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Abstract

Network embedding is a commonly used technique in graph min-
ing and plays an important role in a variety of applications. Most
network embedding works can be categorized into positional node
embedding methods and target at capturing the proximity/relative
position of node pairs. Recently, structural node embedding has at-
tracted tremendous research interest, which is intended to perceive
the local structural information of node, i.e., nodes can share similar
local structures in different positions of graphs. Although numer-
ous structural node embedding methods are designed to encode
such structural information, most, if not all, of these methods can-
not simultaneously achieve the following three desired properties:
(1) bijective mapping between embedding and local structure of
node; (2) inductive capability; and (3) good interpretability of node
embedding. To address this challenge, in this paper, we propose
a novel structural node embedding algorithm named topological
anonymous walk embedding (TAWE). Specifically, TAWE creatively
integrates anonymous walk and breadth-first search (BFS) to con-
struct the bijective mapping between node embedding and local
structure of node. In addition, TAWE possesses inductive capability
and good interpretability of node embedding. Experimental results
on both synthetic and real-world datasets demonstrate the effec-
tiveness of the proposed TAWE algorithm in both structural node
classification task and structural node clustering task.
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1 Introduction

In the era of big data and Al [3, 4, 26, 42, 67, 70], network! embed-
ding [6, 25, 32, 62, 63] aims to map each node to a real-valued vector
such that information in the graph could be preserved, which plays
an important role in many real-world applications such as node
classification [33, 58, 60, 61], social network alignment [13, 64—
66, 69, 71], knowledge graph reasoning [54, 55] and traffic flow
prediction [22, 53]. Most, if not all, of the existing network em-
bedding methods [7, 11, 14, 15, 39, 40, 46, 47] can be categorized
into positional node embedding methods, which target at captur-
ing relative positional information/proximity score of node pairs.
This direction of methods forces nodes that are directly connected
[47] or sampled in the same random walk [15, 39] to obtain similar
embeddings in the latent space.

Recently, a different category of network embedding methods,
i.e, structural node embedding method has attracted tremendous
research interest. Structural node embedding focuses on preserving
structural similarity, which makes nodes with similar neighborhood
degree distributions or k-hop neighborhood topologies, to possess
similar embeddings. We illustrate the difference between positional
node embedding methods and structural node embedding methods
in Figure 1. In positional node embedding methods, node v; and
node v3 are close to each other, i.e, with similar positions in the
graph, embeddings of them will be optimized to be similar. On the
contrary, node v; and node v are far away from each other but
their local structures are similar, which leads to analogous embed-
dings in structural node embedding methods. Numerous structural
node embedding methods have been proposed to perceive the local
structural information of node. To name a few, Struc2vec [41] and
xNetMF [18] use degree distribution to measure the structural sim-
ilarity between nodes and generate node embeddings via matrix

!n this paper, we use the term network and graph interchangeably.
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Figure 1: Illustration of positional node embedding methods
and structural node embedding methods.

factorization or the skip-gram framework [35]. DRNE [49] utilizes
degree distribution by ordering the neighbors of a node according
to their degrees and feeding them into a layer-normalized long
short-term memory (LSTM) model [21]. To grasp more complex
structural features, HONE [43] and MCN [31] select specific motifs
and conduct motif counting. In addition, graph kernel [17] can
function as a measure of structural similarity in GraphWave [12]
and SEGK [37].

Despite the remarkable progress achieved by structural node
embedding, most, if not all, of existing structural node embedding
methods are faced with the challenge that the following three de-
sired properties cannot be fulfilled simultaneously: (1) bijective
mapping between embedding and local structure of node; (2) in-
ductive capability; and (3) good interpretability of node embedding.
First, bijective mapping between node embedding and local struc-
ture of node means that nodes with same local structures can earn
identical node embeddings and identical node embeddings refers
to the fact that these two nodes own same local structures. This is
not satisfied in existing methods [18, 31, 41], where identical node
embeddings do not necessarily mean two nodes own same local
structures. As the toy example shown in Figure 2(a), all nodes share
same degree. Simply relying on the degree distribution leads to iden-
tical embeddings for all nodes, which can not discriminate the true
structural equivalence in Figure 2(b). Second, the inductive capabil-
ity requires that the designed structural node embedding algorithm
can efficiently learn the embeddings of unseen/newly arrived nodes
without re-training embeddings of all nodes from scratch. However,
most existing structural node embedding [12, 43, 49] methods are
transductive, which follow the assumption that the topology of the
graph is fixed and can not be generalized to unseen/newly arrived
nodes in inductive setting. Third, good interepretability of node
embedding means that the meaning of each dimension in the node
embedding should be clear and can be explained directly. In exist-
ing methods [12, 37, 41, 44], node embeddings are optimized in the
multi-dimensional latent space and the meaning of each dimension
of the latent space is unclear.

