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Computational Modeling in Materials Science and Engineering: 

Student Responses to a Restructurated Introductory Course 
 

Abstract: This paper reports student perceptions of a redesigned introductory materials science 

and engineering (MSE) course based around computational atomistic models embedded in a 

novel interactive digital textbook. Atomistic models can foster principled understanding of MSE 

phenomena by foregrounding how material structures and properties emerge from atomic 

interactions and can be used to engage students in active, inquiry-based learning. Students 

completed an end-of-course survey with Likert-style and open-ended questions. A large majority 

of students reported feeling that the course was more engaging than other STEM courses, that 

they learned more than in other courses, that the course was equally or somewhat more 

challenging than other courses, and that they had a positive experience with the interactive 

textbook. Open-ended questions revealed that most students preferred active model-based 

learning compared to video lectures, because they were engaging and helped with understanding. 

However, some students found the computational models confusing. Students also had positive 

experiences with the interactive textbook and appreciated that the content on the platform was 

well-organized, easy to navigate, and exactly reflected the requirements of the course. Overall, 

the findings show it is feasible to radically redesign introductory MSE around computational 

modeling while maintaining positive student experiences.  

 

1. Introduction 

This paper reports on student perceptions of an introductory materials science and engineering 

(MSE) course redesigned to center around computational models and taught with a novel 

interactive textbook with the computational models embedded. This redesign is in response to 

two trends. First, computation is transforming MSE, and the curriculum should reflect that fact. 

Second, computation and computational representations can be harnessed to create powerful 

tools for learning. This paper is a continuation of the work presented in [1] which described the 

redesigned course without reporting on any student results. The background section of this paper 

summarizes the theoretical foundation for the course redesign and the methods section briefly 

describes the redesign itself, but refer to [1] for more details. The focus of this paper is student 

perceptions and reactions to the redesigned course as a whole rather than focusing on content-

based learning outcomes. We made this choice for two reasons. First, given the magnitude of the 

changes we made to the course4redesigning it entirely, engaging students in explorations of 

computational models throughout, and authoring/using an interactive textbook4it was entirely 

possible that students would be overwhelmed or have other negative reactions. Therefore, it was 

important to demonstrate the feasibility of this kind of radical change to the curriculum. Second, 

as we redesigned the content of the course around computational models, we also redesigned 

assessments to require deeper conceptual understanding, making it difficult to compare student 

learning outcomes to prior years. It is still possible to evaluate student learning in relation to our 

new assessments, but this requires in-depth qualitative analysis which could not fit in this paper 

due to space limitations. Future work will investigate student learning outcomes as well as how 

our assessments evolved to require deeper conceptual understanding.  

 

 

 

 



2. Background 

 

2.1 Computation in MSE 

 

The impact of computation on science and engineering has been dramatic. The advent of digital 

computers has been described as <the second metamorphosis of science= because computational 

modeling and experiments provide a new way to generate knowledge about nature, 

complementing experimental and mathematical methods from the first metamorphosis which 

initiated the scientific revolution [2], [3]. In addition to the vast calculations computers enable, 

computational representations also support a different (complementary) way of thinking 

compared to classical mathematical representations, emphasizing procedural <how to= 

knowledge compared to more descriptive <what is= knowledge of most classical mathematics 

[4].  

 

MSE is no exception to the trend of computation transforming science and engineering, and there 

is widespread agreement that undergraduate and graduate education should reflect these changes 

[5], [6], [7]. Recently, the Materials Genome Initiative argued that computation is one of the 

three competencies that the next generation of the MSE workforce would need to master [8]. On 

the theoretical side, computation allows scientists to model <real, complex materials as they are= 

[9], by modeling interactions of many atoms and allowing larger scale patterns to emerge. The 

procedural focus on how atoms interact can help researchers <to gain insight into a physical 

system and then obtain a new theoretical understanding= [10] compared to only focusing on 

macrolevel descriptions. 

