

1 Investigating Frank Autism: Clinician Initial Impressions and Autism Characteristics
2 Rebecca R. Canale¹, M.S.; Caroline Larson, Ph.D.^{2,3}; Rebecca P. Thomas, Ph.D.⁴; Marianne
3 Barton, Ph.D.¹; Deborah Fein, Ph.D.¹; Inge-Marie Eigsti, Ph.D.¹

4
5 ¹Department of Psychological Sciences, University of Connecticut, 406 Babbidge Road, Storrs,
6 CT 06269, USA

7 ² Department of Speech, Language, and Hearing Sciences, University of Missouri, Columbia,
8 MO, USA

9 ³ Interdisciplinary Neuroscience Program, University of Missouri, Columbia, MO, USA

10 ⁴Developmental Medicine Center, Boston Children's Hospital, 300 Longwood Avenue, Boston,
11 MA 02115, USA

12
13 **Corresponding authors:** Rebecca Canale, M.S., University of Connecticut; Department of
14 Psychological Sciences; 406 Babbidge Road, Storrs, CT 06269, USA. Email:
15 rebecca.canale@uconn.edu; Telephone: 860-486-6021
16 Inge-Marie Eigsti, Ph.D., University of Connecticut; Department of Psychological Sciences; 406
17 Babbidge Road, Storrs, CT 06269; USA. Email: inge-marie.eigsti@uconn.edu; Telephone: 860-
18 486-6021
19 **Running head:** Clinician initial impressions and autism characteristics

20

Abstract

21 **Background:** “Frank autism,” recognizable through the first minutes of an interaction, describes
22 a behavioral presentation of a subset of autistic individuals that is closely tied to social
23 communication challenges, and may be linked to so-called “prototypical autism.” To date, there
24 is no research on frank autism presentations of autistic adolescents and young adults, nor
25 individuals diagnosed with autism spectrum disorder (ASD) in childhood who do not meet
26 diagnostic criteria during or after adolescence (loss of autism diagnosis, LAD). In addition, there
27 are currently no data on the factors that drive frank autism impressions in these adolescent
28 groups.

29 **Methods:** This study quantifies initial impressions of autistic characteristics in 24 autistic, 24
30 LAD and 26 neurotypical (NT) individuals ages 12 to 39 years. Graduate student and expert
31 clinicians completed five-minute impressions, rated confidence in their own impressions, and
32 scored the atypicality of behaviors associated with impressions; impressions were compared with
33 current gold-standard diagnostic outcomes.

34 **Results:** Overall, clinicians’ impressions within the first five minutes generally matched current
35 gold-standard diagnostic status (clinical best estimate), were highly correlated with ADOS-2
36 CSS, and were driven primarily by prosodic and facial cues. However, this brief observation did
37 not detect autism in all cases. While clinicians noted some subclinical atypicalities in the LAD
38 group, impressions of the LAD and NT groups were similar.

39 **Limitations:** The brief observations in this study were conducted during clinical research,
40 including some semi-structured assessments. While results suggest overall concordance between
41 initial impressions and diagnoses following more thorough evaluation, findings may not
42 generalize to less structured, informal contexts. In addition, our sample was demographically
43 homogeneous and comprised only speaking autistic participants. They were also unmatched for
44 sex, with more females in the non-autistic group. Future studies should recruit samples that are
45 diverse in demographic variables and ability level to replicate these findings and explore their
46 implications.

47 **Conclusions:** Results provide insights into the behavioral characteristics that contribute to the
48 diagnosis of adolescents and young adults and may help inform diagnostic decision making in
49 the wake of an increase in the demand for autism evaluations later than childhood. They also
50 substantiate claims of an absence of apparent autistic characteristics in individuals who have lost
51 the diagnosis.

52

53 **Keywords:** five-minute impressions, autism diagnosis, autism in adulthood, loss of autism
54 diagnosis, optimal outcomes, prototypical autism

55

56

Background

57 Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by persistent
58 deficits in social-emotional reciprocity as well as the presence of restricted and repetitive
59 behaviors and interests (RRBI) (1). In the *Diagnostic and Statistical Manual (DSM-V)*, ASD is
60 defined as a spectrum of behaviors marked by heterogeneous core and co-occurring features (1),
61 diagnosable according to behaviorally defined criteria (2) by trained clinicians. A full diagnostic
62 assessment involves several hours of expert clinician time and standardized assessments;
63 however, studies indicate that nearly all clinicians (97%) report forming an immediate, strong
64 impression of diagnostic status in many cases (3). Such impressions are generally consistent with
65 gold-standard diagnoses(4). This impression represents the distinct behavioral presentation of a
66 subset of autistic individuals, dubbed “frank autism,” purportedly recognizable within minutes.
67 The current study evaluates the consistency of frank autism impressions in adolescents and
68 young adults, including impressions of a group of individuals diagnosed early in life who no
69 longer display autism symptoms, and compares them to gold-standard diagnostic classifications.
70 We also characterize the behavioral factors that contribute to clinician impressions of autism, to
71 better understand how frank autism impressions relate to enduring, core symptoms, and discuss
72 how the presence of “frank autism” relates to the construct of “prototypical autism” (5). Note
73 that person-first and identity-first language will both be used in this manuscript to acknowledge
74 the diverse preferences within the autism community (6,7); in addition, we limit the use of
75 language consistent with the medical model of autism (e.g., “symptoms” and “deficits”) in our
76 discussion of diagnostic criteria.

77 ***Autism diagnoses and the role of frank autism impressions***

78 DSM-V ASD diagnostic criteria can differentiate autistic individuals from non-autistic
79 individuals and capture the wide variability within the autism spectrum (8). Indeed, autism is one
80 of the most reliable diagnoses in the DSM-V (9) with Kappa values from 0.60 to ≥ 0.80
81 (considered moderate to substantial agreement). A study assessing expert clinician team-based
82 diagnoses reported that some clinicians relied heavily on “feeling autism in the encounter,” along
83 with quality of collateral report from parents, to inform diagnostic decisions (10). However, a
84 study utilizing expert clinician consensus to evaluate the reliability of evaluations performed by
85 community clinicians without ASD-specific expertise found suboptimal agreement on diagnostic
86 status (11). Of the 87 children and young adults, ages 2-25 years, with community ASD
87 diagnoses, 23% were classified by expert clinician consensus as not autistic, illustrating a
88 discrepancy in diagnostic judgments based on available resources (e.g., time, access to diagnostic
89 tools, expert consultation, etc.) and clinician training.

90 In one study of frank autism, licensed psychologists watched 10-minute video clips of
91 another clinician administering the Autism Diagnostic Observation Schedule (12) to 42 toddlers
92 who had been flagged with possible ASD during screening (13). After watching a 10-minute
93 clip, clinicians indicated whether they would refer the child for a comprehensive ASD-specific
94 assessment; two referral decisions were made per child by different clinicians (84 total videos).
95 In this sample, 17 (61%) were referred by one or both clinicians for further ASD assessment and
96 ultimately diagnosed with ASD; seven (25%) were referred by one or both clinicians, but
97 ultimately diagnosed with language delays but not autism; and three (11%) were referred by one
98 or both clinicians, but ultimately found to be typically developing, indicating sensitivity of 0.61
99 and specificity of 0.82. Of the 57 videos for which neither clinician recommended an ASD-
100 specific evaluation, 11 (39%) were ultimately diagnosed with ASD (i.e., these cases were missed
101 by the observing clinicians). These findings suggest that trained clinicians can identify and

102 distinguish autistic symptoms from characteristics of other developmental delays in toddlers with
103 *some* accuracy, based on 10 minutes of behavioral observation. However, the high number of
104 false negatives suggests that this information alone is insufficient, at least in the case of toddlers.
105 Furthermore, the determination needed in a clinical evaluation requires not just ruling autism in
106 or out, but also differentiating between autism and other conditions – a significantly more
107 challenging endeavor.

108 A related study explored the initial impressions of trained clinicians for a sample of 294
109 children ages 1-4 years who were referred for a diagnostic evaluation after being flagged as at-
110 risk for autism on a brief parent-report screener (4). After five minutes of interaction during the
111 diagnostic evaluation, clinicians paused and indicated their initial diagnostic impression (ASD or
112 non-ASD) and rated their confidence in this initial impression. Results showed that 238 (81%)
113 initial clinical impressions were concordant with the final diagnosis; the autism cases were
114 judged more accurately than the non-ASD cases, with 86 (92%) of the ASD impressions
115 ultimately receiving an autism diagnosis, consistent with a frank autism phenotype. There was a
116 high false negative or “missed cases” rate: 49 (24%) cases initially viewed as *not* autism
117 ultimately received an ASD diagnosis; false positive rates were far lower (7%). Clinicians were
118 confident in their initial impressions, particularly for non-autistic cases, with an average
119 confidence rating of 3.74 out of 5. These results highlight the ability of trained clinicians to
120 detect ASD from brief behavioral observation, but underscore that some young autistic children
121 (e.g., 18% in this sample) would be missed by an initial diagnostic impression

122 A recent study by the same group (14) further explored what behavioral characteristics
123 informed diagnostic impressions within the first five minutes of interaction with 55 toddlers
124 (mean age = 22.9 months) referred for a developmental evaluation due to parent or pediatrician
125 concerns for autism-related behaviors. Junior (e.g., graduate student) and senior (e.g., PhD level)
126 clinicians were asked to rate their diagnostic impression (autistic or non-autistic), their
127 confidence in this impression, and what behaviors contributed to their impression. Consistent
128 with prior findings, clinicians rated 63% of cases that ultimately received an autism diagnosis as
129 autistic and 100% of cases that did *not* receive an autism diagnosis as non-autistic. Both junior
130 and senior clinicians relied on social reciprocity, nonverbal communication, and eye contact to
131 form accurate initial impressions. Additionally, senior clinicians relied on the child’s focus of
132 attention in forming accurate impressions of both autistic and non-autistic children, whereas
133 junior clinicians only relied on this behavior in forming accurate impressions of non-autistic
134 children. These results are the first to explore the behaviors that contribute to diagnostic
135 impressions during brief clinical interactions with young children.