In this paper, to address the above challenge, we propose a simple
yet novel structural node embedding algorithm named topological
anonymous walk embedding (TAWE), which creatively integrates
anonymous walk [23] and breadth-first search (BFS) [9]. Specifi-
cally, anonymous walk (AW) removes the node’s identifier during
random walk in order to preserve structural features while dis-
carding positional information. However, anonymous walk has
some drawbacks in capturing local structure of node. For instance,
the anonymous walk “1 — 2 — 3 — 4” only indicates that the
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Figure 2: Limitation of degree-based embedding methods.

walk passes through four distinct nodes, without providing any
other structural information. In addition, anonymous walk needs to
sample a lot of random walks, which bears high uncertainty in the
sampling process. In this case, different structures of nodes may con-
tribute to same set of anonymous walks (e.g., “1 —» 2 —» 3 — 4”),
which fails to satisfy bijective mapping between node embedding
and local structure of node. To improve the capability of anonymous
walk to capture local structure of node, we first propose topological
anonymous walk (TAW). Each TAW is a two dimension sequence
(e.g., “(1,0) > (2,1) — (3,2) — (4,3)”) and encodes two aspects
of information: (1) anonymous walk; and (2) shortest path distance.
Then, for a k-hop subgraph starting from the root node, we col-
lect all TAWs via BFS to build a group of basic TAWs. We prove
that the group of basic TAWs together with TAWSs’ frequencies
(e.g(1,0) = (2,1) = (3,2) — (4,3) : 2”) has a bijective mapping
to the structure of a k-hop subgraph (bijective mapping). Based on
the group of basic TAWs, TAWE generates the structural node em-
bedding via selecting frequency of each basic TAW as the entry in
each dimension of the embedding (intepretability). Furthermore, we
demonstrate that TAWE can be easily generated for unseen node
with the help of the group of basic TAWs. At last, the effectiveness
of the proposed TAWE is corroborated through extensive experi-
ments on both synthetic and real-world datasets in the following
two tasks: (1) structural node classification; and (2) structural node
clustering.
The contributions of this work as follows:

e Problem. To the best of our knowledge, we are the first
to study how to fulfill all three desired properties for struc-
tural node embedding problem simultaneously: (1) bijective
mapping between embedding and local structure of node;
(2) inductive capability; and (3) good interpretability of node
embedding.

Model. We propose a simple yet novel structural node em-
bedding algorithm TAWE, which integrates the anonymous
walk and breadth-first search together to propose the new
concept named topological anonymous walk.
Experiments. Extensive experiments on both synthetic and
real-world datasets demonstrate the effectiveness of TAWE
in (1) structural node classification task and (2) structural
node clustering task.

2 Problem Definition

In this section, we will introduce some preliminary knowledge of
structural equivalence and the definition of structural node embed-
ding problem. We first summarize the main symbols used in this
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paper. We adopt bold uppercase letters for matrices (e.g., A), bold
lowercase letters for vectors (e.g., v), calligraphic letters for sets
(e.g., A) and lowercase letters for scalars (e.g., a). In addition, we fol-
low the convention to represent the u-th row of matrix A as A(u, :),
the v-th column as A(:, v) and the (u,v)-th entry as A(u, v). Next
we present the definitions of graph isomorphism, node set-induced
subgraph and k-hop local topological equivalence, followed by the
formal definition of structural node embedding problem.

For two graphs G; = (V1, E1) and Gy = (V;, Ez), where V) and
V, are node sets and &; and &; are edge sets, graph isomorphism
can be defined as follows:

DEFINITION 1 (GRAPH ISOMORPHISM). Two graphs G1 = (V1,E1)
and Gy = (Va, &) are isomorphic if there exists a bijective mapping
m between node sets Vi and Vs, such that:

Yu,0 € Vj (,0) €& <= (m(u),m(v)) € &

Usually, structural node embedding algorithms pay more atten-
tion to local topological equivalence (i.e., subgraph isomorphism)
rather than the isomorphism problem for the whole graph. The
node set-induced subgraph can be defined as:

DEFINITION 2 (NODE SET-INDUCED SUBGRAPH [10]). Given a graph
G=(V,8),letS c V be a subset of nodes of G. Then the S-induced
subgraph G[S] is the graph whose node set is S and whose edge set
consists of all of the edges in & that have both endpoints in S.

With the definition of node set-induced subgraph, given a root
node v in G, the k-hop subgraph rooted in v can be denoted as
G[Ng(v)], where Ni(v) is the node set within k-hops of v. For
any two nodes v; and v}, the k-hop local topological equivalence
(k-LTE) can be defined as:

DEFINITION 3 (k-HOP LOCAL TOPOLOGICAL EQUIVALENCE). Given
a graph G = (V,E), two nodesv; € V andvj € V are k-hop lo-
cal topological equivalent if there is a bijective mapping m between
N (v;) and N (vj) such that m(v;) = vj and G[ Ny (v;)] is isomor-
phic to G[ Nk (vj)] under the mapping m(-), where Ni (v;) denotes
the node set within k-hop scale of node v;.

Based on the definitions of graph isomorphism, node set-induced
subgraph and k-hop local topological equivalence, we formally
define the structural node embedding problem:

PrROBLEM 1. Structural Node Embedding.
Given: (1) an undirected graph G = (V, E)?, (2) the hop number k.
Output: an embedding matrixF € RIVIXd sych that for any node
pairv; € V andvj € V:
(vi,vj) are k-hop local topological equivalent <= F(v;,:) = F(v},:)

, where d is the dimension of node embeddings.

In real-world applications, the hop k can be chosen as an appro-
priate number according to down-stream tasks.