 

2.2 Restructurations for Learning 

 

The term restructuration refers to the ways that new representational forms change the way we 

think and learn [11], [12]. A classic example is the transformation from Roman to Hindu-Arabic 

numerals, which enabled much more powerful ways of thinking about and manipulating numbers 

[12]. Computational representations can provide similarly dramatic changes in how we think and 

learn [11], [12], [13], [14]. One reason is the procedural nature of computational knowledge 

discussed above. In the context of MSE, the focus on how things happen combined with the 

calculation power of computers enables the modeling of materials starting from atomic 

interactions. Since all materials phenomena ultimate emerge from atomic interactions, the same 

core computational model can be used to understand many phenomena. This <one-to-many= 

property of computational models makes them powerful tools for understanding the atomic 

mechanisms underlying materials phenomena and unifying understanding of various phenomena 

together [15]. Additionally, the perspective of emergence4how large-scale patterns arise from 

many micro-level interactions4is a powerful lens for understanding not only many phenomena 

in MSE, but many phenomena across the sciences  [11], [12], [16]. It is a <powerful idea= in the 

language of constructionist learning theory [13] and an important cross-cutting concept in the 

language of the Next Generation Science Standards [17], [18].  

 

A significant body of research has investigated the benefits of computational restructurations for 

understanding emergent phenomena, including in physics [19], chemistry [20], [21], [22], 

biology [23], [24], probability [25], social sciences [26], [27], and materials science [15]. There 



have been calls to integrate computational modeling, and the perspective of emergence it 

highlights, across K-16 STEM curricula in general [28], [29] and specifically to make <one-to-

many= computational models the backbone of the MSE curriculum [15]. However, prior work on 

computational restructurations have only designed learning interventions for specific topics 

within a subject. The course redesign reported in this paper is the first time that a project rooted 

in restructuration theory has taken on the task of redesigning an entire course. 

 

2.3 Prior work  

 

In [1], we described the course redesign in detail, including conceptual explanations of the 

computational techniques used, but we did not report on student results of any kind. This paper 

focuses on student perceptions of the course, and future work will address content-based student 

learning outcomes for the reasons discussed in the introduction. 

 

3. Research Questions 

 

Given the magnitude of the changes we made to the introductory MSE course, we chose to focus 

on student perceptions to assess the feasibility and desirability of our approach. Our research 

questions are: 

 

1. Is it feasible to redesign the introductory MSE curriculum to center around computational 

models while maintaining positive student experiences of the course? 

2. What were student perceptions of the redesigned course, the interactive textbook, and the 

computational models? 

 

The goal of answering the first research question is a kind of existence proof. We simply want to 

demonstrate that it is possible to radically change the introductory MSE course to center around 

computational models4considered by many to be an advanced topic4and maintain positive 

student experiences with the course. Our goal in this paper is not to compare our restructurated 

course to more traditional courses (see future work section). The goal of the second research 

question is to gain qualitative insight into student perceptions of the course to learn what they did 

and did not find valuable. 

 

 

4. Methods 

 

4.1 Setting and Participants 

 

The setting of this design-based research is an introductory materials science and engineering 

(MSE) course taken by approximately 100 students each term at a large private university. The 

course serves both MSE majors and other engineering majors with about three quarters of the 

students coming from other majors as part of their engineering requirements. The only 

prerequisite is one introductory chemistry course. 

 

 

 



4.2 Structure of the Course 

 

The course has two 80-minute lecture periods per week and one 50-minute recitation led by 

teaching assistants. Students were assigned pre-lecture exercises, which usually consisted of 

interacting with one or more computational models and answering questions to complete before 

each lecture. Lecture periods usually consisted of three segments of 20-30 minutes: (1) lecturing 

on the content covered in the pre-lecture exercises, (2) a period of active-learning usually 

comprised of another model-based inquiry task, and (2) a final short lecture on that topic. See [1] 

for more details on the structure and content of the course.  

 

 

4.3 NetLogo: Computational Modeling Tool and Example Models 

 

NetLogo [30], the main computational modeling tool used in the course, has unique affordances 

which make it ideal for introductory MSE course despite not being specifically an MSE tool. It is 

an agent-based modeling platform designed to be <low threshold= and <high ceiling= [31], 

meaning that it is easy to get started, even for users with no programming experience, while not 

being limiting for advanced users. The <low threshold= design of NetLogo allowed sophomore 

MSE students to learn the syntax of NetLogo and code a new model in a single 2.5 hour session 

[15]. NetLogo models can be interacted with while they are running, enabling various 

interactions which support conceptual understanding. Additionally, there is a browser-version, 

NetLogo Web [32], which enables students to use the software without downloading anything, 

making it much easier to implement in a large classroom.  

