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Abstract Keywords

Many modern recommender systems represent user and item at-
tributes as embedding vectors, relying on them for accurate rec-
ommendations. However, entangled embeddings often capture not
only intrinsic property factors (e.g., user interest in item property)
but also popularity factors (e.g., user conformity to item popular-
ity) indistinguishably. These embeddings, influenced by popularity
distribution, may face challenges when the popularity distribution
at test time differs from historical distribution. Existing remedies in
the literature involve disentangled embedding learning, which aims
to separately capture intrinsic and popularity factors, demonstrat-
ing plausible generalization during popularity distribution shifts.
However, we highlight that these methods often overlook a crucial
aspect of popularity shifts—their temporal nature—in both train-
ing and inference phases. To address this, we propose Temporal
Popularity distribution shift generalizABle recommender system
(TPAB), anovel disentanglement framework incorporating temporal
popularity. TPAB introduce a new (1) temporal-aware embedding
design for users and items. Within this design, (2) popularity coars-
ening and (3) popularity bootstrapping are proposed to enhance
generalization further. We also provide theoretical analysis showing
that the bootstrapping loss eliminates the effect of popularity on the
learned model. During inference, we infer test-time popularity and
corresponding embeddings, using them alongside property embed-
dings for prediction. Extensive experiments on real-world datasets
validate TPAB, showcasing its outstanding generalization ability
during temporal popularity distribution shifts.!
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1 Introduction

To distill valuable insights from vast user-item interaction data,
contemporary recommender systems often leverage embedding-
based empirical risk minimization. They embed user preferences
and item properties within their representations, and then use those
embeddings to predict future interaction between users and items.
However, the prevalent mechanism, which employs a single em-
bedding for each entity (user or item) in the system, leads to the
entanglement of an item’s intrinsic property with its popularity
derived from the overall popularity distribution. ? These entan-
glement approaches may perform well under the assumption of
an identical test distribution to historical training data, which un-
fortunately proves unrealistic [1, 18, 31, 35]. In reality, popularity
distribution continually evolves over time [32, 36, 37].

An effective remedy to this challenge has emerged through dis-
entanglement techniques [9, 27, 34, 35, 39], showcasing superiority
over entangled counterparts, including popularity debiasing meth-
ods [11, 40], during popularity distribution shifts. The core concept
involves disentangling intrinsic property factors and popularity fac-
tors by representing these distinct factors as separate embeddings.
Generally, two additional losses are employed for disentanglement,
focusing on (1) invariance learning and (2) geometric separation.
Various techinques for the former objective have been proposed,

Note that in the literature, the user-side counterparts of item property and
popularity are often denoted as user’s pure interest and conformity, respectively. For
brevity, we omit these concepts throughout the introduction.
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such as popularity-aware negative item sampling/learning [39],
incorporating popularity as margins in the loss function [34], and
popularity-intervened embedding learning [35]. For the latter objec-
tive, many methods aim to explicitly maximize distance/discrepancy
metrics between property and popularity embeddings. They employ
different metrics such as L1 [39], L2 [39], Pearson correlation coef-
ficient [4], Maximum Mean Discrepancy (MMD) [22], and distance
correlation [27, 35, 39].

Despite these strides, our contention in this paper is that ex-
isting disentanglement methods often overlook a crucial aspect
of popularity shifts — their temporal nature. For example, in an e-
commerce system, seasonal changes naturally affect the popularity
distribution [35]. Also, while popular items may continue to gain
popularity, they can also be surpassed by “new kids on the block”
with better intrinsic quality over time [2, 7, 10]. Furthermore, some
items may experience a natural fade in popularity over time, be-
coming outdated. We provide empirical validation using real-world
datasets in Figure 1, which will be discussed further in Section 2.

However, such temporal dynamics of popularity are frequently
neglected by existing methods in both training and inference phases.
During training, popularity is viewed merely as static data derived
from historical records, which likely lead to suboptimal perfor-
mance of popularity embeddings for robustness in temporal pop-
ularity shifts [22, 34, 35, 39]. Moreover, in the complex temporal
setting, their use of geometric separation techniques to maximize
the distance between the two types of embeddings may compromise
the expressiveness of embeddings [4, 22, 35, 39].

Besides that, during the inference phase, they often exclusively
use property embeddings while disregarding popularity embed-
dings, which is suboptimal during temporal popularity shifts [34,
35]. This approach may be reasonable in case of uniform future
distribution where there are no relative popularity difference affect-
ing user behavior. However, in reality, it is reasonable to assume
that item popularity persists at any given time and can distinctly
influence user behavior, alongside the user’s inherent interest in the
item [36, 37]. For these reasons, a thoughtful approach is needed to
intelligently learn and utilize popularity embeddings that accurately
capture the temporal dynamics of popularity.

In this work, we aim to integrate the dynamic aspect of popular-
ity with disentanglement principles by designing a novel method,
Temporal Popularity distribution shift generalizABle recommender
system (TPAB). TPAB introduces three distinct technical aspects:
First, a new (1) temporal-aware embedding design for users and
items, where the popularity embeddings capture temporal popular-
ity and the item property embeddings capture intrinsic properties.
Within this embedding design, (2) popularity coarsening and
(3) popularity bootstrapping are proposed to further enhance
generalization ability of TPAB.

Popularity coarsening allows items with similar-not just identical-
popularity levels to share the same popularity embeddings, reducing
TPAB’s sensitivity to minor fluctuations in popularity. Popularity
bootstrapping involves an additional risk minimization loss that
replaces the popularity embedding with a randomly sampled pop-
ularity embedding, enhancing the invariance of property embed-
dings to the temporal popularity. Along with empirical evidence,
we provide theoretical analysis showing that this bootstrapping loss
effectively eliminates the effect of popularity on the learned model
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Figure 1: Temporal popularity distribution shifts on four
real-world datasets. The shifts (i.e., Jensen-Shannon Diver-
gence (JSD)) between the initial and current stage (1,t) tend
to increase over time.

during training. Moreover, we observe that these ideas (2&3) reduce
the variance in risks across different time stages, further supporting
the rationale behind our algorithm design [15]. Finally, during in-
ference, we predict the next-time popularity by classic time-series
forecasting [36, 37], to derive test-time popularity embeddings for
items. These embeddings are utilized alongside property embed-
dings for prediction. Via extensive experiments with real-world
temporal datasets, we validate the strong generalization ability of
TPAB during temporal popularity shifts, and the effectiveness of
each of our algorithm designs.
In summary, the paper makes the following key contributions:

e Theory. We theoretically analyze the optimal solution for min-
imizing the bootstrapping loss. The analysis implies that the
bootstrapping loss helps eliminate the effect of popularity on the
learned model, and thus encourages property embeddings to be
invariant to temporal popularity embeddings, as desired.

e Algorithm. We propose a new method named TPAB, which
yields disentangled user/item embeddings with strong generaliza-
tion ability under temporal popularity distribution shifts. TPAB
incorporates three novel techniques: temporal-aware embedding
design, popularity coarsening, and popularity bootstrapping.

o Experiments. Extensive experiments on real-world temporal
recommendation datasets validate the effectiveness of TPAB,
showing an average increase of 8.33% compared to the best-
performing recent competitors.

