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Abstract

The multiple traveling salesman problem (mTSP) is an important variant of metric TSP
where a set of k salespeople together visit a set of n cities while minimizing the total cost of
the k routes under a given cost metric. The mTSP problem has applications to many real-
life problems such as vehicle routing. Rothkopf [14] introduced another variant of TSP called
many-visits TSP (MV-TSP) where a request r(v) ∈ Z+ is given for each city v and a single
salesperson needs to visit each city r(v) times and return to his starting point. We note that in
MV-TSP the cost of loops is positive, so a TSP solution cannot be trivially extended (without
an increase in cost) to a MV-TSP solution by consecutively visiting each vertex to satisfy
the visit requirements. A combination of mTSP and MV-TSP, called many-visits multiple TSP
(MV-mTSP) was studied by Bérczi, Mnich, and Vincze [3] where the authors give approximation
algorithms for various variants of MV-mTSP.

In this work, we show a simple linear programming (LP) based reduction that converts a
mTSP LP-based algorithm to an LP-based algorithm for MV-mTSP with the same approxima-
tion factor. We apply this reduction to improve or match the current best approximation factors
of several variants of the MV-mTSP. Our reduction shows that the addition of visit requests
r(v) to mTSP does not make the problem harder to approximate even when r(v) is exponential
in the number of vertices.

To apply our reduction, we either use existing LP-based algorithms for mTSP variants or
show that several existing combinatorial algorithms for mTSP variants can be interpreted as
LP-based algorithms. This allows us to apply our reduction to these combinatorial algorithms
while achieving improved guarantees.

1 Introduction

The traveling salesman problem (metric TSP) is a fundamental problem in combinatorial optimiza-
tion. Given a complete graph on vertex set V of size n and non-negative edge costs ce for all edges
e ∈ E that satisfy the triangle inequality, the goal is to find a Hamiltonian cycle of minimum cost
that visits all vertices. TSP and its variants have been at the forefront of development of algorithms,
in theory as well as practice. From an approximation algorithmic perspective, Christofides [6] and
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Serdyukov [16] gave a 3
2 -approximation algorithm for TSP which was recently improved to roughly

3
2 − 10−36 by Karlin, Klein, and Oveis-Gharan [11].

In this work, we aim to consider the multiple visit versions of metric TSP as well as many of
its variants. In the multiple visit version of metric TSP, which we call MV-TSP, we are given a
requirement r(v) ∈ Z+ for each vertex v in the graph and the goal is to find a closed walk that
visits each vertex exactly r(v) times. We note that a TSP solution cannot be trivially extended to a
MV-TSP solution since visiting a vertex v twice in a row incurs a cost cvv > 0. Simply, introducing
r(v) copies of each vertex v ∈ V and solving the TSP instance in the corresponding semi-metric,
it is easy to see that any Ä-approximation for metric TSP gives a Ä-approximation algorithm for
MV-TSP. Unfortunately, this reduction is not polynomial-time since the input size is logarithmic
in maxv r(v) while the algorithm takes time polynomial in maxv r(v). This raises an important
question:

Is there a polynomial-time reduction that implies that a Ä-approximation for metric TSP gives
a Ä-approximation for MV-TSP?

We ask the same question for variants of the metric TSP problem, in particular, for the variants
inspired by the classical vehicle routing problem. An extension of metric TSP is multiple TSP,
which we call mTSP, where there is a specified number of salespeople k and the goal is to find
k cycles of minimum total cost such that each vertex is visited by some salesperson. There are
several variations depending on whether the salespeople start at a fixed set of depot vertices D and
whether all salespeople need to be used. We refer the reader to a survey by Bektas [1] detailing
different variants, applications, and several algorithms for mTSP. The many-visit version of mTSP
that we call MV-mTSP is again defined similarly: we are given a graph, edge costs, a visit function
r : V → Z+, an integer k, and possibly a set of k depots and the goal is to find k minimum cost
closed walks so that each vertex is visited r(v) times. There are several variants depending on
whether there are depots, if all salespeople need be used, and if the demands for each vertex can
be satisfied by multiple salespeople. Approximation algorithms for many of these variants were
studied recently by Bérczi, Mnich, and Vincze [3]. We give a detailed description of the different
variants in Section 2.1.

1.1 Our Results and Contributions

Our main result is to show there is a polynomial-time reduction which given any Ä-approximation
algorithm for metric TSP that is linear programming based returns a Ä-approximation algorithm for
MV-TSP. By an LP-based algorithm, we mean any approximation algorithm whose performance
guarantee is analyzed with respect to the optimum value of the classical Held-Karp LP relaxation
for metric TSP.

Theorem 1. If there exists a polynomial-time Ä-approximation algorithm for metric TSP whose
guarantee is with respect to the Held-Karp LP relaxation (LP (TSP)), then there exists a polynomial-
time Ä-approximation algorithm for MV-TSP.

Results for MV-mTSP Problems. We also show that the above reduction also holds for
various MV-mTSP variants. This allows us to either obtain improved approximation algorithms
or match the best known approximation for many of these variants. Since many variants of mTSP
previously only had known combinatorial algorithms, we first reinterpret these algorithms as LP-
based by demonstrating that they also bound the integrality gap of the standard Held-Karp-style
relaxations for these variants. For metric TSP, this part is analogous to showing that the classical
Christofides 3

2 -approximation algorithm bounds the integrality gap of the Held-Karp relaxation to
within the bound of 3

2 as was done by Wolsey [18] and Shmoys and Williamson [17].
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Depot / Tour Restriction Problem Name Previous Work Approximation This Work Approximation

k Depots / Exactly k Tours MV-mTSP+ 3 [3] 2, Theorem 2

k Depots / At Most k Tours MV-mTSP0 2 [3] 2, Theorem 3

Table 1: A comparison of results for variants of MV-mTSP. All the approximation algorithms
stated in this table use our LP reduction technique.

Table 1 shows the names and constraints of the different variants of the MV-mTSP prob-
lem where we consider variants with k depots and the solution can have either exactly k tours
(MV-mTSP+) or at most k tours (MV-mTSP0).

In addition to the above described results, we also consider a variant of MV-mTSP called
SD-MV-mTSP+ where there is only one depot and we are required to find exactly k tours that
start at the depot and satisfy the visit requirements. We are able to improve on the previous best
approximation of 3 [3] for this problem and get an approximation of 3

2 by applying the following
theorem to a result by Frieze [9] that gives a 3

2 -approximation for the single-visit version of the
problem.

Theorem 5. If there exists a polynomial-time Ä-approximation algorithm for SD-mTSP+ whose
guarantee is with respect to LP (7), then there exists a polynomial-time Ä-approximation algorithm
for SD-MV-mTSP+.

Other Variants. While the results above rely on our LP reduction technique, we also obtain new
approximation results for two additional TSP variants using slightly different methods. Specifically,
we improve the best known approximation for the unrestricted mTSP+ problem in the single-visit
setting and provide a new approximation guarantee for the single depot many-visit mTSP problem
with vertex-disjoint tours.

For the unrestricted mTSP+ problem, where there are no depots, we improve the previous best
approximation factor of 4 (due to Bérczi, Mnich, and Vincze [3]) to 2.

Theorem 4. There is a polynomial-time algorithm for the unrestricted mTSP+ problem with an
approximation factor of 2.

Additionally, we consider the variant of SD-MV-mTSP+ where different tours must be vertex-
disjoint, meaning that each vertex is visited the required number of times by exactly one salesperson.
While our LP reduction technique does not apply in this setting, we achieve the following result
using ideas from Bérczi, Mnich, and Vincze [3].

Theorem 6. There exists a polynomial-time algorithm for the single depot many-visit mTSP
(SD-MV-mTSP+) problem with vertex-disjoint tours, with an approximation factor of 7

2 .

1.2 Related Work

Bérczi, Mnich, and Vincze [2] gave a 3
2 for MV-TSP. The variant of TSP where multiple salespeople

are used is usually referred to as mTSP. Frieze shows a 3
2 -approximation for a variant where

k salespeople are required to start a fixed depot vertex v1. Frieze’s algorithm generalizes the
Christofides-Serdyukov algorithm [6,16] for metric TSP. The mTSP problem is a relaxation of the
vehicle routing problem (VRP). In VRP, a set of k vehicles need to visit a set of customers with
known demands while starting and ending at a fixed depot vertex. Further, the set of vehicles have
a vehicle capacity which limits the total demand each vehicle can serve. If the vehicle capacity is
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sufficiently large so that the vehicles are not restricted by the demands then VRP is equivalent to
mTSP. Thus, there are several works for VRP that apply ideas from TSP algorithms such as a
paper by Christofides, Mingozzi, Toth [7] where the authors give exact VRP algorithms based on
finding minimum cost trees.

A different version of mTSP is when the different salespeople are required to start from different
depot vertices. Given a set of k depot vertices the goal is to find at most k minimum cost cycles
such that each vertex contains exactly one depot and all vertices are contained in exactly one
cycle. Rathinam, Sengupta, and Darbha [13] showed a 2-approximation algorithm for this problem
which was then improved to 2 − 1

k by Xu and Rodrigues [19]. Xu and Rodrigues [19] showed a
3
2 -approximation when the number of depots k is constant and very recently Deppert, Kaul, and
Mnich [8] showed a 3

2 -approximation for arbitrary k.
The mTSP problem with depots can be generalized further when m depots are available and

there are k salespeople satisfying k f m. Both Malik, Rathinam, and Darbha [12] and Carnes
and Shmoys [4] gave 2-approximations for this problem. Later, Xu and Rodrigues [20] gave a
(2− 1/(2k))-approximation. The algorithm by Xu and Rodrigues [19] can be adapted to this case
to get a 3

2 -approximation when m is constant.
Bérczi, Mnich, and Vincze [3] considered various problems that have both the constraints of

mTSP and MV-TSP which are referred to as MV-mTSP. They consider 8 different variants of
MV-mTSP and show equivalencies among some of the 8 variants. Additionally, they give constant
factor approximations for the different variants using many ideas from previous TSP algorithms
such as tree doubling.

