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In optimal experimental design, the objective is to select a limited set of experiments that maximizes informa-

tion about unknown model parameters based on factor levels. This work addresses the generalized D-optimal

design problem, allowing for nonlinear relationships in factor levels. We develop scalable algorithms suitable

for cases where the number of candidate experiments grows exponentially with the factor dimension, focusing

on both first- and second-order models under design constraints. Particularly, our approach integrates con-

vex relaxation with pricing-based local search techniques, which can provide upper bounds and performance

guarantees. Unlike traditional local search methods, such as the “Fedorov exchange” and its variants, our

method effectively accommodates arbitrary side constraints in the design space. Furthermore, it yields both

a feasible solution and an upper bound on the optimal value derived from the convex relaxation. Numerical

results highlight the efficiency and scalability of our algorithms, demonstrating superior performance com-

pared to the state-of-the-art commercial software, JMP.

Key words : D-optimal design; experimental design; convex relaxation; local search; approximation algorithm;

determinant maximization

1. Introduction. Optimal experimental design is a classical problem in statistics. The goal of

optimal experimental design is to identify a limited number of experiments to obtain the max-

imum information about a vector of unknown model parameters in a given model based on

levels of independent variables/factors. In this work, and as is common, we assume that the

model is linear in the parameters. However, the model is often nonlinear in the factor levels. We
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focus on one of the most popular optimal design criteria, D-optimality. In D-optimal experimen-

tal design, under i.i.d. Gaussian noise, we aim to identify a set of experiments to minimize the

average covariance of the least-squares parameter estimator. In other words, we seek to minimize

the volume of the standard confidence ellipsoid for the parameter centered on the least-squares

parameter estimate. This is equivalent to maximizing the (logarithm of the) determinant of the

Fisher information matrix (see [27] for more details; also see [7, 11, 12, 26, 28] for history and more

information).

We let integer d≥ 1 denote the dimension of factors and let x := (x1, . . . , xd)
T represent a vector

of factors. In our most general setting, we consider a model based on a list of p distinct monomials

M := {m1(x), . . . ,mp(x)} in the variables. Specifically,

y≈
p∑

i=1

θimi(x),

where “≈” indicates that the model incorporates a zero-mean Gaussian noise. The model is linear

in the parameter vector θ ∈ Rp, and so, by choosing a set of experiments X = {x1, . . . ,xk} and

their associated observations, y1, . . . , yk respectively, we can calculate the least-squares estimate

θ̂ = argminθ

∑k

j=1 ((
∑p

i=1 θimi(x
j))− yj)

2. The challenge, of course, is to choose the best experi-

ments, X = {x1, . . . ,xk}. Following the convention, we assume that experiments can be repeated.

For there to be a unique least-squares solution to the linear regression problem associated with

a set of experiments (i.e., the model is “identifiable” given the experiments), we need a set of

design points of rank p. Assuming that the model is identifiable, given a multi-set of experiments

X , the D-optimality criterion is the determinant of the information matrix of the design matrix,

which we wish to maximize.

Before continuing, it is useful to settle on some terminology. If the maximum degree of a mono-

mial inM is ℓ, then we say that we have an ℓ-th order model. In an ℓ-th order model, if we have all

possible monomials of maximum degree ℓ, then we say that it is a full ℓ-th order model. We refer to

models that are not full as partial. In what follows, we will be mostly interested in full first-order

models (having d+1 monomials), full second-order models (having
(
d
2

)
+ d+1 monomials), and

partial second-order models.

The design point associated with an experiment x ∈ Rd is simply p(x) := (m1(x), . . . ,mp(x))
T ∈

Zp. That is, it is the vector of evaluations of each monomial on the experiment x. We assume

that we have a set of L≥ 2 levels {0,1, . . . ,L− 1}, that are the possible values of the factors. So,

without additional structural requirements, we have a universe of Ld possible experiments, one

for each x ∈ {0,1 . . . ,L− 1}d. It is common for one to have L≥ ℓ+ 1 for a full ℓ-th order model.

For example, to capture a second-order effect at least in one variable, we would need at least three
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levels (this is the motivation for many second-order designs in the literature that use three levels,

such as the well-known Box-Behnken design; see [19, Sec. 5.3.3.6.2] and [4]).

We note that modeling and algorithms associated with constrained design regions are a central

topic in the design of experiments literature; see [3, 6, 18] for references. Specifically, we consider

the constraints of form Ax≤ b, for x ∈ {0,1 . . . ,L− 1}d. So, we define our universe of allowable

experiments as

Y := {x∈ {0,1, . . . ,L− 1}d : Ax≤ b}.

Finally, we impose a “budget restriction” on the size of X , the chosen multi-set of experiments,

to be k.

With all of this, we are now ready to formally state our experiment-constrained D-Optimal design

problem:

ϕ :=max

{
log det

(∑
x∈Y

λ(x)p(x)p(x)T

)
:
∑
x∈Y

λ(x) = k; λ(x)∈Z+ , for x∈Y

}
. (ECD-Opt)

The solution selects the multi-set of experiments X , by simply having λ(x) copies of x in X .

We can further associate matrices P and S where P has a row p(x) for each x ∈X and matrix

S = P TP . In this way, we have S = P TP =
∑

x∈X p(x)p(x)T, and we can rewrite the objective

function as log det(S) = logdet(P TP ).

In what follows, we let the collection of feasible design points be

P := {p(x)∈Rp : x∈Y}.

Therefore, ECD-Opt is equivalent to

max

{
log det

(∑
v∈P

λ(v)vvT

)
:
∑
v∈P

λ(v) = k; λ(v)∈Z+ , for v ∈P

}
. (1)

The main computational challenge is that the set of vectors P consists of exponentially many

vectors in the dimension p, and in practice, may not be explicitly defined.

As studied in the literature and available software, when the set of allowable experiments Y is

given explicitly, as a list, it is interesting to have linear constraints on the integer variable vector

λ, whereupon the associated D-optimal design problem has been referred to as CD-Opt (see [25]).

In this paper, set Y is given by a set of allowable experiment vectors x, described via a range of

levels for each factor with optionally additional linear constraints. To distinguish it from CD-Opt,

we call our problem ECD-Opt.

There is a great deal of literature on heuristic algorithms for ECD-Opt, mainly focusing on

the case where there are no side constraints Ax≤ b, based on the usual greedy and local search
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ideas; see, for example, the references in [14, Sec. 1]. The popular software JMP embraces local

search ideas described in [17], see [10, Page 125] and is capable of handling additional constraints

as well as settings where design points are exponential in size. In Section 5, we give a detailed

comparison of our approach to JMP. We remark that JMP does not produce any gaps to optimality

and focuses only on heuristic based approaches, in contrast to our setting. Various branch-and-

bound (B&B) based approaches aiming to find exact optimal solutions were also investigated in

[13, 14, 23, 24, 29]. None of these handle the case in which the set of feasible design points is very

large and not explicitly given. Our work fills this gap and aims to develop scalable computational

techniques and fast approximation algorithms with performance guarantees, and to solve difficult

instances of ECD-Opt.

1.1. Our results and contributions. In this work, we consider algorithms for cases of ECD-

Opt for which the number of candidate experiments is exponential in the number of factors, d. We

develop algorithms for ECD-Opt and study its continuous convex relaxation. For the sake of prac-

ticality, we focus on the cases of full first-order models and second-order models. We would like

to emphasize that, in contrast to elementary/classical local search methods (known as “Fedorov

exchange” and its variants), our approach effectively handles arbitrary side constraints Ax ≤ b.

Moreover, our approach provides not only a solution for the problem but also an upper bound

for the optimal value based on the convex relaxation of the problem.

