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ABSTRACT

Nowadays, temporal heterogeneous graphs attract much research and industrial
attention for building the next-generation Relational Deep Learning models and
applications, due to their informative structures and features. While providing
timely and precise services like personalized recommendations and question an-
swering, this rich information also introduces extra exposure risk for each node
in the graph. The distinctive local topology, the abundant heterogeneous features,
and the time dimension of the graph data are more prone to expose sensitive in-
formation and narrow down the scope of victim candidates, which calls for well-
defined protection techniques on graphs. To this end, we propose a Temporal
Heterogeneous Graph Generator balancing Privacy, Utility, and Efficiency, named
THEPUFF. More specifically, we first propose a differential privacy algorithm to
perturb the input temporal heterogeneous graph for protecting privacy, and then
utilize both the perturbed graph and the original one in a generative adversarial set-
ting for THEPUFF to learn and generate privacy-guaranteed and utility-preserved
graph data in an efficient manner. We further propose 6 new metrics in the tempo-
ral setting to measure heterogeneous graph utility and privacy. Finally, based on
temporal heterogeneous graph datasets with up to 1 million nodes and 20 million
edges, the experiments show that THEPUFF generates utilizable temporal hetero-
geneous graphs with privacy protected, compared with state-of-the-art baselines.

1 INTRODUCTION

Recently, temporal heterogeneous graphs have emerged as one of the most important fundamental
components for the next-generation Relational Deep Learning (Fey et al., 2024), owing to their
comprehensive expressiveness. Equipped with temporal heterogeneous graphs, modern Relational
Deep Learning models (Robinson et al., 2024) target to provide timely and precise applications like
personalized recommendations (Qi et al., 2023; Ban et al., 2024), question answering (Li et al.,
2024b), classification and regression (Zheng et al., 2024; Xu et al., 2024a; Wang et al., 2024a),
and alignment (Zeng et al., 2023; Yu et al., 2025). During the service-providing process, privacy has
become an alarming concern, especially in the era of big data and AI. Then, a natural question arises:
how can we learn the distribution of temporal heterogeneous graphs, such that we can generate
utilizable data with privacy-protected and also take the large scalability into account?

Compared with texts and images, protecting privacy in relational data is even more challenging,
because the complex topology introduces additional structural information to expose the uniqueness
of entities. For example, in a social network, the neighbors surrounding different users are often
different, which can be leveraged by attackers to easily locate the victim and reveal the identity
by the isomorphism of the ego-network (i.e., 1-hop neighbors), called neighborhood relationships
attacker queries (Zhou & Pei, 2008).

Beyond that, the open-world graphs often involve heterogeneity and temporality (Fu et al., 2022a; Li
et al., 2023; Tieu et al., 2024; Lin et al., 2024), which makes the entity’s existence even more unique
and enlarges the exposure risk. First, a heterogeneous graph means the node type (and edge type) in a
graph can be more than one (Shi et al., 2017; Yang et al., 2022). For example, in the citation network,
the node types can include ‘paper’, ‘author’, and ‘venue’, and the edge types can have ‘cite’, ‘write’,
and ‘work at’. Second, graph structures (and features) can evolve over time. In a citation network,
the structure evolves when new papers are published and new citation relationships are established.
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Figure 1: Left: A Toy Example of Attack and Protection on a Static Homogeneous Graph: Attacker
with Structural Background Knowledge vs. Graph Perturbation based Protection. The second col-
umn of the table shows the probability that an attacker can successfully identify the victim with
background knowledge, and the third column shows the success probability with the same back-
ground knowledge on the perturbed graph. Right: Overview of THEPUFF framework.
Overall, the heterogeneous and time-dependent structures and features of original graphs bring extra
risk to expose privacy by making nodes more unique, which creates unprecedented challenges for
graph generative models to preserve privacy when generating utilizable large-scale graph data.

To bridge this gap, we propose a Temporal Heterogeneous Graph Generator balancing Privacy,
Utility, and Efficiency, named THEPUFF. In brief, THEPUFF relies on an adversarial learning
manner, where THEPUFF tries to explore the distribution of privacy-guaranteed graphs and utility-
preserved graphs and then generates the synthetic graph that preserves both privacy and utility.

To protect privacy and defend attackers, the graph perturbation methods provide a promising direc-
tion (Zheleva & Getoor, 2007; Liu & Terzi, 2008; Nguyen et al., 2015; Hoang et al., 2021; Fu et al.,
2022b). A motivation case study is shown in Figure 1, where we demonstrate an attacker associated
with the background knowledge of node signature structural query (Nguyen et al., 2015), i.e., nodes
with the same structural information (e.g., node degree) form the victim candidates. The toy exam-
ple in Figure 1 shows that one simple edge perturbation can decrease this attacker’s confidence. For
example, the attacker aims to reveal the node identity of node #6 and knows its degree is 2, then in
the original graph G, the attacker has 1/2 probability of identifying node #6 correctly. But if graph
G is perturbed into graph Ĝ, the attacker has 0 probability of identifying node #6, because node #6
is now transferred to another class for the new degree is 3.

Hence, in our THEPUFF, we first propose an error-bounded differential privacy perturbation algo-
rithm for temporal heterogeneous graphs and an efficient and effective privacy-utility adversarial
learning method for generating temporal heterogeneous graphs. To demonstrate the performance,
we (1) propose 6 metrics for measuring the utility and privacy of temporal heterogeneous graphs to
verify the generation, (2) conduct extensive attacking experiments on THEPUFF, (3) design various
ablation studies, parameter analysis, and convergence visualization.

2 PRELIMINARY ANALYSIS

To make THEPUFF’s generation enable privacy-utility balancing and also fit the large-scale graph
data, we analyze the current SOTA graph diffusion models (Zhang et al., 2023) and systemati-
cally explain (1) why they are insufficient for this setting and (2) why Generative Adversarial Net-
work (Goodfellow et al., 2014) (instanced by Transformers (Vaswani et al., 2017)) is the best fit.

Table 1: Diffusion based Graph Generation
Diffusion type Complexity Complexity Bottleneck

DiGress (Vignac et al., 2022) Denoising Diffusion Ln2 link prediction for all possible edges
EDP-GNN (Niu et al., 2020) Score Matching w/ Langevin Dynamics Ln2 noise sampling for adjacency entries

EDGE (Chen et al., 2023) Denoising Diffusion L(max(k2,m)), k ∼ 1
10n link prediction for all possible

, m is number of edges edges between selected nodes
GraphGDP (Huang et al., 2022) Stochastic Differential Equations Ln2 noise sampling for adjacency entries

DISCO (Xu et al., 2024b) Continuous-time Markov Chain Ln2 link prediction for all possible edges

Diffusion-based Graph Generation. With the help of diffusion techniques, diffusion graph gener-
ation models learn the distribution of the adjacency matrix by diffusing it into an empty or random
graph. Despite their success in molecule generation and protein modeling (Wu et al., 2022; Luo
et al., 2022), all those methods share a high time complexity on the same scale of O(Ln2) due to
edge-level prediction or noise generation, where L is diffusion steps and n is number of nodes. Pre-
vious works are summarized in Table 1. This poses an efficiency concern when dealing with large
graphs. Importantly, the diffusion method has inherent advances in privacy protection due to the
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noise-adding process, as our experiments show in Sec. 5.2. However, most methods do not provide
the privacy guarantee, with the only exception of (Wei et al., 2023) that considers per-instance differ-
ential privacy for vector data in discrete diffusion models. Therefore, we choose transformer-based
GAN for large-scale and privacy-utility-adversary graph generation, as stated below.

Transformer-based Generative Adversarial Network (GAN). With the development of trans-
formers, researchers find that transformers can effectively serve as generators and discriminators
of GAN in the context of image generation (Jiang et al., 2021). More recently, transformer-based
large language models have also been successfully utilized to be generators and discriminators for
fake news detection (Wang et al., 2024b). By representing the graph with extracted random walks,
the transformer is also made available for graphs as well (Ling et al., 2021). Moreover, in graph
generation, by generating random walks instead of directly generating an adjacency matrix, we can
bypass edge-level sampling and prediction, which would lead to high computational costs.

3 NOTATION

We use bold lowercase letters for vectors (e.g., a), bold capital letters for matrices (e.g., A), and
parenthesized superscripts to denote the time indices (e.g., A(t)). To be specific, in the graph ad-
jacency matrix, A(i, j) means the connection between node vi and node vj . Also, we denote the
perturbation operation as ˆ, i.e., Â is the perturbed matrix of A, the perturbation operation is related
to privacy protection and is introduced in Sec. 4.

Temporal Heterogeneous Graph Modeling. Formally, a heterogeneous graph means the number
of types of objects (i.e., nodes) is greater than 1 or the number of types of links (i.e., edges) is
greater than 1 (Sun et al., 2011). Moreover, the relationship between node type and edge type is
deterministic, i.e., if two edges belong to the same type, then the two edges share the same starting
node type as well as the ending node type (Sun & Han, 2012). Hence, we use o to denote the
node type and do not assign extra symbols for the edge type throughout the paper. For modeling a
temporal heterogeneous graph G, we denote each edge as a triplet ((vi, oi), (vj , oj), t), where oi is
the node type of node vi, and t is the timestamp that nodes vi and vj connects.

