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Abstract

We study the complexity of sampling, rounding, and integrating
arbitrary logconcave functions given an evaluation oracle. Our new
approach provides the first complexity improvements in nearly two
decades for general logconcave functions for all three problems,
and matches the best-known complexities for the special case of
uniform distributions on convex bodies. For the sampling problem,
our output guarantees are significantly stronger than previously
known, and lead to a streamlined analysis of statistical estimation
based on dependent random samples.
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1 INTRODUCTION

Sampling and integration of logconcave functions are fundamental
problems with numerous applications and important special cases
such as uniform distributions over convex bodies and strongly log-
concave densities. The study of these problems has led to many
useful techniques. Both mathematically and algorithmically, general
logconcave functions typically provide the “right” general abstrac-
tion. For example, many classical inequalities for convex bodies
have natural extensions to logconcave functions (e.g., Griinbaum’s
theorem, Brunn-Minkowski and Prékopa-Leindler, isotropic con-
stant, etc.). The KLS hyperplane conjecture, first motivated by the
analysis of the Ball Walk for sampling convex bodies, is in the set-
ting of general logconcave densities. The current fastest algorithm
for estimating the volume of a convex body crucially uses sampling
from a sequence of logconcave densities, which is provably more
efficient than using a sequence of uniform distributions. Sampling
logconcave densities has many other applications as well, such as
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portfolio optimization, simulated annealing, Bayesian inference,
differential privacy etc.

Sampling in high dimension is done by randomized algorithms
based on Markov chains. These chains are set up to have a desired
stationary distribution, which is relatively easy to ensure. For ex-
ample, to sample uniformly, it suffices that the Markov chain is
symmetric. Generally, to sample proportional to a desired function,
it suffices to ensure the “detailed balance” condition. The main
challenge is showing rapid mixing of the Markov chain, i.e., the
convergence rate to the stationary distribution is bounded by a
(small) polynomial in the dimension and other relevant parameters.

The traditional analysis of Markov chains for sampling high-
dimensional distributions proceeds by analyzing the conductance
of the Markov chain, the minimum conditional escape probability
over all subsets of the state space of measure at most half. Bounding
this is done by relating probabilistic (one-step distribution) distance
to geometric distance, and then using a purely isoperimetric in-
equality for subsets of the support. Indeed, this approach led to
several interesting questions and useful techniques, in particular
the development of isoperimetric inequalities and the discovery
of (nearly) tight bounds in many settings. To describe background
and known results, let us first define the sampling problem (readers
familiar with the problem can skip to §1.1).

Model and Problems. We assume access to an integrable log-
concave function exp(—V(x)) in R", via an evaluation oracle for
a convex function V : R” — R U {oo}. We also assume that
there exists a point xp and parameters r, R such that for the dis-
tribution 7 with density dz « exp(—V) dx, a ball of radius r cen-
tered at xp is contained in the level set of 7 of measure 1/8' and
Ex[lIX — x0l|?] < R?. We refer to this as a well-defined function or-
acle?, denoted by Evalp (V) where ® indicates access to the actual
values of parameters in P (e.g., Evaly, r(V) presents both xo and
R, while Eval(V) does not provide any parameters).

Given this oracle, in this paper® we consider three central prob-
lems: (1) sample from the distribution 7, (2) find an affine transfor-
mation that places 7 in near-isotropic position, and (3) estimate
the integral / e~V ) dy (i.e., the normalization constant of 7). We
measure the complexity in terms of the number of oracle calls and
the total number of arithmetic operations.

Complexity of Logconcave Sampling. Sampling general logcon-
cave functions, as an algorithmic problem, was first studied by
Applegate and Kannan [2], who established an algorithm with com-
plexity polynomial in the dimension assuming Lipschitzness of the
'We use the standard convention of 1/8; any constant bounded away from 1 would
suffice. In fact, we will use an even weaker condition.

2Without loss of generality, we will assume by scaling that r = 1.
3The full paper is available on arXiv at [20].
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function over its support. They did this by creating a sufficiently fine
grid (so that the function changed by at most a small constant within
each grid cell) and used a discrete “grid walk”. They sampled a grid
point and used rejection sampling to output a point from the cube
associated with the grid point. The output distribution is guaranteed
to be within desired total variation (TV) distance from the target
distribution. Following many developments, Lovasz and Vempala
improved the bound to scale as n2R?/r? [31, 34]. More specifically,
[34, Theorem 2.2, 2.3] analyzed the Ball Walk and Hit-and-Run and
proved a bound of

M
lOg ?
steps/queries to reach a distribution within ¢ TV-distance of the
target starting from an M-warm distribution. [31, Theorem 1.1]
showed that Hit-and-Run achieves the same guarantee in

M* n®R?
& 2

ﬂ;z logO) "MR
r er
steps. We note that in all previous work on general logconcave sam-
pling the output guarantees are in TV-distance. It is often desirable
to have stronger guarantees such as the KL or Rényi divergences.

Classical Sampling Algorithms. For target density proportional to
e~V the Ball Walk with parameter & proceeds as follows: at a point

x with e”V(®) > 0, sample a uniform random point y in the ball

. . .12 . -V(y)
of radius § centered at x; go to y with probability min(1, iw_(:i))’

staying at x with the remaining probability. Hit-and-Run does not
need a parameter: at current point x, pick a uniform random line
¢ through x, and go to a random point y along ¢ with probability
proportional to e V(Y (marginal along ¢). For technical reasons,
both of these walks (and almost all other walks) need to be lazy,
i.e,, they do nothing with probability 1/2, and do the above step
with probability 1/2.