2Without loss of generality, we do not allow self loops and duplicated edges in G
throughout the whole paper.
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3 Model

In this section, we present our proposed topological anonymous
walk embedding (TAWE) model, which creatively integrates anony-
mous walk [23] and breadth-first search (BFS) [9] together to fulfill
all three desired properties: (1) bijective mapping between node
embedding and local structure of node; (2) inductive capability;
and (3) good interpretability of node embedding. Specifically, we
first introduce anonymous walk [23] and conduct an analysis on
its strengths and drawbacks. We identify that anonymous walk
suffers from repeatedly sampling random walk, which leads to its
failure of satisfying the bijective mapping property. This motivates
us to integrate additional topological information into the anony-
mous walk and propose the general definition of topological anony-
mous walk (TAW). (Subsection 3.1) Then, we adopt the breadth-first
search (BFS) [9] to obtain a simple yet effective topological infor-
mation: shortest path distance (i.e., hop number). By integrating
the hop number in anonymous walk, we propose the topological
anonymous walk used in TAWE and introduce the details of TAWE.
Concretely, we construct a group of basic TAWSs and prove that the
TAW group together with each basic TAW’s frequency possesses
a bijective mapping with the k-hop structure of node (i.e., the bi-
jective mapping property). Accordingly, the normalized frequency
of each basic TAW naturally serves as the entry in each dimension
of a structural node embedding. (Subsection 3.2). At last, we also
propose a pruning algorithm (TAWE-P) for TAWE and have a brief
discussion about (1) the inductive capability of TAWE/TAWE-P and
the interpretability of node embedding in TAWE/TAWE-P and (2)
how to generalize TAWE/TAWE-P to heterogeneous graphs [11, 14]
and attributed graphs [16, 28, 51].

3.1 Topological Anonymous Walk

In this subsection, we analyze the strength and drawbacks of anony-
mous walk [23], which encourages us to propose the general form
of topological anonymous walk (TAW) with additional topological
information. Furthermore, we show that TAW can reconstruct the
corresponding anonymous walk and enjoys at least same capability
of capturing local structure of node as anonymous walk.

In anonymous walk, random walk is the key component, which
is a sequence of nodes sampled according to certain probability
distribution defined on the neighbors of the latest sampled node.
Different from the random walk utilized in positional node em-
bedding methods [15, 39], anonymous walk discards the original
node identity information to seize the local structural information
of node. To be more specific, anonymous walk embraces position
function to describe the node sequence and removes the original
node identity. The position function can be defined as follows:

DEFINITION 4 (POSITIONAL FUNCTION). Given a sequence q =
{vi}ézl (i.e,v1 — vy — --- — vy), wherel is the length of the
sequence. The position function for u appearing in this sequence is
defined as pq(u) = {i | v; = u}.

Position function and the sequence are two different but equiva-
lent ways to present the same mathematical object. For example,
given a sequence g = a — b — ¢ — a — c, the position functions
for a, b and ¢ in q are as the following: py(a) = {1, 4}, pq(b) = {2},
pa(e) = (3.5},
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With the help of position function, the anonymous walk can be Algorithm 1 Construction of the group of basic TAWs

defined as: Input: (1) Graph G = (V, &); (2) maximal hop k; and (3) longest
DEFINITION 5 (ANONYMOUS WALK (AW)). Given a random walk length for TAW L.

q= {Ui}ﬁzl in graph G = (V, E), then its corresponding anonymous Output: Bys for all nodes u in G.

walk is a sequence of positive integers aw = {a;}._,, where a; = for node u €V do > Parallel Computing

i=1’

min pg(v;) is the first position of node v; in the random walk q. Build G[ Ny (w)] via BFS

Compute hop (v, u) for any v; in G[ Ny (u)] via BFS
Initialize B, as empty
Graph Initialize random walk queue Q with u
e / while Q is not empty do
M\/‘\// — Pop random walk ¢ from Q
|

Compute the TAW taw for g according to Eq.(1)

if taw not in B, then
' = Add taw: 1 into By,
— — else

l
/
X/ i \ Increase Cy (taw) by 1in B,
7 \ >3 e \ end if

if the length of g equal to L then
Continue
else

[ M%e;eée } [ MQ;PPQ } Pick the last node vj4; in g

Random Walk 1 Random Walk 2 Random Walk 3

Anonymous Walk 1 Anonymous Walk 2 for v € G[ N (u)] and (vj44e:.0) € E do
Add random walk gnew = q + v into Q

Figure 3: Illustration of anonymous walk with examples. en deir;d for
end while
As shown in Figure 3, three random walks are sampled from end for

the graph. Random walk 1 (A — B — C — B — () and random return Bys for all nodes us in G.
walk 2 (C - D — B — D — B) share the same anonymous
walk 1 - 2 —» 3 — 2 — 3, where same node may own different In Definition 6, the topological information f(-,-) can be defined
a;s in different random walks. For example, node B’s first position arbitrarily such as the original node identity (f(G[Ny(v)],v;) =
in random walk 1 is 2 and its first position in random walk 2 is v;) or a; defined in Definition 5 (f (G[Ny(u)],vi) = a;j). Actually,
3. From this example, the strength of anonymous walk can be for any choice of the topological information f(-,-), we have the
illustrated: nodes’ original identities are removed and only the following proposition:

structural pattern of random walk will be kept.

However, in [23], a large number of anonymous walks are sam-
pled repeatedly to approximate the local structure of the root (i.e.,
starting) node. The repeated sampling process causes that same

PROPOSITION 1. For any choice of f(-,-), the set of topological
anonymous walks can reconstruct the corresponding set of anony-
mous walks.

