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ENTROPIC ISOPERIMETRIC INEQUALITIES FOR
GENERALIZED FISHER INFORMATION

SERGEY G. BOBKOV AND CYRIL ROBERTO

ABSTRACT. Pursuing an earlier paper on the entropic isoperimetric inequalities,
we discuss optimal bounds on the Rényi entropies in terms of the Fisher infor-
mation of order s.

1. INTRODUCTION

Given a random vector X in R™ with a smooth density p, the Fisher information of

order s > 1 is defined by
_ (VeI
L(X)=[|—] p,
p

where the integral may be restricted to the supporting set supp(p) = {x : p(z) > 0}.
Here and elsewhere the integration is understood with respect to Lebesgue measure
on R™. Generalizing the usual Fisher information Iy = I, the functional I, has been
introduced by Vajda [27]. Afterwards it has become a subject of various investi-
gations from the points of view of information and probability theories, statistical
estimation and Sobolev-type inequalities, cf. e.g. [8], [20], [3], [10]. In dimension
n = 1, one may write

I5(X) = E|p(X)[%,

where p = (logp)’. In the theory of differentiable measures, it is commonly called
and treated as a logarithmic derivative of p, cf. [4], [19]. Another name for p is the
score function, so that I5(X) may be viewed as the s-th absolute moment of the
score of X (cf. [17], [26], [5]).

It should be clear that the map s — I,(X)'/* is non-decreasing. Its minimal
value

1) = [ 19

describes the total variation norm of the density p, while limg o I5(X )1/ 5 =

SUD 2 csupp(p) |vp’(7$)‘ represents the Lipschitz semi-norm of log p.
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The aim of this note is to relate the generalized Fisher information to the Rényi
entropy power

(1) Nax) = ([37)

of a given order « € (0, 00), which is well-defined by this formula whenever o # 1.
Since

NO&(X>_% = HpHL‘)‘*l(pd:p)v

the map a — N, is non-increasing in «. Therefore, by monotonicity, one defines
the limit entropy powers

_2
(1.2) Noo(X) = lim No(X) = |plle",
a—00
. 2
No(X) = lim No(X) = voly(supp(p))~,
a—0

where ||pllc = esssupp(z) and vol,, stands for the n-dimensional volume. As a
standard approach, one may also put Ni(X) = lim,|; No(X) which returns us to
the usual definition of the Shannon entropy power

Ni(X) = N(X) :exp{ - z/plogp}

under mild moment assumptions (such as N, (X) > 0 for some a > 1).
Basic fundamental relations we are interested in are inequalities of the form

(1.3) No(X) L(X)? > cam

with (positive) constants that do not depend on p. To stress their universal charac-
ter, one should note that the above product is invariant under all linear orthogonal
transformations of the space, as well as under all affine transformations X — Y =
a+ X (a € R", X\ # 0), since then N, (Y) = A2N,(X) and I4(Y) = |\ ~*I5(X).
In view of the monotonicity properties with respect to « and s mentioned above,
such inequalities are getting stronger for the growing parameter « and the decaying
parameter s (up to the constants on the right-hand side).
The particular case « = 1, s = 2 in (1.3) corresponds to the seminal result

(1.4) N(X)I(X) > 2men

due to Stam [24], in which the standard normal distribution on R™ achieves an
equality. It may be obtained as a consequence of the entropy power inequality

NX+Y)>NX)+N(Y)

by taking Y = ¢Z with Z a standard normal random vector in R" independent of
X and letting ¢ — 0. As was noticed by Costa and Cover [11], in a similar manner
one derives from the geometric Brunn-Minkowski inequality

(1.5) voln (A + B)w > vol,(A)n + vol,(B)x

the classical isoperimetric inequality

1 n—
(1.6) Hy_1(0A) > nwg vol, (A) "5,
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relating the volume of a set A in R™ to the size of its boundary 0A. Here w,, denotes
the volume of the unit ball By in R™, and H,,_; stands for the Hausdorff measure
of dimension n — 1. Indeed, applying (1.5) with B = £B; and letting ¢ — 0, we
arrive at (1.6). In view of this remarkable analogy, Dembo, Costa and Thomas [14]
introduced the terminology “isoperimetric inequality for entropies” when speaking
about (1.4), which we extend to all relations of the type (1.3) under the name
“entropic isoperimetric inequalities”.

On the other hand, Carlen [9] noticed that (1.4) is actually equivalent to the
logarithmic Sobolev inequality of Gross [16], cf. also [7]. It may be written in the
form of the Sobolev-type inequality with respect to the Lebesgue measure

(17) J1sProelse < Sos[ 2 [19sp], 17 =1,

in the class of all smooth f on R™ subject to the L?-norm constraint, with gaussian
functions playing an extremal role.