 

We were able to create models for the large majority of topics in the course using just two 

techniques: molecular dynamics and random walk. The one-to-many nature of these techniques 

[15]4that one technique can be used to model many phenomena4helps to emphasize the 

common principles and mechanisms underlying many MSE topics. Figure 1 shows two example 

models from the course, one for each of these techniques. On the left is a model of chain-growth 

polymerization. Each <agent= represents a molecule which executes a random walk without 

overlapping with each other. When a monomer collides with a radical, they bond, after which 

their random walk is also restricted to prevent their bond from breaking. Students can explore 

how changing the numbers of monomers and initiators changes the molecular weight distribution 

and the speed of the reaction. On the right of Figure 1 is a molecular dynamics model in which 

the bonds between atoms are visualized and students are able to adjust the size of an impurity 

atom to see how it affects lattice strain and the overall energy of the material. For more examples 

of models we created in the course as well as a brief conceptual explanation the computational 

techniques, see [1].  

 



 

 
Figure 1: (left) A model of chain-growth polymerization. 

Monomers are modeled as following a random walk. When 

they collide with a radical, they bond and then follow a self-

excluding random walk which prevents overlap and chain 

breaking. (right) An MD model in which students can explore 

substitutional impurities by changing the size of one of the 

lattice atoms and seeing how it changes the energy of the 

material and the strain on the lattice. 

 

 

 

4.4 Interactive Textbook 

 

An important aspect of the course redesign was authoring a new interactive textbook to align 

with the course by the first and second authors. It was hosted on a platform called Morfli1 

(pronounced more-flea) designed by the first author with the intention to integrate all the course 

content in one place including computational models, explanations, and exercises. Morfli makes 

it easy for the authors to edit and add content. For students, they are able to interact with the 

NetLogo models, answer questions, and read surrounding explanatory material all in one place.  

 

Since we authored the textbook from the outset in an interactive digital medium, we were able to 

foster more active learning than a typical textbook in two important ways. First, we embedded 

interactive computational models throughout the text. Second, we often require students to 

explore a model and attempt to answer questions about it before providing additional 

explanation, in line with research on The Learning Cycle [33], [34], [35] and related pedagogical 

approaches [36], [37], [38], [39] which show that active exploration before explanation improves 

learning. We combined these ideas with the constructionist idea of <microworlds=4interactive 

computational models that embed important concepts from a learning domain [13]4to produce 

<constructionist learning cycles.= The textbook contains 15 chapters, 30 embedded 

computational models, and over 300 embedded questions for students to answer. For most of the 

questions, students are able to view a solution immediately after submitting their own answers, 

allowing them to check their understanding. 

 

4.5 Data and Analysis Methods 

 

 
1 https://www.morfli.com/ 



Data for this study come from an end-of-course survey in the spring of 2024 which included 

several questions about their experience with the course overall and their perceptions of Morfli 

and the embedded NetLogo models. Seventy-eight students completed the survey. Table 1 shows 

the four Likert-style questions on the survey. The results of these questions are reported in tables 

and bar charts. Table 2 shows the four open-ended questions along with the methods used to 

analyze them. Inductive bottom-coding was used to identify certain types of responses and 

categorize them. We first did a round of open coding using <descriptive coding= [40]. Next, we 

conducted <pattern coding= [40] on the initial codes to reduce the number of codes to a smaller 

number of categories representing key themes in the data. Following Hammer and Berland [41], 

the codes developed are not treated as data to be quantified but as claims about the data. The raw 

written responses are the data, and codes are claims made about the data. The code are reported 

in the results section along with enough examples of data for each code that readers can decide 

for themselves if they agree with the coding scheme [41], [42].  

 
 

Table 1: Likert-style questions on the end-of-course survey 

Question Response Options 

Rate your experience using Morfli (the interactive 

textbook) in this course. 

