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Abstract

The increasing realism of synthetic speech, driven by advancements in text-to-
speech models, raises ethical concerns regarding impersonation and disinforma-
tion. Audio watermarking offers a promising solution via embedding human-
imperceptible watermarks into Al-generated audios. However, the robustness of
audio watermarking against common/adversarial perturbations remains understud-
ied. We present AudioMarkBench, the first systematic benchmark for evaluating
the robustness of audio watermarking against watermark removal and watermark
forgery. AudioMarkBench includes a new dataset created from Common-Voice
across languages, biological sexes, and ages, 3 state-of-the-art watermarking meth-
ods, and 15 types of perturbations. We benchmark the robustness of these methods
against the perturbations in no-box, black-box, and white-box settings. Our findings
highlight the vulnerabilities of current watermarking techniques and emphasize the
need for more robust and fair audio watermarking solutions. Our dataset and code
are publicly available athttps://github.com/moyangkuo/AudioMarkBench.

1 Introduction

Recent advancements in text-to-speech (TTS) generative models enable generating highly realistic
synthetic audios that are indistinguishable from real human voices. However, this capability raises
significant concerns, such as malicious impersonation, dissemination of false information, or copy-
right infringement. For example, a scammer used synthetic audios to impersonate President Biden
in illegal robocalls during a New Hampshire primary election, and thus faces a $6 million fine and
felony charges [3]].

Audio watermarking [14} 3} [12] offers a promising approach to mitigate concerns about synthetic
audio authenticity. It embeds an imperceptible watermark into a synthetic audio using a watermark
encoder, outputting a watermarked audio. During detection, a watermark decoder extracts a watermark
from a given audio input. By comparing the extracted watermark with the ground-truth watermark,
one can determine the authenticity of the given audio.

Existing audio watermarking methods perform well when there are no perturbations added to
watermarked audios [[14} 3} [12]. However, real-world audios often undergo various perturbations.
Common perturbations include compression using standards like MP3 or Opus [[15] to reduce internet
transmission costs. Additionally, attackers may craft adversarial perturbations designed to deceive
watermarking methods. However, the robustness of audio watermarking against these perturbations
remains under-explored and lacks systematic benchmarking.

Our work: In this work, we aim to bridge the gap by introducing AudioMarkBench (Audio
Watermarking Benchmark), the first systematic and comprehensive benchmark for assessing the
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Figure 1: Summary of our AudioMarkBench.

robustness of audio watermarking. We focus on evaluating robustness against two types of pertur-
bations: watermark-removal perturbations, designed to make watermarked audio undetectable, and
watermark-forgery perturbations, which aim to falsely mark unwatermarked audio.

- Datasets: Other than the standard LibriSpeech dataset [[13]], we construct a new dataset AudioMark-
Data that meticulously sub-samples 20,000 audio samples from the Common Voice dataset [2],
striving to ensure balanced representation of biological sexes, languages, and age groups. Moreover,
our datasets provide not only watermarked/unwatermarked audios but also perturbed audios under
various perturbations, making it easier for future research to assess the the effectiveness of new
watermark-removal/forgery perturbations.

- Systematic benchmarking: We present the first systematic benchmark evaluating the robustness
of three state-of-the-art audio watermarking methods against 15 different watermark-removal/forgery
perturbations across two datasets. Twelve of these perturbations, termed “no-box” perturbations,
require no access to the watermarking method. These perturbations include common audio edits
like codec [[7, 16l [15] and audio filter, and noise addition such as white noise or background noise.
Additionally, We adapt two adversarial example methods [4, (1] in the black-box setting (i.e., access
to watermark detector API only) and one adversarial example method [10] in the white-box setting
(i.e., full access to watermarking model parameters) from image classifiers to audio watermarking.

- Findings: We make intriguing findings in our benchmark study. First, we confirm that
all studied audio watermarking methods can distinguish watermarked/Al-generated audios from
unwatermarked/non-Al-generated audios precisely when no perturbations are added. Second, exist-
ing audio watermarking methods can be vulnerable to watermark removal including certain no-box
perturbations (e.g., EnCodeC [7]), black-box perturbations with sufficient quota for API queries,
and white-box perturbations. Third, current audio watermarking techniques are effective at resisting
no-box and black-box watermark forgery, but vulnerable to white-box forgery. Fourth, existing audio
watermarking methods have robustness gaps among biological sex groups (female vs male) and
language groups under certain perturbations, flagging potential fairness issues. However, we do not
observe consistently significant robustness gaps across age groups.

2 Audio Watermarking Methods

An audio watermarking method consists of four key components: a watermark w, encoder Enc,
decoder Dec, and detector Det. The watermark w € {0,1}" is typically an n-bit bitstring, such
as an 16-bit bitstring 1110110110010110. Given any audio waveform s € R” and a watermark w,
the encoder Enc outputs a watermarked audio waveform s,, = Enc(w, s) € R”, where T denotes
the number of time samples in the waveform. For any audio waveform s, whether watermarked or
unwatermarked, the decoder Dec can extract a bitstring watermark Dec(s). When the audio waveform
s is watermarked with w, the extracted watermark Dec(s) should be similar to w. The detector Det
then uses the decoded watermark Dec(s), together with some additional information, to determine
if the given audio waveform s contains a watermark. In particular, Det(s) = 1 (Det(s) = 0)
means that s is detected as watermarked (unwatermarked), respectively. In this study, we examine
three state-of-the-art, open-source audio watermarking techniques: AudioSeal/AudioSeal-B [14]],



Timbre [12], and WavMark [3]]. We utilize the publicly available code and models of these methods
for our experimental analysis.