Sampling and Isoperimetry. The complexity of sampling is intu-
itively tied closely to the isoperimetry of the target distribution. If
the target has poor isoperimetry (roughly, a small measure surface
can partition the support into two large measure subsets), then
any “local” Markov chain will have difficulty moving from one
large subset to its complement. There are two alternative views of
isoperimetry — functional and geometric. We recap the definitions
of isoperimetric constants.

Definition 1.1. We say that a probability measure 7 on R" satisfies
a Poincaré inequality (PI) with parameter Cp () if for all smooth
functions f : R" —» R,

vary f < Cpi(m) Bx [V,
where var,, f = Ex[|f — Exf|?].

(P1)

The Poincaré inequality is implied by the generally stronger
log-Sobolev inequality.

Definition 1.2. We say that a probability measure 7 on R" satis-
fies a log-Sobolev inequality (LSI) with parameter Cy gi () if for all
smooth functions f : R” — R,

Enty (%) < 2C1si(7) Ex [IIVFI].
where Ent,[(fz) =B, [f2 10gf2] -E, [fz] log Ex [fz]-

(LS)
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7(Se)=n(S)
&

We define 7(95) := liminf,, , where S; = {x :

d(x,S) < ¢}, for the geometric view.
Definition 1.3. The Cheeger constant Ccy, () of a probability mea-
sure 7 on R" is defined as
(9S)
in .
Scrr ()<} 7(S)

Ccn(m) =

Definition 1.4. The log-Cheeger constant Ciogch () of a probabil-
ity measure 7 on R" is defined as

7(3S)

inf A CO R
SCR”TE(S)S% 7(S)+/log(1/7(S))

It is known that for logconcave measures, Cp () = @(CE}?(T[))
[5, 6, 25] and Cysi() = G)(C[;gch ()) [24]. Bounding these con-
stants has been a major research topic for decades. In recent years,
following many improvements, it has been shown that for isotropic
logconcave measures, Cp () < logn [16] and for isotropic logcon-
cave ones with support of diameter D, we have Cys|() < D [27].
The former is conjectured to be O(1) (the KLS conjecture), and the
latter is the best possible.

The significance of these constants for algorithmic sampling
became clear with the analysis of the Ball Walk, where the bound
on its convergence from a warm start to a logconcave distribution
depends directly on CEE[(I[) [15] (this was the original motivation
for the KLS conjecture) — the mixing time of the Ball Walk starting
from an M-warm distribution to reach ¢ TV-distance is bounded
by O(n’C Eﬁ poly A—g/[) For the special case of uniformly sampling
convex bodies, using the notion of a Speedy Walk, this can be
improved to O(Mn?C Eﬁ log A—f) but using it in the analysis entails
handling several technical difficulties. In principle, this might be
extendable to general logconcave functions, albeit with formidable
technical complications. We take a different approach.

CIogCh () =

Sampling, Isoperimetry, and Diffusion. The connection of isoperi-
metric constants to the convergence of continuous-time diffusion is
a classical subject. The Langevin diffusion is a canonical stochastic
differential equation (SDE) given by

dX; = -VV(X;)dt +V2dB;, Xo ~ v,

where B; is the standard Brownian process, and V is a smooth
function. Then, under mild conditions, the law v; of X; converges
to the distribution with density v proportional to e~V
Moreover, it can be shown that

in the limit.

ADE exp(—%) Lo llv).

KL(v¢ || v) < exp(— KL(vg || v) .

2t )
Cusi(v)

A natural idea for a sampling algorithm is to discretize the diffu-
sion equation. This discretized algorithm was shown to converge in
poly(n, f, Cpi(v)) and poly(n, B, Crs1(v)) iterations under (PI) [8]
and (LSI) [37] respectively, assuming S-Lipschitzness of VV. Can
this approach be extended to sampling general logconcave densities
without the gradient Lipschitzness?
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Algorithm 1 Proximal Sampler PSexp
Input: initial pt. zg ~ 7y € P(R™1), K = {(x,1) : V(x) < nt},
k € N, threshold N, variance h. Output: zp, 1 = (Xgi1, tgs1)-
1: fori=0,...,kdo
2. Sample yir1 ~ N (zi, hlpt1).
3. Sample zj41 ~ N (yi+1 — hnens1, hlne1)| 5

4: (T) Repeat zis1 ~ N(yis1 — hnepi1, hlpi1) until z € K. If
#attempts; > N, declare Failure.
5. end for

Algorithmic Diffusion. By algorithmic diffusion, we mean the gen-
eral idea of discretizing a diffusion process and proving guarantees
on the discretization error and query complexity. Recently, [21]
showed that such an algorithm (called In-and-Out there), which
can be viewed as a Proximal Sampler, works for sampling from
the uniform distribution over a convex body and recovers state-of-
the-art complexity guarantees with substantially improved output
guarantees (Rényi-divergences). The guarantee was extended to
the Rényi-infinity (or pointwise) distance as well [23]. A nice aspect
of the analysis is that it shows convergence directly in terms of
isoperimetric constants of target distributions. As a result, it pro-
vides a unifying point of view for analysis without requiring the
use of technically sophisticated tools such as the Speedy Walk and
s-conductance [15, 30, 34]. We discuss the approach in more detail
presently.

This brings us to the main motivation of the current paper: Can
we use algorithmic diffusion to obtain faster algorithms with stronger
guarantees for sampling, rounding, and integrating general logcon-
cave functions?