Organization. We also apply this reduction to reduce different variants of MV-mTSP to mTSP,
using similar techniques with some modifications. In Section ??, we introduce a general frame-
work that applies to multiple variants and generalizes the results shown in this section. In Sec-
tion 4, we apply this framework to MV-mTSP0 and MV-mTSP+, while in Section 5, we apply
it to SD-MV-mTSP+. Finally, Sections 4.4 and 5.2 present results for unrestricted mTSP+ and
SD-MV-mTSP+ with vertex-disjoint tours, which follow from different methods rather than our
reduction technique.

For many variants that we consider, a challenge arises. Several of the existing algorithms give
approximation factors as compared to the integral solution and do not compare the algorithm’s
solution to the cost of the linear programming relaxation. For these problems, we first formulate
a Held-Karp style LP relaxation and either show that an existing algorithm has an approximation
factor relative to the LP value or give a new algorithm which has a guarantee towards the LP value.
For this we use characterizations of matroid intersection polytope which we apply to constrained
spanning trees and related problems in Section ??.

2 Preliminaries

A graph G = (V,E) is defined on vertex set V and edge set E which we will always take to be
the complete graph in this paper. For sets A,B ¦ V we denote by E(A,B) ¦ E edges e such
that e ∩ A ̸= ∅ and e ∩ B ̸= ∅. We use E(A) as a shorthand for E(A,A) and ¶(A) = E(A, V − A)
meaning ¶(A) is the set of edges with exactly one endpoint in A. For a single vertex v we write
¶(v) ¢ E instead of ¶({v}) to the set of edges that contain v. The degree of a vertex v is denoted
by d(v) which is the number of edges incident to that vertex meaning d(v) = |¶(v)|. We note that
any loop on a vertex contribute 2 to the degree. Additionally, for a set of edges T ¦ E, we use
dT (v) to denote the number of edges in T that contain v. Throughout the paper we use LPs whose
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variables correspond to edges of the graph and for LP variable x ∈ R
|E| we use x(T ) =

∑

e∈T xe for
all T ¦ E.

We also use the notion of a matroid in this paper. A matroid M is defined by a ground set E
and a collection of independent sets I ¦ 2E satisfying three properties.

1. ∅ ∈ I.

2. If A ∈ I then B ∈ I for all B ¦ A.

3. If A,B ∈ I with |A| < |B|, then there exists x ∈ B −A so that A ∪ {x} ∈ I.

An independent set of maximum cardinality is called a base. We use two specific matroids in this
paper: partition matroids and graphic matroids. A partition matroid is defined by a partition of
the ground set E = P1∪̇ . . . ∪̇Pk each with a capacity ci f |Pi| and a set S ∈ I if |S ∩ Pi| f ci
for all i = 1, . . . , k. A graphic matroid is defined on a graph G with the set of edges as the
ground set and a set T ¦ E is independent if the set of edges T is acyclic in G. All matroids M
have a rank function r : 2E → Z which is defined as r(S) = maxA¦S{|A| | A ∈ I}. It is well
known that the convex hull of indicator vectors of independent sets in a matroid is described by
{x ∈ R

|E| | x g 0, x(S) f r(S) for every S ¦ E} and for matroids M1 = (E, I1),M2 = (E, I2)
with rank functions r1, r2 the convex hull of the indicator vectors of common independent sets in
I1 ∩ I2 is given by {x ∈ R

|E| | x g 0, x(S) f min(r1(S), r2(S)) for every S ¦ E}. Moreover, both
the matroid and matroid intersection polytopes are TDI (totally dual integral). We refer the reader
to Theorem 41.12 in Schrijver’s book [15] for more details on matroids and matroid polytopes.

2.1 Problem Description

In this section, we formally define the problems and their feasibility requirements. We use the
same names and notation as Bérczi, Mnich, and Vincze [3]. Throughout the paper, let n denote
the number of vertices in the input graph and let c : V × V → Rg0 be the cost function. The
function c is a semi-metric, meaning it satisfies symmetry and the triangle inequality but does not
necessarily satisfy cvv = 0. Specifically:

1. Symmetry: cuv = cvu for all u, v ∈ V .

2. Triangle Inequality: cuv f cux + cxv for all u, v, x ∈ V .

Since the triangle inequality implies cvv f 2cuv for all u, v ∈ V , our algorithms may use loops
to satisfy visit requirements, incurring the corresponding cost. A loop at a vertex counts as one
visit and contributes twice to the vertex’s degree. In many single-visit variants such as TSP, loops
violate feasibility, so for most single-visit variants, we assume cvv = 0 and that c is a metric.
However, there is one exception: Unrestricted mTSP+, a single-visit problem that allows loops.
We provide more details below.

We first describe the simpler variants:

1. Metric TSP (TSP): Given a complete graph G with vertex set V and edge weights satisfying
the triangle inequality, the goal is to find a minimum-cost Hamiltonian cycle.

2. Many-Visit TSP (MV-TSP): Given a complete graph G with vertex set V and a visit
function r : V → Zg1, the goal is to find a minimum-cost closed walk such that each vertex
v is visited exactly r(v) times.
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3. Multiple TSP (mTSP): Given a complete graph G with vertex set V and a set of k depots
D ¦ V , the feasible solutions differ based on the following variants:

3.1. mTSP+: Find exactly k cycles such that every vertex is included in exactly one cycle
and each cycle contains exactly one depot.

3.2. mTSP0: Find at most k cycles such that every non-depot vertex is included in exactly
one cycle and each cycle contains exactly one depot.

We primarily study hybrid variants combining many-visit TSP and multiple TSP, denoted as
MV-mTSP. These variants inherit the depot-based parameter from mTSP, giving rise to two
problems:

1. MV-mTSP+: Given a complete graph G with vertex set V and a subset of depots D ¦ V
with |D| = k, find exactly k closed walks such that each non-depot vertex v is visited r(v)
times and each walk contains exactly one depot.

2. MV-mTSP0: Given a complete graph G with vertex set V and a subset of depots D ¦ V
with |D| = k, find at most k closed walks such that each non-depot vertex v is visited r(v)
times and each walk contains exactly one depot.

Single Depot Variants. These variants involve a single depot and 1 f k f n − 1 salespeople,
with all closed walks starting at the depot vertex. Since all tours must start at the same depot,
allowing at most k tours is equivalent to a single-tour solution.

1. SD-mTSP+: Given a complete graph and an integer 1 f k f n−1, find exactly k cycles of at
least three vertices such that all cycles include the depot v1, and every other vertex v ̸= v1 is
in exactly one cycle. If cycles with two vertices were allowed (i.e., v1, v, v1), Frieze [9] shows
a reduction to the case where cycles must have at least three vertices.

2. SD-MV-mTSP+: Given a complete graph, an integer 1 f k f n − 1, and a visit function
r : V \ {v1} → Zg1, find exactly k closed walks starting at v1 such that all non-depot vertices
v are visited exactly r(v) times.

3. SD-MV-mTSP+ with Vertex-Disjoint Tours: Given a complete graph, an integer k g 1,
and a visit function r : V \ {v1} → Zg1, find exactly k closed walks starting at v1 such that
all non-depot vertices v are visited exactly r(v) times and any two closed walks only intersect
at the depot.

Bérczi, Mnich, and Vincze also consider whether depot vertices are present. If depots exist,
no cycle can contain multiple depots. If depots are absent, the problem is called unrestricted. We
analyze one unrestricted variant:

1. Unrestricted mTSP+: Given an integer k, find exactly k cycles spanning the graph. Loops
are valid cycles in this variant.

Representation of solution.
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3 Overview of Technique and MV-TSP Approximation

We now give an overview of the main technique using the example of MV-TSP and prove Theorem 1.
We assume that there is a Ä-approximation for metric TSP which is LP-based. As previously
mentioned, the run-time of the algorithm for MV-TSP needs to be polynomial in maxv∈V log r(v)
and n. A simple exponential time approximation algorithm for MV-TSP is to make r(v) copies
of each vertex v and apply a metric TSP Ä-approximation algorithm to this graph. On the other
hand, if maxv∈V r(v) was polynomial in n then we would get a Ä-approximation polynomial-time
algorithm. Our main technique is to use an LP relaxation of MV-TSP to fix certain edges in
our solution (without taking a loss in the objective) and construct a new instance where the visit
requirement of each vertex is polynomial. We then apply the simple reduction to TSP that we
described above. We note that our reduction relies on the connection between the LP relaxations
(MV-TSP) and (TSP): the LP relaxations only differ in that TSP requires every vertex has degree
2 while MV-TSP has degree 2r(v). As a result, our reduction is limited in that we cannot use
any algorithm for TSP but only an algorithm that has a guarantee towards the LP relaxation of
TSP. To illustrate our technique in more detail, let us return to the MV-TSP problem. We use
the following standard Held-Karp LP relaxation for metric TSP which we call LP (TSP),

minimize
∑

e∈E

cexe (TSP)

s.t. x(¶(v)) = 2 ∀v ∈ V

x(¶(S)) g 2 ∀S ¢ V

0 f xe f 1 ∀e ∈ E

minimize
∑

e∈E

cexe (MV-TSP)

s.t. x(¶(v)) = 2r(v) ∀v ∈ V

x(¶(S)) g 2 ∀S ¢ V

xe g 0 ∀e ∈ E
We need the following lemma which shows that the simple reduction from MV-TSP to metric

TSP is polynomial-time when the visit requests r(v) are polynomial in n. Moreover, the reduction
maintains the approximation factor of the LP relaxation based algorithm used for metric TSP. The
reduction basically relies on replacing each vertex with r(v) copies and then applying the LP-based
algorithm.

Lemma 3.1. Suppose there is a Ä-approximation algorithm for metric TSP that given an instance
on a complete graph G = (V,E(G)) with distances c : E(G) → Rg0 returns a Hamiltonian cycle
C such that

∑

e∈C ce f Ä · z⋆ where z⋆ is the optimum value of LP (TSP). Then there exists an
algorithm that given an instance of the MV-TSP on a complete graph H = (V,E(H)) with distance
function c : E(H) → Rg0 and requirements r : V → Z+ outputs a closed walk T : E → Z satisfying
∑

e∈E(H) T (e)ce f Ä
∑

e∈E(H) ceye where y is the optimal solution to LP (MV-TSP). The running
time of the algorithm is polynomial in maxv∈V r(v) and |V |.