AudioSeal/AudioSeal-B: During watermark generation, AudioSeal uses a sequence-to-sequence
encoder Enc to generate the watermarked waveform s,, given any input audio waveform s and
a watermark w. During watermark detection, the decoder Dec gives two outputs given a suspect
waveform s: a global detection probability Ps indicating the likelihood that s is watermarked, and
the decoded watermark Dec(s). With a detection threshold 7, AudioSeal predicts Det(s) = 1 if
the detection probability P, exceeds 7, and 0 otherwise. AudioSeal-B, a variant of AudioSeal, uses
bitwise accuracy (i.e. the proportion of matching bits between two bitstrings) for detection instead.
Specifically, it predicts Det(s) = 1 if the bitwise accuracy between the decoded watermark and the
original watermark is at least 7: BA(Dec(s), w) > 7, and 0 otherwise.

Timbre: Given any input audio s, Timbre first transforms it into a spectrogram Cs = (as, ps)
using Short-Time Fourier Transformation (STFT), where a, is the amplitude and p; is the phase.
It then embeds the watermark w into as while keeping ps unchanged, producing the watermarked
audio s,, = ISTFT(Enc(as,w), ps), where ISTFT is the inverse STFT. For detection, given an audio
waveform s, STFT is first applied to obtain its spectrogram Cs = (as, ps), and then the decoder Dec
extracts a watermark Dec(a;) from the amplitude a,. The detector outputs Det(s) = 1 if the bitwise
accuracy BA(Dec(as),w) > 7, otherwise Det(s) = 0.

WavMark: Similar to Timbre, WavMark operates in the spectrogram domain by first transforming
an input waveform s to its spectrogram Cs = (as, ps) via STFT. It then embeds a preset synchro-
nization bitstring seyy. together with the watermark w into the whole spectrogram, i.e., producing
the watermarked audio s,, = ISTFT(Enc(Cs, s¢ne U w)) where U denotes bitstring concatena-
tion. For detection, given an audio waveform s, the decoder extracts a bitstring containing both a
decoded synchronization bitstring Dec(STFT(s))sync and watermark Dec(STFT(s)),, from its spectro-
gram. If the decoded synchronization bitstring Dec(STFT(s))sync = Ssync and the bitwise accuracy
BA(Dec(STFT(s)), w) > 7, then Det(s) = 1, otherwise Det(s) = 0.

Importance of determining a detection threshold 7: In real-world deployments, the detector
determines whether an audio waveform s contains a watermark or not by comparing metrics, such
bitwise accuracy, with the detection threshold 7. Thus, 7 controls a trade-off between False Positive
Rate (FPR) and False Negative Rate (FNR), where FPR (or FNR) is the likelihood of incorrectly
predicting an unwatermarked (or watermarked) audio as watermarked (or unwatermarked). A higher
7 reduces FPR but increases FNR. 7 can vary depending on the specific watermarking method and
we will further discuss selecting 7 in our experiments in Section 3]

3 Watermark-removal and Watermark-forgery Perturbations

Definitions: Audio watermarking faces two primary threats: watermark-removal perturbations,
which aim to strip watermarks from watermarked audios, and watermark-forgery perturbations,
which aim to forge watermarks for unwatermarked audios. Watermark removal allows Al-generated
audio to be falsely presented as genuine, potentially fueling disinformation campaigns. Conversely,
watermark forgery can mislabel authentic audio as Al-generated, undermining human creators’ ability
to claim ownership and potentially stifling human creativity.

- Watermark removal: Watermark removal aims to add a human-imperceptible perturbation vector
4 to a watermarked audio s,, such that the detector Det outputs O for s,, + §. Formally, finding § can
be formulated as the following optimization problem:

Oremoval = arg m(sin Det(sy +0) =0 st Q(sw+9) = Q(sw), (1)
where @ is an audio quality metric. The quality constraint ensures the audio quality to remain high
after adding the perturbation. The audio quality metric ) can be ViSQOL [9] or SNR.

- Watermark forgery: In contrast, watermark forgery attempts to add perturbation J to an unwa-
termarked audio s, such that the detector Det detects it as watermarked. Formally, finding § in
watermark forgery can be formulated as the following optimization problem:

Oforgery = arg rnain Det(s, +d) =1 st. Q(sy+9) =~ Q(sy). 2)



Both watermark removal and watermark forgery perturbations can be classified into three groups
based on the adversary’s knowledge of the watermarking method.

No-box perturbations: In no-box setting, the perturbations are crafted without any knowledge
of the audio watermarking method, including the architecture, parameters, or even the output of
the detector. These no-box perturbations are created blindly or even unintentionally to spoof the
watermarking detector for watermark removal/forgery. In our AudioMarkBench, we consider twelve
common audio editing operations as no-box perturbations, including Gaussian/background noises
and audio codecs like MP3, EnCodeC, SoundStream, Opus, efc. More details on these perturbations
can be found in Appendix

Black-box perturbations: In black-box setting, perturbations are created by interacting with the
watermarking detector Det as an oracle. Specifically, the attacker can choose audios to submit to
the detector and observe the detection result without any knowledge of how the detector operates
internally. We extend existing methods for finding black-box adversarial examples [4! [1] against
image classifiers to audio watermarking detectors. In particular, we apply them in waveform and/or
spectrogram domains. Next, we briefly describe how we extend them, and Appendix [A.3]shows more
technical details.

- HopSkipJumpAttack (HSJA) [4]: Given an audio s and access to a watermarking detector Det’s
output, HopSkipJumpAttack iteratively approximates Det’s decision boundary to find a minimal
watermark-removal/watermark-forgery perturbation 6. We implement this attack in both waveform
and spectrogram domains. In the waveform domain, perturbations are optimized in a 1-D vector
space, while in the spectrogram domain, both phase and amplitude (2-D vectors) are optimized. We
conduct 10,000 iterations in each domain, initializing perturbations with Gaussian noise.

- Square attack [1]: Given an audio s and access to a watermarking decoder Dec’s output, Square
attack iteratively finds the watermark-removal/watermark-forgery perturbation d by strategically
decreasing either the bitwise accuracy of Dec’s output or the global detection probability (for
AudioSeal). We extend Square attack from image domain to the spectrogram domain by treating a
spectrogram as an image. Note that Square attack is only applicable to the spectrogram domain (not
the waveform domain) since its input is a 2-D image/spectrogram. We perform Square attack under a
{~o-norm perturbation constraint for 10,000 iterations.