1.1 Results

In this paper, we propose new approaches for general logconcave
sampling, rounding and integration, leading to the first improve-
ments in the complexity of these problems in nearly two decades
[31]. Our methods crucially rely on a reduction from general log-
concave sampling to exponential sampling in one higher dimension.
With this reduction in hand, we develop a new framework for sam-
pling and improve the complexity of four fundamental problems:
(1) logconcave sampling from an O(1)-warm start, (2) warm-start
generation, (3) isotropic rounding and (4) integration. For each prob-
lem, our improved complexity for general logconcave distributions
matches the current best complexity for the uniform distribution
over a convex body, a setting that has received much attention
for more than three decades [9, 11, 15, 21, 23, 28-30, 32]. We now
present our main results, followed by a detailed discussion of the
challenges and techniques in §1.2, and notation and definitions in
§1.3.

Result 1: Logconcave Sampling from a Warm Start. When a log-
concave distribution 7 V' is presented with the evaluation
oracle for V, we instead consider the “lifted” distribution

o< e

(x,t) o< exp(—nt) - L[ (x, ) : V(x) < nt]

in the augmented (x, t)-space, the X-marginal of which is exactly
7X. We quantify how this affects parameters pertinent to sampling
(e.g., isoperimetric constants).
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Figure 1.1: Reduction to an exponential distribution and sam-
pling via the Proximal Sampler PSexp.

To sample from the exponential target 77 using a given Reo warm-
start, we use the Proximal Sampler (see Figure 1.1) with an eval-
uation oracle that returns nt conditioned on V(x) < nt. One it-
eration of the sampler is reversible with respect to the stationary
distribution 7, while it can be interpreted as a composition of two
complimentary diffusion processes. Discarding the T-component
of a sample, we are left with the X-component with law close to
our desired target 7. In this regard, our sampler is a natural gen-
eralization of In-and-Out [21], the Proximal Sampler for uniform
sampling. Concretely, we establish mixing guarantees and query
complexities of our sampler for the target logconcave distribution
X in terms of its Poincaré constant (which in general satisfies
l[Cov || < Cpi () 5 [[Cov || logn [16]).

Theorem 1.5. Forany logconcave distribution 7% specified by a well-
defined function oracle Eval(V'), for any givenn, ¢ € (0,1),q > 2, and
ﬂg( with Rm(ﬂg( | %) = log M, we can use the Proximal Sampler
PSexp (Algorithm 1) with suitable choices of parameters, so that with

probability at least 1 —n, we obtain a sample X such that Rg(law X ||
X
) <

&, using (3(an2 (IICov 7X]| v 1) polylog %) evaluation
queries in expectation.

See the full paper for a more detailed description of the heat flow
perspective and its benefits for sampling. Our specific setting of
parameters can be found in the full paper. In comparison with the
previous best complexity of O(n? tr(Cov X) polylog %), which is
for TV-distance, the Proximal Sampler PSeyp achieves a provably
better rate (since ||CovzX|| < tr(Cov X)) from an O(1)-warm
start, and moreover does so in general R4-divergences. This mix-
ing rate matches the previously known best rate for the uniform
sampling by the Ball Walk [15] as well as In-and-Out [21].

Remark 1.6 (Connection to well-conditioned settings). A recent
line of research in sampling literature has studied the complex-
ity of samplers for well-conditioned distributions, which refers
to unconstrained a-strongly logconcave and f-smooth distribu-
tions with condition number k := /. For instance, zeroth-order
samplers have query complexities O(knlog 1/¢) for various met-
rics from a warm start (actually, from a proper feasible start),
including the metropolized Gaussian walk [1], Hit-and-Run [3],
Proximal Sampler [7, 26]. We can show that our reduction scheme
yields a complexity of o ((kn + n?)log 1/ne) for well-conditioned
distributions, revealing a connection to this line of research.

Result 2: Warm-start Generation (Sampling without a Warm Start).
The Proximal Sampler PSexp assumes access to a warm start in
Reo, and generating such a good warm-start is an important and
challenging algorithmic problem in its own right. We propose
Tilted Gaussian Cooling which generates an O(1)-warm start in
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the Roo-divergence for any target logconcave distribution. This
algorithm generalizes Gaussian Cooling [9], the known method
for generating a warm-start for the uniform distribution over a
convex body. The high-level idea is to follow a sequence {y;};e[m]
of distributions, where y is easy to sample from, y; and ;41 are
close in some probability divergences, and py, is the desired target.
Our algorithm first reduces the original target to the exponential
distribution and then follows annealing distributions of the form

ygz,p(x, t) o exp(—ﬁ lIx]1? = pt) X
1[{V(x) < nt}n{llx]l = O(R), [t] = O(1)}],

with a carefully chosen schedule for updating the parame-
ters o2 and p. Roughly speaking, we update the X-marginal
through Gaussian Cooling and the T-marginal using an expo-
nential tilt. In order to move across the annealing distributions,
Tilted Gaussian Cooling requires an efficient sampler for the in-
termediate annealing distributions, ideally with guarantees in the
Reo-divergence in order to relay Ro-warmness guarantees along
the annealing scheme. We use the Proximal Sampler for these inter-
mediate distributions with a Re-divergence guarantee, namely the
Proximal Sampler PSapn. In our computational model, this sampler
started at a previous annealing distribution returns a sample with
law p satisfying Reo (1 || ,uUz!p) < ¢, using 5(n202 polylog R/ne)
evaluation queries in expectation.

By sampling these annealing distributions through PSanp,
Tilted Gaussian Cooling obtains an O(1)-warm start for 7 (and
hence for the desired target 7%); then runs the Proximal Sampler
PSexp one final time to obtain a sample with Re-guarantees (this
is a very strong notion of probability divergence that recovers all
commonly used distances such as TV, KL, )(2, or qu).