Pricing-based local search. Consider a given feasible solution λ(x), for each x ∈ Y of ECD-Opt.

We can view it as a multi-set of experiments X , where x ∈ Y occurs with multiplicity λ(x) in

X . A local search step, in our context, exchanges one experiment x′ ∈ X with an experiment

x ∈ Y \ {x′}, in a way that the objective of ECD-Opt increases. The classical “Fedorov exchange

method” (i.e., local search step), typically applied when there are no or only very simple side

constraints, treats set Y as an input list. To relieve the computational burden, such a local search

would only consider x∈X \ {x′} such that |x−x′| is a standard unit vector. In contrast, we treat

set Y as given by constraints, and we formulate the “pricing problem for local search”, which

seeks an improving x using mathematical optimization techniques. This is akin to the well-known

column-generation method for a wide variety of problems (which is why we call it a “pricing

problem”, even though we do not use “prices” in the sense of dual variables). Our pricing problem

effectively searches over a much larger local neighborhood than the simple local search described

above, since it has no limitation on |x−x′|. For the case of an ℓ-th order model, the pricing problem

has a polynomial objective function of degree 2ℓ, linear constraints, and integer variables. We will

see that this is quite tractable for first-order models and for partial second-order models.
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With respect to first-order models, the pricing problem for our local search becomes a maxi-

mization program with a convex quadratic objective function. This situation can be directly han-

dled with, for example, Gurobi; or, using standard lifting methods, we can reformulate it linearly

in the case where L = 2. If L > 2, such a linear reformulation is still possible (by the so-called

“binarization”). See [15] for the use of similar techniques for a completely different problem. For

second-order models, we proceed similarly but with a greater computational burden.

Pricing for the continuous relaxation. Finally, we also study the continuous relaxation of ECD-

Opt obtained after removing the integrality constraints, which is a convex program. In connection

with this, we let the optimal value of that be ϕR. Solving the continuous relaxation provides a

useful upper bound to indicate the quality of any feasible integer solution to ECD-Opt. Our tech-

niques are very similar to those for the local search pricing problem. The main difference is that

the objective function for the continuous relaxation pricing problem has a different polynomial

objective function of degree 2ℓ. We will refer then to the “pricing problem for the continuous

relaxation” to distinguish it from the “pricing problem for local search”. The other differences

between the two pricing approaches, which are rather significant, are in the computational details.

In particular, we have found computational advantages by: (i) including randomly-generated

experiments besides the best ones found by solving the pricing problem, (ii) working with the

dual of the continuous relaxation if necessary, and (iii) reducing the number of experiments via a

sparsification procedure over the iterations.

Theoretical results. We also theoretically analyze the performance of our pricing-based local

search procedure. The polynomial optimization problem encountered at every local search step

is, in general, NP-hard, but good approximation algorithms can be developed under certain set-

tings. Building on the results [16], we provide an approximation algorithm at each local search

step to obtain an approximate local search procedure with the following performance guarantee.

Theorem 1 Suppose that there exists a polynomial-time 1
ρ
-approximation algorithm for some ρ > 1 to the

problem maxv∈P vTGv for every positive semidefinite matrix G⪰ 0. Then the pricing-based local search

algorithm presented in Section 2 returns a feasible solution λ(x) of ECD-Opt with the associated multi-set

of experiments X , where x∈Y occurs with multiplicity λ(x) in X , and associated matrix S satisfying

det(S)≥ eϕ
(
k− p+1

k

p

p+ k(ρ− 1)

)p

where ϕ is the optimal objective of the ECD-Opt.
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An interesting case where there exists an approximation algorithm for the sub-problem

maxv∈P vTGv for every G⪰ 0 is whenP = {x∈ {0,1}d : x1 = 1}. This corresponds to the full first-

order model with two levels, where the first monomial is the constant, i.e., m1(x) := 1. Indeed,

Nesterov [20], gives a ρ= π
2

approximation algorithm for the subproblem maxv∈P vTGv. Applying

Nesterov’s results along with Theorem 1, we obtain the following corollary.

Corollary 1 For the full first-order model with two levels and no side constraints (i.e.,P =Y), the pricing-

based local search algorithm returns an approximate local optimum X to ECD-Opt with associated matrix

S satisfying

det(S)≥ eϕ
(
k− p+1

k

p

p+ k(π
2
− 1)

)p

and additionally, satisfying

det(S)≥ kp

22(p−1)

(
k− p+1

k

p

p+ k(π
2
− 1)

)p

.

Here, the equality for ϕR follows using the symmetry of the convex relaxation.

1.2. Organization. In Section 2, we introduce the pricing based local search algorithm and

discuss the ideas used in its implementation. Next, in Section 3, we analyze the local search

theoretically by proving an approximation guarantee given an approximation algorithm for the

pricing problem. We also give an efficient approximation algorithm for pricing problem in the

first-order model and also show a hardness result for the pricing problem in the second-order

model. In Section 4, we discuss the convex relaxation and how we implement a pricing based

column generation to solve the relaxation. Next, in Section 5, we discuss numerical results of local

search and column generation.

2. Local search algorithm for D-Optimal design. In this section, we discuss the local search

algorithm for ECD-Opt. We are interested in instances of the problem where the set of vectors

P := {p(x) ∈ Rp : x ∈ Y} is not explicitly given and is too big to enumerate all its elements.

We consider that we have a feasible solution λ̂(x), for x ∈ Y , to ECD-Opt, but we only store the

vectors p(x) for which λ̂(x)> 0. We let Y>0 := {x ∈ Y : λ̂(x)> 0} and therefore, the associated

matrix S =
∑

x∈Y>0 λ̂(x)p(x)p(x)T, and we assume that rank(S) = p. Observe that |Y>0| ≤ p and

thus can be explicitly stored. The simplest local search move decreases λ̂(x′) by one, for some

x′ ∈ Y>0, and increases λ̂(x) by one, for some x ∈ Y and x ̸= x′. We can explicitly iterate over

the experiments in the set Y>0 to find x′. Since we do not explicitly generate and store all the

vectors of P , for a given x′ ∈ Y>0, we will seek to select an experiment x ∈ Y and generate the

corresponding vector p(x) of P , so that det(S−p(x′)p(x′)
T
+p(x)p(x)T)> det(S), if one exists.
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We define Sx′ := S − p(x′)p(x′)
T for all x′ ∈ Y>0 and, for a p × p matrix S and k < p, we

define
k

det(S) as the product of the k largest eigenvalues of S. Then, for all x′ ∈ Y>0 and x ∈ Y , if

rank(Sx′) = p, we have

det(Sx′ +p(x)p(x)
T
) = det(Sx′)(1+p(x)

T
S−1

x′ p(x)).

Otherwise, if Sx′ is rank deficient, we have

det(Sx′ +p(x)p(x)
T
) =

p−1

det(Sx′)p(x)
T
(Ip−S†

x′Sx′)p(x),

where S†
x′ is the Moore-Penrose pseudoinverse of Sx′ ( see [22]).

Finally, for a given x′ ∈Y>0, generating p(x)∈P that maximizes det(Sx′ +p(x)p(x)
T
) is equiv-

alent to the following pricing problem:

max
x∈Y

p(x)TGp(x), (Sub)

where G :=S−1
x′ , if rank(Sx′) = p, and G := Ip−S†

x′Sx′ , otherwise.

It is easy to see (considering the x associated with x′) that, if rank(Sx′) = p, the optimal objective

value of (Sub) is at least det(S)/det(Sx′) − 1, and any objective value above that gives a local

move with improving objective-function value. Otherwise, the optimal objective value of (Sub) is

at least det(S)/
p−1

det(Sx′)− 1.

