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Abstract

Network alignment, which aims to find node correspondence across
different networks, is the cornerstone of various downstream multi-
network and Web mining tasks. Most of the embedding-based meth-
ods indirectly model cross-network node relationships by contrast-
ing positive and negative node pairs sampled from hand-crafted
strategies, which are vulnerable to graph noises and lead to po-
tential misalignment of nodes. Another line of work based on the
optimal transport (OT) theory directly models cross-network node
relationships and generates noise-reduced alignments. However,
OT methods heavily rely on fixed, pre-defined cost functions that
prohibit end-to-end training and are hard to generalize. In this pa-
per, we aim to unify the embedding and OT-based methods in a
mutually beneficial manner and propose a joint optimal transport
and embedding framework for network gliénment named JOENA.
For one thing (OT for embedding), through a simple yet effective
transformation, the noise-reduced OT mapping serves as an adap-
tive sampling strategy directly modeling all cross-network node
pairs for robust embedding learning. For another (embedding for
OT), on top of the learned embeddings, the OT cost can be gradu-
ally trained in an end-to-end fashion, which further enhances the
alignment quality. With a unified objective, the mutual benefits
of both methods can be achieved by an alternating optimization
schema with guaranteed convergence. Extensive experiments on
real-world networks validate the effectiveness and scalability of
JOENA, achieving up to 16% improvement in MRR and 20X speedup
compared with the state-of-the-art alignment methods.
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1 Introduction

In the era of big data and Al [2, 3, 37], multi-sourced networks!
appear in a wealth of high-impact applications, ranging from social
network analysis [5, 60, 61, 70], recommender system [14, 15, 30] to
knowledge graphs [26, 51, 52, 56]. Network alignment, the process
of identifying node associations across different networks, is the
key steppingstone behind many downstream multi-network and
Web mining tasks. For example, by linking users across different
social network platforms, we can integrate user actions from multi-
sourced sites to achieve more informed and personalized recom-
mendation [9, 63, 70]. Aligning suspects from different transaction
networks helps identify financial fraud [12, 64, 81, 82]. Entity align-
ment between incomplete knowledge graphs, such as Wikipedia
and WorkNet, helps construct a unified knowledge base [7, 56, 66].

Many existing methods approach the network alignment prob-
lem by learning low-dimensional node embeddings in a unified
space across two networks. Essentially, these methods first adopt
different sampling strategies to sample positive and negative node
pairs, and then utilize a ranking loss, where positive node pairs (e.g.,
anchor nodes) are pulled together, while negative node pairs (e.g.,
sampled dissimilar nodes) are pushed far apart in the embedding
space, to model cross-network node relationships [9, 28, 67, 81].
For example, as shown in Figure 1, the relationship between an-
chor node pair (aj,az) is directly modeled by minimizing their
distance d(ay, az) in the embedding space, while the relationship
between (b1, by) is depicted via an indirect modeling path d (b1, a1)+
d(ay,az) +d(az, by) [67].

Promising as it might be, the indirect modeling adopted by
embedding-based methods inevitably bear an approximation er-
ror between the path d(by, a1) + d(ai, az) + d(az, bz) and the exact
cross-network node relationship d (b1, b3), resulting in performance
degradation. Besides, embedding-based methods largely depend
on the quality of node pairs sampled by hand-crafted sampling
strategies such as random walk-based [59], degree-based [9, 28]

!n this paper, we use the terms ‘network’ and ‘graph’ interchangeably.
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Figure 1: An example of embedding-based methods with
hand-crafted sampling strategies. Due to edge noise, (a1, b;1)
is identified as a false negative intra-network pair, pushing
(b1, b2) that should be aligned far apart. Likewise, (di, d2) fails
to align due to attribute noise on d;. Best viewed in color.

and similarity-based [67, 81] strategies. However, such hand-crafted
strategies often suffer from high vulnerability to graph noises (e.g.,
structural and attribute noise), further exacerbating the detrimen-
tal effect of indirect modeling. For example, as shown in Figure 1,
when modeling the relationship between (b1, b2) with a missing
edge, (b1, a1) will be misidentified as an intra-network negative
pair by the random walk-based strategy, and the indirect modeling
d(b1,a1) +d(a1, az) + d(az, bp) will be enlarged as the ranking loss
tends to increase d(b1, a1), hence failing to align b; and by. Simi-
larly, due to attribute noise on dj, the false negative intra-network
node pair (aj,d;) sampled by the similarity-based strategy will
push the to-be-aligned node pair (dy, dz) far apart. Besides, as the
amount of indirectly modeled non-anchor node pairs (grey squares
in Figure 1) is significantly greater than directly modeled anchor
node pairs (colored squares in Figure 1), the effect of false negative
pairs will be further exacerbated.

Another line of works utilize the optimal transport (OT) theory
for network alignment. By viewing graphs as distributions over
the node set, network alignment is formulated as a distributional
matching problem based on a transport cost function measuring
cross-network node distances. Thanks to the marginal constraints
in OT [35], OT-based method generates noise-reduced alignment
with soft one-to-one matching [77]. However, the effectiveness of
most, if not all, of the existing OT-based methods largely depend on
pre-defined cost functions, focusing on specific graph structure [16,
32, 34, 74] or node attributes [6, 77], leading to poor generalization
capability. Though efforts have been made to combine both methods
by utilizing the OT objective to supervise embedding learning [6,
8,45, 57, 58], we theoretically reveal that directly applying the OT
objective for embedding learning cause embedding collapse where
all nodes are mapped to an identical point in the embedding space,
hence dramatically degrading the discriminating power.

In light of the pros and cons of embedding-based and OT-based
methods, we seek to explore the complementary roles of two cate-
gories of methods to fully realize their mutual benefits. Specifically,
we first demonstrate their close intrinsic relationships: the OT ob-
jective can be neatly transformed into a multi-level ranking loss
with a weighted sampling strategy. Based on this theoretical finding,
we propose a novel unified framework named JOENA to learn node
embeddings and alignments jointly in a mutually beneficial way.
For one thing, to augment embedding learning with OT, the OT
mapping is transformed into a cross-network sampling strategy,

2065

Qi Yu et al.

Table 1: Symbols and Notations.