2 Preliminary

In this section, we first present the key notations used throughout
the paper. Next, we discuss temporal popularity distribution shifts,
providing evidence of these shifts across four real-world datasets.
We then explore generalization in temporal popularity shifts and
the principles of disentanglement in recommender systems. Finally,
we formally define the problem we aim to address in the paper.
Notations. Table 1 outlines the main symbols employed in this
paper. Throughout the paper, we use bold upper-case letters for
matrices (e.g., Y), bold lower-case letters for vectors (e.g., r) and
calligraphic letters for sets (e.g., U). We use conventions similar
to NumPy [12] in Python for indexing. For example, Y[i, j] is the
entry at the i-th row and the j-th column in matrix Y.
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For dataset representation at time stage ¢t Vt € {1,...,T}, we
denoted it as Dy = {Uy, 11, E4, Y}, where U, stands for the user
set, J; for the item set, &; for the user-item interaction set, and
Y; for the user-item interaction matrix. The subscript ; signifies
the time stage ¢. > We consider binary user-item interaction in this
work, where Y [u, i] = 1 indicates interaction between user u and
item i within the t-th time period, and 0 otherwise.

Real-world temporal popularity distribution shifts. We esti-
mate item popularity at time stage t using the number of interac-
tions for each item: pl.t = |&;(i)|. Each time stage t is considered a
distinct environment e; Vt € {1,...,T} with varying popularity dis-

tributions [m?, -, mf where mt p—, due to temporal
[my iz Sren ! P

shifts over time. Earlier work [36] highlights persistent popularity
distribution shifts between consecutive stages, with the degree of
shift tending to increase over time.

As an empirical validation, we analyze whether temporal popu-
larity distribution shifts exist in the real-world datasets used in the
paper. We examined the shift between the initial and current stage
(1,¢) using the Jensen-Shannon Divergence (JSD) as shown in Fig-
ure 1. The results indicate that JSD(1, t) tends to increase over time
on all datasets, showing clear evidence of popularity distribution
shifts over time.

Generalization in temporal shifts. Our objective is to ensure
the generalization ability of a model trained on historical data to
perform well in the future environment ey, which is highly likely
to exhibit a changed popularity distribution. Specifically, the model
generates a top-N recommendation list [i1,...,ixn] for each user u,
ranked by the predicted scores sz;f 1 Vi, and this list should align
closely with the user’s actual decisions in the future environment.
Disentanglement principles. Drawing from prior disentangle-
ment methods [34, 35, 39], we identify two factors influencing
interaction label Y: (1) Zprop: property factors related to user’s pure
interest in intrinsic item properties (2) Z,op: popularity factors re-
lated to user’s conformity influenced by item popularity. Typically,
those factors are represented separately.

Problem definition. Our problem is formally defined as follows:

PrROBLEM 1 (Generalization in Temporal Popularity Distribution
Shifts). Input: a sequentially collected dataset Dy =
{1,....T} and the popularity p! of item i at each time stage t.

Output: an out-of-distribution generalizable model that delivers
high-quality recommendations in a future time stage with a different
popularity distribution from the past.

3 Proposed Framework

In this section, we propose Temporal Popularity distribution shift
generalizABle recommender system (TPAB), a novel recommender
system designed to maintain robustness against temporal popular-
ity distribution shifts. In summary, TPAB introduces three distinct
technical aspects. First, it employs (1) a temporal-aware disen-
tangled embedding framework for users and items, where the
popularity embeddings capture temporal popularity (Section 3.1).

3Depending on the needs of the system or implementation, the time stage could
be either a specific time frame (e.g., daily, weekly, monthly) or until a specific number
of interactions has been collected.

{U;, 11, E, Y },VE €
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Table 1: Main symbols used in this paper.

Symbol Description
Dy Dataset collected at time stage ¢
Uy, 1y, Ey Sets of users, items, and their interactions at time stage ¢
Uint; Uconf | Interest and conformity embeddings for a user, respectively
Iorops Ipop Property and popularity embeddings for an item, respectively
Sui Final recommendation score between u and i
Lerm, Lboot | Empirical risk minimization and bootstrapping loss
pf Popularity of item i at time stage ¢
c Temporal popularity coarsening function
K The number of categories for popularity coarsening
A Scaling parameter for Lpoot
a Controlling parameter for next-time popularity forecasting
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Figure 2: Dependencies of embeddings and scores in TPAB.

Then, within this framework, (2) popularity coarsening (Sec-
tion 3.2) and (3) popularity bootstrapping (Section 3.3) are pro-
posed to further enhance generalization. We also provide theoretical
analysis to demonstrate that the bootstrapping loss helps eliminate
the effect of popularity on the learned model. For training, TPAB
jointly employs the standard empirical risk minimization loss and
the bootstrapping loss (Section 3.4). During inference, TPAB first
derives test-time popularity embeddings for items and integrates
them with the property embeddings for future recommendations
(Section 3.5). The detailed training and inference procedures of
TPAB are elaborated in Algorithms 1 and 2, respectively.

3.1 Temporal-Aware Disentangled Embeddings

In most existing disentanglement methods, there is a prevailing
design principle to separate an item’s intrinsic property and its
popularity into distinct embeddings. Similarly, user representations
include counterparts for property and popularity: user interest in
item property and user conformity to popularity, respectively. One
of our key contributions extends beyond the conventional design
that primarily addresses static popularity by proposing a new disen-
tanglement mechanism that captures temporal popularity, separated
from the invariant property.