136 ***Autism evaluations in adulthood***

137 The prevalence of first-time diagnostic evaluations of adolescents and adults has
138 significantly increased in the past decade, in part because of changes in awareness, diagnostic
139 criteria, and professional practice (15,16). The assessment of older individuals provides a unique
140 set of challenges that are not present when assessing young children. Typical diagnostic practice
141 relies heavily on parent or caregiver report of the early developmental history of the individual,
142 which may be difficult to obtain or inaccurately recalled years later (15,17,18); it can also
143 display “telescoping” effects, such that caregivers of individuals who currently display stronger
144 adaptive skills are more likely to recall more strengths and fewer delays in early development
145 (19). This lack of clear developmental history may force clinicians to rely more heavily on
146 current behavioral observation alone. This, in combination with the evidence that some clinicians
147 rely on less operationalized behavioral observations, by “feeling autism in the encounter” (10),

148 may lead some autistic adults to receive an official diagnosis of autism more readily than others.
149 To date, no studies have explored the behavioral factors that impact clinician impressions of
150 autistic adults.

151 ***Autistic characteristics and their impact on impressions***

152 Despite clinical and empirical evidence regarding the good reliability of brief initial
153 impression, the specific factors that contribute to this impression in adolescents and adults are
154 unknown. The initial study proposing frank autism (3) surveyed 151 clinicians with autism-
155 specific expertise about their representation and usage of this construct. Results showed that
156 nearly all (97%) believed that something like frank autism exists, and that they could determine
157 whether an individual fits the phenotype of frank autism in roughly the first ten minutes of
158 interaction or observation. The clinicians who were familiar with the construct estimated that
159 roughly 40% of the ASD population exhibits the frank autism phenotype. Clinicians also
160 reported that the most common specific behaviors associated with this phenotype included
161 impairments or atypicalities in reciprocity, vocal prosody, eye contact, motor mannerisms (such
162 as stereotypies), and gait or posture. These findings highlight factors that may impact initial
163 impressions during ASD diagnostic decision making. To date, no studies have empirically tested
164 the endorsements of these behaviors associated with correct or incorrect frank autism
165 impressions in adults.

166 Gestures, facial expressions, eye contact, vocal prosody, and social reciprocity have each
167 been implicated as atypical in autistic individuals, and relevant for difficulties with social
168 functioning. Compared to neurotypical peers, autistic individuals produce semantically,
169 pragmatically, and motorically atypical gestures (20–25), as well as atypical facial expressions
170 (26,27), eye contact (28), and vocal prosody (29,30). Together, these characteristics may
171 negatively impact autistic individuals' social interactions and elicit impressions of social
172 awkwardness from naïve observers (26,27,29,31). Initial impressions for expert clinicians and
173 naïve laypeople may reflect similar processes, despite differences in rater goals (e.g., motivation
174 to engage in future social interaction, versus clinical motivation to arrive at an accurate
175 diagnosis) and the nature of ratings (Likert scales measuring the likeliness that an individual has
176 friends versus binary diagnostic ratings).

177 In summary, the construct of frank autism is widely assumed in clinical practice and is
178 relevant for initial impressions of behavioral atypicalities in non-clinical settings. As such, it is
179 important to establish which behavioral factors contribute to this impression, as they likely have
180 implications for diagnostic decision making (e.g., who is ultimately diagnosed with autism), as
181 well as clinical management.

182 ***Loss of autism diagnosis***

183 Although developmental disorders are typically seen as life-long conditions, a series of
184 studies has identified and characterized a group of individuals who were diagnosed with autism
185 in childhood but who no longer meet DSM-V criteria in adolescence, based on ADOS-2
186 observations, parent and child symptom report, and clinical best estimate. Estimates suggest that
187 3-25% of children diagnosed with ASD in early childhood fall into this category (32) by
188 adolescence, although a recent study reported that 37% of toddlers diagnosed with ASD lost the
189 diagnosis by early school age (33). Our research team has extensively studied these types of
190 individuals (34). Findings indicate that in early development, the "loss of autism diagnosis"
191 (LAD) group had milder symptoms in the social domain, compared to an age-matched currently
192 autistic group, but equally significant difficulties with communication and repetitive behaviors,
193 including the presence of early language delays. Tests of current functioning indicated that,

194 compared to age- and IQ-matched children with a current autism diagnosis and with neurotypical
195 (NT) children with no history of autism, the LAD group had typical or above-average scores on
196 standardized and experimental assessments of language (35–39), social skills (40,41), and
197 restricted and repetitive behaviors (42). To date, no studies have explored frank autism in LAD,
198 and whether these individuals present with subtle or overt frank autism behaviors during initial
199 interactions; findings would help to establish the degree to which these individuals continue to
200 display subtle behavioral characteristics of autism. More broadly, understanding frank autism in
201 LAD may be useful in addressing controversies about the nature of the autism diagnosis (43,44).
202 For example, Mottron and colleagues have suggested that developing more constrained
203 diagnostic criteria for autism, informed by strong developmental history data, would facilitate
204 clinical ascertainment and homogeneity of research samples (5,45).

205 ***The current study***

206 The current study had three pre-registered aims (see
207 https://osf.io/5tkrn/?view_only=1f0b6bf70d7d4bab9ebf22da7603e647). Our first aim was to
208 evaluate group (autism, LAD, NT) differences in frank autism impressions made by seven
209 graduate-level (clinical psychology PhD student) and two expert PhD-level clinicians as a
210 predictor of current gold-standard diagnosis in an adolescent and young adult sample. Based on
211 prior studies of LAD and autism, we predicted significantly reduced ASD-like impressions in the
212 LAD and NT groups relative to the autism group, and significant positive correlations between
213 initial impressions of frank autism and ADOS-2 Calibrated Severity Scores (CSS).

214 Second, drawing on the prior frank autism studies of young children, we asked which
215 behaviors were the most salient contributors to frank autism impressions, by assessing rates of
216 atypicality in gesture, eye contact, motor mannerisms, prosody, facial expressions, attentional
217 focus, and shifting attention (including perseverative thinking and distractibility), social
218 reciprocity, and social initiations. We predicted significantly higher (more atypical) ratings for
219 gesture, eye contact, motor mannerisms, prosody, facial expressions, and social reciprocity. We
220 also predicted that attentional focus and social initiations would be similar across groups, as prior
221 literature typically implicates these more infrequent behaviors (that may be difficult to perceive
222 during a brief encounter) as less consistently associated with a frank autistic presentation.

223 Third, we hypothesized high overall confidence (e.g., 3 or above on a scale of 1-5) in
224 initial impressions, with higher ratings for NT individuals that had never received an autism
225 diagnosis (based on Wieckowski et al., 2021). We also predicted that the confidence ratings for
226 the LAD group would be significantly lower than both the ASD and NT groups due to possible
227 subclinical social impairments. We hypothesized that higher confidence would be significantly
228 associated with eye contact, motor mannerisms, prosody, and social reciprocity, but not gesture,
229 facial expressions, focus/shifting of attention, or social interactions.

230 **Methods**

231 ***Participants***

232 This study included participants from a larger study of long-term outcomes in autism.
233 Participants who had completed the Autism Diagnostic Observation Schedule-2 (46) were
234 included in the present study. The sample included currently autistic participants ($n = 24$; 7
235 females), participants with a history of ASD who no longer met diagnostic criteria (LAD; $n = 24$;
236 5 females), and participants with a neurotypical developmental history (NT; $n = 26$; 15 females).
237 Participant details are summarized in Table 1. The groups did not differ on age, race/ethnicity,
238 mean household income, verbal skills as measured by Penn Verbal Analogies, or nonverbal skills
239 as measured by Penn Matrix Reasoning.

240 As expected, the ASD group had higher ADOS-2 scores. The LAD group had marginally
 241 higher ADOS-2 CSS scores than the NT group, though the means of both groups fell well below
 242 the autism threshold. The ASD and LAD groups had more males than the NT group; no
 243 participants identified with a gender other than male or female.

244 **Table 1.**245 *Participant characteristics*

	ASD (n = 24)	LAD (n = 24)	NT (n = 26)	F/χ²	Post-hoc comparison
Age (yrs)	21.22(4.50)	22.72(3.71)	22.74(6.41)	1.02	
M:F *	17:7	19:5	11:15	8.14	ASD=LAD >NT
Race	Native Amer = 0 Asian/Pacific Islander = 1 African Amer = 0 White = 22 Multiracial = 1 Not reported = 1 Latinx = 1	Native Amer = 0 Asian/Pacific Islander = 0 African Amer = 0 White = 21 Multiracial = 1 Not reported = 1 Latinx = 0	Native Amer = 0 Asian/Pacific Islander = 1 African Amer = 0 White = 21 Multiracial = 0 Not reported = 4 Latinx = 2	2.01	
Ethnicity	Not Latinx = 18 Not reported = 6	Not Latinx = 19 Not reported = 4	Not Latinx = 18 Not reported = 6	2.05	
Household income (\$)	90,833(19,497)	98,611(5,892)	87,333(26,795)	10.65	
Penn Matrix Reasoning	18.85(4.34)	20.03(4.14)	20.32(2.64)	1.04	
Penn Verbal Analogies	7.07(1.94)	7.71(1.44)	7.59(1.84)	1.01	
ADOS-2 CSS***	7.54(1.67) 6-10	1.75(0.85) 1-3	1.27(0.60) 1-3	235.70	ASD> LAD>NT

246 *Note.* Data are presented as M(SD), range, or as count variables. Amer = American. Penn Matrix
 247 Reasoning and Penn Verbal Analogy scores represent “efficiency,” a composite of accuracy and
 248 RT. ADOS-2 CSS= Autism Diagnostic Observation Schedule-2 Calibrated Severity Score. ‡ p <
 249 .10, *p < .05, **p < .01, ***p < .001.