Proof. Given the instance on MV-TSP on graph H, we construct an expanded graph Hr by making
r(v) copies of each vertex in H. The distance between any two copies of the same vertex v is defined
to be cost of the loop at v, i.e., cvv and the the distance between two copies of distinct vertices u
and v is identical to distance between u and v. We now apply the TSP approximation algorithm on
the new instance Hr to obtain a Hamiltonian cycle C in the expanded graph. We can interpret this
Hamiltonian cycle as a solution to MV-TSP. Observe that the cost of the solution is exactly the
cost of the Hamiltonian cycle in the cost defined as above. Thus to prove the lemma, it is enough
to show there exists a feasible solution to LP (TSP) on the instance Hr whose cost is at most the
cost of optimal solution y to LP (MV-TSP) on the instance H.

We will convert the solution y to a solution x to LP (TSP) on the graph Hr. Let e′ = {ui, vj}
and e = {u, v} where u, v are the original copies of ui, vj in V , then we set xe′ =

ye
r(u)r(v) . Now
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we show that x is a feasible solution to LP (TSP) for the graph Hr. For any vertex v ∈ V r and

i ∈ [r(v)] we have x(¶(vi)) = y(¶(v))
r(v) = 2 where the first equality follows since the degree of each

vertex v in y is distributed evenly among all r(v) copies in x the second equality follows by the
feasibility of y.

For any S ¢ V r, we need to show x(¶(S)) g 2. Let k be the number of vertices v ∈ V
such that there exists vi, vj that are distinct copies of v and S contains exactly one of vi, vj . We
show x(¶(S)) g 2 for all S ¢ V r by induction on k. If k = 0, then x(¶(S)) = y(¶(S′)) where
S′ ¢ V is acquired by taking the original copy of each vertex vj from S implying x(¶(S)) g 2 since
y(¶(S′)) g 2 since y is feasible to LP (TSP). If k > 0, then there exists a vertex v ∈ V such that
both S and V r −S have copies of v. We define the following subsets of vertices based on the set S,

1. let S(v) be the copies of v in S meaning S(v) := S ∩ {v1, . . . , vr(v)}

2. let B be the complement of S in V r meaning B := V r − S

3. let B(v) be the copies of v not in S meaning B(v) := {v1, . . . , vr(v)} − S(v).

First we consider the case when B(v) = B. We note that S = S(v) and B = B(v) cannot hold
simultaneously since |V | g 3. WLOG, we assume that S(v) = S otherwise we can switch B and S
since x(¶(S)) = x(¶(B)). Then we have,

x(¶(S)) = x(¶(S(v)))

= |S(v)| (2− xvv(|S(v)| − 1))

g |S(v)|

(

2−
|S(v)| − 1

r(v)

)

g |S(v)|

(

2−
|S(v)| − 1

|S(v)|+ 1

)

g 2.

The first inequality holds since xvv = yvv
r(v)2

f 1
r(v) because y(¶(v)) = 2r(v) implies that yvv f r(v)

since a loop contributes twice to the degree count of a vertex. The second inequality holds since
S(v) does not contain all copies of v so |S(v)| < r(v) and the third inequality holds since the
function f(x) = x(2− x−1

x+1) is an increasing function that is minimized at x = 1.
Now we can assume that S(v) ¢ S and B ¢ B(v). For any vi ∈ S(v) let X1 = x(E(vi, S−S(v)))

and X2 = x(E(vi, B − B(v))). We note that X1, X2 do not change based on the choice of vi since
all copies of v are defined identically in Hr. Now we consider the cut S − S(v) and by using the
fact that xvv g 0 we have,

x(¶(S − S(v))) = x(¶(S)) + |S(v)| (X1 − |B(v)|xvv −X2)

f x(¶(S)) + |S(v)| (X1 −X2) .

First we consider the case when X1 f X2 and here we have that x(¶(S − S(v))) f x(¶(S)) and
by induction we get that x(¶(S − S(v))) g 2 since S − S(v) is a set with one less vertex v that
separates a pair of copies of v and S − S(v) ̸= V r. Thus we have shown x(¶(S)) g 2 and now we
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consider the case when X1 > X2. Here we have,

x(¶(S +B(v))) = x(¶(B −B(v)))

= x(¶(B)) + |B(v)| (X2 − |S(v)|xvv −X1)

f x(¶(B)) + |B(v)| (X2 −X1)

< x(¶(B))

= x(¶(S)).

The first inequality follows since xvv g 0 and the last inequality follows since we are in the case
when X1 > X2. By induction we have x(¶(S + B(v))) g 2 since S + B(v) and is a set with one
less vertex v that separates a pair of copies of v and S + B(v) ̸= V r. Thus, we have shown that
x(¶(S)) g 2.

Finally, we show that 0 f x f 1. The lower bound follows immediately since y g 0, so it
remains to prove that x f 1. Suppose there exists e = {u, v} ∈ Er with xe > 1. This implies that
x(E(u, V r−{u, v})) < 1 and x(E(v, V r−{u, v})) < 1 since 2 = x(¶(v)) = x(E(v, V r−{u, v}))+xe >
x(E(v, V r−{u, v}))+1 and 2 = x(¶(u)) = x(E(u, V r−{u, v}))+xe > x(E(v, V r−{u, v}))+1. Thus,
we get that x(¶({u, v})) = x(E(v, V r −{u, v}))+x(E(u, V r −{u, v})) < 2 which is a contradiction
since we showed x(¶(S)) g 2 for all S ¢ V r.

Thus, we can apply the algorithm from the lemma assumption on x as a solution to Hr to
get a Hamiltonian cycle C in Hr satisfying

∑

e∈C ce f ÄcTx. We note that cT y = cTx since
cTx =

∑

e={u,v}∈E(Hr) r(u)r(v)xece =
∑

e∈E(H) ceye. We now convert C to a closed walk in H
denoted by T : E(H) → Z by replacing every copy edge {ui, vj} with its corresponding original
edge {u, v} in H. Clearly, T is a closed walk in H. Moreover, T visits every vertex r(v) times
in H since C visits each copy of v one time in Hr. Lastly, the run-time follows since Hr has
at most nmaxv∈V r(v) vertices and the algorithm in the lemma statement is a polynomial-time
algorithm.

Now we show how to use the algorithm given in Lemma 3.1 for a general instance where r is not
polynomially bounded. This algorithm (Algorithm (1)) solves LP (MV-TSP) and fixes edges in the
solution that are integrally set and reduce the visit requests accordingly. Finally, the reduced visits
are polynomial, so we can then apply Lemma 3.1. One has to carefully verify that the reduced
linear programming solution is a feasible solution to the LP relaxation for the reduced instance
which can be done by verifying the constraints carefully.

Algorithm 1 MV-TSP Reduction Algorithm

Input: G = (V,E), c : V × V → Rg0, r : V → Z+.
Output: an integral solution to LP (MV-TSP).

1 Solve LP (MV-TSP) to get solution x∗ .
2 For all edges e, let x̃e := xe − 2ke and ke := 0 if xe f 4 and otherwise ke is set so that 2 f x̃e < 4

and ke ∈ Z. Define a function r̃ : V → Z+ where r̃(v) = r(v)−
∑

e∈¶(v) ke.

3 Use Lemma 3.1 on the instance G, r̃ while setting y as x̃ to get a closed walk T : E → Z.
4 Increase the number of times each edge is used in the previous step by 2ke and return the resulting

solution.

The next two claims will help to show that Step 3 of the Algorithm (1) runs in polynomial-time.

Claim 3.2. The new visit function r̃ satisfies 1 f r̃(v) f 2n for all v ∈ V .

9



Proof. For v ∈ V we have,

r̃(v) = r(v)−
∑

e∈¶(v)

ke

= r(v)−
∑

e∈¶(v)

xe − x̃e
2

=
1

2

∑

e∈¶(v)

x̃e .

If all e ∈ ¶(v) satisfy xe f 4 then r̃(v) = r(v) g 1. Otherwise, the lower bound follows since for
xe > 4 we have x̃e g 2. The upper bound follows since x̃e f 4 for all e ∈ E.

Claim 3.3. The solution x̃ is feasible for LP (MV-TSP) with graph G and r̃.

Proof. We have x̃ g 0 and
∑

e∈¶(v) x̃e =
∑

e∈¶(v) xe − 2ke = 2(r(v)−
∑

e∈¶(v) ke) = 2r̃(v). For any
set S ¢ V , if xe f 4 for all e ∈ ¶(S) then x̃(¶(S)) = x(¶(S)) g 2. Otherwise, if there is an edge
e ∈ ¶(S) such that xe > 4 we get x̃(¶(S)) g x̃e g 2 by definition of x̃.

Now we complete the proof of Theorem 1.

Theorem 1. If there exists a polynomial-time Ä-approximation algorithm for metric TSP whose
guarantee is with respect to the Held-Karp LP relaxation (LP (TSP)), then there exists a polynomial-
time Ä-approximation algorithm for MV-TSP.

Proof. Let T ′ be the solution we get from the third step before we increase each edge by 2ke. By
Claim 3.2 and Lemma 3.1 we have that x̃ satisfies

∑

e∈E T ′(e)ce f Ä
∑

e∈E cex̃e. Let S = {e ∈
E | ke > 0} be the set of edges then we have that

∑

e∈E T (e)ce =
∑

e∈E T ′(e)ce + 2
∑

e∈S kece f
Ä
∑

e∈E cex̃e+2
∑

e∈S kece f ÄcTx∗. For the run-time, we have that Step 3 runs in time polynomial
in n by Claim 4.6 and Lemma 4.5 and the rest of the steps are clearly polynomial-time in n. Finally,
T is a feasible integral solution to LP (MV-TSP) which follows from the following two points

1. T ′ satisfies the cut constraints implying that T also satisfies the cut constraints because
T (e) g T ′(e) for all e

2. by definition T satisfies degree constraints.