In Section 2.1, we discuss how to solve the problem (Sub).

2.1. Solving the pricing problem for the local search. For the case of an ℓ-th order model,

the pricing problem (Sub) maximizes a polynomial objective function of degree 2ℓ, subject to

linear constraints and integrality constraints over the variables. For any order, this is a nonconvex

optimization problem, and a common approach to solving it consists of reformulating it as an

integer linear program by lifting the problem to a higher-dimensional space using McCormick

inequalities. In the basic approach, we would instantiate a new variable yi for each monomial

mi(x), and we describe or approximate the convex hull of the graph of yi =mi(x) on the domain

{0,1, . . . ,L− 1}d, using linear inequalities. This can be done quite effectively. For example, when

L= 2, we can assume that the degree of each variable in each monomial is 0 or 1. Therefore, we can

define that mi(x) =
∏

j∈I xj . Then the inequalities 0≤ yi ≤ xj for j ∈ I and yi ≥
∑

j∈I xj − |I|+1

define the convex hull of the graph of yi =mi(x). We note that one way to handle more than two

levels is through “binarization,” representing each integer variable 0 ≤ xi ≤ L− 1 with a linear

function of ⌈log2L⌉ binary variables (e.g., see [5, 21]).

Although our approach can be applied to solve (Sub) for any ℓ-th order model, we are particu-

larly interested in solving two special cases– the full first- and second-order models.
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For a full first-order model with d factors, a design point is given by p(x) = (1, x1, . . . , xd)
T ∈

Zd+1. This particularizes (Sub) to the quadratic optimization problem with integer variables

α0, . . . , αd:
maxα αTGα,

s.t. α0 = 1,
αi ∈ {0,1, . . . ,L− 1}, ∀i= 1, . . . , d,
A(α1, . . . , αd)

T ≤ b.

(Quad Sub)

Note that this is a maximization program with convex quadratic objective function. For the

“unconstrained” case (i.e., without side constraints A(α1, . . . , αd)
T ≤ b), we may relax the integral-

ity constraints, and an optimal solution will be at a vertex of the box constraints. In this case, there

are only 2d possible solutions to check, rather than Ld possible integer solutions. This means that

we will only generate experiments using the extreme levels, 0 and L− 1. On the other hand, for

the first-order model, we have L= 2, and all levels are extreme. Therefore, in this unconstrained

case, the problem (Quad Sub) is equivalent to a “boolean quadratic program.” For modest val-

ues of d (e.g., d = 12), it is feasible to solve (Quad Sub) by enumeration. However, for larger d

(e.g., d= 20), enumeration becomes impractical as the solution space grows too large to explore

in a reasonable time. To address this, we formulate (Quad Sub) as a linear integer program by

linearizing the quadratic terms, allowing us to efficiently solve it using Gurobi. In addition, we

provide primal heuristics that speed up the search for the optimal solution for (Quad Sub).

For the second-order model, we arrive at a degree four integer optimization problem over inte-

ger points in a d-dimensional polytope. We address this by linearizing all higher degree terms in

the objective and solving the resulting higher-dimensional linear integer program using Gurobi.

Finally, we also consider solving (Sub) heuristically before solving it exactly using a solver.

We employ a local search method with an initial solution ᾱ = (1;x′), where the criterion for the

improvement of a given solution is the increase in the value of the objective function of (Sub) and

different neighborhoods are explored, defined by flipping over one bit of the current solution,

termed “Bit Flip,” or swapping two bits, termed “Bit Swap.” More specifically, for bit flip, the

neighborhoods of a given solution ᾱ with ᾱ0 = 1 are defined as

N1(ᾱ) :=
{
α∈Zd+1 : α0 = 1, 0≤ αi ≤L− 1, for all i∈ [d], A(α1, . . . , αd)

T ≤ b, (Bit Flip)
(α1, . . . , αd)

T− (ᾱ1, . . . , ᾱd)
T =±ei, for some i∈ [d]

}
,

and for bit swap, they are defined as

N2(ᾱ) :=
{
α∈Zd+1 : α0 = 1, 0≤ αi ≤L− 1, for all i∈ [d], A(α1, . . . , αd)

T ≤ b, (Bit Swap)
(α1, . . . , αd)

T− (ᾱ1, . . . , ᾱd)
T = ei− ej, for some i, j ∈ [d], i ̸= j

}
,

where ei is the i-th standard basis.

In the next section, we provide a theoretical analysis of a polynomial-time implementation for

an approximate local search algorithm.
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3. Theoretical results for D-optimal design. In this section, we prove Theorem 1 and Corol-

lary 1. The first result gives a guarantee of the output of the local search algorithm if the polyno-

mial optimization problem (Sub) described in Section 2.1 can be solved approximately. We also

show that this result can be applied to obtain an approximation guarantee when set Y = {−1,1}d.

In addition, we prove the hardness for the sub-problem maxv∈P vTGv arising from a second-order

problem.

3.1. Local search with approximate local optima. In this section, we analyze the local search

algorithm when it finds an approximate local solution that can be efficiently implemented in poly-

nomial time, as stated in the following Theorem 1. More specifically, in Theorem 1, we prove that

instead of identifying the best improving move by solving an integer program (IP), an algorithm

that yields an approximately improving solution still achieves an approximately locally optimal

solution. Besides, we show that for the special case when the set of allowed vectors is Y = {x ∈

{0,1}d : x1 = 1}, Nesterov’s result [20] can be used to give an efficient polynomial time algorithm

for implementing the improvement step approximately. We also provide a performance guarantee

on the approximate locally optimal solution.

We first prove Theorem 1. The proof follows the outline of Madan et al. [16] where they analyze

the local search algorithm. In Theorem 1, we assume that the improvement step in the local search

algorithm can be approximated within a factor of 1
ρ
.

A crucial ingredient in the analysis is the convex relaxation of (1) and its Lagrangian dual as

defined below. First, the continuous relaxation of the D-opt design problem (1) is given by

ϕR =max
λ

{
lndet

(
n∑

i=1

λiv
iviT

)
:

n∑
i=1

λi = k,λi ≥ 0,∀i∈ [n]

}
. (2)

Next, let us consider its equivalent form

ϕR =max
λ,Y

{
lndet (Y ) :

n∑
i=1

λiv
iviT ⪰Y ,

n∑
i=1

λi = k,λi ≥ 0,∀i∈ [n]

}
,

which admits the following Lagrangian dual with dual multiplier Λ associated with constraint∑n

i=1 λiv
iviT ⪰Y and dual multiplier ν associated with constraint

∑n

i=1 λi = k:

ϕD
R = min

Λ⪰0,ν

{
kν− lndet (Λ)− p : viTΛvi ≤ ν,∀i∈ [n]

}
, (3)

whose optimal value is equal to that of the continuous relaxation (2) due to the strong duality of

the convex program with the Slater condition [2].
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Theorem 1 Suppose that there exists a polynomial-time 1
ρ
-approximation algorithm for some ρ > 1 to the

problem maxv∈P vTGv for every positive semidefinite matrix G⪰ 0. Then the pricing-based local search

algorithm presented in Section 2 returns a feasible solution λ(x) of ECD-Opt with the associated multi-set

of experiments X , where x∈Y occurs with multiplicity λ(x) in X , and associated matrix S satisfying

det(S)≥ eϕ
(
k− p+1

k

p

p+ k(ρ− 1)

)p

where ϕ is the optimal objective of the ECD-Opt.

Proof: To prove the theorem, we show a stronger inequality by showing the given guarantee using

ϕR instead of ϕ, which immediately implies the theorem since ϕR ≥ ϕ. First, we show that the

( 1
ρ
)-approximation algorithm for solving the problem maxv∈P vTGv can be used to implement the

local search algorithm where each local step can be solved approximately within a factor of 1/ρ

as shown in the following lemma.

