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Abstract
Network embedding is a commonly used technique in graph min-

ing and plays an important role in a variety of applications. Most

network embedding works can be categorized into positional node

embedding methods and target at capturing the proximity/relative

position of node pairs. Recently, structural node embedding has at-

tracted tremendous research interest, which is intended to perceive

the local structural information of node, i.e., nodes can share similar

local structures in different positions of graphs. Although numer-

ous structural node embedding methods are designed to encode

such structural information, most, if not all, of these methods can-

not simultaneously achieve the following three desired properties:

(1) bijective mapping between embedding and local structure of

node; (2) inductive capability; and (3) good interpretability of node

embedding. To address this challenge, in this paper, we propose

a novel structural node embedding algorithm named topological

anonymous walk embedding (TAWE). Specifically, TAWE creatively

integrates anonymous walk and breadth-first search (BFS) to con-

struct the bijective mapping between node embedding and local

structure of node. In addition, TAWE possesses inductive capability

and good interpretability of node embedding. Experimental results

on both synthetic and real-world datasets demonstrate the effec-

tiveness of the proposed TAWE algorithm in both structural node

classification task and structural node clustering task.
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1 Introduction
In the era of big data and AI [3, 4, 26, 42, 67, 70], network

1
embed-

ding [6, 25, 32, 62, 63] aims to map each node to a real-valued vector

such that information in the graph could be preserved, which plays

an important role in many real-world applications such as node

classification [33, 58, 60, 61], social network alignment [13, 64–

66, 69, 71], knowledge graph reasoning [54, 55] and traffic flow

prediction [22, 53]. Most, if not all, of the existing network em-

bedding methods [7, 11, 14, 15, 39, 40, 46, 47] can be categorized

into positional node embedding methods, which target at captur-

ing relative positional information/proximity score of node pairs.

This direction of methods forces nodes that are directly connected

[47] or sampled in the same random walk [15, 39] to obtain similar

embeddings in the latent space.

Recently, a different category of network embedding methods,

i.e, structural node embedding method has attracted tremendous

research interest. Structural node embedding focuses on preserving

structural similarity, which makes nodes with similar neighborhood

degree distributions or 𝑘-hop neighborhood topologies, to possess

similar embeddings. We illustrate the difference between positional

node embedding methods and structural node embedding methods

in Figure 1. In positional node embedding methods, node 𝑣1 and

node 𝑣3 are close to each other, i.e, with similar positions in the

graph, embeddings of them will be optimized to be similar. On the

contrary, node 𝑣1 and node 𝑣2 are far away from each other but

their local structures are similar, which leads to analogous embed-

dings in structural node embedding methods. Numerous structural

node embedding methods have been proposed to perceive the local

structural information of node. To name a few, Struc2vec [41] and

xNetMF [18] use degree distribution to measure the structural sim-

ilarity between nodes and generate node embeddings via matrix

1
In this paper, we use the term network and graph interchangeably.
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Figure 1: Illustration of positional node embedding methods
and structural node embedding methods.

factorization or the skip-gram framework [35]. DRNE [49] utilizes

degree distribution by ordering the neighbors of a node according

to their degrees and feeding them into a layer-normalized long

short-term memory (LSTM) model [21]. To grasp more complex

structural features, HONE [43] and MCN [31] select specific motifs

and conduct motif counting. In addition, graph kernel [17] can

function as a measure of structural similarity in GraphWave [12]

and SEGK [37].

Despite the remarkable progress achieved by structural node

embedding, most, if not all, of existing structural node embedding

methods are faced with the challenge that the following three de-

sired properties cannot be fulfilled simultaneously: (1) bijective

mapping between embedding and local structure of node; (2) in-

ductive capability; and (3) good interpretability of node embedding.

First, bijective mapping between node embedding and local struc-

ture of node means that nodes with same local structures can earn

identical node embeddings and identical node embeddings refers

to the fact that these two nodes own same local structures. This is

not satisfied in existing methods [18, 31, 41], where identical node

embeddings do not necessarily mean two nodes own same local

structures. As the toy example shown in Figure 2(a), all nodes share

same degree. Simply relying on the degree distribution leads to iden-

tical embeddings for all nodes, which can not discriminate the true

structural equivalence in Figure 2(b). Second, the inductive capabil-

ity requires that the designed structural node embedding algorithm

can efficiently learn the embeddings of unseen/newly arrived nodes

without re-training embeddings of all nodes from scratch. However,

most existing structural node embedding [12, 43, 49] methods are

transductive, which follow the assumption that the topology of the

graph is fixed and can not be generalized to unseen/newly arrived

nodes in inductive setting. Third, good interepretability of node

embedding means that the meaning of each dimension in the node

embedding should be clear and can be explained directly. In exist-

ing methods [12, 37, 41, 44], node embeddings are optimized in the

multi-dimensional latent space and the meaning of each dimension

of the latent space is unclear.

In this paper, to address the above challenge, we propose a simple

yet novel structural node embedding algorithm named topological

anonymous walk embedding (TAWE), which creatively integrates

anonymous walk [23] and breadth-first search (BFS) [9]. Specifi-

cally, anonymous walk (AW) removes the node’s identifier during

random walk in order to preserve structural features while dis-

carding positional information. However, anonymous walk has

some drawbacks in capturing local structure of node. For instance,

the anonymous walk “1 → 2 → 3 → 4” only indicates that the

(a) (b)

Figure 2: Limitation of degree-based embedding methods.

walk passes through four distinct nodes, without providing any

other structural information. In addition, anonymous walk needs to

sample a lot of random walks, which bears high uncertainty in the

sampling process. In this case, different structures of nodes may con-

tribute to same set of anonymous walks (e.g., “1 → 2 → 3 → 4”),

which fails to satisfy bijective mapping between node embedding

and local structure of node. To improve the capability of anonymous

walk to capture local structure of node, we first propose topological

anonymous walk (TAW). Each TAW is a two dimension sequence

(e.g., “(1, 0) → (2, 1) → (3, 2) → (4, 3)”) and encodes two aspects

of information: (1) anonymous walk; and (2) shortest path distance.

Then, for a 𝑘-hop subgraph starting from the root node, we col-

lect all TAWs via BFS to build a group of basic TAWs. We prove

that the group of basic TAWs together with TAWs’ frequencies

(e.g.,“(1, 0) → (2, 1) → (3, 2) → (4, 3) : 2”) has a bijective mapping

to the structure of a 𝑘-hop subgraph (bijective mapping). Based on

the group of basic TAWs, TAWE generates the structural node em-

bedding via selecting frequency of each basic TAW as the entry in

each dimension of the embedding (intepretability). Furthermore, we

demonstrate that TAWE can be easily generated for unseen node

with the help of the group of basic TAWs. At last, the effectiveness

of the proposed TAWE is corroborated through extensive experi-

ments on both synthetic and real-world datasets in the following

two tasks: (1) structural node classification; and (2) structural node

clustering.