Theorem 1.7. For any logconcave distributions % specified by
Evaly, r(V), for any given n,e € (0,1), Tilted Gaussian Cooling
with probability at least 1 — n, returns a sample with law v such
that Reo (v || 75) < &, using (j(nz(R2 V n) polylog /ne) evaluation
queries in expectation. Hence, 1f7rX is well-rounded (i.e., R? < n),
then 5(n3 polylog 1/ne) queries suffice.

This improves the prior best complexity of o (n®R? polylog %)
for general logconcave sampling (in TV-distance) from scratch by
[31, Collorary 1.2], and provides a much stronger Reo-guarantee.
Moreover, this complexity matches the best-known complexity
for uniform sampling with the TV-guarantee by [9] and with the
Reo-guarantee by [23].

Result 3: Isotropic Rounding of Logconcave Distributions. The
above results on the complexity of logconcave sampling still have
dependence on the second moment R?, so those are not fully poly-
nomial in the problem parameters. We address this issue by initially
running an algorithm for isotropic rounding which makes the co-
variance matrix of a given logconcave distribution near-isotropic
(ie., Cov X ~ I,). After this rounding, R? = O(n), and thus the
guarantee above turns into n3 at the cost of a multiplicative factor
of polylog R in the complexity. Isotropic rounding is also a useful
tool for many other high-dimensional algorithms.

At a high level, just as in the warm-start generation, our algo-
rithm follows a sequence {y;} of distributions while updating an
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affine map F : R” — R" along the way. An important subroutine is
to convert a well-rounded distribution (i.e., with tr(Cov) = O(n))
to one that is near-isotropic (i.e., with Cov =~ I,). To this end, we
generalize the approach taken in [12] for the uniform distribution
— repeatedly [draw a few samples — compute a crude estimate of
the covariance — identify skewed directions from the estimation
and upscale them]. In doing so, we rely crucially on our sampler’s
mixing rate in terms of ||Cov %) (instead of tr(Cov 7X)) in Result
1 and its improved complexity for warm-start generation in Result
2.

Theorem 1.8. For any logconcave distribution % specified by
Evaly, r(V), there exists a randomized algorithm with query com-
plexity ofa(ng'5 polylog R) that finds an affine map F such that the
pushforward of 7% via F is 1.01-isotropic with probability at least
1-0(n~1/?),

Using a boosting technique [34, Algorithm A], we can boost the
success probability to 1 — n by running the rounding algorithm
O(log 1/) more times. Moreover, our complexity improves upon
the previous best complexity of o (n* polylog R) for general logcon-
cave distributions [31, Theorem 6.1]. Our rate also matches that of
isotropic rounding for the uniform distribution [12, 13].

Putting the aforementioned components together, we can obtain
an end-to-end guarantee for the query complexity of logconcave
sampling given an evaluation oracle. To this end, we simply run
the rounding algorithm (along with the boosting technique) and
then Tilted Gaussian Cooling.

Corollary 1.9 (Polynomial complexity of logconcave sampling).
For any n,¢ € (0,1) and logconcave distribution 7% specified by
Evaly, r(V), there exists a randomized algorithm that with probabil-
ity at least 1 — n returns a sample Z such that Reo (law Z || %) <e,
using o(n*s polylog I—; + n® polylog 1/ne) evaluation queries in ex-
pectation.

Result 4: Integration of Logconcave Functions. Finally, we exam-
ine the complexity of integrating a logconcave function, a classical
application of logconcave sampling. To this end, we extend an
annealing approach in [9] to general logconcave integration. Sim-
ilar to Tilted Gaussian Cooling, we follow a sequence {fi};c[m]
of logconcave functions, where f] is easy to integrate, y; « f; is
an O(1)-warm start for pjy1 « fi+1, the variance of fi+1/f; with
respect to y; is small enough (e.g., ¥*(pi+1 || i) = O(m™1)), and
fm is the target logconcave function.

Theorem 1.10. For any e > 0 and an integrable well-rounded log-
concave function f = e~V : R"® — R presented by Evaly, r(V), there
exists an algorithm that with probability at least 3/4, returns a (1+¢)-
multiplicative approximation to the integral of f using O(n®/e?)
queries. For an arbitrary logconcave f given by a well-defined func-
tion oracle, the complexity is bounded by (j(rzS'5 polylog R + n3/¢?).

This result improves the previous best complexity o (n*/€%) of
integrating logconcave functions [31, Theorem 1.3]. Again, our
improved complexity matches that for the uniform distribution (i.e.,
volume computation) [9, 12, 13]. We note that due to the strong
guarantees of the new sampler, we can streamline the analysis of
errors and dependence among samples used to estimate fi41/f;,
simplifying and strengthening earlier analyses [9, 15, 33].
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1.2 Techniques and Background

In proving our results — faster algorithms for the basic problems
of sampling (with and without a warm start), rounding and inte-
gration — we do not take the most direct route. Instead we develop
several techniques that appear to be interesting and we imagine
will be useful in other contexts as well. These include the reversible
heat-flow perspective for the design of polynomial-time algorithms
providing a direct connection to isoperimetric constants, sampling
guarantees in the strong notion of Reo-distance (which has other
motivations such as differential privacy), relevant geometry of log-
concave functions, and a streamlined analysis of estimation errors
of dependent samples.