random walk may be sampled more than one time. In addition, From Proposition 1, since the set of anonymous walks can be
different local structures may generate same anonymous walks. As reconstructed from the set of topological anonymous walks, TAW
shown in Figure 4, the blue part and the green part possess different with any choice of f(-,-) owns at least the same capability of cap-
structures but same anonymous walks (1 =2 —3 — 4 — 5 — 3) turing local structure of node as AW. Then, one question naturally
are generated. These two drawbacks lead to the failure of satisfy- arises: How to select an appropriate f(-,-) to (1) avoid repeatedly
ing the bijective mapping property between embedding and local sampling in AW; and (2) make the mapping between local structure
structure of node. of node and the final node embedding bijective?
To this end, we identify that additional topological information
should be integrated in anonymous walk to improve its capability 3.2 TAWE

to capture local structure of node. Thus, we propose the topological

anonymous walk (TAW) and its general definition is as follows: In this subsection, we present the details of topological anony-

mous walk embedding (TAWE), which chooses the hop number

DEFINITION 6 (TOPOLOGICAL ANONYMOUS WALK (TAW)). Given (i.e., shortest path distance from the root node u) as the additional
a specific node u € G and the k-hop subgraph rooted in u denoted as topological information (i.e., f(G[ Nk (u)],0;) = hop(u,v;)) to solve
G[Ng(u)], a random walk q = {Ul-}g=1 on G[Ny(u)], wherel is the the question raised in the end of Subsection 3.1. Specifically, we
length of the random walk, the topological anonymous walk can be de- adopt breadth-first search (BFS) [9] algorithm to compute the hop
fined as taw = {(a;, f(G[Nr(u)], vi))}le, where a; = min pg(0;) is number for each node v; in G| Ny (u)] from the root node u. Then,
the first position of nodev; in the random walk q and f (G [Ny (v)], v;) a group of basic TAWs is built for G[ Ny (u)] and we prove that
can be any topological information defined on G| Ny (u)] for node v;. the TAW group together with each TAW’s frequency possesses
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Figure 4: Illustration of topological anonymous walk.

a bijective mapping with the k-hop structure of the root node u.
Finally, we describe how the normalized frequency of each basic
TAW naturally forms each dimension of node embedding of u.

The first step of TAWE is to extract G[ Ny (u)] for the root node
u and calculate the hop number hop(v;, u) for each node v; in
G[ N (u)] from u, which can be easily obtained via BFS3. With
the hop number hop(v;, u), the topological anonymous walk for a
random walk g = {vi}f:1 in TAWE can be built as:

1

where a; = min pg(v;) is defined in Definition 5. We can observe
that TAW has two values for each node v; in the random walk: (1)
the first position a; inherited from anonymous walk and (2) the hop
number for v; from the root node u. One example of TAW can be
found in Figure 4, where random walk 1 and random walk 2 have
different TAWs to discriminte the topologies in the blue part and
the green part.

The second step of TAWE is to construct a group of basic TAWSs
together with the frequency of each TAW, which is the core com-
ponent of TAWE. Given the root node u and a maximal length
L of TAW, we denote the target of this step as B, = {taw; :
Cy(tawr),. .., taw; : Cy(taw;),...}, where Cy(taw;) is the fre-
quency of a basic TAW taw; starting from the root node u with
the length [ no larger than L in G[Ng (u)]. By can be regarded as a
dictionary, where the indexes are TAWs and the values are TAWs’
frquencies. The process of constructing 8,, is shown in Algorithm
1. One thing worth noticing is that 8,, for each node u in G can be
built in a parallel way to save time in implementation. Regarding
the details of Algorithm 1, we utilize a first-in-first-out queue (Q) to
store all random walks starting from the root node u. After comput-
ing the hop numbers for any v; in G[ N (u)], Q is initialized with
the root node u, which is also a random walk with length [ = 1.
Then, while Q is not empty, we pop the first random walk g out
and build its corresponding TAW according to Eq. (1). The TAW
is added into/counted in the TAW base B,,. If the random walk ¢
already has alength [ = L, we continue popping random walks from

taw = {(a;, hop(vs, u)}_,,

3Actually, there is no need to extract G[ Ni (u)] and compute hop numbers explicitly
in the first step, both of which can be conducted during the process of building the
group of basic TAWs in implementation. We make them the first step here to better
present the TAWE algorithm for the purpose of readability.

2800

Q. Otherwise, we follow BFS to consider all nodes (vs) connected
to the last node of the random walk q in G[ Ny (u)]. We place each
v at the end of q to form a new random walk gpe+y and add gpeq in
Q. In this way, 8,, for the root node u can be constructed after Q
is empty.

In fact, integrating BFS* in TAW solves the question raised at the
end of Subsection 3.1. First, BFS can avoid sampling one random
walk repeatedly with the help of Q. Second, we identify that select-
ing the hop number as additional topological information f(-, -)
enables the TAW base B,, to enjoy the desired bijective mapping
property with the local structure rooted in u (i.e., G[ Ny (u)]) and
have the following proposition:

PROPOSITION 2 (BIJECTIVE MAPPING PROPERTY). The mapping

between By, and G[ N (u)] is bijective, when the maximal L — oo°.

PRroOF. See Appendix. O

Finally, we describe how to use the constructed TAW group 8,
to generate structural node embedding in TAWE. After constructing
Bys for all nodes in graph G, we merge different TAWs in all B;s
to a merged group B = {tawi,...,taw;,...}. Given B, we can
generate a structural node embedding with a |8| dimension. The
i-th dimension of the structural node embedding for node u is the
normalized frequency of taw; in 8B;,. Concretely, for the i-th basic
TAW taw; in B, we can obtain the mean fi;4, and the standard
deviation oqw, of taw; in [By, [taw;], ..., B“I’VI [taw;]]. The i-th
dimension for the structural embedding of node u is as follows:

_ (Bultaw;] - ,Utawi)

Otaw;

3.3 TAWE-P and Discussion

In this subsection, we further propose a pruning algorithm of TAWE
named TAWE-P and have a brief discussion about (1) the inductive
capability of TAWE/TAWE-P and the interpretability of node embed-
ding in TAWE/TAWE-P and (2) the generalization of TAWE/TAWE-
P to heterogeneous graphs and attributed graphs.