White-box perturbations: In white-box setting, the perturbations are crafted with full knowledge
of the watermark decoder Dec’s parameters and the ground-truth watermark w. In particular, the
perturbations are found via solving the optimization problems in Equation |l{and |2} The goal of
watermark forgery/removal perturbation is to increase/decrease the bitwise accuracy between the
decoded watermark Dec(s) and ground-truth watermark w (for Timbre, WavMark, and AudioSeal-B)
or the global detection probability (for AudioSeal). Therefore, for Timbre, WavMark, and AudioSeal-
B, we use the cross-entropy loss to minimize/maximize the distance between the decoded watermark
Dec(s + §) and ground-truth watermark w:

Lee = — Y _wilog(Dec(s + 6);) + (1 — w;) log(1 — Dec(s + 6);)

i=1

, where w; (or Dec(s + d);) is the i*" bit of w (or Dec(s + §)). For AudioSeal, we adopt the ReLU
activation applied between the global detection probability Ps and 7: L. = max(0, Ps — 7). We
use these loss functions to approximate the objective functions in Equation[Tjand[2} Appendix [A.4]
shows more details on how we solve the optimization problems to find white-box perturbations.

4 Datasets

Unwatermarked audio samples: Our AudioMarkBench includes two datasets of unwatermarked
audio samples, i.e., AudioMarkData and LibriSpeech [13]. AudioMarkData is a dataset we build
from the Common Voice dataset [2]. Each audio sample in AudioMarkData is associated with
three attributes, which are: language (25 languages), biological sex (male, female) and age (teens,
twenties, thirties, fourties). We use these attributes to benchmark whether watermarking methods
have different performance/robustness for audio samples with different attributes. For every attribute
group (language, biological sex, age), AudioMarkData samples 100 audio samples in 5 seconds with
sampling rate at 16kHz from Common Voice, resulting in 20,000 audio samples in total. Table



Table 1: Attributes of AudioMarkData. Details of languages are shown in Appendix

Attribute #Values Values #Samples per Value
EU, BE, BN, YUE, CA, ZH-CN, ZH-HK, ZH-TW,
Language 25 EN, EO, FR, KA, DE, HU, IT, JA, LV, MHR, FA, RU, 800
SW, ES, TA, TH, UK
Biological Sex 2 Male, Female 10,000
Age 4 Teens, Twenties, Thirties, Forties 5,000

summarizes the attributes of AudioMarkData. The LibriSpeech dataset contains over 1,000 hours
of read English speech derived from audiobooks in the public domain. We sampled 20,000 audio
samples with a maximum length of 5 seconds at the default 16kHz sampling rate. Note that audio
samples in LibriSpeech do not have attributes.

Watermarked audio samples: We apply each watermarking method (AudioSeal/AudioSeal-B, Tim-
bre, and WavMark) to embed a watermark into each audio sample. Note that AudioSeal/AudioSeal-B
use the same encoder and decoder, but different detectors. Specifically, we randomly sample a 16-bit
watermark for each watermarking method and embed it into each audio sample. In total, we create
20,000 watermarked audio samples for each watermarking method and each dataset.

Perturbed audio samples: We add watermark-removal (or watermark-forgery) perturbations to
watermarked (or unwatermarked) audio samples to create perturbed audio samples. These perturbed
audio samples will be used to measure the robustness of audio watermarking against watermark
removal/forgery. Specifically, we consider 12 categories of common no-box perturbations. For
each category of no-box perturbation, we utilize it to perturb the 20,000 unwatermarked audio
samples in each dataset and the 20,000 watermarked audio samples in each dataset and watermarking
method. Note that each category of no-box perturbations has certain parameter to control the level
of perturbation, and we use multiple parameter values (see Appendix[A.2). For the black-box and
white-box perturbations, due to limits of computation resources, we sample 200 unwatermarked
audio samples and 200 watermarked audio samples for each watermarking method in the LibriSpeech
dataset; and in AudioMarkData, we sample one unwatermarked audio sample and one watermarked
audio sample from each attribute group (language, biological sex, age), leading to 200 unwatermarked
audio samples and 200 watermarked audio samples for each watermarking method.

5 Benchmark Results

In the following section, we present our primary benchmark results and findings. We conduct our
experiments on 18 NVIDIA-RTX-6000 GPUs, each with 24 GB memory. The complete set of
experiments requires about 430 GPU-hours to execute.

5.1 Evaluation Metrics

We use FNR and FPR to evaluate the robustness of audio watermarking. Specifically, FNR/FPR
is the fraction of watermarked/unwatermarked audios that are incorrectly detected as unwater-
marked/watermarked. Lower FNR/FPR indicate better audio watermarking methods. When water-
marked audios (or unwatermarked audios) are modified by watermark-removal (or watermark-forgery)
perturbations, lower FNR (or FPR) indicates that the watermarking method is more robust against
watermark removal (or watermark forgery).

We evaluate the quality of perturbed audios using standard metrics including SNR and ViSQOL [9].
Signal-to-Noise Ratio (SNR) evaluates quality of a perturbed audio by comparing its level of noise
with the corresponding clean audio (called reference audio), where the reference audio is watermarked
(or unwatermarked) in watermark removal (or forgery). Higher SNRs indicate clearer and higher-
quality perturbed audios. ViSQOL, ranging from 1 to 5, evaluates audio quality by simulating human
perception of audios, where a higher score indicates the perturbed audio better preserves quality of
the reference audio. A ViSQOL score no smaller than 3 generally reflects good audio quality. We
mainly rely on ViSQOL for measuring audio quality because it is more reliable than SNR [9].