Symbol Definition
G, G input networks
V1, Vs node sets of G1 and G5
&E1,E2 edge sets of G and G
A Ay adjacency matrices of G1 and G
X1, Xo node attribute matrices of G1 and G»
U1, 12 probability measures
ni, m; number of nodes/edges in G;
L the set of anchor node pairs
L1 an identity matrix and an all-one vector/matrix
o) Hadamard product
() inner product
I1 probabilistic coupling

horizontal concatenation of vectors

[-II-]

which not only helps avoid embedding collapse, but also enhances
model robustness against graph noises thanks to the direct mod-
eling and noise-reduced property of OT [43, 77]. For another, to
augment OT with embedding learning, JOENA utilizes the learned
node embeddings for a better OT cost design, which opens the door
for the end-to-end training paradigm and can be adapted to differ-
ent graphs without extensive parameter tuning. We have compared
the proposed JOENA with the state-of-the-art network alignment
methods on six different datasets, which validates the effectiveness
and efficiency of our proposed model.

The main contributions of this paper are summarized as follows:

e Theoretical Analysis. To our best knowledge, we are the
first to theoretically reveal the close relationship and mutual
benefits between OT and embedding-based methods.

e Novel Model. We propose a novel framework JOENA to
learn node embeddings and alignments jointly based on a
unified objective function.

o Extensive Experiments. Experiments on real-world datasets
demonstrate the effectiveness and scalability of JOENA, with
up to 16% and 6% outperformance in MRR on plain and at-
tributed networks, and up to 20X speed-up in inference time.

2 Preliminaries

Table 1 summarizes the main symbols used throughout the paper.
We use bold uppercase letters for matrices (e.g., A), bold lowercase
letters for vectors (e.g., s), and lowercase letters for scalars (e.g.,
@). The transpose of A is denoted by the superscript T (e.g., A").
An attributed network with n nodes is represented by G = (A, X)
where A € R™" X e R"™ denote the adjacency matrix and
node attribute matrix, respectively. We use V and & to denote the
node and edge set of a graph, respectively. The semi-supervised
attributed network alignment problem can be defined as follows:

DEFINITION 1. Semi-supervised Attributed Network Alignment.
Given: (1) two networks G1 = (A1,X1) and G2 = (A2,X2); (2) an
anchor node set L = {(x,y)|x € G1,y € G2} indicating pre-aligned
nodes pairs (x,y).

Output: alignment/mapping matrix S € R™*"2_ where S(x, y) indi-
cates how likely node x € G1 and nodey € G, are aligned.
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2.1 Embedding-based Network Alignment

Embedding-based methods learn node embeddings by pulling posi-
tive node pairs together while pushing negative node pairs apart
in the embedding space via ranking loss functions [9, 28, 67, 81].
Specifically, given a set of anchor node pairs £, the ranking loss
can be generally formulated as [67]:

Frank = J1 + P2 + Jeross
T =g, (0o xp) = d(x.xn))
where { J2 = ZyeLﬂgz (d(y, yp) —-d(y, yn)) s

Jeross = Z(x,y)e[ d(x,y)

where d(x,y) measures the distance between two node embeddings
(e.g., L1 norm), xp/y, denotes the positive node w.rt. x/y, and
Xn/yn denotes the negative node w.r.t. x/y. In the above equation,
J1, Jo are intra-network loss pulling sampled positive nodes (e.g.,
similar/nearby nodes) together, while pushing sampled negative
nodes (e.g., disimilar/distant nodes) far part. Jeross is the cross-
network loss, which aims to minimize the distance between anchor
node pairs. In general, the objective in Eq. (1) indirectly models the
node relationship between two non-anchor nodes (x’,y’) via a path
through the anchor node pair (x, y), i.e., ((x/,x), (x,7), (y,y")).

1)

2.2 Optimal Transport

OT has achieved great success in graph applications, such as net-
work alignment [45, 57, 58, 77] and graph classification [11, 36,
76, 78]. Following a common practice [46], a graph can be repre-
sented as a probability measure supported on the product space of
node attribute and structure, ie., g = 3.7, h(i)dA (x;) X(x;)> Where
h € A, is a histogram representing the node weight and ¢ is the
Dirac function. The fused Gromov-Wasserstein (FGW) distance is
the sum of node pairwise distances based on node attributes and
graph structure defined as [43]:

DEFINITION 2. Fused Gromov-Wasserstein (FGW) distance.
Given: (1) two graphs G1 = (A1,X1), G2 = (A2, X2); (2) probability
measures p11, 1z on graphs; (3) intra-network cost matrix C1, Cz; (4)
cross-network cost matrix M.

Output: the FGW distance between two graphs FGW o (G1, G2)

min  (1-a) > MI(xy)S(xy)
Selllpp) x€GryeG,
2
+ aZ IC1(x,x") = C2(y,y")|9S(x, y)S(x", y). @
x,x'€G
y,y’egé

The first term corresponds to the Wasserstein distance measuring
cross-network node distances, and the second term is the Gromov-
Wasserstein (GW) distance measuring cross-network edge distances.
The hyperparameter « controls the trade-off between two terms,
and q is the order of the FGW distance, which is adopted as g =
2 throughout the paper. The FGW problem aims to find an OT
mapping S € II(p1, p2) that minimizes the sum of Wasserstein
and GW distances, and the resulting OT mapping matrix S further
serves as the soft node alignment.
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3 Methodology

In this section, we present the proposed JOENA. We first analyze
the mutual benefits between embedding and OT-based methods in
Section 3.1. Guided by such analysis, a unified framework named
JOENA is proposed for network alignment in Section 3.2. We further
present the unified model training schema in Section 3.3, followed
by convergence and complexity analysis of JOENA in Section 3.4.

3.1 Mutual Benefits of Embedding and OT

3.1.1 OT-Empowered Embedding Learning. The success of ranking
loss largely depends on sampled positive and negative node pairs,
ie., (x,xp), (x,%n), (Y, Yp), (y, yn) in Eq. (1), through which cross-
network node pair relationships can be modeled. To provide a better
sampling strategy, the OT mapping improves the embedding learn-
ing from two aspects: direct modeling and robustness. First (direct
modeling), while embedding-based methods model cross-network
node relationships via an indirect path (see Figure 1 for an example.)
sampled by hand-crafted strategies, the OT mapping directly models
such cross-network relationships, identifying positive and negative
node pairs more precisely. Second (robustness), in contrast to the
noisy embedding alignment, thanks to the marginal constraints in
Eq. (2), the resulting OT mapping is noise-reduced [43, 77], where
each node only aligns with very few nodes. Therefore, OT-based
sampling strategy can be robust to graph noises.

3.1.2  Embedding-Empowered OT Learning. The success of OT-based
alignment methods largely depend on the cost design, i.e. C1, Ca,
and M in Eq. (2), which is often hand-crafted in existing works. To

achieve better cost design, embedding learning benefits OT learning

from two aspects: generalization and effectiveness. For one thing

(generalization), building transport cost upon learnable embeddings

opens the door for end-to-end training paradigm, thus, the OT
framework can be generalized to different graphs without exten-
sive parameter tuning. For another (effectiveness), neural networks

generate more powerful node embeddings via deep transformations,
enhancing the cost design for OT optimization.

