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ABSTRACT

Given an evolving tensor time series and multiple time ranges, how
can we compute Tucker decomposition for each time range effi-
ciently and accurately? Tucker decomposition has been widely used
in a variety of applications to obtain latent factors of tensor data.
For example, Tucker decomposition on air pollution data allows us
to analyze and compare air pollution patterns between different
locations during different periods of time. In these applications,
a common need is to compute Tucker decomposition for a given
time range. Furthermore, real-world tensor time series are typically
evolving in the time dimension. Such needs call for a data struc-
ture that can efficiently and accurately support range queries of
Tucker decomposition and stream updates. Unfortunately, existing
methods do not support either range queries or stream updates. For
methods that do not support range queries, they have to re-compute
from scratch for each query. Not until 2021 has a data structure
called Zoom-Tucker been proposed to support range queries via
block-wise preprocessing. However, Zoom-Tucker does not sup-
port stream updates and, more critically, suffers from a reluctant
efficiency-accuracy tradeoff — a large block size causes inaccuracy,
while a small block size leads to inefficiency. This challenging prob-
lem has remained open for years prior to our work. To solve this
challenging problem, we propose TUCKET, a data structure that
can efficiently and accurately handle both range queries and stream
updates. Our key idea is to design a new data structure that we
call a stream segment tree by generalizing the segment tree, a data
structure that was originally invented for computational geometry.
For a range query of length L, our TUCKET can find O(log L) nodes
(called the hit set) from the tree and efficiently stitch their prepro-
cessed decompositions to answer the range query. We also propose
an algorithm to optimally prune the hit set via an approximation of
subtensor decomposition. For the T-th stream update, our TUCKET
modifies only amortized O(1) nodes and only O(log T) nodes in the
worst case. Extensive evaluation demonstrates that our TUCKET
consistently achieves the highest efficiency and accuracy across
four large-scale datasets. Our TUCKET achieves at least 3 times
lower latency and at least 1.4 times smaller reconstruction error
than Zoom-Tucker on all datasets. The full version can be found at
https://github.com/q-rz/TUCKET/blob/main/TUCKET-Full.pdf.
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Figure 1: Case study on Air Quality data (see Section 8.6)

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/q-rz/TUCKET.

1 INTRODUCTION

Tensor time series are ubiquitous in the real world, ranging from
multimedia data such as videos and music to time series data such
as stock prices, traffic volumes, climate, agriculture, environmental
monitoring, and physical systems. Tensor decomposition, such as
CANDECOMP [13] / PARAFAC [24] (CP), PARAFAC2 [36], and
Tucker [62] decompositions, is a fundamental approach to tensor
data analysis and performs an essential role in various applica-
tions including clustering [12, 26, 71], dimension reduction [37, 65],
anomaly detection [19, 39], concept discovery [4, 32, 33], and so
on [17, 40, 59, 69]. As a generalization of singular value decomposi-
tion, Tucker decomposition [62] seeks to approximately factorize
a tensor into factor matrices for each mode of the tensor and a
small core tensor characterizing the relations of the factor matri-
ces. Factor matrices and the core tensor can serve as the input for
downstream data mining algorithms such as clustering [71] and
anomaly detection [39].

In the analysis of tensor time series, a common situation is to
discover latent patterns in given time ranges [28]. For example,
given air quality data (a 3-way tensor time series XX where Xy ; ;
represents the concentration value of air pollutant j in location i
at time t), environmental scientists can find out which locations
share similarity pollution patterns in March of each year by an-
alyzing the Tucker decomposition of each month. (See Figure 1
for illustration and the case study in Section 8.6 for detail.) Range
queries are necessary here because Tucker decompositions vary
across different time ranges due to the evolving nature of tensor
time series, as shown in Figure 1. Such needs give rise to an inter-
esting research question: given an evolving tensor time series and

this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 17, No. 13 ISSN 2150-8097.
doi:10.14778/3704965.3704980


https://github.com/q-rz/TUCKET/blob/main/TUCKET-Full.pdf
https://doi.org/10.14778/3704965.3704980
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://github.com/q-rz/TUCKET
mailto:info@vldb.org
https://doi.org/10.14778/3704965.3704980

Table 1: Comparison in functionalities, time complexities per query, and overall space complexities. See Table 2 for the
definitions of L, D, T, r, p. Empirically, our TUCKET is faster than all other methods on a GPU because it is more parallelizable.
Zoom-Tucker cannot use a large block size b, or otherwise it would incur high error.

Method ‘ Range Query Stream Update ‘ Time Complexity per Query Space Complexity
Tucker-ALS [62] X X O(rDP~1L) o(DP~IT)

D-Tucker [29] X v O(r’DP—2L) O((DP~1 +rDP=2)T)
Zoom-Tucker [30] v X O(rzD% + 2L+ rP*! IF‘) Oo((rD+ rp)% +1T)
TUCKET (ours) | v v | O(rPDlogL+r**~2(D +L) +logT) O((rD+rP)T +rTlogT)

multiple time range queries, how can we design a data structure
that can efficiently and accurately compute Tucker decomposition
for each time range?

Unfortunately, existing Tucker decomposition methods do not
support either range queries or stream updates (see Table 1). For
methods that do not support range queries, they have to re-compute
from scratch for each range query. For example, D-Tucker [29] han-
dles stream updates via slice-wise preprocessing, but it supports
only full Tucker decomposition and cannot answer range queries
efficiently. Not until 2021 has a method called Zoom-Tucker [30]
been proposed to support range queries. Zoom-Tucker consists of
two phases: a preprocessing phase and a query phase. First, the
preprocessing phase divides the timespan into blocks and prepro-
cesses the Tucker decomposition of each block. Next, the query
phase answers time range queries by stitching the preprocessed
blocks included in the query range. However, Zoom-Tucker does
not support efficient stream updates (i.e., appending a new tensor
slice) due to its block structure.

Moreover, Zoom-Tucker suffers from a critical limitation: a large
block size causes low accuracy for short ranges due to a high ap-
proximation error, while a small block size leads to inefficiency
for long ranges that require to stitch many blocks. It means that
Zoom-Tucker suffers from a reluctant tradeoff between accuracy
and efficiency. How to avoid this tradeoff has been an open prob-
lem for years. Prior to our work, no existing method achieves both
efficiency and accuracy for Tucker decomposition range queries. A
crucial challenge here is how to design a more sophisticated data
structure and organize preprocessed results to avoid the efficiency-
accuracy tradeoff. What makes it even more challenging is that the
data structure needs to efficiently support stream updates to the
tensor time series.

To solve this challenging problem, we propose a new data struc-
ture called Tucker Tree (TUCKET) that can efficiently and accurately
handle both range queries of Tucker decomposition and stream
updates. The key idea of our TUCKET is to design a new data struc-
ture that we call a stream segment tree by generalizing the segment
tree [10], a data structure that was originally invented for com-
putational geometry. For a range query of length L, our TUCKET
can find O(log L) nodes (called the hit set) from the tree via our
optimal pruning algorithm and efficiently stitch their preprocessed
decompositions to answer the range query. Besides that, for the
T-th stream update, our TUCKET modifies only amortized O(1)
nodes and only O(log T) nodes in the worst case.

The main contributions of this paper are summarized as follows:

e Data structure. We design a new data structure stream
segment tree to efficiently handle stream updates. It is much
faster here than the interval tree [54] and the R-tree [23].

Table 2: Nomenclature.

Symbol Description
vec vectorization
mat,, mode-n matricization
Xn mode-n tensor-matrix product
Il - Ile Frobenius norm
® matrix Kronecker product
T matrix transpose
X a tensor time series
P number of modes of X
T size of the temporal mode of X
Dy,...,Dp sizes of non-temporal modes of X
D :=max{Dy,...,Dp} maximum size of non-temporal modes
TiseeosTp target sizes of Tucker decomposition
r=max{ry,...,7p} maximum target size
core tensor in Tucker decomposition
U(1>, A u® factor matrices in Tucker decomposition

[T5, Te) time range of a query

L:=T -T; length of the query range
0 threshold for hit set pruning
u disjoint union

o Hit set pruning algorithm. We derive an efficient scheme
to approximate subtensor decompositions and employ it to
further reduce the size of the hit set for each query com-
pared with the standard segment tree.

o Stitching algorithm. We propose a new algorithm for
stitching subtensor decompositions. Our stitching algo-
rithm is more GPU-parallelizable and more numerically
stable than Zoom-Tucker’s stitching algorithm.

o Theoretical guarantees. We provide detailed theoretical
guarantees for our proposed method in terms of time com-
plexity, space complexity, and error analysis.

o Empirical evaluation. We conduct extensive experiments
to evaluate our TUCKET against state-of-the-art methods
for Tucker decomposition on large-scale real-world tensor
time series datasets. Our TUCKET consistently achieves
both the highest efficiency and the highest accuracy across
all datasets. For example, our TUCKET achieves at least 3
times lower latency and at least 1.4 times smaller recon-
struction error on all datasets.

2 PRELIMINARIES

In this section, we present the preliminaries on Tucker decom-
position and Tucker-ALS. Main symbols used in this paper are
summarized in Table 2. Due to the space limit, preliminaries on
basic tensor operations are deferred to the full version.