250 Inclusion criteria were based on the aims of a larger study and thus reflect goals of that
 251 project (not discussed here). Criteria thus required: no history of intellectual disability, per parent
 252 report; current cognitive abilities in the normal range, and scores > 77 on the Vineland
 253 Adaptive Behavior Scales-3 (47), a parent-report measure of adaptive functioning; no
 254 uncorrected visual or hearing impairments; and no severe psychiatric disorders (e.g., bipolar
 255 disorder or schizophrenia). Participants with other, less severe, co-morbid psychiatric disorders
 256 such as anxiety, depression, and/or attention deficit/hyperactivity disorder were included in the
 257 study. Diagnostic evaluation of such conditions was completed via structured clinical interview
 258

259 and self-report as part of the larger diagnostic battery; further discussion of these data is outside
260 the scope of this paper. Inclusion in the autism group required an ASD diagnosis prior to age five
261 years, documented in a written report by a clinician specializing in autism, as well as the
262 presence of early language delay (first words after age 18 months or first phrases after 24
263 months). In addition, participants in the autism group had to meet criteria for current ASD based
264 on ADOS-2 scores and best estimate clinical judgement. Inclusion in the LAD group required
265 similar early diagnostic criteria as for the autism group; in addition, participants could exhibit no
266 or minimal current symptoms of ASD, as measured by the ADOS-2 and expert clinical
267 judgement, and had to participate in mainstream educational or occupational environment with
268 no ASD-related accommodations. Inclusion in the NT group required no history of
269 developmental disorder per parent report, no first-degree relatives with an ASD diagnosis, and
270 no or minimal current symptoms of ASD based on the ADOS-2 and expert clinical judgement.

271 Participants were recruited via their participation in prior studies of ASD, through
272 clinician referrals, posts on social media, flyers distributed at schools and organizations that offer
273 services for autistic individuals and their families, at local schools, libraries, and community
274 centers, a university registry of diverse community members interested in research participation,
275 and by snowball recruitment (e.g., asking participants to nominate other potential participants).

276 **Procedures**

277 Participants completed a comprehensive testing battery to confirm diagnostic status,
278 including the ADOS-2 (46) and a parent interview. ADOS-2 administrations were conducted in
279 person or via a validated online protocol (48), and were recorded for later review. In-person
280 participants completed the standard ADOS-2 Module 4 administration, while online participants
281 completed a modified version that excluded the puzzle task and the break. Autism diagnosis
282 required an ADOS-2 raw score of 8 or greater and expert clinical judgement of autism based on
283 behavioral observation. All ADOS-2 recordings were reviewed by a licensed clinical
284 psychologist with autism expertise to confirm diagnostic status. Participants completed
285 additional measures (including a detailed psychiatric interview) not relevant to the current study.

286 To measure frank autism impressions, seven graduate students (Clinical Psychology
287 Ph.D. students) and two expert Ph.D.-level clinicians reviewed the recording of the first five
288 minutes of the diagnostic session, comprising discussion of the visit agenda, set up, small talk,
289 and, in some cases, a minute of the first structured ADOS-2 activity (the Tuesday story). The
290 graduate clinicians all established ADOS-2 reliability with a research-reliable licensed
291 psychologist; this group also included a post-doctoral speech-language pathologist fellow with
292 autism experience. The graduate clinicians also conducted the ADOS-2 assessments, though it is
293 important to note that they did not complete frank autism impression for any participant for
294 which they conducted the diagnostic study visit. Expert Ph.D.-level clinicians were faculty
295 members with decades of experience in autism assessment and diagnosis. Each ADOS-2
296 recording was reviewed by two graduate clinicians and one expert clinician, for a total of three
297 raters per recording; clinicians did not watch their own administrations. Graduate clinicians each
298 reviewed 21-23 recordings, and expert clinicians each viewed 37-38 recordings. All clinicians
299 were blind to group status prior to viewing the recordings. After reviewing the five-minute video,
300 clinicians completed a Five-Minute Impressions Form (49); see Appendix A. The form captured
301 participant details (e.g., date of evaluation, date of review, identity of examining clinician and
302 rater), as well as eight behaviors: gesture, eye contact, motor mannerisms, prosody and
303 vocalizations, facial expressions, attention focus and shifting (including perseverative thinking
304 and distractibility), social reciprocity, and social initiations. Each item was assigned an item-

305 level Score on a 0 - 2 Likert scale, with "0" representing typical or expected behavior in the
306 category, "1" representing mildly atypical behavior, and "2" representing definitely atypical
307 behavior; this scoring structure is analogous to that used in the ADOS-2. Raters were instructed
308 to respond to all items. If an item did not inform their impression, they were instructed to score
309 that item as 0 and make a note; this score was subsequently converted to a 9, indicating that the
310 item did not contribute to the overall impression, and was not included in the total score
311 calculation. Items were scored based on the rater's observations and their clinical knowledge of
312 typical age-appropriate behavior in that context. Items were summed to form an initial
313 impression total score ranging from 0 (no atypical behaviors detected) to 16 (definitely atypical
314 behavior in eight items). Raters provided initial impressions (autistic or non-autistic) and rated
315 their confidence in this diagnosis from 1 (not very confident) to 5 (extremely confident). Initial
316 impressions from the three raters were averaged, with 0.0 indicating non-autism and 1.0
317 indicating autism; intermediate scores thus indicated disagreement among the three raters.
318 Confidence scores were also averaged across the three raters.

319 The Five-Minute Impressions Form was based on Wieckowski et al.,(2021) and Thomas
320 et al., (2024) and modified for use in adolescent and young adult populations via discussions
321 with a large study team including expert clinicians and clinicians in training. A pilot form was
322 employed in evaluations of 10 participants, and further refined via discussion with the study
323 team. Inter-rater reliability scoring for initial impressions of three participants was exceptionally
324 high (Cronbach's alpha =1.0). Training was performed to ensure adequate agreement on the
325 definition of each item-level behavior. Inter-rater reliability for item-level characteristics was not
326 performed during this initial validation, as we expected variability across individual raters as to
327 which behaviors contributed to their initial impressions.

328 **Measures**

329 Participants completed a battery of measures as part of the larger study, a subset of which
330 were included in the present study analyses. Participants and parents or caregivers completed an
331 online Qualtrics survey probing sociodemographic information of the participant including race
332 and ethnicity, sex assigned at birth, and yearly gross family income.

333 *ADOS-2.* The Autism Diagnostic Observation Schedule, Second Edition (46) Module 4,
334 served to confirm diagnosis and to provide a measure of autism-related behavioral
335 characteristics. The ADOS-2 consists of a series of semi-structured tasks designed to elicit
336 social, communicative, and repetitive and stereotyped behaviors relevant to the ASD diagnosis.
337 Module 4, chosen based on developmental level, includes 32 scorable items, scored from 0
338 (typical) to 3 (definitely atypical). Item scores are used to calculate two Domain Scores (Social
339 Affect and Restricted and Repetitive Behaviors), and to calculate the ADOS-2 Overall Total and
340 Calibrated Severity Score (CSS). A CSS of eight or more suggests an ASD diagnosis. The
341 ADOS-2 CSS is a reliable index of the severity of autism symptoms for each module and yields
342 greater sensitivity and specificity than the ADOS-2 Module 4 raw scores (sensitivity = 89.6 (raw
343 scores) and 90.5 (CSS); specificity = 72.2 (raw scores) and 82.2 (CSS); (50). ADOS-2
344 classifications have good concurrent validity with clinical best estimate of ASD diagnoses (50).
345 This study used the CSS from administration of the Module 4 revised algorithm, along with
346 information from participant evaluations performed early in development to inform clinical
347 judgment.

348 *Cognitive ability.* Participants completed two tasks from the Penn Computerized
349 Neurocognitive Battery (CNB); (51). The Penn CNB, modeled on standardized
350 neuropsychological tests, provides a reliable online estimate of cognitive functioning in a five-to-

351 eight-minute test. Cronbach's alphas for subtests range from moderate to high (0.78-0.97) with
352 high internal consistency for speed (alpha = 0.78-0.98) and moderate internal consistent for
353 accuracy (alpha = 0.55-0.95); (52). Subtests included in this study were the Abbreviated Verbal
354 Reasoning Test, in which participants answer multiple choice questions about verbal analogies,
355 and the Matrix Reasoning Test, in which participants complete visual puzzles. The Abbreviated
356 Verbal Reasoning test has high concordance with the full Penn verbal reasoning battery,
357 $R^2=0.90-0.92$ (53). The Matrix Reasoning Test forms part of the Nonverbal Reasoning domain; it
358 was found to load appropriately in both exploratory and confirmatory bifactor analyses (loading=
359 0.32-0.49); (54). Following standard procedures (52), we transformed accuracy and RT into an
360 efficiency score, calculated as percent accuracy divided by log RT, to yield individually
361 interpretable scores.