3.2 Model Overview

The overall framework of JOENA is given in Figure 2, which can
be divided into three parts: (1) RWR encoding for structure learning,
(2) embedding learning via multi-level ranking loss with OT-based
sampling, (3) OT optimization with learnable transport cost.

Positional information plays a pivotal role in network align-
ment [67, 77], but most of the GNN architectures fall short in cap-
turing such information for alignment [72]. Therefore, we explicitly
encode positional information by conducting random walk with
restart (RWR) [47]. By regarding a pair of anchor nodes (x,y) € £
as identical in the RWR embedding space, we simultaneously per-
form RWR w.r.t. x € G1 and y € G2 to construct a unified embed-
ding space, where the RWR score vectors ry € R™ and ry € R™
can be obtained by [47, 67]

rx = (1= p)Wiry + fex, 1y = (1 = f)Wary + fey, (3)

where f is the restart probability, W; (Di_lAi)T is the transpose
of the row-normalized adjacency matrix, D; is the diagonal degree
matrix of G;, and ey, e, are one-hot encoding vectors with ey (x) =
1 and ey (y) = 1. The concatenation of RWR vectors w.r.t. different
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Figure 2: An overview of JOENA, including RWR encoding,
embedding learning and OT optimization. RWR encoding
and raw node attributes are processed by a shared MLP, su-
pervised by the ranking loss based on the OT-based sampling
strategy. The OT mapping is optimized via cost matrices de-
rived from the learned embeddings, further transformed into
a sampling strategy by the learnable transformation g;.

anchor nodes R; € R™*I £, together with node attribute matrices
Xi, i.e., [R;i||X;], serve as the input for embedding learning.

To learn powerful node embeddings, we train a shared two-layer
multi-layer perceptron (MLP) with residual connections fp via a
multi-level ranking loss. To address the limitations of hand-crafted
sampling strategies, we apply a simple yet effective transformation
g, on the OT mapping S to obtain an adaptive sampling strategy
g2 (S). Then, the sampled node and edge pairs based on g, (S) are
utilized for learning output embeddings E; and Ej, supervised by
the multi-level ranking loss.

To improve OT optimization, we construct the cross-network
cost matrix M and intra-network cost matrices C1, Cy based on
output embeddings E; and E; of the MLP as follows

T
2

R
M=eBE c; =B g4, 4

where M(x, y) is the cross-network node distance between x €
G1,y € G2, and C;(a, b) is the intra-network node distance between
a,b € Gi%. Afterwards, the FGW distance in Eq. (2) can be efficiently
solved via the proximal point method [57, 77], whose output OT
mapping S indicates the node alignment between two graphs.
For model training, we propose an objective function which, as
we will show in the next subsection, unifies OT optimization and
embedding learning as follows:

TS0 =(1-a) > M(xy;0)8(x,y;A)

min
Sell(p1,p2).A.0

XEG1L,YEG:
Wasserstein/node-level loss
’ ’ 2 7 (5)
+ @) 1C1(x,x50) = Ca(y,y'; 0) 28 (x, 45 )Sn (', ' ),
xx'eG
y,y’Egi

GW/edge-level loss

where S is the OT mapping, 0 is the set of learnable parameters in

2We use C; to encode edge information in two graphs with C; (a, b) = 0,V (a, b) ¢ &;.
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the MLP model fy, Sy, is the adaptive sampling strategy after trans-
formation (i.e., S, = g1(S)) , and « is a hyper-parameter that con-
trols the relative importance between Wasserstein distance/node-
level ranking loss and GW distance/edge-level ranking loss. Through
alternating optimization, both OT mapping S and node embeddings
E;, E; can be optimized in a mutually beneficial manner. The overall
algorithm is summarized in Algorithm 1 in Appendix A.

3.3 Unified Model Training

In this subsection, we present the model training framework un-
der a unified objective function. Through a simple yet effective
transformation, the FGW distance and multi-level ranking loss are
combined into a single objective (Subsection 3.3.1), which can be
efficiently optimized using an alternating optimization scheme with
guaranteed convergence (Subsection 3.3.2).

3.3.1 Unifying FGW Distance and Multi-level Ranking Loss. The
FGW distance is a powerful objective for network alignment, and
has been adopted by several works [6, 8, 45, 58] to supervise em-
bedding learning. In general, based on the Envelop theorem [1],
existing methods based on the FGW objective [6, 8, 45, 58] optimize
the cost matrices under the fixed OT mapping S, whose gradients
further guide the learning of feature encoder fy. However, due to the
non-negativity of S, directly minimizing FGW distance leads to triv-
ial solutions where cost matrices M, C1, C2 become zero matrices,
hence leading to embedding collapse illustrated in Proposition 1.

ProrosiTiON 1. (EMBEDDING COLLAPSE). Given two networks
G1, Ga, directly optimizing feature encoder fy with the FGW distance
leads to embedding collapse, that is E1(x) = E2(y),Vx € G1,y € Go,
where E1 = fp(G1),E2 = fo(G2).

The proof can be be found in Appendix B. In general, due to the
non-negativity of FGW distance [46], its minimal value of zero is
achieved by projecting all nodes to identical embeddings, hence
significantly degrading embeddings’ discriminating power.

To alleviate embedding collapse, we propose a transformation
gy : Rr:Oan — R™M*M2 to transform the non-negative OT mapping
S into an adaptive node sampling matrix S, = g, (S) to discern the
positive samples from the negative ones together with sampling
weights. In this work, we adopt g, (S) = S — A1, xn,, Wwhere A is
a learnable transformation parameter. The rationale behind such
design is to find the optimal threshold A to distinguish between
positive and negative pairs automatically. Moreover, as the absolute
value of S, (x, y) indicates the certainty of sampling node pair (x, y)
as positive/negative pairs, it helps distinguish easy and hard samples
for the ranking loss. Equipped with such adaptive sampling matrix
Sn, we quantitatively attribute the effectiveness of FGW distance to
the following two aspects: node-level ranking and edge-level ranking.
Wasserstein Distance as Node-Level Ranking Loss. Equipped
with the sampling strategy Sp,, the Wasserstein distance term can
be reformulated as a node-level ranking loss as follows

Jwv=" D, Mxysalcy)

(x,y)eVIXV,

D MG yp)ISa(xyp)l = D M6 1) ISn(x,yn)| (©)

(x,yp) eR* (x,yn)€R™
where R*={(x, Yp)|Sn (. yp)= 0}, R={(x, yn)[Sn(x, yn)<0}.
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Rt and R~ are the sets of positive and negative node pairs, re-
spectively. Therefore, Eq. (6) can be viewed as a weighted ranking

loss function at the node level, where the sign of S, (x, y) is used
to distinguish between positive and negative node pairs and the
sampling weight |S, (x, y)| indicates the certainty of the sampled
positive/negative node pair. For example, (x, y) is regarded as an
uncertain pair and should contribute little to the ranking loss if
S(x,y) is close to the threshold A. Similarly, if S(x, y) is far away
from A, the relationship between (x, y) is more certain and should
contribute more to the ranking loss. Therefore, S,, directly mod-
els all cross-network pairs (x,y) € V) X V2 with noise-reduced
certainty values. To this point, we provide a unified view of the
Wasserstein distance and the node-level ranking loss.