Lemma 1 Given some ρ > 1, if there exists a 1
ρ
-approximation algorithm to the problem maxv∈P vTGv

for all G⪰ 0, then there is a 1
ρ
-approximation algorithm to the problem maxvi∈Ŝ,vj∈Y det(S−i +vjvjT).

Proof: For each i ∈ Ŝ, if S−i has an inverse, then det(S−i + vjvjT) = det(S−i)(1 + vjTS−1
−i v

j).

Thus, we can use the approximation algorithm to solve maxv∈P vTS−1
−i v to get a vector v′ satisfy-

ing det(S−i + v′v′T) = det(S−i)(1 + v′S−1
−i v

′)≥ det(S−i)(1 +
v∗TS−1

−i v
∗

ρ
)≥ det(S−i)

ρ
(1 + v∗TS−1

−i v
∗) =

1
ρ
maxj det(S−i+vjvjT). Similarly, if S−i does not have an inverse, then we have det(S−i+vjvjT) =

det(S−i)v
jT(Ip−S†

−iS−i)v
j and can apply the approximation algorithm to Ip−S†

−iS−i. Since we

can get a 1
ρ
-approximation for each fixed i we can also get the same approximation when we

maximize over i. ⋄

We show the bound in the theorem by constructing a feasible dual solution (Λ̄, ν) to the dual

program (3), whose objective value is comparable to the objective value of the output of the

approximate local search algorithm.

Let (Λ̄, ν) where Λ̄= (αS)−1 for α=
(

p
k

k−p+1
p+k(ρ−1)

)
and ν = p

k
be a candidate dual solution. This

allows us to relate the objective value of S to ϕR since

ϕR ≤ kν− ln(det((αS)−1))− p.

The inequality follows since the right-hand side is the objective value of the dual solution (Λ̄, ν)

and the dual is a minimization problem.

We are ready to show the approximation guarantee. Note that

ϕR

p
≤ ln(α)+

ln(det(S))

p
+

kν

p
− 1 = ln

(
p

k

k− p+1

p+ k(ρ− 1)

)
+

ln(det(S))

p
.
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The first equality follows since the objective value of the dual solution (Λ̄, ν) is given by kν −

ln(det(Λ̄))− p and the second equality is from the definition of ν and α.

Thus, it remains to show that the candidate dual (Λ̄, ν) is feasible to the dual problem (3). First,

observe that Λ̄⪰ 0 since S ⪰ 0 and α > 0. We now verify the constraint viTΛ̄vi ≤ ν for each i for

which we need the following notation.

(I) For 1≤ i≤ n, τi := viTS−1vi

(II) For 1≤ i, j ≤ n, τij := vjTS−1vj .

The next two lemmas are useful to prove the feasibility of the dual solution.

Lemma 2 For any i∈ I and 1≤ j ≤ n we have τj − τiτj + τijτji ≤ τi + ρ− 1.

Proof: Since S is an approximate locally optimal solution, we have that det(S − viviT + vjvjT)≤

ρdet(S). Following exactly the calculations of lemma 9 in [16], we get that ρdet(S)≥ det(S)(1+

vjTS−1vj)(1−viT(S+vjvjT)−1vi) which is equivalent to (1+τj)(1−τi+
τijτji
1+τj

)≤ ρ. This concludes

the proof since the last inequality is equivalent to the inequality of the claim. ⋄

Lemma 3 For any 1≤ j ≤ n, we have τj ≤ p+k(ρ−1)

k−p+1
.

Proof: Summing the inequality for all i∈ I from Lemma 2, we have∑
i∈Ŝ

(τj − τiτj + τijτji)≤
∑
i∈Ŝ

τi + k(ρ− 1) = p+ k(ρ− 1).

We also have the following expression for the left-hand side:
∑

i∈I(τj−τiτj+τijτji) = kτj−pτj+τj .

Combining this with the upper bound concludes the proof. ⋄

To show viTΛ̄vi ≤ ν for all i∈ [n] , it is equivalent to show maxn
i=1 v

iTΛ̄vi ≤ ν = p
k

. We have,

n
max
i=j

vjTΛ̄vi =
1

α

n
max
j=1

τj

≤ p

k
.

The first equality follows by the definition of τj , and the inequality follows by applying the upper

bound in Lemma 3. □

We note that as in Madan et al. [16], the guarantee given in the above lemma is more meaningful

when k≫ p. Now we apply Theorem 1 to prove Corollary 1.

Corollary 1 For the full first-order model with two levels and no side constraints (i.e.,P =Y), the pricing-

based local search algorithm returns an approximate local optimum X to ECD-Opt with associated matrix

S satisfying

det(S)≥ eϕ
(
k− p+1

k

p

p+ k(π
2
− 1)

)p
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and additionally, satisfying

det(S)≥ kp

22(p−1)

(
k− p+1

k

p

p+ k(π
2
− 1)

)p

.

Proof: We prove the corollary by using Theorem 1 when Y ′ = {−1,1}d and then transforming the

{−1,1} solution to a {0,1} solution. Nesterov’s algorithm gives a 2
π

-approximation to the problem

maxx∈Y′ xTGx for any G ⪰ 0 with G ∈ Rd×d. This satisfies the requirements of Theorem 1 and

allows us to apply it with ρ= 2
π

. Let ϕ′ be the optimal (lndet) value of the integral solution. Then,

from Theorem 1, we get a solution S′ where S =V ′TV ′ for V ′ ∈ {−1,1}p×k satisfying

det(S′)≥ eϕ
′
(
k− p+1

k

p

p+ k(π
2
− 1)

)p

(4)

We will show that the {−1,1} solution S′ can be transformed to a {0,1} solution S such

that det(S) = det(S′)
22(p−1) . This transformation and the given guarantee immediately proves the first

inequality of the corollary, since it also implies that ϕ= ϕ′

22(p−1) . Finally, we show that ϕR =
ϕ′
R

22(p−1)

where ϕ′
R is the optimal value of the convex relaxation for the set Y ′ which allows us to get a

stronger version of the first inequality of the corollary where ϕ is replaced with ϕR. The transfor-

mation follows via a series of matrix operations that are standard for the Hadamard problem.

We will transform the matrix V ′ to a matrix V ∈ {0,1}p×k such that the first row is all-one. We

can do this with the following steps:

Step 1. Multiply the columns by of V ′ by −1,1 so that the first row of V ′ is all ones.

Step 2. Add the first row of V ′ to all other rows.

Step 3. Divide all rows except the first row by 2.

We note that the first step can be achieved by multiplying by a (k × k) diagonal matrix D on

the right, and that steps 2 and 3 can be achieved by multiplying V ′ on the left by p− 1 matrices

L1, . . . ,Lp−1. Thus, we have V =Lp−1 . . .L1V
′D so that det(Li) = 1/2 for all i= 1, . . . , p−1 . Thus,

we can get a solution with vectors in Y = {0,1}d by setting S =V V T with objective value give by

det(S) = det
(
Lp−1L2 . . .L1V

′D2V ′TLT
1 . . .L

T
p−1

)
=det

(
Ld−1L2 . . .L1V

′V ′TLT
1 . . .L

T
p−1

)
=

det(S′)

22(p−1)
.

Then the proof of the corollary is concluded by the following lemma.