F(u,i) 2)

“Notice that BFS in TAWE during the process of constructing B, allows visiting one
node multiple times to collect different random walks/TAWs.

5Actually, L does not need to be oo for real-world graphs. Usually, L = 2k or L = 3k is
enough in our experiments for real-world datasets.
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In TAWE, the longest length L can be used to limit the collections

of TAWs. However, a small L will do damage to TAWE in that
short TAWSs can not capture sophisticated structures. Thus, we
propose a pruning algorithm TAWE-P, whose core part is to limit
the expansion of BFS. We have added two pruning hyperparameters
to control the expansion of BFS: (1) the maximal branch Ny, 4x; and
(2) the maximal times of visit ;4. We consider the neighbor nodes
vs of the last node v}, in the random walk g: if node v;,; has too
many neighbors, TAWE-P only allows a maximal Ny, different
neighbor nodes to be added after v;,; to build a new random
walk gpeww. Furthermore, TAWE-P embraces the assumption that
if the neighbor node v has been visited too many times during the
process of constructing B, its topological information has been
well captured. So, TAWE-P sets a maximal times of visit Tj4x and
records the times of visit of each node in G[ N (u)]. If the time of
visit of the neighbor node v (i.e., T,) exceeds Tinqyx, it will not be
added after vj,4; in random walk g to build gpesy. Via such pruning
strategy, TAWE-P can save much time compared to TAWE in real-
world graphs.
Discussion. At last, we discuss about (1) the inductive capability
of TAWE/TAWE-P and the interpretability of node embedding in
TAWE/TAWE-P and (2) the generalization of TAWE/TAWE-P to
heterogeneous graphs and attributed graphs. For the inductive ca-
pability, it is unnecessary to repeat the entire embedding process
of TAWE/TAWE-P. Taking the structural node classification as an
example, after obtaining B, for each node u in the original graph
G and the merged B, the inductive learning pipeline for an un-
seen/new node vpe.y has two steps: (1) build 8,, ., and update By, s
for other nodes in G[ N (vnew)]; and (2) use the original merged 8
to construct F(opew, :)® and apply the original trained classifier on
F(vnews :). We have experimental results on the inductive capability
in Subsection 4.4. For the interpretability of node embedding, based
on Eq. (2), we can see that the i-th dimension of the structural node
embedding (F(u : i)) corresponds to the normalized frequency of
taw; € B in G[Ng(u)]. If F(u : i) is large, it means the k-hop
subgraph rooted in u possesses more taw;s compared to k-hop
subgraphs rooted in other nodes of G. For the generalization of
TAWE/TAWE-P, since the definition of additional topological infor-
mation f(-,-) is general, rather than the hop number (hop(v;, u)),
we can design special f(-, -)s for different types of graphs. To name
a few, we can integrate metapath [11, 14] into f(-,-) for hetero-
geneous graphs and add node attributes into f (-, -) for attributed
graphs [16, 28, 51]. This means that our proposed TAWE/TAWE-P
can be easily generalized to other types of graphs.

4 Experiment

In this section, we evaluate TAWE/TAWE-P on both synthetic
datasets and real-world datasets in the following two tasks: (1)
structural node classification; and (2) structural node clustering.
We also conduct experiments to validate the inductive capability of
TAWE.

®Usually, for real-world graphs, if | 8] is too large, we can generate a subset of B to
replace it.
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4.1 Experimental Setup

Datasets. We use 7 synthetic graphs to evaluate TAWE and 3 real-
world datasets to evaluate TAWE-P. All 7 synthetic datasets are
generated in [24]. The information of 7 synthetic graphs are pre-
sented in Table 1 and the 5 base graphs they are generated from
are shown in Figure 5. We also use 2 real-world air-traffic networks
Brazil and Europe same as Struct2vec [41] for structural node clas-
sification and the same Enron dataset [29] as GraphWave [12] for
structural node clustering task. For node classification, we ran-
domly split every dataset into 33/33/34% for training, validation,
and testing. Brazil has 131 nodes, 1,038 edges and 4 classes of nodes
labelled in [24]. Europe has 399 nodes, 5,995 edges and 4 classes of
nodes. Enron has 184 nodes, 3,089 edges and 8 different clusters.

MW
@:%}é@%

Figure 5: Illustration of base graphs in synthetic datasets.

Cc8

Metrics. For structural node classification, we adopt accuracy and
Fl-macro as metrics. For structural node clustering, we choose
normalized mutual information (NMI) and purity as metrics.

Baselines. We compare TAWE/TAWE-P with 5 baselines: Node2vec [15]

is a classical positional embedding method and the remaining 4
are representative or latest structural node embedding algorithms:
xNetMF [18], GraphWave [12], Role2vec [1] and SEGK [37].

