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Abstract

Algorithmic fairness has been receiving increasing attention in
recent years. Among others, individual fairness, with its root in
the dictionary definition of fairness, offers a fine-grained fairness
notion. At the algorithmic level, individual fairness can often be
operationalized as a convex regularization term with respect to a
similarity matrix. Appealing as it might be, a notorious challenge of
individual fairness lies in how to find appropriate distance or simi-
larity measure, which largely remains open to date. Consequently,
the similarity or distance measure used in almost any individually
fair algorithm is likely to be imperfect due to various reasons such
as imprecise prior/domain knowledge, noise, or even adversaries.
In this paper, we take an important step towards resolving this
fundamental challenge and ask: how sensitive is the individually
fair learning algorithm with respect to the given similarities? How
can we make the learning results robust with respect to the imper-
fection of the given similarity measure? First (SouL-M), we develop
a sensitivity measure to characterize how the learning outcomes of
an individually fair learning algorithm change in response to the
change of the given similarity measure. Second (SouL-A), based
on the proposed sensitive measure, we further develop a robust
individually fair algorithm by adversarial learning that optimizes
the similarity matrix to defend against Lo, attack. A unique advan-
tage of our sensitivity measure and robust algorithm lies in that
they are applicable to a broad range of learning models as long as
the objective function is twice differentiable. We conduct extensive
experiments to demonstrate the efficacy of our methods.
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1 Introduction

Alongside the wide deployment of machine learning algorithms in
our daily lives, numerous real-world cases that suffer from unfair
machine learning algorithms have come into the spotlight [30],
e.g., gender discrimination in advertisement promotion systems,
and racism in facial recognition systems. Therefore, developing fair
machine learning algorithms has become an essential topic. Guided
by the dictionary definition of fairness (“lack of favoritism toward
one side or another"!), individual fairness has been proposed to
ensure similar individuals to obtain similar learning outcomes[10].
Such fairness notion also has its root in the field of ethics and
philosophy in law [12], where Aristotle’s conception of justice says
“like cases should be treated alike". Compared with other fairness
notions such as group fairness [8, 11, 42] or counterfactual fairness
[2, 13, 25], an add-on benefit of individual fairness [4, 7, 9, 29, 38, 43]
lies in that it considers fairness on a finer granularity.

The seminal work by Dwork et al. [10] first operationalizes indi-
vidual fairness through Lipschitz property. At its core, it bounds the
similarity® between learning outcomes with the similarity between
the input instances. Based on this overarching framework, numer-
ous algorithms for ensuring individual fairness have been proposed
since then [4, 7, 20, 29]. Among them, [20] quantifies the individual
bias as a trace term with respect to the given similarity matrix.
The intuition is to measure the total difference of the learning out-
comes between all pairs of samples weighted by the corresponding
similarity between them. By minimizing such individual bias, it
naturally leads to three debiasing algorithms, namely debiasing the
input data (pre-processing), debiasing the model (in-processing),
and debiasing the learning outcome (post-processing). We note that

!https://www.merriam-webster.com/dictionary/fairness
%In [10], it uses distance metric for individual fairness, which can be viewed as the
inverse of similarity. For clarity, we will use term similarity throughout this paper.
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while [20] was originally developed for graph data, both the bias
measure and debiasing algorithms therein are applicable to other
types of data such as vector data.

Despite the substantial progress, several fundamental challenges
still exist. First, while there exists rich similarity measures in the
literature (e.g. cosine similarity, Jarccard index), it is unclear which
similarity should be used for individual fairness. Moreover, with
the rich literature of graph structural attack [40, 47], and given
that attacks on adjacency matrix or features will affect the output
similarities obtained by metrics, the robustness of similarity matrix
becomes an important question to solve as well. Second, consid-
erate efforts have been made to learn the similarity measure for
individual fairness. For example, [26, 45] add learnable individual
weight parameters for different features in the similarity measure.
However, learning a weighted similarity measure from a complex
objective function might be unreliable, because it is hard to tell
whether the learnt similarity measure promotes individual fair-
ness or instead penalizes individual fairness in trade of the better
model utility. Another group of works including [17, 31] involves
human feedback or judgements, which requires much human effort
as their measurements are task-specific and human judgements
themselves might be biased or malicious. Third, from the model
robustness perspective, the similarity measure, as part of the input
of an individually fair learning algorithm, provides the attackers an
additional source to attack model’s utility. It is therefore critical to
understand the vulnerability of an individually fair learning model
in response to such attacks.

Due to these critical challenges, how to find the appropriate sim-
ilarity measure for individual fairness largely remains as an open
problem to date. In this paper, we take an important step towards
resolving these fundamental issues and ask: Q1. how sensitive is the
individually fair learning algorithm with respect to the given similari-
ties, and, Q2. how can we make the learning results robust with respect
to the imperfection of the given similarity measure? First (sensitivity
measure), we develop a sensitivity measure to characterize how
perturbations on similarity measure impact the individually fair
learning outcome, where the key idea is to efficiently estimate the
gradient of the learning outcome with respect to the given simi-
larity measure. Furthermore, we derive an approximation of our
measurement using influence function that can be approximated
in linear time with respect to the number of nonzero entries in the
similarity matrix. Second (robust algorithm), based on the proposed
sensitive measure, we further develop a robust individually fair
algorithm by adversarial learning which is formulated as a nested
bi-level optimization problem. The highest level optimizes the sim-
ilarity to minimize the sensitivity under the worst perturbations,
the middle level finds the perturbation that leads to the worst sensi-
tivity, and the lowest level finds the best individually fair learning
outcomes with respect to the given similarity measure. A unique
advantage of our sensitivity measure and robust algorithm lies in
that they are applicable to a broad range of learning models as long
as the objective function is twice differentiable. We instantiate the
proposed sensitivity measures and robust algorithms with three
popular learning models, including ranking, clustering and clas-
sification. We conduct extensive experiments to demonstrate the
efficacy of our methods.
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Table 1: Key symbols in the paper.