We formally define our embeddings of user/item for each inter-
action (u, i, t) € & YVt € {1,...,T} as follows:
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e For an item i, two embedding functions, Iprop and Iyop, capture
the item’s invariant property and changing popularity, respec-
tively. To distinguish these features, we propose using the item’s
popularity pf at time stage t as the categorical input for Ipop,
while Iyop takes the item ID as the input. Note that a popularity
integer value is used as categorical input, similar to ID, as done
in previous works [35]. Unlike those works, we use temporal
popularity pi’ rather than global/static popularity p;. The overall
item representation is the concatenation of Iprop and Ipop-

o For a user u, two embedding functions for user interest and con-
formity, Upnt and Ugopf, correspond to Iprop and Iyop, respectively.
Both take the user ID as input, reflecting the exact same architec-
ture but dependent on their item-side counterparts. We denote
them by different names to emphasize their semantics. The over-
all user representation is concatenation of Ujy and Uggpf-

All aforementioned embedding functions (i.e., Iyrop, Ipop, Uint, and
Uconf) are based on the same backbone recommendation model,
but only I, takes temporal popularity pf as input, which sim-
plifies our method. The backbone models can be any that encode
embedding vectors, such as MF [20] or LightGCN [8], and their
embedding dimensions are all d. Then, we compute the user-item
recommendation score s;; as follows:

sui = (Upnt(W)||Uconf (), Iprop @] |Ipop (C(P,t)»a (1)

where || is a concatenation operator, (-, -) is the dot product, and
C (pi[) denote the coarsened temporal popularity. We will introduce
popularity coarsening in Section 3.2. Note that this final recom-
mendation score can also be interpreted as the sum of the property

factor score sE?Op and the popularity factor score sE?p as follows:
@
ss;op = (Uint (), Iprop (1)), SB?p = (Uconf(w), Ipop (C(P,t)» - (3

SE;OP and SE 1;0p represent how much the corresponding factors in-
fluence the user-item interaction. Refer to Figure 2 for a graphical
representation illustrating the dependencies between embeddings

and scores in TPAB.

3.2 Popularity Coarsening

Based on such embedding design leveraging the temporal popu-
larity, we propose a new technique of popularity coarsening with
exponential bucketing for op. This technique offers two key ad-
vantages: (1) reducing the model’s sensitivity to item popularity
and (2) mitigating size differences between different buckets.
First, we define the coarsening function that maps each popular-
ity pit to K categories (i.e., bucketing), where K is a hyperparameter:

k-1 k
Cph) =k if p.R, <pi <pKi Vke{l...,K}, (4

where pmax represents the maximum temporal popularity (ie.,
Pmax = max(pf )). Then, we use this coarsened popularity ID (i.e., k)
as an input for the popularity embedding as Ipop (C(p})). This coars-
ening encourages TPAB to be less sensitive to minor fluctuations
in item popularity, thus enhancing generalizability on unseen data.
Without coarsening, items with “same” popularity share the same
popularity embeddings. However, with coarsening, items with a
“similar” level of popularity share the same popularity embeddings.
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Algorithm 1 Training procedure of TPAB

1: Input: Coarsening parameter K, scaling parameter A, popu-
larity trend drift parameter «, the number of negative items
n for Ly and Lyoot, input dataset Dy = {Uy, 13, St,Yt}thl,
initialized model parameters W = {Ujnt, Uconf; Iprops Ipop }

: Output: Updated model parameters W

: Setpf(— |&: (D), Vie L Vt=1,---,T

: for each epoch do

for mini-batch 8 obtained from & do
Negative set N «— {};
for user-item interaction (u,i) € 8 do
Sample n negative items as Ny;;
Update N — N U {(u, i) } e N5
end for
Compute the ERM loss Ly, with 8 U N by Eq. (9);
Randomly sample R « {(w, i, p’) } (ui) e BUN
Compute the bootstrapping loss Lpoor With R by
Eq. (10);

R A A

= = s
W N = O

14: Update ‘W based on Ly, +ALpo0t Via gradient descent;
15: end for
16: end for

Algorithm 2 Inference procedure of TPAB

1: Input: Temporal item popularity pf , trained parameters W
2: Output: Top-N recommendation lists

3: Predict [)lT“ — plT + a(plT - plT_l);

4: for user u € U do

5: S,{,'“ — (Uint (@) ||Ucong(w), Iprop(i) | |Ipop(c(ﬁiT+1))>» Viel;
6: Generate top-N recommendation list for u based on SZI.“ ;
7: end for

Second, we choose exponential bucketing over uniform bucket-
ing (e, C(p!) =k if LmactkD) o pt < Pmack v e (1 Ky to
address the size difference across different popularity buckets. This
size difference is a noticeable problem, even without coarsening,
due to the typical long-tail distribution of item popularity, where
there are many unpopular items and few popular items [4, 23] (e.g.,
the number of items with p = 5 is much larger than the number of
items with p = 50). Our coarsening addresses this size difference
by exponentially grouping popularity levels (e.g., p = 5 ~ 10 is
grouped by k = 2, and p = 10 ~ 50 is grouped by k = 3).

Based on our scoring mechanism with coarsened temporal popu-
larity (Eq. (1)), which reduces TPAB’s sensitivity to minor popularity
fluctuations, we can use any empirical risk minimization (ERM)
loss such as Bayesian Personalized Ranking (BPR) or Sampled Soft-
max loss. In this work, owing to its efficiency and consistency with
our theory on bootstrapping loss, we use BPR loss, denoted as
Lypr({suituewsic 1), which will be detailed in Section 3.4

3.3 Popularity Bootstrapping

While the embedding design with coarsened temporal popularity
enhances the generalizability of TPAB on future data, the disentan-
glement between property and popularity factors may still be sub-
optimal when only using the standard empirical risk minimization
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loss (Lppr)- To address this, we propose the concept of popularity
bootstrapping, which enhances the invariance of property embed-
dings to the popularity. Specifically, we design an additional risk
minimization loss that replaces the temporal popularity embedding
with a randomly sampled temporal popularity embedding, defined
as follows:

Lboot = prr({guim/}ueﬂ,ief)a (5)
Sui = (Uint (W) [Ucont (w), Iprop ()| Tpop (C(p")))- (6)

where p’ denotes a randomly sampled popularity of an arbitrary
item at an arbitrary time stage, and thus, C(p”) represents randomly
sampled coarsened popularity from a sample size of K. Optimiz-
ing Lot encourages Iyrop to more accurately learn intrinsic item
properties that remain invariant to the temporal popularity Iyop.
Beyond intuition, we provide theoretical analysis on the effect of
the bootstrapping loss in the training of TPAB.