5.2 Results under No Perturbations

Figure [2] and Figure [0 (in Appendix) show the FPR and FNR of each watermarking method as
the detection threshold 7 varies on AudioMarkData and LibriSpeech datasets, respectively. No
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Figure 2: Detection results under no perturbations on AudioMarkData. We set the detection threshold
7 for each watermarking method as follows: AudioSeal 7 = 0.15, AudioSeal-B 7 = 0.875, WavMark
7 = 0.0, and Timbre 7 = 0.8125, to achieve FPR < 0.01 and FNR < 0.01. Results for LibriSpeech
are in Figure[J]in Appendix.
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Figure 3: Detection results under EnCodeC perturbations on both datasets (first row: AudioMarkData
and second row: LibriSpeech). Results of the other eleven no-box perturbations are in Appendix@

perturbations are added to watermarked/unwatermarked audios. We have three key observations.
First, FNRs of each watermarking method on both datasets are close to 0 for a wide range of detection
threshold 7, indicating that watermarked audios can be accurately detected as watermarked. Second,
FPRs of each watermarking method on both datasets decrease as detection threshold 7 increases.
This is because unwatermarked audios are less likely to be falsely detected as watermarked when
7 increases. Third, audio watermarking methods are very accurate at distinguishing watermarked
and unwatermarked audios when the detection threshold 7 is properly selected. For instance, when
7 = 0.15, both FPR and FNR of AudioSeal are almost 0 on AudioMarkData. For each watermarking
method, we choose the smallest detection threshold 7 that achieves both FNR and FPR lower than
0.01. The selected 7 for each watermarking method and each dataset is shown in the captions of
Figure [2] and Figure 0] In the rest of this paper, we will use these detection threshold 7 unless
otherwise mentioned.

5.3 Robustness against No-box Perturbations

Figure E] shows the FNR, FPR, SNR, and ViSQOL results of the watermarking methods against
EnCodeC perturbations on AudioMarkData and LibriSpeech datasets. Results of the other eleven
no-box perturbations can be found in Appendix [A.6]

Overall results: We have several key observations. First, state-of-the-art audio watermarks are robust
against several common no-box watermark-removal perturbations such as time stretch, low-pass,
high-pass, and echo. Specifically, while preserving the quality of watermarked audio samples well
(i.e., ViSQOL no smaller than 3), those perturbations have small impact on FNRs. This is because
these audio watermarking methods use adversarial training [8]], which considers various common no-
box perturbations, to train the encoders and decoders. Second, current audio watermarking methods
are not robust against no-box removal perturbations that are unseen during adversarial training. For
instance, when ViSQOL is no smaller than 3, EnCodeC, SoundStream, and Opus achieve very high
FNRs, indicating that those perturbations can remove watermarks from watermarked audios while
preserving the audio quality. Third, current audio watermarking methods have good robustness
against watermark-forgery perturbations. In particular, FPRs of all these watermarking methods are
almost always close to 0, except for quantization. Specifically, when bit levels are smaller than 32,
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quantization perturbation achieves a FPR larger than 0.2, but the audio quality is also compromised.
This is because forging a watermark is harder and may require knowledge of the watermarking model.
No-box perturbations do not have such information and therefore cannot forge a watermark. As we
will show in the next subsection, forging a watermark remains difficult even in the black-box setting.

Comparing watermarking methods: Considering performance against all no-box perturbations,
AudioSeal is the most robust against watermark removal and forgery among the evaluated water-
marking methods. In contrast, WavMark is the least robust. For instance, watermarks embedded by
WavMark can even be removed by Gaussian noise and MP3 compression without compromising the
watermarked audios’ quality. This stems from two reasons: 1) AudioSeal uses advanced sequence-to-
sequence models as encoder and decoder, which can output fine-grained localization of watermarks;
and 2) AudioSeal considers more diverse perturbations in adversarial training.

Comparing biological sex, language, and age groups in AudioMarkData: Figure [4|and more
results in Appendix show detection differences in biological sexes in terms of FNRs/FPRs.
First, watermarked audios with attribute “female” are less robust to watermark-removal Gaussian
noise perturbations (i.e., have higher FNRs) than those with attribute “male” for all the evaluated
watermarking methods especially AudioSeal-B. These results indicate a fairness gap of robustness
against watermark removal among “female” and “male” groups under Gaussian noise perturbations.
To rigorously test this gap, we conducte a two-tailed t-test with a null hypothesis positing no difference
in FNRs between "female" and "male" groups, at a significance level of a = 0.05. For Figure[4a] the
calculated p-value= 2.4 x 1076 < o = 0.05. Thus, the robustness gap between "female" and "male"
groups is statistically significant. Note that we did not observe such gaps for other watermark-removal
no-box perturbations except EnCodeC (Figure[I8)), Opus (Figure[I9), Quantization (Figure [20).

Second, unwatermarked audios with attribute “female” are less robust (i.e., have larger FPRs) to
watermark-forgery EnCodec perturbations than those with attribute “male” when AudioSeal is used.
We did not observe such gaps for other watermarking methods under EnCodec perturbations nor
other watermark-forgery no-box perturbations for all watermarking methods since FPRs are generally
close to 0 in those scenarios.

Figure[5]and results in Appendix[A.9|show detection differences in languages in terms of FNRs/FPRs.
We observe noticeable differences across languages. In particular, watermarked audios in Georgian
have relatively smaller FNRs against Gaussian noise, Background noise, and Quantization perturba-
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Figure 6: HSJA’s audio quality when optimizing watermark-removal perturbations in waveform or
spectrogram domain on AudioMarkData. The results on LibriSpeech are in Figure in Appendix.
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Figure 7: Detection results under white-box watermark-removal and watermark-forgery perturbations.

tions. We also observe that such differences may vary across different watermarking methods. For
instance, watermarked audios in Esperanto have smaller FNRs on AudioSeal but larger FNRs on
WavMark. We hypothesize that Esperanto, as an artificial language, may have specific characteristics
(e.g., phonetic patterns, speech dynamics) that interact differently with the watermarking detectors.

Results in Appendix [A.8] show detection differences in age groups in terms of FNRs/FPRs. We
observe no consistently significant differences across age groups.