4 PROPOSED FRAMEWORK: THEPUFF

As shown in Figure 1, our goal is to generate a synthetic graph G∗ that enjoys both privacy guarantee
and high utility. To this end, first, we need a privacy-preserving graph sample Ĝ to provide the
distribution of privacy-preserved structures. Second, we can then set the original graph G as the
utilizable sample, and develop the adversarial generative model to fit the distribution of Ĝ and G
to generate a privacy-preserving and utility-preserving graph G∗. In this section, we first introduce
the overall working flow of the proposed THEPUFF framework in Sec. 4.1. Then, we introduce the
details about how to perturb a temporal heterogeneous graph with privacy guaranteed in Sec. 4.2.
Finally, we introduce how to design the privacy-utility adversarial learning setting to generate viable
temporal heterogeneous graphs in Sec. 4.3.

4.1 OVERVIEW OF THEPUFF

The overview of THEPUFF is shown in Figure 1. The red arrows indicate the privacy-guaranteed
graph operation, where a perturbation M is called to transform the original graph G into Ĝ, the de-
tails are introduced in Sec. 4.2. Then, the blue and green arrows stand for privacy-utility adversarial
learning: (1) Privacy Discriminator Dprv is designed to guarantee the privacy of the generated graph,
which aims to discriminate the generated graph G∗ and the perturbed graph Ĝ; (2) Utility Discrim-
inator Dutil is designed for preserving the graph utility, which aims to discriminate the generated
graph G∗ and the original graph G. To optimize this adversarial training,

• We first pre-train Dutil such that it can distinguish an original graph G with any other graph patterns.
• Then, in the iterations of adversarial training, we alternatively (1) train Dprv with fixed the Gener-

ator G, and (2) train Generator G with fixed Dprv and fixed Dutil.

After adversarial training, the generation ability of Generator G is improved, such that (1) Privacy
Discriminator Dprv could not distinguish graph G∗ from Ĝ (i.e., privacy guaranteed), and (2) Util-
ity Discriminator Dutil could not distinguish graph G∗ from G (i.e., utility preserved). Upon this
optimization, Generator G will output the privacy-guaranteed and utility-preserved graph data.
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4.2 DATA-DRIVEN GRAPH STRUCTURE PERTURBATION BASED ON DIFFERENTIAL PRIVACY

Here, we seek to perturb the input graph G into Ĝ, which (1) not only randomizes the graph structural
distribution bounded by edge-level differential privacy (2) but also preserves the temporal hetero-
geneous graph topology in terms of the degree distribution. The main advantage of preserving the
topology information includes maintaining the discrimination differently for the discriminator in
adversarial training to avoid the training collapse.

Before we introduce the detailed operation, we need to first reformat the temporal heterogeneous
graph by a time-respecting representation, i.e., representing all edges (regardless of edge types) that
share the same timestamp into one snapshot. This time-respecting representation is more convenient
for operation illustration and theoretical analysis and, meanwhile, will not influence follow-up ad-
versarial learning. The graph is represented as G = {G(1),G(2), . . . ,G(T )}, where each snapshot
has the adjacency matrix A(t) ∈ Rn×n, and n is the number of all appeared nodes in the lifetime of
G such that A(t) allows dangling nodes.

Definition 4.1 (Adjacent Temporal Snapshots). At the timestamp t, two snapshots G(t) and G̃(t) are
adjacent snapshots, if and only if G(t) and G̃(t) have the same set of nodes and differ in only one
edge existence. For example, eij exists in G(t) but not in G̃(t), or vice versa.

More precisely, based on the heterogeneous graph definition (Sun & Han, 2012), the two node types
determine the edge type, then the above definition also applies to heterogeneous graphs.

Definition 4.2 (Adjacent Temporal Graphs). Two temporal graphs G and G̃ are adjacent, if and only
if they have the same time length (i.e., from t = 1 to t = T ) and only one pair of adjacent snapshots
exists with the identical rest.

In the static setting, edge-level differential privacy (Blocki et al., 2012; Qin et al., 2017; Fu et al.,
2023) describes that: given two adjacent graphs G and G̃ (i.e., differ in one edge existence), a
randomized mechanism M satisfies the edge-level differential privacy under a constant budget ε > 0,
if and only if

Pr[M(A) = S] ≤ Pr[M(Ã) = S]× eε (1)

where A denotes the adjacency matrix of G and Ã denotes the adjacency matrix of G̃.

The general idea of the above differential privacy is that two adjacent graphs (e.g., one edge differ-
ence between two graphs) are indistinguishable through the perturbation algorithm M. Then, this
perturbation algorithm M satisfies the differential privacy (e.g., edge-level differential privacy). The
intuition is that the randomness of M does not make the small divergence produce a considerably
different distribution, such that the randomness of M is not the cause of the privacy leak. Likewise,
the temporal edge-level differential privacy can be defined as follows.
Definition 4.3 (Temporal Edge-Level Differential Privacy). Given two adjacent temporal graphs
G = {G(1),G(2), . . . ,G(T )} and G̃ = {G̃(1), G̃(2), . . . , G̃(T )}, a temporal randomized mechanism
M = {M(1),M(2), . . . ,M(T )} satisfies the temporal edge-level differential privacy under the budget
ε > 0, if and only if

Pr[M(t)(A(t)) ∈ S(t)] ≤ Pr[M(t)(Ã(t)) ∈ S(t)]× eε
(t)

, and
∑
t

ε(t) ≤ ε, for t ∈ {1, 2, . . . , T}

Next, we introduce our proposed temporal randomized mechanism M = {M(1),M(2), . . . ,M(T )},
and give the proof under temporal edge-level differential privacy.

Perturbation Operations. For a snapshot G(t) at time t, M(t) contains two independent perturbation
operations, i.e., absent edge flip M(t)

+ and existing edge flip M(t)
− , proposed to be directly applied on

adjacency matrix A(t) to obtain Â(t). The absent edge flip is responsible for adding an absent edge,
and the existing edge flip tries to delete an existing edge. These two perturbation operations are
sequentially and interchangeably operated on the structure (i.e., adjacency matrix A(t)) of snapshot
G(t) to get the perturbed structure (i.e., adjacency matrix Â(t)) for the new snapshot Ĝ(t). Following
this way, we apply M(t) = (M(t)

+ ,M(t)
− ) to each snapshot G(t) such that we can get the perturbed

temporal graph Ĝ = {Ĝ(1), Ĝ(2), . . . , Ĝ(T )}. M(t)
+ and M(t)

− are expressed below.

M(t)
+ =

{
1/eε

(t)
+ Prob. of adding an absent edge,

1− 1/eε
(t)
+ Prob. of ignoring that absent edge,

(2)
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M(t)
− =

{
1/eε

(t)
− Prob. of deleting an existing edge,

1− 1/eε
(t)
− Prob. of ignoring that existing edge,

(3)

where e is Euler’s number, and an absent edge means A(t)(i, j) = 0. Then, given the privacy budget

ε
(t)
+ > 0, with the probability 1/eε

(t)
+ , M(t)

+ will flip A(t)(i, j) from 0 to 1; or M(t)
+ will do nothing

to A(t)(i, j) with the probability 1− 1/eε
(t)
+ , similarly on ε

(t)
− > 0.

When sequentially executing M(t)
+ and M(t)

− on a single snapshot graph G, they are executed on
different edge sets (i.e., existing edge set and absent edge set) and do not overwrite each other. In
practice, given the high sparsity of real-world graphs, iterating through non-existing edges could
lead to high time complexity. Therefore, we apply M(t)

+ by first sampling a larger edge set (contains
mostly non-existing edges and a small portion of existing edges), then remove those existing edges,
and sample the number of edges we need to append. In this way, the time complexity of graph
perturbation is approximately the number of edges to be sampled. The general graph perturbation
process is summarized in Alg. 1 in Appendix A.3.
Theorem 4.1. The proposed perturbation operation for temporal heterogeneous graphs is an ϵ-
edge-level differential privacy algorithm, which is bounded by 2 ·max(eε

(t)
+ , eε

(t)
− ) at each t. (Proof

in Appendix A.1)

Data-Driven ε(t) Determination. According to our perturbation strategy, the perturbation process
may result in a privacy-preserving graph but a totally different topological distribution, thus hurting
the utility of the original graph. Also, the dramatic change compared with the original graph is prone
to collapse the adversarial training of the next stage.

Hence, we remedy the graph distortion caused by inserted and deleted edges with respect to the
degree distribution. To achieve that, from the data-driven angle, we give the relation between ε

(t)
+

and ε
(t)
− for G(t) based on the expectation of numbers of added edges and detected edges at each

time t. For the notation clarity, the following equation is expressed in the homogeneous setting but
can be easily extended to the heterogeneous graph by constraining node types.

m(t) 1

eε
(t)
−

≈ ((n(t))2 −m)
1

eε
(t)
+

⇒ ε
(t)
− − ε

(t)
+ ≈ ln

m(t)

(n(t))2 −m(t)
(4)

where n(t) denotes number of non-dangling nodes in G(t), m(t) denotes number of edges in G(t).