Given a p-way tensor X € RPXDp and target sizes ry, . . ., Tps
Tucker decomposition [62] aims to find a core tensor G € Rt *7p
and column-orthonormal factor matrices U ¢ ROnxmn (n =
1,...,p) that minimize

IS x1 U(l)...xp u® _x”lZ:_ (1)
Tucker decomposition is a generalization of the singular value
decomposition (SVD) of matrices. Similarly with SVD, a real-world
tensor X typically has X ~ G % ... Xp U(P) even for small
target sizes rq,...,rp [44]. Hence, Tucker decomposition can serve
as a compressed representation of a large tensor. Factor matrices
and the core tensor can serve as the input for downstream data
mining algorithms. For example, we can apply clustering [71] or
anomaly detection [39] to the row vectors of the factor matrices
U™ to discover similarity and dissimilarity patterns in the data.

A classic approach to Tucker decomposition is Tucker’s alter-
nating least squares method (Tucker-ALS) [62]. At each iteration,
Tucker-ALS optimizes the factor matrix of only one mode while
fixing all other factor matrices. Tucker [62] shows that the optimal
factor matrix U™ for each mode n is the r, leading left singular
vectors of the matrix

maty, (X X1 ... Xn-1 yr-nT Xt ynoT ... Xp U(P)T),
@
and that the optimal core tensor G is
Xx; uDT... Xp U1, 3)

3 PROBLEM DEFINITION

In this section, we first introduce the problem definition and then
present the design goals of TUCKET.

A tensor time series is a tensor where one of the modes represents
time. Without loss of generality, let the first mode be the temporal
mode. Let X € RT*P2X" XDy 16 4 p-way tensor time series, where
the size of the temporal mode is D1 := T, the sizes of non-temporal

modes are Do, . .., Dy, and the number of modes is p > 2. We call
T the timespan. For tensors Yy, ...,Ys of the same shape except
Y1

for the temporal mode, let
‘95
temporal mode. A tensor stream X € R**P2%XDp s a tensor time
series with a growing temporal mode: at each time T, a tensor slice
X1 € RP2XXDp j5 observed and appended to the tensor stream.
Given a tensor stream X € R*™P2X""XDp and the target sizes
(r1,...,rp) for Tucker decomposition, we aim to design a data
structure that supports the following two operations. T denotes the

timespan before the operation.

e Range query of Tucker decomposition: Given a time
range [T;, Te) C [0,T), we need to efficiently compute the
Tucker decomposition of the subtensor X, 1,y using the

denote concatenation along the

data structure. The output is a core tensor G € R"1%" " *»
and factor matrices U1 € R(Te=T)xr1 y(2) ¢ RD2Xxr2
U(P) e RPr*7p,

e Stream update: Given a tensor slice X7 € RP2X*Dr e
need to append the tensor slice to the tensor stream and
update the data structure accordingly.

The problem definition is illustrated in Figure 2 with Air Quality
data as an example. Air Quality data is a 3-way tensor time series
X € RT*P2XDs where X, ; ; represents the concentration value of

/Tensor Time Series: Air Quality X[,m / Range Query: [T, Tp) \
01/01/2015 Time ¢ 05/24/2017
Pollutant j Query 1 Query @
T, 03/01/2015 T,: 05/18/2017
Te: 04/01/2015 Te: 05/25/2017
(1 month) (1 week)
K Query 1 Query Q )& K
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TUCKET(ours)) \ Tucker Decomposition: G >, U x;l}«x,‘/
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Range Query Answering
Figure 2: Illustration of range queries of Tucker decomposi-
tion. It is inefficient to directly apply Tucker-ALS for each
range query from scratch. Instead, we aim to design a data
structure that can efficiently and accurately answer range
queries of Tucker decomposition without re-computing from
scratch for each query.

air pollutant j in location i at time ¢. Consider a case study where we
want to analyze air pollution patterns in March of each year. Here,
each range query is a month (March 2015, March 2016, or March
2017; see Figure 1). With the help of Tucker decomposition range
queries, we can find out which locations share similarity pollution
patterns in each month by clustering the row vectors of the location
factor matrix U(2) of Tucker decomposition of each month. Results
of the case study are shown in Figure 1. See Section 8.6 for detail.

We design our TUCKET with the following three design goals
for a tensor time series data structure.

G1: Frequent arbitrary range queries. We focus on the situation
where queries are frequent, and we only consider online algorithms
(i.e., the algorithm has to process each operation sequentially as
soon as it arrives). Thus, we need to optimize the worst-case com-
plexity of answering each single range query. Besides that, we do
not assume any extra prior knowledge about the distribution of
possible range queries. Hence, we focus on the worst-case com-
plexity parameterized by: (i) the maximum size of non-temporal
modes, D := max{Dy, ..., Dp}; (ii) the timespan, T; (iii) the max-
imum target size, r := max{ry, ..., rp}; and (iv) the length of the
query range, L := To — Ts.

G2: Periodic stream updates. In real-world use cases, stream
updates to the tensor stream are typically periodic but may not be
as frequent as range queries. For instance, in the stock example
in Figure 2, the tensor stream is updated in a daily basis. Hence,
we allow the stream update operation to be a little more expensive
than range queries. Nonetheless, we still aim to optimize the time
complexity of stream updates so that it scales at most sublinearly
w.r.t. the total size TD; - - - D), of the current tensor time series.

G3: Nearly linear space. Every preprocessing-based data structure
is essentially a space-time tradeoff [16, 25] in that more preprocess-
ing leads to higher efficiency. On the one hand, if no preprocessing
were allowed, it would be impossible to outperform the naive al-
gorithm that simply computes from scratch for each query. On
the other hand, if unlimited preprocessing were allowed, then a
trivial algorithm would be to preprocess the answers for all possible
O(T?) query ranges. To rule out such trivial algorithms, we require
that the space used by the preprocessing phase should be nearly
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Figure 3: Illustration of our TUCKET over timespan [0,9). It
has height 5 = [log, 9] + 1. When answering a range query
[Ts, Te) = [1,6) with pruning threshold 6 = 0.7, node (4) is a

because |[1,6) N [0,4)] = |[1,4)] = 0.7|[0,4)], and
node (10) is an entire hit because [4,6) C [1,6).

linear w.r.t. the timespan T, i.e., 5(T). As a remark, we assume that
p =0(1) and r = o(D) in our complexity analysis.

4 TUCKET: DATA STRUCTURE DESIGN

In this section, we detail the design of our proposed data structure
Tucker Tree (TUCKET). We first introduce the challenges of the
problem and our key ideas in Section 4.1 and then present the
design of our stream segment tree in Section 4.2. Due to the space
limit, detailed proofs are deferred to the full version.

4.1 Challenges & Key Ideas

Our TUCKET is designed for efficient Tucker decomposition over
time ranges. An essential challenge of this problem is that the
Tucker decomposition operation does not form either an Abelian
group or a semigroup w.r.t. tensor concatenation. This means that
we cannot use classic data structures such as prefix sum tables, Fen-
wick trees [20], or Cartesian trees [9] to compute Tucker decomposi-
tion over time ranges. The state-of-the-art idea (proposed in [30]) is
to divide the time range [0, T) into disjoint blocks [0, b), [, 2D), . ..
of equal size b and preprocess the Tucker decomposition for each
block. However, this idea suffers from an inevitable tradeoff be-
tween efficiency and accuracy: a small block size b leads to ineffi-
ciency for long time ranges; a large block size causes inaccuracy
for time ranges shorter than b. This is because a larger block size
b corresponds to a coarser-grained preprocessing, which may fail
to preserve finer-grained patterns that exist temporarily in time
ranges shorter than b. For instance, if the block size b corresponds
to a month, then Zoom-Tucker will be likely to yield inaccurate
results when querying for a week. To the best of our knowledge,
our work is the first data structure that addresses this challenge
without the efficiency—-accuracy tradeoff.

Our first key idea, aiming to address this challenge, is to divide
the time range [0, T) into carefully designed uneven, overlapping
blocks such that every range query can be expressed as a disjoint
union of a small number of “blocks.” Our idea leads us to the segment
tree [10], a data structure from computational geometry. Crucially,
in a segment tree over a timespan [0, T), we can associate each node
v with a subrange [0, 7o) such that every range [T;, T.) € [0,T)
can be expressed as a disjoint union of at most O(log T) nodes. We
call these nodes the hit set of [Ts, T ). Then, we can answer each
range query efficiently by stitching the preprocessed subtensor
decompositions of the hit set.

However, the original segment tree has a static structure and
thus does not support stream data. Hence, we cannot simply apply
the segment tree. As our second key idea, we propose a new data
structure called the stream segment tree to support stream updates
in our setting. Our key insight regarding why segment trees are
static is that it is required to be a full binary tree in order to maintain
a depth of O(log T). Instead, we propose to relax this requirement
and allow our stream segment tree to be incomplete. To maintain a
depth of O(log T), we propose extending the root instead of only
extending leaf nodes like typical balanced search trees [22]. Fur-
thermore, each stream update operation only involves amortized
O(1) nodes to be updated. We will describe the detailed design of
our stream segment tree in Section 4.2.

4.2 Stream Segment Tree

The basic structure of our TUCKET is a stream segment tree, which
is a generalization of the segment tree [10] from computational
geometry. Here, we detail the design of our stream segment tree.

As we have discussed, the original segment tree does not support
stream updates. To enable stream updates, our key idea is to em-
ploy an expanded segment tree with an incomplete structure that
reserves the position of future nodes to support efficient updates
but does not construct them explicitly.