The contributions of this work as follows:

• Problem. To the best of our knowledge, we are the first

to study how to fulfill all three desired properties for struc-

tural node embedding problem simultaneously: (1) bijective

mapping between embedding and local structure of node;

(2) inductive capability; and (3) good interpretability of node

embedding.

• Model.We propose a simple yet novel structural node em-

bedding algorithm TAWE, which integrates the anonymous

walk and breadth-first search together to propose the new

concept named topological anonymous walk.

• Experiments. Extensive experiments on both synthetic and

real-world datasets demonstrate the effectiveness of TAWE

in (1) structural node classification task and (2) structural

node clustering task.

2 Problem Definition
In this section, we will introduce some preliminary knowledge of

structural equivalence and the definition of structural node embed-

ding problem. We first summarize the main symbols used in this
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paper. We adopt bold uppercase letters for matrices (e.g., A), bold
lowercase letters for vectors (e.g., v), calligraphic letters for sets
(e.g.,A) and lowercase letters for scalars (e.g., 𝑎). In addition, we fol-

low the convention to represent the 𝑢-th row of matrix A as A(𝑢, :),
the 𝑣-th column as A(:, 𝑣) and the (𝑢, 𝑣)-th entry as A(𝑢, 𝑣). Next
we present the definitions of graph isomorphism, node set-induced

subgraph and 𝑘-hop local topological equivalence, followed by the

formal definition of structural node embedding problem.

For two graphs𝐺1 = (V1, E1) and𝐺2 = (V2, E2), whereV1 and

V2 are node sets and E1 and E2 are edge sets, graph isomorphism

can be defined as follows:

Definition 1 (graph isomorphism). Two graphs𝐺1 = (V1, E1)
and 𝐺2 = (V2, E2) are isomorphic if there exists a bijective mapping
𝑚 between node sets V1 and V2, such that:

∀𝑢, 𝑣 ∈ V1 (𝑢, 𝑣) ∈ E1 ⇐⇒ (𝑚(𝑢),𝑚(𝑣)) ∈ E2

.

Usually, structural node embedding algorithms pay more atten-

tion to local topological equivalence (i.e., subgraph isomorphism)

rather than the isomorphism problem for the whole graph. The

node set-induced subgraph can be defined as:

Definition 2 (node set-induced subgraph [10]). Given a graph
𝐺 = (V, E), let S ⊂ V be a subset of nodes of𝐺 . Then the S-induced
subgraph 𝐺 [S] is the graph whose node set is S and whose edge set
consists of all of the edges in E that have both endpoints in S.

With the definition of node set-induced subgraph, given a root

node 𝑣 in 𝐺 , the 𝑘-hop subgraph rooted in 𝑣 can be denoted as

𝐺 [N𝑘 (𝑣)], where N𝑘 (𝑣) is the node set within 𝑘-hops of 𝑣 . For

any two nodes 𝑣𝑖 and 𝑣 𝑗 , the 𝑘-hop local topological equivalence

(𝑘-LTE) can be defined as:

Definition 3 (𝑘-hop local topological eqivalence). Given
a graph 𝐺 = (V, E), two nodes 𝑣𝑖 ∈ V and 𝑣 𝑗 ∈ V are 𝑘-hop lo-
cal topological equivalent if there is a bijective mapping𝑚 between
N𝑘 (𝑣𝑖 ) and N𝑘 (𝑣 𝑗 ) such that𝑚(𝑣𝑖 ) = 𝑣 𝑗 and 𝐺 [N𝑘 (𝑣𝑖 )] is isomor-
phic to 𝐺 [N𝑘 (𝑣 𝑗 )] under the mapping𝑚(·), where N𝑘 (𝑣𝑖 ) denotes
the node set within 𝑘-hop scale of node 𝑣𝑖 .

Based on the definitions of graph isomorphism, node set-induced

subgraph and 𝑘-hop local topological equivalence, we formally

define the structural node embedding problem:

Problem 1. Structural Node Embedding.
Given: (1) an undirected graph 𝐺 = (V, E)2, (2) the hop number 𝑘 .
Output: an embedding matrix F ∈ R |V |×𝑑 such that for any node
pair 𝑣𝑖 ∈ V and 𝑣 𝑗 ∈ V :

(𝑣𝑖 , 𝑣 𝑗 ) are 𝑘-hop local topological equivalent ⇐⇒ F(𝑣𝑖 , :) = F(𝑣 𝑗 , :)

, where 𝑑 is the dimension of node embeddings.

In real-world applications, the hop 𝑘 can be chosen as an appro-

priate number according to down-stream tasks.

2
Without loss of generality, we do not allow self loops and duplicated edges in 𝐺

throughout the whole paper.

3 Model
In this section, we present our proposed topological anonymous

walk embedding (TAWE) model, which creatively integrates anony-

mous walk [23] and breadth-first search (BFS) [9] together to fulfill

all three desired properties: (1) bijective mapping between node

embedding and local structure of node; (2) inductive capability;

and (3) good interpretability of node embedding. Specifically, we

first introduce anonymous walk [23] and conduct an analysis on

its strengths and drawbacks. We identify that anonymous walk

suffers from repeatedly sampling random walk, which leads to its

failure of satisfying the bijective mapping property. This motivates

us to integrate additional topological information into the anony-

mous walk and propose the general definition of topological anony-
mous walk (TAW). (Subsection 3.1) Then, we adopt the breadth-first

search (BFS) [9] to obtain a simple yet effective topological infor-

mation: shortest path distance (i.e., hop number). By integrating

the hop number in anonymous walk, we propose the topological

anonymous walk used in TAWE and introduce the details of TAWE.

Concretely, we construct a group of basic TAWs and prove that the

TAW group together with each basic TAW’s frequency possesses

a bijective mapping with the 𝑘-hop structure of node (i.e., the bi-

jective mapping property). Accordingly, the normalized frequency

of each basic TAW naturally serves as the entry in each dimension

of a structural node embedding. (Subsection 3.2). At last, we also

propose a pruning algorithm (TAWE-P) for TAWE and have a brief

discussion about (1) the inductive capability of TAWE/TAWE-P and

the interpretability of node embedding in TAWE/TAWE-P and (2)

how to generalize TAWE/TAWE-P to heterogeneous graphs [11, 14]

and attributed graphs [16, 28, 51].