4.3 PRIVACY-UTILITY ADVERSARIAL GENERATION

To integrate the privacy of perturbed graph Ĝ and the utility of original graph G, we propose a
privacy-utility adversarial learning method. The method consists of three modules: Privacy Discrim-
inator Dprv, Utility Discriminator Dutil, and Generator G. During the adversarial training, we extract
sampled subgraphs (e.g., via random walks) as model inputs. To be specific, at each time t, if a node
has connections, we can use a heterogeneous random walk method (Ling et al., 2021) to get multiple
l-node sequences. The i-th sequence is denoted as W(t)

i = {{v(t)1 , v
(t)
2 , ..., v

(t)
l }, {o1, o2, ..., ol}},

where vj denotes a node and oj denotes the node type of vj . Finally, we design an assembler for ag-
gregating generated walks of generator G into a privacy-guaranteed and utility-preserved temporal
heterogeneous graph G∗.

Utility-preserving Discriminator Dutil. This discriminator is designed to distinguish generated
graphs Ĝ and original graphs G, such that if the generator G can bypass discriminator Dutil, i.e., Dutil
cannot distinguish the generated walks sampled from real graphs, then the generated graph is ‘close
enough’ to the real graph and thus preserves the utility. On the other side, given a number of walks
sampled from the real graph {W1,W2, ...,Wk} and some generated walks {W∗

1 ,W∗
2 , ...,W∗

k}, dis-
criminator Dutil should have a confident bound for

k∑
i=1

Dutil(Wi) >>
k∑

i=1

Dutil(W∗
i ) (5)

where we omit superscript for time in W(t)
i , so that Wi means the i-th walk in the sampled walks

that consists of walks sampled from different nodes and different timestamps.

To achieve the above goal, we extend our discriminator Dutil from bi-level self-attention (Zhou et al.,
2020) to the tri-level self-attention. On top of that, we first use a model-agnostic projection (Hussein
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et al., 2018) to map node v
(t)
i into an embedding vector h(t)

i . Then, with a sampled walk W(t)
i =

{{v(t)1 , v
(t)
2 , ..., v

(t)
l }, {o1, o2, ..., ol}}, tri-level self-attention mechanism ATN is

ATN time(v
(t)
i , v

(t)
j ) =

(h
(t)
i Wtime

Q )⊙ (h
(t)
j Wtime

K )
√
dk

(6)

ATNnode(vi, vj) =
(hiW

node
Q )⊙ (hjW

node
K )

√
dk

, hi =
∑

t∈{1,...,T}

h
(t)
i (7)

ATN type(oi, oj) =
(oiW

type
Q )⊙ (ojW

type
K )

√
dk

(8)

where oi is the one-hot embedding of node type oi. Matrices Wtime
Q ,Wnode

Q ,Wtype
Q are the time-

level, node-level, and type-level query weight matrices; Wtime
K ,Wnode

K ,Wtype
K are the time-level,

node-level, and type-level key weight matrices.

To integrate attention from the three levels, we define the pooling operation of tri-level self-attention
as

Z = (softmax(Atime) + softmax(Anode) + softmax(Atype))V, (9)
where V = WV H, H(v, :) = hv, and WV is the value weight matrix.

Finally, the multi-head attention layers are followed by a fully connected layer and a softmax func-
tion to output a score estimating the probability that the input walk is sampled from the real graph.

To train Dutil for fulfilling the goal in Eq. 5, the objective function for optimizing Dutil is to minimize

LDutil({W}, {W∗}) =
|{W}|∑

i

Dutil(W∗
i )− Dutil(Wi) (10)

where {W} and {W∗} are the mini-batches of sampled walks.

For realization, we choose to train Dutil with randomly generated negative samples instead of gen-
erated ones from generator G, whose operation actually allows us to detach Dutil from the min-max
manner (Goodfellow et al., 2014). In this way, Dutil acts like a good scoring function for the penalty
in the adversarial training. Although involving Dutil with the generator might lead to a higher utility,
it will increase computation complexity, the difficulty of model tuning, and the risk of training col-
lapse. Our experiments corroborate that training Dutil separately is sufficiently good for generation.

Privacy-guaranteed Discriminator Dprv. This discriminator aims to discriminate generated graph
G∗ and perturbed graph Ĝ. Again, if the discriminator Dprv cannot discriminate walks in the gener-
ated graph and walks sampled from the perturbed graph, the privacy of the generated graph can be
guaranteed. On the contrary, a good Dprv should satisfy

k∑
i=1

Dprv(Ŵi) >>
k∑

i=1

Dprv(W∗
i ) (11)

where {Ŵ1, Ŵ2, ..., Ŵk} are random walks sampled from Ĝ, and {W∗
1 ,W∗

2 , ...,W∗
k} are walks

generated by generator G.

With similar intuition as Dutil, Dprv shares the same neural architecture as Dutil. The objective func-
tion for training Dprv is defined as

LDprv({Ŵ}, {W∗}) =
|{Ŵ}|∑

i

Dprv(W∗
i )− Dprv(Ŵi) (12)

where Dprv and generator G are trained alternatively.

Generator G. The generator aims to generate synthetic graphs that are both privacy-guaranteed and
utility-preserved. We first introduce how to generate temporal heterogeneous walks, and then we
introduce how the generated walks get constrained by the designed loss function to preserve both
privacy and utility. In the next subsection, we introduce how the assembler aligns the generated
walks into a temporal heterogeneous graph.

To begin with, we sample timestamped nodes with type based on the perturbed graph Ĝ, which could
ensure higher privacy-preserving than just sampling from the original graph G. In the following sec-
tions, we omit the time superscript of v(t)i for brevity, i.e., vi denotes a node with a timestamp for the
following sections. The walk generation relies on the hidden states of recurrent neural architectures
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(e.g., LSTM (Hochreiter & Schmidhuber, 1997)) to generate a length-L walk, i.e., the generator
sequentially samples timestamped nodes with type based on the hidden state, which corresponding
mechanism is described as follows. For sampling the l-th node in walk generation, i.e., the l-th block
in LSTM fθ, for l ∈ {1, . . . , L}, we have

(ml, hl) = fθ(ml−1, al−1), al = gc(ol, vl),

ol ∼ go(hl), / ∗ sample node type ∗ /
vl ∼ gv(hl, ol), / ∗ sample timestamped node ∗ /

(13)

where vl is the l-th timestamped node, ol is the node type, hl and ml are the hidden state and memory
state of LSTM, and al is the input for the next recurrent block:
• go is implemented with a fully connected layer and Gumbel Softmax, which aims to sample the

node type based on the hidden state.
• gv is implemented by a bag of fully connected layers, each corresponding to one node type; given

the sampled node type from go, the corresponding fully connected layer generates an expected
timestamped node embedding h∗. Given that, we can sample from timestamped node embeddings
ĥ(t) in Ĝ based on the distance of embedding vectors, detailed distance function is stated in Eq. 14.

• gc = fo(onehot(ol)) + fv(ĥ
(tvl )
vl ), fo and fv are both fully-connected layers, where tvl

is the
timestamp of node vl.

For initialization, we have a0 = 0, m0 = f0(z), where f0 is a fully connected layer and z is sampled
from normal distribution z ∼ N (0, 1). For gv , a timestamped node vl with type ol is sampled by the
highest probability based on the vector distance as

e−||h∗−ĥ
(tvl

)

vl
||∑

v s.t. o(v)=ol
e−||h∗−ĥ

(tv)
v ||

(14)

where o(v) means the node type of a node v.

Note that we do not enforce adjacent nodes to share the same timestamp to increase the diversity of
the generated graph. In the next assembly step, edges connecting nodes from different timestamps
will be added to both snapshots.

To generate the privacy-guaranteed and utility-preserving graph, the walks generated by G try to
bypass both Dutil and Dprv. Therefore the loss function for training G is defined as

LG({W∗}) = −
|{W∗}|∑
i=1

(Dutil(W∗
i ) + Dprv(W∗

i )) (15)

The general training process is summarized in Alg. 4 in Appendix A.3.
Claim 4.1. Since utility discriminator Dutil is pre-trained as shown in lines 3–6 of Alg. 2, and
the generator G does not touch any real data as it is only listening to decisions of discriminators,
our generative and adversarial game can be rewritten in the form of Eq. 2 and Eq. 3 of (Wu
et al., 2019). In (Wu et al., 2019), generative adversarial networks have been proved to have an
outstanding generalization property that can be interpreted as constraining the input and output
under differential privacy constraints.

Thus, we only need to make one extra assumption that the sampled temporal heterogeneous sub-
graphs are independent and identically distributed, and then we can reach a generalization bound of
our adversarial learning from the perspective of differential privacy (Wu et al., 2019), which means
the adversarial learning is also under differential privacy if the discriminator is well converged (i.e.,
stable). Note that this assumption is mild, since all subgraphs originate from a whole larger graph,
we can assume they are identically distributed; because we independently sample each subgraph,
we can also assume they are independently distributed.