362 ***Planned analyses***

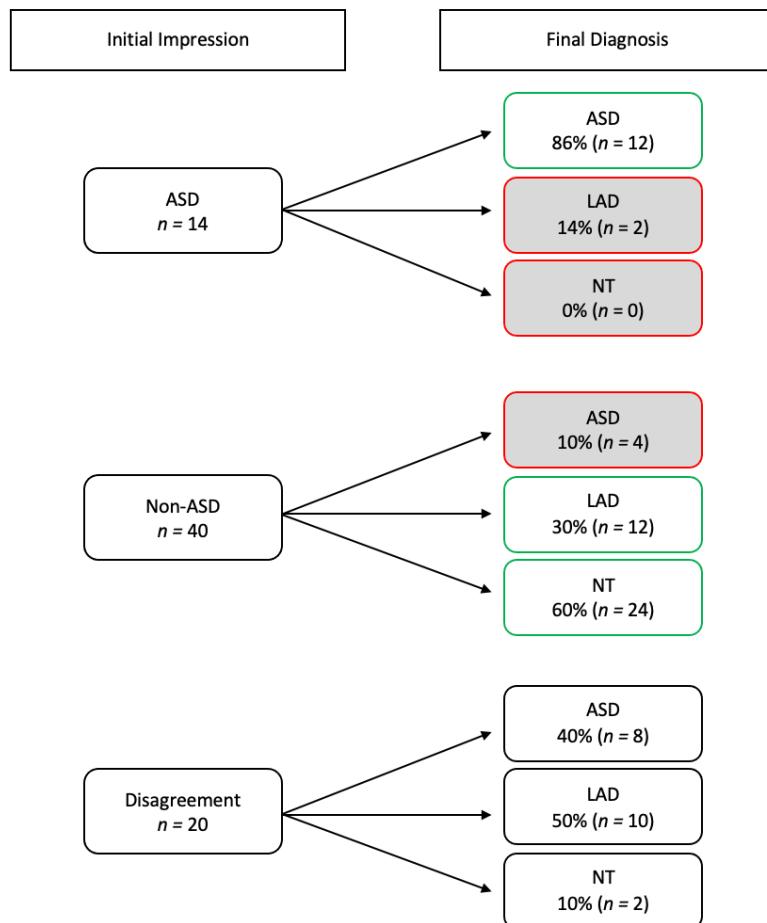
363 We used frequentist statistics in R-Studio (55) to test each research question. Significance
364 values were Bonferroni corrected for multiple comparisons. Across analyses, we evaluated 3-
365 group comparisons (group), as well as comparing the autism group to the groups with a non-
366 autism outcome (LAD, NT). First, *t*-tests were used to assess significant differences in accuracy
367 (e.g., concordance of initial impression with final diagnostic classification of ASD or non-ASD)
368 for graduate versus expert PhD level clinicians. Sensitivity, specificity, positive predictive value,
369 and negative predictive value were calculated and *t*-tests were used to evaluate differences in
370 accuracy and total score by diagnostic status (e.g. ASD, non-ASD). Analysis of variance models
371 (ANOVA) evaluated group differences (e.g., ASD, LAD, NT) in total score and accuracy, with
372 post-hoc two-way comparisons for any significant results. The relationship between total score
373 and ADOS-2 CSS was assessed using a generalized linear model collapsed across groups.

374 To evaluate behavioral factors that contribute to initial impression, analysis of variance
375 models were used to compare item-level factors (e.g., gesture, motor mannerisms, eye contact,
376 prosody and vocalizations, facial expressions, focus/shifting of attention, social reciprocity, and
377 social initiations) by group, with post-hoc two-way comparisons for any significant results.
378 Within groups, Pearson correlations assessed the relationship between item-level and initial
379 impression. To assess which item-level best predicted initial impression scores, a generalized
380 linear model was used with each item-level score added as a predictor in the model.

381 Analysis of variance models were used to compare initial impression confidence across
382 groups, with post-hoc group two-way comparisons for any significant results. There was no
383 missing data across all variables utilized in the proposed analyses.

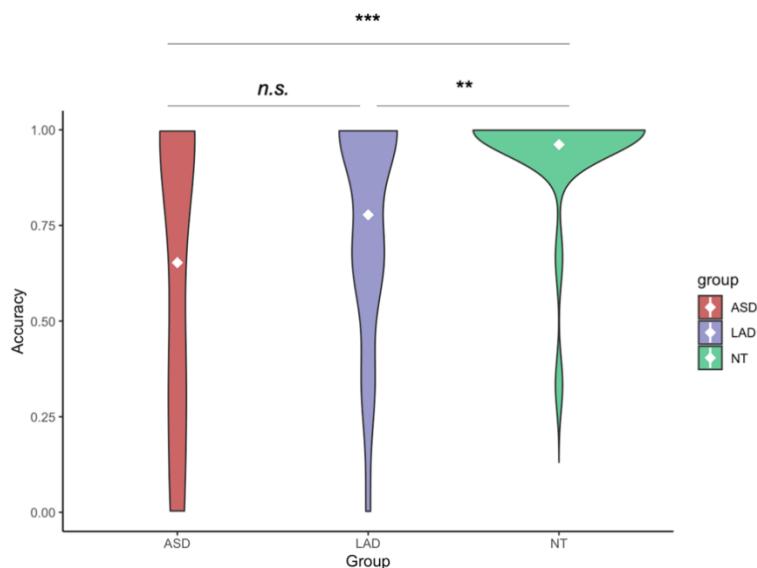
384 **Results**

385 ***Preliminary analyses***


386 We compared the impression accuracy of graduate and expert clinicians (79% and 78%,
387 respectively), which did not differ, $t = 0.107, p = 0.92, d = 0.02$. Total scores also did not differ
388 by expertise, $t = 0.447, p = 0.66, d = 0.07$. As such, all ratings were collapsed, and mean ratings
389 were used for all subsequent analyses. Similarly, we evaluated accuracy and total score as a
390 function of modality (videoconference, $n=68$, versus in-person, $n=6$). There was no difference
391 by modality for accuracy, $t = 0.389, p = 0.7, d = 0.22$, or total score, $t = -1.081, p = 0.32, d =$
392 0.58, and session modality was collapsed for all subsequent analyses.

393 ***Accuracy of initial impressions***

394 Initial impressions across the three raters were generally concordant with final diagnosis
395 (79% accurate). Of those with an initial impression of ASD ($n = 14$), 86% were in the final ASD

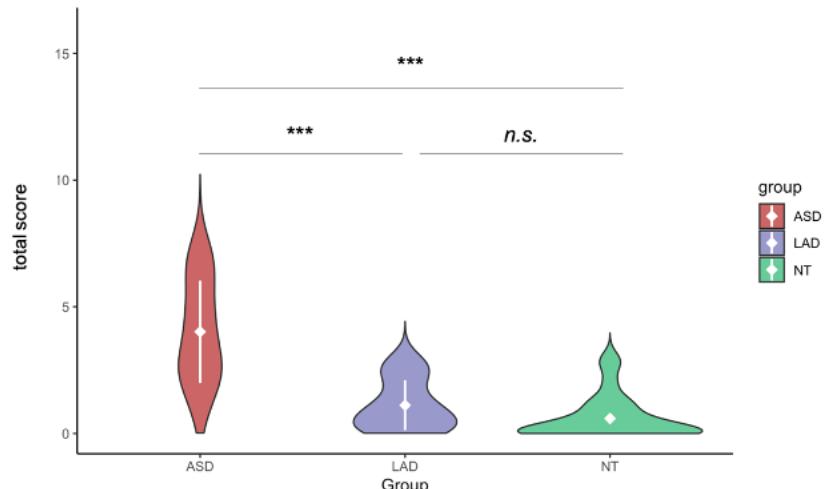

396 group, 14% were in the LAD group, and 0% were in the NT group, resulting in an overall
 397 accuracy of 86%; Figure 1. Of those with a non-ASD initial impression ($n = 40$), 10% were in
 398 the ASD group, 30% were in the LAD group, and 60% were in the NT group, resulting in an
 399 overall accuracy of 90% (LAD and NT groups combined). Of those who received initial
 400 impressions of both ASD and non-ASD from the three raters (e.g., those for whom clinicians
 401 disagreed in initial impressions; $n = 20$), 40% were in the ASD group, 50% were in the LAD
 402 group, and 10% were in the NT group. Accuracy was greater for non-autistic participants, $t = -$
 403 7.319, $p = 0.03$, $d = 0.63$. The three groups differed in accuracy, $F(2, 71) = 6.9$, $p = 0.002$.
 404 Specifically, initial impressions were significantly more accurate for the NT group compared to
 405 the ASD group, $t = -3.582$, $p = 0.001$, $d = 1.05$, and the LAD group, $t = -3.122$, $p = 0.004$, $d =$
 406 0.23; see Figure 2. Accuracy for ASD and LAD groups did not differ, $t = -0.793$, $p = 0.43$, $d =$
 407 0.91.

408 **Figure 1.**
 409 *Accuracy of initial impressions*

410
 411 *Note.* Matches between clinician's initial impressions and group are highlighted in green with an
 412 unshaded box; mismatches are shown in red with shaded boxes. Disagreement = differences in
 413 initial diagnostic impression (ASD versus non-ASD) among the three raters.

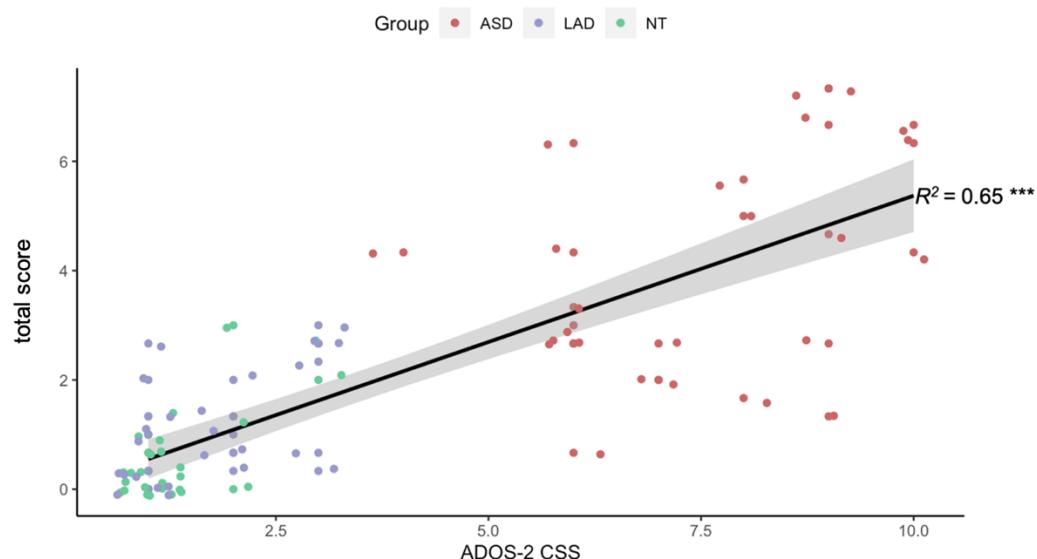
414 **Figure 2.**
 415 *Initial impression accuracy by group*

416
 417 *Note.* Violin plot of initial impression accuracy by group. White diamonds indicate the mean.
 418 $** p < 0.01$, $*** p < 0.001$.