Afterwards, in their study of the hypercontractivity properties of non-linear dif-
fusion equations, Del Pino, Dolbeault [12] and Gentil [15] derived a more general
L*-Euclidean logarithmic Sobolev inequality

(1) 110817 < Zrog [ [1vav]. [1s1 =1,

for s > 1 with certain (explicit) constants Ls . They also showed that an equality
is achieved for 1 < s < n, if and only if f(z) is a multiple of the function
exp{—c|z — a|*"} with arbitrary ¢ > 0 and a € R" (where s* = —%; is the con-
jugate power, cf. [13]). Starting from this result, in analogy with the equivalence
between (1.4) and (1.7), Kitsos and Tavoularis [18] recognized (1.8) as the entropic
isoperimetric inequality (1.3) for parameters & = 1 and s > 1 (however, under the
unnecessary condition s < n).

The case s = 1 may also be included in (1.8). This was earlier shown by
Beckner [2], who derived from the isoperimetric inequality (1.6) a logarithmic Sobolev

inequality

(19) [ 1oglst < wiog [Laa [1951). [151=1,

with optimal constant Ly, = 1/(nw;). Equality here is attained asymptotically
on multiplies of the indicator functions of Euclidean balls in R", similarly to the
extremal property of balls in (1.6). Hence, applying (1.9) with f = a 14, we return
to (1.6), which means that (1.9) represents a functional form of the isoperimetric
inequality. Being restricted to non-negative functions, this inequality does not lose
generality and may be rewritten in terms of the entropy power and the total variation

norm as
1

N(X)L(X)* > -5

1n

for random vectors X with densities p = f. Therefore, the inequality (1.3) with
parameters a = s = 1 and with the optimal constant c¢1 1, = n2w721/ " represents an
equivalent entropic version of the isoperimetric inequality (1.6).
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As for general values of «, the family of the entropic isoperimetric inequalities
(1.10) No(X) I(X) = can,

which corresponds to (1.3) in the special case s = 2, has been recently discussed in
[6]. As was raised there, the following two natural questions are of most interest:

Question 1. Given n and s > 1, for which range 2, of the values of o does
(1.3) hold with some positive constant?

Question 2. What is the value of the optimal constant c, s, and can the
extremizers in (1.3) be described?

By the monotonicity of N, with respect to «, the function a — ¢4 45 is non-
increasing. Hence, the range in Question 1 takes necessarily the form

ms,n = [07 CVs,n) or Q[s,n = [07 as,n]

for some critical value oy, € [0,00]. Similarly, we can include s = oo in our
investigation as a limiting case. Here we prove the following theorem that generalizes
[6, Theorem 1.1] and answers Question 1.

Theorem 1.1. We have

[0,00] forn=1, s€l, ]
[0,-2] forn>2, sell,n)
[
[

0,00) forn>2, s=n
0,00] forn>2, s>n.

In our analysis of Questions 1-2, it will be convenient to give an equivalent for-
mulation of (1.3) in terms of functional inequalities. However, in contrast with
(1.7)-(1.9) for the parameter o = 1, a different class of analytic inequalities should
be considered when o # 1. Namely, using the substitution p = f5/ [ f* for f
non-negative, we have

2
—1)

Na(X) = (/ps)‘n(fw(/fs) o
L) = [ Vs [ £

Therefore, provided that f* is integrable, (1.3) can be equivalently reformulated as
a homogeneous analytic inequality

() o) ()

Using standard density arguments (the reader may find details in the case s = 2 in
Section 5 of [6]), we can assume in (1.11) that the functions f are smooth enough
and compactly supported. Notice however that, when speaking about extremizers,
the function f should be allowed to belong to the larger Sobolev space W#(R™) =
{f € L* : |Vf| € L*} where the gradients are understood in a weak sense.

and




ENTROPIC ISOPERIMETRIC INEQUALITIES 23

Observe that, if f is Lipschitz then |V|f|| < |V f| almost everywhere so that in
all inequalities considered in this paper one can restrict to non-negative functions
without loss of generality. We will therefore consider non-negative functions all
along the paper without any further mention.

Inequalities (1.11) enter the general framework of Gagliardo-Nirenberg’s inequal-
ities

(112 ([5) smt@ro( [wom) ([r)"

withlgq,r,tgoo,ogﬁg1,and%:9(% )+(1— ) We will make use of
the knowledge on Gagliardo-Nirenberg’s inequahtles to derlve information on (1.3).

In the sequel, we denote by || f|l, = ([ |f|7")% the L"-norm of f with respect to
the Lebesgue measure on R™ (and use this functional also in the case 0 < r < 1).

2. NAGY’S THEOREM

In the next three sections we focus on dimension n = 1, in which case the entropic
isoperimetric inequality (1.3) takes the form

2
(2.1) No(X) Is(X) s = cas
for the Rényi entropy

2

Na(X) = < / p(m)adm>_a_1

and the Fisher information of order s > 1

p'(z)* s [(4 )
L0 = p(a)>0 P(z)¥1 o= / (d:v plo)? ) -

Our basic functional space is the collection of all (locally) absolutely continuous
functions on the real line whose derivatives are understood in the Radon-Nikodym
sense. Such functions are almost everywhere differentiable. Since p is non-negative,
any point z € R such that p(z) = 0 is a local minimum, and necessarily p’(z) = 0
(as long as p is differentiable at z).