1.2.1  Going beyond the Uniform Distribution. The uniform distri-
bution over a convex body is a special case of a logconcave distribu-
tion. The best-known polynomial complexity for uniform sampling
is achieved by addressing three subproblems: (1) sampling from a
warm start, (2) generating a warm start and (3) performing isotropic
rounding. Extending the best-known guarantees and algorithms
for each of these problems to general logconcave densities is the
primary challenged addressed in this paper. In our proofs, we use
general properties of logconcave functions and avoid any structural
assumptions on the target density.

The first challenge is to establish a logconcave sampler with
a mixing rate matching that of the best uniform samplers, such
as the Ball Walk [15] or In-and-Out [21]. These uniform samplers
have a mixing rate of n?||Cov z%X |, while Hit-and-Run in [31], pre-
viously the best for general logconcave distributions, has a rate of
n? tr(Cov X). The improved complexity bounds of these uniform
samplers come from a better understanding of isoperimetric prop-
erties, such as the Cheeger and Poincaré constants for logconcave
distributions, and this aspect is more direct for In-and-Out. Here we
extend In-and-Out to general logconcave distributions. As we elab-
orate in §1.2.2, this requires implementing rejection sampling for
the distributions of the form exp(—V(x) — ﬁ llxI?) (for a suitable

h) using o (1) queries. However, with only logconcavity assumed
for e~V determining a suitable proposal distribution and analyzing
its query complexity present significant challenges.

Reduction to an Exponential Distribution. To extend methods
from uniform to general logconcave distributions, we leverage a
conceptual connection between logconcave sampling and convex
optimization — sampling from exp(—V) is analogous to minimiza-
tion of V. In optimization, we bound V (x) with a new variable ¢, and
add the convex constraint V(x) < t.Inspired by this, we consider an
exponential distribution with density 7 (x,t) o« exp(—nt) - L[(x, 1) :
V(x) < nt] on R™! with X-marginal 7X o exp(-V). The scaling
of n in the exponential function is a natural choice as we will see
later.

This reduction offers several advantages. First, the potential V be-
comes linear, opening up a possible extension of previous analyses.
Second, it points to a clear path to generalizing ideas/guarantees de-
vised for uniform sampling. Specifically, the conditional law aX|T=t
of X given T = t is the uniform distribution over the convex level
set Ly = {V(x) < nt}. Thus, 7 can be interpreted as an average of
the uniform distribution over Ly, weighted by e™™, and this idea
is crucial to our subsequent algorithms.
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A similar exponential reduction was discussed conceptually in
[18] and developed further in [19] for a sampling analogue of the
interior-point method from optimization. Here, however, we apply
this reduction in our general setup, without specific assumptions on
the epigraph, and analyze structural properties of the reduced dis-
tribution. For example, we bound the mean and variance along the
T-direction. This allows us to analyze how this reduction impacts
key parameters of the original logconcave distribution, including
the largest eigenvalue and trace of the covariance.

1.2.2  Logconcave Sampling from a Warm Start.

Sampling through Diffusion. The proximal sampler [26] is essen-
tially a Gibbs sampler from two conditional distributions. For a tar-
get distribution 7 o exp(—V), it introduces a new variable Y and
considers the augmented distribution 7Y o exp(=V (x) - ﬁ [|x—
y||?) with parameter h > 0. One iteration involves two steps: (i) y ~
m¥ X=X = N (x, hl,) and (if) x ~ 7X1Y=Y o exp(=V ()= 2= [|-=yl1?).
While step (i) is straightforward, step (ii) requires a nontrivial sam-
pling procedure.

The complexity of the Proximal Sampler involves a mixing anal-
ysis (to determine the number of iterations for a desired accuracy to
the target) and the query complexity of implementing step (ii). For
the first part, [7] demonstrated that one iteration corresponds to
simulating the heat flow for (i) and then a time reversal of the heat
flow for (ii). This leads to exponential decay of the R4-divergence,
with the decay rate dependent on the isoperimetry of the target dis-
tribution (e.g, (PI) and (LSI)). For the second part, prior approaches
typically use rejection sampling or a different logconcave sam-
pler (e.g., MALA, ULMC) under additional assumptions such as the
smoothness of V or access to first-order and proximal oracles for V.

Sampling without Smoothness. Previous studies of the
Proximal Sampler focused on smooth unconstrained distributions,
where the potential satisfies V2V < BI,, for some f§ < o, leaving
open the complexities of uniform or general logconcave sampling
with hard constraints. [21] introduced In-and-Out, a version of
the Proximal Sampler for uniform sampling over convex bodies.
With V(x) = (1[x € K])~! for a convex body K, one iteration of
In-and-Out draws y ~ N(x, hl,) and then x ~ N (y, hl,)|4 (the
Gaussian truncated to K) using rejection sampling on the proposal
N (y, hlp). They introduce a threshold parameter on the number of
rejection trials which ensures that the algorithm does not use too
many queries.

This diffusion-based approach turns out to be stronger than the
Ball Walk, the previous best uniform sampler with query complex-
ity 5(n2||C0V 7X|| polylog %) for obtaining an e-close sample in
TV-distance. In-and-Out provides R4-divergence guarantees with
a matching rate of n||Cov 7% || for TV-distance, and its analysis is
simpler than the Ball Walk. Since the latter’s analysis in [15] goes
through its biased version (called the Speedy Walk), it involves an
understanding of an additional rejection step for making the biased
distribution close to the uniform target, as well as the isoperimetric
constant of the biased distribution. In contrast, In-and-Out achieves
direct contraction towards the uniform target, with rate dependent
on isoperimetric constants of the original target, not a biased one,
and achieves stronger output guarantees. In-and-Out’s approach



STOC 25, June 23-27, 2025, Prague, Czechia

has also been extended to truncated Gaussian sampling [23], lead-
ing to a Reo-guarantee that improves upon the TV-guarantee of the
Ball Walk [9].