5: It was great 

4: It was good 

3: It was okay 

2: It was kind of bad 

1: It was really bad 

How engaging was this course compared to most 

other engineering, science, and math courses you 

have taken? 

Much more engaging 

Somewhat more engaging 

About the same 

Somewhat less engaging 

Much less engaging 

How challenging was this course compared to 

most other engineering, science, and math 

courses you have taken? 

Much more challenging 

Somewhat more challenging 

About the same 

Somewhat less challenging 

Much less challenging 

How much do you think you learned in this 

course compared to most other engineering, 

science, and math courses you have taken? 

Much more 

Somewhat more 

About the same 

Somewhat less 

Much less 

 
 
Table 2: Open-ended questions on the end-of-course survey 

Question Analysis Methods 

About how much time did you 

spend doing pre-lecture 

exercises per class using 

First, the amount of time the student reported was recorded. 

If they reported a range, both the low and high end were 

recorded and then averaged. Most students did not report 



Morfli? What about video 

lectures? Did you prefer the 

video lectures or model-based 

exercises more and why? 

separate times for Morfli exercises vs video lectures. For 

those who did, the minimum time of the two was recorded as 

the low end and the maximum of the two was recorded for 

the high end and then averaged. 57 responses had numerical 

information about how much time they spent. The rest either 

didn9t answer or gave non-numerical answers such as <Not 

enough time, I wish I did more.= 

 

Next, each response was coded for whether the student 

preferred video lectures, model-based exercises, or both. 66 

responses included this information. 

 

Finally, the remaining <why= of student answers were coded 

qualitatively. First, the answers were open coded resulting in 

20 codes. 57 responses received at least one of these 

qualitative codes. The remaining answers only reported on 

timing and which type of pre-lecture exercise they preferred. 

Next, similar codes were combined, and some were split to 

differentiate between whether they were referring to video 

lectures or Morfli exercises. For example, initially responses 

were coded with <easier to review.= This code was then split 

because some students found the Morfli exercises easier to 

review and some the video lectures. After this, any codes 

with fewer than three responses were removed. An additional 

round of code combination and splitting was carried out after 

which any opposing codes were grouped together but not 

combined into a single code (e.g., some students found the 

video lectures more convenient and some the Morfli 

exercises). After this, any codes or code groups with fewer 

than five responses were ignored, as the goal was to identify 

major themes in the data.  

 

What did you like about 

Morfli? 

First, the answers were open coded resulting in 15 codes. 72 

responses received at least one of these qualitative codes. 

Next, codes were grouped into two main categories: (1) 

regarding the content on Morfli, and (2) regarding 

functionality of Morfli which was further divided into (a) 

interactive functionality and (b) other functionality. One 

code did not fit into either of these categories making it its 

own category. Only codes which appeared at least 5 times in 

the data are reported. 

 

Share any ideas you have for 

improving Morfli. 

First, the answers were open coded resulting in 25 codes. 52 

responses received at least one of these qualitative codes. 

The other 24 of the remaining responses were either blank or 

said things like <n/a= or <it works well,= and two were 



irrelevant to the question. Next, codes with only one 

response were removed and the rest were grouped into four 

main categories: (1) regarding the content of the course 

hosted on Morfli, (2) suggestions for new features, and (3) 

suggestions for improvements to existing features.  

 

Do you think the NetLogo 

computational models used in 

class and pre-lectures helped 

you learn? What did you like? 

What didn't you like? 

Each response was coded for whether the student felt the 

NetLogo models helped them learn or not. A third category 

of <somewhat= emerged from the data. 72 of the 78 

responses could be coded into one of these three categories. 

The remaining 6 responses did not contain enough 

information. 

 

The remainder of reach response was then open coded for 

reasons they liked or didn9t like the NetLogo models 

resulting in six initial codes for liking the models and six for 

disliking. These codes were then refined, and some were 

merged resulting in four codes for liking the models and five 

for disliking. Note, that even students who said they thought 

the models helped them learn might have had some 

complaints about the models and vice versa.  

 

 

5. Results 

 

The results section begins with the students9 overall perceptions of the course and the interactive 

textbook as reported in Likert-style questions followed by the time students spent on pre-lecture 

exercises. Then, major themes in student perceptions from open-ended questions are reported.   