5.4 Robustness against Black-box Perturbations

We find that audio watermarking methods have good robustness against existing black-box watermark-
forgery perturbations. In particular, existing black-box watermark-forgery perturbations substantially
sacrifice audio quality in order to forge watermarks. However, audio watermarking methods are not
robust to existing black-box watermark-removal perturbations when an attacker can query the detector
API for many times. In particular, they can remove watermarks from watermarked audios while
preserving their audio quality given sufficient number of queries to the detector API. When the number
of queries to the detector API is limited, audio watermarking methods have good robustness against
existing black-box watermark-removal perturbations. Next, we discuss results for watermark-removal
perturbations found by HSJA, and the results for Square attack are in Appendix[A.3]

Recall that HSJA guarantees that the found watermark-removal perturbations are successful while
iteratively optimizing them. Therefore, we evaluate the quality of the perturbed watermarked audios
when increasing the number of iterations/queries to the watermarking detector. We consider adding
perturbations to both waveform and spectrogram domains, and the results are shown in Figure [6]
First, in the waveform domain, quality of the perturbed audio does not improve with more iterations,
indicating that HSJA struggles to optimize perturbations in the waveform domain. This may be
attributed to HSJA’s design, which is tailored to attack image classifiers, potentially making it less
effective on 1-D audio waveform. Second, in the spectrogram domain, although initial audio quality
is inferior to those in the waveform domain, the audio quality improves significantly with more
iterations. Specifically, for AudioSeal-B, Timbre, and WavMark, while the SNR/ViSQOL scores are
slightly inferior to those in waveform domain under 100 iterations, after 10,000 iterations, the audio
quality is considerably better, with WavMark achieving SNR/ViSQOL of 40/4.5, and AudioSeal-B
and Timbre reaching approximately 30/4. AudioSeal has better robustness in both waveform and
spectrogram domains, maintaining SNR/ViSQOL scores below 10/3. Third, like no-box perturbations,
we observe that WavMark is least robust while AudioSeal is the most robust.

We also observe that watermarked audios with attribute “female” are less robust to watermark-removal
Square attack perturbations (i.e., have higher FNRs) than those with attribute “male” (see Figure



and more results in Appendix [A.7). Like no-box setting, we did not observe robustness gaps among
age groups in both black-box and white-box settings (discussed in the next subsection). Moreover, due
to computation resource limit, we sampled 200 audio samples in black-box and white-box settings,
leading to only 4 samples per language. Therefore, we did not study robustness across languages due
to the small-sample issue.

5.5 Robustness against White-box Perturbations

Figure |/| shows the detection results under white-
box perturbations, where the perturbations are con- 5.0
strained by SNR. We evaluate SNRs from 20 to 60, )
which correspond to ViSQOL scores from above 3 4.0
to 5 (see Figure @ In other words, our white-box O
perturbations preserve the audio quality. Our key ob- J 3.0
servation is that existing audio watermarking methods
are not robust to white-box watermark-removal and

> 2.0 ™ AudioMarkData
—a— LibriSpeech

watermark-forgery perturbations. For instance, FNRs 1.0
reach 1 for all watermarking methods when the SNR 20 30 40 50 60
of the perturbations is 20 (i.e., ViSQOL of 3.2 and SNR

3.9 on the two datasets). Moreover, all watermarking . . .
methods have high FPRs under white-box perturba- Figure 8: ViSQOL vs. SNR of white-box
tions that preserve audio quality. We also evaluate perturbations.

iterative Fast Gradient Sign Method (I-FGSM) [[11]]

in Appendix [A.TT]and get similar conclusion.

We also observe that watermarked audios with attribute “female” are less robust to watermark-removal
white-box perturbations (i.e., have higher FNRs) than those with attribute “male” (see Figure 22]and
more results in Appendix [A.7).

6 Discussions

Limitations: The major limitation of this work is that AudioMarkData contains 25 languages and 4
age groups due to the fact it’s sub-sampled from Common-Voice. We deem the collection of audios
with more diverse languages and age groups an important future direction.

Social impacts: Our AudioMarkBench evaluates the vulnerability of audio watermarks to removal
or forgery and has significant implications for the safe usage of audio generation/watermarking
techniques. First, watermark removal enables Al-generated audio to be disguised as authentic, poten-
tially fueling misinformation campaigns. Second, watermark forgery allows for false attribution of
Al-generated audio, undermining the ability of human creators to protect their work. By assessing
the robustness of audio watermarking techniques, our AudioMarkBench contributes to the develop-
ment of more secure watermarking systems, helping to mitigate the potential negative impacts of
Al-generated audio on society.

7 Conclusion

In this work, we introduce AudioMarkBench, the first systematic benchmark for evaluating the
robustness of audio watermarking against watermark removal/forgery. Our study, involving 3 state-
of-the-art methods and 15 perturbation types across 2 datasets (including our new AudioMarkData),
reveals that existing watermarking methods lack robustness under various no-box/black-box and
white-box perturbations. Additionally, we identify fairness issues, with robustness varying across
biological sex and language groups under certain perturbations. Our benchmark promotes further
research to enhance robustness and fairness in audio watermarking.
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Figure 9: Detection results under no perturbations on LibriSpeech. We set the detection threshold 7
for each watermarking method as follows: AudioSeal 7 = 0.1, AudioSeal-B 7 = 0.875, WavMark
7 = 0.0, and Timbre 7 = (0.8125, to achieve FPR < 0.01 and FNR < 0.01.
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Figure 10: HSJA’s audio qualities when optimizing watermark-removal perturbations in waveform or
spectrogram domains on LibriSpeech.

A Appendix

A.1 Details of 25 Languages in Our AudioMarkData
EU: Basque, BE: Belarusian, BN: Bengali, YUE: Cantonese, CA: Catalan, ZH-CN: Chinese-China,
ZH-HK: Chinese-Hong-Kong, ZH-TW: Chinese-Taiwan, EN: English, EO: Esperanto, FR: French,

KA: Georgian, DE: German, HU: Hungarian, IT: Italian, JA: Japanese, LV: Latvian, MHR: Meadow
Mari, FA: Persian, RU: Russian, ES: Spanish, SW: Swahili, TA: Tamil, TH: Thai, UK: Ukrainian.