Symbols Descriptions
A AT AT A matrix, its transpose and its inverse.
Da,La Degree and Laplacian matrix of A, Ly =Da — A
® Kronecker Product
I An m X m identity matrix
D Input data (e.g., adjacency matrix, features, etc.)
0 Set of model parameters
S Similarity matrix
S Robust similarity matrix
Y Learning outcomes
Y* or Yg Debiased learning outcomes
Y* or ?g Robust debiased learning outcomes
Y5 as Perturbed debiased learning outcomes
1() Loss function of learning models
l~() Loss function of debiased learning models

To our best knowledge, this work represents the first principled
effort to study the sensitivity of the individual fairness. The main
contributions of the paper can be summarized as follows:

o Sensitivity measurement. We formally formulate the Measuring
Sensitivity of Individual Fairness (Sour-M) problem and propose
an effective and general solution. We instantiate our method with
three popular machine learning algorithms including ranking,
clustering and classification. We also address computational issue
regarding how to effectively conduct such sensitivity analysis.

o Robust algorithm. We present SouL-A algorithm that is, to our
best knowledge, the first to ensure robustness of an individually
fair learning model. As a byproduct, our proposed algorithm also
offers a feasible solution for optimizing the similarity measure
for individual fairness.

o Empirical Evaluations. We conduct experiments on eight datasets.
The experimental results demonstrate our methods’ efficacy. For
the ranking task, the proposed Sour-A algorithm reduces the
sensitivity by over 99%. Our experiments also reveal that the
similarity measure could effectively act as an additional source
for attacking the model utility.

2 Problem Definition

In this section, we first present the key symbols used throughout
the paper (Table 1). Then we briefly review individual fairness
and debiasing algorithms. Finally, we formally define sensitivity
measure and robust algorithm problems for individual fairness.
Notations. In this paper, we use caligraphic letters for set, bold
upper-case letters for two-dimensional matrices or high-dimensional
tensors, lower-case letters for vectors or hyperparameters. We fol-
low the conventions in PyTorch for indexing. For example, A[j, :]
denotes the i row of matrix A.

Let D represent the input data of a learning model, which is
the feature matrix X for vector data or the adjacency matrix A for
graph. For (semi-)supervised learning tasks, O also includes the
available supervision (e.g., the class labels of the training samples).

RNV*d whose

i row Y[i, :] is the learning outcome for the i" sample (e.g., the
embedding vector for the embedding task, the predicted class prob-
abilities for the classification task, the cluster membership for the
clustering task, the ranking score for the ranking task, etc.). S is a

symmetric similarity matrix for the samples in the input space (i.e.,

3For an attributed graph, the input dataset D also includes the initial node feature

matrix.
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S[i, j] measures the similarity between samples i and j in the input
space). We take an optimization perspective of the learning model,
where the optimal learning outcomes Y is obtained by minimizing a
task-specific loss function I(Y, D, 0), where 0 represents the model
parameters [20]. For example, I() could be the cross entropy loss
for the classification task or the contrastive loss for the embedding
task. See Table 2 for some examples of I().

Individual fairness. Individual fairness mandates to treat like
cases alike. The seminar work in [10] first operationalizes individual
fairness through Lipschitz property, which bounds the difference
of learning outcomes between two samples (e.g., Y[i,:] and Y[j, :])
by the difference of the corresponding samples in the input space
(e.g., the inverse of S[i, j]). InFoRM [20] further defines individual
bias of the learning outcomes Y as a trace term

Tr(Y'LsY) = - ZZHY YOS ()
i=1 j=1

where Lg = Dg — S is the Laplac1an of the similarity matrix S and Dg
is the degree matrix of S. The intuition of the bias defined in Eq. (1)
is that it measures the total squared difference (||Y[i,:] — Y[J,:] ||§)
of the learning outcomes between all pairs of samples weighted by
the corresponding similarity between them (S[i, j]). Note that the
bias defined in Eq. (1) only depends on Y and S. Therefore, even
though the bias measure in [20] was originally developed for graph
data, it is applicable to other types of data (such as vector data)
and various learning tasks, as long as learning outcomes Y can be
represented in the form of a matrix.

By minimizing the bias in Eq. (1), it naturally leads to three debi-
asing algorithms, namely debiasing the input data (pre-processing),
debiasing the model (in-processing), and debiasing the learning out-
comes (post-processing) [20]. For example, by introducing the bias
term as a regularization term into the task-specific loss function
l () we can obtain the debiased learning outcomes Y as,

argmml(Y D,6,8) = argmml(Y D,0) + aTr(Y LgY) ®)
Where a ¥ ois regularization parameter that balances fairness
and accuracy. Note that we use the subscript S to emphasize that
the debiased learning outcomes depend on the similarity matrix S.
When the context is clear, we will omit such a subscript for brevity.
The trace term in Eq. (1) is convex whose partial deriviative with
respect to the similarity matrix S can be computed in linear time
with respect to the number of non-zero entries in S. Therefore, we
can effectively solve Eq. (2) by (stochastic) gradient descent as long
as the task-specific loss function /() is differentiable. In this paper,
we focus on developing sensitivity measure and robust algorithm
for individually fair learning outcomes Y* obtained via Eq. (2).
Problem definitions. Although Eq. (2) provides a generic solution
to debias a variety of learning models, it requires the similarity mea-
sure S as its input. How to obtain the optimal similarity measure S,
however, remains an open challenge. Consequently, the similarity
or distance measure used in almost any individually fair algorithm
is likely to be imperfect due to various reasons such as imprecise
prior/domain knowledge, noise, or even adversaries. It is therefore
critical to understand how the imperfection of the input similarity
measure S impacts the individually-fair learning outcomes Y*. For-
mally, we define the sensitivity measure problem of individually
fair learning as follows.

Problem 1. Measuring Sensitivity of Individual Fairness (SouL-M).
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Input: (i) Dataset D, (ii) similarity matrix S, (iii) the individually
fair learning outcomes Yg obtained by Eq. (2) as well as the corre-
sponding learning model, and (iv) symmetric perturbation on the
similarity matrix AS (i.e., AS[i, j] = AS[}, i]);

Output: the change of the individually fair learning outcomes

AY* ~ Y3, 5o — Y5, where Y5, \¢ = argminy [(Y, D, 0,S + AS).

Based on the sensitivity measure, we further seek to make the
individually-fair learning outcomes robust with respect to the im-
perfection of the given similarity measure:

Problem 2. Robust Individually Fair Learning (Sout-A)

Input: (i) Dataset D, (ii) similarity matrix S, (iii) the individu-
ally fair learning outcomes Yg obtained by Eq. (2) as well as the
corresponding learning model;

Output: (1) the revised robust similarity matrix S, and (2) the re-
vised individually fair learning outcomes ?g = argminy Il Y, D,0, §)
that is (i) as close as possible to Y, and (ii) robust to the perturbation

on the similarity measure S.