THEOREM 3.1 (BOOTSTRAPPING Loss). For simplicity, let p denote
C(p), which represents coarsened popularity from a sample size of K.
Given a triplet for the BPR loss (u, i1, iz), where iy is a positive item and
Prop +s£fp be the true score based on

1
the true popularity p1 of the positive pair (u, i1), and $1 (p]) = s“fm‘n +

ip is a negative item, let s1(p1) =s

§§mp be the predicted score based on randomly sampled popularity
p1- Similarly, we define s2(p2) and $3(p5,) for negative pair (u, iz).
Assuming that the user chooses either iy and iy with probability
o(s1(p1) — s2(p2)) and o(s2(p2) — s1(p1)), respectively, the optimal

solution for minimizing the bootstrapping loss is given by:

Ep,,p, o(s1(p1) — 52 (PZ))‘

ADTOp  ApTOp

$ -5 =1lo ; (7)
! 2 & Ep,.p, 0(s2(p2) — s1(p1))

aPop _ spPop ro

sp; = sp; » YpLpy. (8)

Proof is in Section A. Theorem 3.1 presents two conclusions.
First, Eq. (7) shows that only property scores affect the equation,
with no influence from popularity scores. Second, Eq. (8) shows
that popularity scores are the same for every possible popularity
value, implying that the bootstrapping loss effectively eliminates
the effect of popularity on the learned model. Thus, when jointly
used with our ERM loss, which aims to accurately learn both prop-
erty and popularity embeddings, and when employing temporal
popularity, the bootstrapping loss promotes invariance of the prop-
erty embeddings to temporal popularity changes. In Section 4.3, we
empirically verify the effectiveness of the bootstrapping loss.

3.4 Training Protocol
Our BPR loss [20], which we use as ERM loss, is defined as follows:

L=z >, ] Oy (@ sw)). )

(wine& Nl i€ Nui

where o(-) is the sigmoid function, and Ny; is a set of sampled
negative items for (, i). By optimizing Ly, Iprop and Ipop become
adept at capturing intrinsic item characteristics and temporal popu-
larity, respectively. We let the user representations (Ujy and Ucgpf)
naturally adapt to their corresponding item-side counterparts.
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To be specific, Lpoot (Eq. (5)) is formulated as follows:

1 1 . -
Looot =51 20 a7 Dy 1080Gu =5, (10

(u,i,t)e& i’e Nyi

where the only difference from L, is the use of bootstrapped
scores for both positive and negative items.
For our final loss, we jointly use Lerm and Lyt as follows:

L= prr + )"Cboot: (11)

where 1 is a scaling parameter that controls the degree of the
bootstrapping loss. By training the final loss in Eq. (11), TPAB
achieves the disentangled user/item embeddings that generalize
well during temporal popularity distribution shifts.

Remark (variance in risks). Note that [15] demonstrated the
benefits of equalizing training risks (e.g., loss value) across differ-
ent environments for enhanced generalization. Guided by these
insights, in Section 4.4, we present evidence of the effectiveness of
our popularity coarsening (Eq. (4)) and bootstrapping (Eq. (5)) not
only in the overall accuracy but also in the reduction of variance in
risks. In essence, both techniques encourage items across different
time stages to share the popularity embeddings, by imposing coars-
ening and bootstrapping (randomness), which may lead to smaller
variances and thereby indicate enhanced generalization ability.

3.5 Inference Protocol

For inference, we first infer the next-time popularity ﬁiT“ for ev-
ery item i using classic time-series forecasting, following previous
works [36, 37]:
oIt =pf +alp] —p7h), (12)

where « is a hyperparameter that controls the popularity trend drift.
With this predicted popularity, we get the next-time popularity
embedding of i as follows: Ipop (C (ﬁlTH)) Note that if the predicted
popularity exceeds the maximum popularity pmax, we approximate
it to pPmax-

Then, the top-N recommendation list for each user is generated
based on predicted scores as follows:

T = (Uit () Ucont (), Iprop (D1 Ipop (C(AT )Y, (13)

By uniquely and accurately capturing item property and temporal
popularity in representations, our model achieves strong out-of-
distribution generalization in the temporal popularity distribution
shifts, as we will demonstrate in Section 4.

Complexity analysis. Our bootstrapping loss introduces only
a marginal increase in the time complexity to the ERM loss. As-
suming we employ MF [20] as the base recommendation model
with user/item sub-embeddings of dimensionality d, the time com-
plexity of minimizing Ly, is O(|&|nd), where n represents the
number of negative items. Given that the bootstrapping loss Lyt
shares the same structure as Ly, differing only in the randomly
sampled popularity p’, the time complexity of minimizing it re-
mains O(|&|nd). The time complexity for computing the temporal
popularity pf = |E¢(i)|,Vi € Ip,Vt = 1,---,T,is O(|Z|T), and
computing the next-time popularity ﬁiTH is O(|Z|). Both are neg-
ligible compared to that of the losses and require only a one-time
pre-computation before model training.
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4 Experiments
We design experiments to answer the key research questions (RQs):

RQ1. To what extent does TPAB outperform its competitors?
RQ2. How does each design in TPAB enhance generalization?
RQ3. How does geometric separation affect embeddings of TPAB?
RQ4. How sensitive is TPAB to its hyperparameter?

RQ5. How time-efficient is TPAB compared to its competitors?

4.1 Experimental Settings
4.1.1 Datasets. We use the following real-world temporal datasets.

e Micro-video [37]: This dataset is an industrial dataset collected
from a micro-video APP. It contains 210,550 interactions be-
tween 25,871 users and 44, 503 micro-videos over one month.
Specifically, it sets Y[u, i] = 1 if user u played a micro-video i for
durations exceeding 8 seconds, and Y[u, i] = 0 otherwise.

o KuaiRand*: This popular video recommendation dataset con-
tains 621, 064 click interactions on 7, 076 movies by 22, 128 users
over one month.

To simulate temporal popularity distribution shifts, we first sort
the interactions chronologically and then partition them into train-
ing, validation, and testing sets with a ratio of 8:1:1. We then further
split the training set into 8 time stages, each with an equivalent time
range. This process yields {Dy, - - - , D, Dyal, Drest}, where T = 8.
As Figure 1 shows, the test and training popularity distributions
are not identical, reflecting temporal distribution shifts.

Additionally, to test the model’s generalizability over longer time
periods, we show results on larger/longer datasets Amazon-book
and Yelp2022, which span 17 years and 10 years, in Appendix B.