 

5.1 Overall perceptions of the course 

 

Tables 3-6 below show the results of student answers to the Likert-style questions about the 

course and the interactive textbook (Morfli). A large majority of students, 81%, thought the 

course was more engaging than other courses STEM courses they had taken, while 14% thought 

it was about the same and only 5% thought it was somewhat less engaging (Table 3). Regarding 

perceptions of learning, a large majority, 72%, felt they learned somewhat or much more 

compared to other courses, 23% thought they learned about the same, and only 5% thought they 

learned somewhat less (Table 4). Regarding how challenging the course was compared to other 

courses, the large majority thought it was fairly typical487% thought it was somewhat less 

challenging, about the same, or somewhat more challenging4while 13% thought it was much 

more challenging (Table 5).  An overwhelming majority of the students, 98%, rated their 

experience with Morfli as okay, good, or great with a large majority, 80%, in the latter two 

higher categories (Table 6). 

 

 



Table 3: Response to the question, <How engaging was this course compared to most other engineering, science, 

and math courses you have taken?= 

 
 

 
 

Table 4: Response to the question, <How much do you think you learned in this course compared to most 

other engineering, science, and math courses you have taken?= 

 

 

 

 
 

Table 5: Response to the question, <How challenging was this course compared to most other engineering, 

science, and math courses you have taken?= 

 
 

 

 



Table 6: Responses to the question, <Rate your experience using Morfli in this course= 

 
 

 

 

5.2 Time Spent on Pre-lecture Exercises 

 

The average time students reported spending on pre-lecture activities was 45 minutes, the median 

was 35 minutes, and the minimum and maximum were 10 minutes and 3 hours respectively.  A 

median time of 35 minutes for pre-lecture activities is totally reasonable, given the expectation 

that students spend a total of around 10 hours per week on a course.  

 

5.3 Preference of model-based pre-lecture exercises vs videos 

 

Of the 78 students who responded to the survey, 66 provided responses with a clear answer to 

this question: 41 students (62%) preferred the model-based pre-lecture exercises, 19 students 

(29%) preferred video lectures, and 6 students (9%) said they like a combination of both. Table 7 

displays the two main categories of reasons that students preferred model-based exercises in 

order of how commonly they appeared: (1) they were more interactive, engaging, or fun, (2) they 

helped students understand or visualize the concepts better. Table 8 displays the one main 

category found for why students preferred video lectures: they found them easier to understand 

and/or found the models confusing.  

 

Students were also asked in another question whether they thought the NetLogo models helped 

them learn, what they liked about them, and what they didn9t like about them. Of the 72 students 

who answered whether they thought the models helped them learn, 65 (90%) said yes, five (7%) 

said somewhat, and two (3%) said no. Student responses regarding what they did and didn9t like 

resulted in similar themes as the previous question. Students liked that NetLogo models were 

interactive or engaging and thought they helped them visualize phenomena and understand them 

better. On the negative side, students sometimes thought the model were confusing or not enough 

explanation was provided. Given the similarity of these responses to the previous question, 

specific examples are not included here for space considerations.  

 

 
Table 7: Reasons students gave for preferring model-based pre-lecture exercises 

Code Count Examples 



Interactive/ 

engaging/ 

fun  

22 <I liked the model-based exercises because it allowed me to adjust 

the initial and future conditions and see the results very easily.= 

<pre-lecture exercises I think helped more than the video lectures 

because I was actually applying the knowledge.= 

<The models were just fun to play around with.= 

<I enjoyed the model-based ones more since I could interact with 

them and try out things beyond what was asked in the assignment.= 

Better 

understanding/ 

visualization 

13 <i really really liked model based exercises because i was able to 

gain better intuition for the concepts and i could picture the 

simulation during a test when i needed to.= 

<I liked the model exercises because it helped visualize the 

concepts= 

<Model-based; greatly increased my understanding of whatever the 

topic was and provided a different angle than just lecturing.= 

<I prefer the model-based exercises as they allow me to play 

around with them and have a better grasp of the material.= 

 