3 SouLr-M: Sensitivity Measurement

In this section, we address Problem 1 to quantify the change of
individually fair learning outcomes in response to symmetric per-
turbation on the input similarity matrix. Mathematically, we aim
to characterize the difference AY" ~ Y5 ¢ — Yg between the in-
dividually fair learning outcomes Yg, ,4 learned in consideration
of the perturbation AS and its counterpart Yg without symmetric
perturbation. A naive solution to Problem 1 is to directly calculate
AY by exhaustively re-training the learning model for AS, which is
computationally expensive. To address this issue, we resort to local
sensitivity analysis [5] and estimate the partial derivative =&-— aS[ R to
avoid exhaustive re-training, which quantifies how Y* changes in
response to the infinitesimal change of S (Section 3.1). Our measure-
ment can be applied to any learning model with twice differentaible
loss function I(). We further instantiate our general solution with
three representative learning models, including PageRank, spectral

clustering, and binary classification (Section 3.2).
3.1 A General Solution

Following the overarching principle of local sensitivity analysis [5],
we need to compute two key terms to estimate the sensitivity of
individually fair learning outcomes with respect to a symmetric per-

turbation AS: (1) the partial derlvatlve [ , and (2) the product

between the partial derivative as[z J] and the symmetric pertur-
bation AS. We first provide the following theorem (Theorem 3.1)
for the computation of partial derivative. Building upon our results
in Theorem 3.1, we present our proposed sensitivity measurement
in Theorem 3.2. Finally, we introduce Algorithm 1 for efficient
computation of the sensitivity measurement

Computing the partial derivative Following influence

aS[i,

function [24], we compute the partial dergvil]tlve by considering the
learning outcomes as the parameters and an infinitesimal perturba-
tion on similarity matrix as upweighting the loss function. Its ratio-
nale is that the individual bias (Eq. (1)) is a weighted sum over the dif-
ferences of learning outcomes between two samples with similarity
as the weights. However, directly applying influence function [24]
PI(Y.D.0.8) )

requires us to compute a second-order derivative 1 ( e
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of the debiased loss function [ (Y, D, 0,S) with respect to the learn-
ing outcomes Y, which could naturally be a high-dimensional tensor
if Y is a 2-dimensional matrix (e.g., an embedding matrix, predicted
probability matrix of a multi-class classification problem). To avoid
the non-trivial tensor operations, we observe that each element in
the tensor is equivalent to computing the second-order derivative
with respect to each element in the first-order derivative matrix,

ie., % [i, ),k 1] = %. Thus, similar to [23],

we construct an (Nd) X (Nd) matrix W, n?mely SouL-M matrix, by

computing the second-order derivative aZ;S/YT%g’ZS) of the loss func-

tion with respect to the vectorized learnin(g o;ltcomes vec(Y). With
dvec(Y*

vec(Y), we essentially compute the

aS[ 5T which is equivalent

to vectorizing the partial derivative Theorem 3.1 presents

35[1 il
how to construct the SouL-M matrix W and compute the vectorized
. L IY*
partial derivative RTi7]" .
_(ol(V,D,
THEOREM 3.1. DefineW = (—8vec(Y)2
as SoUL-M matrix, where ® is the Kronecker product, vec() vectorizes
a matrix into a column vector. Denote the debiased learning outcomes

obtained from Eq. (2) as Y*, and assume the task-specific loss function

+2aLls ® Id)

1() is twice differentiable and strictly convex.V i, j € {1,...,N} we
have that the partial derivative of Y* over S[i, j] is
avec(Y") !
—_— = W[, tN +i] - W[, tN +j])-
S0 ] Z( 1= W[5 tN + 1) )

(vec(Y")[tN +i] — vec(Y")[tN + j])
Proor. Applying influence function in [24] to Eq. (2) and vec-
torize Y*, we get

! ¢ pNdxNd

dvec(Y*) _ —lH‘l (Y, D, 0) + aTr(vec(Y)T (Lg ® 1) vec(Y)))
aSli,jl ~ n Y aS[i, jlovec(Y)
Ho = | P (Y, D, 0) + aTr(vec(Y)T (Lg ® Iy) vec(Y)))
Y= ;( avec(Y)? )
Y, D, 0
= - —a\EeC(Y)Z) +2als ® 1,
4)

where n is the number of nonzero entries in S and Hy is Hessian
matrix. Since S is only used for calculating individual fairness bias
and is irrelevant to I(Y, D, 0), the partial derivative of I(Y, D, 0)
over S[i, j] is 0,
avec(Y") 1.4 Lg
e &
st ny 2GS
As Lg is a symmetric matrix derived from Lg = Dg — S, where Dg
is defined as Ds|i, i = X%, S[i, j] and Ds[i, j] = 0(i # j) with N
as the number of inputs, we can directly derive the gradient of Lg
with respect to S and get

avec(Y) __ @ Z(H

S, j]
(vec(Y")[tN +i] — vec(Y")[tN + j])
With Eq. (4), rewrite Eq. (6) as Eq. (3) which completes the proof. O
Computing the sensitivity measurement AY*. Theorem 3.1
characterizes the rate of the change of learning outcomes Y* with
respect to the infinitesimal change in the similarity S[i, j] of two
input instances i and j. However, to compute AY", it is likely that

® 1) vec(Y) (5)

SN +i] — Hy ' [L tN + j])-

(6)

832

Xinyu He et al.

perturbation AS on the similarity matrix S is not infinitesimal. Thus,
to respond to the non-infinitesimal change AS, we assume any
S[i, j], Vi, j € {1,..., N} are independent in the training process
to ignore the mutual influence among different AS[i, j] on learn-

dvec(Y")
asig7 ASLE Tl

ing outcomes and compute vec(AY*) ~ 3 ; 2
Theorem 3.2 summarizes computation of AY*.
( 2U(Y,D,0)
dvec(Y)?
M matrix. Given debiased learning outcomes Y* obtained from Eq. (2)
and symmetric perturbation on similarity matrix AS. If the task-
specific loss function I() is twice differentiable and strictly convex, the
difference between learning outcomes with or without perturbation
AS can be approximated by
vec(AY*) = —2aW (Lag ® 1) vec(Y*) + O(]|AS||%) (7)
Proor. Estimating vec(AY™) with its first order Taylor expan-
sion over S and plugging in Theorem 3.1,

vec(AY") = Z Z aveE:(Y )

i=1 j=1

N N
==, )
i=1 j=1

-1
THEOREM 3.2. Let W = +2aLls ® Id) be Sout-

[i, j1 + O(llAS]1?)

d-1

Z(W[:, tN +i] = W[5 tN + j])-
t=0

(vec(Y*)[EN +i] — vec(Y*)[tN + j1)AS[i, /]

+0([1AS|*)
Nd Nd
=—a ) Y (Wlsil - W[ j])-
i=1 j=1
(vec(Y*)[i] = vec(Y*) [jD(AS @ Iy) i, j]
+0([|AS|*)