4.1.2  Compared methods. To ensure the independence of TPAB’s
effectiveness from the base recommender system used, we use two
base models, Matrix Factorization (MF) [20] and LightGCN [8], both
with the Bayesian Personalized Ranking (BPR) loss [20].

We compare TPAB with other competitors designed to generalize
well in unseen popularity distribution shifts. The competitors fall
into two categories. First, the (entangled) competitors leveraging
temporal popularity include:

e PDA (Popularity-bias deconfounding/adjusting) [36]: This method
estimates future popularity for each item to recalibrate user-item
matching scores in both the training and inference phases.

e PDRO (Popularity-aware distributionally robust optimization) [37]:

Building on the PDA approach, this method incorporates tempo-
ral popularity into the group-DRO [29] for recommendations.

Second, the disentangled competitors are all based on two em-
beddings for users and items, similar to TPAB. However, they only
consider the static popularity, while TPAB considers temporal the
dynamics in popularity. Those competitors are listed as follows:

e DICE [39]: This method aims for disentanglement based on
popularity-aware negative item sampling/learning.

® MARGIN [34]: This method achieves disentanglement by incorpo-
rating popularity factors as margins in the loss function based
on property factors. It only uses invariant interest/property em-
beddings for inference.

“4https://kuairand.com/.
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o INVCF [35]: This method aims for disentanglement based on
representation augmentation and disentanglement modules. It
only uses invariant interest/property embeddings for inference.

e DCCL [38]: This method achieves disentanglement based on
popularity-aware augmentation and contrastive learning.

Additionally, we conduct an ablation study of TPAB, which uti-
lizes three distinct technical aspects: (1) temporal-aware disen-
tangled embeddings, (2) popularity coarsening, and (3) popularity
bootstrapping. Each of these techniques is orthogonal to the others,
meaning that any can be independently toggled on or off within
TPAB. °> We introduce three variants of TPAB as follows:

e TPAB-T: TPAB uses static/global popularity p; for each item,
instead of temporal popularity pl.t.

e TPAB-C: TPAB without the popularity coarsening (C(-)).

e TPAB-B: TPAB without the popularity bootstrapping (Lpgot)-

4.1.3  Evaluation. We employ the all-item-ranking method (i.e., us-
ing all items that a user did not interact with as candidate items
for recommendation) to assess the top-N recommendation accu-
racy [14]. Our evaluation metrics include Recall@N and NDCG@N
(normalized discounted accumulated gain), where N = 10 or 20.

4.1.4  Implementation details. For all compared methods, we ensure
consistency by employing one negative user-item pair for each
positive user-item pair in BPR loss, setting the learning rate to
0.001, and applying L2 regularization of 0.0001. Model parameters
are updated using the Adam optimization algorithm [13]. For the
implementation details of all the competitors, refer to Appendix D.

For TPAB, we choose K values from [20, 40, 60] and A values
from [0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0]. Specifically, we set K = 20 and
A = 1.0 for Micro-video in all cases, K = 60 and A = 3.0 for MF-
based models on KuaiRand, and K = 20 and A = 2.0 for LightGCN-
based models on KuaiRand (See Section 4.5). We also maintain « =
0.2 in all scenarios, in line with previous research [37]. To ensure
reproducibility, we utilize a random seed during experimentation
and report the mean and standard deviation values from five runs.
We will release the source code upon the publication of the paper.

4.2 Main Results

To answer RQ1, we compare TPAB with seven competitors, evalu-
ating their recommendation performance in temporal popularity
distribution shifts. Table 2 shows the results across various metrics,
base recommendation models, and datasets. Boldface and under-
lined values signify the best and second-best performances in each
column for each base model.

First, no single competitor consistently outperforms others; the
best one varies based on metrics, base models, and datasets. How-
ever, TPAB consistently outperforms all competitors, with an av-
erage improvement of 8.33% over the best competitor in each case
(spec., 12.43%, 9.38%, 10.84% over PDA, DICE, DCCL, respectively).
These results underscore TPAB as effective in tackling the out-of-
distribution generalization challenge posed by temporal popularity
distribution shifts.

Temporal popularity-aware competitors (PDA and PDRO) lever-
age the concept of calibrating original recommendation scores with

SFor instance, even without coarsening, TPAB still employs temporal popularity
as a categorical input for popularity embedding functions, as detailed in Section 3.1.
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Table 2: Recommendation performance of TPAB and seven competitors using MF and LightGCN (LGCN) base models. TPAB
consistently outperforms all competitors across all metrics on both datasets, showcasing its superior generalization ability.

Models Micro-video KuaiRand
Recall@10 NDCG@10 Recall@20 NDCG@20 Recall@10 NDCG@10 Recall@20 NDCG@20
Vanilla 0.0755+0.0023 0.0532+0.0021 0.1139+0.0021 0.0656+0.002 0.0642+0.001 0.0426£0.0005 0.1111+0.0016  0.0581+0.0007
PDA 0.0757+0.0022 0.0531+£0.0016 0.1143+0.0023 0.0657+£0.0019 0.065+0.0014 0.0431+£0.0008  0.1126+0.0014  0.0588+0.0009
PDRO 0.073+0.0016 0.0516£0.0008 0.112+0.0013 0.0642+0.0008 0.0586+0.0021 0.0386£0.0015  0.1016+0.0028  0.0529+0.0017
DICE 0.0792+0.0027  0.0579+0.0022 0.1144+0.003 0.0693+0.0024 0.0713£0.0013 0.0471£0.0006  0.1212£0.0025  0.0637%0.0009
MF Margin 0.0611+0.0021 0.0426+0.0007 0.0926+0.0035 0.0528+0.001 0.0558+0.001 0.0378+0.001 0.0937+0.0009  0.0503+0.0008
InvCF 0.0759+0.0025 0.0534£0.0016 0.116+0.0021 0.0665+0.0016 0.0576+0.0007 0.0384£0.0007  0.0987£0.0016  0.0522%0.0009
DCCL 0.0768+0.0017 0.0545£0.0014 0.1163+0.0019 0.0674+0.001 0.0683+0.0013 0.0454+0.0009 0.118+0.0017 0.0619+0.0011

TPAB 0.0829+0.0021  0.0578+0.0023  0.1238+0.0036 0.0712+0.0027 | 0.0827+0.001 0.0549+0.0004 0.138+0.0019 0.0732+0.0005

Imp. / best 4.67% -0.17% 6.45% 2.74% 15.15% 15.92% 13.86% 14.76%

Vanilla 0.0857£0.0024  0.0591+0.0018 0.1274+0.0029 0.0724+0.0019 0.0746+0.0003 0.0497£0.0003  0.1281+0.0012  0.0672+0.0005