Lemma 4 When Y = {x ∈ {0,1}d : x1 = 1} , an optimal solution to the continuous relaxation (2) is

λ∗
i = k/2p−1 for each i∈ [2p−1] with optimal value eϕR = kp

22(p−1) .
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Proof: The proof is to construct primal and dual solutions that have the same objective value. We

begin by constructing the primal solution. We define the primal solution by letting λi =
k

2p−1 for

i= 1, . . .2p−1. Let A be the matrix with all 2p−1 vectors from P as its columns and D be a diagonal

matrix where Dii = λi for i ∈ [2p−1]. Then the objective value of the primal solution is given by

ln(det(ADAT)). We now calculate det(ADAT). We observe that ADAT = k

[
1 1T/2

1/2 (Jp−1 + Ip−1)/4

]
where 1 is the all ones vector in dimension p−1 and Jp−1 is the all ones matrix in dimension p−1.

Then we have that det(ADAT) = kp det((Jp−1+Ip−1)/4−1(1T)/4) = kp det(Ip−1/4) =
kp

22(p−1) . Now

we construct a feasible dual solution with the same objective value. We set Λ = (ADAT)−1 and

ν = p/k. Then the objective value of the dual solution, kν − ln(det(Λ))− p, is equal to the primal

objective by our calculation of det(ADAT). We now verify the feasibility of the dual solution. The

matrix Λ is PSD since its inverse is PSD, so it remains to show that vTΛv ≤ ν = p/k for all v ∈ P .

We can use the block structure of ADAT to get that Λ= 1
k

[
p −21T

−21 4Ip−1

]
. Then it is easy to verify

that vTΛv= p/k= ν for all v ∈P . ⋄

□

3.2. Hardness of polynomial optimization problem. So far, we have discussed two

approaches to solve the problem maxv∈P vTGv for G⪰ 0: in Section 2.1, we describe how to solve

the problem using an integer programming approach exactly whose running time can be expo-

nential in the input size. In Corollary 1, we show that for the special case of a full first-order

model when P =Y = {x∈ {0,1}d : x1 = 1}, we have an efficient 2
π

-approximation algorithm. This

algorithm is based on the 2
π

-approximation by Nesterov [20] to solve the problem maxv∈P vTGv

for G⪰ 0 where P =Y = {−1,1}d. A natural question is whether such approximation algorithms

also hold for general P , in particular for second-order models.

In this section, we show a negative result and prove that it is NP-hard to get an approxi-

mation better than 1/2 when the set P is defined by a special case of the second-order model.

In this case, hardness even follows when the matrix G is diagonally dominant and M has all

degree-one monomials and a limited number of degree-two monomials. The diagonally domi-

nant matrix is of special interest, since Goemans and Williamson [8] show that their algorithm for

max-cut also achieves a 0.878-approximation for the problem maxx∈{−1,1}d x
TGx. The Gomeans

and Williamson result was the basis for the algorithm by Nesterov [20] for the general positive

semi-definite matrix G. For a diagonally dominant matrix G our goal is to solve the problem

max
v∈P

vTGv= max
x∈{−1,1}d

p(x)TGp(x). (5)

where p(x) has coordinates corresponding to all monomials of degree 1 and some monomials of

degree 2.
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We use the problem MAX− 3LIN for a reduction. In MAX− 3LIN we are given m equations

over variables z1, . . . , zp of the form zi + zj + zk ≡ 0 mod 2 or zi + zj + zk ≡ 1 mod 2 and we need

to select values of zi ∈ {0,1} for each i∈ [p] to maximize the number of equations that are satisfied.

The instance cannot contains two distinct equations involving the same set of variables. It has been

shown that MAX− 3LIN is NP-hard to approximate better than 1/2 [9].

Proposition 1 There exists an approximation preserving polynomial-time reduction from MAX− 3LIN

to Problem (5), and thus, it is NP-hard to approximate it better than a factor of 1
2
.

Proof: We observe that zi+ zj + zk ≡ 0 mod 2 is satisfied if and only if {zi, zj, zk} contains an even

number of ones. Similarly, zi+zj +zk ≡ 1 mod 2 if and only if {zi, zj, zk} contains an odd number

of ones. Given the set of m equations, we now construct an instance of problem (5) by defining

the set of monomialsM and the matrix G. Our reduction will have the following property:

• For all x∈ {−1,1}d the value p(x)TGp(x) is equal to the number of equations satisfied by the

MAX− 3LIN solution zi =
xi+1

2
for all i∈ [p].

Firstly, we let M contain all degree-one monomials meaning mi(x) = xi for i = 1, . . . , d. For

every equation zi + zj + zk with i < j < k we add a degree-two monomial corresponding to pair

{j, k} meaning mjk(x) = xjxk. Let C be a set of subsets that defines the set of all monomials

meaning for all F ∈ C, mF (x) =
∏

i∈F xi ∈M. We will use the elements C to index entries of the

matrix G, which will have dimensions |C| × |C|. For every equation zi + zj + zk ≡ 0 mod 2 with

i < j < k we set the entry Gi,{j,k} =G{j,k},i =−1/4 and for zi + zj + zk ≡ 1 mod 2 we set the entry

Gi,{j,k} =G{j,k},i = 1/4. All other off-diagonal entries are set to 0. We define the diagonal entries

by setting GF1,F1
=
∑

F2∈C,F2 ̸=F1
|GF1,F2

| for all F1 ∈ C. Thus, by construction, G is symmetric, diag-

onally dominant, and therefore also positive semi-definite. We define sets C1,C2 where C1 contains

all (i, j, k) such that zi + zj + zk ≡ 0 mod 2 is an equation in the MAX− 3LIN instance and C2
contains all (i, j, k) such that zi + zj + zk ≡ 1 mod 2 is an equation. For any x∈ {−1,1}d, we have

p(x)TGp(x) =
1

2

∑
(i,j,k)∈C2

(1+xixjxk)+
1

2

∑
(i,j,k)∈C1

(1−xixjxk) .

Then we observe that

1+xjxjxk

2
=

{
1 if xi, xj, xk has an odd number of − 1

0 otherwise
(6)

and

1−xjxjxk

2
=

{
1 if xi, xj, xk has an even number of − 1

0 otherwise
. (7)
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Then the vector x = (x1, . . . , xd) can be mapped to a MAX− 3LIN solution z = (z1, . . . , zd) by

setting zi =
xi+1

2
. The mapping from x and z has the property that p(x)TGp(x) is equal to the

number of equations x satisfies in the MAX− 3LIN instance. This follows by equations (6), (7)

and the fact that xi =−1 implies zi = 0 and xi = 1 implies zi = 1. □

4. Continuous relaxation. In this section, we consider the continuous relaxation (2) discussed

in Section 3 and give an algorithm to solve it to optimality using column generation. We use both

the primal (2) and dual (3) to solve the problem efficiently.

The algorithm works by maintaining a set of candidate vectors P ′ ⊆P . We initialize the set P ′

as a random subset of P of small cardinality. We solve the restricted primal obtained by setting

all variables for vectors not in P ′ to zero and the corresponding restricted dual to optimality. We

give the restricted primal and dual below, and for a set P ′, we refer to the restricted program as

R(P ′).

max
λ

ln(det(
∑
v∈P′

λvvv
T)) min

Λ,ν
kν− ln(det(Λ))− p (8)

s.t.
∑
v∈P′

λv = k s.t. vTΛv≤ ν, ∀v ∈P ′

λv ≥ 0, ∀v ∈P ′ Λ⪰ 0.

In the following lemma, we show that it is straightforward to obtain an optimal dual solution

from an optimal primal solution.

Lemma 5 Let λv for all v ∈P ′ be an optimal solution for the restricted primal with set of vectors, P ′. Then

the dual solution Λ= (
∑

v∈P′ λvvv
T)−1 and ν =maxv∈P′ vTΛv is an optimal solution for the restricted

dual with set of vectors P ′.