Assembler. Here, we extend the assembling mechanism in (Ling et al., 2021) to assemble a temporal
heterogeneous graph. First, we generate a sufficient number of walks from the generator. Then we
construct a scoring matrix S by counting the existing edges in the generated walks and find all
meta-paths in the generated walks. To construct the generated graph, we start with sampling a node
v1 ∼ Pr(v) according to probability

Pr(v1 = u) =

∑
v∈Ĝ(S(u, v))∑

vi∈Ĝ
∑

vj∈Ĝ S(vi, vj)
(16)

where S(u, v) counts how many connections exist between node u and v in the generated walks.
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Then, we sample a meta-path according to the meta-path’s frequency. Following that meta-path
O = (o1, ...ol), we sequentially sample the next node vi+1(i ≥ 1) with node type oi+1 according to
probabilities proportional to the scoring matrix, where o(v) is the type of node v.

Pr(vi+1 = u) =
1(o(u) = oi+1)S(vi, u)∑

v∈Ĝ∧o(v)=oi+1
S(vi, v)

(17)

Finally, we add all edges in the generated meta-path instances into the generated graph. Note that
the timestamp of graphs naturally goes with the timestamp of nodes. The overall algorithms and
time complexity can be found in Appendix A.3 and A.4.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETTING

Datasets. To test the performance, we utilize 4 real-world publicly-available temporal heteroge-
neous graph datasets from academic citation graphs (DBLP), online rating graphs (ML-100k, ML-
20M), and million-node online shopping graphs (Taobao).

Baselines. The comparison baselines include 4 categorical graph generative models. HGEN (Ling
et al., 2021) is a heterogeneous graph generation algorithm. TagGen (Zhou et al., 2020) and TG-
GAN (Zhang et al., 2021) are temporal graph generation algorithms. EDGE (Chen et al., 2023)
is designed for plain graph generation based on diffusion models. DISCO (Xu et al., 2024b) is a
discrete-state continuous-time diffusion model for plain graph generation. GraphMaker (Li et al.,
2024a) is a diffusion model designed for attributed graph generation. Our THEPUFF stands for the
temporal and heterogeneous graph generation. 1

Evaluation Metrics. We propose 6 metrics measuring 4 different aspects of temporal heterogeneous
graph generation quality, including plain graph utility, temporal graph utility, heterogeneous graph
utility, and overall privacy.

Plain Graph Utility: We propose Node Degree Distribution by Maximum Mean Discrepancy Dis-
tance (i.e., MMD), named Degree in short, which is expressed as

Dist(dori,dgen) =
1

T

T∑
t=1

MMD(d
(t)
ori,d

(t)
gen), (18)

where d
(t)
ori,d

(t)
gen are degrees of nodes in the original and generated graphs at time t, and MMD is

averaged over all timestamps,
MMD(x, x′) = ker(x, x) + ker(x′, x′)− 2ker(x, x′) (19)

where the kernel function ker(·) is
∑k

j=1 e
−αj ||x−x′||2 , and k and αj are constants. In the evalua-

tion, we set k = 1 and α = 4.

Temporal Graph Utility: We extend the Clustering Coefficient (i.e., Cluster), Size of the Largest
Connected Component (i.e., LCC), and Triangle Count (i.e., TC) to the temporal setting, by calcu-
lating those metrics at each timestamp and using MMD between the sequences of metrics over time
of the original graph G and the generated graph G∗. Taking LCC as an example,

MMD([LCC(G(1)), ...,LCC(G(T ))], [LCC(G∗(1)), ...,LCC(G∗(T ))]) (20)
Heterogeneous Graph Utility: For each timestamp, we count the number of length-2 and length-3
meta-path instances and get a probability distribution of meta-paths. Cross Entropy is applied for
length-2 and length-3 respectively to measure distance, and the mean over time is taken to evaluate
the overall performance. The corresponding metrics are named Meta-2 and Meta-3. Specifically,
we only preserve the meta-paths that exist in the original graph, and all other meta-paths in the
generated graph are combined into one category. For example, in the MovieLens 100k dataset,
we consider length-2 meta-path distributions over M2 = [‘user-occupation’, ‘movie-genre’, ‘user-
movie’, ‘none of above’],

Dist(PrG(M), P rG∗(M)) =
1

T

T∑
t=1

∑
m∈M

(− log
exp(Pr

(t)
G∗(m))∑

m∈M exp(Pr
(t)
G∗(m))

Pr
(t)
G (m)) (21)

where PrG(m) denotes the probability distribution of the meta-path m in the graph G, and M is a
collection of meta-path m.

1Dataset statistics and more implementation details are summarized in Appendix A.5. Code is at
https://github.com/xinyuu-he/THePUff.
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Overall Privacy: EO-Rate is defined as the ratio of overlapped edges (i.e., in terms of existence
and edge type) between the original graphs and the generated graph, which is used to analyze the
privacy-preserving property of the generation, and is averaged over time.

EO-Rate(G∗) =
1

T

T∑
t=1

|edges(G(t))
⋂

edges(G∗(t))|
|edges(G∗(t))|

(22)

5.2 MAIN RESULTS

In Table 2, we report the average and standard deviation of the generated temporal heterogeneous
graphs with respect to the 6 proposed metrics. In general, our proposed THEPUFF framework
generates very competitively utilizable temporal heterogeneous graphs compared with the state-of-
the-art baselines, especially in the large-scale datasets, DBLP, MovieLens 20M (i.e., ML-20M), and
Taobao datasets. Also, we observe that the plain graph generative model, EDGE (Chen et al., 2023)
can achieve good performance on small-scale datasets, but it relies on diffusion model for the gen-
eration process, which requires costly computational resources, especially high space complexity.
We also discuss the convergence of adversarial training in Appendix A.6, briefly analyze the time
complexity in Appendix A.4, and show ablation studies in Appendix A.7.

Table 2: Comprehensive Evaluation of Generated Temporal Heterogeneous Graphs, where e denotes
scientific notation (e.g., 1e−2 = 0.01), purple, teal, and cyan denote the first, second, and third place

Datasets Methods
Utility Privacy

Cluster (↓) TC (↓) LCC (↓) Degree (↓) Meta-2 (↓) Meta-3 (↓) EO-Rate (↓)

ML-100k

HGEN 5.871e−2
(±6.971e−4) 1.000(±0.0) 1.905e−1

(±0.0) 1.395e−1
(±1.353e−3) 1.469(±1.850e−4) 1.289(±4.450e−5) 3.200e−2

(±2.008e−4)

TagGen 3.021e−1
(±1.561e−1) 1.000(±0.0) 6.417e−1

(±0.023) 1.570e−1
(±5.345e−3) 1.500(±1.306e−1) 1.310(±3.281e−3) 2.238e−1

(±1.159e−1)

TG-GAN 4.987e−1
(±7.305e−2) 1.000(±0.0) 2.143e−1

(±0.024) 2.097e−1
(±8.056e−2) 1.527(±2.535e−2) 1.308(±1.600e−5) 2.666e−2

(±4.729e−3)

EDGE 3.960e−3
(±5.544e−6) 1.000(±0.0) 2.955e−1

(±0.166) 1.569e−1
(±4.883e−4) 1.744(±6.850e−6) 1.313(±0.0) 5.488e−3

(±1.143e−4)

DISCO 3.897e−1
(±3.444e−3) 1.000(±0.0) 1.190(±0.0) 3.632e−1

(±8.596e−3) 1.653(±2.970e−3) 1.313(±3.772e−5) 1.854e−2
(±1.942e−4)

GraphMaker 1.034e−3
(±4.803e−4) 1.032(±0.027) 1.908e−1

(±0.001) 1.385e−1
(±3.375e−3) 1.490(±4.223e−3) 1.302(±3.812e−4) 4.330e−2

(±3.837e−3)

THEPUFF 2.536e−3
(±5.673e−4) 1.532(±0.0) 2.636e−1

(±0.071) 3.547e−1
(±1.283e−2) 1.664(±1.922e−3) 1.313(±1.950e−5) 2.247e−2

(±5.652e−3)

DBLP

HGEN 1.088e−8
(±4.790e−10) 4.270e−1

(±0.032) 0.000(±0.0) 1.191e−1
(±3.784e−5) 1.566(±5.550e−5) 0.912(±3.059e−4) 3.064e−4

(±1.623e−5)

TagGen 1.574e−2
(±1.437e−3) 1.000(±0.0) 0.000(±0.0) 3.339e−1

(±1.455e−1) 1.821(±2.987e−2) 0.919(±8.229e−3) 1.164e−1
(±2.001e−2)

TG-GAN 6.980e−3
(±6.585e−3) 1.000(±0.0) 0.000(±0.0) 1.496e−1

(±4.812e−2) 1.794(±7.134e−3) 0.916(±1.056e−2) 2.090e−3
(±7.383e−4)