Specifically, a stream segment tree is a binary tree where each
node v is associated with a time range [0y, 7). There are three
types of nodes in a stream segment tree: leaf nodes £, intermediate

nodes M, and placeholder nodes P.

Leaf nodes. Each leaf node v € L represents a tensor slice X;, so
we let the leaf range be [0y, 7p) = [t,t + 1). After T updates, we
require time ranges of leaf nodes to be contiguous, i.e., the whole
range [0, T) is a disjoint union of the time ranges of leaf nodes:
| | lo0.7) = [0,7). (4)
vel
Besides that, we preprocess the Tucker decomposition of X s,1)
and store it as Y, := H, X1 Vz(,l) c Xp Vz(,p), Note that we only

compute the core tensor I, and factor matrices Vz(,l), .. .,Vl(,p ) but
never actually compute Y,, i.e., Y, is only a symbol to refer to the
product.

Intermediate nodes. For each intermediate node v € M with time
range [0y, 7p), it represents a subtensor X[, . ). An intermediate
node has exactly two children nodes uj,uz € £ U M that have
adjoint time ranges:

(00, 7o) = [Owys Tuy) U [Ouy, Tuy)- 6)
Besides that, similarly with leaf nodes, we preprocess the Tucker
decomposition of X, . ) and store it as Yy := Hy X1 Vz(,l) c Xp
Vz(,p ), Here, Y, is still only a symbol to refer to the product.

Placeholder nodes. A placeholder node v € P represents a future
subtensor where some of its slices have not been observed yet.
Formally, if the current observed timespan is [0, T). then the time
range [0y, 7p) of the placeholder node has o, < Tand 7, > T. A
placeholder node has either one or two children. If v has only one
child, then it has a left child u; € £ U M U P; otherwise, v has
a left child u; € £ U M and a right child up € #. Similarly with
intermediate nodes, we require its children to have adjoint time



ranges, i.e., [0y, Ty) = [ow;, Tuy) U [0u,, Tw,). Meanwhile, unlike
leaf and intermediate nodes, since the subtensor of the time range
[09, Tv) has not been completely observed yet, we do not preprocess
the Tucker decomposition of a placeholder node and do not allow
placeholder nodes to be in the hit set.

Logarithmic height. To efficiently answer range queries, we want
that every range query [T;, Te) € [0, T) can be divided into a disjoint
union of a small number of nodes (called the hit set) in the stream
segment tree. We make a key observation on the relation between
the size of the hit set and the height of the stream segment tree, as
formally stated in Lemma 4.1.

LEMMA 4.1 (HIT SET V.S. HEIGHT). Given a stream segment tree
of height h > 1, for every range query, there exists a hit set of size
< max{2(h-1),1}.

ProorF skeTcH. First, if the query range [T, Te) is a prefix or
a suffix of the time range [0y, 7y) of a node v (e, Ty = oy or
Te = 1), then an induction shows that there exists a hit set of size
< h. Next, if the query range is neither a prefix nor a suffix of
the time range of any node, then we can show that there exists
two non-root nodes v1, vy such that 7, = gy, and that [T;, T) =
[00,> To,) U [00,, Twy)- In this case, [Ts, Te) N [0y, 7o, ) is a suffix of
[00,, Tv,), and [T, Te) N [0w,, To,) is a prefix of [0y, 74,). Since v1, v2
are not the root, then [T, Te) has a hit set of size < 2(h—1). Together,
the size of the hit set is < max{2(h—1), h} = max{2(h—-1),1}. O

Lemma 4.1 motivates us to require the stream segment tree to
have a small height. We show that the stream segment tree can
indeed have a logarithmic height w.r.t. the time range T, as formally
stated in Theorem 4.2.

THEOREM 4.2 (LOGARITHMIC HEIGHT). There exists a stream seg-
ment tree structure over range [0, T) of height < [log, T+ 1.

Proor skeTcH. Using the algorithm in Section 6.2 to append
the tensor slices Xy, ..., X7_1 one by one, we can build a stream
segment tree over [0, T). By Theorem 6.2, this stream segment tree
has height [log, T1 + 1. ]

The tree structure in Theorem 4.2 not only exists in theory but
can also be maintained efficiently. We will present an efficient
algorithm to maintain the logarithmic height in a stream update
in Section 6.2. From now on, we will refer to the tree structure in
Theorem 4.2 simply as the “stream segment tree.”

PROPOSITION 4.3 (SPACE COMPLEXITY). The space complexity of a
stream segment tree over range [0, T) is O((rD + rP)T + rT logT).

PROOF SKETCH. In a stream segment tree over the range [0, T),
there are O(T) nodes each of which has p — 1 non temporal factor
matrices of the size O(rD) and a core tensor of the size O(r?). In
addition, at each level of the tree, the sum of the sizes of temporal
factor matrices is O(rT). Therefore, the space complexity of the
stream segment tree is O((prD + rP)T + rT log T). O

Example. An example of our stream segment tree over timespan
[0,9) is illustrated in Figure 3. It has height 5 = [log, 9] + 1. Leaf
nodes (1), (3), (6), (7), (11), (12), (14), (15), (20) represent tensor

slices Xy, ..., Xs, respectively. Intermediate nodes store prepro-
cessed results. We will also use this example in the subsequent
sections to illustrate other operations.

5 TUCKET: CORE ALGORITHMS

In this section, we present two core algorithms that will be used
in the operations of TUCKET in Section 6. We describe how to
optimally prune the hit set in Section 5.1 and how to stitch subtensor
decompositions in the hit set in Section 5.2.

5.1 Optimally Pruning the Hit Set

The first core algorithm of TUCKET is finding a small hit set for each
range query. By Lemma 4.1 & Theorem 4.2, we have shown that
the hit set has a small size O(log T). Although this size cannot be
improved for general operations, here we present a key observation
about the Tucker decomposition of a subtensor and leverage this
observation to further prune the hit set.

Approximating a subtensor decomposition. Here we present
our key observation about the Tucker decomposition of a sub-
tensor. Suppose that a tensor X, . ) has Tucker decomposition

H, X1 Vz(,l) c Xp VZ(,P ). Due to the low-rank nature of real-world
tensors [44], they can typically be well approximated by Tucker
decomposition:

:X[o-m.,u) ~ H, X1 VZ(JI) s Xp Vz(,p). (6)
We observe that for real-world tensors, there typically exists a
threshold 0 < 6 < 1 (see Section 8.5) such that for a sub-range
[T, T)) C [ov, 7p) with |[TS’, Te’)l > 9|[az,, 7p)| (i.e., the sub-range
[T/, T!) is not too small compared with [0y, 17y)), the subtensor
X|77,17) can be well approximated by

X1 = Koy [T -0, T -00) )
~ (Hoxa VD s v - Xp Vz(;p))[T;—aﬂ,Tg—au) ()

1 2
=Hy X1 (V,S ))[L/_UO,TE/_O.U) X2 Vz(! ). Xp Vgp) (9)
This almost yields an approximate Tucker decomposition of X7 7).
except that the temporal factor matrix (Vz()1>)[TS'— 00, T! —0,) 18 Ot
necessarily column-orthonormal. To make it column-orthonormal,
we can first compute a QR decomposition [21] (Vz(,l))[Tsf o Tl —0y) =
éﬁ (where Q is column-orthonormal) and then use the reverse as-
sociativity! [38] of X1 to give a Tucker decomposition:
1 2
X1 = Hoxa S ))[Ts’fa,,,Te'fcr,,) X2 V) s Xp VP ()

=, x1 (QR) o V&) - x, VP (11)
= (3o x1 R) x1 0 xa VD o5, VP, (12)

where the core tensor is H, X1 R, and the temporal factor matrix is
Q In this way, we can efficiently compute an approximate Tucker
decomposition of a subtensor X7 1v) using only a QR decomposi-
tion and a mode-1 product and do not need to further divide [T}, TY)
into smaller sub-ranges. This helps to reduce the size of the hit set.

Formulation of hit set pruning. This key observation motivates
us to consider partial hits. Let 0 < 8 < 1 denote the threshold
above. We call anode v € M a partial hit of a range query [T;, Te) if
|[T5, Te) N[00, TU)| > 9|[crv, rz,)| and [0y, 7y) & [Ts, Te); we call it an

I The reverse associativity means that % X, A X, B = % X, (BA).



Algorithm 1 (Recatry): Finding a pruned hit set

Input: current node v; query range [T, Te)

Output: a pruned hit set of [T, Tc) in the subtree rooted at v
1: ifo € LUMand|[T;, Te) N [00, 70)| > 0][00, 70)| then
2:  return {v}

: end if

. let ug, uy be the left and right children of v, respectively

if To < 7, then
return RecarL(us, [Tg, Te))

. else if Ty > oy, then
return RecaLL(uy, [Tg, Te))

else

10:  return RecArL(ui, [T, Te)) U RECALL(up, [T;, Te))

11: end if

entire hit of [Ts, Te) if [0w, 7o) € [T, Te). Using Eq. (12), we can effi-
ciently approximate the Tucker decomposition of X[, 1.)n[0,,z,)-
Hence, we can reduce the size of the hit set by allowing partial hits
in the hit set. Formally, minimizing the size of the hit set S can be
formulated as the following optimization problem:

R A

min |S], (13)
ScLuM
st. [T Te) = L [Ts, Te) N[00, 7o), (14)

veS

\[Ts, Te) N [0y, Tz,)l > 9|[O’U, Tu)i, Yo € S. (15)

An optimal algorithm for pruning. To solve the formulation
above for hit set pruning, we propose an efficient recursive algo-
rithm that runs in O(log T) time. The basic idea is as follows. We
start from the root node. If the root node is a partial hit, then we stop
and return the root node as the hit set. Otherwise, we consider its
two children and repeat the procedure above. The overall procedure
is presented in Algorithm 1. Since the height of the stream segment
tree is O(log T), and Algorithm 1 visits at most two nodes at each
height, then the total running time of Algorithm 1 is O(log T).