As a corollary of Theorem 1 we get the following by applying the work of Karlin, Klein, and
Oveis-Gharan [10].

Corollary 1.1. There is a polynomial time approximation algorithm for the MV-TSP problem with
an approximation factor less than 3

2 − 10−36.

4 MV-mTSP

In this section, we present approximation algorithms for variants of mTSP. Specifically, we give
a 2-approximation for MV-mTSP+, MV-mTSP0, and unrestricted mTSP+. For MV-mTSP+ and
MV-mTSP0, we first provide an LP-based analysis of known algorithms for their single-visit coun-
terparts, mTSP+ and mTSP0. We then show the reduction to the many-visits version, which closely
follows the approach in Section 4.2 and Section 3.
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4.1 mTSP+ Approximation

A 2-approximation was given by Bérczi, Mnich, and Vincze [3] for mTSP+. This algorithm is a
simple combinatorial tree-doubling algorithm. To allow us to use this algorithm in our reduction, we
first show that the tree-doubling algorithm achieves a 2-approximation relative to its LP relaxation
for the single-visit case in Lemma 4.4. Given the set of depot vertices D ¦ V , we get the following
LP,

minimize
∑

e∈E

cexe (mTSP+)

s.t. x(¶(v)) = 2 ∀v ∈ V

x(¶(S ∪D)) g 2 ∀S ¢ V −D

x(E(D,D)) = 0

0 f xe f 2 ∀e ∈ E .

We need the notion of D-forest cover for the algorithm.

Definition 1. A D-forest cover is a forest cover such that each component includes exactly one
vertex from D and each component has at least two vertices.

Then we have the following algorithm.

Algorithm 2 Tree Doubling Algorithm for mTSP+

Input: G = (V,E), D ¦ V, c : V × V → Rg0 with |D| = k
Output: k cycles spanning the graph such that each cycle contains exactly one vertex from D

1 Find a min cost D-forest cover .
2 Double all the edges in the D-cover and then shortcut so that each vertex is visited exactly once

and return the resulting cycles .

To analyze the algorithm, we need the polytope of a D-forest cover. We provide a description
of this polytope and prove its integrality using ideas from Cerdeira [5]. For a set of vertices D, let
G/D be the graph with all vertices of D contracted into a single vertex d̂ and for S ¦ E−E(D,D)
let »G/D

(S) be the number of components in the graph G/D with edges S.

minimize
∑

e∈E−E(D,D)

cexe (1)

s.t. x(S) g »G/D
(S − E(D,D))− 1 ∀S ¦ E − E(D,D)

x(E(d, V −D)) g 1 ∀d ∈ D

0 f xe f 1 ∀e ∈ E − E(D,D) .

Claim 4.1. The value of LP (1) is the cost of the min cost D-forest cover.

Proof. For a D-forest cover F we observe that F is an edge set that satisfies |{{v, d} ∈ F , v /∈
D}| < n−|D| for all d ∈ D and that F is spanning tree in the graph G/D. We now define matroids
M1,M2 on the ground set E−E(D,D) with independent sets I1, I2 whose common independents
set correspond to complements of D-forest covers. We define M1 as a partition matroid which has
parts Pd for each d ∈ D that contain edges {{d, v} | v /∈ D} with capacity n− |D| − 1 and all other
edges e /∈ E(D,D) go in a unique part Pe with capacity 1. We define M2 as the dual of the graphic
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matroid on graph G/D. Then the complements of D-forest covers are common independent sets of
M1,M2 and the complements of all common independent sets of M1,M2 contain D-forest covers.
This implies that the cost of a min cost D-forest cover is c(E − E(D,D))−maxF∈I2∩I2 c(F ). By
the characterization of the matroid intersection polytope the value of maxF∈I2∩I2 c(F ) is

max
∑

e∈E−E(D,D)

cexe

s.t.
∑

e∈E(d,V−D)

xe f n− |D| − 1 ∀d ∈ D

x(S) f rM2
(S) ∀S ¦ E − E(D,D)

0 f xe f 1 ∀e ∈ E − E(D,D) .

Similar to Claim 5.1 we make the variable change ze = 1 − xe, add
∑

e∈E−E(D,D) ce, negate the
objective, and make it minimization to get LP (1). This follows since the following hold

1.
∑

e∈E−E(D,D) ce −
∑

e∈E−E(D,D) cexe =
∑

e∈E−E(D,D) ceze

2.
∑

e∈E(d,V−D) xe f n− |D| − 1 ⇐⇒
∑

e∈E(d,V−D) ze g 1

3. x(S) f |S| − »G/D
(E − E(D,D) − S) + 1 ⇐⇒ z(S) g »G/D

(E − E(D,D) − S) − 1 ⇐⇒

z(S) g »G/D
(S − E(D,D))− 1.

Thus x∗ is an optimal solution if and only if z∗ = 1− x∗ is an optimal solution to LP (1).

Next, we show that the upper-bound xe f 1 can be dropped and show that this gives the up-hull
of the D-forest cover polytope. We define the up-hull LP as

minimize
∑

e∈E−E(D,D)

cexe (2)

s.t. x(S) g »G/D
(S − E(D,D))− 1 ∀S ¦ E − E(D,D)

x(E(d, V −D)) g 1 ∀d ∈ D

xe g 0 ∀e ∈ E − E(D,D) .

The following claim implies that the optimal value of LP (2) is the same as the optimal value to
LP (1).

Claim 4.2. Let x be a solution to LP (2) such that there exists e′ ∈ E where xe′ > 1. Then there
exists x′ such that x′ is a feasible solution to LP (2) and x′ f x and x′e′ < xe′.

Proof. We will define x′ by keeping xe = xe for all e ̸= e′ and we will set x′e′ = xe′ − ϵ for some
small ϵ > 0. To show we can find such an ϵ, it suffices to show that all constraints involving
xe′ are not tight. This follows since the two constraints in the LP are lower bounds on x(S) for
some set of edges S. If e′ is not adjacent to a depot vertex, then xe does not impact the second
constraint, otherwise x(E(d, V −D)) g xe′ > 1. Let S ¦ E − E(D,D) such that e′ ∈ S, we will
now show that x(S) > »G/D

(S − E(D,D)) − 1. Let C1, . . . , Cp be the components in G/D with

edges S −E(D,D), so that »G/D
(S −E(D,D)) = p. Then consider the edge set S′ = S − {e′}, we

have that »G/D
(S′ − E(D,D)) g p − 1 since S′ − S = e′ and the addition of e′ to S can possibly

combine two components Ci, Cj . Thus we have, x(S) − xe′ = x(S′) g p − 2 which implies that
x(S) > p− 1 = »G/D

(S − E(D,D))− 1 since xe′ > 1. We have shown all constraints involving xe′

are strict inequalities, so we can decrease xe′ by some positive ϵ and still maintain feasibility in the
LP.
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With the characterization of the D-forest cover, we are now ready to analyze the Algorithm (2).
In the following claim, we show that the cost of min-cost D-forest cover as given by LP (2) is at
most the cost of the optimal solution to LP (mTSP+).

Claim 4.3. Let z∗ be an optimal solution to LP (mTSP+) and x∗ be an optimal solution to LP (2)
then we have cTx∗ f cT z∗.

Proof. Let z be a feasible solution to LP (mTSP+), we will show that z is a feasible solution to
LP (2). We note that LP (2) is defined on edges E − E(D,D) and z is defined on edges E, but z
satisfies ze = 0 for all e ∈ E(D,D). For all d ∈ D we have that,

z(E(d, V −D)) = z(¶(d))− z(E(d,D))

= z(¶(d)) = 2 > 1

where the second equality follows since 0 f z(E(d,D)) f z(E(D,D)) = 0. We recall that we use
the graph G/D in LP (2) which we get by contracting all vertices in D to a single vertex. Let d̂ be
the contracted depot vertex in G/D and for S ¦ E −E(D,D) let C1, . . . , Cp be the components of

the sub-graph of G/D with edges E − S − E(D,D) such that d̂ ∈ C1. Then we have that

z(S) g
∑

i<jfp

z(E(Ci, Cj))

=
1

2

(

z(¶((C1 − d̂) ∪D)) +

p
∑

i=2

z(¶(Ci))

)

g p = »G/D
(S − E(D,D))

> »G/D
(S − E(D,D))− 1 .

The second to last inequality follows since for i > 1 we have Ci ¦ V −D so z(¶(Ci)) = z(¶(D∪C ′
i)) g

2 for some C ′
i ¦ V −D.

The following lemma now follows straightforwardly about the LP-based guarantee for the Tree
Doubling Algorithm.

Lemma 4.4. Let z∗ be an optimal solution to linear programming relaxation for the mTSP+,
LP (mTSP+). Then the output of the Tree Doubling Algorithm returns a solution whose cost is at
most twice the objective value of z∗.

4.2 MV-mTSP+ Approximation

Now that we have a LP based algorithm for mTSP+, we are ready to give our reduction and apply
the guarantee from Lemma 4.4 to get a 2-approximation for MV-mTSP+. We get the following LP
relaxation for MV-mTSP+,

minimize
∑

e∈E

cexe (MV-mTSP+)

s.t. x(¶(v)) = 2r(v) ∀v ∈ V −D

x(¶(v)) = 2 ∀v ∈ D

x(¶(S ∪D)) g 2 ∀S ¢ V −D

x(E(D,D)) = 0

xe g 0 ∀e ∈ E .
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The following lemma allows us to relate the LP relaxation of the many-visit problem to its
corresponding single-visit variant.

Lemma 4.5. Suppose there is a Ä-approximation algorithm for mTSP+ that given an instance
on a complete graph G = (V,E(G)) with distances c : E(G) → Rg0 and depot vertices D ¢ V
returns k := |D| cycles C1, . . . , Ck such that

∑k
i=1

∑

e∈Ci
ce f Ä · z⋆ where z⋆ is the optimum value

of LP (mTSP+). Then there exists an algorithm that given an instance of the MV-mTSP+ on a
complete graph H = (V,E(H)) with distance function c : E(H) → Rg0, depot vertices D ¢ V ,
and requirements r : V −D → Z+ outputs a closed walk T : E → Z satisfying

∑

e∈E(H) T (e)ce f
Ä
∑

e∈E(H) ceye where y is the optimal solution to LP (MV-mTSP+). The running time of the
algorithm is polynomial in maxv∈V r(v) and |V |.