Proximal Sampler for General Logconcave Distributions. This
prompts a natural question if we can extend In-and-Out be-
yond constant and quadratic potentials. Prior studies of the
Proximal Sampler by [7, 21] allow for an immediate mixing anal-
ysis through the isoperimetry of logconcave distributions. How-
ever, we also need a query complexity bound for sampling from
mXIY=Y o exp(-V(x) — & [lx — yl|?). While one might consider
using Hit-and-Run [31] for the second step, it requires roundedness
of this distribution, and its current complexity is also unsatisfac-
tory. Rejection sampling is another option, but without smoothness
assumptions for general logconcave distributions, it is challenging
to identify an appropriate proposal distribution and to bound the
expected number of trials.

To handle an arbitrary convex potential V, we apply the exponen-
tial reduction, turning V into a convex constraint and work with the
linear potential nt in one higher dimension. Extending In-and-Out
to this exponential distribution, we propose the Proximal Sampler
PSexp (Algorithm 1). Since Cpy () < (Cpi(X) + 1) log n, the mix-
ing rate of PSeyp for 7 is close to that of the Proximal Sampler
for 7X. Implementing the second step is now simpler due to the
linear potential, allowing us to extend the analysis of In-and-Out
for uniform and truncated Gaussian distributions to exponential
distributions. A new technical ingredient is bounding the rate of
increase of /K5 e_”t//,K e~ as § grows, where K5 = {z € R*! .

d(z,%) < &}. We show that this growth rate is bounded by %"

1.2.3  Warm-start Generation. Prior work on warm-start genera-
tion [9, 15, 33] is based on using a sequence {p;};c[m] of distribu-
tions, where y is easy to sample (e.g., uniform distribution over a
unit ball), each y; is close to yj41 in probabilistic distance, and piy, is
the target. By moving along this sequence with a suitable sampler
for intermediate annealing distributions, one can generate a warm
start for the desired distribution. This approach is more efficient
than trying to directly go from p; to pp,.

Warm-start Generation for Uniform Distributions. The state-of-
the-art algorithm for uniform distributions over convex bodies is
Gaussian Cooling [9]. They set y;(x) o exp(—||x||2/(20i2)), where
al.z increases from n~! to R? according to a suitable schedule. This
approach ensures that y; is O(1)-warm with respect to 41, and
uses the Ball Walk to sample from truncated Gaussians with TV-
guarantees. Using a coupling argument, they showed that with
high probability, this scheme outputs an e-close sample to the uni-
form distribution in TV-distance, using O(n?(R? V n) polylog %)
membership queries. [23] later improved this by replacing the
Ball Walk with the Proximal Sampler, achieving Re,-guarantees
with the same complexity. As a result, Gaussian Cooling transfers
Reo-warmness across the sequence of distributions, and thus the
complexity for uniform sampling from a convex body remains the
same even for Ro-divergence guarantees.

Going beyond Uniform Distributions. In [9], Cousins and Vempala
raised the question of whether their annealing strategy can be
extended to arbitrary logconcave distributions with complexity
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O(n?(R?vn)). A natural choice for annealing distributions is p(x) o
exp(=V(x) - # l|x]|2), which would still provide Roo-closeness of
consecutive distributions and allow for accelerated updates to ¢2.
However, prior samplers lack the necessary guarantees for these
distributions, so we use the exponential reduction.

To generate a warm start for (x,t) o e~ |4, it seems natural
to consider an annealing distribution obtained by multiplying 7z by
a Gaussian in “(x, t)” for a direct application of Gaussian Cooling
in R™! However, due to different rates of changes in the quadratic
term and linear term in ¢ over an interval of length O(1), these
two terms do not properly cancel each other, which implies that
the warmness of ;-1 with respect to y, = 7 is no longer O(1)-
bounded.

We address this by introducing Ho?,p (x,1) x exp(—# =% =
pt) - 1[(x,t) € K] where 6®> € (0,R*], p € (0,n], and K =
{V(x) < nt} n{||x]| = O(R), ||t]| = O(1)}. Essentially, this runs
Gaussian Cooling along the x-direction with an exponential tilt in
the t-direction, ensuring that consecutive distributions are O(1)-
close in Reo. However, we need an efficient sampler for 1,2 , with
ZRoo-guarantees to maintain Re,-warmness across the annealing
scheme.

Sampling from Annealing Distributions. Given the form of the
annealing distribution (the potential is a combination of linear
and quadratic terms), we use the Proximal Sampler to develop
PSann. The query complexity for rejection sampling in the sec-
ond step now can be derived from our analysis of PSexp and the
Proximal Sampler for truncated Gaussians [23]. For mixing with
Reo guarantees, we apply a technique from [23]. We obtain a mix-
ing rate of O(h™1Cyg; (,u(,z’p)) for the Proximal Sampler based on
(LSI). This results in only a doubly logarithmic dependence on the
initial warmness, implying convergence from any feasible start
with an overhead of polylog(n, R). This uniform ergodicity implies
L®-norm contraction of density toward the target [10], leading to
a Roo-guarantee of PSyny without significant overhead.