Parameter Settings. The dimensions of structural node embed-
dings in all baselines and TAWE/TAWE-P are presented in Table 2.
The dimensions in all baselines are 16 for synthetic graphs and
128 for real-world graphs. Since the dimension of embeddings gen-
erated in TAWE/TAWE-P is equal to the size of the merged TAW
group (i.e.,|B]), the dimension of embeddings varies across different
datasets. One thing we want to emphasize is that the dimensions in
TAWE/TAWE-P on all datasets are consistently smaller than those
of baselines. For example, the dimension of embeddings in TAWE
on CoS is 3, which is smaller than 16 in all baselines. This means
that if TAWE/TAWE-P can achieve better performances than base-
lines, the capability of TAWE/TAWE-P to capture local structure of
node is much stronger than baselines given the smaller dimension
of node embeddings in TAWE/TAWE-P. All other hyperparameters
of baselines are set as default in their papers. We evaluate TAWE
on synthetic datasets and run TAWE-P on real-world datasets. The
hyperparameters are as the following: (1) the maximal hop k = 3
and the longest length for TAW L = 4 in TAWE; and (2) in TAWE-P,
k =3, L =9, the maximal times of visit Tj;qx = 100 and Ny,qx = 10.
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Table 1: Information of synthetic graphs.
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Name #Node #Edge Base Generation Descriptions from [24]
Graph
B-A 90 150 B5 Connecting the out-most nodes on the chain of B5 into a circle.
B-B 140 260 B5 Connecting the out-most nodes on the chain of B5 into a circle. Additional 5-clique at each connector.
FW 80 100 Cs8 Enlarged version of C8 with similar perturbation.
H-S 80 120 H5 10 H5 on a circle with 2 circular nodes between each connecting circular node with house’s side.
H-T 80 120 H5 10 H5 on a circle with 2 circular nodes between each connecting circular node with house’s roof.
PB-L 60 90 PB5 10 half-sided PB5 connected to each node of a 10-node circular graph. All the node degrees are 3.
CoS 170 155 S5 10 normal stars and 5 binary stars as in S5.

Table 2: The dimensions of structural node embeddings in baselines and TAWE/TAWE-P.

Datasets B-A | B-B | FW | H-S | H-T | PB-L | CoS | Brazil | Europe | Enron
Baselines 16 16 16 16 16 16 16 128 128 128
TAWE/TAWE-P 6 6 4 7 7 7 3 91 127 70

Table 3: Accuracy (+std) of node classification on synthetic dataset(%).

Methods B-A B-B FW H-S H-T PB-L CoS
Node2vec 37.8+9.8 | 50.1+£8.1 14.4+6.3 18.3+8.1 24.0+8.9 20.7£9.1 84.8+5.3
xNetMF 81.0+9.8 | 72.3+6.8 | 89.7+15.5 | 72.8+13.7 | 81.4+10.4 | 32.5+13.8 | 93.3+4.0
GraphWave | 44.5+7.4 | 56.7+£5.2 | 27.4+13.6 | 28.2+13.2 | 29.1+15.1 | 30.8+9.9 | 59.3+6.7
Role2vec 82.5+11.1 | 81.4+7.3 | 56.9+12.1 | 61.7+10.4 | 65.0+12.8 | 33.0+10.9 | 89.6+4.0
SEGK 95.9+£8.5 94.7+6.8 | 97.9+8.5 | 89.7+11.4 | 94.1+8.4 | 91.3+11.7 | 99.5+2.1
TAWE 98.5+4.6 | 99.0+3.2 | 99.6+4.1 | 96.1+7.7 | 99.0+4.6 | 99.4+4.6 | 99.3+2.4
Table 4: F1-macro (+std) of node classification on synthetic dataset(%).
Methods B-A B-B FW H-S H-T PB-L CoS
Node2vec 17.9+5.3 18.0£3.6 12.3+£5.7 10.4+4.0 17.5+6.4 15.9+8.5 45.3+£3.6
xNetMF 62.3+14.8 | 39.1+12.6 | 87.9+17.7 | 62.1+16.1 | 67.6+13.3 | 14.7+10.6 | 71.1+9.8
GraphWave | 12.4+1.6 14.5+1.0 | 14.8+12.4 | 10.7+8.4 | 13.0+11.4 | 14.0+8.1 19.3+5.6
Role2vec 67.5+17.1 | 60.2+14.2 | 48.8+13.9 | 46.8+12.9 | 55.3+15.3 | 16.3£8.3 | 55.9+10.1
SEGK 92.4+13.8 | 86.9+15.5 | 97.9+8.4 | 85.6+14.3 | 90.4+13.3 | 85.8+17.9 | 98.4+7.3
TAWE 97.2+8.0 | 97.4+79 | 99.6+3.7 | 94.7+10.1 | 98.7+5.6 | 99.2+5.5 97.7+8.0

4.2 Structural Node Classification

For TAWE, the results of structural node classification on 7 synthetic
graphs are shown in Table 3 and Table 4. First, for 6 out of 7 synthetic
datasets, TAWE outperforms baselines by a large margin in both
Accuracy and F1-macro. For example, TAWE has an 13.4% increase
in F1-macro compared to the second best performance obtained by
SEGK [37] on the PB-L dataset. Second, on the CoS dataset, TAWE’s
F1-macro is only 0.7% lower than that of SEGK. Given the fact that
the dimension of node embeddings in TAWE is only 3 compared
to 16 in SEGK, TAWE also performs quite well in such an unfair
comparison.

For two real-world datasets Brazil and Europe, the results of
TAWE-P and 5 baselines are presented in Table 5. We can ob-
serve that TAWE-P beats all baselines on these two real-world
datasets. Taking the Brazil dataset as an example, the F1-macro of
TAWE-P (74.3%) is about 10% higher than that of SEGK [37] (64.2%),

which is the best among all baselines. The results on both synthetic
datasets and real-world datasets demonstrate the effectiveness of
TAWE/TAWE-P in structural node classification task.

Table 5: Accuracy and F1-macro (+std) of node classification
on airport datasets (%).

Method Brazil Europe
Accuracy Fl-macro | Accuracy Fl-macro
Node2vec 61.3£6.0  25.3%1.5 435+4.3  24.7%2.6
xNetMF 63.8+6.6 37.0£12.3 | 60.2+4.2  44.5+7.5
GraphWave | 76.5+6.3  55.6+7.6 | 66.1+3.7 48.8+5.6
Role2vec 58.0+£6.7 41.1£10.0 | 43.6+4.3  28.8+3.9
SEGK 75.9+8.9  64.2+15.1 | 61.4+4.1  43.6+6.0
TAWE-P 79.8+6.0 74.3+7.3 | 63.2+4.2 58.2+4.4
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Table 6: Purity and NMI of node clustering on synthetic datasets.