Proof. In this lemma we extend the visit function to the depot vertices and define r(v) := 1 for
all v ∈ D. Given the instance on MV-mTSP+ on graph H, we construct an expanded graph Hr

by making r(v) copies of each vertex in H. The distance between any two copies of the same
vertex v is defined to be cost of the loop at v, i.e., cvv and the the distance between two copies
of distinct vertices u and v is identical to distance between u and v. We now apply the mTSP+

approximation algorithm on the new instanceHr to obtain cycles C1, . . . , Ck in the expanded graph.
We can interpret these cycles as a solution to MV-mTSP+. Observe that the cost of the solution is
exactly the cost of C1, . . . , Ck in the cost defined as above. Thus to prove the lemma, it is enough
to show there exists a feasible solution to LP (mTSP+) on the instance Hr whose cost is at most
the cost of optimal solution y to LP (MV-mTSP+) on the instance H.

We will convert the solution y to a solution x to LP (mTSP+) on the graph Hr. Let e′ = {ui, vj}
and e = {u, v} where u, v are the original copies of ui, vj in V , then we set xe′ =

ye
r(u)r(v) . Now we

show that x is a feasible solution to LP (mTSP+) for the graph Hr. For any vertex v ∈ V r and

i ∈ [r(v)] we have x(¶(vi)) = y(¶(v))
r(v) = 2 where the first equality follows since the degree of each

vertex v in y is distributed evenly among all r(v) copies in x the second equality follows by the
feasibility of y. For any e ∈ E(D,D), we have xe = ye = 0 so x(E(D,D)) = 0. Finally 0 f x f 2
follows since xe f 2 if and only if ye f 2r(u)r(v) which follows since ye f 2min(r(u), r(v)).

For any S ¢ V r −D, we need to show x(¶(S ∪D)) g 2. Let k be the number of vertices v ∈ V
such that there exists vi, vj that are distinct copies of v and S contains exactly one of vi, vj . We show
x(¶(S∪D)) g 2 for all S ¢ V r−D by induction on k. If k = 0, then x(¶(S∪D)) = y(¶(S′∪D)) where
S′ ¢ V is acquired by taking the original copy of each vertex vj from S implying x(¶(S ∪D)) g 2
since y(¶(S′ ∪ D)) g 2 since y is feasible to LP (mTSP+). If k > 0, then there exists a vertex
v ∈ V −D such that both S and V r − (D ∪ S) have copies of v. We define the following subsets of
vertices based on the set S,

1. let S(v) be the copies of v in S meaning S(v) := S ∩ {v1, . . . , vr(v)}

2. let B be the complement of D ∪ S in V r meaning B := V r − (S ∪D)

3. let B(v) be the copies of v not in S meaning B(v) := {v1, . . . , vr(v)} − S(v).
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First we consider the case when B(v) = B and we have,

x(¶(S ∪D)) = x(B(v))

= |B(v)| (2− xvv(|B(v)| − 1))

g |B(v)|

(

2−
|B(v)| − 1

r(v)

)

g |B(v)|

(

2−
|B(v)| − 1

|B(v)|+ 1

)

g 2.

The first inequality holds since xvv = yvv
r(v)2

f 1
r(v) because y(¶(v)) = 2r(v) implies that yvv f r(v)

since a loop contributes twice to the degree count of a vertex. The second inequality holds since
B(v) does not contain all copies of v so |B(v)| < r(v) and the third inequality holds since the
function f(x) = x(2− x−1

x+1) is an increasing function that is minimized at x = 1.
Now we can assume that B ¢ B(v). For any vi ∈ S(v) let X1 = x(E(vi, (S − S(v)) ∪D)) and

X2 = x(E(vi, B − B(v))). We note that X1, X2 do not change based on the choice of vi since all
copies of v are defined identically in Hr. Now we consider the cut S − S(v) and by using the fact
that xvv g 0 we have,

x(¶((S − S(v)) ∪D)) = x(¶(S ∪D)) + |S(v)| (X1 − |B(v)|xvv −X2)

f x(¶(S ∪D)) + |S(v)| (X1 −X2) .

First we consider the case when X1 f X2 and here we have that x(¶((S−S(v))∪D)) f x(¶(S∪D))
and by induction we get that x(¶((S − S(v)) ∪D)) g 2 since S − S(v) is a set with one less vertex
v that separates a pair of copies of v and S−S(v) ¢ V r−D. Thus we have shown x(¶(S ∪D)) g 2
and now we consider the case when X1 > X2. Here we have,

x(¶((S +B(v)) ∪D)) = x(¶(B −B(v)))

= x(¶(B)) + |B(v)| (X2 − |S(v)|xvv −X1)

f x(¶(B)) + |B(v)| (X2 −X1)

< x(¶(B))

= x(¶(S ∪D)).

The first inequality follows since xvv g 0 and the last inequality follows since we are in the case
when X1 > X2. By induction we have x(¶((S + B(v)) ∪D)) g 2 since S + B(v) and is a set with
one less vertex v that separates a pair of copies of v and S+B(v) ¢ V r −D. Thus, we have shown
that x(¶(S ∪D)) g 2.

Thus, we can apply the algorithm from the lemma assumption on x as a solution to Hr to
get a cycles C1, . . . , Ck in Hr satisfying

∑k
i=1

∑

e∈Ci
ce f ÄcTx. We note that cT y = cTx since

cTx =
∑

e={u,v}∈E(Hr) r(u)r(v)xece =
∑

e∈E(H) ceye. We now convert the cycles C to closed walks
in H denoted by T : E(H) → Z by replacing every copy edge {ui, vj} with its corresponding original
edge {u, v} in H. Clearly, T consists of k closed walks in H. Moreover, T visits every vertex r(v)
times in H since C visits each copy of v one time in Hr. Each closed walk contains exactly one
vertex from D since each cycle C1, . . . , Ck contained exactly one depot vertex. Lastly, the run-time
follows since Hr has at most nmaxv∈V r(v) vertices and the algorithm in the lemma statement is
a polynomial-time algorithm.
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Using this lemma we get the following polynomial-time algorithm.

Algorithm 3 MV-mTSP+ Reduction Algorithm

Input: G = (V,E), D ¦ V, c : V × V → Rg0, r : V −D → Z

Output: An integral solution to LP (MV-mTSP+)
1 Solve LP (MV-mTSP+) to get solution x∗ .
2 For all edges e let x̃e := xe − 2ke and ke := 0 if xe f 4 and otherwise ke is set so that 2 f x̃e < 4

and ke ∈ Z. Define a function r̃ : V → Z where r̃(v) = r(v)−
∑

e∈¶(v) ke.

3 Use Lemma 4.5 with solution x̃ on instance G, r̃ with algorithm A to get T : E → Z.
4 Increase the number of times each edge is used in the previous step by 2ke and return the resulting

solution.

The next two claims will help to show that Step 3 of the algorithm runs in polynomial-time.
The proof of the following claim is identical to that of Claim 3.2.

Claim 4.6. The new visit function r̃ satisfies 1 f r̃(v) f 2n for all v ∈ V .

Claim 4.7. The solution x̃ is feasible for LP (MV-mTSP+) with graph G and r̃.

Proof. We have x̃ g 0 and
∑

e∈¶(v) x̃e =
∑

e∈¶(v) xe − 2ke = 2(r(v)−
∑

e∈¶(v) ke) = 2r̃(v). For any
set S ¢ V −D, if xe f 4 for all e ∈ ¶(S∪D) then x̃(¶(S∪D)) = x(¶(S∪D)) g 2. Otherwise, if there
is an edge e ∈ ¶(S ∪D) such that xe > 4 we get x̃(¶(S ∪D)) g x̃e g 2 by definition of x̃. Finally,
we have x̃e = xe = 0 for all e ∈ E(D,D) implying x̃(E(D,D)) = 0. Moreover, T contains no edges
between vertices in D since ke = 0 for all e ∈ E(D,D) and T ′(e) = 0 for all e ∈ E(D,D).

Theorem 2. If there exists a polynomial-time Ä-approximation algorithm for mTSP+ whose guar-
antee is with respect to LP (mTSP+), then there exists a polynomial-time Ä-approximation algorithm
for MV-mTSP+.

Proof. Let T ′ be the solution we get from the third step before we increase each edge by 2ke.
By Claim 4.6 and Lemma 4.5 we have that x̃ satisfies

∑

e∈E T ′(e)ce f Ä
∑

e∈E cex̃e. Let S =
{e ∈ E | ke > 0} be the set of edges whose cost was decreased to acquire x̃e then we have that
∑

e∈E T (e)ce =
∑

e∈E T ′(e)ce + 2
∑

e∈S kece f Ä
∑

e∈E cex̃e + 2
∑

e∈S kece f ÄcTx∗. For the run-
time, we have that Step 3 runs in time polynomial in n by Claim 4.6 and Lemma 4.5 and the rest
of the steps are clearly polynomial-time in n. Finally, T is a feasible solution to MV-mTSP+ since
T ′ satisfies the cut constraints which implies T also satisfies the cut constraints since T (e) g T ′(e)
for all e and by definition T satisfies degree constraints.

We get the following result by applying Lemma 4.4 and Theorem 2.

Corollary 2.1. There is a polynomial-time 2-approximation algorithm for the MV-mTSP+ prob-
lem.

4.3 MV-mTSP0 Approximation

In this subsection, we give a 2-approximation for the MV-mTSP0 problem. Here we are given a set
of depot vertices D with |D| = k and the goal is to find at most k non-empty closed walks that each
closed walk uses exactly one depot. The proofs in this subsection are very similar to those in the
previous subsection for MV-mTSP+. Let G/D be the graph with all depot vertices D contracted.
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We use the following LP which is very similar to LP (mTSP+) and the only difference is dropping
the degree constraints on D,

minimize
∑

e∈E

cexe (3)

s.t. x(¶(v)) = 2 ∀v ∈ V −D

x(¶(S ∪D)) g 2 ∀S ¢ V −D

x(E(D,D)) = 0

0 f xe f 2 ∀e ∈ E .