419
 420 Each individual rater's initial impressions were used to calculate sensitivity (the
 421 proportion of individuals with a final diagnosis of autism who were judged autistic on initial
 422 impression; that is, initial impression true positives divided by final diagnoses of autism),
 423 specificity (the proportion of individuals with a final diagnosis of non-autism who were judged
 424 non-autistic on initial impression), positive predictive value (PPV; the likelihood that an
 425 individual with initial impressions of autism would receive a final diagnosis of autism), negative
 426 predictive value (NPV; the likelihood that an individual who received initial impression of non-
 427 autism received a final diagnosis of non-autism), false negatives (e.g., the proportion of
 428 individuals who received an initial impression of non-autism but ultimately received an autism
 429 diagnosis), and false positives (e.g., the proportion of individuals who received an initial
 430 impression of autism but ultimately received a diagnosis of non-autism). These calculations were
 431 performed to compare the outcome of brief impressions to the outcome of a longer, more
 432 thorough clinical diagnostic evaluation.

433 Results indicated that sensitivity was 66.7%, considered moderately low. Specificity was
 434 calculated at 88.0%, considered high. The false positive rate was 34.7%, and the false negative
 435 rate was 14.7%. Similarly, PPV was moderate (72.7%) and NPV was high (84.6%). These
 436 findings were broadly consistent with results from Wieckowski et al. (2021), which reported
 437 sensitivity = 64% and specificity = 96% (PPV and NPV were not reported).

438 **Total scores**


439 Total scores of atypical behaviors differed by group, $F(2,71) = 44, p < 0.001$. Total
 440 scores were significantly higher for the ASD group, $M(SD) = 4.01(2.02)$, compared to both the
 441 LAD group, $M(SD) = 1.11(0.99)$, $t = 6.319, p < 0.001, d = 1.82$, and NT group, $M(SD) =$
 442 $0.56(0.85)$, $t = 7.698, p < 0.001, d = 2.24$; the LAD and NT groups did not differ, $t = 1.989, p =$
 443 $0.053, d = 0.57$; see Figure 3. Total scores and ADOS-2 CSS scores were significantly and
 444 strongly correlated, $R^2 = 0.65, p < 0.001$; see Figure 4.

445 **Figure 3.**

446 *Total score by group*

447

448 Note. White diamonds and lines indicate $M(SD)$. *** $p < 0.001$.

449 **Figure 4.**450 *Relationship between initial impression scores and ADOS-2 CSS scores*

451
452 Note. Black line represents the line of best fit; grey shading indicates SE. *** $p < 0.001$.
453

454 **Factors contributing to initial impressions**

455 Item-level scores on gesture, eye contact, prosody, facial expressions, social reciprocity,
456 and social initiations differed significantly by group. In all cases, item-level Scores were
457 significantly higher for the ASD group compared to both the LAD and NT, which did not differ;
458 see Table 2. There were no group differences for motor mannerisms or attention.

459 **Table 2.**

460 **Item-level scores by group**

	ASD <i>M(SD)</i>	LAD <i>M(SD)</i>	NT <i>M(SD)</i>	<i>F</i>	Post-hoc compariso n	<i>d</i>	Correlation (r) with initial impression Scores		
							ASD	LAD	NT
Prosody	1.06 (0.63)	0.36 (0.47)	0.06 (0.21)	29.35*	ASD>NT, LAD	2.13 1.24 0.83	0.82*	0.80*	0.79*
Facial Expressions	0.67 (0.38)	0.21 (0.27)	0.14 (0.21)	22.85*	ASD>NT, LAD	1.72 1.38 0.27	0.73*	0.55*	0.68*
Gesture	0.60 (0.50)	0.19 (0.33)	0.10 (0.18)	13.26*	ASD>NT, LAD	1.33 0.96 0.32	0.18	0.15	0.69*
Eye contact	0.55 (0.42)	0.07 (0.16)	0.06 (0.13)	25.75*	ASD>NT, LAD	1.57 1.49 0.04	0.30	0.14	0.56*
Social Reciprocity	0.45 (0.36)	0.13 (0.29)	0.06 (0.16)	13.34*	ASD>NT, LAD	1.40 0.99 0.26	0.58*	0.10	-0.11

Social Initiations	0.51 (0.44)	0.14 (0.21)	0.08 (0.18)	15.06*	ASD>NT, LAD	1.30	0.51	0.11	0.13
Attention	0.20 (0.31)	0.05 (0.13)	0.01 (0.07)	6.24*	No differences	0.85 0.63 0.34	0.31	-0.20	-0.05
Motor Mannerisms	0.17 (0.27)	0.09 (0.24)	0.07 (0.18)	1.19	No differences	0.42 0.30 0.10	0.29	-0.04	0.06

461 *Note.* Data are represented as $M(SD)$. * Indicates significance after correcting for multiple
 462 comparisons of ANOVA (0.05/8; $p < 0.006$), t-tests (0.05/27; $p < 0.002$), and Pearson's
 463 correlations (0.05/9; $p < 0.006$). Significant associations are **bolded**. Cohen's d values are listed
 464 in the following order: ASD vs. NT, ASD vs. LAD, and LAD vs. NT.

465

466 The relationship between item-level scores and initial impression varied by diagnostic
 467 status (autism, non-autism) and group (ASD, LAD, NT). For those in the ASD group, initial
 468 impressions were significantly and strongly correlated with prosody, facial expressions, and
 469 social reciprocity. In the LAD group, initial impressions were significantly and strongly
 470 correlated with prosody and facial expressions. In the NT group, initial impressions were
 471 significantly and strongly correlated with gesture, eye contact, prosody, and facial expressions;
 472 see Table 2. Collapsed across group, initial impression scores were most strongly predicted by
 473 item-level scores on prosody and facial expressions; Table 3.

474 **Table 3.**475 *Generalized linear model of item-level scores and initial impression*

Predictors	Initial Impression			
	Estimate	Std. Error	t	p
Prosody	0.448	0.044	10.129	<0.001***
Facial Expressions	0.300	0.087	3.439	0.001**
Social Initiations	0.120	0.084	1.419	0.161
Social Reciprocity	0.032	0.082	0.389	0.698
Eye Contact	0.003	0.079	0.035	0.973
Intercept	-0.003	0.026	-0.138	0.891
Motor Mannerisms	-0.007	0.093	-0.071	0.943
Attention	-0.058	0.102	-0.569	0.571
Gesture	-0.111	0.062	-1.780	0.080

476 *Note.* All predictors were added to the model simultaneously. AIC = -54.819.

477

478 **Confidence in initial impressions**

479 Confidence was high overall (mean of 3.06 out of 5) and ranged from 2.91-3.43, with the
 480 highest confidence ratings for the NT group, though rating differences by group were not
 481 significant. As noted above, expert and graduate clinicians did not differ in confidence. Overall,
 482 clinicians were significantly more confident with initial impressions that were correct
 483 (confidence = 3.43) compared to those that were incorrect (confidence = 2.83), $t = 3.249$,
 484 $p = 0.006$, $d = 0.77$, or in disagreement (confidence = 2.40), $t = 4.969$, $p < 0.001$, $d = 1.30$.

Discussion

The present study evaluated frank autism impressions in adolescents and adults, compared them to current gold-standard diagnostic group classifications, and characterized the behavioral factors that contributed to clinician impressions and confidence in initial impression. Overall, the specificity and NPV of initial impressions of a combined group of graduate and expert clinicians with specialized training in autism were high (88.0% and 84.6%, respectively), indicating a low false positive rate; that is, clinicians were highly likely to identify an individual who was non-autistic as such on initial impression. In contrast, the sensitivity and PPV of initial impressions were lower (66.7% and 72.7%, respectively), indicating a **high false negative rate**; about a third of the autistic individuals were misidentified as non-autistic. These results were highly consistent with findings from three previous studies assessing initial impressions of autistic toddlers (4,13,14), adding evidence that brief clinical observations provide valuable insight about diagnostic status in *some* but not *all* cases of autism, and are more useful in ruling *out* the presence of autism symptoms than in ruling them *in*. That is, *all* individuals who gave a consistent initial impression of autism also met diagnostic criteria for autism upon full evaluation. In addition, these results are novel in suggesting that clinicians are able to detect autism symptoms after a brief observation of adolescents and adults, not just young children. This may indicate that frank autism presentations may persist through adulthood, though the specific behaviors that contribute to this impression vary over development.

These results represent a novel assessment of whether individuals who no longer present with symptoms of autism (e.g., have lost the ASD diagnosis) present with subclinical, subtle autistic characteristics. The LAD and NT groups did not differ in initial impression, with both groups showing significantly lower scores than the ASD group, suggesting that the LAD group overall presents as neurotypical. However, although misclassifications were relatively infrequent, the accuracy of initial impressions (e.g., alignment with final diagnosis) did differ by group. Raters were significantly more accurate for the NT group compared to both the ASD and LAD groups; clinicians were more likely to have an initial impression of ASD for LAD relative to NT participants. This result suggests that some individuals with LAD have subtle persistent autistic behaviors.

In line with the sensitivity and specificity values, frankness of initial symptom presentation (initial impression score) was consistent with symptom severity as observed through a lengthy diagnostic observation (ADOS-2 CSS). Importantly, in this study, impression ratings were provided by clinicians who did not perform the diagnostic evaluation, suggesting that the identification of frank autism is not a result of confirmation bias (i.e., a tendency for clinicians to align their final diagnosis with their initial impressions).