Note that the second equality holds because V|i — j| > N, (AS@S}
I7)[i, j] = 0. Rearrange Eq. (8), we get Eq. (7) completes the proof.
[m]

As the second order error term in Theorem 3.2 is small enough to
be ignored, we can measure the sensitivity by a product of inverse of
Hessian matrix (Sour-M matrix W) and a vector ((Las®I;) vec(Y*))
of length Nd. Then we further apply a scaled Hessian-vector prod-
uct [1, 24] to reduce the O(N3d®) complexity in computing the
matrix inversion to linear complexity. The workflow of the scaled
Hessian-vector product is presented in Algorithm 1. In detail, with
proper initialization of H = cW ™! and v (lines 1 - 2), we recursively
derive the i order approximation of Hessian-vector product H‘(,i)
by HY =v+1-mHY i= (1, kLB =v )
(lines 3 — 6). After the Hessian-vector product is obtained, we
compute the change of debiased learning outcomes (lines 7 - 8).
Comparing to Hessian-vector product, Algorithm 1 introduces a
scaling factor ¢ during initialization (line 1) and undo the scal-
ing later (line 7). The rationale of the scaling factor is as follows.
Hessian-vector product is a power iteration-based method that
computes the Taylor expansion iteratively B~! = Z;‘;O(I - B)/
for a matrix B. To guarantee convergence, the series {(I — B)/}
should converges to zero, which requires the magnitude of leading
eigenvalue of (I — B) to be upper bounded by 1. Thus, the scaling
factor c is introduced such that the magnitude of leading eigenvalue
of I — ¢W™! is upper bounded by 1, equivalent to requiring the
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Algorithm 1: Scaled Hessian-vector product to estimate
vec(AY*)

2
%,(Zﬁ){ﬁ)’ (it)
regularization parameter «, (iii) Laplacian of
similarity matrix and perturbation Lg, Lasg, (iv)
debiased learning outcomes Y*, and (v) the scaling
factor ¢
Output: Change of debiased learning outcomes before and
after perturbation vec(AY™)
1 Initialize Hessian matrix with scaling

2*1(Y,D,0) X
H«c¢ (W +20!LS ®Id),

2 Initialize v « (Las ® 1) vec(Y*);

Input :(i) Second-order derivative

3 Initialize Hessian-vector product H‘(,0> — v,
4 foriin[1:k]do
5 ‘ Upd (i) _ (i-1),
pdate Hy ' «— v+ (I-H)H, /;
¢ end
; (k)
7 Undo scaling Hy « cHy ’;
s return vec(AY") « —2aHy;

magnitude of leading eigenvalue of cW~! being upper bounded by
2. Lemma 3.3 demonstrates the existence of scaling factor c.
LEMMA 3.3. For any scaling factor c satisfying
2

0<c<

S S 0
W71, (10)

we have that 0< |A£3]71| <2 Vi

(11)
where |[(W-D)T||; = max; (), [W=1[},t]]) is the matrix 1-norm,
and /123,_1 is the ith eigenvalue of c(W™1.

Proor. The lower bound of absolute eigenvalue is guaranteed
as W~! = nHy, whereas eigenvalues of Hessian matrices, which
denotes the convexity of loss function, is positive if loss function is
strictly convex and ideally optimized.

For the upper bound of absolute eigenvalue, according to Gersh-
gorin circle theorem [41],

Vi A < max((W I Y W D (2)
t#]j

Therefore, Mg}v* | = CM\(;,L | < 21is ensured if Eq. (10) holds. O

Lemma 3.3 shows that the scaling factor ¢ that satisfies the con-
vergence guarantee is upper bounded by W In practice, we
1
initialize ¢ = W, i.e., by taking the reciprocal with respect
1
to the matrix 1-norm of the transpose of Hessian matrix W™!. In
summary, the time complexity of Algorithm 1 is as follows.

ReEMARK 1. IfI(Y, D, 0) satisfies % = 0,Yi # j, the
time complexity of Algorithm 1 is O(kMd), where k is the number of
iterations (the order of Taylor expansion), M is the number of nonzero
entries in Lg, and d is the dimension of the learning outcome for each
input instance.

LY, D,0) _ . - .
NN = 0,Vi # j is mild and

holds for many commonly used objectives such as (binary) cross-
entropy loss and mean squared error.

Note that the assumption
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3.2 SouL-M: Instantiations

The key to compute the sensitivity measure AY* is to compute the
LY, D,0)

second-order derivative “vee )T

. In this section, we present three
1(Y,D,0)
dvec(Y)?
M matrix W for different learning models, including PageRank [33],
spectral clustering [32], and binary cross-entropy loss optimization
(e.g., logistic regression, neural networks). We summarize three
instantiations as well as the corresponding second-order derivative

and SouL-M matrix in Table 2.
PageRank [33] is a graph ranking algorithms based on random
walk. It outputs a column ranking vector Y* by recursively com-
puting the following linear system until convergence
Y=pAY+ (1-pe (13)
where Y is a 1-dimensional column vector of ranking scores, 0 <
p < 1is the damping factor, and A is the normalized transition
matrix, and e is a pre-defined teleportation vector. Mathematically,
PageRank is equivalent to minimize the following objective function
when A is symmetrically normalized.

1
Y* = argmin 5(pYT(I —A)Y+(1-p)Y-el?)

instantiations on the computation of as well as the SouL-

(14)

Regarding the second-order derivative, since Y is a column vector
(i.e., d = 1), we have Y = vec(Y) and I; = 1. Then by the properties
of the derivative of matrix multiplication and the Frobenius norm,
we have that

P3(pY (1= A)Y +(1-p)IY —el) _

- pA 15
avec(Y)?2 P (15)

Combining Eq. (15) and Ls ® I;, we have that
W=(I-pA+algx 1) =(I-pA+aLg)! (16)

Spectral clustering [32] is a clustering algorithm that group nodes
in a graph A into d clusters by their spectral embeddings. Specifi-
cally, the spectral embedding matrix Y* of all nodes in the graph
is equivalent to a matrix whose columns are the eigenvectors of
graph Laplacian Lp corresponding to d smallest eigenvalues. Math-
ematically, it solves the following optimization problem.