A.2 Details of No-box Perturbations

We summarize the key parameter, its range, and a brief description for each of the 12 no-box
perturbations in Table[2]

Table 2: Details of no-box perturbations.

Perturbation Key Parameter K | Range of K Brief Description
Time Stretch Speed Factor [0.7, 1.5] Controls the playback speed of the audio
Gaussian Noise SNR (dB) [5, 40] Adds random noise constrained by SNR
Background Noise SNR (dB) [5, 40] Adds background noise constrained by SNR
SoundStream # Quantizers [4, 16] Neural network-based audio codec
Opus Bitrate (kbps) [16, 256] Widely used audio codec
EnCodec Bandwidth (kHz) [1.5,24.0] Neural network-based audio codec
Quantization Bit levels [4, 64] Converts audio signal to n bit level discrete values
Highpass Filter Cutoff Ratio [0.1,0.5] Filters out low frequency banks
Lowpass Filter Cutoff Ratio [0.1, 0.5] Filters out high frequency banks
Smooth Window Size [6,22] Applies a Gaussian smooth effect using 1-D convolution
Echo Delay (sec) [0.1, 0.9] Adds a decayed and delayed replay
MP3 Compression Bitrate (kbps) [8, 40] Widely used audio codec

A.3 Details of Black-box Perturbations

HSJA: Given an audio waveform s, to perform the Hop Skip Jump Attack (HSJA), an initial
adversarial example s + § must be provided, where ¢ is sampled using Gaussian noise in our
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experiment. We employ a greedy algorithm to determine the Gaussian noise that achieves the
maximum SNR while still successfully evading detection, ensuring that § is of minimal size.

For attacks directly targeting the audio waveform, s + J is used as the input, and ¢ is optimized using
the HSJA strategy. For attacks on the spectrogram, s + 9 is first transformed into a spectrogram
Cs1s = (asts,ps+s), where a and p represent the amplitude and phase, respectively. The attacker
then uses this spectrogram as the input for the attack.

Regarding gradient estimation within the HSJA algorithm, we initialize the number of estimations at
100 and set a maximum limit of 1,000 estimations. The attack proceeds through 10,000 iterations,
maintaining other parameters at their default settings as specified by the HSJA method.

Square attack: The Square attack is specifically designed to perform adversarial attacks on image
classifiers. Given a perturbation size, it leverages this boundary to try to evade the detector by lowering
the detection confidence. (In our setting, it is the global detection probability Pg or the bitwise
accuracy between the decoded and ground truth watermark.) The attack designs two individual
algorithms for optimizing based on /5 and ¢, perturbations. We conducted experiments on both
algorithms but only found the attack based on /., is effective. For optimizing /., perturbations,
the attack first crafts several vertical stripes as perturbations, then adds square-shaped perturbations
to perform the random search. Given its nature of attacking images, we extend it to attack the
spectrogram. To maintain uniformity, we also run 10,000 iterations and keep the parameters the same
as the default settings.

A.4 Sovling Optimization Problems in White-box Perturbations

Given a watermarked/unwatermarked audio waveform s,,/s,, white-box performs watermark re-
moval/forgery by optimizing a perturbation ¢ added to the audio waveform. Specifically, let s € RT
be the waveform in length 7', in white-box setting, we optimize the perturbation § € R7 to achieve
watermark removal/forgery. Detailed algorithms are shown in Algorithm [3|and Algorithm 4}

Algorithm 1 White-box loss: (s, w)

Input: audio s € R7T, ground truth watermark w € {0, 1}", decoder Dec, detection threshold T
Output: Loss ¢(s, w)
1: if use AudioSeal then

2: P, < Dec(s) > global detection probability
3: return £ = max(0, Py — 7)

4: else > use AudioSeal-B, Timbre, or Wavmark
5: decoded watermark Dec(s)

6:  return (= —>"  w;log(Dec(s);) + (1 — w;)log(1 — Dec(s);)

7. end if

Algorithm 2 Compute Scaling Factor fg(s,d, R)

Input: Signal s € R”, perturbation § € R”, preset SNR R
Output: Scaling factor 7

0 Ps ZiT:1 s;/T > signal power
Fs 23:1 o7/T > noise power
snr < 10 - log,((Ps/Ps)
if snr < R then > Need rescaling
r lo(Rfsnr)/l()
else
r+1
end if
return r

R A A T
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Algorithm 3 Optimizing White-box Watermark-removal Perturbations

Input: Watermarked audio s,, € RT, ground truth watermark w € {0, 1}", watermarking decoder
Dec, detection threshold 7, SNR restriction R, iteration ifer, learning rate «

Output Optlmal perturbation )

20:
21:
22:
23:

PPE'Q\H‘.J?.‘*.’!\??‘

0+ 0eRT
5+ 6
if use AudioSeal then
Q) « Ps(")
else
Q(-) + BA(Dec(+), w)
end if
Q <+ Q(su)
for ¢ < 1 to iter do
§+ 6 —a- Vel(sy,w
r < fr(Sw,0,R)
if r > 1 then
0« d/r
end if
if Q > O(sy + 9) then
(Aie 1)
Q « Q5w +9)
end if
if Q@ < 7 then
return &
end if
end for
return FAIL

)

> Initialize perturbation

> Initial optimization function

> use AudioSeal-B, Timbre, or Wavmark

> loss returned by Algorithm
> scaling factor returned by Algorithm

> early stopping

Algorithm 4 Optimizing White-box Watermark-forgery Perturbations

Input: Unwatermarked audio s,, € RT, forgery watermark wy € {0,1}", decoder Dec, detection
threshold 7, SNR restriction R, iteration iter, learning rate o

Output Optimal perturbation 5

9

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:

PPHQ\.‘{‘:'?P.’!\.’f

0+ 0eRT
5+ 46
if use AudioSeal then
else
Q(-) < BA(Dec(-),wy)
end if
Q <+ 9(sq4)
for ¢ < 1 to iter do
§ 0 — o Vsl(sy,wy)
r + fr(S4,d, R)
if r > 1 then
<+ 46/r
end if
if 9 < Q(s, + ) then
540
Q<+ Q(sy, +9)
end if
if @ > 7 then
return &
end if
end for
return FAIL

> Initialize perturbation

> Initial optimization function

> use AudioSeal-B, Timbre, or Wavmark

> loss returned by Algorithm
> scaling factor returned by Algorithm

> early stopping
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Figure 11: Square attack results of watermark-removal perturbations on AudioMarkData.
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Figure 12: Square attack results of watermark-removal perturbations on LibriSpeech.