EDGE - - - Generates Empty Graph - - -
DISCO - - - OOM - - -

GraphMaker - - - OOM - - -
THEPUFF 0.000(±0.0) 1.192e−7

(±0.0) 2.466e−2
(±0.023) 1.265e−1

(±5.729e−2) 1.839(±1.179e−4) 0.915(±4.435e−4) 6.908e−5
(±3.402e−5)

ML-20M

HGEN 2.217e−8
(±4.491e−9) 2.835e−1

(±0.008) 2.552e−10
(±2e−10) 7.843e−2

(±8.729e−5) 1.091(±1.862e−4) 1.232(±1.530e−4) 4.266e−3
(±8.808e−5)

TagGen 7.934e−5
(±0.0) 1.008(±0.0) 0.000(±0.0) 1.263e−1

(±0.0) 1.532(±3.200e−6) 1.266(±0.0) 5.105e−1
(±0.0)

TG-GAN 2.154e−9
(±2.154e−9) 3.056e−2

(±0.031) 2.215e−1
(±0.212) 5.431e−1

(±9.484e−3) 1.328(±6.003e−3) 1.257(±6.818e−3) 2.339e−3
(±2.915e−4)

EDGE - - - OOM - - -
DISCO - - - OOM - - -

GraphMaker - - - OOM - - -
THEPUFF 0.000(±0.0) 0.000(±0.0) 5.168e−1

(±0.165) 5.596e−1
(±1.225e−2) 1.081(±4.282e−3) 1.266(±1.000e−6) 2.305e−3

(±1.856e−4)

Taobao

HGEN 0.000(±0.0) 1.192e−7
(±0.0) 0.000(±0.0) 6.137e−4

(±1.382e−5) 1.233(±2.706e−2) 0.613(±0.0) 1.127e−4
(±7.581e−6)

TagGen 0.000(±0.0) 1.192e−7
(±0.0) 0.000(±0.0) 4.515e−4

(±4.168e−5) 1.540(±2.941e−3) 0.613(±0.0) 2.082e−2
(±1.365e−4)

TG-GAN 0.000(±0.0) 1.192e−7
(±0.0) 4.982e−1

(±0.044) 7.204e−4
(±5.501e−6) 1.526(±2.498e−4) 0.613(±0.0) 5.021e−6

(±2.063e−6)

EDGE - - - OOM - - -
DISCO - - - OOM - - -

GraphMaker - - - OOM - - -
THEPUFF 0.000(±0.0) 1.192e−7

(±0.0) 5.637e−1
(±0.087) 7.545e−4

(±6.616e−7) 1.493(±1.116e−3) 0.613(±5e−7) 4.367e−6
(±4.367e−6)

5.3 ATTACKER EXPERIMENT

To further evaluate the privacy of our generated graphs, we perform an attack experiment on the
DBLP dataset in addition to the EO-Rate metric. We consider the same attack scenario as the toy
example in Figure. 1, i.e., at time t, nodes sharing the same degree with the target victim are possible
candidates. Mathematically, the successful attack probability (i.e., for accurately identifying the
target) can be modeled as follows. At a certain timestamp t, the attack probability of node i is

p
(t)
i =

{
0 ,d

(t)
gen[i] ̸= d

(t)
ori[i],

1∑
v∈G∗ 1[d

(t)
gen[v]==d

(t)
gen[i]]

,d
(t)
gen[i] = d

(t)
ori[i],

(23)

where 1 is indicator function, dgen,dori are node degree functions of the generated graph and
original graph. Table 3: Graph Attack on DBLP

Baseline Successful Attack Probability (%)
Original 0.093
HGEN 0.009(1.3e−4 )

DPGGAN 0.008(1.3e−4 )
THEPUFF(Ours) 0.006(9.0e−5)

Finally, we measure the model’s privacy performance by the
mean of p(t)i over timestamps and all nodes. We compare the
attack probabilities of graphs generated by THEPUFF, HGEN,
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and a state-of-the-art differential-privacy-based graph generation method, DPGGAN (Yang et al.,
2020), and get the following results; we also calculate the successful attack probability on the origi-
nal graph for reference. The results are shown in Table 3. We can observe that THEPUFF-generated
graphs give attackers the lowest confidence of a successful attack, and THEPUFF is also the most
stable one with the smallest standard deviation (i.e. numbers inside the parenthesis in Table 3).

5.4 PARAMETER ANALYSIS

Figure 2: EO-Rate w.r.t Budget ε−

We analyze the model performance with different choices of
ε+ and ε− on MovieLens 100K. THEPUFF is trained with
ε− = {1, 2, 3, 4, 5, 6, 7, 8} and ε+ is estimated by Eq. 4.
Also, the pair of ε− and ε+ is shared across all timestamps
{1, 2, . . . , T}. We draw the curve of EO-Rate with respect
to ε− in Figure 2. In general, the smaller budget can preserve
more privacy, which aligns with the theoretical differential pri-
vacy. EO-Rate increases with ε− when ε− is larger than 3,
because the number of perturbed edges decreases when ε− in-
creases, then the perturbed graph will be very close to the real
graph. In this way, the synthetic graph will be closer to the real
graph too, and its edges will be more likely to overlap with the
edges in the real graph. It is interesting that the EO-Rate will also increase when the number of
perturbed edges increases beyond a certain boundary (ε− less than 3 in our case). This is because
the more random the perturbed graph is, the harder the privacy-guaranteed Discriminator’s learning
process will be. In this case, the utility-preserving discriminator will dominate over the privacy-
guaranteed discriminator and generate a synthetic graph more like a real graph. The full results of
parameter analysis in terms of all metrics are shown in Table 4.

Table 4: Parameter Study Results on ML-100k, where e denotes the scientific notation.

ε−
Utility Privacy

Cluster (↓) TC (↓) LCC (↓) Degree (↓) Meta-2 (↓) Meta-3 (↓) EO-Rate (↓)
1 7.598e−5

(±5.200e−5) 2.000(±0.0) 0.363(±2.512e−2) 0.796(±0.078) 1.689(±1.824e−3) 1.313(±7.300e−6) 2.285e−2
(±2.968e−3)

2 1.343e−3
(±1.166e−3) 1.532(±0.0) 0.240(±4.361e−4) 0.413(±0.120) 1.661(±2.519e−3) 1.313(±4.765e−5) 1.812e−2

(±4.117e−4)

3 5.070e−5
(±3.694e−5) 2.000(±0.0) 0.266(±7.448e−2) 0.677(±0.117) 1.676(±2.143e−3) 1.313(±1.420e−5) 1.500e−2

(±4.250e−3)

4 2.540e−4
(±2.304e−4) 2.000(±0.0) 0.266(±7.317e−2) 0.644(±0.099) 1.682(±1.773e−3) 1.313(±5.970e−5) 1.367e−2

(±2.199e−3)

5 3.204e−4
(±3.054e−4) 2.000(±0.0) 0.240(±4.936e−2) 0.603(±0.113) 1.668(±5.389e−3) 1.313(±1.475e−4) 1.665e−2

(±8.489e−5)

6 3.104e−4
(±2.936e−4) 2.000(±0.0) 0.289(±9.611e−2) 0.557(±0.119) 1.669(±5.191e−3) 1.313(±4.545e−5) 1.575e−2

(±1.543e−3)

7 6.915e−5
(±6.404e−5) 2.000(±0.0) 0.239(±1.308e−3) 0.570(±0.114) 1.664(±8.025e−3) 1.313(±1.002e−4) 1.872e−2

(±1.095e−3)

8 3.546e−4
(±3.204e−4) 1.766(±0.234) 0.265(±2.642e−2) 0.489(±0.137) 1.663(±1.680e−3) 1.313(±5.870e−5) 2.660e−2

(±1.148e−3)

6 RELATED WORK
Graph generative models have been extensively studied recently. Recently, a generative model called
EDGE (Chen et al., 2023) is proposed, which develops a diffusion-based model that first diffuses
graphs to empty graphs by the step-by-step edge removal process. By modeling that trajectory with
the denoising model, it reversely decomposes the denoising model and generates edges. These mod-
els are only designed for static and plain graphs. HGEN (Ling et al., 2021) tackles the heterogeneous
graph generation problem with a heterogeneous walk-based GAN framework, where a discriminator
is trained to discriminate synthetic heterogeneous walks and real walks. TagGen (Zhou et al., 2020)
generates synthetic temporal walks by doing ‘addition’ and ‘deletion’ to sampled walks. Generated
walks are scored to assemble a synthetic temporal graph with discrete timestamps. TG-GAN (Zhang
et al., 2021) uses the temporal random walk-based generator-discriminator framework to solve the
continuous-time temporal graph generation problem. Most graph generative models ignore the fact
that complex heterogeneous and temporal information may increase the exposure of the private in-
formation of nodes (e.g., identities of social network users) (Jiang et al., 2023; Fu et al., 2023; Li
et al., 2015; Liu et al., 2021), and this challenge largely remains open. To the best of our knowledge,
THEPUFF is first to deal with temporal heterogeneous graph generation with guaranteed privacy.