Y* = argmin Tr(Y/LAY) (17)

Y
By the properties of derivative of matrix multiplication and the
trace operator, we have that

PTr(YILAY
FOOIAY _1nel, (18)
Then we have avec(Y)
PTr(YTLAY)
————2 " 4+ 2aLs ® 15 = Lops2as ® Iy (19)

avec(Y)?
However, the Laplacian matrix Lya 4245 is singular. Consequently,
the second-order derivative is also singular Ly 12,5 ®]I 7, which does
not have the corresponding inverse matrix. Thus, we approximate
SouL-M matrix as the pseudo-inverse of Lya 4245 ® Iy and get

W = (Loaszas ® Ig)"
Binary cross-entropy loss is a commonly used loss function to

optimize learning models like logistic regression or neural networks
for classification. It is mathematically defined as

N
L= = > (Yalillog(Y11]) + (1 = YgliD log(1 = Y[i))  (21)

—
where N is the number of training instances, Ygt[i] € {0, 1} is the
ground-truth label for the i instance, and Y[i] is the predicted
probabilities of the i instance being classified with label 1. To

(20)
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Table 2: SouL-M instantiations. Note that Algorithm 1 does not need to compute the SourL-M matrix.

Mining task Loss function [ ‘ Second-order derivative %ﬁﬁ) ‘ SouL-M matrix W
PageRank 1YL I-A)Y+ (1 -p)Y—el?) I-pA (I-pA+aLs)™!
Spectral clustering Tr(YTLAY) Loa ®1y (LoA+2qs ® Id)T
i PRI AT 2 »
Binary cross-entropy loss —ﬁ Zﬁl(Ygt[i] log(Y[i]) + (1 = Ygt[i]) log(1 - Y[i])) (#(IY)Z) [i,j] = (;‘f Y[i]2(1-Y[i])? ’ 7 (ﬁ(ly)z + ZW“LS)
\ i#]
align with the empirical binary cross-entropy loss, we compute J(S,AS) == ||AY* (S, AS)||F = [|2aWs(Las ® 1) vec(Yi)”F (25)
the average individual bias for all training instances and solve the Then, we find the optimal perturbation AS for the attack by maxi-

following regularized optimization problem.

Y= argmm -~ Z(Ygt 1og(Y[i]) + (1 =Ygt [i]) log(1 = Y[i]))
i=1
+ NTr(YTLsY)
Because the learning outcomes Y is a column vector of predicted
probabilities, similar to our instantiation with PageRank, we have
Y = vec(Y) and I; = 1. Then, for the second-order derivative, we
have that 0 (L1 (Yall 1-Yalil))
aY[i]aY[J] 3Y[j] Y[i] 1-Y[i]

A 321 1 YLPE=2Y[i] Y [i]+Y g [i]

When i = j, it is trivial that N[OV = N Y[i]z(l—gY[i])zg

Otherwise, because Y[i] and Y[j] are independent, resulting in

Wg\([il = 0. Putting everything together, we have
we L (P o)) (23)
= a
av? s
2
where aTé isa diagonal matrix such that
521 1 YL -2Y il [i14Ygeli] .
2= NT Ynra-vinz 0 T (24)
2 L5 L
26 0, i+

4 SouL-A: Robust Algorithm

Existing works on individual fairness could be vulnerable to attacks
on similarity measure. On the one hand, some works with human
judgement or feedback involved can be attacked by malicious users.
On the other hand, the similarities that are derived from similarity
metrics can also be affected by graph structural attacks. Building
upon our sensitivity measurement SOuL-M, we first discuss how to
attack the fair learning algorithm by manipulating the similarity
measure S and then propose a method called Sour-A to improve
the worst-case robustness of the fair learning algorithm against the
similarity measure S.

4.1 Attacking the Fair Learning Algorithm

To quantify the worst-case change in the outcome, we consider
adversarially attacking the individually fair learning algorithm by
manipulating the similarity matrix S. Since the similarity matrix S
is often sparse, we only consider sparse perturbations AS. That is,
the perturbation AS is chosen from the set Sy := {AS € RN*N :
AS[i, j] =0, V(i,j) & T}, where T := {(i, ) : S[i, j] # 0} denotes
the index set of nonzero entries in S.

The objective of the adversarial attack is to maximize the distor-
tion in the outcome Y*. We aim to define the distortion appropri-
ately so that it can be computed efficiently. Recall that Algorithm 1
can efficiently compute the approximate change vec(AY*(S, AS)) :=
—2aWs(Las ® Iy) vec(Yg) in the outcome, where Yg and Wy de-
note the outcome and the SouL-M matrix w.r.t. the similarity matrix
S, respectively. Thus, we define approximate distortion as:

834

mizing the approximate distortion J(AS) under the constraint that
any |AS[i, j]| is at most € for a given small allowance € > 0:
meax J(S,AS), s.t. ||AS||eo < €. (26)
To handle the constraint [|AS]|co < €, we use a reparameterization
AS := etanh Q for a matrix Q € Sy. Since the range of € tanh Q
is (—¢,€), the constraint [|AS||c < € is naturally satisfied. This
enables us to apply the unconstrained gradient descent w.r.t. Q.
4.2 Robust Fair Learning
Now we introduce our Sour-A algorithm to robustify the individu-
ally fair learning algorithm against the similarity matrix S. The key
idea of our SouL-A is to learn a new similarity matrix S such that
the individually fair learning outcomes Y- w.r.t. the new S is robust
to the adversarial attack proposed in Section 4.1. Besides that, since
we need the new similarity matrix Sto preserve as much informa-
tion as possible in the original similarity matrix S, we consider an
additional constraint ||S — S||eo < y for some y > 0. Building upon
the intuition above, we propose to find the new S via adversarial

training: Smgl max ] (S, AS),
€1 (27)
t |AS]leo <€ [S=Slleo <.

Eq.(27)isa nested bi-level opt1m1zat10n problem, as J (S AS) de-
pends on Y§ argmlnYl(Y, D,6,S). We propose to solve this

nested bi-level optimization via alternating gradient descent, which
is presented in Algorithm 2. Similar to Section 4.1, we use the repa-
rameterization AS := e tanh Q to handle the constraint ||AS||c < €.
Meanwhile, we do not explicitly enforce the constraint IS=S]loo < Y-
Instead, we control the difference between S and S via a limited
number of training iterations of S. Besides, We indirectly update S
by updating its Laplacian with an equivalent effect. We remark that
we do not limit the number of iterations of Yg and AS and allow
them to converge.

In detail, with proper initialization (lines 1 - 3), we conduct
adversarial training for n epochs. In each epoch, we find S which is
robust to AS using gradient descent (lines 5 - 8). Then, we update
the individually fair learning outcomes and find AS that leads to
the highest distortion w.r.t the new S (lines 9 - 15). After training
is completed, we output the robust debiased learning outcomes.

5 Experiments

In this section, we present our experimental evaluations. The exper-

iments are designed to answer the following questions, including

o Q1: (Sensitivity Measure) How accurately can SouL-M measure-
ment help to estimate the change of fair learning outcomes on
real-world datasets when input similarity measure is perturbed?