3.1 Topological Anonymous Walk
In this subsection, we analyze the strength and drawbacks of anony-

mous walk [23], which encourages us to propose the general form

of topological anonymous walk (TAW) with additional topological

information. Furthermore, we show that TAW can reconstruct the

corresponding anonymous walk and enjoys at least same capability

of capturing local structure of node as anonymous walk.

In anonymous walk, random walk is the key component, which

is a sequence of nodes sampled according to certain probability

distribution defined on the neighbors of the latest sampled node.

Different from the random walk utilized in positional node em-

bedding methods [15, 39], anonymous walk discards the original

node identity information to seize the local structural information

of node. To be more specific, anonymous walk embraces position
function to describe the node sequence and removes the original

node identity. The position function can be defined as follows:

Definition 4 (positional function). Given a sequence 𝑞 =

{𝑣𝑖 }𝑙𝑖=1 (i.e., 𝑣1 → 𝑣2 → · · · → 𝑣𝑙 ), where 𝑙 is the length of the
sequence. The position function for 𝑢 appearing in this sequence is
defined as 𝑝𝑞 (𝑢) = {𝑖 | 𝑣𝑖 = 𝑢}.

Position function and the sequence are two different but equiva-

lent ways to present the same mathematical object. For example,

given a sequence 𝑞 = 𝑎 → 𝑏 → 𝑐 → 𝑎 → 𝑐 , the position functions

for 𝑎, 𝑏 and 𝑐 in 𝑞 are as the following: 𝑝𝑞 (𝑎) = {1, 4}, 𝑝𝑞 (𝑏) = {2},
𝑝𝑞 (𝑐) = {3, 5}.
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With the help of position function, the anonymous walk can be

defined as:

Definition 5 (anonymous walk (AW)). Given a random walk
𝑞 = {𝑣𝑖 }𝑙𝑖=1 in graph 𝐺 = (V, E), then its corresponding anonymous
walk is a sequence of positive integers 𝑎𝑤 = {𝑎𝑖 }𝑙𝑖=1, where 𝑎𝑖 =

min 𝑝𝑞 (𝑣𝑖 ) is the first position of node 𝑣𝑖 in the random walk 𝑞.

11 2 3 2 3

Anonymous Walk 1

Random Walk 1 Random Walk 2

A

A

B

B

B

C

C
C

C

D

D

D

D

E

F

B

B

11 2 1 2 3

Anonymous Walk 2

Graph

Random Walk 3

A

A

B

B

Figure 3: Illustration of anonymous walk with examples.

As shown in Figure 3, three random walks are sampled from

the graph. Random walk 1 (𝐴 → 𝐵 → 𝐶 → 𝐵 → 𝐶) and random

walk 2 (𝐶 → 𝐷 → 𝐵 → 𝐷 → 𝐵) share the same anonymous

walk 1 → 2 → 3 → 2 → 3, where same node may own different

𝑎𝑖s in different random walks. For example, node 𝐵’s first position

in random walk 1 is 2 and its first position in random walk 2 is

3. From this example, the strength of anonymous walk can be

illustrated: nodes’ original identities are removed and only the

structural pattern of random walk will be kept.

However, in [23], a large number of anonymous walks are sam-

pled repeatedly to approximate the local structure of the root (i.e.,

starting) node. The repeated sampling process causes that same

random walk may be sampled more than one time. In addition,

different local structures may generate same anonymous walks. As

shown in Figure 4, the blue part and the green part possess different

structures but same anonymous walks (1 → 2 → 3 → 4 → 5 → 3)

are generated. These two drawbacks lead to the failure of satisfy-

ing the bijective mapping property between embedding and local

structure of node.

To this end, we identify that additional topological information

should be integrated in anonymous walk to improve its capability

to capture local structure of node. Thus, we propose the topological
anonymous walk (TAW) and its general definition is as follows:

Definition 6 (topological anonymous walk (TAW)). Given
a specific node 𝑢 ∈ 𝐺 and the 𝑘-hop subgraph rooted in 𝑢 denoted as
𝐺 [N𝑘 (𝑢)], a random walk 𝑞 = {𝑣𝑖 }𝑙𝑖=1 on 𝐺 [N𝑘 (𝑢)], where 𝑙 is the
length of the random walk, the topological anonymous walk can be de-
fined as 𝑡𝑎𝑤 = {(𝑎𝑖 , 𝑓 (𝐺 [N𝑘 (𝑢)], 𝑣𝑖 ))}𝑙𝑖=1, where 𝑎𝑖 = min 𝑝𝑞 (𝑣𝑖 ) is
the first position of node 𝑣𝑖 in the randomwalk𝑞 and 𝑓 (𝐺 [N𝑘 (𝑢)], 𝑣𝑖 )
can be any topological information defined on𝐺 [N𝑘 (𝑢)] for node 𝑣𝑖 .

Algorithm 1 Construction of the group of basic TAWs

Input: (1) Graph𝐺 = (V, E); (2) maximal hop 𝑘 ; and (3) longest

length for TAW 𝐿.

Output: B𝑢s for all nodes 𝑢 in 𝐺 .

for node 𝑢 ∈ V do ⊲ Parallel Computing

Build 𝐺 [N𝑘 (𝑢)] via BFS
Compute ℎ𝑜𝑝 (𝑣𝑖 , 𝑢) for any 𝑣𝑖 in 𝐺 [N𝑘 (𝑢)] via BFS
Initialize B𝑢 as empty

Initialize random walk queue Q with 𝑢

while Q is not empty do
Pop random walk 𝑞 from Q
Compute the TAW 𝑡𝑎𝑤 for 𝑞 according to Eq.(1)

if 𝑡𝑎𝑤 not in B𝑢 then
Add 𝑡𝑎𝑤 : 1 into B𝑢

else
Increase 𝐶𝑢 (𝑡𝑎𝑤) by 1 in B𝑢

end if
if the length of 𝑞 equal to 𝐿 then

Continue

else
Pick the last node 𝑣𝑙𝑎𝑠𝑡 in 𝑞

for 𝑣 ∈ 𝐺 [N𝑘 (𝑢)] and (𝑣𝑙𝑎𝑡𝑒𝑠𝑡 , 𝑣) ∈ E do
Add random walk 𝑞𝑛𝑒𝑤 = 𝑞 + 𝑣 into Q

end for
end if

end while
end for
return B𝑢s for all nodes 𝑢s in 𝐺 .