7 CONCLUSION
In THEPUFF, a differential privacy algorithm is first proposed to perturb the input graph. Then,
a privacy-utility adversarial learning setting is developed to generate both privacy-guaranteed and
utility-preserved heterogeneous temporal graphs. By extensive experiments, we demonstrate the
effectiveness of THEPUFF, especially in large-scale datasets.
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Rongzhe Wei, Eleonora Kreačić, Haoyu Wang, Haoteng Yin, Eli Chien, Vamsi K Potluru, and Pan
Li. On the inherent privacy properties of discrete denoising diffusion models. arXiv preprint
arXiv:2310.15524, 2023.

Bingzhe Wu, Shiwan Zhao, Chaochao Chen, Haoyang Xu, Li Wang, Xiaolu Zhang, Guangyu Sun,
and Jun Zhou. Generalization in generative adversarial networks: A novel perspective from pri-
vacy protection. In NeurIPS, 2019.

Lemeng Wu, Chengyue Gong, Xingchao Liu, Mao Ye, and Qiang Liu. Diffusion-based molecule
generation with informative prior bridges. Advances in Neural Information Processing Systems,
35:36533–36545, 2022.

Zhe Xu, Kaveh Hassani, Si Zhang, Hanqing Zeng, Michihiro Yasunaga, Limei Wang, Dongqi Fu,
Ning Yao, Bo Long, and Hanghang Tong. Language models are graph learners. CoRR, 2024a.

Zhe Xu, Ruizhong Qiu, Yuzhong Chen, Huiyuan Chen, Xiran Fan, Menghai Pan, Zhichen Zeng,
Mahashweta Das, and Hanghang Tong. Discrete-state continuous-time diffusion for graph gener-
ation. arXiv preprint arXiv:2405.11416, 2024b.

Carl Yang, Haonan Wang, Ke Zhang, Liang Chen, and Lichao Sun. Secure deep graph generation
with link differential privacy. arXiv preprint arXiv:2005.00455, 2020.

Carl J. Yang, Yuxin Xiao, Yu Zhang, Yizhou Sun, and Jiawei Han. Heterogeneous network repre-
sentation learning: A unified framework with survey and benchmark. 2022.

Qi Yu, Zhichen Zeng, Yuchen Yan, Lei Ying, R Srikant, and Hanghang Tong. Joint optimal transport
and embedding for network alignment. In WWW, 2025.

Zhichen Zeng, Si Zhang, Yinglong Xia, and Hanghang Tong. Parrot: Position-aware regularized
optimal transport for network alignment. In Proceedings of the ACM Web Conference 2023, pp.
372–382, 2023.

Liming Zhang, Liang Zhao, Shan Qin, Dieter Pfoser, and Chen Ling. TG-GAN: continuous-time
temporal graph deep generative models with time-validity constraints. In WWW, 2021.

Mengchun Zhang, Maryam Qamar, Taegoo Kang, Yuna Jung, Chenshuang Zhang, Sung-Ho Bae,
and Chaoning Zhang. A survey on graph diffusion models: Generative AI in science for molecule,
protein and material. CoRR, abs/2304.01565, 2023. doi: 10.48550/ARXIV.2304.01565. URL
https://doi.org/10.48550/arXiv.2304.01565.

Elena Zheleva and Lise Getoor. Preserving the privacy of sensitive relationships in graph data. In
PinKDD, 2007.

13

https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://doi.org/10.48550/arXiv.2304.01565


Published as a conference paper at ICLR 2025

Lecheng Zheng, Dongqi Fu, Ross Maciejewski, and Jingrui He. Drgnn: Deep residual graph neural
network with contrastive learning. Transactions on Machine Learning Research, 2024.

Bin Zhou and Jian Pei. Preserving privacy in social networks against neighborhood attacks. In
ICDE, 2008.

Dawei Zhou, Lecheng Zheng, Jiawei Han, and Jingrui He. A data-driven graph generative model
for temporal interaction networks. In KDD, 2020.

Han Zhu, Xiang Li, Pengye Zhang, Guozheng Li, Jie He, Han Li, and Kun Gai. Learning tree-based
deep model for recommender systems. In Proceedings of the 24th ACM SIGKDD international
conference on knowledge discovery & data mining, pp. 1079–1088, 2018.

14



Published as a conference paper at ICLR 2025

A APPENDIX

The supplementary material contains the following information:

• Appendix A.1, A.2: Proof of Theorem 4.1.
• Appendix A.3: Pseudo codes.
• Appendix A.4: Time complexity analysis.
• Appendix A.5: Datasets and implementation details.
• Appendix A.6: Convergence of THEPUFF training.
• Appendix A.7: Ablation study.
• Appendix A.8: Attack Experiments on all Datasets
• Appendix A.9: Type-Distinguishable Attack Experiments on all Datasets
• Appendix A.10: Pseudo-code of Discriminators in THEPUFF
• Appendix A.11: Pseudo-code of Assembler in THEPUFF

A.1 PROOF OF THEOREM 4.1

Proof sketch. For the proposed perturbation operation, we first prove that edge-level differential
privacy is guaranteed for each timestamp, and we then prove that temporal edge-level differential
privacy is guaranteed for the entire temporal graph. Denoting the perturbed adjacency matrix as
M(t)(A(t)), the probability of the perturbed matrix equals a certain matrix S(t) is

Pr[M(t)(A(t)) = S(t)] =
∏
k

Pr[M(t)
k (A(t)) = S

(t)
k ] (24)

where the M(t)
k includes two randomizations M(t)

+ and M(t)
− .

Then, given two snapshots G(t) and G̃(t), the ratio of the probability of perturbing on A(t) and Ã(t)

and outputting the same output can be expressed as follows,
Pr[M(t)(A(t)) = S(t)]

Pr[M(t)(Ã(t)) = S(t)]
s.t. for i, j ∈ {1, 2, . . . , n} =

∏
vi,vj

Pr[M(t)
+ (A(i, j)) = S(i, j)]

Pr[M(t)
+ (Ã(i, j)) = S(i, j)]

∏
vi,vj

Pr[M(t)
− (A(i, j)) = S(i, j)]

Pr[M(t)
− (Ã(i, j) = S(i, j)]

(25)
which is a general formula over all possible edges. To be specific, given two adjacent snapshots
G(t) and G̃(t), we can denote the difference as an absent edge (u, v), e.g., G(t) does not have it but
G̃(t) does. Then, according to Eq. 25, the ratio Γ of the marginal probability of outputting the same
output is in the equation below, where the first term represents that M(t)

+ successfully flips A(u, v)(t)

and M(t)
− can do nothing on the flipped A(u, v)(t) based on our design.

Γ =
Pr[A(u, v)(t) = 0 → 1]

Pr[Ã(u, v)(t) = 1 → 1]︸ ︷︷ ︸
M(t)

+

Pr[A(u, v)(t) = 1 → 1]

Pr[Ã(u, v)(t) = 1 → 1]︸ ︷︷ ︸
M(t)

−

+
Pr[A(u, v)(t) = 0 → 0]

Pr[Ã(u, v)(t) = 1 → 1]︸ ︷︷ ︸
M(t)

+

Pr[A(u, v)(t) = 0 → 0]

Pr[Ã(u, v)(t) = 1 → 0]︸ ︷︷ ︸
M(t)

−

=
1/eε

(t)
+

1
× 1

1− 1/eε
(t)
−

+
1− 1/eε

(t)
+

1

1

1/eε
(t)
−

=
eε

(t)
−

eε
(t)
+

× 1

eε
(t)
− − 1

+ eε
(t)
− − eε

(t)
−

eε
(t)
+

<
eε

(t)
−

eε
(t)
+

× 1

eε
(t)
− − 1

+ eε
(t)
− <

1

eε
(t)
+

+ eε
(t)
−

(26)
Then, we can derive Theorem 4.1 based on Eq. 26. Moreover, we have analyzed the differential
privacy scenario that the later mechanism can overwrite (e.g., M(t)

− flips the edge that M(t)
+ has just

flipped) in the next section, and the bound is looser than in Eq. 26 (i.e., larger than 1

e
ε
(t)
+

+ eε
(t)
− ),

which suggests that forbidding the overwrite is a safer way to protect privacy.

A.2 ADDITIONAL PROOF FOR THEOREM 4.1

Here, we extend to analyze the scenario when the later perturbation (e.g., M(t)
− ) can overwrite the

former perturbation (e.g., M(t)
+ ) and derive the corresponding differential privacy bound.

Similarly, we start from Eq. 25

Pr[M(t)(A(t)) = S(t)]

Pr[M(t)(Ã(t)) = S(t)]
for i, j ∈ {1, 2, . . . , n}

=
∏
vi,vj

Pr[M(t)
+ (A(i, j)) = S(i, j)]

Pr[M(t)
+ (Ã(i, j)) = S(i, j)]

·
∏
vi,vj

Pr[M(t)
− (A(i, j)) = S(i, j)]

Pr[M(t)
− (Ã(i, j) = S(i, j)]

(27)
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which is a general formula over all possible edges. To be specific, given two adjacent snapshots G(t)

and G̃(t), we can denote the difference as an absent edge (u, v) without loss of generality, e.g., G(t)

does not have it but G̃(t) does. Then, according to Alg. 1 and Eq. 25, the marginal probability Γ of
outputting the same output is as follows.