A.5 Results for Square Attack

Figure [[T)and Figure[I2]shows the FNR results of three watermarking methods under Square attack
perturbations on our AudioMarkData and LibriSpeech, respectively. We observe that

A.6 Results for No-box Perturbations

Figure[13] Figure[T3] Figure[T4] Figure[I4]show FPR/FNR, SNR, and ViSQOL results on AudioMark-
Data and LibriSpeech under 11 no-box perturbations. We observe that SoundStream and Opus are
also effective watermark-removal no-box perturbations that can preserve good quality for original
watermarked audios via achieving high FNRs as well as ViSQOL scores higher than 3. Quantization
is an effective watermark-forgery no-box perturbation that achieves high FPRs while preserving
ViSQOL scores closed to 3.

A.7 Detection Differences across Biological Sexes

Figure[I7} Figure[T8] Figure[T9] Figure 20| Figure 21]and Figure[22]show the FNRs across biological
sex groups among different models and various perturbations. We observe significant differences of

robustness gaps between “female” and “male” biological sex groups. In our experiments, we find that
there is no evidence for significant differences across biological sexes under HSJA perturbations.

A.8 Detection Differences across Age

Figure Figure Figure show the FNRs on some effective no-box watermark-removal
perturbations. Figure[26| and Figure [27]show the FPRs on some effective no-box watermark-forgery
perturbations. We do not observe significant differences of robustness gaps among age groups persist
across all watermarking methods. For those settings having statistically significant differences in
terms of robustness gaps for age groups, we report their p-values in Table [3|and Table 4]
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Table 3: Two-tail test results for FNRs in different age groups against watermark-removal perturba-
tions. We consider significance level o = 0.05.

AudioSeal AudioSeal-B Timbre WavMark
Gaussian noice | 8.52e-12 (twenties, forties) 1.74e-3 (thirties, fourties) 2.08e-3 (twenties, forties) /
EnCodeC 1.36e-6 (twenties, forties) / / /
Opus / / / /

Table 4: Two-tail test results for FPRs in different age groups against watermark-forgery perturbations.
We consider significance level a = 0.05.

AudioSeal AudioSeal-B Timbre WavMark
EnCodeC 1.74e-4 (twenties, fourties) / / /
Quantization / 3.83e-2 (teens, thirties) / /

A.9 Languages Differences against Watermark-removal Perturbations

Figure[28] Figure[29] Figure[30]and Figure[31|show results of languages differences against watermark-
removal perturbations when using three audio watermarking methods. We observe significant differ-
ence on robustness gaps against some watermark-removal differences among different languages.

A.10 Results on FMA Music Dataset

We conducted additional experiments using the FMA music dataset [6]. Table[5]shows the results
without any perturbation; Table [6] shows the results under several no-box perturbations; Table[7]shows
the results under black-box attacks; and Table [§]and Table 9] show the results under white-box removal
and forgery attacks.

Table 5: Detection results under no perturbations on FMA.

(a) AudioSeal (b) AudioSeal-B

Tau 0.01 0.02 0.05 0.1 0.15 Tau | 0.625 | 0.6875 0.75 0.8125 | 0.875

FPR | 0.210 | 0.130 | 0.060 | 0.030 | 0.020 FPR | 0.080 0.010 | 0.010 0.000 | 0.000

FNR | 0.000 | 0.000 [ 0.000 | 0.000 | 0.000 FNR | 0.000 0.000 | 0.010 0.040 | 0.110

(c) Timbre (d) WavMark

Tau | 0.625 | 0.6875 0.75 0.8125 | 0.875 Tau 0.0 0.0625 | 0.125 | 0.1875 0.25
FPR | 0.100 0.000 | 0.000 0.000 | 0.000 FPR | 0.000 0.000 | 0.000 0.000 | 0.000
ENR | 0.000 0.000 | 0.000 0.010 | 0.030 FNR | 0.000 0.000 | 0.000 0.000 | 0.000

Table 6: Detection results (FNR/FPR) under background noise and time stretch on FMA.

(a) Background noise (b) Time stretch
SNR | AudioSeal | AudioSeal-B | Timbre | WavMark Stretch | AudioSeal | AudioSeal-B | Timbre | WavMark
5 .03/.01 .44/.00 .52/.00 .96/.00 0.7 .60/.01 .24/.01 .08/.00 41/.00
10 .00/.02 .26/.00 .25/.00 .68/.00 0.9 .45/.02 .19/.00 .04/.00 .20/.00
20 .00/.01 .04/.00 .04/.00 .07/.00 1.1 .251.02 .10/.01 .04/.00 .24/.00
30 .00/.01 .02/.01 .02/.00 .00/.00 1.3 .57/.01 .171.01 .12/.00 .571.00
40 .00/.01 .01/.00 .01/.00 .00/.00 1.5 .73/.02 .317.02 .13/.00 .84/.00
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Table 7: Results under black-box Square attack on FMA.