Let us show that (2.1) holds for all « € [0, 0], proving the following elementary
sub-optimal inequality

(2.2) Noo(X)I(X)5 > 1.
Assume that I4(X) is finite, so that X has a (locally) absolutely continuous density

p, thus differentiable almost everywhere, with the property that p(—oo) = p(o0) = 0.
Applying Holder’s inequality with dual exponents % + é =1, we have

< _ Wl
/_oo P (y)ldy = /p(y)>0p(y);, p(y)¥ dy

'), \e " )
([ L) ([ )™ = oot

1
s

It follows that p has a bounded total variation not exceeding I4(X):

IN

, 0 p(z) <

IS(X)% for every x € R. This amounts to (2.2) according to (1.2) for n = 1.
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From (2.2) we deduce that ¢4 1 > 1 for all a € [0,00] and all s > 1. In order to
derive the best possible constant c, 1, we will make use of a result due to Nagy.
According to (1.11), the family (2.1) takes now the form

(2.3) /f‘” < (6521)?</|f/|>‘“</f)(‘”“

when a > 1, and

2 _ (Q-o)s dl—a s
(24) /fs < (6571> 2(a(s—1)+1) (/ ’fl|5) a(s—1)+1 (/fa5> a(-D+1
a,s,

when a € (0,1).
In fact, these two families of inequalities can be seen as sub-families of the fol-
lowing one, studied by Nagy [22],

/f7+5<D(/’f/|p)zi(/f7)1+W;;1>

—1
(25) D> ]-7 /83’Y>07 q:1+7(pp)v

with

and some constants D = D, g, depending on 7, 8 and p, only. For such parameters,
introduce the functions y,, = yp(t) defined for t > 0 by

(1+1)77 if p < 7,

Ypo(t) = Qe if p=1,
D .

(L=t)r= 1py(t) ifp>r.

To involve the parameter (3, define y, ., g implicitly as follows. Put y, . 3(t) = u,

0<wu <1, with
1 _1
t:/ (r”(l—rﬂ)) " dr
u

if p <. If p> -, then y,,5(t) = u, 0 < u < 1, is the solution of the above

equation for
1 _1
tStOZ/ <7’7(1—T‘B)> pd?”‘,
0

and yp,,5(t) = 0 for all £ > tg. With these notations, Nagy established the following
result.

Theorem 2.1. Under (2.5), for any (locally) absolutely continuous function f :
R — R,
(i)

1 1 p—1
d\q 1P\ pa Pa
. < (= v .
(26) 9= () ([1ee) ([ 1)
Moreover, the extremizers take the form f(x) = ay,(|bx + c|) with a,b,c constants

(b#0).
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(i)
en () ([

where
I'l1+4u+v) u o \%/ v\
H = > 0.
(u,v) T(1+u)D(1+0) (u—{—v) <u+u>’ uv 20

Moreover, the extremizers take the form f(x) = ayp~,p(|bx+c|) with a,b, c constants

(b#0).

Here, I' denotes the Gamma function, and we use the convention H(u,0) =
H(0,v) =1 for u,v > 0. It was mentioned by Nagy that H is monotone in each
variable. Moreover, since H(u,1) = (14 )~ is between 1 and 1, one has 1 >
H(u,v) > (1+ 1) > 1 for all 0 < v < 1. This gives a two-sided bound

1>H<g pp1>><1+§)_g>i.

3. ONE DIMENSIONAL ISOPERIMETRIC INEQUALITIES FOR ENTROPIES
The inequalities (2.3) and (2.4) correspond to (2.7) with parameters
p=y=q=3s, f=s(a—1) in the case a > 1
and
p=s, f=s(l—a), y=sa, g=1+a(s—1) in the case a € (0,1),

respectively. Hence, as a corollary from Theorem 2.1, we get the following statement
which solves Question 2 when n = 1. Note that, by Theorem 2.1, the extremal
distributions (their densities p) in (2.1) are determined in a unique way up to non-
degenerate affine transformations of the real line. So, it is sufficient to indicate just
one specific extremizer for each admissible collection of the parameters. Recall the
definition of the optimal constants c,, 1 from (2.1) and the definition of ¥, , g before
Theorem 2.1. Then, for simplicity of notation we set

Gsal(t) = Yss.sia-n(t) ifa>1 o
- yi,as,s(l—a) (t) ifo<a<1’ :

Theorem 3.1. (i) In the case a = oo, we have, for all s > 1,
6007371 =4.