PDA 0.0865+0.0026 0.0593+0.0019 0.1278+0.0032 0.0726+0.002 0.0768+0.0006 0.0513+0.0003 0.1306+0.001 0.069+0.0003

PDRO 0.0867+0.0011 0.0599+0.0008 0.1264+0.0021 0.0728+0.0011 0.0749+0.0006 0.05+0.0003 0.1272+0.0005  0.0672+0.0002

DICE 0.0855£0.0009 0.0591£0.0013 0.1283+0.0025 0.0728+0.0016 0.0751+0.0006 0.05+0.0002 0.1283£0.0005  0.0674+0.0002

LGCN  Margin 0.0788+0.0018 0.0537+0.0004 0.1152+0.0019 0.0656+0.0004 0.0647+0.001 0.0432£0.0005  0.1114+0.0006  0.0585+0.0003
InvCF 0.0875£0.0014  0.0593+0.0014 0.1278+0.0014  0.0723+0.0013 0.0742+0.0003 0.0496+0.0002  0.1271+0.0006 0.067+0.0002

DCCL 0.0877+0.002 0.0599+0.0012 0.1301+0.0019 0.0737+0.001 0.0743+0.0002 0.0495+0.0001  0.1277+0.0006 0.067+0.0002

TPAB 0.0896+0.0018 0.0616+0.0013 0.1336+0.0017 0.0759+0.0013 | 0.0864+0.0003 0.0569+0.0003 0.147+0.0008 0.0769+0.0004

Imp. / best 2.17% 2.84% 2.69% 2.99% 12.50% 10.92% 12.56% 11.45%
010 Micro-video (MF) Micro-video (LightGCN) o1 Micro-video KuaiRand
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Figure 3: Ablation study of TPAB w.r.t. recommendation ac-
curacy. Each component—temporal popularity, popularity
coarsening, and popularity bootstrapping—is effective. When

employed together, TPAB achieves the best accuracy.

predicted next-time popularity, and we empirically observe that
such concept contributes significantly to their performance. How-
ever, their entangled embeddings of user/item may indiscriminately
prioritize potential popular items, lacking a clear distinction be-
tween user interest in item property and user conformity to item
popularity. This limitation hampers their generalization ability in
scenarios with unseen popularity distribution shifts.

Conversely, disentanglement-based competitors (DICE, MARGIN,
INVCF, and DCCL), while attempting to separate intrinsic prop-
erty factors from popularity factors, neglect temporal dynamics in
popularity, leading to suboptimal generalization during temporal
distribution shifts. TPAB successfully integrates temporal popu-
larity with disentanglement principles, based on temporal-aware
embeddings, popularity coarsening, and bootstrapping.

4.3 Ablation Studies

To answer RQ2, we conduct a detailed exploration of the impact of
the use of temporal popularity embeddings (plt) popularity coars-
ening (Eq. (4)) and popularity bootstrapping (Eq. (5)). Specifically,
we compare TPAB with its three variants (TPAB-T, TPAB-C, TPAB-
B), as outlined in Section 4.1.2, evaluating both recommendation
accuracy and variance in risks across different time stages.

4.3.1 Accuracy. Figure 3 shows that TPAB consistently and sig-
nificantly outperforms TPAB-T, TPAB-C, and TPAB-B, indicating
that the use of temporal popularity, popularity coarsening, and
popularity bootstrapping each contribute to enhancing the gener-
alization ability of TPAB. Here is a possible explanation for each
result: Coarsening helps reduce TPAB’s sensitivity to minor fluctua-
tions in popularity. The bootstrapping loss promotes the invariance
of property embeddings to popularity embeddings, as demonstrated
by the Theorem 3.1 on bootstrapping loss. Moreover, using temporal
popularity instead of global/static popularity allows the coarsening
and bootstrapping to consider temporal dynamics in popularity.

4.3.2  Variance. Note that [15] demonstrated that equalizing train-
ing risks across different environments enhances generalization.
Guided by these insights, we assess the variance in recommendation
scores across different time stages for TPAB and its two variants,
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Figure 5: Comparison of disentanglement methods with vary-
ing weights of the geometric separation. While CLAssIc oc-
casionally benefits from this technique, it harms the expres-
siveness of embeddings in TPAB.

Table 3: Efficiency comparison of the average running time
(seconds) per epoch for TPAB and seven competitors.
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TPAB-C and TPAB-B, in Figure 4 (refer to the legend for specific
numbers). Lower variance indicates greater equality. The results
consistently show that, after convergence, TPAB has the lowest
variance on both datasets. This aligns with the observed trend in
the recommendation accuracy, further supporting the effectiveness
of popularity coarsening and bootstrapping in enhancing general-
ization ability. We attribute the smaller variances to the fact that
both techniques encourage items across different time stages to
share the same popularity embeddings.

4.4 Analysis on Geometric Separation

As noted in Section 1, in addition to the ERM loss and the invari-
ance learning loss, many disentanglement methods utilize geo-
metric separation for orthogonality disentanglement between two
types of embeddings for users (Iprop and Ipop); and items (Ujy; and
Uconf) [35, 39]. Specifically, it maximizes the distance metric (e.g.,
L1, L2, and distance correlation [24, 25]) between these two types of
embeddings. To answer RQ3, we investigate the impact of such geo-
metric separation to the expressiveness of embeddings of TPAB and
Cuassic, the latter representing the conventional disentanglement
approach using only Ly, with global/static popularity p;. We test
varying regularization weights [0, 0.001, 0.01, 0.1] and use distance
correlation as the metric [35, 39]. The results are in Figure 5.

The results show that while CLAssIc occasionally benefits from
the separation effect, TPAB degrades with its use. Note that geomet-
ric separation acts as "regularization,’ which, although potentially
beneficial for disentanglement when applied judiciously, can limit
the expressiveness of embeddings in any disentanglement method,
including Crassic. However, for TPAB, it constrains the expressive-
ness of embeddings in most scenarios, suggesting that geometric
separation is not advisable for TPAB. Moreover, the performance of
TPAB without geometric separation already exceeds that of CLAs-
sic even when enhanced with separation. This suggests that TPAB
effectively disentangles invariant property embeddings and tem-
poral popularity embeddings through temporal-aware popularity
coarsening and bootstrapping.