® Q2: (Robust Algorithm) How robust is SouL-A against noises
of the input similarity measure? How can we use the proposed
SoulL-A to attack an individually fair learning model?
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Algorithm 2: Sour-A Algorithm

: (i) number of overall training epochs n; (ii)
numbers of training iterations ng and nps for
updating S and AS, respectively, in one epoch;
(iii) individually fair learning model

I(Y, D, 0,S); and (iv) perturbation allowance
€;

:Robust individually fair learning outcomes Y%

Input

Output
1 Randomly initialize Q;
2 Initialize AS « e tanh Q, L < Ds—S;
3 Initialize Y% « argminy [(Y, D, 6,S) by Eq. (2);
4 foriin[1:n]do
5 for jin [1:ng] do

6 Calculate J (§, AS) by Eq. (26);
7 Update Lg via gradient descent;
8 end

9 forjin[1: nM]~do B

Calculate [ (Yg, D, 6,8) by Eq. (2);
Update YE via gradient descent;
Calculate J(S, AS) by Eq. (26);
Update Q via gradient ascent;

Update AS « e tanh Q;
15 end

10

11

12

13

14

16 end

17 return robust debiased learning outcomes ?%

5.1 Experimental Settings
The source code will be released upon the publication of the paper.

Datasets. Statistics of the datasets are summarized in Table 3.
Table 3: Statistics of datasets.

Data type Dataset Nodes/Instances | Edges/Features
PPI [16] 3890 76584
Twitch-EN [35] 7126 35324
Graph Facebook [35] 22,470 171,002
AstroPh [27] 18772 198110
CondMat [27] 23133 93497
Mushroom [37] 8124 22
Non-graph | QSAR-oral[3] 8992 1024
Occupancy [6] 20560 5

Similarity Measures. For graph data, we use both cosine similarity
and Jaccard similarity to construct the similarity matrix [20]. For
non-graph data, we use cosine similarity. For most of experiments,
we follow the same strategy in [20] to keep the large entries in the

similarity matrix that are above a threshold.
threshold = mean(S) + fstd(S) (28)
where mean(x) and std(x) calculate the mean and standard devia-

tion of x, f is a predefined hyperparameter.
Metrics. For the sensitivity measure (Q1), we randomly perturb
the similarity matrix and compare the output of Algorithm 1 (AY¥)

with that of re-training the learning Iﬁz%e*l”(Y; as ~ Yg)- We use
scaleErr = |logyy (= > )] (29)
Y45 = Yslleo
1(Yg, 25 — Yg) — AY7l
errRate = S+AS 'S z (30)
S S«
Y5, a5 = Yslleo

to measure the accuracy. We also record the magnitude of outputs
for a better comparison.
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Leo(Retrain) = [[Y5, ys = Yilloo  Leo(SOUL-M) = [AY*[|eo  (31)

For robust algorithm (Q2), we use NDCG@50, NDCG@100 for
PageRank and Accuracy for binary classification to measure utility.

yk 1{r[i]ey}
DCG@k _ ~i=1 Tog,(i+2)

= — :
IDCG@k ¥k Tog, (+2)

NDCG@k = (32)

where 1{} is indicator function. We also use individual fairness
bias in Eq. (1) to measure fairness. Sensitivity is measured by
Lo (Retrain) in Eq. (31). Given that we are the first to study sen-
sitivity of individual fairness, We only consider the original in-
processing algorithm in InFoRM [20] as baseline for the first ques-
tion in Q2. To answer the second question of Q2, we use the AS
learnt from Algorithm 2 to attack the similarity matrix and compare
the utility and fairness after and before attacking. We also compare
our attacking method with three baselines that attack the adjacency
matrix (Gaussian noise (GN), PGD [28], and FGSM [15]) to show
that attacking similarity measure is as effective as attacking graph
structure for attacking model utility.

5.2 Main Results

For the sensitivity measure (Q1), results on PageRank and spectral
clustering are shown in Tables 4 and 5, respectively. As we can
see, our measurement can give good approximation of the change
of learning outcomes. In most cases, scaleErr is smaller than 1,
i.e., our approximation and the result via re-training are on the
same scale. It is also worth noticing that Jaccard similarity is more
stable than cosine similarity for PageRank, and cosine similarity
is more stable than Jaccard similarity for spectral clustering. This
result is consistent with our intuition: PageRank depends solely on
the graph structure while spectral clustering often applies cosine
similarity (or other vector-based distance measures) on Y* (Eq. (17))
to cluster the nodes.

For the robust algorithm (Q2), results on binary classification
and PageRank are shown in Tables 6 and 7, respectively. As we
can see, the proposed SouL-A algorithm significantly lowers the
sensitivity of learning models in all cases and effectively increases
the models’ performance when perturbed. SouL-A also improves
the performance of unperturbed model in most cases. Meanwhile,
SouL-A leads to a negligible increase of individual fairness bias.
This is due to the trade-off between utility, fairness and robustness,
which can be controlled by hyperparameters. Results for attacking
PageRank are shown in Table 8. Our method reaches the best at-
tacking performance in most cases, which demonstrates that the
similarity measure can indeed be an effective source of attacking a
learning model’s utility. PGD and FGSM also lead to higher indi-
vidual fairness bias, while our attacking method does not.

6 Related Works
In this section, we review the related works on two topics, including
individual fairness and sensitivity analysis.

Individual fairness has received much attention in recent years.
The definition of individual fairness was initially proposed in [10].
Although it considers fairness on an individual-based level, the
intuition behind individual fairness, that similar individuals should
be treated similarly, also benefits group fairness and counterfactual
fairness. This is because individuals or groups with only diverse
sensitive attributes will have similar outputs under this setting as
well. Thereby, researchers have designed numerous methods to
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Table 4: Effectiveness of sensitivity measure for PageRank. scaleErr and errRate are better if closer to 0.

Datasets

Jaccard Similarity

Cosine Similarity

Lo (Retrain) | Lo (Sour-M) | scaleErr | errRate | Lo (Retrain) | Lo (Sour-M) | scaleErr | errRate

PPI 2.8770 x 1078 | 53845 x 108 | 0.2722 | 0.8716 | 1.0809 x 10~7 | 1.7066 x 1078 | 0.8017 | 0.9971
Twitch-EN | 3.0706 x 108 | 5.5588 x 1078 | 0.2578 | 0.8103 33.0504 1.3230 13976 | 1.0007
Facebook | 2.8552 x 107° | 5.2685 x 10™° | 0.2661 | 0.7344 68.5519 8.1697 0.9238 | 0.9986
CondMat | 4.3713x 107° | 7.7849 X 10™° | 0.2506 | 0.7809 | 6252542.2884 | 1250906.0486 | 0.6988 | 0.9957
AstroPh | 2.3630 x 107° | 4.2982 x 107° | 0.2598 | 0.8427 | 6.0850 x 1077 | 3.3712x 10™° | 0.2565 | 0.9978

Table 5: Effectiveness of sensitivi

ty measure for spect

ral clustering. scaleErr and errRate are better if closer to 0.