Autistic characteristics and initial impressions

To expand our understanding of how specific behaviors contribute to initial impressions of frank autism in adolescents and adults, we assessed eight behaviors that have been described as most central to impressions in anecdotal (3) and empirical (4,13,14) research. Results indicated that ratings within the first five minutes on prosody and facial expressions were the best predictors of initial impression across final diagnosis (autistic, non-autistic) and group (ASD, LAD, NT). That is, atypical prosody and facial expressions appear to be the most salient and reliably available indicators of ASD diagnoses in brief observations of adults; if these behaviors are seen as typical, the individual is more likely to receive an initial impression and a final determination as non-autistic. Because of the low false positive rate in this relatively small sample, further analyses were not performed to determine which behaviors contributed to group

531 differences in accuracy; this should be examined in future research. Prosody and facial
532 expressions were significantly correlated with initial impression scores when evaluated within
533 each of three groups. In addition, for the ASD group, social reciprocity was a strong predictor of
534 impressions, and for the NT group, gestures and eye contact were strong predictors. This
535 indicates that, while prosody and facial expressions are the most prominent behavioral features
536 of frank autism impressions in adults, clinicians rely on other behavioral factors as well.

537 This finding was also reflected in clinician confidence in initial impressions, in that
538 higher scores on gesture, eye contact, prosody, facial expressions, and social reciprocity were all
539 significantly negatively correlated with confidence for the non-ASD diagnostic status (LAD and
540 NT). That is, if a clinician formed an initial impression of non-autism, but observed mild
541 atypicality in one or more of behavioral domains, they might still settle on a non-ASD
542 impression, but with reduced confidence. Even though overall confidence did not vary by group,
543 the absence of significant relationships between behavioral factors and confidence ratings for the
544 autism group may indicate that confidence in initial impressions is more susceptible to change
545 based on contradictory evidence (i.e., presence of atypical behaviors for a generally non-autism
546 impression) in LAD and NT groups as compared to contradictory evidence (i.e., absence of
547 atypical behaviors for a generally autistic impression) in the ASD group; this is consistent with
548 the broad finding that the presence of evidence is more salient than the absence of evidence (56).

549 ***Clinical implications***

550 One clinical implication of the current study is that *brief observations alone are not*
551 *sufficient to detect all cases of autism accurately*. Expert and graduate clinicians with specialized
552 autism-specific training did not have an initial impression of autism for roughly 33% of autistic
553 individuals. *Longer structured assessments by trained clinicians provide invaluable information*
554 *about the nature and severity of autism symptoms*. In practice, clinician judgment should be
555 considered an integral, but not the sole, factor in diagnosis.

556 The current study also provides important information about what behaviors inform
557 diagnosis of adolescents and adults. Typical diagnostic practices rely heavily on parent or
558 caregiver report of the developmental history of the individual, which may be difficult to obtain
559 and less accurately recalled years later (15,17,18). The absence of a clear developmental history
560 may force clinicians to rely more heavily on behavioral observations alone. This, in combination
561 with the evidence that some clinicians rely on more abstract behavioral observations, may lead
562 some autistic adults to receive an official diagnosis of autism more readily than others. For
563 example, if prosody and facial expressions are the most salient diagnostic cues, an individual
564 who presents with less frankly autistic behaviors in those domains may receive an initial
565 impression of being non-autistic. When combined with a limited developmental history, such a
566 presentation may lead to an incorrect non-ASD Impression. This factor may also contribute to
567 under-diagnosis of autistic females (57).

568 ***Implications for our understanding of autism as a diagnosis***

569 There has been a resurgence of the debate about the loosening of diagnostic criteria for
570 autism in the DSM-V, and the resulting increased prevalence and heterogeneity of the diagnosis
571 (43,45). While these DSM changes present challenges for how best to identify and diagnose
572 participants for autism research, we note that the *clinical* question of how to diagnose autism
573 requires, by definition and practice, a reliance on current DSM or ICD criteria, informed by a
574 detailed semi-structured clinical interview in combination with a thorough developmental
575 history. In research, Mottron and colleagues have proposed that cohorts of autistic individuals
576 should be selected based on the “prototypicality” of their autism symptoms, as judged by expert

577 clinicians (45). This manuscript asks how clinicians' initial diagnostic impressions ("five-minute
578 impressions" in the current study) correspond to a full diagnostic impression; the current study
579 also tests whether brief five-minute impressions provide additional information about the clinical
580 presentation of autism in individuals who have lost the autism diagnosis. As reported by
581 deMARCHCNEA CITE, many expert clinicians report a strong initial impression of frank autism;
582 it is *clinically* and *diagnostically* relevant to contrast these initial impressions with the findings of
583 a full diagnostic evaluation, informed by clinical history and by a semi-structured interview, as
584 one's initial impressions cannot help but inform one's subsequent evaluation. The current results
585 indicate that initial impressions of frank autism, which likely overlaps with the construct of
586 "prototypical" autism, are highly sensitive; clinicians rarely "felt" autism that turned out *not* to
587 be autism on full evaluation. However, results also suggested that some cases that did not yield
588 an initial frank or prototypical impression of autism during a brief five-minute interaction, were
589 judged to be autism on full evaluation. This is not surprising, particularly in a population with
590 strong verbal and cognitive abilities. These results suggest that, even for adult individuals who
591 present as frankly autistic, the behavioral factors that contribute to this impression vary,
592 encompassing prosody, facial expressions, and other behaviors. Comparing behaviors used for
593 initial impressions in older adolescents and adults versus those used for toddlers (14) also
594 suggests that quite different behaviors are used for different ages or functioning levels, in part
595 because young children may not have enough language to judge prosody or other more mature
596 behaviors.

597 The current study established a strong association between initial impression and ADOS-
598 2 CSS, indicating that individuals who present as frankly autistic may have more apparent or
599 severe autism symptoms. However, those who present as less frankly autistic during initial
600 impressions may still meet clinical criteria when observed through a full diagnostic assessment.
601 This evidence suggests that the ADOS-2 or other structured observation plays a critical role in
602 eliciting behaviors that are core to the autism phenotype that may or may not be present within
603 the first few minutes of observation or interaction. Rather than focusing only on frank autism
604 characteristics, clinical researchers must carefully evaluate individual differences.

605 There has been ongoing debate about the stability of autism as a lifelong condition.
606 Several research groups have documented individuals who met criteria for autism in childhood
607 but no longer displayed clinical levels of ASD later in development (33,34,58–60). This subset
608 of the autism spectrum may range from 3 to 37% of children diagnosed with ASD in early
609 childhood (32,33). The effect of the transition to independence in late adolescence and adulthood
610 have yet to be characterized in this group of individuals. The current study indicates that, overall,
611 LAD individuals are indistinguishable from their NT peers on initial impression, but that some of
612 them present with subtle subclinical autistic features that are recognizable to trained clinicians
613 and that contribute to reduced accuracy of initial impressions. Importantly, these features do not
614 give rise to clinical level impairments in social functioning, as evidenced by non-autistic range
615 ADOS-2 CSS scores but may have subtle implications for daily functioning that have yet to be
616 fully explored.

617 ***Implications for social functioning and quality of life of autistic adolescents and adults***

618 Previous studies have established that naïve raters are sensitive to atypical behaviors,
619 including prosody and facial expressions, that negatively impact initial impressions of autistic
620 individuals and that may lead to a decrease in the rater's willingness to engage with the autistic
621 individual in hypothetical circumstances, such as sharing a meal (26,27,31). The current study
622 provided evidence that clinicians utilize similar cues in clinical diagnosis, indicating that prosody

623 and facial expressions are highly salient for both clinical and social initial impressions. These
624 results have important implications when assessing the social functioning of autistic adolescents
625 and adults. If naïve individuals are less willing to interact with their autistic peers due to an
626 increased perception of social awkwardness, this may exacerbate the social difficulties of autistic
627 individuals, which may in turn impact their quality of life and vulnerability to anxiety or
628 depression. Future studies should explore relationships among initial impressions and other
629 functional domains to better understand how we can best support autistic individuals, as well as
630 provide further evidence to support societal acceptance of neurodiversity.

631 **Limitations**

632 The brief observations in this study were conducted in a clinical research setting,
633 including some portion of structured testing. While results suggest concordance with naïve
634 impressions during typical social interactions, findings may not generalize to less structured,
635 informal contexts. In addition, the content of interactions varied, with some interactions
636 comprising mainly informal “chit chat” during equipment setup, and others comprising a mix of
637 structured and unstructured activities. The ADOS-2 activity at the beginning of the recording
638 was not consistent across participants; in-person participants began with a puzzle task
639 (Construction activity), whereas online participants began with a story activity (Tuesday Story).
640 Although results revealed no modality-specific differences, this variability could have impacted
641 interactions on a case-by-case basis. That said, the consistency of results across modalities is a
642 testament to the stability and potential clinical utility of initial impressions, given that they seem
643 to generalize to a range of settings. Our sample was relatively small, demographically
644 homogeneous, and comprised of only speaking autistic participants; furthermore, there were
645 significantly more females in the NT group compared to ASD or LAD groups. We were
646 underpowered to compare which behaviors led to disagreement among raters, and to test gender
647 difference, precluding the discovery of which factors played a critical role in the formation of
648 accurate initial impressions. Future studies should recruit larger sample sizes that are diverse
649 across demographic variables and ability level to thoroughly explore these nuances.

650 **Conclusions**

651 The results of the current study indicate that, while clinicians’ initial impressions made
652 within the first five minutes of observation of a diagnostic evaluation generally matched current
653 gold-standard diagnostic status and were highly correlated with ADOS-2 CSS, this brief
654 observation was not sufficient to detect autism in all cases. Clinicians relied heavily on atypical
655 prosody and facial expressions when forming an initial impression of autism, indicating that
656 these cues are extremely salient even within a brief observation. Lastly, the results of the current
657 study further established that LAD individuals no longer exhibit clinically significant autism
658 symptoms, but that some individuals in this group may continue to display subtle autism
659 characteristics that lead to more variable initial impressions. Future research is needed to explore
660 the impact of sex and gender on initial impression, as well as the impact of frank autism
661 presentations on other domains of functioning, such as social functioning in everyday life (e.g.,
662 making and maintaining friendships and romantic relationships), quality of life, life satisfaction,
663 and comorbid psychopathology.