Figure 6: Performance of TPAB with varying A. Using the
bootstrapping loss consistently enhances generalization. Ini-
tially, performance sharply increases with increasing A val-
ues, then stabilizes or slightly declines thereafter.
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Figure 7: Performance of TPAB with varying K. Setting K
either too high or too low leads to suboptimal performance
due to overly weak or high coarsening effects, respectively.

4.5 Hyperparameter Analysis

To answer RQ4, we examine the impact of hyperparameters A (the
scaling parameter for the bootstrapping loss Lpo0t) and K (the num-
ber of buckets for popularity coarsening) on the recommendation
performance of TPAB.

4.5.1 Bootstrapping scaling parameter A. We show the recommen-
dation accuracy of TPAB with varying A values [0, 0.5, 1.0, 1.5, 2.0,
2.5,3.0] in Figure 6. Note that when A = 0, TPAB does not use Lpyot-
The results indicate that incorporating Lpoo alongside Ly, con-
sistently leads to better generalization in all cases. Specifically, on
Micro-video, optimal performance occurs at A = 1.0, with a slight
decline thereafter, possibly due to excessive bootstrapping (ran-
domness). Similarly, on the KuaiRand dataset, accuracy increases
sharply at A = 1.5 and A = 0.5 for MF and LightGCN-based models,
respectively, and then stabilizes.

4.5.2  Coarsening parameter K. We show the performance of TPAB
with varying K values [2, 5, 10, 20, 40, 60, 80, 100] in Figure 7.
The results show that values around K = 20 consistently performs
best in most cases, especially compared to when k is too small
or too large. This suggests that setting K too high results in a
weak coarsening effect, while setting it too low, such as K = 2,
results in overly strong coarsening with only two popularity levels.
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Thus, selecting the appropriate level of coarsening requires careful
consideration.

We acknowledge some erratic behavior in the intermediate re-
sults. However, it is notable that K = 20 significantly outperforms
cases without coarsening (i.e., TPAB-C). Preliminary experiments
also show that K > 100 results in a performance drop, highlighting
a trend of diminishing performance as K becomes excessively large.

An exception is observed in KuaiRand, particularly in MF, likely
due to its lower long-tailness (head-tail ratio of 1.57 compared to
<1.0 in other datasets) and higher maximum temporal popularity
(e.g., max(pf ) = 2678), indicating extreme hubs. The current ex-
ponential partitioning may be less effective here, so K should be
carefully selected based on dataset characteristics.

4.6 Time-efficiency Results

To answer RQ5, we show the average running time per epoch
(seconds) for TPAB and seven competitors using MF as backbones
in Table 3. Disentanglement-based methods (i.e., DICE, MARGIN,
INVCF, DCCL, TPAB) are slightly slower than the Vanilla method.
PDRO is the slowest due to its group-based distributionally robust
optimization. As shown in the complexity analysis in Section 3.5,
TPAB’s Lpoor shares the same structure as Ly, differing only
in the randomly sampled popularity p’. Without more complex
invariance learning or additional geometric separation, TPAB does
not add significant computation to Vanilla.

5 Related Works

Temporal popularity distribution shifts. In real-world recom-
mendation scenarios, changing popularity distributions over time
can lead to variations in training and test set distributions, impact-
ing model performance. While classic debiasing techniques, such as
reweighting [11, 28], and regularization [5, 40], have been proposed,
recent works specifically focus on addressing out-of-distribution
generalization ability for future online service through the concept
of Distributionally Robust Optimization (DRO) [3, 17, 21]. For in-
stance, [30] uses DRO for better distribution adaptation by estimat-
ing the nominal distribution from input data and optimize the model
within a robust radius. Another study [29] applies group-DRO, em-
phasizing the optimization of the worst user group performance,
addressing both fairness and the recommendation quality.

While these methods address out-of-distribution generalization,
they often neglect the temporal dynamics of popularity during
method design. To address this, a recent work [37] proposes a new
DRO objective that considers temporal popularity. It also utilizes
recalibration of recommendation scores based on predicted next-
time popularity following [36]. However, challenges persist as these
methods may indiscriminately prioritize potential popular items
due to entangled user/item embeddings, lacking a clear separation
between intrinsic property factors and popularity factors.
Disentangled representation learning. Disentanglement meth-
ods aim to separate intrinsic property and popularity factors, offer-
ing effective solutions for generalization during popularity distri-
bution shifts. Typically, they pursue two types of disentanglement
objectives: (O1) invariance learning and (O2) geometric separation.
For (O1), [39] uses popularity-aware negative item sampling, [4]
employs co-training of unbiased and biased models, [34] quantifies
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popularity bias and uses these biases as margins for their loss func-
tion, and [35] uses techniques like representation augmentation to
learn invariant embeddings. As for (02), different geometric sepa-
ration techniques are employed to maximize the discrepancy (e.g.,
L1 [39], L2 [39], Pearson correlation coefficient [4], and distance
correlation [27, 35, 39]) between the two types of embeddings. How-
ever, all these methods lack consideration for temporal dynamics
in popularity. Our approach, TPAB, effectively integrates tempo-
ral popularity with disentanglement using novel techniques like
temporal embeddings, popularity coarsening, and bootstrapping.

Sequential recommender. We also discuss the distinctions be-
tween TPAB and sequential recommender systems in Appendix E.

6 Conclusion

In this paper, we observe that while existing disentanglement meth-
ods have advanced in separating intrinsic property and popularity
to enhance generalization, they often overlook the temporal na-
ture of popularity shifts. To address this gap, we propose TPAB,
a novel disentanglement method that integrates temporal popu-
larity dynamics, based on temporal-aware embeddings, popularity
coarsening, and bootstrapping. We also offer a theoretical analysis
showing that the bootstrapping loss promotes the invariance of
property embeddings to temporal popularity changes. During infer-
ence, TPAB utilizes both derived next-time popularity embeddings
and property embeddings. Extensive experiments on real-world
temporal datasets validate the strong generalizability of TPAB dur-
ing temporal popularity distribution shifts.
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A Proof of Theorem on Bootstrapping

ProoF oF THEOREM 3.1. Recall that p represents coarsened pop-
ularity, indicating K popularity buckets. The user chooses either i1
and i with probability o(s1(p1) — s2(p2)) and o(s2(p2) — s1(p1)),
respectively. Lastly, let U be the uniform sampling distribution of
possible p. Under this setting,