Γ =
Pr[A(u, v)(t) = 0 → 1]

Pr[Ã(u, v)(t) = 1 → 1]︸ ︷︷ ︸
M(t)

+

Pr[A(u, v)(t) = 1 → 1]

Pr[Ã(u, v)(t) = 1 → 1]︸ ︷︷ ︸
M(t)

−

+

Pr[A(u, v)(t) = 0 → 1]

Pr[Ã(u, v)(t) = 1 → 1]︸ ︷︷ ︸
M(t)

+

Pr[A(u, v)(t) = 1 → 0]

Pr[Ã(u, v)(t) = 1 → 0]︸ ︷︷ ︸
M(t)

−

+

Pr[A(u, v)(t) = 0 → 0]

Pr[Ã(u, v)(t) = 1 → 1]︸ ︷︷ ︸
M(t)

+

Pr[A(u, v)(t) = 0 → 0]

Pr[Ã(u, v)(t) = 1 → 0]︸ ︷︷ ︸
M(t)

−

=
1/eε

(t)
+

1
× 1− 1/eε

(t)
−

1− 1/eε
(t)
−

+
1/eε

(t)
+

1
× 1/eε

(t)
−

1/eε
(t)
−

+
1− 1/eε

(t)
+

1

1

1/eε
(t)
−

=
2

eε
(t)
+

+ eε
(t)
− + eε

(t)
− −ε

(t)
+ <

2

eε
(t)
+

+ eε
(t)
−

where the first term represents that M(t)
+ successfully flips and M(t)

− ignores, the second term means
that M(t)

+ successfully flips and M(t)
− also flips and overwrites, and the third terms means that M(t)

+

ignores and M(t)
− flips.

A.3 PSEUDO CODES

Algorithm 1 Graph Perturbation based on Differential Privacy

Input:
graph snapshot G(t), privacy budgets eε

(t)
+ and eε

(t)
−

Output:
graph snapshot Ĝ(t)

1: for a certain edge type do
/* Apply M(t)

+ */
2: for edge in non-existing set do
3: Randomly generate a probability α

4: if α ≤ 1/eε
(t)
+ then

5: Add edge to set append set
6: end if
7: end for

/* Apply M(t)
− */

8: for edge in existing set do
9: Randomly generate a probability α

10: if α ≤ 1/eε
(t)
− then

11: Add edge to set del set
12: end if
13: end for
14: end for
15: residual set = set diff(existing set, del set)
16: Ĝ(t) = set union(residual set, append set)

16



Published as a conference paper at ICLR 2025

Algorithm 2 Privacy-Utility Adversarial Training

Input:
sampled walks {W} from G, sampled walks {Ŵ} from Ĝ, randomly sampled walks {Ŵ ′},

Output:
synthetic walks generator G

1: while until not converge do
2: Initialize Dutil, Dprv, G
3: for batches B in {W}, B′ in {W ′} do
4: Calculate LDutil(B,B′) in Eq. 10
5: Update Dutil
6: end for
7: end while
8: while until not converge do
9: for batches B̂ in {Ŵ} do

10: Initialize noise z = {zi ∼ N (0, 1)}
11: B∗ = G(z)

12: Calculate LDprv(B̂,B∗) in Eq. 12
13: Update Dprv
14: Calculate LG(B∗) in Eq. (12)
15: Update G
16: end for
17: end while

A.4 THEORETICAL AND EMPIRICAL COMPLEXITY ANALYSIS

Theoretical Time Complexity Analysis For the overall training process, the time complexity of
THEPUFF mostly depends on the number of walks sampled (which typically can be approximately
O(E) or O(k|V |), k is a constant indicating the number of walks sampled starting from one node,
depending on graph sparsity). For each training iteration, the time complexity for forward will be
mainly composed of three parts: LSTM with l (i.e., length of walks, typically less than 5) steps, and
two tri-level attention networks with time complexity O(l2(2d + do)), where d is the dimension of
node embedding and do is the length of one-hot embedding of the node type. Similarly, the time
complexity for graph generation mostly depends on the number of walks to be generated.

Compared with diffusion-based generation methods, our training and generation process both follow
a node-by-node sampling procedure, whereas reverse process in current diffusion graph generation
models follow an edge-by-edge sampling procedure. Therefore, our work has a complexity linear
to |V | while diffusion graph generation models have complexities quadratic to |V | (Table. 1). Al-
though our probability prediction module (tri-level attention layer) might have a higher complexity
compared to diffusion models with simpler architecture (e.g., MPNN), if we consider that hyper-
parameters (l, d, do) are much smaller than |V |, (empirically, they actually do), our method is still
more efficient compared with diffusion-based methods, especially when |V | reaches thousands to
even millions.

Empirical Running Time Comparison To give a better illustration from the practical viewpoint,
the overall training process of ML-100K given sampled walks (sampling 5 walks of length 5 starting
from each node) and initialized nodes’ temporal embeddings takes around 350 seconds; the gener-
ation process by generating 300,000 walks (which should be much larger than the number of walks
needed) takes around 250 seconds. Also note that ML-100k is a cleaned dense dataset, whereas
large graphs (which are often sparser) mostly do not require sampling as many as 5 walks from each
node.

More importantly, we report the total running time of all baselines generating the temporal hetero-
geneous graphs for ML-100k dataset in Table 2 below, given diffusion methods are prone to OOM
on larger datasets.
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Table 5: Running Time Comparison on ML-100k Dataset.

Methods Running Time
HGEN ∼ 1120s
TagGen ∼ 2730s
TG-GAN ∼ 4731s
EDGE ∼ 7hrs
DISCO ∼ 3500s
GraphMaker ∼ 4hrs
THEPUFF (ours) ∼ 350s

Empirical GPU Storage Comparison Here, we also report the GPU analysis for all baselines on
the ML-100k dataset. For DISCO baseline, its actual GPU usage can be 54GB, verified on a Tesla
A100 80 GB machine.

Table 6: GPU Consumption on ML-100k Dataset.

Methods GPU Usage
HGEN ∼ 610MB
TagGen ∼ 23GB
TG-GAN ∼ 940MB
EDGE ∼ 12GB
DISCO > 32GB
GraphMaker ∼ 1100MB
THEPUFF (ours) ∼ 712MB

A.5 DATASETS AND IMPLEMENTATION DETAILS

Table 7: Temporal Heterogeneous Graph Datasets
Type #Nodes #Node Types #Edges #Edge Types Time

MovieLens 100k(Harper & Konstan, 2015) Rating 2,644 4 102,625 3 7 months
DBLP(Tang et al., 2008) Citation 17,876 4 51,137 4 10 years

MovieLens 20M(Harper & Konstan, 2015) Rating 165,790 3 20,027,541 2 21 years
Taobao(Zhu et al., 2018) E-Commerce 1,009,827 3 2,932,288 2 10 hours

Datasets. Detailed dataset statistics are summarized in Table 7. For the DBLP dataset, we retrieve
the subgraph by constraining the paper venue as KDD. MovieLens-100k2, DBLP3, MovieLens-
20M4, and Taobao5 are publicly available.

• In MovieLens-100k, node types are user, movie, genre, and occupation; edge types are user–
movie, movie–genre, and user–occupation.

• In DBLP, node types are paper, author, field of study, and affiliation; edge types are author–paper,
paper–paper, author–affiliation, and paper–field of study.

• In MovieLens-20M, node types are user, movie, genre; edge types are user–movie and movie–
genre.

• In Taobao, node types are user, item, and category; edge types are user–item and item–category.

Baselines. Non-temporal baselines (i.e., HGEN and EDGE) are run in a snapshot-to-snapshot way.
E.g., for dataset G = {G(1), ...,G(T )} and non-temporal baseline F(·), G∗ = {F(G(1)), ...,F(G(T ))}
is considered as the generated temporal heterogeneous graph.

For non-heterogeneous baselines (i.e., TagGen, TG-GAN, and EDGE), node type information is
ignored when running baselines. When evaluating performances, node types are considered the
same as in the original graph.

2https://www.kaggle.com/datasets/prajitdatta/movielens-100k-dataset
3https://www.aminer.org/citation
4https://www.kaggle.com/datasets/grouplens/movielens-20m-dataset
5https://tianchi.aliyun.com/dataset/649
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Hyperparameters. Table 2 is implemented with the following hyperparameters:

• ϵ− = 8 for all datasets, ϵ+ is decided by Eq. 4.