Furthermore, our Theorem 5.1 shows that our Algorithm 1 is
indeed optimal — it can find the smallest hit set that satisfies the
constraints Eqgs. (14) & (15).

THEOREM 5.1 (OPTIMALITY & COMPLEXITY OF ALGORITHM 1).
Given a range query |T;, T.), Algorithm 1 minimizes the formulation
in Eq. (13) within O(log T) running time and finds a hit set with O(1)
partial hits and O(log L) entire hits, where L := To — T;.

PROOF SKETCH. Optimality. Note that if the two children of a
node v are both in the hit set, then replacing the two children with
the node v gives a smaller, valid hit set. Using this fact, it can be
shown that every node in the optimal hit set should not have a
parent node that is also a valid hit. Finally, by analyzing the top-
down procedure of Algorithm 1, we can show that Algorithm 1 can
indeed find such a hit set, and that the hit set cannot be replaced
with a smaller hit set.

Complexity. An induction similar with the proof of Lemma 4.1
shows that the hit set found by Algorithm 1 has O(1) partial hits
and O(log L) entire hits. Since the height of the stream segment
tree is O(log T), the number of nodes traversed in the process of
finding the hit set is at most O(log T + log L) = O(log T). Finally,
as Algorithm 1 performs O(1) operations per node traversed, its
time complexity is O(log T). O

Example. Algorithm 1is exemplified in Figure 3. When answering a
range query [1,6) with 6 = 0.7, [0, 4) is a partial hit because |[1, 6) N
[0,4)] > 0.7|[0,4)], and [4, 6) is an entire hit because [4,6) C [1,6).
For the partial hit [0, 4), we use Eq. (12) to approximate the Tucker
decomposition of the sub-range [1,6) N [0,4) = [1,4).

5.2 Stitching Subtensor Decompositions

Another core algorithm of TUCKET is stitching subtensor decom-
positions in the hit set. Given a range query [T, Te.), suppose that
the (pruned) hit set is S = {vy,...,05}, where s := |S| denotes
the size of the hit set. For each partial hit, we use Eq. (12) to com-
pute its approximate Tucker decomposition Y; of the subtensor
Xi1,1)0] GoprTop ) for each entire hit v;, we retrieve its preprocessed

Tucker decomposition Qi :=Yy,. Same as before, here 91, .. .,‘93
are just symbols to refer to the Tucker decomposition products.
We aim to efficiently compute an approximate Tucker decomposi-
tion of X[ 7.) using these preprocessed subtensor decompositions
Hl, s ys‘ .

A key observation is that X[, TN [0070,) Y due to the low-
rank nature of real-world tensors [44]. This motivates us to express
X[, 1) as a concatenation of the hit set along the temporal mode:

X5, 7e)n[o0; 7o) Y,
Xir,1) = : ~| | (16)
X123, Te) oo 705) Y,
Next, we design an efficient algorithm to compute the Tucker de-
composition of X[, 1) by stitching the subtensor decompositions
91, el 95. The key idea here is to leverage the concatenation form
Y1
of g =
Ys
tensor—matrix product so as to efficiently compute the matriciza-
tions in Tucker-ALS.

Let j:Ci and ?f 1), .. ‘71(1’ ) denote the core tensor and the factor
matrices in gi, respectively, and let G and U(l), e, U®) denote
the core tensor and the factor matrices of X|r, 1,) to be computed,

and again utilize the reverse associativity! [38] of the

respectively. Since the optimal update of the factor matrix U™ is
the ry, leading left singular vectors of the matricization in Eq. (2),
we need to compute this matricization efficiently. Since the con-
catenation is along the temporal mode, we will describe how to
efficiently compute the matricization for the temporal mode and the
non-temporal modes separately. The overall procedure of stitching
subtensor decompositions is presented in Algorithm 2.

Matricization of the temporal mode. Our goal is to compute
the matricization in Eq. (2) without explicitly computing the large
tensor 9 First, we rewrite the matricizations of 9,- via the matrix
Kronecker product ®:

maty (Y;) = mat; (FC; x; V. - x, V) (17)
P
= V{" mat; (F6) V™. (18)
m=2
Similarly, we can rewrite the matricization in Eq. (2) as
P
mat; (Y x; UDT...... Xp UPTy = mat; (Y) ® ulm . (19)

m=2



Algorithm 2 (StrTch): Stitching subtensor decompositions
(1)

Input: subtensor decompositions ‘Bi = 9{ X1 Vi Xy ‘71@)

of the hit set {v1,...,0s} _

Y
Output: stitched Tucker decomposition of

Ys
1: randomly initialize v®, . . u®
2: repeat
3 obtain Z(W using Eq. (22)
let U be the ry leading left singular vectors of Z ¢V

4
5: to<—0

6: fori«—1,...,sdo

7: ti — ti—1+ (Ty; — 0g;)

8. end for

9. forne2,...,pdo

10: obtain Z (") using Eq. (27)

11: let U™ be the ry, leading left singular vectors of Z(")

122 end for

13 reshape Z(P) into a tensor Z(P) € R"1X"X7p-1XDp
T

14: 9 «— Z(P) Xp U(P)

15: until converged

16: return (G,UWD, ... U®P)

Since the matricization of the concatenation Y is equal to the con-

catenation of mat; (gi) ’s, then by the mixed-product property? [11]
of the Kronecker product, Eq. (19) can be further rewritten as:

[V mat, (FC) (R, VI )(RF,, U™)
(20)

|7 mats () (@, T )@, U
[ matl(f}f)® 2(v("’”uw)

= (1)
7 mat, (7€) ® Z(V(m)TU("'))
[ maty (FCrx; VY s (UATT ) oo, (UTTP )

- 4 ()
_matl(ﬁ'csxﬁi”xz(uﬂﬂv(“ xp(UPTTP))

Computintg Eq. (22) only involves small matrices for non-temporal
modes and avoids explicitly computing the large tensor Y which
requires O(rD?~1(T, - Ty)).

LEMMA 5.2 (TIME COMPLEXITY OF THE TEMPORAL MODE). Com-
puting the matricization of the temporal mode in Eq. (22) takes
O((r*D + rP*Y)s + rPL) time where L = T, — Ts.

Proor skeTCH. Eq. (22) consists of three computations whose
costs are as follows: forn = 2,..,pand i = 1, ..., s, (1) matrix multi-

plications U(”)TVE n), (2) tensor-matrix products between H; and

(")TVE n), and (3) tensor-matrix products

between the preceding results and matrices 651) take O(r?Ds),
O(rP*1s), and O(rP L) time, respectively. Therefore, the complexity

for computing Eq. (22) is O((r?D + rP*1)s + rPL). m|

the preceding results U

2The mixed-product property means that (A ® B)(C ® D) = (AC) ® (BD).

Matricization of the non-temporal modes. For a non-temporal
mode n = 2,..., p, the matricization is different from Eq. (22) be-
cause the concatenation is along the temporal mode. Nevertheless,
we can still consider using the Kronecker product to rewrite the
matricization in Eq. (2) as:

mat, (Y) QU™ = [mat, (Y1), maty (¥5)] QU™ (23)

m#n m#n

Lettp := 0, and t; := tj_1 + (7y; — 0y;) for i = 1,...,s. Then, each

hit node v; corresponds to the subtensor Y[;,_, ). By splitting the
(1)
[20.21)

temporal factor matrix as v = and using the mixed-

'
[ts-1:25)
product property of the Kronecker product again, we can further

rewrite Eq. (23) as

Zmatn(‘d )(U(:')l 0@ X U<'">) (24)

m#l,n
_ZV Va0 QT f)) 0 Q) U™) (29
m#n -1t m#1l,n
_Zv matn(ﬂ{)((V(l)TU(l) ) ® X 7™M u <'">))
i=1 m#l,n
(26)

Finally, we rewrite the Kronecker product form in Eq. (26) back to
the matricization form:

Zmatn(ﬂf x T v

s (U(Z)TV(Z)) e Xpoq (U(n—l)TVl(n—l)) Xn r,l(n)

xner UTT) e, TP, (27)
Computing Eq. (27) only involves small matrices for non-temporal

modes and avoids explicitly computing the large tensor Y.

LEMMA 5.3 (TIME COMPLEXITY OF THE NON-TEMPORAL MODES).
Computing the matricization of the non-temporal modes in Eq. (27)
takes O(rPDs + r?L) time where L := T, — T.

Proor skeTCcH. Eq.(27) needs four computations: form = 2, ..., n—
LT F)
U[ ti-1,t; )V ’

(3) tensor-matrix products

(m)

L,n+1,..,pandi=1,..,s, (1) matrix multiplications

(2) matrix multiplications U(m)TV

between f}C, and the current results U(m)TV , and (4) tensor-

matrix products between the current results and matrices V( ") take
O(r?L), O(r*Ds), O(rP*1s), and O(r? Ds) time, respectively. Hence,
the total complexity for computing Eq. (27) is O(r?Ds +r?L). O

Error analysis. We provide an error analysis of our StrTcH algo-
rithm in the following Proposition 5.4.