In Definition 6, the topological information 𝑓 (·, ·) can be defined

arbitrarily such as the original node identity (𝑓 (𝐺 [N𝑘 (𝑢)], 𝑣𝑖 ) =
𝑣𝑖 ) or 𝑎𝑖 defined in Definition 5 (𝑓 (𝐺 [N𝑘 (𝑢)], 𝑣𝑖 ) = 𝑎𝑖 ). Actually,

for any choice of the topological information 𝑓 (·, ·), we have the
following proposition:

Proposition 1. For any choice of 𝑓 (·, ·), the set of topological
anonymous walks can reconstruct the corresponding set of anony-
mous walks.

From Proposition 1, since the set of anonymous walks can be

reconstructed from the set of topological anonymous walks, TAW

with any choice of 𝑓 (·, ·) owns at least the same capability of cap-

turing local structure of node as AW. Then, one question naturally

arises: How to select an appropriate 𝑓 (·, ·) to (1) avoid repeatedly

sampling in AW; and (2) make the mapping between local structure

of node and the final node embedding bijective?

3.2 TAWE
In this subsection, we present the details of topological anony-

mous walk embedding (TAWE), which chooses the hop number

(i.e., shortest path distance from the root node 𝑢) as the additional

topological information (i.e., 𝑓 (𝐺 [N𝑘 (𝑢)], 𝑣𝑖 ) = ℎ𝑜𝑝 (𝑢, 𝑣𝑖 )) to solve
the question raised in the end of Subsection 3.1. Specifically, we

adopt breadth-first search (BFS) [9] algorithm to compute the hop

number for each node 𝑣𝑖 in 𝐺 [N𝑘 (𝑢)] from the root node 𝑢. Then,

a group of basic TAWs is built for 𝐺 [N𝑘 (𝑢)] and we prove that

the TAW group together with each TAW’s frequency possesses
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1 2 3 4 5 3
Random Walk 2

TAW 2
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Figure 4: Illustration of topological anonymous walk.

a bijective mapping with the 𝑘-hop structure of the root node 𝑢.

Finally, we describe how the normalized frequency of each basic

TAW naturally forms each dimension of node embedding of 𝑢.

The first step of TAWE is to extract 𝐺 [N𝑘 (𝑢)] for the root node
𝑢 and calculate the hop number ℎ𝑜𝑝 (𝑣𝑖 , 𝑢) for each node 𝑣𝑖 in

𝐺 [N𝑘 (𝑢)] from 𝑢, which can be easily obtained via BFS
3
. With

the hop number ℎ𝑜𝑝 (𝑣𝑖 , 𝑢), the topological anonymous walk for a

random walk 𝑞 = {𝑣𝑖 }𝑙𝑖=1 in TAWE can be built as:

𝑡𝑎𝑤 = {(𝑎𝑖 , ℎ𝑜𝑝 (𝑣𝑖 , 𝑢)}𝑙𝑖=1, (1)

where 𝑎𝑖 = min 𝑝𝑞 (𝑣𝑖 ) is defined in Definition 5. We can observe

that TAW has two values for each node 𝑣𝑖 in the random walk: (1)

the first position 𝑎𝑖 inherited from anonymous walk and (2) the hop

number for 𝑣𝑖 from the root node 𝑢. One example of TAW can be

found in Figure 4, where random walk 1 and random walk 2 have

different TAWs to discriminte the topologies in the blue part and

the green part.

The second step of TAWE is to construct a group of basic TAWs

together with the frequency of each TAW, which is the core com-

ponent of TAWE. Given the root node 𝑢 and a maximal length

𝐿 of TAW, we denote the target of this step as B𝑢 = {𝑡𝑎𝑤1 :

𝐶𝑢 (𝑡𝑎𝑤1), . . . , 𝑡𝑎𝑤𝑖 : 𝐶𝑢 (𝑡𝑎𝑤𝑖 ), . . . }, where 𝐶𝑢 (𝑡𝑎𝑤𝑖 ) is the fre-

quency of a basic TAW 𝑡𝑎𝑤𝑖 starting from the root node 𝑢 with

the length 𝑙 no larger than 𝐿 in𝐺 [N𝑘 (𝑢)]. B𝑢 can be regarded as a

dictionary, where the indexes are TAWs and the values are TAWs’

frquencies. The process of constructing B𝑢 is shown in Algorithm

1. One thing worth noticing is that B𝑢 for each node 𝑢 in 𝐺 can be

built in a parallel way to save time in implementation. Regarding

the details of Algorithm 1, we utilize a first-in-first-out queue (Q) to

store all random walks starting from the root node 𝑢. After comput-

ing the hop numbers for any 𝑣𝑖 in 𝐺 [N𝑘 (𝑢)], Q is initialized with

the root node 𝑢, which is also a random walk with length 𝑙 = 1.

Then, while Q is not empty, we pop the first random walk 𝑞 out

and build its corresponding TAW according to Eq. (1). The TAW

is added into/counted in the TAW base B𝑢 . If the random walk 𝑞

already has a length 𝑙 = 𝐿, we continue popping randomwalks from

3
Actually, there is no need to extract𝐺 [N𝑘 (𝑢 ) ] and compute hop numbers explicitly

in the first step, both of which can be conducted during the process of building the

group of basic TAWs in implementation. We make them the first step here to better

present the TAWE algorithm for the purpose of readability.

Q. Otherwise, we follow BFS to consider all nodes (𝑣s) connected

to the last node of the random walk 𝑞 in 𝐺 [N𝑘 (𝑢)]. We place each

𝑣 at the end of 𝑞 to form a new random walk 𝑞𝑛𝑒𝑤 and add 𝑞𝑛𝑒𝑤 in

Q. In this way, B𝑢 for the root node 𝑢 can be constructed after Q
is empty.

In fact, integrating BFS
4
in TAW solves the question raised at the

end of Subsection 3.1. First, BFS can avoid sampling one random

walk repeatedly with the help of Q. Second, we identify that select-

ing the hop number as additional topological information 𝑓 (·, ·)
enables the TAW base B𝑢 to enjoy the desired bijective mapping
property with the local structure rooted in 𝑢 (i.e., 𝐺 [N𝑘 (𝑢)]) and
have the following proposition:

Proposition 2 (bijective mapping property). The mapping
between B𝑢 and𝐺 [N𝑘 (𝑢)] is bijective, when the maximal 𝐿 → ∞5.