Method B-A B-B Fw H-S H-T PB-L CoS
Purity NMI | Purity NMI | Purity NMI | Purity NMI | Purity NMI | Purity NMI | Purity NMI
Node2vec 044 001 | 057 000 | 028 0.00 | 025 0.00 | 028 000 | 033 0.00 | 059 0.02
xNetMF 1.00 100 | 100 1.00| 100 1.00 | 1.00 100 | 1.00 1.00 | 1.00 1.00 | 1.00 1.00
GraphWave | 1.00 1.00 | 1.00 1.00 | 1.00 1.00 | 1.00 1.00 | 1.00 1.00 | 1.00 1.00 | 1.00 1.00
Role2vec 1.00 100 | 097 093 | 081 066 | 093 089 | 085 077 | 0.62 034 | 092  0.72
SEGK 1.00 100 | 100 1.00 | 1.00 1.00 | 1.00 100 | 1.00 1.00 | 1.00 1.00 | 1.00 1.00
TAWE 1.00 100 | 1.00 1.00 | 1.00 1.00 | 1.00 1.00 | 1.00 1.00 | 1.00 1.00 | 1.00 1.00

4.3 Structural Node Clustering

For structural node clustering, we apply k-means++ [2] for clus-
tering on embeddings obtained by different methods. The Purity
and NMI of all baselines and our proposed TAWE on 7 synthetic
datasets are shown in Table 6. We can see that most algorithms
have achieved a perfect clustering performance on simple synthet-
ica datasets (Purity=1 and NMI=1), including our TAWE. This re-
flects that structural node clustering is a much less challenging task
than structural node classification on these simple synthetic graphs.
However, for the real-world graph Enron, the proposed TAWE-P
consistently outperforms all other baselines in both Purity and NMI,
which is presented in Figure 6. The results on synthetic datasets
and the real-world Enron graph validate TAWE-P’s capability of
grasping local structure of node.

1349 14.28

Node2Vec m GraphWave mxNetMF m Role2Vec m Struc2Vec m TAWE-F] [=Node2vec m Graphwave mxNetWF m Role2vec mStruc2Vec m TAWE-

(a) Purity. (b) NMIL

Figure 6: The purity and NMI on Enron (%).

4.4 Inductive Capability

In this subsection, we conduct a study on the inductive capability
of the proposed TAWE. We launch the inductive experiments on
the synthetic PB-L dataset, which is constructed by connecting L
numbers of H5 base graph. An illustrative example of PB-L is PB-3
shown in Figure 2 in Section 1, which has 3 H5 base graphs. We
build a series of PB-L datasets with 4 steps: PB-5 , PB-10, PB-20, PB-
30. In each step, some H5 base graphs are added into the previous
PB-L graph. The nodes in these new H5 base graphs are unseen
nodes in previous step and TAWE needs to generate the structural
embeddings for these new nodes without re-running from scratch.
The details of the inductive experiments are as the following: First,
we run TAWE on PB-5 to construct the merged TAW group 8. Then,
for each new node u added in PB-10/PB-20/PB-30, we extract the
k-hop subgraph G[ N (u)] rooted in u and build 8B, and obtain its
embedding F(u, :). During this process we do not need to rebuild

the groups of basic TAWs for old nodes appearing in previous step.
Taking structural node classification as an example, the classifier
trained on PB-5 can still be used for PB-10/PB-20/PB-30. The visu-
alizations of node embeddings obtained via principle component
analysis (PCA) [27] from PB-5 to PB-30 are shown in Figure 7. From
Figure 7(a), we can observe that node embeddings obtained from
TAWE are more concentrate and the classification boundaries for
different structural equivalences of nodes (e.g., different shapes of
nodes in Figure 2(b)) are clear from PB-5 to PB-30, which verifies
the good inductive capability of TAWE.
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Figure 7: Visualization of TAWE’s embeddings compared to
those of SEGK.

5 Related Work

Our paper is related to network embedding and structural node
embedding.

Network embedding. Network embedding is to represent nodes
in the graph as real-value vectors. Traditional network embedding
methods usually take the adjacency matrix as input and project each
node into a low-dimensional latent space [5, 8, 38, 45, 48, 52, 72, 73].
Then, DeepWalk [39] first samples the random walks and takes ad-
vantage of the skip-gram architecture [36] to maximize the probabil-
ity of nodes appearing in the same random walk via optimizing node
embeddings. Based on DeepWalk [39], node2vec [15] introduces
two hyper-parameters to strike a balance between the breadth and
depth during search. Different from the previous two approaches
based on random walk, LINE [47] explicitly constructs a loss func-
tion with 1-hop and 2-hop neighbors using KL-divergence [30]. To
unify DeepWalk [39], node2vec [15] and LINE [47], NetMF [40]
proves that all these node embedding algorithms can be regarded as
some specific forms of matrix factorization. Recently, graph neural
networks (GNNs) 16, 28, 51, 59, 68] have become a novel toolkit for

2803



Topological Anonymous Walk Embedding: A New Structural Node Embedding Approach

network embedding. The general message-passing mechanism [28]
of GNN is simple: at each layer, each node aggregates the infor-
mation from its neighbors and transforms the input information
as the output for next layer via trainable parameters. Based on
the message-passing mechanism, GraphSAGE [16] proposes vari-
ous aggregation strategies. With the purpose of assigning different
weights to different neighbors, graph attention network (GAT) [51]
integrates the attention mechanism [50] into GNN. A comprehen-
sive survey of different architecture design and taxonomy of GNNs
can be found in [57].