Proof: The proof follows by taking the Lagrangian multipliers for the primal program. We refor-

mulate the primal program as follows,

max
λ,X

ln(det(X))

s.t.
∑
v∈P

λvvv
T ⪯X∑

v∈P

λv = k

λv ≥ 0,∀v ∈P ′.

We use the multiplier Λ for the first constraint and ν for the equality constraint. Then, the

Lagrangian is given by

max
X,λ≥0,λT1=k

min
ν,Λ⪰0

ln(det(X))+ ν(k−
∑
v∈P

λv)+
∑
v∈P

λvv
TΛv−⟨Λ,X⟩.
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Taking the derivative with respect to X gives us (X−1)T − Λ = 0 implying that Λ = X−1.

Hence, there exists an optimal dual solution that must also satisfy X =
∑

v∈P λvvv
T and ν =

maxv∈P′ vTΛv= p/k. This concludes the proof of the lemma. □

After solving the restricted primal and dual programs (8) to optimality, in the next step, the

algorithm checks whether the optimal dual solution to the restricted dual program is feasible for

the original dual problem. If it is, we obtain the result that the current primal and dual solutions

are also optimal for the original problem. Otherwise, we find a violating constraint to dual pro-

gram corresponding to some vector v ∈ P \ P ′. We then add v to P ′ and iterate in solving the

updated formulated restricted primal and dual programs, which means that we move from the

restricted program R(P ′) to R(P ′ ∪{v}). The main challenge is to solve the pricing problem to find

out whether there is a violating constraint. Given an optimal dual solution (Λ̄, ν̄) to the restricted

dual, the problem of checking the feasibility of this solution to the original program is equivalent

to solving

max
v∈P

vTΛ̄v

and checking if the maximum is at most ν̄ or not. This problem turns out to be exactly the problem

(Sub) that we have discussed in Section 2.1, and we apply the same methodology to solve it by

reformulating it as a polynomial optimization problem. In the next proposition, we show that

solving the pricing problem optimally also gives us a feasible dual solution. This is useful since it

provides an upper bound for the value of the unrestricted program R(P) and therefore, it is also

an upper bound of the value of the integral optimum solution.

Proposition 2 Let (Λ̄, ν̄) be a feasible solution to the restricted dual R(P ′) for a subset P ′ ⊂ P and

α=maxv∈P vTΛ̄v. Then (Λ̄, α) is a feasible dual solution to the unrestricted dual program R(P).

Proof: This follows immediately, since Λ̄⪰ 0 and vTΛ̄v≤ α for all v ∈P by definition of α. □

We compute α in Proposition 2 every time we solve the pricing problem optimally when running

the column generation algorithm. In Section 5, where we present our experimental results, we

utilize Proposition 2 to derive an upper bound for large instances where obtaining the optimal

value ofR(P) is computationally intractable.

To further speed up the implementation, we use additional steps that we describe in the fol-

lowing section.

4.1. Further implementation steps. In this section, we describe some extra steps that speed

up the column generation algorithm. The full algorithm is described in Algorithm 1.
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Sparsification. To ensure that the size of set Y ′ does not increase too much over iterations,

we describe a sparsification procedure that reduces the size of set Y ′ without any loss to the

objective value. This is useful since the formulation (8) depends on the size of P ′. In particular,

whenever |P ′|>
(
p+1
2

)
, we can find a subset P ′′ ⊂P ′ of strictly smaller size such that the restricted

problem R(P ′′) has the same objective as R(P ′). The search for P ′′ can be reduced to solving a

linear program described below. Given a feasible primal solution λ∗
v for all v ∈P ′ to the restricted

problem (8), we formulate a linear programming feasibility problem with variables λv for all v ∈

P ′. We ensure the matrix constraint that
∑

v∈P′ λvvv
T =

∑
v∈P′ λ∗

vvv
T must hold, which is simply

a set of linear constraints for variables λv. Additionally, we impose that λ is feasible for R(P ′).

Then, we obtain the following LP feasibility problem:

min
λ

0 (9)

s.t.
∑
v∈P′

λvvv
T =

∑
v∈P′

λ∗
vvv

T

∑
v∈P′

λv = k

λv ≥ 0,∀v ∈P ′.

We have the following theoretical bound on the size of the support of a continuous primal solution

when we obtain a basic feasible solution. We then set P ′′ = {v : λv > 0} and continue.

Proposition 3 For any set of vectors P ′ and weights λ∗
v ≥ 0 for all v ∈ P satisfying

∑
v∈P′ λ∗

v = k there

exists λv for all v ∈P ′ satisfying
∑

v∈P′ λv = k such that the following two hold

1.
∑

v∈P′ λvvv
T =

∑
v∈P′ λ∗

vvv
T

2. |{λv > 0|v ∈P ′}| ≤
(
p
2

)
+ p+1.

Proof: The proof of this lemma follows by setting λ to any basic feasible solution of LP (9) which

exists since λ∗ is a feasible solution to LP (9). The first property holds due to the first constraint

in the LP, and the second property holds since the LP has
(
p
2

)
+ p+1 constraints apart from non-

negativity constraints. Thus, any basic feasible solution would have no more than
(
p
2

)
+ p + 1

nonzero variables. □

Addition of random columns. If the optimal value of (8) is strictly less than the optimal value

ϕR of the relaxation (3), solving the pricing problem (Sub) with an integer program guarantees

that we obtain a violated column corresponding to a vector that is added to P ′. However, in

practice, it can be slow to solve an integer program every iteration. A simple alternative approach

is to add a small subset of random vectors from P to P ′ in addition to the vector that violates the
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dual constraint. This procedure can accelerate the solution procedure by saving many iterations

via preemptively adding vectors without solving an integer program.

Thus, the high level idea of our algorithm can be summarized with the following steps.

(i) Solve the continuous relaxation of the restricted primal or dual problem (8) to obtain a dual

solution (Λ, ν). Check if the current dual solution is feasible to the original problem (3) by

solving the pricing problem (Sub). If not, then add a subset of random vectors from P to P ′

along with the vector that violates the dual constraint.

(ii) Sparsify the support of the current primal solution if the support is significantly larger than

p2. Return to Step 1.

The details of the algorithm are described in Algorithm 1.

5. Experimental results. In this section, we show the efficacy and scalability of our approach

for various classes of D-optimal design problems, in particular, first-order and second-order

design, with knapsack constraints. We also compare our results with JMP [10], a popular commer-

cial statistical software that can also compute the designs of the variants we study. In particular,

we numerically compare the following variants of the D-optimal design problem.

(i) Full first-order model with two levels and a cardinality constraint. In this model, we have all

vectors with no more than r ones for some integer r ≤ d, i.e., P = Y = {x ∈ {0,1}d : 1Tx≤

r,x1 = 1}.

(ii) Full first-order model with two levels and two knapsack constraints. The knapsack con-

straints are give by two non-negative vectors a1,a2 ∈ Rd
+ and two numbers b1, b2 ≥ 0. Then

the set of vectors is defined by P =Y = {x∈ {0,1}d : x1 = 1,aT
1x≤ b1,a

T
2x≤ b2}

(iii) We also consider the second-order model mixed with knapsack constraints. We recall the

second-order model is defined by a set of monomials of degree at most two, given by set

M. That is, each design point is given by p(x) = (m1(x),m2(x), . . .mp(x))
T, where mj(x) is

a monomial with degrees at most two. For vectors a1,a2 ∈ Rd
+ and two numbers, b1, b2 ≥ 0

get the following set of feasible vectors:

P = {(m1(x),m2(x), . . .mp(x))
T ∈ {0,1}p : x∈ {0,1}d, x1 = 1,aT

1x≤ b1,a
T
2x≤ b2}.