Another limitation of the existing ranking loss is that it only
considers node relationships while ignores the modeling of edge
relationships, hence may fall short in preserving graph structure
in the node embedding space [45, 59]. To address this issue, we
introduce a novel ranking loss function at edge-level and unify it
with the GW distance.

Gromov-Wasserstein Distance as Edge-Level Ranking Loss.
The GW distance term can be reformulated as an edge-level ranking
loss as follows,

Jgw = Z IC1(x,x") = C2(3.y")|*Sn (%, 1)Sn (x". y")

x.x"€G1,
Uy E€G
= > de(ex,xrs €y, )ISe(exxrs ey, y )=
(ex,x’seypvy‘;)67—+
Z de(ex,x/a eyn,y;)|se(3x,x', eyn,y;l)| (7)

(ex,x”“’yn,y;l)ET_
de(exxr,ey,y) = 1C1(x,x") = Ca(y,y)|?
Se(exx'> ey,y’) = Sn(x, y)Sn(x",y")
T ={(exxs ey, yr )ISe (exxrs ey, 4 )2 0}

T = {(ex,x’a eyn,y;,)lse(ex,x’s eyn,y;l)< 0}

where

where ey - is the edge between x and x’, d. measures the distance
between two edges, and 7, 7~ are the sets of positive and negative
edge pairs sampled by the edge sampling strategy S.. Similar to
Eq. (6), Eq. (7) is a weighted ranking loss at the edge level, where the
sign of S (ex,x, ey,y) distinguishes between positive and negative
edge pairs and the sampling weight |Se (ex,x, €y, )| indicates the
certainty of the sampled positive/negative edge pair. From the view
of line graph [59], where edges in the original graph are mapped
into nodes in the line graph and vice versa, the edge ranking loss
in the original graph can be interpreted as the node ranking loss in
the corresponding line graph.
3.3.2  Optimization. Combining the node-level ranking loss (Wasser-
stein distance) and edge-level ranking loss (GW distance) gives the
unified optimization objective of JOENA for both embedding learn-
ing and OT optimization as Eq. (5). To optimize this objective, we
adopt an alternating optimization scheme where the parameters of
feature encoder fjy, transformation parameter A, and OT mapping S
are optimized iteratively.

Specifically, for the k-th iteration, we first fix the feature encoder

f;k) and the transformation parameter 2%) and optimize Eq. (5)
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w.r.t S by the proximal point method [57]. Due to the non-convexity
of the objective, proximal point method decomposes the non-convex
problem into a series of convex subproblems plus an additional
Bregman divergence between two consecutive solutions, where
each subproblem can be formulated as follows

s = argmin (540,00 + 1, Div(s|Is),  (8)
SEl(p1,p2)
where t is the number of proximal point iteration, y, is the weight
for the proximal operator, and Div is the Bregman divergence be-
tween two OT mappings. Then, the resulting subproblem in Eq. (8)
can be transformed into an entropy-regularized OT problem as

(1) (t)
e (€ S) +plogS.) - <(1 —a)M+aLll), /1>
entropy-regularized OT constant
t t
Ct(ot)al =(1-a)M+ aLévg ~yplog s ©)

)
where L) = €25 1,m, + 1nyxn, Sy C2 —2C1857 CJ.
s\ =0 kg,

Note that $() is the OT mapping from last proximal point it-
eration and remains fixed in the above equation. Therefore, the
objective function of each proximal point iteration in Eq. (9) is essen-
tially an entropy-regularized OT problem with a fixed transport cost
Ct((fzal minus a constant term that does not affect the optimization.
Eq. (9) can be solved efficiently by the Sinkhorn algorithm [35].

Then, we fix the feature encode fe(k) and OT mapping s(k+1)
and optimize Eq. (5) w.r.t the transformation parameter A. Since the
objective function is quadratic w.r.t. A, the closed-form solution for
A+1) can be obtained by setting 0. /9A = 0 as follows

Ak _ () K +aky
20K
K= ) Mxy;0%)
X€G1,Y€G2
9 = ) de e ey 00) (3 )+, y)) (10)

x,x'€Gy
vy’ G,

K =Zde (ex,x,,ey’y,;g(k))

x,x' €Gy
y.y' €62

where

Finally, to optimize the feature encoder fpy, we fix the transfor-
mation parameter A+1) and the OT mapping Sk+1) 4 optimize
Eq. (5) w.r.t 0 via stochastic gradient descent (SGD), that is

0"+ = arg ming 7 (0; 8+, 1 (k+D)), (11)

As we will show later, by iteratively applying Eq. (8)-(11), the
objective function in Eq. (5) converges under the alternating opti-
mization scheme. Besides, it is worth noting that alternating op-
timization is only used for model training, while model inference
only requires one-pass, i.e., the forward pass of MLP and the proxi-
mal point method for OT optimization, allowing JOENA to scale
efficiently to large networks.

3.4 Proof and Analysis

In this subsection, we provide theoretical analysis of the proposed
JOENA. Without loss of generality, we assume that graphs share
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comparable numbers of nodes (i.e., O(n;) ~ O(nz) ~ O(n)) and
edges (i.e., O(m1) ~ O(mz) = O(m)). We first provide the conver-
gence analysis of JOENA, followed by complexity analysis.

THEOREM 1. (CONVERGENCE OF JOENA) The unified objective for
JOENA in Egq. (5) is non-increasing and converges along the alternat-
ing optimization.

PrOPOSITION 2. (ComMPLEXITY OF JOENA) The overall time com-
plexity of JOENA is O (KTmn + KTNn?) at the training phase and
0] (Tmn + Tan) at the inference phase, where K, T, N denote the
number of iterations for alternating optimization, proximal point
iteration, and Sinkhorn algorithm, respectively.

All the proofs can be found in Appendix B. In general, the alter-
nating optimization scheme generates a series of non-increasing
objective functions with a bounded minimum hence achieving guar-
anteed convergence. In addition, as we can see, JOENA achieves
fast inference with linear complexity w.r.t the number of edges and
quadratic complexity w.r.t. the number of nodes.