PROPOSITION 5.4 (ERROR BOUND). Let X be the concatenation of
subtensors XV i=1,...,s), and letH(i) denote the rank-r Tucker
decomposition ofx(i). Suppose that alternating least squares are
solved optimally, and that X is approximately low-rank (i.e., X =
W+ E where W has Tucker rank < r, and ||||§:C||||F < € forsmalle > 0).
Then, the stitching algorithm finds a rank-r Tucker decomposition Y

of X with reconstruction error % < O(e).




Proor skeTcH. Let W) and &) denote the part of W and
& corresponding to the time range of x@, respectively. Then,
12D —yY@D e < |XO — WO || = | €D for all i. Let Y denote
the concatenation of Y¥). Thus,

S
1 =Yllp < 4| > IEDIE = |Ellp < ellXlle.  (28)
i=1
Since Y is the Tucker dEcompoiition of 9 then B
1¢ = Ylle < 11C = Gl + 119 - Ylle < el Xlle + 119 - Wil
< el Xllp + 1Y = Xl + X - Wl < 3€[|X[lp.  ©

Proposition 5.4 implies that the reconstruction error of our
StITCH algorithm is very close to the error of computing Tucker
decomposition from scratch via TuckerALS and does not depend
on the number s of subtensors to be stitched.

6 TUCKET: OPERATIONS

Having described our design of the data structure in Section 4 and
two core algorithms in Section 5, we next introduce how to answer
Tucker decomposition range queries in Section 6.1 and how to
maintain the tree after appending a tensor slice in Section 6.2.

6.1 Querying over a Time Range

A query over time range [T, Te.) asks to find the Tucker decom-
position of the subtensor X|r, 1,). Equipped with the two core
algorithms in Section 5, we are ready to present the algorithm
for answering the range query. First, we use Algorithm 1 w.r.t.
the root of the stream segment tree to find an optimally pruned
hit set S € L U M. For each partial hit, we use Eq. (12) to com-
pute its approximate Tucker decomposition Y; of the subtensor
X170 GoprTos) for each entire hit v;, we retrieve its preprocessed

Tucker decomposition 9,~ :=Yy,;. Same as before, here 91, .. .,95
are just symbols to refer to the Tucker decomposition products.
Finally, we use Algorithm 2 to stitch the subtensor decompositions
91, .. .,93 into the Tucker decomposition G X u ... Xp U®) of
the queried subtensor X[, ,)-

The overall procedure can be illustrated using the example in
Figure 3. When answering a range query [T;, Te) = [1,6) with
0 = 0.7, first we use Algorithm 1 to divide [1,6) into two sub-
ranges [1,4) (a partial hit of [0,4)) and [4, 6) (an entire hit). Since
[1,4) is a partial hit of [0, 4), then we use Eq. (12) to approximate
the Tucker decomposition of [1, 4). Finally, we use Algorithm 2 to
stitch the decompositions of X[ 4) and X|4¢) into an approximate
Tucker decomposition of [1, 6).

PROPOSITION 6.1 (TIME COMPLEXITY). Given a query [Ty, Te),
TUCKET performs RECALL and STITCH operations and takes O(rP Ds+
r??=2(D+L)+log T) time overall, where the query length L := To—Ts,
and the hit set sizes = O(logL).

PRroOF sKETCH. For each iteration, there are five computations:
(1) the RecaLL algorithm, (2) the matricization of the temporal
mode, (3) the matricization of p — 1 = O(1) non-temporal modes,
(4) Singular value decomposition p times, and (5) the computation
for updating core tensor. Therefore, the overall time complexity is
O(rPDs + r?P=2D + r?=2L + log T). ]

Algorithm 3 (INSERT): Inserting a leaf node

Input: current node v; current time T; tensor slice Xt
1: if oy =Tand r, =T + 1 then
2. preprocess the Tucker decomposition Y, of X7

3 P—P\{v}

4 L« LU{v}

5. else

o g [ ]

7. if T < ythen

8 if v does not have a left child u; then

9 create a left child uy € P with [oy,, Tu,) < [0, pt)
10: end if

11: InserT(u1, T, XT)

12:  else

13: if v does not have a right child uy then

14: create a right child uz € P with [oy,, 7u,) — [1 70)
15: end if

16: INSERT (u2, T, XT)

17: if 7, =T + 1 then

18: Yo <« StrrcE({Y4yy, Yu, }) via Algorithm 2
19: P — P\ {v}

20: M — MU {v}

21: end if

22z endif

23: end if

Algorithm 4 (ApPEND): Appending a tensor slice

Input: current root node r; current time T; tensor slice X1
Output: the root after appending
1: if T = 0 then
2. create anode r’ € P with [0y, 7,v) < [0,1)
32 rer
4: else if T = 7, then
5. create anode r’ € P with [0y, 1) < [0, 27,)
6. let r be the left child of r’
7. rer
s: end if
9: INSERT(r, T, X) via Algorithm 3
0: return r

—_

6.2 Appending a Tensor Slice

Appending a tensor slice X1 extends the timespan from [0, T) to
[0,T + 1). To process this operation, we need to (i) maintain the
stream segment tree structure and (ii) update the Tucker decompo-
sition of nodes in the tree. Due to the special structure of the stream
segment tree, we cannot maintain a logarithmic height via rotation
operations like typical balanced search trees [22]. To address this
issue, we leverage the fact that we have only the appending oper-
ation but no arbitrary insertion operations. Our key idea here is
to insert not only a leaf node but also possibly a root node so as
to maintain the logarithmic height. In the following, we will first
describe the case where we do not need to insert a root node and
then discuss the case where we need to insert a root node.

If the root node r is a placeholder node, then its time range [0, 7,)
includes X7. Thus, we can insert Xt into the tree. The insertion
procedure is a recursive algorithm starting from the root r. Suppose
that we are currently at a node v. Let uj, uz denote the left and



right children of v, respectively. If T < 7,,, then we insert Xr into
the subtree rooted at u;. Otherwise, we need to insert X7 into the
subtree rooted at uy. If either u; or up does not exist yet, we create
that node before insertion. After insertion, we revise the type of
the node v. If T = 7, — 1, then the range [0y, 7,) has been fully
observed, so we let the node v become an intermediate node. The
overall insertion procedure is formally presented in Algorithm 3.

Meanwhile, if the root node r is already an intermediate node,
then its time range [0, 7,-) has been fully observed. In this case, we
create a new placeholder node r’ with time range [0, 7,7) := [0, 27,+),
let node r be the left child of r, and let r’ be the new root. Since the
new root r’ is now a placeholder node, then we use Algorithm 3 to
insert X7 into the tree. The overall appending procedure is formally
presented in Algorithm 4.

The overall procedure can be exemplified using Figure 3. Suppose
that the current timespan is [0, 8) (i.e., the current root is the node
(8)), and that we want to append the slice Xs. Since the root node
(8) is an intermediate node, then we create a new root (16) as an
intermediate node and let (8) be its left child. Then, we insert Xg
into the new root. As T = 8, we need to insert Xz into the right
child of (16). Since (16) does not have a right child yet, we create
a new intermediate node (17) as its right child and insert Xg into
(17). We repeat this procedure until it reaches the leaf node (20).
We preprocess the Tucker decomposition of X3 g) via Tucker-ALS
and store it at node (20).

THEOREM 6.2 (LOGARITHMIC HEIGHT). If we use the algorithm
above for timespan [0, T), then it can construct a stream segment tree
of height [log, T + 1.

ProOF SKETCH. We can use an induction on T to show that at
time T, the number of new leaf nodes that can be inserted into the
sub-tree rooted at each node v is max{z, — T, 0}. This implies that
the number of leaf nodes in a stream segment tree of height A is
greater than the number of leaf nodes of a perfect binary tree of
height h — 1 and at most that of a perfect binary tree of height h. It
follows that the height of a stream segment tree is [log, T1+1. O

PrOPOSITION 6.3 (TIME COMPLEXITY). When appending a ten-
sor slice X1, the amortized and worst-case time complexities are
O(rDP~1 +r?P=2(D +10gT)) and O(rDP~! + r??~2(Dlog T + T)),
respectively.

PRrROOF SKETCH. We analyze the worst-case and amortized com-
plexities of a stream segment tree. The amortized complexity is the
time complexity of creating a stream segment tree divided by T.
We preprocess T tensor slices of leaf nodes with the complexity
O(rDP~IT). For intermediate nodes, we perform O(T) stitch op-
erations with the complexity O(r??~2DT + r?’ 2T log T). Hence,
the amortized complexity is O(rDP~! + r?P=2D + r?=2log T). Ap-
pending a tensor slice Xt requires three computations: (1) perform-
ing Tucker-ALS of the tensor slice, (2) updating the non-temporal
factor matrices, and (3) updating the temporal factor matrices.
Hence, the worst-case complexity of appending a tensor slice X1
is O(rDP~! +r2P=2Dlog T + r?’~2T) which is the sum of the com-
plexities of the three computations. O

Table 3: Summary of real-world tensor time series datasets.