Experimental setup. We ran the experiments on a Windows machine with an AMD EPYC Pro-

cessor that has 16 cores. For each of the variants described at the beginning of this section, we

ran both the local search algorithm described in Section 2 and the column generation algorithm

described in Section 4.1. We gathered various statistics on the runs of the two algorithms, such

as total time, objective values, and time spent in Gurobi. Finally, we compared the results of our

local search algorithm with JMP. We show a comparison between the objective values and also
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Algorithm 1 Pricing-based algorithm for the continuous relaxation of ECD-Opt
Require: P ′ ⊂ P which is a set of vectors and S =

∑
v∈P′ vvT satisfying det(S) > 0. Tolerances

δ, ϵ, γ > 0

1: Solve the primal program (8) on vectors P ′ for to get primal solution λ.

2: Compute a feasible dual solution Λ, ν from the primal solution.

3: while True do

4: Let v= argmaxv∈Y vTΛv where the optimization problem is solved using a heuristic.

5: if vTΛv< (1+ δ)ν then

6: Let v= argmaxv∈Y vTΛv where the optimization problem is solved using an IP.

7: end if

8: if vTΛv≤ (1+ ϵ)ν and v was obtained from the IP then return P ′

9: end if

10: P ′←P ′ ∪{v}

11: if (Λ, ν) was obtained by solving the primal then

12: Add p− 1 random vectors from Y to Ŝ

13: else

14: Add 2(p− 1)2 random vectors to Ŝ

15: end if

16: if |P ′|> ⌈p
2

3
⌉ and (Λ, ν) was obtained by solving the primal then

17: Solve an LP to get P ′′ ⊆P ′ such that
∑

v∈P′′ λvvv
T =

∑
v∈P′ λvvv

T.

18: P ′←P ′′

19: end if

20: Compute (Λ, ν) using the new solution P ′.

21: if the improvement to the objective in the previous step is less than a factor of γ then

22: Solve only the dual in future iterations.

23: end if

24: end while

show that our local search algorithm can improve the JMP solution by using it as a starting point.

When comparing the performance of our algorithm with JMP, we consistently ensure that the JMP

is allowed to run for at least as long as the runtime of our algorithm. The implementation is done

with Python and is available online on GitHub [1].

5.1. First-order model with the cardinality constraints We begin with the simplest of the

three variants– the first-order model with the cardinality constraint. For the cardinality constraint,



A. Pillai, G. Ponte, M. Fampa, J. Lee, M. Singh, W. Xie: Large-Scale D-optimal Design
20

FIGURE 1. A single run of the local search algorithm for solving the first-order model with the cardinality constraints

for d= 18. Heuristic means the local search found a locally improving move using the bit flip/swap heuristic, and IP

means the algorithm failed to find an improving move with the heuristic and had to run Gurobi. In this example, the

algorithm used the heuristic to find an improving move in every iteration, and the IP is only used in the last iteration

to certify that the solution is a local optima.

we use r = ⌊d
3
⌋. First, we begin with a single run of the algorithm for d= 18 in Figure 1. The plot

shows that for the simple cardinality constraint, the (Bit Flip) and (Bit Swap) heuristics work well

to find a local improvement. The figure shows that the algorithm only needed to solve the IP in

the last iteration to verify that the solution is a local optima.

We also compare the results of the local search algorithm to JMP in Table 1. These objective val-

ues are for lndet(.) and thus, a difference of 0.3 in the objective value amounts to e0.3 ≃ 1.35 factor

improving in the determinant objective. Additionally, we are also able to improve the solution

returned by JMP by using it as a starting point for our local search algorithm.

TABLE 1. A comparison of different methods for solving the first-order model with the cardinality constraint. In this

table, Relaxation Value is the value of the convex relaxation (3), and values are lndet. LS Value is the value of the

solution the local search algorithm returned with a random starting solution, JMP Value is the value of the solution JMP

returned, and JMP + LS gap is the value of the solution returned by the local search algorithm with the JMP solution as

a starting point.

d LS Value JMP Value JMP + LS Value Upper Bound (Convex Relaxation Value)
11 13.641 13.299 13.641 14.189
12 18.968 18.938 18.964 19.270
13 20.785 20.521 20.800 21.085
14 22.641 22.129 22.645 22.897
15 27.451 27.122 27.434 27.781
16 29.437 29.095 29.415 29.895
17 31.374 30.910 31.422 32.003
18 36.325 35.878 36.360 36.844
19 38.639 38.014 38.694 39.189
20 41.115 40.221 41.056 41.528
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Table 2 shows the time it took to run the local search algorithm with a random starting solution.

We can see from the table that the vast majority of the total time is spent on Gurobi. Specifically,

the last iteration usually takes the most time, since it always requires k, the total number of points

in the design, Gurobi calls to verify that a solution is locally optimal.

d Total Time Gurobi Time Gurobi Iterations Number of Iterations
11 11.15 10.43 1 1
12 11.21 10.40 1 2
13 18.02 16.82 2 8
14 21.54 20.33 1 7
15 26.30 23.97 1 12
16 27.54 25.79 1 13
17 29.73 28.12 1 9
18 30.57 28.15 1 16
19 30.65 28.71 1 17
20 82.53 78.89 2 32

TABLE 2. Local search timing statistics for solving first-order model with the cardinality constraint. Each row of the

table corresponds to a different single run of the algorithm for dimension d, and the columns give information on

each particular run. Total Time is the total time the algorithm took from beginning to end in seconds, Gurobi Time is

the total time the algorithm spent in running Gurobi, Gurobi Iterations is the total number of iterations where the

algorithm called Gurobi to search for an improvement, and Iterations is the total number of iterations for that run.

5.2. First-order model with knapsack constraints In the next experiment, we study the first-

order model with two knapsack constraints. To generate the two knapsack constraints, we first

generated two vectors a1,a2 ∈ Rd where ai1 = 0 and 80% of the entries are sampled uniformly

at random from the set {0, . . . ,5} and the remaining entries are uniformly at random from

{20, . . . ,30}. The right-hand side the two constraints bi = E[aT
ix] = 1/2

∑d

j=2 aij for x drawn uni-

formly at random from the set of vectors P =Y = {x∈ {0,1}d : x1 = 1} for i= 1,2.

Figure 2 illustrates a single run of the local search. In this case, we solve the integer program in

multiple iterations, in contrast to the first-order model with the cardinality constraint. In Figure 2,

we can see that the local search algorithm would have been stuck in iteration 10 using only (Bit

Flip, Bit Swap) and that using the IP helps to return a better solution.

Table 3 compares the results of JMP and our algorithm. JMP usually gets a better objective

compared to our algorithm with a random starting solution. Nonetheless, for most instances, we

can further improve the JMP solution using our local search algorithm when we use the JMP

solution as an initial solution. Figure 3 illustrates a single run in which we used the JMP solution

as a starting point. Here, the first iteration was an IP iteration, since the JMP solution was locally

optimal in the bit flip/swaps neighborhood.
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FIGURE 2. A single run of the local search algorithm for solving first-order model with knapsack constraints for d= 13.

Heuristic means the local search found a locally improving move using the bit flip/swap heuristic, and IP means the

algorithm failed to find an improving move with the heuristic and had to run Gurobi to solve the IP.