4 Experiments

In this section, we carry out extensive experiments and analyses to
evaluate the proposed JOENA from the following aspects:
e Q1. How effective is the proposed JOENA?
e Q2. How efficient and scalable is the proposed JOENA?
e Q3. How robust is JOENA against graph noises?
e Q4. How do OT and embedding learning benefit each other?
e Q5. To what extent does the OT-based sampling strategy
surpass the hand-crafted strategies?

4.1 Experiment Setup

Datasets. Our method is evaluated on both plain and attributed
networks summarized in Table 5. Detailed descriptions and experi-
mental settings are included in Appendix C3.

Baselines. JOENA is compared with the following three groups of
methods, including (1) Consistency-based methods: IsoRank [40]

and FINAL [80], (2) Embedding-based methods: REGAL [19], DANA [20],

NetTrans [84], BRIGHT [67], NeXtAlign [81], and WL-Align [27],
and (3) OT-based methods: WAlign [16], GOAT [39], PARROT [77],
and SLOTAlign [45]. To ensure a fair and consistent comparison,
for all unsupervised baselines, we introduce the supervision in-
formation in the same way as JOENA by concatenating the RWR
scores w.r.t the anchor nodes with the node input features.

Metrics. We adopt two commonly used metrics Hits@K and Mean
Reciprocal Rank (MRR) to evaluate model performance. Specifically,
given (x,y) € Stest Where Stest denotes the set of testing node
pairs, if node y € G, is among the top-K most similar nodes to
node u € G1, we consider it as a hit. Then, Hits@K is computed
by Hits@K :%. MRR is computed by the average of the re-
ciprocal of alignment ranking of all testing node pair, i.e., MRR =

1 1
| Stest | Z(x,y)EStest rank(x,y)
4.2 Effectiveness Results

We evaluate the alignment performance of JOENA, and the results
on plain and attributed networks are summarized in Table 2 and 3,
respectively. Compared with consistency and embedding-based

3Code and datasets are available at github.com/yq-leo/JOENA-WWW25.
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Table 2: Performance on plain network alignment.

Dataset Foursquare-Twitter ACM-DBLP Phone-Email

Metrics Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR
IsoRANK 0.023  0.133 0.060 0.157  0.629 0.297 0.028 0.189 0.087
FINAL 0.040  0.236 0.100 0.196 0.692 0.354 0.031 0.215 0.099
DANA 0.042  0.160 0.082 0.343  0.559 0.316 0.033  0.206 0.095
NETTRANS  0.086 0.270 0.145 0.410 0.801 0.540 0.065 0.119 0.155
BRIGHT 0.091 0.268 0.149 0.394 0.809 0.534 0.043 0.255 0.113
NEXTALIGN 0.101  0.279 0.158 0.459 0.861 0.594 0.063 0.424 0.195
WL-ALiGN  0.253  0.343  0.285 0.542 0.781 0.629 0.121  0.409 0.214
WALIGN 0.077  0.258 0.135 0.342 0.794 0.481 0.046 0.308 0.131
PARROT 0.245 0409 0.304 0.619 0912 0.719 0.323 0.749 0.469
JOENA 0.403 0.576 0.464 0.635 0.933 0.736 0.384 0.809 0.527

Table 3: Performance on attributed network alignment.

Dataset Coral-Cora2 ACM(A)-DBLP(A) Douban
Metrics Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR
FINAL 0.710  0.881 0.773 0.398 0.833 0.542 0.468 0.914 0.625
REGAL 0.511 0.591 0.542 0.501 0.725 0.579 0.099 0.274 0.153
NETTRANS 0.989  0.999 0.993 0.692 0.938 0.779 0.210 0.213 0.332
BRIGHT 0.839 0.992 0.905 0.470 0.857 0.603 0.282 0.641 0.397
NeXTALIGN 0.439 0.703 0.538 0.486 0.867 0.615 0.245 0.655 0.385
WALIGN  0.824  0.997 0.901 0.377 0.779 0.501 0.236  0.533 0.341
PARROT 0.996 1.000 0.998 0.721 0.960 0.806 0.696  0.981 0.789
SLOTALIGN 0.985 0.997 0.990 0.663 0.879 0.740 0.486 0.762 0.582
JOENA 0.999 1.000 0.999 0.767 0.967 0.839 0.761 0.986 0.851

methods, JOENA achieves up to 31% and 22% improvement in MRR
over the best-performing baseline on plain and attributed network
tasks, respectively, which indicates that JOENA is capable of learn-
ing noise-reduced node mapping beyond local graph geometry and
consistency principles thanks to the OT component. Compared
with OT-based methods, JOENA achieves a significant outperfor-
mance compared with the best competitor PARROT [77] with up to
16% and 6% improvement in MRR on plain and attributed networks.
Such outperformance demonstrates the effectiveness of the trans-
port costs encoded by learnable node embeddings. Moreover, the
performance improvement over WAlign [16] and SLOTAlign [45] in-
dicates that JOENA successfully avoids embedding collapse thanks
to the learnable transformation g on OT mapping and the resulting
adaptive sampling strategy Sp.

4.3 Scalability Results

=300

100

10

logyo(Inference Time)(Second)

—A— SLOTAlign
| —@— GOAT
—¥— PARROT
—%— JOENA

04 0.6 08 1.0

Number of Edges (X10°)

12 1.4

Figure 3: Scalability results. JOENA achieves the best scala-
bility results with up to 20x speed-up in inference time and
up to 5% scale-up in network size.

We compare the scalability of the propose JOENA with that
of OT-based methods, including GOAT [39], PARROT ([77], and
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Figure 4: Performance comparison of five alignment methods
under different levels of structure and attribute noise.

SLOTAlign [45]. We record the inference time as the number of
edges increases, and the results are shown in Figure 3. For networks
with 20,000 edges, JOENA runs 20 times faster than SLOTAlign.
Under 300-second running time limit, JOENA can process networks
5 times the size of SLOTAlign. Besides, we observe that JOENA
runs slightly faster than the pure OT-based method PARROT. For
one thing, we attribute such slight improvement to the lightweight
MLP for embedding learning, as PARROT requires hand-crafted
embeddings that may be computationally-heavy. For another, better
cost design based on learnable embeddings also benefits the con-
veregence of OT optimization, hence achieving faster computation.

4.4 Robustness Results

To show the robustness of the proposed JOENA , we evaluate the
performance of JOENA under structural and attribute noise.