(a) AudioSeal (b) AudioSeal-B

fso Bound | FNR | SNR | ViSQOL lsc Bound | FNR | SNR | ViSQOL
0.05 0.0 24.85 4.57 0.05 0.15 | 24.85 4.55
0.1 0.0 18.84 4.33 0.1 0.25 18.83 4.29
0.15 0.0 15.33 4.14 0.15 0.45 15.33 4.08
0.2 0.0 12.83 3.96 0.2 0.55 12.85 3.91

(c) Timbre (d) WavMark

foo Bound | FNR | SNR | ViSQOL oo Bound | FNR | SNR | ViSQOL
0.05 0.0 25.68 4.79 0.05 0.0 25.96 4.81
0.1 0.07 19.66 4.58 0.1 0.67 19.63 4.70
0.15 0.14 | 16.14 4.39 0.15 1.0 16.18 4.58
0.2 0.21 13.66 4.22 0.2 1.0 14.52 4.52

Table 8: Detection results under white-box removal attack on FMA.

(a) AudioSeal (b) AudioSeal-B
SNR 20 30 40 50 60 SNR 20 30 40 50 60
FNR 1.00 0.85 0.35 0.00 0.00 FNR 1.00 1.00 0.95 0.50 0.00
(c) Timbre (d) WavMark
SNR 20 30 40 50 60 SNR 20 30 40 50 60
FNR 1.00 0.95 0.85 0.45 0.10 FNR 1.00 1.00 1.00 0.50 0.40
Table 9: Detection results under white-box forgery attack on FMA.
(a) AudioSeal (b) AudioSeal-B
SNR 20 30 40 50 60 SNR 20 30 40 50 60
FPR 1.00 1.00 1.00 1.00 1.00 FPR 1.00 0.95 0.90 0.40 0.30
(c) Timbre (d) WavMark
SNR 20 30 40 50 60 SNR 20 30 40 50 60
FPR 1.00 1.00 0.90 0.50 0.20 FPR 1.00 1.00 1.00 1.00 1.00

A.11 More Results on AudioMarkData

We applied [-FGSM as an additional white-box attack in Table In Table we show the results
for composed no-box perturbations including EnCodeC with 24kHz, MP3 with 16kbps, and Gaussian
noise with SNR of 20dB.

Table 10: Results for I-FGSM on AudioMarkData.

(a) Watermark removal (FNR)

(b) Watermark forgery (FPR)

SNR | AudioSeal | AudioSeal-B | Timbre | WavMark SNR | AudioSeal | AudioSeal-B | Timbre | WavMark
20 1.00 1.00 1.00 1.00 20 1.00 1.00 1.00 1.00
30 0.75 1.00 1.00 1.00 30 1.00 1.00 1.00 1.00
40 0.25 0.90 0.85 0.50 40 1.00 0.75 1.00 1.00
50 0.00 0.40 0.45 0.50 50 1.00 0.20 0.90 1.00
60 0.00 0.15 0.05 0.15 60 1.00 0.00 0.50 1.00

Table 11: Results for composed no-box perturbations.
(a) EnCodeC + MP3 (b) MP3 + EnCodeC (c) Gaussian noise + MP3
Method FNR | FPR Method FNR | FPR Method FNR | FPR
AudioSeal 0.99 0.00 AudioSeal 0.95 0.00 AudioSeal 0.09 0.00
AudioSeal-B 1.00 | 0.00 AudioSeal-B 1.00 | 0.00 AudioSeal-B | 0.65 0.00
Timbre 0.99 0.00 Timbre 0.96 0.00 Timbre 0.38 0.00
WavMark 1.00 | 0.00 WavMark 1.00 | 0.00 WavMark 1.00 | 0.00
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Figure 13: Detection results under eight watermark-removal no-box perturbations on AudioMarkData.
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Figure 14: Detection results under eight watermark-removal no-box perturbations on LibriSpeech.
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Figure 15: Detection results under another three watermark-removal no-box perturbations on Au-
dioMarkData.
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Figure 16: Detection results under another three watermark-removal no-box perturbations on Lib-
riSpeech.

19



1.0 1.0 1.0 1.0
—=— female

0.8 female | o8 0.8 0.8

0.6 0.6 £0.6 0.6

o4 o4 o4 o4

0.2 0.2 A 0.2 » 0.2

0.0 00535 20 30 40 %05 10 20 30 4o 0O

5 10 20 30 40 5 10 20 30 40
SNR SNR SNR SNR

(a) AudioSeal (b) AudioSeal-B (c) Timbre (d) WavMark

Figure 17: FNRs in biological sexes against watermark-removal Gaussian noise perturbations.
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Figure 18: FNRs in biological sexes against watermark-removal EnCodeC perturbations.
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Figure 19: FNRs in biological sexes against watermark-removal Opus perturbations.
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Figure 20: FPRs in biological sexes against watermark-removal Quantization perturbations.
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Figure 21: FNRs in biological sexes against watermark-removal Square attack perturbations.
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Figure 22: FNRs in biological sexes against watermark-removal white-box perturbations.
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Figure 23: FNRs in different age groups against watermark-removal Gaussian noise perturbations.
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Figure 24: FNRs in different age groups against watermark-removal EnCodeC perturbations.
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Figure 25: FNRs in different age groups against watermark-removal Opus perturbations.
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Figure 26: FPRs in different age groups against watermark-forgery EnCodeC perturbations.
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Figure 27: FPRs in different age groups against watermark-forgery Quantization perturbations.
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Figure 28: Language difference against watermark-removal perturbations. The watermarking method
is AudioSeal. Upper: Gaussian noise, Middle: Background noise, Lower: Quantization.
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Figure 29: Language difference against watermark-removal perturbations. The watermarking method
is AudioSeal-B. Upper: Gaussian noise, Middle: Background noise, Lower: Quantization.
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Figure 30: Language difference against watermark-removal perturbations. The watermarking method
is Timbre. Upper: Gaussian noise, Middle: Background noise, Lower: Quantization.
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Figure 31: Language difference against watermark-removal perturbations. The watermarking method
is WavMark. Upper: Gaussian noise, Middle: Background noise, Lower: Quantization.
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