Proof. See Appendix. □

Finally, we describe how to use the constructed TAW group B𝑢

to generate structural node embedding in TAWE. After constructing

B𝑢s for all nodes in graph 𝐺 , we merge different TAWs in all B𝑢s

to a merged group B = {𝑡𝑎𝑤1, . . . , 𝑡𝑎𝑤𝑖 , . . . }. Given B, we can

generate a structural node embedding with a |B| dimension. The

𝑖-th dimension of the structural node embedding for node 𝑢 is the

normalized frequency of 𝑡𝑎𝑤𝑖 in B𝑢 . Concretely, for the 𝑖-th basic

TAW 𝑡𝑎𝑤𝑖 in B, we can obtain the mean 𝜇𝑡𝑎𝑤𝑖
and the standard

deviation 𝜎𝑡𝑎𝑤𝑖
of 𝑡𝑎𝑤𝑖 in [B𝑢1

[𝑡𝑎𝑤𝑖 ], . . . ,B𝑢 |V| [𝑡𝑎𝑤𝑖 ]]. The 𝑖-th
dimension for the structural embedding of node 𝑢 is as follows:

F(𝑢, 𝑖) =
(B𝑢 [𝑡𝑎𝑤𝑖 ] − 𝜇𝑡𝑎𝑤𝑖

)
𝜎𝑡𝑎𝑤𝑖

. (2)

3.3 TAWE-P and Discussion
In this subsection, we further propose a pruning algorithm of TAWE

named TAWE-P and have a brief discussion about (1) the inductive

capability of TAWE/TAWE-P and the interpretability of node embed-

ding in TAWE/TAWE-P and (2) the generalization of TAWE/TAWE-

P to heterogeneous graphs and attributed graphs.

4
Notice that BFS in TAWE during the process of constructing B𝑢 allows visiting one

node multiple times to collect different random walks/TAWs.

5
Actually, 𝐿 does not need to be∞ for real-world graphs. Usually, 𝐿 = 2𝑘 or 𝐿 = 3𝑘 is

enough in our experiments for real-world datasets.
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In TAWE, the longest length 𝐿 can be used to limit the collections

of TAWs. However, a small 𝐿 will do damage to TAWE in that

short TAWs can not capture sophisticated structures. Thus, we

propose a pruning algorithm TAWE-P, whose core part is to limit

the expansion of BFS. We have added two pruning hyperparameters

to control the expansion of BFS: (1) the maximal branch 𝑁𝑚𝑎𝑥 ; and

(2) the maximal times of visit𝑇𝑚𝑎𝑥 . We consider the neighbor nodes

𝑣s of the last node 𝑣𝑙𝑎𝑠𝑡 in the random walk 𝑞: if node 𝑣𝑙𝑎𝑠𝑡 has too

many neighbors, TAWE-P only allows a maximal 𝑁𝑚𝑎𝑥 different

neighbor nodes to be added after 𝑣𝑙𝑎𝑠𝑡 to build a new random

walk 𝑞𝑛𝑒𝑤 . Furthermore, TAWE-P embraces the assumption that

if the neighbor node 𝑣 has been visited too many times during the

process of constructing B𝑢 , its topological information has been

well captured. So, TAWE-P sets a maximal times of visit 𝑇𝑚𝑎𝑥 and

records the times of visit of each node in 𝐺 [N𝑘 (𝑢)]. If the time of

visit of the neighbor node 𝑣 (i.e., 𝑇𝑣 ) exceeds 𝑇𝑚𝑎𝑥 , it will not be

added after 𝑣𝑙𝑎𝑠𝑡 in random walk 𝑞 to build 𝑞𝑛𝑒𝑤 . Via such pruning

strategy, TAWE-P can save much time compared to TAWE in real-

world graphs.

Discussion. At last, we discuss about (1) the inductive capability
of TAWE/TAWE-P and the interpretability of node embedding in

TAWE/TAWE-P and (2) the generalization of TAWE/TAWE-P to

heterogeneous graphs and attributed graphs. For the inductive ca-

pability, it is unnecessary to repeat the entire embedding process

of TAWE/TAWE-P. Taking the structural node classification as an

example, after obtaining B𝑢 for each node 𝑢 in the original graph

𝐺 and the merged B, the inductive learning pipeline for an un-

seen/new node 𝑣𝑛𝑒𝑤 has two steps: (1) build B𝑣𝑛𝑒𝑤 and update B𝑣𝑖 s

for other nodes in𝐺 [N𝑘 (𝑣𝑛𝑒𝑤)]; and (2) use the original merged B
to construct F(𝑣𝑛𝑒𝑤 , :)6 and apply the original trained classifier on

F(𝑣𝑛𝑒𝑤 , :). We have experimental results on the inductive capability

in Subsection 4.4. For the interpretability of node embedding, based

on Eq. (2), we can see that the 𝑖-th dimension of the structural node

embedding (F(𝑢 : 𝑖)) corresponds to the normalized frequency of

𝑡𝑎𝑤𝑖 ∈ B in 𝐺 [N𝑘 (𝑢)]. If F(𝑢 : 𝑖) is large, it means the 𝑘-hop

subgraph rooted in 𝑢 possesses more 𝑡𝑎𝑤𝑖s compared to 𝑘-hop

subgraphs rooted in other nodes of 𝐺 . For the generalization of

TAWE/TAWE-P, since the definition of additional topological infor-

mation 𝑓 (·, ·) is general, rather than the hop number (ℎ𝑜𝑝 (𝑣𝑖 , 𝑢)),
we can design special 𝑓 (·, ·)s for different types of graphs. To name

a few, we can integrate metapath [11, 14] into 𝑓 (·, ·) for hetero-
geneous graphs and add node attributes into 𝑓 (·, ·) for attributed
graphs [16, 28, 51]. This means that our proposed TAWE/TAWE-P

can be easily generalized to other types of graphs.

4 Experiment
In this section, we evaluate TAWE/TAWE-P on both synthetic

datasets and real-world datasets in the following two tasks: (1)

structural node classification; and (2) structural node clustering.

We also conduct experiments to validate the inductive capability of

TAWE.

6
Usually, for real-world graphs, if | B | is too large, we can generate a subset of B to

replace it.

4.1 Experimental Setup
Datasets. We use 7 synthetic graphs to evaluate TAWE and 3 real-

world datasets to evaluate TAWE-P. All 7 synthetic datasets are

generated in [24]. The information of 7 synthetic graphs are pre-

sented in Table 1 and the 5 base graphs they are generated from

are shown in Figure 5. We also use 2 real-world air-traffic networks

Brazil and Europe same as Struct2vec [41] for structural node clas-

sification and the same Enron dataset [29] as GraphWave [12] for

structural node clustering task. For node classification, we ran-

domly split every dataset into 33/33/34% for training, validation,

and testing. Brazil has 131 nodes, 1,038 edges and 4 classes of nodes

labelled in [24]. Europe has 399 nodes, 5,995 edges and 4 classes of

nodes. Enron has 184 nodes, 3,089 edges and 8 different clusters.