4.4.1 Robustness against Structural Noises. We first evaluate the ro-
bustness of JOENA against structural (edge) noises. Specifically, for
edge noise level p, we randomly flip p% entries in the adjacency ma-
trix, i.e., randomly add/delete edges [45]. Evaluations are conducted
on plain Phone-Email network to eliminate potential interference
from node attributes. The results are shown in Figure 4a.

Compared to other baselines, the performance of JOENA con-
sistently achieves the highest MRR in all cases. More importantly,
thanks to the direct modeling and noise-reduced property of OT,
we observe a much slower degradation of the MRR when the noise
level increases, validating the robustness of JOENA against graph
structural noises. Furthermore, embedding-based methods without
OT (i.e., WLAlign [27], NeXtAlign [81], BRIGHT [67]) degrades
much faster than methods with OT (i.e., JOENA, PARROT [77]),
demonstrating that embedding-based methods are more sensitive
to structural noise due to indirect modeling.

4.4.2 Robustness against Attribute Noises. We also evaluate the
robustness of JOENA against attribute noises. Specifically, for at-
tribute level p, we randomly flip p% entries in the attribute ma-
trix [48]. The results are shown in Figure 4b.

Compared to baselines, the performance of JOENA consistently
achieves the best performance, as well as the mildest degradation
when attribute noise level increases, demonstrating the robustness
of JOENA against node attribute noises. Besides, the performance
of embedding-based methods degrades more severely than JOENA
which further illuminates the deficiency of indirect modeling.
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Table 4: Mutual benefits of embedding and OT learning

Dataset Foursquare-Twitter ACM-DBLP Phone-Email
Metrics Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR
EmB 0.079 0.244 0.134 0.401 0.798 0.534 0.063 0.358 0.164
EmB(OT) 0.090 0.255 0.140 0.406 0.807 0.538 0.078 0.373 0.173
oT 0.243  0.407 0.298 0.600 0.916 0.707 0.224 0.581 0.343
JOENA 0.403 0.576 0.464 0.635 0.933 0.736 0.384 0.809 0.527
OT©EmMB 0.243 0.407 0.297 0.601 0916 0.707 0.224 0.593 0.337
OT+EmB 0.244 0.408 0.299 0.600 0.917 0.707 0.226  0.583 0.345
061 Leamed A=0.67, MRR=0.527 05 Leamed A=1.13, MRR=0.464
0.5 T
0.4
04
] ~ 03
& &
=03 =
0.2
0.2
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Figure 5: MRR with different 1. Our learned A consistently
achieves the best MRR on both datasets.

4.5 Further Analysis

4.5.1 Mutual Benefits of OT and Embedding Learning. To verify the
mutual benefits of OT and embedding learning, we compare the per-
formance of JOENA against the following variants on three datasets:
(1) EMD infers node alignments by node embeddings learned un-
der the sampling strategy from BRIGHT [67]; (2) EMD(OT) infers
node alignments by node embeddings learned under our OT-based
sampling strategy; (3) OT infers node alignments by the OT map-
ping with cost matrices based on RWR encoding; (4) JOENA infers
node alignments by OT mapping with learnable cost matrices; (5)
OTGEMB infers node alignments by the Hadamard product of OT
mapping and the inner product of node embeddings; (6) OT+EmB
infers node alignments by the sum of OT mapping and the inner
product of node embeddings.

The results are shown in Table 4. Firstly, we observe a consistent
outperformance of EMB(OT) compared to EMB, showing that the
proposed OT-based sampling strategy improves the quality of node
embeddings compared to existing sampling strategies. Besides, com-
paring OT to JOENA, without learnable cost matrices, OT drops
up to 16% in Hits@1 compared to JOENA, indicating that the cost
design on learnable node embeddings improves the performance
of OT optimization by a significant margin. Furthermore, we com-
pare the performance of JOENA to OTOEMB and OT+EmB, both of
which naively integrate the OT and embedding alignments learned
separately. It is shown that both OTOEMB and OT+EMB achieves
similar performance as OT and outperforms EmB. For one thing,
this suggests that the outperformance of JOENA largely attributes
to the OT alignment, which provides a more denoised alignment
compared with embedding alignment. For another, naively com-
bining the alignment matrices of embedding or OT-based method
at the final stage hardly improves the alignment quality, and it is
necessary to combine both components during training.
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4.5.2 OT-based Sampling Strategy. We also carry out studies on the
effectiveness of the OT-based sampling strategy g, (S). As shown
in Figure 5, we report the MRR under different A with the learned A
annotated. It is shown that JOENA achieves the best performance
under the learned A. Besides, we observe a significant performance
drop when A is not properly selected. This is due to the fact that
when A is too small/large, most pairs will be sampled as posi-
tive/negative pairs exclusively, which further leads to embedding
collapse. To validate this point, we visualize how the embedding
space changes along optimization. As shown in Figure 6a, when
setting A = 0, MRR gradually decreases and the learned embeddings
collapse into an identical point along optimization. On the contrary,
as shown in Figure 6b, JOENA is able to learn the optimal A, under
which, MRR gradually increases and node embeddings are well
separated in the embedding space.

5 Related Works
5.1 Network Alignment

Traditional network alignment methods are often built upon align-
ment consistency principles. IsoRank [40] conducts random walk
on the product graph to achieve topological consistency. FINAL [80]
interprets IsoRank as an optimization problem and introduces con-
sistency at attribute level to handle attributed network alignment.
Another line of works [25, 50, 68] learn informative node embed-
dings in a unified space to infer alignment. REGAL [19] conducts
matrix factorization on cross-network similarity matrix for node
embedding learning. DANA [20] learns domain-invariant embed-
dings for network alignment via adversarial learning. BRIGHT [67]
bridges the consistency and embedding-based alignment meth-
ods, and NeXtAlign [81] further balances between the alignment
consistency and disparity by crafting the sampling strategies. WL-
Align [27] utilizes cross-network Weisfeiler-Lehman relabeling to
learn proximity-preserving embeddings. More related works on
network alignment are reviewed in [12].

5.2 Optimal Transport on Graphs

OT has recently gained increasing attention in graph mining and
network alignment, whose effectiveness often depends on the pre-
defined cost function restricted to specific graphs. For example,
[16, 32, 34, 62] represent graphs as distributions of filtered graph
signals, focusing on one specific graph property, while other cost
designs are mostly based on node attributes [6] or graph struc-
tures [39]. PARROT [77] integrates various graph properties and
consistency principles via a linear combination, but requires ardu-
ous parameter tuning. More recent works combine both embedding
and OT-based alignment methods. GOT [6] adopts a deep model to
encode transport cost. GWL [58] learns graph matching and node
embeddings jointly in a GW learning framework. SLOTAlign [45]
utilizes a parameter-free GNN model to encode the GW distance be-
tween two graph distributions. CombAlign [8] further proposes to
combine the embeddings and OT-based alignment via an ensemble
framework.