Dataset  #Entries Shape Modes
Air Quality 47TM 21000 X 376 X 6 (time, location, air pollutant)
Traffic 212M 2033 X 1084 X 96 (time, frequency, sensor)

US Stock 739M 2000 x 4347 x 85  (time, company, stock feature)
KR Stock 875M 3000 X 3432 x 85  (time, company, stock feature)

7 IMPLEMENTATION

Since the bottleneck of Tucker decomposition is the tensor numeri-
cal operations, we speed up these computations using a graphical
processing unit (GPU). Though originally designed to accelerate
computer graphics and image processing, modern GPUs are power-
ful in parallelizing dense numerical operations in general scientific
computing. To develop a prototype of our TUCKET that is compat-
ible across various platforms, we choose the PyTorch [53] CUDA
[45] library to set up and run GPU operations. Although Python
execution is relatively slow compared with many other program-
ming languages, it does not affect the overall performance much
because the tensor operations are typically much more expensive
than Python execution.

8 EXPERIMENTAL EVALUATION

In this section, we evaluate our TUCKET by comparing it with
state-of-the-art methods on four large-scale real-world tensor time
series datasets. We summarize our evaluation results from our
experiments as follows:
(i) TUCKET consistently achieves the lowest latency over all
query ranges on real-world tensor time series data (Sec-
tion 8.3).
(if) We empirically demonstrate that TUCKET constructs the
whole tree in nearly linear time and consumes nearly linear
space in total (Section 8.3).

(iii) The reconstruction error of TUCKET is much smaller than
D-Tucker and Zoom-Tucker and is comparable with the
brute-force method Tucker-ALS (Section 8.4).

(iv) Our new stitching algorithm is more GPU-parallelizable
and more numerically stable than that of Zoom-Tucker
(Section 8.5).

(v) The pruning threshold = 0.7 can achieve both high effi-

ciency and accuracy in our experiments (Section 8.5).

8.1 Experimental Settings

Datasets. We use four large-scale real-world tensor time series
datasets, which are summarized in Table 3. (D1) Air Quality data
is represented as 3-way tensor time series (time, location, air pol-
lutant). It is collected from the Air Korea® website. (D2) Traffic
data* [56] is 3-way tensor time series (time, frequency, sensor) rep-
resenting a collection of traffic volume measurements around Mel-
bourne. (D3 & D4) We use daily stock features (e.g., prices, volumes,
and technical indicators) on the U.S. and Korean stock markets, re-
spectively, to build 3-way tensor time series (time, company, stock
feature). (D5) To evaluate the scalability w.r.t. the number p of
modes, we generate synthetic tensors with the following sizes: (1)

Shttps://www.airkorea.or.kr/web/
“https://github.com/florinsch/BigTrafficData
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Figure 4: Comparison in the latency of range queries. Our TUCKET (green dotted line) consistently achieves the lowest latency
for all query ranges while the performance of other methods varies drastically across datasets.
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Evaluation metrics. Regarding efficiency, since no baseline meth-
ods support batch operations, we do not report the throughput.
Instead, we report the latency (in seconds) of each operation.
Regarding accuracy, for each range query [T, T ), we report the
relative error between each method A and Tucker-ALS:
IX[7,1,) — Yallp

- (29)
”x[TS)Te) — YTucker-aLs|IF
where Yrucker-aLs and Y4 denote the reconstructed tensors by

Tucker-ALS and the method A, respectively.



Platform. We conduct all experiments in the Docker environment
on an Ubuntu 20.04.6 LTS cloud server with an Intel Xeon CPU @
2.00 GHz and an NVIDIA P100 16GB GPU.

Evaluation framework. When comparing the performance of
TUCKET with baselines, since no baseline methods support range
queries and stream updates simultaneously, we first construct the
data structures of all methods and then run range queries. The
appending operation is evaluated separately in Section 8.3.

Hyperparameters. For alternating least squares, we set the maxi-
mum number of iterations to 20 and the tolerance to 0.01. We set a
target size to 10, except that we set the target size to 5 when the
size of a non-temporal mode is smaller than 10. For TUCKET, we
use the pruning threshold 6 = 0.7 for all datasets.

8.2 Baseline Methods

To evaluate the effectiveness of our proposed TUCKET, we compare
it with state-of-the-art methods for Tucker decomposition. The
baselines are described below.

e Tucker-ALS [62] utilizes alternating least squares optimiza-
tion to compute Tucker decomposition, thus achieving the
best reconstruction error. However, in our setting, Tucker-
ALS is essentially a brute-force algorithm, unable to support
range queries or streaming updates efficiently.

e D-Tucker [29] decomposes compressed matrices sliced
from the input tensor and further updates the factors and
cores iteratively, which enables a fast and memory-efficient
decomposition of large and dense tensors. Notably, the iter-
ation phase of D-Tucker facilitates its seamless adaptation
to tasks involving stream updates. However, it does not
support range queries. For a fair comparison, we extract
the sub-tensor corresponding to the range query from the
preprocessed slices of D-Tucker.

e Zoom-Tucker [30] supports Tucker decomposition range
queries via block-wise preprocessing and by merging block
results during the query pahse. While Zoom-Tucker demon-
strates efficient performance on range queries, it faces limi-
tations in supporting stream updates. For a fair comparison,
we use block size m in Zoom-Tucker, which ensures
that the maximum number of blocks is comparable with
the maximum size of the hit set of TUCKET. Besides that,
since we have enhanced the stitching algorithm of subten-
sor decompositions in Section 5.2, we also use our stitching
algorithm in Zoom-Tucker for a fair comparison.

8.3 Efficiency & Scalability Tests

In this subsection, we evaluate the time and space efficiencies of
TUCKET in range query answering and appending tensor slices.

Efficiency of range query answering w.r.t. query length L.
As shown in Figure 4, TUCKET consistently achieves the lowest
latency compared to all baseline methods, with its latency remain-
ing almost stable regardless of the query range. In contrast, the
latency of baselines increases dramatically as the query range ex-
pands. On the Air Quality dataset, TUCKET exhibits an average
latency of 0.011 seconds on a GPU, significantly smaller than that
of all other baselines. In Traffic, US Stock, and KR Stock datasets,

although Zoom-Tucker and TUCKET demonstrate similar trends,
our TUCKET outperforms Zoom-Tucker by a considerable margin.

Scalability w.r.t. number p of modes. We measure latencies
of TUCKET and baselines by varying the number p of modes on
synthetic tensor time series under query lengths 98, 192, and 384
and target rank r = 5. As shown in Figure 5a, TUCKET is still the
most efficient method under a higher number p of modes. TUCKET
consistently achieves the lowest latency compared to all baselines
across all query lengths and number of modes. TUCKET achieves
5.9 times lower latency than the second-fastest method, Zoom-
Tucker, when the number of modes p is 7 and the query length
is 384. This highlights the superiority of our recall and stitching
algorithms in terms of the scalability w.r.t. the number p of modes.

Efficiency of query answering w.r.t. timespan T. We keep the
query length L the same while appending new slices between
queries to increase T. The results of latency v.s. timespan T on
Air Quality are shown in Figure 5b. We can see that the latency of
range queries almost has no notable change. This validates our time
complexity where the dominant term O(r? D log L) scales with only
L and does not explicitly depend on T.

Efficiency of appending tensor slices. We plot the latency of
APPEND on the Air Quality dataset v.s. the timespan T in Figure 5c.
The results validate the amortized time complexity O(rDP~! +
r’?=2(D +logT)) of AppEND. Notably, Figure 5c shows that the
time complexity is nearly constant w.r.t. T. This is because D is
typically much greater than log T as long as T is not too large.

Space consumption of our TUCKET. We plot the cumulative
space usage on the Air Quality dataset v.s. the timespan T in Fig-
ure 5d. The results validate the space complexity O((rD + r?)T +
rTlogT) of our TUCKET. Notably, Figure 5d shows that the space
complexity is nearly linear w.r.t. T. This is because D is typically
much greater than log T as long as T is not too large.

8.4 Accuracy of Range Query Answering

We measure relative errors with respect to time range queries.
Figure 6 shows the results. TUCKET consistently has compara-
ble errors to Tucker-ALS which performs Tucker decomposition
from scratch. As T, — T decreases, TUCKET and Tucker-ALS have
little variation in errors, while the errors of D-Tucker and Zoom-
Tucker increase dramatically. This is because TUCKET effectively
preserves information for short time ranges using the proposed
stream segment tree in the preprocessing phase, whereas D-Tucker
and Zoom-Tucker compromise the accuracy for short time ranges
in the preprocessing phase.

8.5 Ablation Studies

To further understand TUCKET, we conduct the following ablation
studies: (i) comparing our stream segment tree with other data
structures, (ii) comparing our new stitching algorithm with that of
Zoom-Tucker, and (iii) analyzing the effect of pruning threshold 6.

Comparison of data structures. We compare our stream segment
tree with the interval tree [54] (using AVL balancing [3]) and the (1-
dimensional) R-tree [23] (using B-tree balancing [8]) in terms of the
APPEND operation. We report in Figure 7 the cumulative latency and



the cumulative number of STITCH operations in APPEND because
the StiTcH operation is the bottleneck during Append. We see
that our TUCKET achieves 83.5 times and 3.4 times speedup over
the interval tree and the R-tree, respectively; they need O(log T)
STITCH operations per Append because every node on the path
from the inserted node to the root needs a StrTcH. In contrast, our
proposed stream segment tree needs only 1 STITCH (amortized) per
Append because our placeholder nodes need no StiTcH.