Moreover, the density p(x) = %e_m (x € R) of the two-sided exponential distribu-
tion represents an extremizer in (2.1).
(ii) In the case 1 < a < oo and s > 1, we have

ool = (s —1)5(1+a(s — 1))@- = (=L )r(s=1)\ 2
" <2 sit(a - 1) (SR > ’

and p(x) = aGs o (|z]) with a normalization constant a is an extremizer in (2.1).
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(iii) In the case 0 < a <1 and s > 1,

o 1+a(s—1 —
5T (s — 1) DD (=) 2
Ca,s,1 = 2 Tta(s—1) s—1 F(L) ’
(1 + OZ(S — 1)) s(1—a) (1 — OL) s 11—«
and p(x) = aGs o (|z]) with a normalization constant a is an extremizer in (2.1).

Proof of Theorem 3.1. When a = oo as in the case (i), (2.3) with [ |f|® = 1 becomes

Ik < ()5 (1)

This corresponds to (2.6) with parameters p = g = v = s. Therefore, Item (i) of
Theorem 2.1 applies (for s > 1, the case s = 1 follows by continuity) and leads,

when [ |f|* =1, to
1 lloo < / 7Y

that is, ¢ 5,1 = 4. Moreover, the extremizers in (2.6) are given by
f(x) = ays s(|bx 4 ¢|) = ae P b £0, a,ceR.

But, the extremizers in (2.1) are of the form p = f*/ [ f* with f an extremizer in
(2.6). The desired result then follows after a change of variables.

Next, let us turn to the case (ii), where 1 < o < co. Here (2.1) is equivalent to
(2.3) and corresponds to (2.7) with p =+ = ¢ = s and = s(a — 1). Therefore, by

Theorem 2.1, (* s? )aTl = ($H(ZA, =), ' so that

2 a—1’ s

Ca,s,1

Ca,s,1 = T s—1\9o

a—1 S a—1 s
_ oD VTGP o= byt a4y
% r a(?q);)ﬂ)g s (a—=1)(s—1)

where we used the identity I'(1 + z) = zI'(z). This leads to the desired expression
for ca 1.

As for extremizers, Item (ii) of Theorem 2.1 applies and asserts that the
equality cases in (2.3) are reached, up to numerical factors, for functions f(x) =
Ys,s,s(a—1) (|0 + ¢[), with b # 0, ¢ € R. Similarly to the case (i), the extremizers
in (2.1) are of the form p = f*/ [ f* with f an extremizer in (2.3). Therefore,
p = aGsq(|bx + ¢|) with some b # 0, ¢ € R and a a normalization constant, as
announced.

Finally, let us turn to item (iii), when a € (0,1). As already mentioned, (2.1)
is equivalent to (2.4) and therefore corresponds to (2.7) with p = s, 8 = s(1 — ),
v = as and ¢ = 1+ a(s — 1). An application of Theorem 2.1 leads to the
desired conclusion after some algebra (which we leave to the reader) con-
cerning the explicit value of c, 1. In addition, the extremizers are of the form



ENTROPIC ISOPERIMETRIC INEQUALITIES 27

P(T) = a¥s,as,5(1—a) (|bT + ¢|), With a a normalization constant, b # 0 and ¢ € R.
This leads to the desired conclusion. 0

4. LIMITING ORDERS

In this section we use continuity arguments to obtain explicit values of ¢, s 1 for
a = 0,1 in the one dimensional entropic isoperimetric inequality

(4.1) Na(X)I(X)5 > cas.1.

Notice that, contrary to the special case s = 2 treated in [6], it is not possible
to obtain an explicit expression for G, for all s > 1 and all a € [0, 00]. We may,
however, be able to give some partial results for some very special values of the
parameters.

We anticipate on the fact our discussion below will lead to 251 = [0, 00] for all
s € [1,00], thus proving the first part of Theorem 1.1 corresponding to dimension
n = 1.

The order a@ = 0. The limit in item (iii) of Theorem 3.1 leads to the optimal
constant

(s —1)5
sin?(7/s)’
To see this, we used the fact that I'(2)['(1 — z) = 7/sin(nz), for z € C\ Z. More
precisely, we have

o1 = lim cq 51 = 472 s> 1.
a—0

1
s

PO o (=15
(1) sin?(7/s)’

Since all explicit expressions are continuous with respect to o and s, the limits of
the extremizers in (2.1) for & — 0 represent extremizers in (2.1) for & = 0. However

. (s—1)
Cos1 = limecas1 = (2
a—0

to compute G o one would need to solve the implicit equation ¢ = fyl a dr)l that
—rs)s

seems solvable only for s = 2. To be more precise one can express the latter integral
in term of the hypergeometric function, but the result is not explicitely invertible,
unless s = 2.