We bound the LSI constant of the annealing distribution 2 ,

by 02 V 1 via the Bakry-Emery criterion and Holley-Stroock per-

2%2 llx]I% - % - pt)| g, since
the potential of v is min(o~2, 1)-strongly convex, its LSI without
convex truncation is bounded by ¢? V 1 through Bakry-Emery,
and convex truncation to K only helps in satisfying the criterion
[4]. Also, as sup t — inf t = ©(1) over K, the ratio of Ho?p tO Vv is
bounded below and above by ©(1), so the perturbation principle
ensures that C g (g2 ,) € Crsi(v) < 02 V 1.

turbation principle. For v o« exp(—

»)

Gaussian Cooling with Exponential Tilt. With the query com-
plexity of PSann in mind, we design Tilted Gaussian Cooling for
warm-start generation for 7 (x, t) o exp(—nt)|g. We run rejection
sampling with proposal N (0, n~!I,) ® Unif (I;) for some interval
I; of length ©(1), and initial distribution exp(—% llx1%) | > which
is O(1)-warm with respect to y; = exp(—% IIlx|% - t)| 4. In Phase
I, we update the two parameters according to 6% « o2(1+n71)
and p « p(1+n~!) while p < n and 6® < 1. Since Phase I
involves O(n) inner phases with complexities of sampling from
each annealing distributions being 5(n2(02 V1)) = 5(n2), the
total complexity is o (n®). In Phase II, we accelerate o%-updates via
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0% « ?(1 + 0%/R?) as in Gaussian Cooling. With 5(R2/0'2) in-
ner phases (for doubling of ¢2) and sampling complexity O(n%a?)
per inner phase, this has total complexity 5(n2R2). At termina-
tion, PSexp is run with pge ,, as the initial distribution for target
7 oce ™ |,,-<, where these two are close in Re. Using the LSI of &
and the boosting scheme again, we can achieve an e-close sample
to 7 (not 77) in the Roo-divergence, using (A)J(n2 (R? V n) polylog %)
queries in total.

1.2.4  Rounding. Rounding is the key to reducing the dependence
on R from poly R to polylog R.

Isotropic Rounding for Uniform Distributions. The previous best
rounding algorithm for uniform distributions, proposed by [12],
gradually isotropizes a sequence {y;} of distributions. For a convex
body K, they set y1; = Unif (KXNBg: (0)) for § = 1+n~1/2, increasing
i while 6° < R. Their approach entails two important tasks: Outer
loop: if F(K N B,) is near-isotropic for an affine map F, then show
that F(KNBg,) is well-rounded, and Inner loop: design an algorithm
of n3-complexity that isotropizes a given well-rounded uniform dis-
tribution. The first task was accomplished by [13] through Paouris’
lemma (i.e., exponential tail decay) and a universal property that
the diameter of an isotropic convex body is bounded by n + 1.

The second task was addressed by repeating [draw samples —
compute crude covariance estimation — upscale skewed directions
of the covariance estimation]. They first run Gaussian Cooling to
obtain a warm start for a uniform distribution y from a convex body.
Then, when the inner radius is r, the Ball Walk (or In-and-Out) is
used to generate r? samples approximately distributed according to
4. These r? samples give a rough estimate of the covariance matrix X
of yi such that | — 3| 5 nly,, where % = Cov j1. Since the query com-
plexity of these uniform samplers is n?||Z||/r?, this procedure uses
n?||Z|| queries in total. Then, it computes the eigenvalue/vectors of
3 and scales up (by a factor of 2) the subspace spanned by eigen-
vectors with eigenvalues less than n. One iteration of this process
achieves two key properties: the largest eigenvalue of the covari-
ance ¥ increases by at most n additively while r = inrad y almost
doubles. Since the well-roundedness ensures that ||| = O(n) ini-
tially, the complexity of one iteration remains as o (n®) throughout.
Since there are v/n log R outer iterations, the algorithm uses a total
of O(n35 polylog R) queries.

Extension to General Logconcave Distributions. Our rounding al-
gorithm essentially follows this approach, with several technical re-
finements. First of all, we define a ground set of a general logconcave
distribution, namely the level set Ly := {x : V(x) —minV < 10n}.
This ground set takes up most of measure due to the universal
property in terms of the potential value. Focusing on the ground set
is the first step toward a streamlined extension of the previous ap-
proach, so we consider the grounded distribution vX := 7| L,- Then,

for vX .= vX| B, (0)> We isotropize a sequence of distributions, given

byvi(—>vg(—>vg(2—>"'—>V§—>VX—’7TXf0rD:®(R)'

To analyze the outer loop, we show that for an affine map FX
between R”, if Ff vf< is near-isotropic, then (4FX )#V<>S<r is well-
rounded. Unfortunately, a varying density of Ff v?r poses a daunt-
ing challenge in extending the previous proof in [13] to general
logconcave distributions. Nonetheless, we can resolve this issue by
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working again with the exponential reduction. This extension asks
for a universal property that an isotropic grounded distribution has
diameter of order O(n), similar to isotropic uniform distributions.
We show this in the full paper. Transferring roundedness in the
steps Vg — X and v¥ — 72X is relatively straightforward by com-
bining the change of measures and the reverse Holder inequality
for logconcave distributions.

For the inner loop, we can still apply the algorithm from [12]
(or its streamlined version in [22]) with only minor changes to
constants. First, with the logconcave sampler PSey, whose mixing
rate depends on ||Cov X || rather than tr(Cov 7%), the complexity
analysis of the inner loop extends naturally to general logconcave
distributions. Next, we note that the proofs for controlling ||Z;||
and tr %; are identical to those for uniform distributions. The proof
for the doubling of the inner radius at each iteration is nearly the
same as in the uniform case, since the existence of a large ball due
to isotropy is also a universal property of logconcave distributions.

1.2.5 Integration. For integration, we use the stronger guaran-
tees of our logconcave sampler, along with a version of the
Tilted Gaussian Cooling scheme to obtain a cubic algorithm for
well-rounded logconcave functions. For general logconcave func-
tions, we use the rounding algorithm as a pre-processing step, then
apply the integration algorithm to the near-isotropic distribution
obtained after rounding.