Comparison of stitching algorithms. We compare our stitch-
ing algorithm with Zoom-Tucker’s stitching algorithm in terms of
latency and relative error by replacing our StrrcH (Algorithm 2)
with Zoom-Tucker’s stitching algorithm. In Figure 8a, our stitching
algorithm achieves lower latency than the stitching algorithm of
Zoom-Tucker. This result implies that our stitching algorithm is
more GPU-parallelizable than Zoom-Tucker’s stitching. Figure 8b
shows that our stitching algorithm has lower relative errors than
Zoom-Tucker’s stitching. The error gap widens as the query range
decreases since Zoom-Tucker’s stitching needs to compute the in-
verse for rank-deficient matrices in short query ranges.

Effect of the pruning threshold 6. We test the model efficiency
and the relative error of TUCKET with respect to the pruning
threshold. We conduct the experiment on the Air Quality dataset.
Figure 9b shows the relative error of TUCKET with respect to the
query range. As we can see, as the 0 value increases, the relative
error consistently decreases for all query ranges. Meanwhile, the
difference between § = 0.7 and 6 = 0.9 is tiny. When comparing
0 =0.7and 0 = 0.9, 6 = 0.7 is better since it has lower latency than
0 = 0.9 over all the query ranges as shown in Figure 9a. Therefore,
0 = 0.7 is the best choice for balancing efficiency and accuracy
as it allows TUCKET to avoid pruning-induced accuracy loss and
handle a similar number of blocks.

8.6 Case Study

To demonstrate the application of TUCKET, we present a case
study with Air Quality data. We run TUCKET for three time ranges
(March 2015, March 2016, and March 2017) to obtain the location
factor matrices U(?) € R376X" of each time range. Here, the i-th
row vector of U2 represents the air pollution patterns of the i-
th location. Then, we perform K-means clustering w.r.t. the row
vectors of U®) to find 5 clusters of the locations.

Clustering results are shown in Figure 1. We can see that some
regions consistently exhibit similar clustering patterns across all
years while some other regions have varying clustering patterns
depending on the year. Regions (A) and (D) had similar patterns in
March 2015 and 2016, but their patterns changed in March 2017.
Meanwhile, regions (B), (C), and (E) had similar clustering patterns
across all years. Region (F) has slightly different clustering patterns
across the years. Air pollution patterns can be attributed to changes
in weather conditions, the occurrence of yellow dust and fine dust,
industrial activity, and traffic volume. TUCKET enables researchers
and practitioners to explore diverse time ranges on Air Quality data
efficiently and accurately.

9 RELATED WORK

Tensor decomposition. Tensor decompositions have been widely
used for analyzing real-world tensors. Due to their large sizes,
developing efficient and scalable CP methods [6, 7, 15, 27, 42, 70]
and Tucker methods [29, 31, 46, 47, 61] have attracted considerable
interest. The vast majority of these works focus on decomposing
the entire tensor from scratch and thus cannot efficiently answer
range queries. Although Zoom-Tucker [30] supports efficient range
queries, it has an unwilling tradeoff between accuracy and efficiency
due to a fixed block size. In addition to the above methods for
dense tensors, there are plenty of tensor decomposition methods
for sparse tensors where only a few entries are nonzeros. Many
works [34, 35, 41, 48-50, 52, 57, 58, 67] have developed scalable
tensor decomposition for sparse tensors in parallel and distributed
systems. Numerous tensor decomposition methods [14, 18, 43, 60,
66] utilize neural networks for predicting unobserved entries of
sparse tensors. However, they do not support range queries either.

Time series databases. Time series databases utilize various data
structures to handle time-series data. Many time series databases,
including KairosDB [2], Apache IoTDB [64], and LittleTable [55],
are designed based on log-structured merge tree (LSM-tree) [51] for
managing time-series data. Other time series databases, including
InfluxDB [1], BTrDB [5], and EdgeDB [68], utilize their own tree
structures to manage massive time series data. However, none of
these works considers tensor time series or supports tensor decom-
position range queries, which is harder than the simple queries
supported by existing time series databases.

10 CONCLUSION & FUTURE WORK

In this paper, we have proposed a tensor time series data structure
called TUCKET that can efficiently and accurately support range
queries of Tucker decomposition and stream updates to the tensor
time series. To the best of our knowledge, our TUCKET is a first-
of-its-kind method that creatively generalizes the segment tree
to the Tucker decomposition range query problem with stream
updates. We provide (i) fine-grained theoretical guarantees and
(ii) time and space complexities for our proposed method. We also
experimentally show that TUCKET consistently achieves the best
efficiency and accuracy in time range query answering.

Future work includes extending TUCKET to sparse tensors and
to other tensor decompositions such as CANDECOMP/PARAFAC
and PARAFAC2 decompositions, and supporting multi-mode range
queries via nested segment trees [63].
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A PRELIMINARIES ON BASIC TENSOR
OPERATIONS

A p-way tensor can be viewed as a p-dimensional array. Each di-
mension of a tensor is called a mode. To distinguish tensors from
matrices and scalars, we use a bold calligraphic font for tensors,
a bold italic font for matrices, and non-bold fonts for scalars. The
indices of vectors, matrices, and tensors start from 0.
The vectorization of a tensor X € RP1"*Dp ig a column vector
where each entry X;;, i, goes to (vec(X)); at
4 P
'=Zin H Dim. (30)
n=1 m=n+1
The mode-n matricization of a tensor X € RP1XXDnx-XDp g 5
matrix mat, (X) € RPnX(D1+*Dn-1Dns1+-Dp) defined by stacking

the mode-n slices of X into a matrix:
(vec(X....0:..)) T

mat, (X) = : . (31)

(vee(2X, ...y 1))
The mode-n product of a tensor G € R"1%" " X"nX"""XTp with a matrix
U € RPX™ isatensor Gx, U € R1% " XTn-1XDXTnu1 X+ X1y dafined

by

.....

mat, (G X, U) :=U - mat, (9), (32)
where - denotes the matrix multiplication. Besides that, the Frobe-
nius norm || - || of a tensor X € RP1*Dp s the square root of
the sum of the squares of all its entries:

D;-1 Dy-1
= N 2
DY X2 (33)
i1=0 ip=0

We refer readers to [38] for further details on tensor operations.

B PROOFS
B.1 Proof of Lemma 4.1

Given a stream segment tree of height h and any range query
[Ts, Te), let [0y, 7v) be the time range of the root node v. Then,
when we consider how to find a hit set of range query, there are
only three different cases:

(1) Therange query [T, Te) is a prefix of the time range [0y, 7p),

ie., Ty = 0yp.
(2) Therange query [T, Te) is a suffix of the time range [0y, 75),
ie, Te = 7p.

(3) The range query [T, Te) is neither a prefix nor a suffix of
the time range [0y, 7p), i.€., Ts # 0y and Tp # 7.

For case (1), let f1 (h) be the size of a hit set on a stream segment
tree of height h. It is evident that f; (1) = 1 since the root node
constitutes an entire hit under this circumstance. When h > 1, we
need to consider whether the range query [T, Te) can be entirely
contained within the range of the left children. Let u represent
the left child of the node v. If the query range can be entirely
entained, i.e., T < 7y, then we should recursively search the hit
set within the sub-tree with u as the new root node, implying
fi(h) < fi(h —1). Otherwise, we simply put the left child u into
the hit set and recursively search within the right sub-tree, which
implies fi(h) < fi(h — 1) + 1. To sum up, we can easily have the
following expression

fithy < fith-1)+1 (34)

Since we have the base case that fi(1) = 1, it is easy to prove that

fi(h) < h. (35)
Similarly, we can also prove that f,(h) < h, where f;(h) represents
the size of a hit set for case (2).

Now consider case (3) where f3(h) is denoted as the size of the
hit set. Suppose u is the left child of the node v with the time
range of [oy, 7y,), if the range query spans the time range of both
the left child and the right child, i.e., Ty < 7, < T, then we are
supposed to search for the hit set in both the left sub-tree and the
right sub-tree. Please note that in this situation, the new range
query will be either the prefix or the suffix for those sub-trees,
ie, f3(h) < fi(h — 1) + fo(h — 1). Conversely, if the range query
are limited within the time range of one sub-tree, then the hit set
should be searched within the sub-tree, i.e., 3(h) < f3(h—1). To
summarize, we have the following expression

) < fith—-1)+fo(h—1) <2(h-1). (36)

It follows from the three cases that there exists a hit set of size

< max{fi(h), fa(h), 3(h)} = max{2(h — 1), h} = max{2(h — 1), 1}.
(37)

B.2 Proof of Theorem 4.2

Using the algorithm in Section 6.2 to append the tensor slices
Xo, ..., X7_1 one by one, we can build a stream segment tree
over [0,T). By Theorem 6.2, this stream segment tree has height
[log, TT+1.

B.3 Proof of Proposition 4.3

In a stream segment tree over the range [0, T), there are O(T) nodes
each of which has p — 1 non temporal factor matrices of the size
O(rD) and a core tensor of the size O(rP). In addition, at each
level of the tree, the sum of the sizes of temporal factor matrices is
O(rT). Therefore, the space complexity of the stream segment tree
isO((prD+rP)T +rTlogT).