The order a = 1. This case corresponds to Stam’s isoperimetric inequality for
entropies when s = 2, and in this case c; 21 = 27e (note that this can be deduced
using the Stirling formula from the expression of ¢, 2,1 in the limit « — 1). For a
generic s > 1, we obtain,

s—IyE /s—1y =12
o =ty con = (2(252) T () )
a—1 77 S S
Now we explain, at a heuristic level, how to recover the extremizers discovered
by Del Pino, Dolbeault and Gentil [13] and described in the introduction. For

s > 1 and a > 1, the extremizers in (4.1) are of the form ay(|bx + ¢|)® with
b # 0, a the normalization constant, and with y(¢) implicitly defined by the equation
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t = fl #1 Choose b = 1/(0[ — 1)1/8. Then y satisfies
Y r(1—ssla=1))5s

1 —1)s
t —/ —(a D) - dr.
y (1 —rsla=1)s

In the limit o — 1 we obtain that, up to a multiplicative factor and linear transfor-
mation, the function y* with y being the solution of

1
1
t:/ —dr
y r(—slogr)s

represents an extremizer of (4.1) for & = 1 to be rigorous at least one would need
that y, that depends on «, converges to some limit (to know that an extremizer
exists a priori could be enough)). Changing variable (u = —slogr), we get

1 dr 1 [~slosy gy 1 s—1
1 T:ﬁ(—SIOgy) .
y r(—slogr)s SJo us ST

y(t) = eS0T,

and an extremizer of (4.1) for a =1 is

Therefore

s

—|bt+c|s—1

p(x) = ae

with b # 0 and a the normalization constant. In particular, for s = 2 this recovers
the Gaussian density as extremizer of Stam’s isoperimetric inequality.

The order o = oco. From Theorem 3.1, cs1 = 4, for all s > 1 and the
extremizers are of the form

b
p(x) = B e"lbrtedp >0, ceR.

The order s = 1. Taking the limit in the expressions of c, 1 leads, for any
a > 1 and any « € (0,1) and therefore by continuity for any a € [0, 00], to the
value

Ca,11 = 4.

Extremizers for s = 1 are limit of extremizers for s > 1. The implicit equation
satisfied by an extremizer y of (4.1) must therefore be of the form ¢ = [ dr

AT
fora <landt = [ - ) for @« > 1. Since both integrals are infinite (and

dr
r(l—ro=T)
both corresponding integrals are finite for s > 1) we conclude that (4.1) has no
extremizer for s = 1 and all o # 1 (therefore by continuity for all o € [0, o0]).

The order s = 2. As already mentioned, the case s = 2 is studied in depth in
[6]. In that case extremizers can be made explicit for all values of o € [0, 00]. As
an illustration, let us mention some examples borrowed from [6] where the reader
may find more details and comments.
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e For o = 0 we have cg 21 = 472 and extremizers are

2b
p(z) = = cos?(bzx + Wz =)(br+c), b>0, ceR.
T

e For oo = 2 we have ¢ 21 = 12 and extremizers take the form

b
r)=———————, b>0, ceR.
pe) 2 cosh?(bx + ¢)
e For o = 3 we have c321 = 72 and
b
=, b> 0, € R.
p(x) 7 cosh(bx + ¢) ¢
The order s = oo. Taking the limit s — oo in Theorem 3.1, we get, for

l<a<

1 1 2
) aa—1 I'(5=7)I'(1) 2
Ca,o0,1 = Slg]élo Ca,s,1 = (2 po— 12‘(%) = 4 qa-1
where for the last equality we used that ﬁf(ﬁ) =T(1+ ﬁ) = I'(;%) and
r(1) = 1.
Similarly, for o € (0, 1) we have

1 r(laa)m)>2 s

c = lim ¢ =12 = -1,
a,00,1 s—00 a,s,l1 ( (1 _ a)aﬁ F(ﬁ)

In particular, ¢1 00,1 = 4¢? as one can alternatively obtain from the case a = 1

above.
For extremizers in (4.1) when s = oo and « > 1, applying the monotone conver-
gence theorem for decreasing sequence (note that, for s = 2, say, fyl ﬁ
r(l—rste=21))s

00), the limit of the implicit equation is

Ly
t = — =1 .
/y . og(y)

This suggests that the extremizers in (4.1) are p(z) = %e“berC', with b > 0 and
c € R. This is only at a heuristic level since the extremizers in (4.1) are of the form
p(z) = y*/ [y® with s — oo and the above argument only says that, in the limit
s — 00, y(z) = %e*“””*c‘, not p. Now one can observe that y*/ [ y* has morally the
same shape as be~"**¢ by changing the constants b,c. In fact, one can check by
hand (details are left to the reader) that the densities p(z) = %e“berC', with b > 0
and ¢ € R, are indeed extremizers in (4.1), however not excluding the existence of
other extremizers.

5. DIMENSION n = 2 AND HIGHER: ANALYSIS OF THE RANGE 2, (PROOF OF
THEOREM 1.1)

In this section we consider Question 1 in the introduction about the entropic
isoperimetric inequality (1.3) in dimension n > 2 and prove Theorem 1.1.
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First, assuming that 1 < s < n, let us rewrite (1.11) for three natural regions,
namely

5o ([r) <) () ([r)7 aeom,

. n(l—«a
wnhe:agﬁga,

(5.2) (/}“)ig(qim) /Rﬁ\ /fss 1<aﬁnﬁg

with 6 = "(a 1), and

(53) /fas HUEE zsn(/w)i o> "

s = n, in which case (5.3) does not exist, while the range in (5.2) is 1 < a < 0.
We distinguish between four different cases.