B5 PB5

S5H5C8

Figure 5: Illustration of base graphs in synthetic datasets.

Metrics. For structural node classification, we adopt accuracy and

F1-macro as metrics. For structural node clustering, we choose

normalized mutual information (NMI) and purity as metrics.

Baselines.We compare TAWE/TAWE-Pwith 5 baselines: Node2vec [15]

is a classical positional embedding method and the remaining 4

are representative or latest structural node embedding algorithms:

xNetMF [18], GraphWave [12], Role2vec [1] and SEGK [37].

Parameter Settings. The dimensions of structural node embed-

dings in all baselines and TAWE/TAWE-P are presented in Table 2.

The dimensions in all baselines are 16 for synthetic graphs and

128 for real-world graphs. Since the dimension of embeddings gen-

erated in TAWE/TAWE-P is equal to the size of the merged TAW

group (i.e.,|B|), the dimension of embeddings varies across different

datasets. One thing we want to emphasize is that the dimensions in

TAWE/TAWE-P on all datasets are consistently smaller than those

of baselines. For example, the dimension of embeddings in TAWE

on CoS is 3, which is smaller than 16 in all baselines. This means

that if TAWE/TAWE-P can achieve better performances than base-

lines, the capability of TAWE/TAWE-P to capture local structure of

node is much stronger than baselines given the smaller dimension

of node embeddings in TAWE/TAWE-P. All other hyperparameters

of baselines are set as default in their papers. We evaluate TAWE

on synthetic datasets and run TAWE-P on real-world datasets. The

hyperparameters are as the following: (1) the maximal hop 𝑘 = 3

and the longest length for TAW 𝐿 = 4 in TAWE; and (2) in TAWE-P,

𝑘 = 3, 𝐿 = 9, the maximal times of visit𝑇𝑚𝑎𝑥 = 100 and 𝑁𝑚𝑎𝑥 = 10.
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Table 1: Information of synthetic graphs.

Name # Node # Edge Base
Graph Generation Descriptions from [24]

B-A 90 150 B5 Connecting the out-most nodes on the chain of B5 into a circle.

B-B 140 260 B5 Connecting the out-most nodes on the chain of B5 into a circle. Additional 5-clique at each connector.

FW 80 100 C8 Enlarged version of C8 with similar perturbation.

H-S 80 120 H5 10 H5 on a circle with 2 circular nodes between each connecting circular node with house’s side.

H-T 80 120 H5 10 H5 on a circle with 2 circular nodes between each connecting circular node with house’s roof.

PB-L 60 90 PB5 10 half-sided PB5 connected to each node of a 10-node circular graph. All the node degrees are 3.

CoS 170 155 S5 10 normal stars and 5 binary stars as in S5.

Table 2: The dimensions of structural node embeddings in baselines and TAWE/TAWE-P.

Datasets B-A B-B FW H-S H-T PB-L CoS Brazil Europe Enron

Baselines 16 16 16 16 16 16 16 128 128 128

TAWE/TAWE-P 6 6 4 7 7 7 3 91 127 70

Table 3: Accuracy (±𝑠𝑡𝑑) of node classification on synthetic dataset(%).

Methods B-A B-B FW H-S H-T PB-L CoS

Node2vec 37.8±9.8 50.1±8.1 14.4±6.3 18.3±8.1 24.0±8.9 20.7±9.1 84.8±5.3
xNetMF 81.0±9.8 72.3±6.8 89.7±15.5 72.8±13.7 81.4±10.4 32.5±13.8 93.3±4.0

GraphWave 44.5±7.4 56.7±5.2 27.4±13.6 28.2±13.2 29.1±15.1 30.8±9.9 59.3±6.7
Role2vec 82.5±11.1 81.4±7.3 56.9±12.1 61.7±10.4 65.0±12.8 33.0±10.9 89.6±4.0
SEGK 95.9±8.5 94.7±6.8 97.9±8.5 89.7±11.4 94.1±8.4 91.3±11.7 99.5±2.1
TAWE 98.5±4.6 99.0±3.2 99.6±4.1 96.1±7.7 99.0±4.6 99.4±4.6 99.3±2.4

Table 4: F1-macro (±𝑠𝑡𝑑) of node classification on synthetic dataset(%).

Methods B-A B-B FW H-S H-T PB-L CoS

Node2vec 17.9±5.3 18.0±3.6 12.3±5.7 10.4±4.0 17.5±6.4 15.9±8.5 45.3±3.6
xNetMF 62.3±14.8 39.1±12.6 87.9±17.7 62.1±16.1 67.6±13.3 14.7±10.6 71.1±9.8

GraphWave 12.4±1.6 14.5±1.0 14.8±12.4 10.7±8.4 13.0±11.4 14.0±8.1 19.3±5.6
Role2vec 67.5±17.1 60.2±14.2 48.8±13.9 46.8±12.9 55.3±15.3 16.3±8.3 55.9±10.1
SEGK 92.4±13.8 86.9±15.5 97.9±8.4 85.6±14.3 90.4±13.3 85.8±17.9 98.4±7.3
TAWE 97.2±8.0 97.4±7.9 99.6±3.7 94.7±10.1 98.7±5.6 99.2±5.5 97.7±8.0

4.2 Structural Node Classification
For TAWE, the results of structural node classification on 7 synthetic

graphs are shown in Table 3 and Table 4. First, for 6 out of 7 synthetic

datasets, TAWE outperforms baselines by a large margin in both

Accuracy and F1-macro. For example, TAWE has an 13.4% increase

in F1-macro compared to the second best performance obtained by

SEGK [37] on the PB-L dataset. Second, on the CoS dataset, TAWE’s

F1-macro is only 0.7% lower than that of SEGK. Given the fact that

the dimension of node embeddings in TAWE is only 3 compared

to 16 in SEGK, TAWE also performs quite well in such an unfair

comparison.

For two real-world datasets Brazil and Europe, the results of

TAWE-P and 5 baselines are presented in Table 5. We can ob-

serve that TAWE-P beats all baselines on these two real-world

datasets. Taking the Brazil dataset as an example, the F1-macro of

TAWE-P (74.3%) is about 10% higher than that of SEGK [37] (64.2%),

which is the best among all baselines. The results on both synthetic

datasets and real-world datasets demonstrate the effectiveness of

TAWE/TAWE-P in structural node classification task.