Jaccard Similarity

Cosine Similarity

Datasets Lo (Retrain) Lo (SouL-M) | scaleErr | errRate | Lo (Retrain) Lo (SouL-M) | scaleErr | errRate
PPI 2.3229 x 1077 | 2.1371x 1077 | 0.0362 | 0.1386 | 1.2627 x 1078 | 1.2375x 1078 | 0.0088 | 0.8821
Twitch-EN | 1.0511 X 107® | 1.0440 x 1076 | 0.0029 | 0.3355 | 1.3449 x 1077 | 2.4078 x 10~% | 0.7471 | 0.9999
Facebook | 3.1688 x 1078 | 2.2686 x 1078 | 0.1451 | 0.2841 | 1.7938 x 107° | 1.7292 x 107° | 0.0159 | 0.3345
CondMat | 1.0548 x 1077 | 9.9071 x 1078 | 0.0272 | 0.9090 | 1.2200 x 107° | 2.0876 x 10~/ | 0.7667 1.0000
AstroPh | 1.0531 x 1077 | 3.0376 x 1078 | 0.5399 | 0.9981 | 2.8077 X 10~% | 2.6811 x 1073 | 0.0200 | 0.0451

Table 6: Effectiveness of robustification for binary classification. Lower is better in gray columns, larger is better in the rest.
‘w.p. is abbreviation for ‘with perturbation’.

Datasets Method . Cosine Similarity ' '

Sensitivity | Accuracy | Accuracy w.p. Bias Bias w.p.
InFoRM 0.0853 1.0 1.0 4.4124 X 10° | 4.4300 X 10°
Mushroom 6 6
Ours 0.0813 1.0 1.0 4.4124 X 10 4.4300 X 10
InFoRM 0.1467 0.9311 0.9271 9.9139 x 10° | 1.0353 x 10°
QSAR-oral 6 6
Ours 0.1427 0.9316 0.9273 1.0007 X 10 1.0352 X 10
occupanc InFoRM 0.2532 0.9894 0.9714 1.2371 x 107 | 1.2443 x 107
pancy Ours 0.2170 0.9907 0.9753 1.3042 x 107 | 1.4152 x 107

Table 7: Effectiveness of robustification for PageRank. Lower is better in gray columns, larger is better in the rest. ‘w.p’ is
abbreviation for ‘with perturbation’.

Datasets | Method Jaccard Similarity

Sensitivity NDCG@50 | NDCG@50 w.p. | NDCG@100 | NDCG@100 w.p. Bias Bias w.p.
PPI InFoRM | 7.8024 x 10~* 0.8048 0.6964 0.8657 0.7635 3.5931 x 107° | 3.7444 x 10~/
Ours | 2.6131 x 107° 0.8048 0.8048 0.8668 0.8657 3.6696 X 107° | 3.6326 x 107°
Twitch-EN | TFORM. | 6.8099 x 1074 0.8891 0.8270 0.9301 0.8020 9.8781 X 10~/ | 1.6375 x 107/
Ours | 6.1682 x 107 0.8891 0.8891 0.9334 0.9301 1.0015 x 107° | 1.0053 x 10~
Facebook | FORM. | 1.4002 X 1074 0.8580 0.6776 0.7625 0.7601 6.0219 x 10~7 | 5.7810 x 10~%
Ours | 8.7429 x 1077 0.8492 0.8580 0.7638 0.7390 6.1930 x 10~7 | 6.1909 x 1077
CondMat InFoRM | 1.3973 x 10~* 0.8667 0.7143 0.8030 0.7664 4.4756 x 1077 | 4.1871 x 1078
Ours | 1.9225 x 1077 0.8667 0.8667 0.8206 0.8206 4.5677 x 1077 | 4.5545 x 1077
Astroph | [MFORM [9.6574 X 107° 0.8849 0.6600 0.9036 0.5963 7.5825 x 107 | 8.0497 x 1078
Ours | 5.6437 x 1077 0.9135 0.9135 0.9202 0.9149 7.7854 X 1077 | 7.7868 x 1077

Cosine Similarity

Datasets Method Sensitivity NDCG@50 | NDCG@50 w.p. | NDCG@100 | NDCG@100 w.p. Bias Bias w.p.
PPI InFoRM | 6.4236 x 10~* 0.8844 0.8587 0.8453 0.7365 6.5310 X 107 | 1.1296 x 10~°
Ours | 7.5255 x 1077 0.8844 0.8844 0.8456 0.8456 6.5570 X 107° | 6.5537 x 107°
Twitch-EN | TFORM. | 4.5977 X 1074 0.8916 0.459 0.8714 0.8645 3.2911 X 107° | 6.0439 x 1077
Ours | 4.1129 x 1077 0.8916 0.8916 0.8714 0.8714 3.3034 x 107° | 3.3033 x 107°
Facebook | MFORM | 1.1551 x 107% 0.8181 0.8818 0.7982 0.7639 9.8483 x 107 | 1.2171 x 10~/
Ours | 5.4312x 1077 0.8181 0.8181 0.8497 0.7959 9.9666 x 10~7 | 9.9645 x 1077
CondMat | TFORM [ 1.0228 X 1074 0.6833 0.6841 0.7281 0.8160 8.5178 x 10~/ | 1.0779 x 10~/
Ours 1.7541 x 1077 0.6833 0.6833 0.7283 0.7281 8.5962 X 10~ | 8.5873 x 1077
AstroPh InFoRM | 6.5637 x 10~ 0.8281 0.6732 0.7709 0.6221 1.1006 x 10~¢ | 1.4903 x 10~7
Ours | 1.0701 x 1077 0.8695 0.8008 0.7685 0.7711 1.1164 x 107¢ | 1.1117 x 107

apply individual fairness in various problem settings. Sepideh et
al. [29] give an individually fair k-clustering algorithm that expects
each point’s fair radius to be on the same scale. Asia et al. [4] work
on solving individual fairness problem in recommender systems or
other settings that require ranking. They define individual fairness
on rankings and add attention to the framework by utilizing cu-
mulative relevance. Giuseppe et al. propose fAux [7] which defines
‘similar’ as differing only on protected variables, and it ensures in-
dividual fairness by testing the derivative of the predictions of the

model with an auxiliary model that predicts protected variables. In-
FoRM [20] investigates individual fairness on various graph mining
tasks, with some follow-up works on individual fairness in graph
neural networks (GNNs). Dong et al. [9] study ranking based indi-
vidual fairness and propose a plug-and-play framework, REDRESS,
to balance GNNs’ utility and fairness. Xu et al. [43] implement an
auxiliary link prediction task on a fairness graph which is generated
from the similarity matrix, and then concatenate the outputs, called
fairness hint, with the embeddings generated by original GNNs
for downstream tasks. Song et al. propose GUIDE [38] that aims at
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Table 8: Effectiveness of attack for PageRank. Higher denotes better attacking result in gray column, lower is better in the rest.

