation, we will first show

Ej_,Vlogge(¥) = 0 and E;_,V?log go(9) = —nI(8) + o(n).

{EQNGVIOgga(@)}] = / {a%logge(@)}ge(@) d
= /%9@(@) )

/86/f9 g(0 | z) dx di

—/ g fo(@)ati | ) do )

89//f9 g(0 | z) dx dd

is bounded above by an integrable function,

where we use the assumption (R3) that ‘8%]- fo(z)
(R5) that g({ | ) is bounded, and the dominated convergence theorem to interchange the
derivative and the integral.

Next we work on the second derivative:
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s

0? - Al A
— / {89j89k 108‘90(19)} go(0) dv

00(0) s200(0) — o) { g}
=/ > 9o () dv
95(0)

=0- B, (Vioggy(d)V  loggo(D)) .

(EgNQVQ log 99(19))

gk

where we used (R3) along with the dominated convergence theorem to set the first term equal
to zero. We see that EV2log go(d) = —1; (), where I; represents the Fisher information
of the random variable 6(X) ~ g. It is our current goal to show that I; (0) = nl(0) + o(n),
where (0) is the Fisher information for one sample X ~ fp. First note that by the data
processing inequality (Zamir, 1998), I (0) < Ix,,.x,(0) = nI(f), where the inequality
represents the positive-definite ordering of matrices. Next, we need to find a matching lower

bound. By the Cramér Rao lower bound, we have that

{I5x)(0)} " < Var{0(X)} + o(1/n),

where Var{fx} is the covariance matrix of the random variable fx, and we used the fact

that fx is asymptotically unbiased. By the efficiency of 6(X), we have that

Var{0(X)} = n'I71(0) + o(1/n).
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We then have

I (®) > {n7' 171 (0) + o(1/n)}

v

= n{I71(6) + (1)}

— n{I(6) +o(1)},

where for the last equality, we use the following matrix identity:

(A+B)y'=A1-A"'BA+B),

where we set A = I71() and B = o(1).

Combining our results, we have that

E;V*10g go(0) = —Ijx)(0) = n{~1(6) + o(1)}.

Finally, applying the expectation to equation (S3.35)), we have

E;_,log {g;:((g)) } —0-— g(en — 0){1(0) + o(1)}(6, — 0)
+ O 2 ST{EG1(0)} (0, — 0):(60 — 0);(0, — 0)s
()6§; ke (0) )i )i( ) (83.36)

_ %"(en —0)T1(6)(6, — 0) + o(n)[|6, — 0]*

+ 016, — 0]*.
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Combining equations (S3.34) and (S3.36)), we have

KL (X1,..., X.|[Y4,....Y,)

~

< KL | £ {z | 0e)yaol0@)} | i L | 0@)} 90 {0()}

X ?J
s { S |+ By s 2200

= o(n)[|6, — 0] + O(n) |6, — 0]|°.

S4. Additional Simulation Results

S4.1 Differentially private beta synthetic data

In this section, we consider additional values of € that are used in the Section 6.3 experiment
on differentially private beta distributed synthetic data. All other simulation parameters
are identical. We varied € = .5,2,4, 00 (note that e = 1 appears in Figure 1(b) in the main
paper). In Figure we see that at all values of e, by is very close to Opp. However, with
smaller € it requires a larger sample size before the performance of 0y ~ Opp is similar to
the MLE y. Note that even with ¢ = 00, the performance of 0, does not approach that of

~

Ox.

S4.2 DP two sample proportion test

In this section, we repeat the experiment of Section 6.4 with varying values of €. All other
simulation parameters are the same. We varied € = .5,2,4,10 (note that ¢ = 1 appears

in Figure 1(b) in the main paper). In Figure we plot the p-values of both the one-
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S4.2  DP two sample proportion test

step and parametric bootstrap tests. We see that the parametric bootstrap p-values are
very conservative for all values of €, whereas the one-step p-values are fairly well-calibrated,
although sometimes slightly inflated. In Figure we plot the power of the two tests for the
different € values. We see that the relative performance of one-step compared to parametric

bootstrap is unchanged as we vary e.
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S4.2  DP two sample proportion test
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Figure S.3: Additional simulations for Section 6.3. In normal reading order, ¢ = .5,2, 4, cc.
Note that Figure 1(b) in the main paper is for e = 1
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Figure S.4: Additional simulations for Section 6.4. In normal reading order, ¢ = .5,2, 4, 10.
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Note that Figure 2(a) in the main paper is for e = 1
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Figure S.5: Additional simulations for Section 6.4. In normal reading order, ¢ = .5,2, 4, 10.
Note that Figure 2(b) in the main paper is for e = 1
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