Table 5: Accuracy and F1-macro (±𝑠𝑡𝑑) of node classification
on airport datasets (%).

Method

Brazil Europe

Accuracy F1-macro Accuracy F1-macro

Node2vec 61.3±6.0 25.3±1.5 43.5±4.3 24.7±2.6
xNetMF 63.8±6.6 37.0±12.3 60.2±4.2 44.5±7.5

GraphWave 76.5±6.3 55.6±7.6 66.1±3.7 48.8±5.6
Role2vec 58.0±6.7 41.1±10.0 43.6±4.3 28.8±3.9
SEGK 75.9±8.9 64.2±15.1 61.4±4.1 43.6±6.0

TAWE-P 79.8±6.0 74.3±7.3 63.2±4.2 58.2±4.4
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Table 6: Purity and NMI of node clustering on synthetic datasets.

Method

B-A B-B FW H-S H-T PB-L CoS

Purity NMI Purity NMI Purity NMI Purity NMI Purity NMI Purity NMI Purity NMI

Node2vec 0.44 0.01 0.57 0.00 0.28 0.00 0.25 0.00 0.28 0.00 0.33 0.00 0.59 0.02

xNetMF 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
GraphWave 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Role2vec 1.00 1.00 0.97 0.93 0.81 0.66 0.93 0.89 0.85 0.77 0.62 0.34 0.92 0.72

SEGK 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
TAWE 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

4.3 Structural Node Clustering
For structural node clustering, we apply k-means++ [2] for clus-

tering on embeddings obtained by different methods. The Purity

and NMI of all baselines and our proposed TAWE on 7 synthetic

datasets are shown in Table 6. We can see that most algorithms

have achieved a perfect clustering performance on simple synthet-

ica datasets (Purity=1 and NMI=1), including our TAWE. This re-

flects that structural node clustering is a much less challenging task

than structural node classification on these simple synthetic graphs.

However, for the real-world graph Enron, the proposed TAWE-P

consistently outperforms all other baselines in both Purity and NMI,

which is presented in Figure 6. The results on synthetic datasets

and the real-world Enron graph validate TAWE-P’s capability of

grasping local structure of node.

(a) Purity. (b) NMI.

Figure 6: The purity and NMI on Enron (%).

4.4 Inductive Capability
In this subsection, we conduct a study on the inductive capability

of the proposed TAWE. We launch the inductive experiments on

the synthetic PB-L dataset, which is constructed by connecting L

numbers of H5 base graph. An illustrative example of PB-L is PB-3

shown in Figure 2 in Section 1, which has 3 H5 base graphs. We

build a series of PB-L datasets with 4 steps: PB-5 , PB-10, PB-20, PB-

30. In each step, some H5 base graphs are added into the previous

PB-L graph. The nodes in these new H5 base graphs are unseen

nodes in previous step and TAWE needs to generate the structural

embeddings for these new nodes without re-running from scratch.

The details of the inductive experiments are as the following: First,

we run TAWE on PB-5 to construct the merged TAW groupB. Then,

for each new node 𝑢 added in PB-10/PB-20/PB-30, we extract the

𝑘-hop subgraph 𝐺 [N𝑘 (𝑢)] rooted in 𝑢 and build B𝑢 and obtain its

embedding F(𝑢, :). During this process we do not need to rebuild

the groups of basic TAWs for old nodes appearing in previous step.

Taking structural node classification as an example, the classifier

trained on PB-5 can still be used for PB-10/PB-20/PB-30. The visu-

alizations of node embeddings obtained via principle component

analysis (PCA) [27] from PB-5 to PB-30 are shown in Figure 7. From

Figure 7(a), we can observe that node embeddings obtained from

TAWE are more concentrate and the classification boundaries for

different structural equivalences of nodes (e.g., different shapes of

nodes in Figure 2(b)) are clear from PB-5 to PB-30, which verifies

the good inductive capability of TAWE.
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Figure 7: Visualization of TAWE’s embeddings compared to
those of SEGK.

5 Related Work
Our paper is related to network embedding and structural node

embedding.

Network embedding. Network embedding is to represent nodes

in the graph as real-value vectors. Traditional network embedding

methods usually take the adjacencymatrix as input and project each

node into a low-dimensional latent space [5, 8, 38, 45, 48, 52, 72, 73].

Then, DeepWalk [39] first samples the random walks and takes ad-

vantage of the skip-gram architecture [36] to maximize the probabil-

ity of nodes appearing in the same randomwalk via optimizing node

embeddings. Based on DeepWalk [39], node2vec [15] introduces

two hyper-parameters to strike a balance between the breadth and

depth during search. Different from the previous two approaches

based on random walk, LINE [47] explicitly constructs a loss func-

tion with 1-hop and 2-hop neighbors using KL-divergence [30]. To

unify DeepWalk [39], node2vec [15] and LINE [47], NetMF [40]

proves that all these node embedding algorithms can be regarded as

some specific forms of matrix factorization. Recently, graph neural

networks (GNNs) [16, 28, 51, 59, 68] have become a novel toolkit for
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network embedding. The general message-passing mechanism [28]

of GNN is simple: at each layer, each node aggregates the infor-

mation from its neighbors and transforms the input information

as the output for next layer via trainable parameters. Based on

the message-passing mechanism, GraphSAGE [16] proposes vari-

ous aggregation strategies. With the purpose of assigning different

weights to different neighbors, graph attention network (GAT) [51]

integrates the attention mechanism [50] into GNN. A comprehen-

sive survey of different architecture design and taxonomy of GNNs

can be found in [57].

Structural node embedding. Structural node embedding meth-

ods focus on perceiving the local structural information of node.

Struc2vec [41] is one of the most popular approaches of structural

node embedding. It identifies that the structural similarity between

nodes can be evaluated using the ordered degree sequence of nodes

and has been applied to various applications (e.g., influence max-

imization [56]). Following Struct2vec, xNetMF [18] adopts node

degree as structural feature and aggregates the node degree distribu-

tions among different hops of neighborhood with a weighted sum.