• batch size = 32 for MovieLens 100K dataset and DBLP dataset, 64 for other datasets;

• node embedding dimension = 128;

• hidden dimensions are all set to 128;

• dropout rate = 0.2 in the attention layer;

• learning rate = 1e− 4 for the generator and 1e− 3 for discriminators;

• SGD optimizer is used for discriminators, while RMSprop optimizer is used for the gener-
ator;

• JUST (Hussein et al., 2018) is applied to initialize node embeddings. In the running of
JUST, we have the maximum walk length as 100; sample maximum of 10 walks starting
from each node.

Hyperparamters for HGEN, TagGen and TG-GAN are set as the default or recommended value in
their public code repositories. Hyperparameters for EDGE are set to recommended values except
that batch size is set to 1 due to memory limitation.

Machine Configuration. All experiments are performed on a Linux platform with Intel(R) Xeon(R)
Gold 6240R CPU and Tesla V100 SXM2 32GB GPU.

Reproducibility. The code will be published on the authors’ websites upon the paper’s publication.

A.6 CONVERGENCE OF THEPUFF TRAINING

In this section, we discuss the convergence of the adversarial training part of THEPUFF (lines 8 – 17
in Alg. 4). In practice, our generator G is updated every 2-5 iterations while privacy discriminator
Dprv is updated every iteration. An illustration of the training process on the largest dataset (Taobao)
is attached in Figure 3. In the training process, we first see a decrease of LDprv to the lowest point,
and then an increase of LDprv

as G gradually starting to outperform Dprv .

Figure 3: Training curve of generator/discriminators on Taobao

A.7 ABLATION STUDY

Here, we also conduct an ablation study on the dataset MovieLens 100k and MovieLens 20M. The
results are shown in Table 8, where we trained our framework without either the utility-preserving
discriminator (Dutil) or the privacy-guaranteed discriminator (Dprv). It can be observed that with only
the generator and utility-preserving discriminator (i.e., w/o Dprv), our THEPUFF can also generate
the comparable privacy-guaranteed synthetic graph, which proves our design in Eq. 13 that the
nodes are sampled from the perturbed graph Ĝ, thereby privacy-preserved information obtained
from differential privacy perturbation M is transferred to the generator G.
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Table 8: Ablation Study Experiment Results.

Datasets Methods
Utility Privacy

Cluster (↓) TC (↓) LCC (↓) Degree (↓) Meta-2 (↓) Meta-3 (↓) EO-Rate (↓)

ML-100k
w/o Dutil 0.468(±0.018) 1.000(±4.361e−4) 0.240(±4.361e−4) 0.079(±3.566e−3) 1.660(±3.928e−4) 1.313(±8.650e−6) 2.319e−2

(±2.302e−4)

w/o Dprv 0.496(±0.008) 1.050(±1.308e−3) 0.216(±2.294e−2) 0.073(±4.564e−5) 1.660(±6.067e−4) 1.313(±1.500e−6) 2.068e−2
(±2.059e−3)

ML-20M
w/o Dutil 0.0(±0.0) 0.0(±0.0) 0.874(±1.262e−1) 0.560(±1.589e−2) 1.461(±6.321e−2) 1.266(±0.0) 5.501e−4

(±5.501e−4)

w/o Dprv 0.0(±0.0) 0.0(±0.0) 0.512(±4.879e−1) 0.498(±7.542e−2) 1.551(±3.910e−5) 1.266(±2.000e−7) 0.0(±0.0)

A.8 ATTACK EXPERIMENT ON ALL DATASETS

Here, we follow the attacker model as expressed in Eq.23 and test the privacy protection effective-
ness of baseline methods across all datasets. The results are shown below, where we can see the
proposed THEPUFF method can reduce the successful attack probability to the largest extent.

Table 9: Attack Experiment on All Datasets.

Successful Attack Probability (%) (↓)
Baseline / Dataset ML-100k DBLP ML-20M Taobao

Original 4.192 0.093 0.352 0.006
HGEN 0.037(0.001) 0.009(1.3e−4) 0.007(0.005) 1.3e−4

(2.0e−7)

DPGGAN 0.037(3.6e−4) 0.008(1.3e−4) OOM OOM
THEPUFF(Ours) 0.021(0.007) 0.006(9e−5) 7.5e−4

(6.0e−5) 7.9e−5
(6.2e−6)

A.9 ATTACKING USERS/AUTHORS ON ALL DATASETS

Here, we design a more complicated attacker model by extending the attacker in Eq.23 as follows.
For a specific node type o of attacker’s interest,

p
(t)
i =

{
0 , otherwise

1∑
v∈G∗ 1[d

(t)
gen[v]==d

(t)
gen[i] and ϕ

(t)
gen[v]==o]

, d
(t)
gen[i] = d

(t)
ori[i] and ϕ

(t)
gen[i] = o

(28)

where the added ϕ
(t)
gen[i] means the node type of node i at time t on the generated graph.

Therefore, we can now test how the baselines protect the privacy of certain types of entities, e.g.,
internet users in ML-100K dataset, ML-20M dataset, Taobao datasets, and authors in DBLP datasets.

The results are shown in the table below, where our proposed THEPUFF also achieves the best
performance across all datasets.

Table 10: Attacking Users/Authors on All Datasets.

Successful Attack Probability (%) (↓)
Baseline / Dataset ML-100k DBLP ML-20M Taobao

Original 11.73 0.113 0.427 0.021
HGEN 0.108(0.008) 0.013(5e−6) 9.3e−4

(7.2e−6) 5.5e−4
(1.4e−5)

DPGGAN 0.095(0.004) 0.024(1.5e−5) OOM OOM
THEPUFF(Ours) 0.095(0.002) 0.007(8.2e−4) 6.9e−4

(8.6e−6) 3.6e−4
(2.4e−5)

A.10 PSEUDO-CODE OF Dutil AND Dprv

Here we show the details of calculating Dutil and Dprv using pseudo-code, i.e., how Dutil calculate
the probability of input walk being sampled from real graph, and how Dprv calculate the probability
of input walk being sampled from perturbed graph.

As Dutil and Dprv share the exact same architecture, we only show the pseudo-code of Dutil,
pseudo-code for Dprv is exactly a copy of Dutil.

In detail, for a sampled walk, we first fetch the node embeddings of the nodes in the walk (line 1).
Then, the node embeddings and the sampled walk are fed into the tri-level attention layer (line 2
– 3), followed by a fully connected layer (line 4 – 5) where probability of the sampled walk being
sampled from original graph (or perturbed graph for D prv) is the output.
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Algorithm 3 Pseudo-code of Dutil()

Input:
Sampled walk Wi = {{v(t)1 , v

(t)
2 , ..., v

(t)
l }, {o1, o2, ..., ol}}; node embedding vectors {h(t)

i };
tri-level attention layer as described in Eq. 6 – 9; a fully connected layer with weight matrix
WO ∈ Rd×2 and biases b ∈ R2.

Output:
Probability that Wi is sampled from the real graph.

1: Fetch embeddings H ∈ Rl×d, where i-th row h
(t)
vi is the embedding of v(t)i

2: Compute tri-level attention scores Atime,Anode,Atype through Eq. 6 – 8
3: Calculate output of attention layer Z in Eq. 9
4: Calculate 2-dimensional output of fully connected layer [p0, p1]T = ZWO + b

5: Output probability ep0

ep0+ep1

A.11 PSEUDO-CODE OF ASSEMBLER

To better explain how assembler handle the temporal information, pseudo-code for assembling tem-
poral heterogeneous graph from scoring matrix and meta-path frequencies is shown below. Note
that time superscripts (t) of nodes are emitted in Eq. 16 and Eq. 17 for brevity.

In detail, after we sample a sufficient amount of temporal heterogeneous random walk from gen-
erator, we count the frequencies of edges and meta-paths to get scoring matrix S and meta-path
frequencies pO. With these two as inputs, assembler iteratively assembles the generated temporal
heterogeneous graph as follows. In each iteration, we first sample a starting node based on node
degrees in the scoring matrix (line 2). Then, we sample a meta-path that starts with the starting
node’s node type based on meta-path frequencies (line 3). Finally, we iteratively sample the rest of
the nodes in the sampled meta-path one by one and add the sampled edges to the assembled graph
(line 4 – 8): the subsequent node is sampled based on next node type and scoring matrix (line 5), and
the edge between the sampled subsequent node and current node is added to the assembled graph
(line 6 – 7). Finally, after we get desired amount of edges, the sampling iteration (line 1 – 9) stops
and output the final assembled temporal heterogeneous graph.

Algorithm 4 Pseudo-code of Assembler

Input:
Scoring matrix S; meta-path frequencies pO.

Output:
Assembled temporal heterogeneous graph G = {G(1),G(2), . . . ,G(T )}.

1: while not enough edges do
2: Sample a starting node v

(t1)
1 based on probability in Eq. 16.

3: Sample a meta-path O = (o1, ...ol) ∼ pO
4: for i in 1, 2, ..., l − 1 do
5: Sample v

(ti+1)
i+1 based on probability in Eq. 17

6: Add edge (v
(ti)
i , v

(ti)
i+1) to G(ti)

7: Add edge (v
(ti+1)
i , v

(ti+1)
i+1 ) to G(ti+1)

8: end for
9: end while
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