664 **Declarations**

665 **Ethics approval and consent to participate.** The experimental protocol was approved by the
666 University of Connecticut IRB.

667 **Consent for publication.** Not applicable.

668 **Availability of data and materials:** Data are shared to the NIMH Data Archive.

669 ORCID: Rebecca R. Canale: 0000-0001-5892-2364; Caroline Larson: 0000-0001-7940-2528;
670 Rebecca P. Thomas: 0000-0002-7159-7532; Marianne Barton: 0000-0001-5940-7591; Deborah
671 Fein: 0000-0002-8478-5938; Inge-Marie Eigsti: 0000-0001-7898-1898

672 **Competing Interests.** Dr. Fein and Dr. Barton are co-owners of M-CHAT LLC, which licenses
673 use of the M-CHAT-R in electronic products. The other authors declare that they have no
674 financial or non-financial conflicts of interest.

675 **Funding.** This research was supported by NIMH-1R01MH112687-01A1 to Eigsti and Fein (Co-
676 PIs) and by NIDCD T32DC017703 to Eigsti and Myers (Co-PIs).

677 **Author contributions:** RRC conceived of the study, and wrote the initial manuscript, with
678 critical revisions by IME, DF, CL, MB, and RPT. All authors participated in data collection
679 efforts. RPT conceived of the original initial impressions form, which RRC amended for use in
680 this study. All analyses were performed by RRC with consultation from CL. Funding acquisition
681 was led by IME and DF.

682 **Acknowledgments.** This research was supported by NIMH-1R01MH112687-01A1 to Eigsti and
683 Fein (Co-PIs) and by NIDCD T32DC017703 to Eigsti and Myers (Co-PIs). We gratefully
684 acknowledge the contributions of Mackenzie Stabile, Elise Taverna, Jason Crutcher, and Hannah
685 Thomas and input from Ashley de Marchena.

686

687 References

- 688 1. American Psychiatric Association. Diagnostic and statistical manual of mental disorders. 5th
689 ed. 2013.
- 690 2. Volkmar FR, McPartland JC. From Kanner to DSM-5: Autism as an Evolving Diagnostic
691 Concept. *Annu Rev Clin Psychol.* 2014 Mar 28;10(1):193–212.
- 692 3. De Marchena A, Miller J. “Frank” presentations as a novel research construct and element of
693 diagnostic decision-making in autism spectrum disorder. *Autism Res.* 2017 Apr;10(4):653–62.
- 694 4. Wieckowski AT, De Marchena A, Algur Y, Nichols L, Fernandes S, Thomas RP, et al. The
695 first five minutes: Initial impressions during autism spectrum disorder diagnostic evaluations
696 in young children. *Autism Res.* 2021 Sep;14(9):1923–34.
- 697 5. Mottron L, Gagnon D. Prototypical autism: New diagnostic criteria and asymmetrical
698 bifurcation model. *Acta Psychol (Amst).* 2023 Jul;237:103938.
- 699 6. Anderson-Chavarria M. The autism predicament: models of autism and their impact on
700 autistic identity. *Disabil Soc.* 2021;37:1321–41.
- 701 7. Kenny L, Hattersley C, Molins B, Buckley C, Povey C, Pellicano E. Which terms should be
702 used to describe autism? Perspectives from the UK autism community. *Autism Int J Res Pract.*
703 2016 May;20(4):442–62.
- 704 8. Frazier TW, Youngstrom EA, Speer L, Embacher R, Law P, Constantino J, et al. Validation of
705 Proposed DSM-5 Criteria for Autism Spectrum Disorder. *J Am Acad Child Adolesc
706 Psychiatry.* 2012 Jan;51(1):28-40.e3.

707 9. Rice CE, Carpenter LA, Morrier MJ, Lord C, DiRienzo M, Boan A, et al. Defining in Detail
708 and Evaluating Reliability of DSM-5 Criteria for Autism Spectrum Disorder (ASD) Among
709 Children. *J Autism Dev Disord*. 2022 Dec;52(12):5308–20.

710 10. Hayes J, McCabe R, Ford T, Russell G. Drawing a line in the sand: affect and testimony in
711 autism assessment teams in the UK. *Sociol Health Illn*. 2020 May;42(4):825–43.

712 11. Hausman-Kedem M, Kosofsky BE, Ross G, Yohay K, Forrest E, Dennin MH, et al.
713 Accuracy of Reported Community Diagnosis of Autism Spectrum Disorder. *J Psychopathol*
714 *Behav Assess*. 2018 Sep;40(3):367–75.

715 12. Lord C, Rutter M, DiLavore PC, Risi S. *Autism Diagnostic Observation Schedule (ADOS)*.
716 Los Angeles: Western Psychological Services; 2002.

717 13. Gabrielsen TP, Farley M, Speer L, Villalobos M, Baker CN, Miller J. Identifying Autism in a
718 Brief Observation. *PEDIATRICS*. 2015 Feb 1;135(2):e330–8.

719 14. Thomas RP, De Marchena A, Wieckowski AT, Stahmer A, Milan S, Burke JD, et al.
720 Accuracy of initial diagnostic impressions of autism in toddlers and behaviors that inform
721 these impressions. *Autism Res*. 2024 Mar;17(3):568–83.

722 15. Huang Y, Arnold SR, Foley KR, Trollor JN. Diagnosis of autism in adulthood: A scoping
723 review. *Autism*. 2020 Aug;24(6):1311–27.

724 16. Jensen CM, Steinhause HC, Lauritsen MB. Time Trends Over 16 Years in Incidence-Rates
725 of Autism Spectrum Disorders Across the Lifespan Based on Nationwide Danish Register
726 Data. *J Autism Dev Disord*. 2014 Aug;44(8):1808–18.

727 17. Lai MC, Baron-Cohen S. Identifying the lost generation of adults with autism spectrum
728 conditions. *Lancet Psychiatry*. 2015 Nov;2(11):1013–27.

729 18. Rutherford M, McKenzie K, Forsyth K, McCartney D, O'Hare A, McClure I, et al. Why are
730 they waiting? Exploring professional perspectives and developing solutions to delayed
731 diagnosis of autism spectrum disorder in adults and children. *Res Autism Spectr Disord*. 2016
732 Nov;31:53–65.

733 19. Hus V, Taylor A, Lord C. Telescoping of caregiver report on the Autism Diagnostic
734 Interview - Revised: Telescoping on the ADI-R. *J Child Psychol Psychiatry*. 2011
735 Jul;52(7):753–60.

736 20. De Marchena A, Kim ES, Bagdasarov A, Parish-Morris J, Maddox BB, Brodkin ES, et al.
737 Atypicalities of Gesture Form and Function in Autistic Adults. *J Autism Dev Disord*. 2019
738 Apr;49(4):1438–54.

739 21. De Marchena A, Eigsti I. Conversational gestures in autism spectrum disorders: Asynchrony
740 but not decreased frequency. *Autism Res*. 2010 Dec;3(6):311–22.

741 22. Morett LM, O'Hearn K, Luna B, Ghuman AS. Altered Gesture and Speech Production in
742 ASD Detract from In-Person Communicative Quality. *J Autism Dev Disord*. 2016
743 Mar;46(3):998–1012.

744 23. Silverman LB, Bennetto L, Campana E, Tanenhaus MK. Speech-and-gesture integration in
745 high functioning autism. *Cognition*. 2010 Jun;115(3):380–93.

746 24. Taverna EC, Huedo-Medina TB, Fein DA, Eigsti IM. The interaction of fine motor, gesture,
747 and structural language skills: The case of autism spectrum disorder. *Res Autism Spectr*
748 *Disord*. 2021 Aug;86:101824.

749 25. Trujillo JP, Özyürek A, Kan CC, Sheftel-Simanova I, Bekkering H. Differences in the
750 production and perception of communicative kinematics in autism. *Autism Res*. 2021
751 Dec;14(12):2640–53.

752 26. Grossman RB. Judgments of social awkwardness from brief exposure to children with and
753 without high-functioning autism. *Autism*. 2015 Jul;19(5):580–7.

754 27. Sasson NJ, Faso DJ, Nugent J, Lovell S, Kennedy DP, Grossman RB. Neurotypical Peers are
755 Less Willing to Interact with Those with Autism based on Thin Slice Judgments. *Sci Rep*.
756 2017 Feb 1;7(1):40700.

757 28. Neumann D, Spezio ML, Piven J, Adolphs R. Looking you in the mouth: abnormal gaze in
758 autism resulting from impaired top-down modulation of visual attention. *Soc Cogn Affect*
759 *Neurosci*. 2006 Dec 1;1(3):194–202.

760 29. Weed E, Fusaroli R, Simmons E, Eigsti IM. Different in Different Ways: A Network-
761 Analysis Approach to Voice and Prosody in Autism Spectrum Disorder. *Lang Learn Dev*.
762 2023 Apr 25;1–18.

763 30. Grossman RB, Bemis RH, Plesa Skwerer D, Tager-Flusberg H. Lexical and Affective
764 Prosody in Children With High-Functioning Autism. *J Speech Lang Hear Res*. 2010
765 Jun;53(3):778–93.

766 31. Sasson NJ, Morrison KE. First impressions of adults with autism improve with diagnostic
767 disclosure and increased autism knowledge of peers. *Autism*. 2019 Jan;23(1):50–9.

768 32. Helt M, Kelley E, Kinsbourne M, Pandey J, Boorstein H, Herbert M, et al. Can Children with
769 Autism Recover? If So, How? *Neuropsychol Rev*. 2008 Dec;18(4):339–66.

770 33. Harstad E, Hanson E, Brewster SJ, DePillis R, Milliken AL, Aberbach G, et al. Persistence of
771 Autism Spectrum Disorder From Early Childhood Through School Age. *JAMA Pediatr*. 2023
772 Nov 1;177(11):1197.