DRNE [49] is another degree-based structural node embedding

method, which utilizes node degree as a criterion to sort neigh-

bors into an ordered sequence and feeds the sequence into a layer-

normalized long short-termmemory (LSTM) model [21]. To capture

more sophistic structures, DeepGL [44] extracts motif-based struc-

tural features from the original network. HONE [43] proposes a

framework based on a weighted motif graph and leverages the

attribute diffusion mechanism to learn node embeddings. Similarly,

MCN [31] constructs a weighted motif graph and integrates it in

GNN framework. Some other structural node embedding meth-

ods include RolX [19], GraphWave [12], Role2vec [1], RiWalk [34]

and SEGK [37]. RolX [19] is a structural feature-based matrix fac-

torization algorithm relying on structural feature discovery [20].

GraphWave [12] conducts the structural node embedding with the

help of graph kernel [17]. Role2vec [1] and RiWalk [34] sample the

feature-based random walk as corpus and learn node embedding

via the skip-gram architecture [36]. SEGK [37] learns the structural

node embedding in a two-step framework, which first constructs

a structural similarity matrix based on graph kernels, and then

derives node embeddings with matrix factorization.

6 Conclusion
In this paper, we study the structural node embedding problem.

To satisfy the three desired properties: (1) bijective mapping be-

tween embedding and local structure of node; (2) inductive capabil-

ity; and (3) good interpretability of node embedding, we propose

a simple yet novel structural node embedding approach named

TAWE. In particular, TAWE creatively integrates anonymous walk

and breadth-first search to propose the topological anonymous

walk. Based on the merged group of basic TAWs, the normalized

frequency of each basic TAW naturally becomes the entry in the

corresponding dimension of structural node embedding. Further-

more, we propose a pruning algorithm TAWE-P of TAWE to handle

real-world graphs. Extensive experiments on both synthetic and

real-world datasets demonstrate the effectiveness of our proposed

TAWE/TAWE-P in capturing local structure of node.

7 Appendix
Proposition 2 (bijective mapping property). The mapping

between 𝐺 [N𝑘 (𝑢)] and B𝑢 is bijective, when the maximal 𝐿 → ∞.

Proof. The key to prove this this property is the determinstic
process of constructing random walks, which means the that each

random walk 𝑞 with length 𝑙 ≤ 𝐿 will be visited and more impor-

tantly visited only 𝑜𝑛𝑐𝑒 . We need to prove two directions: the first

direction is that one 𝐺 [N𝑘 (𝑢)] can not generate two different B𝑢s,

which has already been satisfied in existing methods (e.g., [41]) and

is obvious because by adopting the random walk queue Q and BFS,

the process to build random walk is determinstic and only one B𝑢

can be generated for 𝐺 [N𝑘 (𝑢)].
The other direction that one B𝑢 only corresponds to one topol-

ogy of 𝐺 [N𝑘 (𝑢)] is not trivial to prove. Here we prove it by in-

duction on 𝑘𝑖𝑠𝑜 = {0, 1, . . . , 𝑘} and contradiction. Assume that

B𝑢 corresponds to 𝐺 [N𝑘 (𝑢)] and 𝐺 [N𝑘 (𝑣)] with different topolo-

gies but B𝑢 = B𝑣 = {𝑡𝑎𝑤1 : 𝐶 (𝑡𝑎𝑤1), . . . , 𝑡𝑎𝑤𝑖 : 𝐶 (𝑡𝑎𝑤𝑖 ), . . . }.
We prove that 𝐺 [N𝑘𝑖𝑠𝑜 (𝑢)] and 𝐺 [N𝑘𝑖𝑠𝑜 (𝑣)] are isomorphic by in-

duction for 𝑘𝑖𝑠𝑜 = {0, 1, . . . , 𝑘}. For 𝑘𝑖𝑠𝑜 = 0, 𝑡𝑎𝑤1 = (1, 0) for
both 𝑢 and 𝑣 and they are isomorphic with only one node. For

𝑘𝑖𝑠𝑜 = 2, since the 𝑡𝑎𝑤2 = (1, 0) → (2, 1) : 𝐶 (𝑡𝑎𝑤2) is same for

𝐺 [N1 (𝑢)] and 𝐺 [N1 (𝑣)], 𝑢 and 𝑣 have same number of one-hop

neighbors. The only reason that 𝐺 [N1 (𝑢)] and 𝐺 [N1 (𝑣)] are not
isomorphic is that the number of edges between 1-hop nodes for 𝑢

and 𝑣 are different7. Without loss of generality, let us assume that

𝐺 [N1 (𝑢)] has fewer edges between 1-hop nodes than 𝐺 [N1 (𝑣)].
This will result in the number of 𝑡𝑎𝑤3 = (1, 0) → (2, 1) → (3, 1)
different for 𝐺 [N1 (𝑢)] and 𝐺 [N1 (𝑣)], which leads to contradic-

tion. Then, let us assume that 𝐺 [N𝑘𝑖𝑠𝑜 (𝑢)] and 𝐺 [N𝑘𝑖𝑠𝑜 (𝑣)] are
isomorphic. For 𝑘𝑖𝑠𝑜 = 𝑘𝑖𝑠𝑜 + 1, the step 1 is that we remove

the edges between the 𝑘𝑖𝑠𝑜 + 1-hop nodes. If the remaining two

graphs are not isomorphic (i.e., different connection structures

between 𝑘𝑖𝑠𝑜 -hop nodes and 𝑘𝑖𝑠𝑜 + 1-hop nodes), this will lead

to the number of at least one of the following two kinds TAWs

to be different: (1) (1, 0) → (2, 1) → · · · → (𝑘𝑖𝑠𝑜 + 1, 𝑘𝑖𝑠𝑜 ) (i.e.,
random walk from the start node to the 𝑘𝑖𝑠𝑜 -hop end node). (2)

(1, 0) → (2, 1) → · · · → (𝑘𝑖𝑠𝑜 + 1, 𝑘𝑖𝑠𝑜 ) → (𝑘𝑖𝑠𝑜 , 𝑘𝑖𝑠𝑜 − 1) →
(𝑘𝑖𝑠𝑜 + 1, 𝑘𝑖𝑠𝑜 ) → (𝑘𝑖𝑠𝑜 , 𝑘𝑖𝑠𝑜 − 1) . . . (i.e., random walk repeatedly

from the 𝑘𝑖𝑠𝑜 + 1-hop node back to the 𝑘𝑖𝑠𝑜 -hop node and returning
to the 𝑘𝑖𝑠𝑜 +1-hop node again). This causes contradiction. Then, we
added the edges between the edges between the 𝑘𝑖𝑠𝑜 + 1-hop nodes

back to these two graphs, the contradiction can be proved same

as 𝑡𝑎𝑤3 for 𝐺 [N1 (𝑢)] and 𝐺 [N1 (𝑣)]. So, the bijective mapping

property proposition is proved to be true. □
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