 
Table 8: Reason students preferred video lectures 

Code Count Examples 

Videos easier to 

understand or 

models were 

confusing 

13 <I liked the video lectures because they explained everything.= 

<I preferred the video lectures more because learning from a person 

ensured I related more to the content and understood it better.= 

<I liked the video lectures more because the model exercises were a 

little more time consuming and harder to understand.= 

<The video lectures were always very nice. Some of the models 

were a bit confusing, so I usually prefer videos.= 

 

5.4 Questions Related to Morfli 

 

The following summarize the main takeaways from each category of what students liked about 

Morfli (their suggestions for improvement are below): 

1. Many students thought that the content on Morfli reflected the course content and was 

well organize, clear, comprehensive for the needs of the course, and concise. The codes 

with example responses supporting this claim are shown in Table 9.  

2. Students enjoyed the NetLogo models, general interactive nature of Morfli, and the fact 

that solutions to questions were immediately available after submitting an answer. The 

codes with example responses supporting this claim are shown in Table 10.  



3. Students found Morfli easy to use and navigate and specifically appreciated that due 

dates for assignments were very prominent. The codes with example responses 

supporting this claim are shown in Table 11.  

4. Students appreciated the extent to which everything was in one place on Morfli including 

text, questions and models. Example responses supporting this claim are shown in Table 

12.  

 

 
Table 9: Reasons students like the content of the course hosted on Morfli 

Code Count Examples 

Well organized, 

structured and 

focused 

16 <I liked the organized structure and content.= 

<There's a lot of info and it's easily accessible and well sorted..= 

<It was organized into smaller sections and chapters.= 

Morfli content 

reflected the 

course content 

11 <Morfli reflected what was shown in class&= 

<I liked that it was written by the instructor so all of the 

information was important which I never feel was the case I felt 

when reading textbooks for my other classes.= 

<I liked how everything I needed to know was on it. It ensured that 

I was not questioning if a concept would be tested or not.= 

<I liked that the "textbook" for this class was customized so that it 

only contained info that we were supposed to know and not just 

random information too.= 

Clear content 8 <It was very easy to use and the content was clear and concise.= 

<Content was straightforward and simple to understand. Callister is 

a bit too dense in my opinion.= 

<I liked that it was like a textbook, but easy to read and easy to use. 

It's conveniently split up, and definitely used it a lot to study for the 

exams. I just read all the Morfli chapters from front to back, which 

really helped me understand all the content.= 

<It was not hard to understand like a lot of other textbooks.= 

Comprehensive 

content 

7 <The information on there was really comprehensive and easy to 

understand.= 

<It was a good source of info, learned a lot from it and it was 

everything I needed to learn.= 

<I liked that it was written in such a way that you could actually 

read every word on every page and it had just the right amount of 

material for our class. Didn't have to judge whether something was 



getting too complicated and should be skipped to focus on stuff that 

would more likely actually be covered in class.= 

Content was 

concise 

7 <It was very easy to use and the content was clear and concise.= 

<It had just the right amount of information, enough to feel like I 

understood the content while still being able to go and read it all.= 

<&most of the information was presented in a concise manner.= 

 
Table 10: Codes related to Morfli's interactive features 

Code Count Examples 

Liked the 

models 

13 <I really enjoyed the models that we used.= 

<Simulations was the best part.= 

<&the models were useful&= 

<The models were fun to play with.= 

General 

interactive 

8 <I liked that it tested your knowledge at every step.= 

<I liked how it was interactive.= 

<I liked the interactive exercises.= 

<The exercises were productive and helped me interact with the 

content.= 

Immediate 

Solutions 

4 <I liked the feedback and answers right away.= 

 

<I liked that we were able to see the solution after answering.= 

<I also liked that after answering questions you could easily check 

your answer instead of having to wait for a key to be released. i 

could immediately correct my mistake in my head instead of 

proceeding with the incorrect assumption.= 

<I liked how you could change your answer after submitting, made 

it much lower stress, and the ability to see the answer and correct 

yourself was very helpful to ensure you were going down the right 

track which was nice.= 

 
 