773 34. Fein D, Barton M, Eigsti I, Kelley E, Naigles L, Schultz RT, et al. Optimal outcome in
774 individuals with a history of autism. *J Child Psychol Psychiatry*. 2013 Feb;54(2):195–205.

775 35. Tyson K, Kelley E, Fein D, Orinstein A, Troyb E, Barton M, et al. Language and Verbal
776 Memory in Individuals with a History of Autism Spectrum Disorders Who Have Achieved
777 Optimal Outcomes. *J Autism Dev Disord*. 2014 Mar;44(3):648–63.

778 36. Canfield AR, Eigsti IM, De Marchena A, Fein D. Story Goodness in Adolescents With
779 Autism Spectrum Disorder (ASD) and in Optimal Outcomes From ASD. *J Speech Lang Hear
780 Res*. 2016 Jun;59(3):533–45.

781 37. Suh J, Eigsti IM, Naigles L, Barton M, Kelley E, Fein D. Narrative Performance of Optimal
782 Outcome Children and Adolescents with a History of an Autism Spectrum Disorder (ASD). *J
783 Autism Dev Disord*. 2014 Jul;44(7):1681–94.

784 38. Irvine CA, Eigsti IM, Fein DA. Uh, Um, and Autism: Filler Disfluencies as Pragmatic
785 Markers in Adolescents with Optimal Outcomes from Autism Spectrum Disorder. *J Autism Dev Disord*.
786 2016 Mar;46(3):1061–70.

787 39. Fitch A, Fein DA, Eigsti IM. Detail and Gestalt Focus in Individuals with Optimal Outcomes
788 from Autism Spectrum Disorders. *J Autism Dev Disord*. 2015 Jun;45(6):1887–96.

789 40. Orinstein AJ, Suh J, Porter K, De Yoe KA, Tyson KE, Troyb E, et al. Social Function and
790 Communication in Optimal Outcome Children and Adolescents with an Autism History on
791 Structured Test Measures. *J Autism Dev Disord*. 2015 Aug;45(8):2443–63.

792 41. Suh J, Orinstein A, Barton M, Chen CM, Eigsti IM, Ramirez-Esparza N, et al. Ratings of
793 Broader Autism Phenotype and Personality Traits in Optimal Outcomes from Autism
794 Spectrum Disorder. *J Autism Dev Disord*. 2016 Nov;46(11):3505–18.

795 42. Troyb E, Orinstein A, Tyson K, Eigsti IM, Naigles L, Fein D. Restricted and Repetitive
796 Behaviors in Individuals with a History of ASDs Who Have Achieved Optimal Outcomes. *J
797 Autism Dev Disord*. 2014 Dec;44(12):3168–84.

798 43. Fein D, Eigsti I, Barton M. Response to “A radical change in our autism research strategy is
799 needed: Back to prototypes” by Mottron et al. (2021). *Autism Res*. 2021 Oct;14(10):2237–8.

800 44. Eigsti I, Fein D, Larson C. Editorial Perspective: Another look at ‘optimal outcome’ in
801 autism spectrum disorder. *J Child Psychol Psychiatry*. 2023 Feb;64(2):332–4.

802 45. Mottron L. A radical change in our autism research strategy is needed: Back to prototypes.
803 *Autism Res*. 2021 Oct;14(10):2213–20.

804 46. Lord C, Luyster J, Gotham K, Guthrie W. *Autism Diagnostic Observation Schedule, Second
805 Edition (ADOS-2)*. Torrance, CA: Western Psychological Services; 2012.

806 47. Sparrow SS, Cicchetti DV. *The Vineland Adaptive Behavior Scales*. C.S. Newmark (Ed.);
807 1989.

808 48. Eigsti I, Thomas RP, Stabile M, Mohan A, Dieckhaus MFS, Crutcher J, et al. Online
809 administration of the ADOS for research with adolescents and adults in response to the
810 pandemic. *Autism Res.* 2022 Oct;15(10):1909–16.

811 49. Thomas R, Canale R, Larson C. Five-Minute Initial Impressions Form. 2021.

812 50. Hus V, Lord C. The Autism Diagnostic Observation Schedule, Module 4: Revised Algorithm
813 and Standardized Severity Scores. *J Autism Dev Disord.* 2014 Aug;44(8):1996–2012.

814 51. Gur R. Computerized Neurocognitive Scanning: I. Methodology and Validation in Healthy
815 People. *Neuropsychopharmacology.* 2001 Nov;25(5):766–76.

816 52. Gur RC, Richard J, Huggett P, Calkins ME, Macy L, Bilker WB, et al. A cognitive
817 neuroscience-based computerized battery for efficient measurement of individual differences:
818 Standardization and initial construct validation. *J Neurosci Methods.* 2010 Mar;187(2):254–
819 62.

820 53. Bilker WB, Hansen JA, Brensinger CM, Richard J, Gur RE, Gur RC. Development of
821 Abbreviated Nine-Item Forms of the Raven's Standard Progressive Matrices Test.
822 *Assessment.* 2012 Sep;19(3):354–69.

823 54. Moore TM, Reise SP, Gur RE, Hakonarson H, Gur RC. Psychometric properties of the Penn
824 Computerized Neurocognitive Battery. *Neuropsychology.* 2015 Mar;29(2):235–46.

825 55. RStudio Team. RStudio: Integrated Development for R. Boston, MA: PBC; 2020.

826 56. Altman DG, Bland JM. Statistics notes: Absence of evidence is not evidence of absence.
827 *BMJ.* 1995 Aug 19;311(7003):485–485.

828 57. Cola ML, Plate S, Yankowitz L, Petrulla V, Bateman L, Zampella CJ, et al. Sex differences
829 in the first impressions made by girls and boys with autism. *Mol Autism.* 2020 Dec;11(1):49.

830 58. Anderson DK, Liang JW, Lord C. Predicting young adult outcome among more and less
831 cognitively able individuals with autism spectrum disorders. *J Child Psychol Psychiatry.* 2014
832 May;55(5):485–94.

833 59. Moulton E, Barton M, Robins DL, Abrams DN, Fein D. Early Characteristics of Children
834 with ASD Who Demonstrate Optimal Progress Between Age Two and Four. *J Autism Dev
835 Disord.* 2016 Jun;46(6):2160–73.

836 60. Fountain C, Winter AS, Bearman PS. Six Developmental Trajectories Characterize Children
837 With Autism. *Pediatrics.* 2012 May 1;129(5):e1112–20.

838

839 **Appendix A.**840 *Five-Minute initial impressions Form***Coding manual: ALTOS 5-minute diagnostic impression form (Thomas, R., Canale, R., Larson, C., 2021)**

Pt. ID number: Clinician name:	<input type="checkbox"/> Telehealth <input type="checkbox"/> In-person	PT wearing mask? <input type="checkbox"/> Yes <input type="checkbox"/> No	Setting used for impression (check all that apply)? <input type="checkbox"/> Video call <input type="checkbox"/> Waiting room <input type="checkbox"/> Walk to eval room <input type="checkbox"/> Structured activity <input type="checkbox"/> Other _____
5 min Dx impression <input type="checkbox"/> ASD <input type="checkbox"/> Non-ASD	Did you have access to information before completing this form? <input type="checkbox"/> Yes <input type="checkbox"/> No	Type of information accessed before completing this form <input type="checkbox"/> Reviewed records <input type="checkbox"/> Spoke with parent <input type="checkbox"/> PT self-disclosed <input type="checkbox"/> Other	Confidence in 5-min impression <input type="checkbox"/> 1: Not very confident <input type="checkbox"/> 2 <input type="checkbox"/> 3: Confident <input type="checkbox"/> 4 <input type="checkbox"/> 5: Extremely confident

Complete form after first 5 minutes with Pt: 1) Indicate what information contributed to your initial Dx impression (left column) and 2) your confidence (+ -- confident) in the scoring of that component of your impression (right column). Please note behavioral observations that contributed to your impression.

Gesture:	<input type="checkbox"/> 2- No use of age/context appropriate gestures <input type="checkbox"/> 1- Some use of age/context-appropriate gestures <input type="checkbox"/> 0- Normal use of age/context-appropriate of gestures	+	--
Eye contact:	<input type="checkbox"/> 2- Abnormal quality or amount based on context <input type="checkbox"/> 1- Somewhat abnormal quality or amount based on context <input type="checkbox"/> 0- Normal quality and amount based on context	+	--
Motor mannerisms:	<input type="checkbox"/> 2- Frequent use of atypical mannerisms <input type="checkbox"/> 1- Some use of atypical mannerisms <input type="checkbox"/> 0- No use of atypical mannerisms	+	--
Prosody and vocalizations:	<input type="checkbox"/> 2- Frequent use of unusual vocal prosody and/or repetitive language <input type="checkbox"/> 1- Some use of unusual vocal prosody and/or repetitive language <input type="checkbox"/> 0- No use of unusual vocal prosody and/or repetitive language	+	--
Facial expressions:	<input type="checkbox"/> 2- Mostly abnormal for context <input type="checkbox"/> 1- Sometimes abnormal for context <input type="checkbox"/> 0- Normal for context	+	--
Focus/shifting of attention (including perseverative thinking and distractibility):	<input type="checkbox"/> 2- Difficulty focusing or shifting attention <input type="checkbox"/> 1- Some difficulty focusing or shifting attention <input type="checkbox"/> 0- No difficulty focusing and shifting attention	+	--
Social reciprocity (responses):	<input type="checkbox"/> 2- Impaired <input type="checkbox"/> 1- Somewhat impaired <input type="checkbox"/> 0- Normal	+	--
Interactions with others (initiations):	<input type="checkbox"/> 2- Impaired <input type="checkbox"/> 1- Somewhat impaired <input type="checkbox"/> 0- Normal	+	--
Other	<input type="checkbox"/> _____	+	--

COMPLETE AFTER FINISHING APPT

Confidence in final diagnosis

1 (Not very confident)23 (Confident)45 (Extremely confident)