Algorithm 4 Tree Doubling Algorithm for mTSP0

Input: G = (V,E), D ¦ V, c : V × V → Rg0 with |D| = k
Output: At most k cycles such that each cycle contains exactly one vertex from D and each

non-depot vertex is contained in a cycle.
1 Find a min cost spanning tree T ∗ in the graph G/D which is formed by contracting D .

2 Double all the edges in T ∗ and then shortcut so that each vertex is visited exactly once and return
the resulting cycles .

We use the following LP to characterize the up-hull of spanning trees in G/D. The proof of
integrality of the LP follows by the same argument as the one used in Claim 4.2.

minimize
∑

e∈E−E(D,D)

cexe (4)

s.t. x(S) g »G/D
(S − E(D,D))− 1 ∀S ¦ E − E(D,D)

xe g 0 ∀e ∈ E − E(D,D) .

The proof of the following claim is identical to the proof of Claim 4.3.

Claim 4.8. Let z∗ be an optimal solution to LP (3) and x∗ be an optimal solution to LP (4) then
we have cTx∗ f cT z∗.

The following lemma now follows easily using the properties of the Tree Doubling Algorithm
and the triangle inequality.

Lemma 4.9. Let z∗ be an optimal solution to linear programming relaxation for the mTSP0,
LP (3). Then the output of the Tree Doubling Algorithm returns a solution whose cost is at most
twice the objective value of z∗.

Next we give the LP relaxation for the multi-visit version. The LP is given by,

minimize
∑

e∈E

cexe (5)

s.t. x(¶(v)) = 2r(v) ∀v ∈ V −D

x(¶(S ∪D)) g 2 ∀S ¢ V −D

x(E(D,D)) = 0

0 f xe f 2 ∀e ∈ E
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The proof of the theorem follows almost exactly applying the ideas from Theorem 1. We note
that the only difference here is the absence of a degree constraint on the depot vertices in LP (5),
compared to LP (MV-mTSP+). However, this difference does not affect the proofs.

Theorem 3. If there exists a polynomial-time Ä-approximation algorithm for mTSP0 whose guar-
antee is with respect to LP (3), then there exists a polynomial-time Ä-approximation algorithm for
MV-mTSP0.

We get the following result by applying Lemma 4.9 and Theorem 3.

Corollary 3.1. There is a polynomial-time 2-approximation algorithm for the MV-mTSP0 problem.

4.4 Approximation for Unrestricted Variant

In this subsection, we show there is a 2-approximation for unrestricted mTSP+. We note that we
allow using loops for the single-visit version here. Our algorithm is the following.

Algorithm 5 Unrestricted mTSP+

Input: G, k ∈ Z, 1 f k f n
Output: k cycles that cover all vertices in the graph

1 Add a new vertex d that has all edges to vertices of G to get a new graph G′. Extend the cost
function of the graph by setting cdv = cvv

2 .
2 Find a tree of minimum cost that has degree k on the vertex d .
3 Remove the vertex d and all edges incident to it. Among the remaining k components, if the

component is a singleton, then add a loop in that component. Otherwise, double the edges of the
tree in the remaining components and shortcut so that each component is a cycle. Return the
resulting k cycles.

We now give the LP formulation of the tree found in step 1 of Algortihm (5). We denote by
E′ = E ∪ {{d, v} | v ∈ V } as the edge set of G′ where d is a new dummy vertex that we added to
the graph. We extend the cost function by setting cdv = cvv

2 for all v ∈ V and get the following LP,

minimize
∑

e∈E′

ceze (6)

s.t. z(E(S)) f |S| − 1 ∀S ¦ V ∪ {d}

z(¶(d)) = k

z(E) = n− 1

0 f ze f 1 ∀e ∈ E′ .

Claim 4.10. Let T ∗
k be a minimum cost spanning tree among all spanning trees in G that have

degree k on vertex v1. Then we have that the indicator vector T ∗
k is an optimal solution to LP (6).

Proof. Let G′ denote the extended graph with the new vertex d, M1 be the graphic matroid on G′

and M2 be a partition matroid with one part containing all edges incident to d with capacity k and
another part containing the remaining edges with capacity n− k. Then T ∗

k is an optimal common
base in M1,M2 and the polytope of common bases is give by the constraints of LP (6)
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Our LP relaxation for unrestricted mTSP+ is LP (6). We will show the value of this LP lower
bounds the optimal value of our problem. For the previous problems this property was implicitly
true as we showed a fractional solution x was in the up-hull of the tree polytope.

Theorem 4. There is a polynomial-time algorithm for the unrestricted mTSP+ problem with an
approximation factor of 2.

Proof. Let M1, . . . ,Mk be the output of Algorithm (5) and z∗ be an optimal solution to LP (6).
We will show that

∑k
i=1 c(Mi) f 2cT z∗. Let T ∗ be the tree from the second step of Algorithm

(5). First, we show that
∑k

i=1 c(Mi) f 2c(T ∗). If we acquire Mi by adding a loop to a singleton
vertex v then the cost of Mi is cvv while the cost of the edge adjacent to Mi in T ∗ is cvv

2 which is
twice the cost of the edge in the algorithm’s output. Now we consider when Mi is a non-singleton
component, let {d, v} be the edge in T ∗ such that v ∈ Mi and let u ∈ V such that {u, v} is an edge
in T ∗. Then we have that cuv +

cvv
2 f 2cuv. For any other edge e ∈ Mi, the algorithm pays at most

2ce while the cost in T ∗ is ce. Then summing up the cost of all cycles and applying these bounds
gives

∑k
i=1 c(Mi) f 2c(T ∗). Then the proof is concluded by observing c(T ∗) = cT z∗ since T ∗ is an

optimal solution to LP (6) by Claim 4.10.

5 Single Depot Many-Visit mTSP

In this section, we give a 3
2 -approximation for the SD-MV-mTSP+ problem and a 7

2 -approximation
for the SD-MV-mTSP+ with vertex disjoint tours problem.

5.1 Approximation for Non Vertex Disjoint Tours

First, we give an LP analysis for Frieze’s [9] SD-mTSP algorithm since Frieze shows that this
algorithm achieves a 3

2 -approximation relative to the integral optimal solution. We note that unlike
Frieze we allow a cycle to contain 2 vertices because it is necessary for our LP analysis.

Algorithm 6 Single Depot mTSP

Input: G = (V = {v1, . . . , vn}), c : V × V → Rg0, k ∈ N

Output: k cycles that contain v1 that span the graph and vertices not equal to v1 are visited
exactly once

1 Find a min cost multi-set of edges T ∗ that satisfies (1) if T ′ ¦ T ∗ where T ′ contains exactly one
copy of each edge in T ∗

2k, then T ′ is a spanning tree of G (2) Each edge e ∈ ¶(v1) appears at most
k times in T ∗ and (3) Each edge e /∈ ¶(v1) appears at most once in T ∗

2 Find a min cost perfect matching M∗ on the vertices with odd degree in T ∗.
3 Add M∗ to T ∗ which is now an Eulerian graph. Let w1 = v1, . . . , ws = v1 be the Eulerian tour and

let U be the neighbors of v1 in T ∗. Delete a node wi in the sequence if

1. wi has appeared before and wi ̸= v1 or

2. wi ∈ U and v1 /∈ {wi−1, wi+1}.

Return the sequence obtained after short cutting.

We use the following LP for SD-mTSP. We note that the LP does not exactly fit the LP in the
general framework (LP (mTSP+)) since there is a different constraint on the degree of vertex v1.
We still use the general framework in this section, but we show that each part of the framework
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still holds with the additional degree constraint.

minimize
∑

e∈E

cexe

s.t. x(¶(v)) = 2 ∀v ∈ V − v1

x(¶(v1)) = 2k

x(¶(S)) g 2 ∀S ¢ V

xe g 0 ∀e ∈ E

(7)

We now characterize the polytope of the tree T ∗ found in the first step of the algorithm. We first
characterize connected graphs that have fixed degree 2k on vertex v1 ∈ V and define »(S) as the
number of components in the graph (V, S) for all S ¦ E.. Then we get the following LP,

minimize
∑

e∈E

ceze (8)

s.t. z(S) g »(S)− 1 ∀S ¦ E

z(¶(v1)) = 2k

0 f ze f 1 ∀e ∈ E .

Claim 5.1. Let G be a connected graph where vertex v1 in G has degree at least 2k and T ∗
2k ¦ E

be a minimum cost spanning tree among all spanning trees in G that have degree 2k on vertex v1.
Then we have that the indicator vector of T ∗

2k is an optimal solution to LP (8).

Proof. First, we define matroid M1 as the dual of the graphic matroid on graph G. Next, we define
M2 as a partition matroid with parts P1, P2, . . . P|E| where P1 contains edges incident to v1 and
has capacity d(v1)−2k, and the remaining edges go in a unique Pj with capacity 1. Thus, common
independent sets of M1,M2 are sets R ¦ E such that R has at most d(v1)− 2k edges incident to
v1 and E − R contains a spanning tree. We now show that there is an optimal solution such that
E − R is a spanning tree. If not, then E − R contains a cycle C. If the cycle does not have any
edges incident to v1 then for any e ∈ C we have R+ e is feasible and c(R+ e) g c(R). Otherwise,
C has two edges incident to v1 and there must be an edge e ∈ C such that e∩ v1 = ∅ and again we
get that R+ e is a feasible solution and c(R+ e) g c(R).

By the matroid intersection theorem, the polytope given by constraints {x g 0 | x(S) f
rMi(S), ∀i ∈ [2] and S ¦ E} is totally-dual integral and therefore integral. Turning an inequality
to equality in a TDI system maintains the TDI property, so we can restrict our polytope to common
independent sets ofM1,M2 that have degree exactly d(v1)−2k on v1. Then we observe that E−T ∗

2k

is an optimal solution to maxI∈I1∩I2 c(I) and is also an optimal solution to the following LP

maximize
∑

e∈E

cexe (9)

s.t. x(¶(v1)) = d(v1)− 2k

x(S) f rM1
(S) ∀S ¦ E

0 f xe f 1 ∀e ∈ E .