Structural node embedding. Structural node embedding meth-
ods focus on perceiving the local structural information of node.
Struc2vec [41] is one of the most popular approaches of structural
node embedding. It identifies that the structural similarity between
nodes can be evaluated using the ordered degree sequence of nodes
and has been applied to various applications (e.g., influence max-
imization [56]). Following Struct2vec, xNetMF [18] adopts node
degree as structural feature and aggregates the node degree distribu-
tions among different hops of neighborhood with a weighted sum.
DRNE [49] is another degree-based structural node embedding
method, which utilizes node degree as a criterion to sort neigh-
bors into an ordered sequence and feeds the sequence into a layer-
normalized long short-term memory (LSTM) model [21]. To capture
more sophistic structures, DeepGL [44] extracts motif-based struc-
tural features from the original network. HONE [43] proposes a
framework based on a weighted motif graph and leverages the
attribute diffusion mechanism to learn node embeddings. Similarly,
MCN [31] constructs a weighted motif graph and integrates it in
GNN framework. Some other structural node embedding meth-
ods include RolX [19], GraphWave [12], Role2vec [1], RiWalk [34]
and SEGK [37]. RolX [19] is a structural feature-based matrix fac-
torization algorithm relying on structural feature discovery [20].
GraphWave [12] conducts the structural node embedding with the
help of graph kernel [17]. Role2vec [1] and RiWalk [34] sample the
feature-based random walk as corpus and learn node embedding
via the skip-gram architecture [36]. SEGK [37] learns the structural
node embedding in a two-step framework, which first constructs
a structural similarity matrix based on graph kernels, and then
derives node embeddings with matrix factorization.

6 Conclusion

In this paper, we study the structural node embedding problem.
To satisfy the three desired properties: (1) bijective mapping be-
tween embedding and local structure of node; (2) inductive capabil-
ity; and (3) good interpretability of node embedding, we propose
a simple yet novel structural node embedding approach named
TAWE. In particular, TAWE creatively integrates anonymous walk
and breadth-first search to propose the topological anonymous
walk. Based on the merged group of basic TAWSs, the normalized
frequency of each basic TAW naturally becomes the entry in the
corresponding dimension of structural node embedding. Further-
more, we propose a pruning algorithm TAWE-P of TAWE to handle
real-world graphs. Extensive experiments on both synthetic and
real-world datasets demonstrate the effectiveness of our proposed
TAWE/TAWE-P in capturing local structure of node.
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7 Appendix

PROPOSITION 2 (BIJECTIVE MAPPING PROPERTY). The mapping
between G[ Ny (u)] and By, is bijective, when the maximal L — oo.

Proor. The key to prove this this property is the determinstic
process of constructing random walks, which means the that each
random walk q with length [ < L will be visited and more impor-
tantly visited only once. We need to prove two directions: the first
direction is that one G[ Ny (u)] can not generate two different Bys,
which has already been satisfied in existing methods (e.g., [41]) and
is obvious because by adopting the random walk queue Q and BFS,
the process to build random walk is determinstic and only one 8,
can be generated for G[ Ny (u)].

The other direction that one 8, only corresponds to one topol-
ogy of G[Ng(u)] is not trivial to prove. Here we prove it by in-
duction on kjso = {0,1,...,k} and contradiction. Assume that
B, corresponds to G[ Ny (u)] and G[ Ny (v)] with different topolo-
gies but B, = B, = {taw; : C(tawy),...,taw; : C(taw;),...}.
We prove that G[ Ny, (u)] and G[ N, (v)] are isomorphic by in-
duction for kj5o = {0,1,...,k}. For kijso = 0, taw; = (1,0) for
both u and v and they are isomorphic with only one node. For
kiso = 2, since the tawy = (1,0) — (2,1) : C(tawy) is same for
G[MN1(u)] and G[N1(v)], u and v have same number of one-hop
neighbors. The only reason that G[N; (u)] and G[ N (v)] are not
isomorphic is that the number of edges between 1-hop nodes for u
and o are different’”. Without loss of generality, let us assume that
G[N1(u)] has fewer edges between 1-hop nodes than G[N; (v)].
This will result in the number of taws = (1,0) — (2,1) — (3,1)
different for G[NV;(u)] and G[N;(v)], which leads to contradic-
tion. Then, let us assume that G[N,  (v)] and G[N,  (v)] are
isomorphic. For kjso = kiso + 1, the step 1 is that we remove
the edges between the kjso + 1-hop nodes. If the remaining two
graphs are not isomorphic (i.e., different connection structures
between kjso-hop nodes and kjso + 1-hop nodes), this will lead
to the number of at least one of the following two kinds TAWSs
to be different: (1) (1,0) — (2,1) — --- — (kiso + L kiso) (i.e.,
random walk from the start node to the kjso-hop end node). (2)
(L,0) = (2,1) = -+ = (kiso + L kiso) — (kiso,kiso — 1) —
(kiso + 1, kiso) — (kiso, kiso — 1) ... (i.e., random walk repeatedly
from the k;so + 1-hop node back to the kjso-hop node and returning
to the kjso + 1-hop node again). This causes contradiction. Then, we
added the edges between the edges between the kjs, + 1-hop nodes
back to these two graphs, the contradiction can be proved same
as taws for G[Ni(u)] and G[Nj(v)]. So, the bijective mapping
property proposition is proved to be true. m]
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