"~ = oo when

5.1. 1 < s < n. We employ the Sobolev inequality, which corresponds to the
Gagliardo-Nirenberg inequality (1.12) in the limiting case # = 1, with ¢ = s.

Namely, we have
<o ([ 10s)’

(5.4) ([ r)
with best constant
1 (s—l)l—i( s I'(n)(%5) )i
it s G T - )

(cf. [1, 25]). Moreover, all extremizers in (5.4) have the form

(5.5) flz) =

Sn,s =

a
(1+b|z —mo|1)5 !

with arbitrary @ € R, b > 0, 9 € R™. This Sobolev inequality reflects the best
possible embedding in the sense that the exponent on the left-hand side cannot be
improved: For any p > - ?(R™) that does not belong
to LP(R™). Also, for s > n it is impossible to replace S, s by a finite constant in
(5.4), so that s < n is necessary.

Recall that (5.1)-(5.2) enter the general framework of the Gagliardo-Nirenberg
inequality (1.12) (under the restriction as > 1 for (5.1)). We observe also that (5.3)
does not hold; otherwise this inequality would imply that any function in W7 (R™)
belongs to L** (R”) as well. But this contradicts the optimal Sobolev embeddings
in view of as > .

From the above discussion we conclude that for n > 2 and s € (1,n), the inequal-
ity (1.3) holds true for any o € (1/s,1) and « € (1, -2-], and it does not hold for

' n—s

a > ~—. By the monotonicity argument, it follows that for s € (1,n) and n > 2,

Ao = |0, .

n—s
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5.2. s = 1. In this case the Sobolev inequality (5.4) is reduced to

(5.6) (/fnl)n"1 < S /IVfI

with best constant

3=

reg+1)
Spa = —"—=—
) nﬁ
Inequality (5.6) is a functional version of the classical isoperimetric inequality (1.6),
and an equality is attained in the asymptotic sense when f approaches the indicator
function of a ball in R™. The exponent on the left hand side of (5.6) cannot be
improved.

Reasoning in similar way than for 1 < s < n, we observe that (5.1) does not enter
the framework of the Gagliardo-Nirenberg Inequality (1.12), while (5.2) does, and
(5.3) cannot hold. As a consequence, using again the monotonicity argument, we
conclude that, when s =1 and n > 2,

Ui = [0, ],

' "n—1

5.3. s = n. In this case, (5.4) should be replaced by Moser-Trudinger’s inequality
(see e.g. [23] for the historical presentation and references). We observe that (5.1)
and (5.2) enter the framework of Gagliardo-Nirenberg inequality (1.12) (for a €
[1/n,1) for (5.1)). Therefore, by monotonicity, (1.3) holds for all a € [0,00), and
we only need to analyze separately the case a = co. For s = n and o = oo, which
corresponds to (5.2) in the limit o« — oo, the inequality reads

(5.7) ez |Vf|")’1‘

with C' = n/,/Cso n.n. However (5.7) cannot hold with any constant D as shown in
Example 1.1.1 in [23]. Therefore,

2y = [0, 00).

5.4. s > n. As mentioned in the introduction, by monotonicity, the range 2 ,, must
take the form [0, as ) or [0, s . In particular, for a given s, if (1.3) holds for some
agp > 0, it holds for o < ag. Let see that, when s > n, (1.3) holds for a = oo, thus
proving that A, = [0,00] as stated in Theorem 1.1. To that aim, take the limit
a — oo in (1.11). We then obtain

53) ik <o(f |fo>l (/r)

with D = s/, /Coo sn- This corresponds to the Gagliardo-Nirenberg inequality (1.12)
with 7 = 0o, ¢ =t = s, for which we have § = % € (0,1) when s > n. Therefore, the
above inequality holds (with D = s/, /Coo sn = kn(s, o0, s§)n < 00) and s, = [0, o0]
as announced.

1
s

3=
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6. EXTREMIZERS IN THE ISOPERIMETRIC INEQUALITIES FOR ENTROPIES (1.3)
WHEN n > 2, ANALYSIS OF QUESTION 2.

In this section we consider Question 2 in the introduction in dimension n > 2.

As already mentioned, (1.11) enters the framework of the Gagliardo-Nirenberg
inequality (1.12). The best constants and extremizers in (1.12) are not known for
all admissible parameters. The most recent paper on this topic is due to Liu and
Wang [21] (see references therein and historical comments). The case ¢ =t =2 in
(1.12) goes back to Weinstein [28] who related the best constants to the solutions
of non-linear Schrodinger equations.