5.3 Graph Representation Learning

Representation learning gained increasing attention in analyzing
complex systems with applications in trustworthy ML [4, 13, 31, 71],
drug discovery [41, 54, 55, 85] and recommender systems [29, 53, 75].
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Figure 6: Evolution of node embeddings along training: (a)
directly applying FGW distance for embedding learning leads
to embedding collapse and MRR degradation; (b) utilizing
FGW distance with transformed S, leads to discriminating
embeddings and MRR improvement.

Early approaches [17, 33] utilize random walks and process graphs
as sequences by a skip-gram model. [18, 73] sample fixed-size
neighbors for better scalability to large graphs. More recent stud-
ies [22, 65] focus on adaptive and unified sampling strategies that
benefit various graphs. Based on these strategies, graph contrastive
learning[23, 24, 42, 49, 86] learns node embeddings by pulling simi-
lar nodes together while pushing dissimilar ones apart.

6 Conclusions

In this paper, we study the semi-supervised network alignment
problem by combining embedding and OT-based alignment meth-
ods in a mutually beneficial manner. To improve embedding learn-
ing via OT, we propose a learnable transformation on OT map-
ping to obtain an adaptive sampling strategy directly modeling
all cross-network node relationships. To improve OT optimization
via embedding, we utilize the learned node embeddings to achieve
more expressive OT cost design. We further show that the FGW
distance can be neatly unified with a multi-level ranking loss at
both node and edge levels. Based on these, a unified framework
named JOENA is proposed to learn node embeddings and OT map-
pings in a mutually beneficial manner. Extensive experiments show
that JOENA consistently outperforms the state-of-the-art in both
effectiveness and scalability by a significant margin, achieving up
to 16% performance improvement and up to 20X speedup.
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Algorithm

We present the overall algorithm of JOENA as Algorithm 1.

B

Proof

B.1 Proof of Proposition 1

ProrosITION. (EMBEDDING COLLAPSE). Given two networks G1, G2,
directly optimizing feature encoder fy with the FGW distance leads
embedding collapse, that is E1(x) = E2(y),Vx € G1,y € Ga, where
E1 = fp(G1),E2 = fo(G2).
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Joint Optimal Transport and Embedding for Network Alignment

Algorithm 1 Joint OT and embedding learning (JOENA)

Input: (1) networks G1 = (A1,X1), G2 = (A2, X2), (2) anchor node
set L, (3) parameters a, f, yp
Output: the alignment matrix S.

1
niXny’

1

2: Compute RWR embedding matrices Ry, Rz by Eq. (3);

3. Concatenate node attributes X; = [R1||X1], X2 = [R2]|X2]
4

5

. Initialize p; = %1,;12 = %Z,S(l) = ylp;,l(l) =

. fork=1,..,Kdo

Update node embeddings Egk) :fe(k) (X1), E;k) :fe(k) (X2);

Update cost matrices M(K), Cgk), Cgk) by Eq. (4);

7. Update OT mapping S(k+1) by proximal point method in
Eq. (8);

8:  Update transformation parameter Alk+1) by Eq. (10);

9. Update 6*1) by SGD in Eq. (11);

10: end for

1: return alignment matrix

B

S(K+1).

—_

Proor. Firstly, the Wasserstein term can be written as

D, MYy

x€G1,Y€G

(12)

Due to the non-negativity of M and S, i.e., S(x,y) > 0, M(x,y) >
0,Vx € G1,y € Go, the Wasserstein term in Eq. (12) has a theoreti-
cal minimum of 0. Since Eq. (12) is a linear programming problem
w.r.t S which is computationally demanding to solve, existing works
turn to solve the entropy-regularized OT problem to approximate
Eq. (12), where the solved S is strictly positive, i.e. S(x,y) > 0,Vx €
G1,y € G2. We can simply prove by contradiction that Eq. (12)
reaches 0 if and only if Vx € G1,y € G2, M(x, y) = 0. According to
the universal approximation theorem [10], such cross-network cost
matrix is achievable with a MLP. Therefore, optimizing Eq. (12) un-
der a node mapping matrix S will lead to collapsed node embeddings
across two networks, i.e., E1(x) = E2(y),Vx € G1,y € Go.
Secondly, the GW term can be formulated as

D 1C1 (1, x2) = Ca(y1,2) 198 (er, y1)S (x2, o).
x1,%2€G1
Y1.Y2€62

(13)

Similarly, due to the non-negativity of |C;(x1, x2) — C2(y1,y2)|?
and the positivity of S(x1, y1)S(x2, y2), the GW term in Eq (13) has
a theoretical minimum of 0 if and only if Vx1,x2 € G1,y1,y2 €
G2, |C1(x1,x2) — Ca2(y1,y2)|7 = 0. Since C1(x,x) = Ca(y,y) =
0, Vx1,x2 € G1,y1,y2 € G2,C1(x1,x2) = C2(y1,y2) = 0, which
essentially means the embeddings of all nodes in G (G2) collapse
into a single point, i.e., E;(x1) = E1(x2), E2(y1) = E2(y2), Vx1,x2 €
G1,Y1, Y2 € Ga2. By combining Eq. (12) and Eq. (13), the Wasserstein
term further causes the embedding of all nodes in both networks
to collapse into a single point, i.e., E;(x) = Ez(y),Vx € G1,y €
Go. Therefore, directly optimizing feature encoder with the FGW
distance leads embedding collapse. O

B.2 Proof of Theorem 1

THEOREM. (CONVERGENCE OF JOENA) The unified objective for
JOENA in Eq. (5) is non-increasing and converges along the alternat-
ing optimization.
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Proor. We first prove Eq. (5) is bounded by a minimum value.
We make a common assumption that the parameter set 6 of the MLP
is bounded [45]. Since S € II(u1, p2) is bounded as well, we only
need to prove that Eq. (5) is bounded w.r.t A, which is essentially a
quadratic function with a non-negative coefficient for the quadratic
term, i.e.,

D, ICix) — oy )P 2 0
x1,%2€G1
Y1,Y2€G2
By solving A based on 9.7 /dA = 0 according to Eq. (10), we have
the optimal A* minimizing Eq. (5) as follows

min J (5, 4,6) = 7 (5, 1°,6).