Lhoot = E [(=a(s1(p1) = s2(p2)) log a(31(p7) — $2(p3)))
Pl’PZNPS Pl’PZNU

= (a(s2(p2) = s1(p1)) log a(82(p3) — $1(p1))) |- (14)

where p; and p; are true popularity and p] and p) are uniformly
and randomly sampled popularity due to the bootstrapping strat-
egy; and (") is a sigmoid function. Since (p}, p}) has K? combina-
tions, we further have the following:

Lhoot =
~ 5 2 [, B ot = sa(pnlogo P - £ 4 2 o0
pLpy

+ B [o(s2(p2) = s1(p1)]log o(8)"P = 87" 4+ 8P — PPy |,
pr.p2~P P, Py
(15)
The optimal solution of the system in the form of —alogx — (1 —
a) log(1 — x) is x = a. Therefore, the optimal solution of the above
optimization is:

sPIOP _ «PIOp _ ApOp _ .POPy _
SU TS ST Sy )—pI’ENP[O'(Sl(PI) = s2(p2))l.  Vpl.ps-
(16)

Solving the equations above gives the following optimal solution:

a(
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' ? Ep,.p, o(s2(p2) = s1(p1) P 23 Lz
(17)
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Table 5: Performance comparison of TPAB and seven com-
petitors using SimGCL backbone on Micro-video dataset.

| R@10 N@10 R@20 N@20

Vanilla | 0.0863 0.0598 0.1261  0.0727
PDA 0.0875  0.0604 0.126 0.0729
PDRO 0.0863  0.0598  0.1253  0.0723
DICE 0.0846  0.0585  0.1265  0.0719
Margin | 0.0788 0.054 0.1142  0.0653
InvCF 0.0869  0.0597 0.1288  0.0731
DCCL 0.0888  0.0604  0.1303  0.0740
TPAB 0.0902 0.0616 0.1315 0.0751

SimGCL

Table 4: Performance comparison of TPAB and seven com-
petitors on Yelp2022 and Amazon-book datasets.

| R@10 N@10 R@20 N@20

Vanilla | 0.0193 0.0151  0.0337  0.0197
PDA 0.0198  0.0153  0.0342  0.0199
PDRO 0.016 0.0123  0.0281  0.0161
DICE 0.0208  0.0167  0.0351  0.0211

Yelb  pargin | 00123 001 00228  0.0132
InvCF | 00194 00149 00335  0.0195

DCCL | 00187 00148 00326  0.0192

TPAB | 0.0232 00179  0.04  0.0232

Vanilla | 00239 00156 004  0.0207

PDA | 00232 00151 0038  0.0201

PDRO | 00202 001290 00341 0.0173

DICE | 0025 00164 00414  0.0216

Amazon

Margin | 0.0148  0.0091  0.0235  0.0118
InvCF 0.0232  0.0152  0.0382  0.0199
DCCL 0.0239  0.0156  0.0399  0.0207
TPAB 0.0317 0.0213 0.0519 0.0275

B Longer/larger Datasets

We have conducted comparative experiments on two larger and

longer datasets that are widely used: Yelp2022 and Amazon-book.

o Yelp2022°: It contains approximately 2M ratings from 80K users
to 75K businesses (e.g., restaurants). Time span is 10 years from
2012-01-01 to 2022-01-19. Note that we sampled the most recent
10 year for this dataset.

e Amazon-book’: It contains around 2M ratings from 65K to 88K
book products. Time span is 17 years from 1997-01-31 to 2014-
07-23)

These datasets validate the model’s generalizability over longer

periods, with test data spanning around 1.7 and 1 year, respectively.

The results, presented in Table 4 consistently show that TPAB

outperforms all seven competitors on both datasets, showing that

TPAB is also generalizable over longer time periods.
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C Additional Backbone

We compare TPAB with seven competitors using simGCL [33],
a recent and advanced recommendation backbone, on the Micro-
video dataset. The results show that TPAB consistently outperforms
all competitors.

D Implementation Details

For PDA and PDRO, we select the popularity weighting parameter y
from [0, 2, 4, 6, 8]. We also adhere to the suggested hyperparameters
for PDRO. For DICE, MARGIN, INVCF, and DCCL, each method
utilizes a scaling parameter for its respective invariance learning
loss. We vary this parameter across the values [0, 0.01, 0.05, 0.1,
0.5, 1]. Additionally, we adjust the scaling parameter for geometric
separation from the range [0, 0.001, 0.01, 0.1, 1.0].

Shttps://www.yelp.com/dataset.
"https://cseweb.ucsd.edu/ jmcauley/datasets/amazon/links.html.

E Discussion on Sequential Models

We clarify the distinctions between TPAB and sequential recom-
mender systems.

First, TPAB differs fundamentally in problem setting. Sequential
recommendation systems typically use a user’s item sequence as in-
put, focusing on modeling sequential patterns and dependencies. In
contrast, TPAB is a general two-tower recommender that explicitly
learns separate user and item embeddings, where modeling item
sequences for each user is unnecessary.

Second, while item sequences exist for each user, applying TPAB
to a sequential setting is not straightforward and requires additional
considerations. Sequential models generally learn entangled em-
beddings for items and user-item sequences, where item properties
and popularity are intertwined. Such models cannot disentangle
static/invariant item properties from dynamic/variant popularity,
which is central to TPAB’s design rationale.

A potential approach to learning disentangled item embeddings
in a sequential setting might involve learning separate property
and popularity embeddings, either through a separate attention
network or within a unified attention framework. However, this
has several limitations: (1) Most importantly, item property em-
beddings would implicitly capture both sequential patterns and
popularity shifts, which contradicts TPAB’s core idea of maintain-
ing static/invariant property embeddings independent of popularity
changes. (2) While temporal item popularity embeddings could be
learned, no user conformity embedding is involved, preventing
personalization for users. For example, if users u; and uy have the
same popularity sequence, they would have the same predicted
popularity score, whereas TPAB can assign different scores based
on user-side conformity embeddings.

Third, some existing sequential methods [6, 16, 19, 26] incorpo-
rate the time context of user-item interactions or the time interval
between items in the sequence. However, they do not disentangle
property and popularity embeddings and thus do not explicitly
capture temporal popularity. Even if they attempt this, they tend
to preserve sequential patterns of popularity rather than capturing
distinct popularity at different time stages.


https://www.yelp.com/dataset
https://cseweb.ucsd.edu/~jmcauley/datasets/amazon/links.html
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