Here we have that rM1
(S) = |S| − »(S) + 1 since M1 is the dual matroid to the graphic matroid.

If we negate the objective of LP (9), change it to a minimization problem, add
∑

e∈e ce to the
objective, and make the variable change ze = 1− xe we get LP (8). This is true since the following
hold for all S ¦ E
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1.
∑

e∈E ce −
∑

e∈E cexe =
∑

e∈e ceze

2. x(¶(v1)) = d(v1)− 2k ⇐⇒ 2k = d(v1)− x(¶(v1)) ⇐⇒ 2k = z(¶(v1))

3. x(S) f |S| − »(E − S) + 1 ⇐⇒ »(S)− 1 f |S| − x(S) ⇐⇒ »(S)− 1 f z(S).

If x∗ is an optimal solution to LP (9) then z∗ = 1− x∗ is an optimal solution to LP (8), so T ∗
2k

is an optimal solution to LP (8) since E − T ∗
2k is an optimal solution to LP (9).

Now we use Claim 5.1 to characterize a multi-set of edges with slightly different properties than
the tree in LP (5.1).

minimize
∑

e∈E

ceze (10)

s.t. z(S) g »(S)− 1 ∀S ¦ E

z(¶(v1)) = 2k

0 f ze f 1 ∀e /∈ ¶(v1)

0 f ze f k ∀e ∈ ¶(v1)

Claim 5.2. Let T ∗
2k be a minimum cost multi-set of edges satisfying the following three properties.

1. Each edge e ∈ ¶(v1) appears at most k-times in T ∗
2k.

2. Each edge e /∈ ¶(v1) appears at most 1-time in T ∗
2k.

3. If T ′ ¦ T ∗
2k where T ′ contains exactly one copy of each edge in T ∗

2k, then T ′ is a spanning tree
of G.

Then we have that the indicator vector of T ∗
2k is a optimal solution to LP (10).

Proof. First, we construct a graph Gk
v1 where all vertices v ̸= v1 have k copies v1, . . . , vk and there

is an edge between vertices u1, v1 in the new graph if {u, v} is an edge in the original G. Moreover,
for each v ∈ V the set of copies v1, . . . , vk contains a path v1, . . . , vk where the edges in the path
have cost 0. Then we observe there is a one to one correspondence (that maintains costs) between
spanning trees in Gk

v1 with degree 2k on vertex v1 and multi-sets that satisfy the three properties
described in the claim. Then the proof of the claim follows by applying Claim 5.1.

With the characteriation of the T ∗ we now show the cost of T ∗ is at most the cost of the LP
relaxation for the problem.

Lemma 5.3. Let x∗ be an optimal solution to LP (7). Then we have,

c(T ∗) f cTx∗ .

Proof. We show that any solution x to LP (7) is feasible for LP (10) which will conclude the
proof. The solution x clearly satisfies x(¶(v1)) = 2k. Let S ¢ E and C1, . . . , Cm be the connected
components of the vertex set V in the graph (V, S). Then we have that,

x(S) g
∑

i<j

x(E(Ci, Cj)) =
1

2

m
∑

i=1

x(¶(Ci))

g m = »(S) > »(S)− 1 .
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The first inequality follows since E(Ci, Cj) ¦ S since C1, . . . , Cm are components in the graph with
edges S and the second inequality follows since x is feasible for LP (7). If e = {u, v} /∈ ¶(v1) then
we that x(¶({u, v})) = x(¶(u)) + x(¶(v)) − 2xe = 4− 2xe g 2 which implies xe f 1. Similarly, for
e = {v1, u} ∈ ¶(v1) we have x(¶({v1, u})) = x(¶(u)) + x(¶(v1)) − 2xe = 2 + 2k − 2xe g 2 which
implies xe f k.

We can show the cost of the matching is at most 1/2 the cost of the LP optimum.

Claim 5.4. Let x∗ be an optimal solution to LP (7). Then we have c(M∗) f cT x∗

2 .

Proof. Let S be the set of odd degree vertices in T∗ then M∗ is a min-cost S-join in G. The
polytope for the up-hull of S-joins is given by {x g 0 | x(¶(P )) g 1, ∀P such that |P ∩ S| is odd}.
Then the claim follows since x∗/2 is a feasible solution for the S-join polytope.

Then the above two lemmas imply the following.

Lemma 5.5. Let x∗ be an optimal solution to LP (7). Algorithm (6) returns a solution C satisfying
∑

e∈C ce f
3
2c

Tx∗.

Proof. This follows since by the triangle inequality
∑

e∈C ce f c(M∗) + c(T ∗) f 3
2c

Tx∗.

Now we are ready to get a 3
2 algorithm for the many-visit variant. We need the following to

characterize solutions to the problem.

Lemma 5.6. Given a connected graph with edge set T such that dT (v1) = 2k and dT (v) = 2r(v),
we can decompose the edges of T into k closed walks containing v1.

Proof. The graph G is Eulerian, so there exists an Eulerian C circuit starting at v1 and the circuit
is given by a sequence of vertices w1 = v1, . . . , wk = v1. Let w1, w2, . . . , wj be a prefix of the
sequence such that j is the smallest index greater than 1 such that wj = v1. We will use w1, . . . , wj

as the first closed walk. Next we reduce the graph by deleting all edges used by the first closed walk
and then by removing any isolated vertices. We now show this graph is still Eulerian. Clearly, all
vertices have even degree since we removed an even number of edges from each vertex. The graph
remains connected since the Eulerian circuit C will not use any of the removed vertices or edges
in the graph. Thus, we can inductively repeat this process to get k closed walks containing v1 so
that each vertex v is visited a total of r(v) times.

We use following LP for the many-visit version of the problem.

minimize
∑

e∈E

cexe (11)

s.t. x(¶(v1)) = 2k

x(¶(v)) = 2r(v) ∀v ∈ V

x(¶(S)) g 2 ∀S ¢ V

xe g 0 ∀e ∈ E

The proof of the next claim is nearly identical to that of Lemma 4.5 and the only difference
comes from the fact that the depot vertex v1 has degree 2k while in Lemma 4.5 all vertices have
degree 2.
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Lemma 5.7. Suppose there is a Ä-approximation algorithm for SD-mTSP that given an instance on
a complete graph G = (V,E(G)), depot vertex v1, integer k, and distances c : E(G) → Rg0 returns
k cycles C1, . . . , Ck that contain vertex v1 such that

∑k
i=1

∑

e∈Ci
ce f Ä ·z⋆ where z⋆ is the optimum

value of LP (7). Then there exists an algorithm that given an instance of the SD-MV-mTSP
on a complete graph H = (V,E(H)), depot vertex v1 ∈ V , and integer k, with distance function
c : E(H) → Rg0 and requirements r : V → Z+ outputs a solution to SD-MV-mTSP, T : E(H) → Z

satisfying
∑

e∈E(H) T (e)ce f Ä
∑

e∈E(H) ceye where y is the optimal solution to LP (11). The
running time of the algorithm is polynomial in maxv∈V r(v) and |V |.

Proof. In this lemma, we extend the visit function to the depot vertex and define r(d) := 1. We
construct the graph Hr identically as in Lemma 4.5: Hr has r(v) copies of each vertex v, and
we extend the cost function by defining the distance between copy vertices to be the same as the
distance between their original counterparts in H. We now apply the SD-mTSP approximation
algorithm on the new instance Hr to obtain cycles C1, . . . , Ck in the expanded graph. We can
interpret these cycles as a solution to SD-MV-mTSP. Observe that the cost of the solution is
exactly the cost of C1, . . . , Ck in the cost defined as above. Thus to prove the lemma, it is enough
to show there exists a feasible solution to LP (7) on the instance Hr whose cost is at most the cost
of optimal solution y to LP (11) on the instance H.

We will convert the solution y to a solution x to LP (7) on the graph Hr. Let e′ = {ui, vj}
and e = {u, v} where u, v are the original copies of ui, vj in V , then we set xe′ =

ye
r(u)r(v) . Now

we show that x is a feasible solution to LP (7) for the graph Hr. For any vertex v ∈ V r and

i ∈ [r(v)] we have x(¶(vi)) =
y(¶(v))
r(v) where the first equality follows since the degree of each vertex

v in y is distributed evenly among all r(v) copies in x. Thus, by the feasbility of y we have that
x(¶(v1)) = 2k and for all v ∈ V r − V1 we have x(¶(v)) = 2. Finally x g 0 holds since y g 0.

For any S ¢ V r, we need to show x(¶(S)) g 2. Let z be the number of vertices v ∈ V
such that there exists vi, vj that are distinct copies of v and S contains exactly one of vi, vj . We
show x(¶(S)) g 2 for all S ¢ V r by induction on z. If z = 0, then x(¶(S)) = y(¶(S′)) where
S′ ¢ V is acquired by taking the original copy of each vertex vj from S implying x(¶(S)) g 2 since
y(¶(S′)) g 2 since y is feasible to LP (mTSP+). If z > 0, then there exists a vertex v ∈ V such
that both S and V r − S have copies of v. We note that v ̸= v1 since r(v1) = 1 so Hr only has
one copy of v1 implying S cannot separate copies of v1. We define the following subsets of vertices
based on the set S,

1. let S(v) be the copies of v in S meaning S(v) := S ∩ {v1, . . . , vr(v)}

2. let B be the complement of S in V r meaning B := V r − S

3. let B(v) be the copies of v not in S meaning B(v) := {v1, . . . , vr(v)} − S(v).