Table 11: Codes related to ease-of-use 

Code Count Examples 

Easy to use and 

navigate 

22 <It was very easy to use&= 

<It was very convenient to use, especially when reviewing.= 

<It was easy to access all the information.= 



<It's a great platform and very intuitive, no major complaints!= 

<I like the setup of the course and how easy and intuitive it is to 

use.= 

Clear due dates 8 <The due date times are all there.= 

<I liked that it gave me exactly what I needed to do and by when...= 

&I also liked how the assigned questions appeared on the home 

page and indicated when they were due, and if they were 

completed or not.= 

<&the task list on the home page is really nice to make sure 

nothing is missed&= 

 
Table 12: Stand-alone code about the platform having everything in one place. 

Code Count Examples 

Everything in 

one place and 

well-integrated 

10 <How everything was in one place.= 

<I liked how the question software was embedded into the 

textbook.= 

<I enjoyed how the exercises could be interwoven into the 

textbook, and they built off of each other.= 

<I love how Morfli helps students see simulations, read the 

textbook, and do homework, all in the same place.= 

 

 

Only 52 students of the 78 responses suggested improvements for Morfli. The other 26 either left 

this question blank or wrote things like <n/a= or <none,= or <Overall I thought it was very solid.= 

The responses for what students thought could be improved about Morfli were coded and these 

codes grouped into four broad categories. Any code which had only one response and was not 

able to be categorized into one of these categories was removed. The broad take aways from the 

four categories are: 

1. The most common responses were the mention of typos (12 responses) and that the 

content in Morfli wasn9t complete (9 responses). These were grouped into one category 

because they relate to the course not being finished and polished.  

2. Students had various suggestions on how to improve the content of the course on Morfli. 

None of these suggestions appeared more than five times, indicating that there were not 

any glaringly obvious problems. Some suggestions included: shortening the sections, 

providing more external resources, including more videos, and improving the 

descriptions of models.  

3. Seven students expressed frustration with the questions in the course which required 

students to submit an image. This aspect of the platform can be improved.  

4. Students had a few suggestions for new features for Morfli. The only suggestion that 

occurred more than once (three times) was for a commenting system, which is now being 

developed.  



 

6. Discussion 

 

This project reports on student perceptions of a major redesign of the introductory MSE course at 

a large private university to center around computational models. The redesign was rooted in the 

idea of restructurations, that the way we represent knowledge can have a profound impact on 

thinking and learning. Although a large literature on computational restructurations exists, this 

project was the first to attempt a full course redesign. It was not obvious at the outset that it 

would be feasible to do this without overloading students in a large lecture-based course. We 

have shown that with the right tools and pedagogy, not only is it feasible, but the response from 

students was overwhelmingly positive. 

 

The core of the course9s restructuration is using <one-to-many= computational techniques to 

represent and model materials science phenomena. Each computational technique can be used to 

model many phenomena, and each one embeds <powerful ideas,= in the language of 

constructionism, and important <cross-cutting concepts= and <core disciplinary ideas=, in the 

language of Next Generation Science Standards. Molecular dynamics (MD) is the most common 

computational technique in the course which is based on the core concepts of Newton9s laws and 

interatomic force/energy interactions. From the relatively simple rules of modeling each atom as 

a point mass which exerts a force on surrounding atoms, phenomena such as crystal structure, 

energy of point defects, mechanical properties, and dislocations emerge. Thus, in addition to 

foundational Newtonian physics, MD simulations continuously highlight the emergent nature of 

materials phenomena.  

 

The core tools used for the course were NetLogo and an interactive textbook platform called 

Morfli. NetLogo is a computational modeling platform designed to be <low threshold= and <high 

ceiling.= NetLogo code is relatively easy for novices to understand, and it enables the models to 

be interactive in real time as they run. The custom interactive textbook used to deliver the 

computational models enabled models, surrounding explanatory content and exercises to all be 

on one platform. This made it easy to engage students in more active learning than a typical 

course. 