TABLE 3. A comparison of different methods for solving the first-order model with knapsack constraints.

d LS Value JMP Value JMP + LS Value Relaxation Value
11 17.677 17.717 17.717 18.007
12 20.675 20.767 20.767 21.068
13 23.407 23.501 23.501 23.802
14 26.192 26.264 26.274 26.678
15 29.912 29.987 29.987 30.378
16 32.668 32.636 32.767 33.262
17 35.971 36.027 36.044 36.663
18 39.090 39.152 39.152 39.729
19 42.467 42.518 42.598 43.193
20 45.928 45.924 45.924 46.661

FIGURE 3. A single run of the local search algorithm for solving first-order model with knapsack constraints for d= 16.

The local search is initialized with a solution given by JMP, and the IP is needed in the first iteration to find an improving

move. A single run of the local search algorithm. The Heuristic means the local search found a locally improving move

using the bit flip/swap heuristic, and IP means the algorithm failed to find an improving move with the heuristic and

had to run Gurobi to solve IP. The Gap is the difference between the value of the convex relaxation and the value of

the solution.



A. Pillai, G. Ponte, M. Fampa, J. Lee, M. Singh, W. Xie: Large-Scale D-optimal Design
23

Table 4 displays the time it took to run the local search algorithm. Overall, the times are a bit

higher in some runs than those with the cardinality constraint, since the Gurobi was executed in

multiple iterations to solve IP.

TABLE 4. Local search timing statistics for solving first-order model with knapsack constraints.

d Total Time Gurobi Time Gurobi Iterations Iterations
11 9.10 8.09 1 8
12 13.61 12.22 1 5
13 32.78 30.42 3 16
14 28.06 26.84 2 15
15 20.89 19.79 1 10
16 44.77 42.65 2 24
17 24.64 22.49 1 23
18 27.41 25.50 1 16
19 55.36 52.26 2 29
20 73.51 69.19 2 35

Table 5 shows timings for solving the convex relaxation (3). A large portion of the time taken

to solve the convex relaxation is spent solving the restricted dual program (8) with Mosek. In

Figure 4, we show the objective improvements returned by the column generation algorithm for

a single instance. When we solve the separation problem (Sub) optimally, we can use the value to

construct a feasible dual solution, as shown in Proposition 2, to get an upper bound on ϕR which

is called IP bound in the figure.

TABLE 5. Timing statistics (in seconds) of the column generation algorithm for solving the first-order model with knap-

sack constraints. Each row corresponds to timings for a single run of the column generation for dimension d. Total Time

is the total time the algorithm took from beginning to end, Gurobi Time is the total amount of time the algorithm spent

in Gurobi, Mosek Time is the total time the algorithm spent in Mosek, and Iterations is the total number of iterations

it took.

d Total Time Gurobi Time Mosek Time IPs solved Iterations
11 11.45 3.44 0.13 17 17
12 20.32 8.08 1.19 33 41
13 17.64 4.29 0.07 16 18
14 53.99 17.36 0.11 44 67
15 113.31 32.34 43.32 82 103
16 151.70 63.94 27.31 130 201
17 3350.19 112.5 3173.13 181 260
18 3392.73 118.96 3194.11 181 218
19 22123.85 225.19 21799.30 255 340
20 45500.13 307.95 45083.08 236 365
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FIGURE 4. A single run of the column generation algorithm for the first-order model with knapsack constraints for

d= 15. The IP upper bound is the value of a dual feasible solution, and the Column Generation Value is the value of

the column generation algorithm.

FIGURE 5. A single run of the local search algorithm for solving second-order model with knapsack constraints for

d= 16. Heuristic means the local search found a locally improving move using the bit flip/swap heuristic and IP means

the algorithm failed to find an improving move with the heuristic and had to run Gurobi. Using only the heuristic, the

local search would have gotten stuck at iteration 60 with a gap of 1.562. Using the IP allows the algorithm to continue

by improving the gap to 1.535 at iteration 61 and finally terminate at iteration 88 with a gap of 1.406.

5.3. Second-order model with knapsack constraints In this experiment, we let the first d

monomials as degree one monomials, i.e., we let m(x) = xi for i ∈ [d] and the rest are the first(⌊ d
2 ⌋
2

)
pairs out of all

(
d
2

)
pairs. This means that we also incorporate all the monomials in the form

of xℓxj for all pairs {ℓ, j} from the set {2,3, . . . , ⌊d
2
⌋+1} with ℓ ̸= j. The two knapsack constraints

are the same as those used in Section 5.2.

Figure 5 illustrates a single run of the local search algorithm with d = 20. We can see that the

IP is much more important for finding an improving move for this variant of the design problem.

The heuristic failed to find an improving solution during earlier iterations, and the IP was used

in more iterations.
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Table 6 shows the run times of the local search algorithm with a random starting point. The

times for this variant are significantly higher than those in the previous variants since the IP was

used in each run more frequently, and the dimension of the design points is much larger due to

degree-two monomials.

Table 7 shows a comparison between the value of the solution returned by the local search

algorithm and JMP. For this variant, we are able to almost always get a better value than JMP and

also improve the JMP solution using the local search.

TABLE 6. Local search timing statistics for second-order model with knapsack constraints.

d Total Time Gurobi Time Gurobi Iterations Iterations
11 71.26 67.88 1 9
12 147.75 144.44 1 30
13 147.80 141.45 2 30
14 364.51 355.45 3 38
15 684.80 672.79 3 63
16 1690.40 1664.10 4 89
17 1480.17 1422.48 2 97
18 1373.81 1316.34 1 98
19 2048.41 1976.67 2 141
20 6926.83 6722.65 6 247

TABLE 7. Local search values for second-order model with knapsack constraints. Then relaxation values listed for d=

19,20 are the best upper bounds found for the instances using Proposition 2. For d = 19, the relaxation value of the

optimal solution is in the interval [132.547,132.634] and for d= 20 the relaxation value of the optimal solution is in the

interval [164.070,164.273]. The lower bound comes is the value of a feasible primal solution, and the upper bound is

the value of a feasible dual solution.

d LS Value JMP Value JMP + LS Value Relaxation Value
11 32.804 32.824 32.824 33.367
12 46.819 46.638 46.707 47.484
13 45.761 45.505 45.627 46.426
14 68.768 68.744 69.067 69.866
15 73.762 73.513 73.712 74.798
16 90.827 90.272 90.681 92.233
17 98.448 98.137 98.531 100.451
18 120.817 119.719 120.901 122.743
19 130.339 130.183 130.384 132.634∗

20 161.347 161.097 161.298 164.273∗

6. Conclusion We developed local search and column generation algorithms for D-optimal

design problems that are centered around solving a quadratic optimization problem (Sub). For

the local search algorithm, we established a theoretical approximation guarantee, assuming that
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(Sub) can be solved using an algorithm with a known approximation factor. Additionally, we

showed that achieving an approximation ratio better than 1/2 for (Sub) in the second-order model

is NP-Hard.

We implemented the local search and column generation for both the first-order and second-

order models with knapsack constraints. Our implementation solves (Sub) with an integer pro-

gram, and the experimental results in Section 5 highlight the importance of the integer program

in obtaining high-quality solutions. As the model complexity increases, basic heuristics such as

(Bit Flip) and (Bit Swap) fail to find local improvements, making the integer program essential to

find improving moves in larger neighborhoods. Notably, our local search starting from a random

solution often outperforms JMP, and using the solution returned by JMP as a starting point for

local search typically yields further improvements.

In Section 3, we established a negative result for the pricing problem (Sub) in the special case

where the matrix G is diagonally dominant for the second-order model. A natural theoretical

follow-up question is what kind of approximation guarantee can be achieved in the general case,

where G is any positive semi-definite matrix. Answering this would allow us to apply Theo-

rem 1 and obtain a result similar to Corollary 1 for the second-order model. From an empirical

perspective, it would be interesting to use local search and column generation algorithms in a

branch-and-bound framework to find an integral optimal solution.
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