First we consider the case when B(v) = B. We note that S = S(v) and B = B(v) cannot hold
simultaneously since |V | g 2. WLOG, we assume that S(v) = S otherwise we can switch B and S
since x(¶(S)) = x(¶(B)). Then we have,

x(¶(S)) = x(¶(S(v)))

= |S(v)| (2− xvv(|S(v)| − 1))

g |S(v)|

(

2−
|S(v)| − 1

r(v)

)

g |S(v)|

(

2−
|S(v)| − 1

|S(v)|+ 1

)

g 2.
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The first inequality holds since xvv = yvv
r(v)2

f 1
r(v) because y(¶(v)) = 2r(v) implies that yvv f r(v)

since a loop contributes twice to the degree count of a vertex. The second inequality holds since
S(v) does not contain all copies of v so |S(v)| < r(v) and the third inequality holds since the
function f(x) = x(2− x−1

x+1) is an increasing function that is minimized at x = 1.
Now we can assume that S(v) ¢ S and B ¢ B(v). For any vi ∈ S(v) let X1 = x(E(vi, S−S(v)))

and X2 = x(E(vi, B − B(v))). We note that X1, X2 do not change based on the choice of vi since
all copies of v are defined identically in Hr. Now we consider the cut S − S(v) and by using the
fact that xvv g 0 we have,

x(¶(S − S(v))) = x(¶(S)) + |S(v)| (X1 − |B(v)|xvv −X2)

f x(¶(S)) + |S(v)| (X1 −X2) .

First we consider the case when X1 f X2 and here we have that x(¶(S − S(v))) f x(¶(S)) and
by induction we get that x(¶(S − S(v))) g 2 since S − S(v) is a set with one less vertex v that
separates a pair of copies of v and S − S(v) ̸= V r. Thus we have shown x(¶(S)) g 2 and now we
consider the case when X1 > X2. Here we have,

x(¶(S +B(v))) = x(¶(B −B(v)))

= x(¶(B)) + |B(v)| (X2 − |S(v)|xvv −X1)

f x(¶(B)) + |B(v)| (X2 −X1)

< x(¶(B))

= x(¶(S)).

The first inequality follows since xvv g 0 and the last inequality follows since we are in the case
when X1 > X2. By induction we have x(¶(S + B(v))) g 2 since S + B(v) and is a set with one
less vertex v that separates a pair of copies of v and S + B(v) ̸= V r. Thus, we have shown that
x(¶(S)) g 2.

Thus, we can apply the algorithm from the lemma assumption on x as a solution to Hr to
get k cycles C1, . . . , Ck in Hr satisfying

∑

e∈C ce f ÄcTx. We note that cT y = cTx since cTx =
∑

e={u,v}∈E(Hr) r(u)r(v)xece =
∑

e∈E(H) ceye. We now convert the k cycles to k closed walks in H
denoted by T : E(H) → Z by replacing every copy edge {ui, vj} with its corresponding original edge
{u, v} in H. Clearly, T is consists of k closed walks in H. Moreover, T visits every vertex r(v) times
in H since C1, . . . , Ck visits each copy of v one time in Hr. Lastly, the run-time follows since Hr

has at most nmaxv∈V r(v) vertices and the algorithm in the lemma statement is a polynomial-time
algorithm.

Similar to the previous sections, we get the following reduction algortihm.

Algorithm 7 Many-Visit TSP Single Depot

Input: G = (V = {v1, . . . , vn}), c : V × V → Rg0,m ∈ N, r : V − v1 → Z

Output: k tours that contain v1 such that vertices v ̸= v1 are visited r(v) times
1 Solve LP (11) to get solution x∗ .
2 For all edges e, let x̃e = xe−2ke such that ke = 0 if xe f 4 and otherwise ke is set so that 2 f x̃e < 4

and ke ∈ Z. Define a function r̃ : V − v1 → Z where r̃(v) = r(v)−
∑

e∈¶(v) ke and k̃ = 1
2 x̃(¶(v1)).

3 Use Lemma 5.7 with solution x̃ on instance G, r̃, k̃ .
4 Increase the number of times each edge is used in the previous step by 2ke and return the resulting

solution.
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As in the previous section we show the following lemmas and claims to show this algorithm gets
a Ä-approximation.

The proof of this claim is identical to Claim 4.6.

Claim 5.8. For all v ∈ V − v1 we have 1 f r̃(v) f 2n and k̃ g 1.

Proof. The proof of Claim 4.6 shows 1 f r̃(v) f 2n for all v ∈ V − v1. Now we show k̃ g 1. If we
have that if xe f 4 for all e ∈ ¶(v1) then k̃ = k g 1 otherwise if there exists e such that xe > 4
then k̃ = 1

2 x̃(¶(v1)) g
x̃e
2 > 2.

Claim 5.9. The solution x̃ is a feasible solution for LP (11) with graph G and r̃, k̃.

Proof. By definition, we have x̃(¶(v1)) = 2k̃ and the rest claim follows from the proof of Claim
4.7.

Then we get the following theorem whose proof is identical to the proof of Theorem 2.

Theorem 5. If there exists a polynomial-time Ä-approximation algorithm for SD-mTSP+ whose
guarantee is with respect to LP (7), then there exists a polynomial-time Ä-approximation algorithm
for SD-MV-mTSP+.

This gives the following corollary which we get by using the analysis of the Frieze algorithm we
showed at the beginning of the section.

Corollary 5.1. There is an approximation algorithm for the SD-MV-mTSP problem with an ap-
proximation factor of 3

2 .

5.2 Approximation for Vertex Disjoint Tours

Here we show an algorithm for the vertex disjoint variant that achieves a 7/2-approximation. We
note that this result does not follow the general framework and follows from a simple use of the
single-visit algorithm. The idea for this algorithm is from Bérczi, Mnich, and Vincze [3] which is
that we can first find a mTSP solution that visits all vertices once. Then we add loops to the
different tours to satisfy the visit requirements while maintaining the vertex disjoint property.

Algorithm 8 Many-Visit TSP Single Depot Vertex Disjoint

Input: G = (V = {v1, . . . , vn}), c : V × V → Rg0, k ∈ N, r : V − v1 → Z

Output: k closed walks that contain v1 such that vertices v ̸= v1 are visited r(v) times, closed
walks are disjoint outside of v1

1 Use Algorithm (6) to get k-cycles containing v1 so that all vertices are visited once.
2 Add r(v)− 1 loops to all vertices v ̸= v1 to the solution from the previous step.

We need the following claim.

Claim 5.10. Let OPT be the value of the optimum solution. Then we have
∑

v∈V−v1
r(v)c(vv) f

2OPT.
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Proof. Let T : E → Z be an optimal solution. Then we have

OPT =
1

2

∑

e∈¶(v1)

ceT (e) +
1

2

∑

v∈V−v1

∑

e∈¶(v)

T (e)ce

g
1

2

∑

e∈¶(v1)

ceT (e) +
1

2

∑

v∈V−v1

2r(v) min
e∈¶(v)

ce

g
1

2

∑

e∈¶(v1)

ceT (e) +
1

2

∑

v∈V−v1

r(v)cvv

g
1

2

∑

v∈V−v1

r(v)cvv .

The first inequality follows since for all v ∈ V − v1 we have
∑

e∈¶(v1)
T (e) = 2r(v) and the second

inequality follows by the triangle inequality since for any edge c ∈ ¶(v) we have cvv f 2ce.

Then showing the following claim will imply that we get a 7
2 -approximation.

Claim 5.11. Let c1, . . . , ck be the k cycles returned in the first step of the algorithm. Then we have
that

∑k
i=1 c(ci) f

3
2OPT.

Proof. Let p1, . . . , pm be an optimal solution with value OPT. We have that any two cycles pi, pj
only intersect at the depot vertex v1 since we are in the vertex disjoint tours setting. For each
pi we can shortcut to get cycle ri, so that all vertices in pi are visited once and by the triangle
inequality we have that c(ri) f c(pi) implying

∑k
i=1 c(ri) f OPT. Thus, we get that

∑k
i=1 c(ci) f

3
2

∑k
i=1 c(ri) f OPT where the first inequality follows since Algorithm (6) is a 3

2 -approximation.

Thus, the above two claims imply the following theorem.

Theorem 6. There exists a polynomial-time algorithm for the single depot many-visit mTSP
(SD-MV-mTSP+) problem with vertex-disjoint tours, with an approximation factor of 7

2 .

Proof. Let c1, . . . , ck be the cycle acquired in the first step of the algorithm. The cycles c1, . . . , ck
only intersect at the depot vertex v1 since they are a feasible solution to SD-mTSP. Adding the
loops to the cycles keeps this property so Algorithm (8) outputs a feasible solution. Finally, the
cost of the solution is

∑k
i=1 c(ci)+

∑

v∈V−v1
(r(v)− 1)cvv f 7

2OPT where the last inequality follows
by Claim 5.11 and Claim 5.10. The run-time follows immediately since both steps of the algorithm
are polynomial-time.

6 Further Directions

In this paper, we gave a reduction from various many-visit TSP problems and their respective
single-visit versions. Our reduction relies on the connection between the LP relaxations of many-
visit variants and their respective single-visit variants. There are two open questions that follow
naturally.

Get a 3
2-approximation for MV-mTSP0. For the MV-mTSP0 problem, we are given k depots

and the visit function r and the goal is to find at most k closed walks so that all non-depot vertices
v are visited r(v) times and each closed walk contains exactly one depot. Recently, Deppert, Kaul,
and Mnich [8] showed that LP (3) for mTSP0 has an integrality gap of 2 and gave a 3

2 -approximation
for mTSP0 This means we cannot apply our reduction to MV-mTSP0 by using LP (3) for mTSP0
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and get an approximation better than 3/2. One direction is to get a reduction from MV-mTSP0

to mTSP0 that does not use LPs.
Apply the reduction to the unrestricted MV-mTSP+. In Section 4 we gave a 2-

approximation for the unrestricted mTSP+ problem and the approximation factor was with respect
to the value of LP (6). We recall that LP (6) was not a LP relaxation where the characteristic
vectors of integral solutions to the problem are feasible, but instead it was the convex hull of specfici
trees that all integral solutions contain. We are not able to apply our reduction technique as the
LP does not follow the structure of the LP described in the general framework. In particular, it
is difficult to find a feasible solution x̃ for the reduced visit function r̃. Either finding a differ-
ent LP relaxation or finding a different way to apply the reduction to LP (6) would improve the
approximation factor of unrestricted MV-mTSP+ from 4 to 2.
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