 

Specifically, we used the constructionist learning cycle, a combination of constructionist 

microworlds with the original learning cycle, for designing activities around computational 

models. The learning cycle is based on the idea that students must go through a constructivist 

process to learn <science concepts of considerable explanatory power= [35, p. 78] but that most 

students will not discover these ideas on their own without some direct instruction. The learning 

cycle thus consists of three stages: (1) exploration, in which students explore a phenomenon on 

their own, (2) concept development/term introduction, in which the instructor helps students 

interpret their findings from the exploration and eventually introduces the scientific terms of the 

phenomenon, and (3) concept application, in which students apply the concept to a new situation. 

The constructionist learning cycle, introduced here, retains these three stages and uses 

computational microworlds (interactive computational models) in the exploration and/or the 

concept application stages. The overall approach is meant to strike a balance between student-

driven exploration of models and the targeting of specific learning outcomes. 

 



Based on the Likert-style questions, the answer to our first research question is that it is feasible 

to restructurate the introductory MSE course around computational models and maintain positive 

student experiences. Students had overwhelmingly positive experiences with the course, the 

interactive textbook, and the computational models. The large majority of students rated the 

course as more engaging than most STEM courses they had taken and their experience with the 

interactive textbook as good or great. A large majority also thought they learned more than in a 

typical course while only a small minority found it much more challenging than a typical course.  

 

Student responses to open-ended questions, revealed a number of important themes about student 

perceptions to the novel aspects of the course, specifically the interactive models and the 

interactive textbook. Most students preferred the model-based pre-lecture exercises over video 

lectures. The main two reasons for this preference were that they were (1) more interactive, 

engaging, or fun and (2) they helped students understand and visualize concepts better. For the 

minority of students who preferred video lectures, the main reason was they found videos easier 

to understand or found the models confusing. This suggest that that although the model-based 

exercises worked well for most students, additional scaffolding might be needed for some 

students.  

 

The reasons students liked the interactive textbook fell into four broad categories. First, students 

thought that the content was clear, well organized, concise, and comprehensive for the needs of 

the course. It was feasible to make the interactive textbook concise while still comprehensive 

with respect to the course because it was designed text specifically for our course, enabling us to 

cover everything we wanted without having superfluous material. The platform we used allows 

instructors to edit the text which would enable other instructors to adapt the text to be concise yet 

comprehensive with respect to their courses. Second, students enjoyed the interactive nature of 

Morfli, including both the embedded NetLogo models and the fact that solutions were 

immediately viewable after submitting answers to a question. These are features obviously not 

available for static textbooks. Third, students felt the interactive textbook was easy to use and 

helped them keep track of when pre-lecture assignments were due. Finally, students appreciated 

that the interactive models, explanatory text, and exercises were all in one place. In an age when 

software products are proliferating, students appreciate having a single website contain all these 

elements in one place. The main suggestions for improvements were very minor relating to typos 

in the text and that they wished the content of the interactive textbook was finished (at the time 

of the course, a few course topics had not yet been completed). 

 

6.1 Limitations and Future Work 

 

The study has a number of limitations. First, the students are from a selective private university. 

It is possible that the positive results reported here will not generalize to other student 

populations. Second, we did not collect data from a control group because our materials and 

questions evolved over a number of iterations, making it difficult to compare between groups. 

Third, this study does not study student learning outcomes. We plan to conduct future work to 

address these limitations by working with another professor to collect data on student learning 

and perceptions prior to using our materials and then again after implementing a version of our 

materials. 

 



7. Conclusion 

 

Basing the introductory MSE course around computational models aligns it with the larger trend 

of increasing computation in the field and4when using the right tools4harnesses the powerful 

learning affordances of computational representations, as described in restructuration theory. We 

redesigned the introductory MSE course using two main technological tools4NetLogo and 

Morfli4and one main pedagogical approach, the constructionist learning cycle. NetLogo is an 

easy-to-use yet powerful modeling platform which enabled to us to create interactive models and 

embed them in an online interactive textbook. Morfli is an interactive textbook platform which 

made it easy to engage students in constructionist learning cycles in which they first explore a 

computational model of a phenomenon, answer questions about it, and then receive explanations 

before further applying the new concepts. Our findings demonstrate that, at least with these tools 

and pedagogy, it is feasible to develop an introductory MSE course based around atomistic 

computational models and for the large majority of students to have very positive experiences 

with it, both in terms of engagement and perceived learning.  
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