We present now part of the results of [21] that are useful for us. Since all the
inequalities of interest for us deal with the L°-norm of the gradient only, we may
restrict ourselves to ¢ = s for simplicity, when (1.12) becomes

1-06

o () et fen) ()"

with parameters satisfying 1 < r,t < 0o, 0 < 0 < 1, and % = 0(% — %) +(1-9) %
This inequality may be restricted to the class of all smooth, compactly supported
functions f > 0 on R™. Once (6.1) holds in C§°(R™), this inequality is extended by
a regularization and density arguments to all Sobolev functions f € W (R").

The next statement relates the optimal constant in (6.1) to the solutions of some
ordinary non-linear equations. In the sequel, for the range of parameters 1 < r, ¢t <
0o, we denote by u = u; s, (With variable y), the positive decreasing solution of
the ordinary non-linear differential equation

1

(62) (|u/‘s—2u/)l + n— t—1

|ul|s—2u/ + ur_luér#oo =u

on the positive half-axis. Put
n(s—1)+s .
— s lf n > S,
00 ifn <s.

We denote by |z| the Euclidean norm of a vector x € R".

Theorem 6.1 ([21]). The following holds.
(a) In the range s > nz—fQ, te(l,0) andr e (t,0+1),

_9
(s t) = 051 —0)S M, 7, M, = / ul(|x]) d,
where the functions u = u(y) are defined for y > 0 as follows.

(a-i) If t < s, then w is the unique positive decreasing solution to the equation
(6.2) in 0 <y < yo (for some yp), satisfying v'(0) = 0, u(yo) = u'(yo) = 0, and
u(y) =0 for all y > yo.

(a-ii) If t > s, then u is the unique positive decreasing solution to (6.2) iny > 0,
satisfying v’ (0) = 0 and limy_,o u(y) = 0.

(b) In the range s >n, t > 1 and r = oo,

[

_6
Fin(s,00,t) = 075 (1 — 0) M, ™, Mt:/ ut(|z)) dz,

n



ENTROPIC ISOPERIMETRIC INEQUALITIES 33

where the functions u = u(y) are defined for y > 0 as follows.

(b-i) If t < s, then w is the unique positive decreasing solution to the equation
(6.2) in 0 <y < yo (for some yp), satisfying u(0) = 1, u(yg) = u'(yo) = 0, and
u(y) =0 for all y > yp.

(b-ii) If ¢ > s, then w is the unique positive decreasing solution to (6.2) in y > 0,
satisfying u(0) = 1 and limy_,o u(y) = 0.

Moreover, the extremizers in (6.2) exist and have the form f(z) = au(|bx + ¢|)
with a € R, b# 0, c € R™.

Note that (6.1) corresponds to Gagliardo-Nirenberg’s inequality (1.11) with r =
as,t=sand f = % for a > 1, while (1.11) with a € [1,1) corresponds to (6.1)

with r = s, t = as and 6§ = % By (5.2) we therefore conclude that
n(a—1)
kn(s,as,s) = (52/0,1,3,”) Zas = (32/Ca,s,n>g when o € A, , and a > 1,
n(l—a)
Kin(5,5,08) = (52/Cosm)T@ =00 = (s2/casn)? when a € [1/s,1).

Together with Liu-Wang’s theorem, we get the following corollary, where we put as
before

M, = / d(Jy]) dy
Rn

and

—1+\/1+4n'n(a—1)}
2 ) ?

s = so(n,a) = max{
«

—1-n(1-a)+/(1A+n(1-a)?+dan_2n .1}
20 'n+2 al’
Corollary 6.2. Let n > 2. Then, the following holds.

i) For any a € A5, o > 1, and any s > sy, we have
Yy N3] ) Yy )

s1 = s1(n,a) = max{

2 2 _ 2 2(s—n(a—1)) 2
Cosin = 5% — 1))? (as) 7T (as — na — 1) T MY,

where My is defined for the unique positive decreasing solution u(y) on (0, 00)
to the equation

—1
(|u/|sf2ul)/+ n

|u/’572ul + uasfl — usfl

with w/'(0) = 0 and limy,_,~ u(y) = 0.
(ii) For o = 0o and s > n, we have

2
2
2"\ e
Coo,s,n = S (s—n) Mg,

where My is defined for the unique positive decreasing solution u(y) on (0, 00)
to the equation

(|ul|s—2u/)/ + n—1 |ul‘s—2ul — us—l

with u(0) = 1 and lim,_, u(y) = 0.
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(iii) For any a € (0,1) and s > s1, we have
2 2 2a _ 2(as+n(l-a)) 2
Casm =5 (Nl —a))s (as)"=2) (as+n(l —a)) =0 M,

where My is defined for the unique positive decreasing solution u(y) to

(’ul|s—2u/)/ + n

;1|u/‘s—2u/ + us—l — uas—l
Y
in0<y<Y withe/(0)=0,ul)=d(Y)=0, andu(y) =0 forally > Y.
In all cases, extremizers of (1.3) are of the form p(y) = au®(|by+c|), y € R™, b > 0,
c € R" and a the normalization constant (for (i) and (ii), a = %)