Datasets | Methods Jaccard Similarity Cosine Similarity
NDCG@50 | NDCG@100 Bias NDCG@50 | NDCG@100 Bias
Vanilla 0.8048 0.8657 3.5931 x 106 0.8844 0.8453 6.5310 X 10°
GN 0.7803 0.7965 7.0030 x 106 0.7274 0.8309 9.9342 x 10~°
PPI PGD 0.7324 0.6563 3.9540 x 104 0.7573 0.6918 4.3089 x 1010
FGSM 0.7402 0.6819 2.2798 x 104 0.5266 0.3775 3.3067 x 10°
Ours 0.6855 0.7646 8.4277 x 1077 0.6663 0.7802 3.9952 X 10~°
Vanilla 0.8891 0.9301 9.8781 x 10~ 0.8916 0.8714 3.2911 X 10°°
GN 0.8424 0.8622 1.2211 x 107 0.8089 0.8039 3.7858 X 107°
Twitch-EN [ PGD 0.7125 0.7799 3.3603 X 102 0.7542 0.8494 6.1631 x 1071
FGSM 0.7125 0.7778 3.2610 X 102 0.7815 0.7814 2.0659 X 10>
Ours 0.6655 0.5495 7.1624 x 1078 0.8833 0.8260 1.1824 x 107°
Vanilla 0.8580 0.7625 6.0219 X 1077 0.8181 0.7982 9.8483 X 10~/
GN 0.4829 0.4936 9.7690 x 10~/ 0.4624 0.5536 1.4124 x 1076
Facebook PGD 0.2438 0.2162 1.2588 x 1023 0.2198 0.2097 4.0474 x 10%°
FGSM 0.2491 0.2176 7.9818 x 10?2 0.0 0.2303 2.0527 x 108
Ours 0.6477 0.5607 7.9161 x 1078 0.4644 0.4797 1.1498 x 1077
Vanilla 0.8667 0.8030 4.4756 X 1077 0.6833 0.7281 8.5178 X 10~/
GN 0.6957 0.7514 4.6734 %1077 0.6784 0.7309 8.8630 X 1077
CondMat PGD 0.2595 0.3136 7.0861 x 1073 0.0 0.0566 9.7560 x 10~/
FGSM 0.2626 0.3399 3.7412x 1073 0.0198 0.0408 4.5741 % 1077
Ours 0.7572 0.7116 4.7817 x 1078 0.6344 0.6438 1.3941 x 1077
Vanilla 0.8849 0.9036 7.5825 x 10~/ 0.8281 0.7709 1.1006 x 10~°
GN 0.7804 0.6473 1.3406 x 10~¢ 0.7598 0.6456 1.6992 x 10~°
AstroPh PGD 0.5105 0.5037 7.1157 x 107 0.4181 0.3485 6.9490 x 104
FGSM 0.5102 0.5144 2.3727 x 107 0.0 0.0072 1.5438 x 107
Ours 0.3664 0.3661 1.9967 x 1077 0.4279 0.5601 6.0060 x 1078

equalizing individual fairness among groups while achieving indi-
vidual fairness. They define Group Equality Informed Individual
Fairness and use the attention mechanism in graph attention net-
works [39]. Yurochkin et al. [44] consider individual fairness from
the robustness perspective, interpreting it as performance invari-
ance under sensitive perturbations to inputs. There also exist works
focusing on attacking individual fairness, e.g., FATE [22] attacks in-
dividual fairness on graphs through generating poisoned adjacency
and feature matrix using meta-gradient. To our best knowledge, we
are the first to study study the sensitivity of the individual fairness
and attacking model utility through similarity matrix.
Sensitivity analysis (SA) is the study of how the uncertainty
in the output of a model can be apportioned to different sources of
uncertainty in the model input [36]. Understanding sensitivity of a
model can help evaluate robustness and uncertainty of the model,
explain how the input impacts the output, and reveal critical latent
relationships. This field of study first caught researchers’ eyes back
in late twentieth century and numerous methods to conduct sensi-
tivity analysis in different scenarios have been proposed ever since.
Webster et al. [34] reference methods from visual psychophysics
that uses manual stimulation and assessment of the response to
understand how a failure of a model is caused by an individual and
promote face recognition’s explainability. Kala [19] analyzes failure
of a bridge with respect to several input variables. Zhang et al. [46]
apply Sobol’s method to analyze how parameters contribute to
the outputs of a covid-19 pandemic mathematical model. N2N [21]
defines the network derivative mining problem that analyzes how
edges of the input graph influence the mining results. There are
previous works that use sensitivity analysis to understand different
types of fairness. Ghosh et al.[14] define fairness influence function
(FIF) to quantify the influence of input features on a classifier’s bias.
They also design the FairXplainer that calculates FIF as difference of
conditional variances. Joshi et al.[18] focus on sensitivity analysis
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in face recognition. They extend VPSA [34] to analyze how fair the
model’s performance in different subgroups is when perturbed.

7 Conclusion

In this paper, we formally introduce the sensitivity analysis prob-
lem of individual fairness, which quantifies how individually fair
learning outcome is affected by the imperfection of the similarity
matrix. We first quantify the gradient of individually fair learn-
ing outcome with respect to the similarity matrix with help of
influence function, which allows us to approximate the change of
individually fair learning outcome when the similarity matrix is
perturbed. We further propose a robust individually fair algorithm
via nested bi-level optimization. Our sensitivity measure and robust
algorithm are applicable to a broad range of learning models as
long as the objective function is twice differentiable. We instantiate
the proposed sensitivity measure and robust algorithm with three
popular learning models, including ranking, clustering and classifi-
cation. Extensive experiments are conducted to demonstrate the
efficacy of our methods. This work contributes to the broader prob-
lem that how robust is existing individually fair algorithms with
respect to similarities, i.e., are existing works stable with inaccurate
similarities. Furthermore, our work paves the way for finding a
more reliable similarity measure by robustifying individual fairness
algorithm. Moving forward, future work could focus on certified
robustness in individual fairness.
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