B.4 Proof of Theorem 5.1

Optimal hit sets. We aim to prove that Algorithm 1 successfully
finds an optimal solution for Eq. (13). Mathematically, we want
to show that, if there exists a hit set that satisfies the conditions
specified in Eq. (14) and (15), then the size of this hit set must
be greater than or equal to the size of the hit set generated by
Algorithm 1.

First, due to the top-down nature of Algorithm 1, for any node v
in the hit set generated by Algorithm 1, its parent node is guaranteed
to be unable to satisfy Eq. (15). Therefore, if there exists a hit set
&8’ that satisfies Eq. (14) and Eq. (15), then there is no node in S’
could be the parent node of any node in the hit set S* generated
by Algorithm 1. Furthermore, for each node v’ in the hit set S’, we
iteratively search for its parent node along its path to the root node.
If there is no node on this path which belongs to S*, then the node
o’ has no contribution to covering the query range. The reason is
that Algorithm 1 ensures that the hit set S* completely covers the
range query. As a result, we can remove the node v’ from the hit
set S’ to make it smaller.

So far, we have successfully proven two properties of an optimal
hit set Spp;: (1) for any node o™ from the hit set S* of Algorithm 1,
no node from Sy p; could exist on the path between the node 0* and



the root node; (2) for any node v in an optimal hit set Syp¢, there
must exist a node v* € 8* on the path between the root node and
the node v. Therefore, the size of this optimal hit set is at least as
large as the size of S*, which indicating S = Sop;.

Logarithmic running time. We want to further prove that the
running time of Algorithm 1 is O(log T). Since Algorithm 1 per-
forms only O(1) operations at each node, we only need to calculate
the number of nodes traversed in the process of finding any range
query in the segment tree. The proof here is quite similar with B.1.
Similarly, we reconsider the three cases in B.1.

(1) Therange query [T, Te) is a prefix of the time range [0y, 7p),

ie, T = 0yp.
(2) Therange query [Ts, T ) is a suffix of the time range [0y, 7p),
ie., T, = 1p.

(3) The range query [T, T,) is neither a prefix nor a suffix of
the time range [0y, 7p), i.e., Ts # 0y and Tp # 7p.

Now, let g;(h) represent the number of traversed nodes in a
stream segment tree with a height of h in case (i), v represent the
root node, and u; and uy represent the left children and right chil-
dren of v, respectively. Then, for case (1), if the range query can be
entirely contained within the left sub-tree of u;, then the traversed
nodes will be the current root node v and all the nodes traversed
within the left sub-tree, i.e., g1 (h) < 1+g1(h—1). Conversely, if the
range query spans the time range of both the left sub-tree and right
sub-tree, then the set of traversed nodes will be the current node
v, the left children u1, and all the nodes which will be traversed
within the right sub-tree, i.e., g1(h) < 2+ g1(h — 1). To sum up, we
have the following expression

g1(h) <2+g1(h-1). (38)
Therefore, considering the base case that g1 (1) = 1, we have
g1(h) <2h-1. (39)

We can also have the same conclusion for case (2),i.e., g2 (h) < 2h—1.
As for case (3), if the range query can be contained within the
time range of any sub-tree, then similarly we count the current node
v and further recursively search within the sub-tree, i.e., g3(h) <
1+ g3(h — 1). Otherwise, please note that in this situation, the new
query range will be either a prefix or suffix of the new sub-tree,
which implies g3(h) < g1(h — 1) + g2(h — 1). To sum up, we have
g3(h) < 4h —2. (40)
Therefore, given any stream segment tree with a height of h, the
number of traversed nodes will be O(h). Since h = [log, T+ 1in
Theorem 6.2, we finally prove that the running time is O(log T).

B.5 Proof of Lemma 5.2

Eq (22) consists of three computations whose costs are as follows:
forn=2,..,pandi=1,..,s, (1) matrix multiplications U(")TVE”),
(2) tensor-matrix products between H; and the preceding results
U(”)Tﬁl(n), and (3) tensor-matrix products between the preced-
ing results and matrices V§1> require O(spr?D), O(sprP*!), and
O(rP (T, — Ty)), respectively. Therefore, the complexity for comput-
ing Eq (22) is O(spr?D + rP (T, — Ty) + sprP*1).

B.6 Proof of Lemma 5.3

In Eq (27), there are four computations: form = 2,...,n—1,n+1, ..., p
1 HO
[ti-1,ti) " F

, (3) tensor-matrix products between

H; and the preceding results U<'">Tt7§’”)

and i = 1,..., s, (1) matrix multiplications U , (2) matrix

multiplications U(m)TVE ™)

, and (4) tensor-matrix

products between the preceding results and matrices ‘71( n) require
O(r?(T, - Ts)), O(spr®D), O(sprP*1), and O(srP D), respectively.
Hence, the complexity for computing Eq (27) is O(spr?D + sr’D +
r2(T, — Ts) + sprP*h).

B.7 Proof of Proposition 6.1

For each iteration, there are five computations: (1) the REcaLL al-
gorithm, (2) the matricization of the temporal mode, (3) the ma-
tricization of p — 1 non-temporal modes, (4) singular value de-
composition p times, and (5) the computation for updating core
tensor. Following the Lemmas 5.2 and 5.3, the first two compu-
tations require O(sp?r?D + sprPD + pr(T, — Ts) + rP (T, — Ty) +
sp?rP*1). Since we perform SVD for p — 1 matrices of the size
D x rP~1 and the matrix of the size (T, — Ty) x r?~1, this requires
O(p min(rP~1D2, r2(=1) D) 4+min(rP~ (T, ~Ty)% r2(P~D(T,-Ty)).
It can be expressed as O(pr2®=VD + r2(6=1(T, - Ty)) when
D > rP~land (T, - Ty) > rP~1. The last computation for a core ten-
sor requires O(r? D). Therefore, the time complexity is O((sp?r? +
spr? + pr2P=ND (pr2 + 1P + 2P~V (T, - Ty) + sp?rP* +1og T)
which is the sum of the complexities of these computations.

B.8 Proof of Theorem 6.2

In this subsection, we will first prove that every insertion of Algo-
rithm 4 is valid, and further prove that the height of the constructed
stream segment tree is [log, T + 1 with T representing the time
span.

First, to prove a valid insertion is equivalent to prove that, when
a new node is inserted into a segment tree, the segment tree is not
full. Please note that the design of creating nodes and insertion in
Algorithm 4 ensures that, when a new node at the time of T are
inserted into the node v, the range query [0y, 7) always contains
the time of T, i.e., 0 < T < 7. Therefore, we only need to prove that
for any node v in a stream segment tree, the number of new nodes
that can be inserted into the sub-tree rooted at v is max{r, — T, 0}.

Specifically, we choose to mathematical induction to prove the
above statement. When T = 1, this statement obviously holds since
it means creating the first node for a stream segment tree. Now, let
us assume the statement holds true when T = tj. In this situation,
if a node of tj is inserted within a sub-tree rooted at the node v,
Algorithm 4 ensures that 7, > ty, which implies max{z, — o, 0} > 0.
Then this insertion is valid since there is still space for a new node
within the sub-tree of v. After this insertion, we can easily calculate
that the number of new nodes that can still be inserted will be
max{ty, — ty, 0} — 1 = max{r, — (to + 1), 0}. Therefore, the statement
continues to hold when T = ty + 1, which completes the proof.

Second, we want to calculate the height of a constructed stream
segment tree. From the previous discussion, we can easily know
that given a stream segment tree with a height of h — 1, nodes can
be continuously added until the stream segment tree is full. Once



the tree becomes full, the attempt to add another node results in
creating a new root node based on Algorithm 4, with the original
root node becoming the node of the left sub-tree. Consequently,
the height of the new segment tree becomes h. Therefore, it is
evident that the number of leaf nodes in a segment tree of height h
is greater than that of a perfect binary tree with height h — 1 and
less than or equal to that of a perfect binary tree with height A.
Then we successfully show that the height of a stream segment
tree is [log, T + 1 since the number of leaf nodes is equal to T.

B.9 Proof of Proposition 6.3

We analyze the worst-case and amortized complexities of a stream
segment tree. Note that s is equal to 2. We omit the number of
iterations for the stitch operation and Tucker decomposition of the
tensor slice for brevity.

First, performing Tucker-ALS of the tensor slice requires O(prDP 1),

When we append a tensor slice X7, the worst-case number of the

stitch operations is O(log T). Then, updating the non-temporal fac-
tor matrices requires O((p2r+prP+pr2?=)Dlog T+p2rP*! log T)
derived from the first and third terms of the time complexity in
Proposition 6.1. Similarly, updating the temporal factor matrices
requires O((pr® + r? + r2(P=D)T) where the sum of the row sizes
of the temporal factor matrices is O(T). Hence, the worst-case com-
plexity of appending a tensor slice X is O(prDP~1 + (p?r? + prP +
pr2P=\Dlog T + p2rP* log T + (pr? + rP + r2(P=1)7).

The amortized complexity is the time complexity of creating a
stream segment tree divided by T. We preprocess T tensor slices
of leaf nodes with the complexity O(prDP~!T). For intermediate
nodes, we perform O(T) stitch operations with the complexity
O((p2r2+prP +pr2 =) DT+p2rP 1T+ (pre+rP+r2(P~D)Tlog T).
Hence, the amortized complexity is O(prDP~1 + (p?r? + prf +
prz(P_l))D + 2Pt 4 (pr2 4P 4+ r2(p=1)) logT).
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