Proof of Corollary 6.2. The only point to investigate for Item (i) is the range of
admissible s. For o > 1, (1.11) corresponds to the Gagliardo-Nirenberg inequality
(6.1) with » = as and t = s. Therefore Theorem 6.1 applies if the following
constraints are satisfied:

2n

s>——, s€(l,0) and s<as<o+1
n+2
with
(s=D+s -
(6.3) sl e in>s
00 ifn<s.

n(s—1)+s

Consider first the case s < n for which o = =——-—. We observe that the condition

s € (1,0) amounts to s > —/1+n VQIM‘n and s < as < o+ 1tos> "D Since, for

[0}

any n > 2,
—1++v1+4n 2n
n > > ,
- 2 T n+42
the constraints summarize into s € (max(=F V21+4"; n(aa_l)), n).
For s > n, 0 = oo and the constraints reduce to s > anQ All together we get

the range s € (max(—H4", "(aafl)), 00) as announced.
Consider now the case o = oo which corresponds to (1.11) in the limit o — o0,
namely

(6.4) 1% < 2= f o) ()

This is the Gagliardo-Nirenberg inequality (6.1) with parameters r = co, ¢ =t = s,
for which § = 2 € (0,1) when s > n. Therefore Item (b-ii) of Theorem 6.1 applies
and

n
s

()’ =t = (550 st

It follows that

2
0 s 2 n 2
Coossim = 57 My = () My
1—-6 s—n
as announced.

Now we turn to Item (iii). As for Item (i) the only point to be analyzed is the
range of admissible s. For o < 1, (1.11) corresponds to the Gagliardo-Nirenberg
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Inequality (6.1) with ¢ = as and r = s. Therefore Theorem 6.1 applies if the
following constraints are satisfied:

2n

> —F,
y n+ 2

as€ (l,0) and as<s<o+1

n(s—1)+s

—_— we observe that the condition

with ¢ as in (6.3). When s < n, 0 =
as € (1,0) amounts to

1 —1-n(l—a)+ /(1A +n(l-a)?+4an
S>ma‘x{5’ 200 }

while as < s < 041 is always satisfied. The constraints summarize into s € (s1,n)
(with the convention that the interval is empty if s; > n, which may occur if,

for instance, o < 1/n). When s > n, ¢ = oo and the constraints reduce to
5> max(n%fz; é) All together we get the range s € (s1,00) as announced. O

For some specific values of the parameters, the picture is more complete.

Note first that the case « = 1, s = 2, which is formally not contained in the
results above, is the classical isoperimetry inequality for entropies (1.4). Also, as
already mentioned in the introduction, for « = 1 and s > 1, by means of the
Euclidean log-Sobolev inequality [13, 18], extremizers in (1.3) are of the form p(z) =
bexp{—c |x—a|s%1}, a € R" ¢ > 0 and a the normalisation constant. For 1 < s <n
such densities are the only extremizers in (1.3), while for s > n, there might exist
other ones.

The next statement deals with the special case o = - that corresponds to
Sobolev’s inequality.

Corollary 6.3. Letn>2,n>s>1and a = _=. Then

n

2(s—1) L %

rs2n2 (%) s (2(58—1) F(%F)(Fn()?((lg—);))) ifs> 1

anF(%qu)*% if s =1.

Ca,s,n =

(i) Forn < s or s =1 and n > 2, (1.3) has no extremizers, i.e. there does not
exist any density p for which equality holds in (1.3) with the optimal constant.
(i) For n > s?, the extremizers in (1.3) exist and have the form

p(z) = ¢ ab>0, zpeR™
(14 b|lz — xg|s—T)n—*

Proof of Corollary 6.3. For « = -2, (1.11) corresponds to the Gagliardo-Nirenberg

n—s’
inequality (1.12) for r = as, t = s and 6 = 1, namely

1

(/fas)as SH”(S’QS’S)</]Vf\S>i'

This is the Sobolev inequality (5.4) when s > 1 and (5.6) when s = 1, with best
constant

kn(S,as,s) = Sps = \/;ni (Z: i)l—i (2( s F(n)Fig)
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and )
r(z+1)h
"in(laoh 1):Sn,1 = #7 s=1.
Since kn(s,as,s) = —= we get the expected explicit expression of the optimal

v/ Ca,s,n ’

constant cq sp-
Moreover, as mentioned in Section 5, the only extremizers in (5.4) have the form

flx) = a ——F—, a€R, b>0, zg e R"
(1+blz —xzo|51)s 1

while (5.6) has no extremizers. Assume that we have an equality in (1.3) for a fixed

(probability) density p on R™. We should assume that the function f = p% belongs
to W#(R™) and f must be of the above form. However, whether or not this function
p is integrable depends on the dimension. Using polar coordinates, one immediately
realizes that

dx
/ (14b|z — ao|s1)n—s
has the same behavior as floo riddr with d = % But, the latter integral
converges only if n > s2. O
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