Since both 6 and S are bounded, there exists a real number € € R
satisfying
J(S,4,0) = T(S,17,0) > €
In this way, we have prove that Eq. (5) is bounded by a minimum
value e.
Then, we prove that Eq. (5) is non-increasing and converges
along the alternating optimization, i.e.,

F(SWHD 1) (k) o k) 1K) (k)

To prove Eq. (14), we first show that the OT optimization by proxi-
mal point method is non-increasing. Specifically, as proved theoret-
ically in [58], the proximal point method solves Eq. (5) w.r.t S by
decomposing the non-convex objective function into a series of con-
vex approximations, which be viewed as a successive upper-bound
minimization [38] problem whose descend property is guaranteed.
In this way, we have demonstrated that

F(s®D 100 gk)y < g(s®) 1) g(k)y

(14)

(15)

Then, we solve 1(k*1) optimally based on the closed-form solution
in Eq. (10) with guaranteed global minimum. Therefore, we have

J(FD, Ak g(k)y < (s 2B gk)y — (16)

Finally, with an appropriate learning rate, the objective of the em-
bedding learning process via SGD is non-increasing at each step,
ie.,

F(s®) 2 0+1) glk1)y o g g(ken) j(k+1) g(k)y (17
Combining Eq. (15)-(17) gives Eq. (14), hence proving Theorem 1.
]

B.3 Proof of Proposition 2

ProrosITION. (CoMPLEXITY OF JOENA) The overall time com-
plexity of JOENA is O (KTmn + KTNn?) at the training phase and
o] (Tmn + Tan) at the inference phase, where K, T, N denote the
number of iterations for alternating optimization, proximal point
iteration, and Sinkhorn algorithm, respectively.

ProoF. The time complexity of JOENA includes four parts: RWR
encoding, MLP computation, calculation of the optimal A, and OT
optimization. As C;, W; are sparse matrices with O(m) non-zero
entries, the time complexity of RWR in Eq. (3) is O(mn) [77].

For each iteration of the alternating optimization, the time com-
plexity for forward (backward) propagation of the MLP model
G1(G2) are O(n|L]dy) (first layer) and O(n|L]|dz) (second layer),
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respectively. For the calculation of the optimal A, the time complex-
ity is O(mn) [77]. For the OT optimization, the time complexity is
O(Tmn + TNn?) with T iterations of proximal point method and
N Sinkhorn iterations [77].

Combining the above three components gives a total time com-
plexity of O (K(2n|L|d1 + 2n| L|d2 + (T + 1)mn + TNnZ)) where K
is the number of iteration for the alternating optimization. Since
n > |L|,T > 1, the overall training time complexity of JOENA is
O(KTmn + KTNn?). Note that model inference is only one-pass
without the alternating optimization, hence the inference time com-
plexity is O (Tmn + TNn?). o

C Experiment Pipeline
Table 5: Dataset Statistics.

Scenarios Networks #nodes #edges # attributes

Foursquare 5,313 54,233 0
Twitter 5,120 130,575 0
Plain ACM 9,872 39,561 0
DBLP 9,916 44,808 0
Phone 1,000 41,191 0
Email 1,003 4,627 0

Coral 2,708 6,334 1,433

Cora2 2,708 4,542 1,433
Attributed ACM(A) 9,872 39,561 17
DBLP(A) 9,916 44,808 17

Douban(online) 3,906 16,328 538
Douban(offline) 1,118 3,022 538

Dataset Descriptions. We provide dataset descriptions as follows
e Foursquare-Twitter [79]: A pair of online social networks
with nodes as users and edges as follower/followee rela-
tionships. Node attributes are unavailable in both networks.
There are 1,609 common users used as ground-truth.
ACM-DBLP [44]: A pair of undirected co-authorship net-
works with nodes as authors and edges as co-authorship.
Node attributes are available in both networks, and we use
the dataset for both plain and attributed network alignment
tasks named ACM-DBLP and ACM(A)-DBLP(A), respectively.
There are 6,325 common authors as ground-truth.
Phone-Email [83]: A pair of communication networks with
nodes as people and edges as their communications via
phone or email. Node attributes are unavailable in both net-
works. There are 1,000 common people used as ground-truth.
Coral-Cora2 [69]. A citation network with nodes represent-
ing publications and edges as citations among publications.
Cora-1 and Cora-2 are two noisy permutation networks gen-
erated by inserting 10% edges into Cora-1 and deleting 15%
edges from Cora-2. Both networks contains binary bag-of-
words vectors as attributes. There are 2,708 common publi-
cations used as ground-truth.
Douban [80]. A pair of social networks with nodes represent-
ing users and edges representing user interactions on the
website. The node attributes are binary vectors that encodes
the location of a user. There are 1,118 common user across
the two networks used as ground-truth.
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Figure 7: Hyperparameter study on Foursquare-Twitter.

Dataset statistics are given in Table 5. We use 20% ground-truth as
the anchor nodes and the rest 80% of the ground-truth for testing.
Machine and Code. The proposed model is implemented in Py-
Torch. We use Apple M1 Pro with 16GB RAM to run PARROT,
IsoRank, FINAL, and GOAT. We use NVIDIA Tesla V100 SXM2 as
GPU for JOENA and other baselines.

Implementation Details. Adam optimizer is used with a learning
rate of 1e-4 to train the model. The hidden and output dimension is
set to 128. The epoch number of JOENA is 50. An overview of other
hyperparameters settings for JOENA is shown in Table 6. For all
baselines, hyperparameters are set as default in their official code.

Table 6: Hyperparameters settings

Dataset a B Yp
Foursquare-Twitter 0.50 0.15 1e-3
ACM-DBLP 090 0.15 5e-3
Phone-Email 0.75 0.15 1le-2
ACM(A)-DBLP(A)  0.90 0.15 1le-2
Coral-Cora2 0.30 0.15 5e-4
Douban 0.50 0.15 1e-3

D Additional Experiements
D.1 Additional Scalability Results

To further demonstrate the scalability of the proposed JOENA on
large-scale networks, we compared the inference time of JOENA
with that of three OT-based methods, including GOAT [39], PAR-
ROT [77], and SLOTAlign [45] on ogbl-biokg [21] with 93,773 nodes
and 5,088,434 edges. We follow the synthesis process of Cora [69] to
generate two noisy permutation networks from ogbl-biokg by ran-
domly inserting 10% edges into the first network and deleting 15%
edges from the second network. The results are shown in Table 7,
which shows that JOENA outperforms all baselines in inference
time and MRR under 12-hour runtime limit.

Table 7: Scalability results on ogbl-biokg

SLOTAlign GOAT PARROT JOENA
Runtime >12h >12h 2.71h 0.66h
MRR 0.341 0.112 0.741 0.876

D.2 Hyperparameter Sensitivity Study

We study the sensitivity of JOENA on the FGW weight & and RWR
restart probability f, with values ranging from 0.1 to 0.9. The results
are shown in Figure 7, which shows that our method is robust to
different selections of hyperparameters in a wide range.
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