Volume Computation through Annealing. Similar to sampling,
prior volume algorithms also follow a sequence {fi};c[m] of log-
concave functions, moving across distributions y; « f; using a
logconcave sampler. The annealing scheme is designed in a way
that fi is easy to integrate, y; is an O(1)-warm start for yj41, the
variance of the estimator E; = fi;+1/f; with respect to y; is bounded
by m™'Ey, [E7] (ie. x*(pivt | pi) = O(m™h), and finer = f is
the target logconcave function. Since E,, E; = f fir1/ / fi, accurate
estimations of all E; guarantee that the product / fiXE1---Enpis
a good estimator of/fl -EEq---EEp = /f

The best-known algorithm, Gaussian Cooling [9], uses unnor-
malized Gaussian densities f;(x) = exp(—IIxl*/26?) - L g¢(x) for a
convex body %, along with an update schedule for al.z. As described
earlier in §1.2.3, its uses the Ball Walk to sample from y; o« f; with
TV-guarantees.

Extension to General Logconcave Functions. Our integration al-
gorithm follows this approach, but once again in the lifted space.
With PSann used for sampling, we follow a modified version of
Tilted Gaussian Cooling for ease of analysis, particularly for vari-
ance control. We use f;(x, t) = exp(—IIxl*/26? — p;it)|g¢ as the inter-
mediate annealing functions, and ensure that Reo (y; || pti+1) = O(1)
for efficient sampling from pij4q, and Ra (piv1 || pi) = exp(O(m~1))
for vary, (E;/EyE;) = O(m~1). Since O(1)-warmness can be
shown as in Tilted Gaussian Cooling, we elaborate on technical
tools for variance control along with design of the algorithm. In
Phase I, we go from exp(—nlxl*/2)|4 to exp(—Ilxl*/2) | with the
update 62 < o2(1+1/n), where variance control is achieved by the
logconcavity of a +> a” / h? for a logconcave function h [14]. In
Phase II, we move from exp(—IlxlI*/2 — t)| 4 to exp(=lIxl*/2 — nt) | %
with the update p < p (1 + /n), where variance control follows
from the previous lemma and another lemma in [9]. Lastly in Phase
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IIT, we move from exp(—Ilxll*/2 — nt)|g to exp(—nt)|g with the
update o? « 02(1 + */n), and we use the lemma in [9] again for
variance control.

Streamlined Statistical Analysis. If all samples used are inde-
pendent, and the estimators have moderate variance, namely
vary, (Ei/BE;) = O(m™1), then var(E; ---Ep) = ([T(1 + m™1) —
1) (BE;)? ~ O(1) (E[E; - - - Emm])?, which implies concentration of
the estimator around E[E; - - - Ej,| = EE; - - - EE,, through Cheby-
shev’s inequality. However, samples given by (say) the Ball Walk in
Gaussian Cooling are approximately distributed according to y;. In
fact, samples drawn from p; and pj4; are dependent, since a sample
from y; is used as a warm-start for p;;1. This means that the estima-
tor Eq - - - E;y is a biased estimator of BEq - - - BEEp, (# E[E1 - - - Em]).
These two issues complicate statistical analysis in prior work on
how close the estimator is to the integral of f, and require addi-
tional technical tools to address them. For the first issue, previous
work used a coupling argument based on TV-distance (referred to
as “divine intervention”) to account for the effects of approximate
distributions (rather than exactly ;). For the second, they used the
notion of a-mixing [35] (referred to as “u-independence” therein)
to bound the bias of the product estimator.

We simplify this statistical analysis substantially by using
stronger guarantees of our sampler PS,ny. For the first issue, when
fi; denotes the actual law of a sample X; satisfying Roo (f; || i) < ¢,
we can notice that the probability of a bad event (any event) with re-
spect to fi; (instead of y;) only increases by at most a multiplicative
factor of 1 + ¢. Since the mixing time of PSayn has a polyloga-
rithmic dependence on 1/e, we can set ¢ polynomially small (i.e.,
& « ¢/poly(n, R)), so we can enforce Reo (®;fl; || ®;pti) < e withouta
huge overhead in the query complexity. For the second issue, we use
notion of f-mixing (or the coefficient of absolute regularity) [17],
which is stronger than a-mixing. This quantity basically measures
the discrepancy between a joint distribution and the product of
marginal distributions by ||law(Xj, Xi+1) — law X; ® law X1 |1y =
|law (X, Xi+1) — @i ® fi+1llTv < B. Since the mixing of PSyny via
(LSI) ensures mixing from any start, we can easily bound f by O(¢).
Thus, when analyzing the probability of a bad event, we can re-
place ®f; with law (X3, ..., Xp,) at the additive cost of O(me) in
probability (we can replace ¢ < me once again).

1.3 Definitions and Notation

Let P (R") be the family of probability measures (distributions) on
R" that are absolutely continuous with respect to the Lebesgue
measure. We use the same symbol for a distribution and density.
For a set S and its indicator function 1g(x) = [x € S|, we use p|s
to denote a distribution p truncated to S (i.e., y|s o« p - 1g). For a
measurable map F : R — R" and p € P(R"), the pushforward
measure Fyy is defined as Fupi(A) = (1 o F~1)(A) for a measurable
set A. For a,b € R, we use a V b and a A b to indicate their max-
imum and minimum, respectively. We use B}}(x¢) to denote the
n-dimensional ball of radius r > 0 centered at xo € R", dropping
the superscript n if there is no confusion. We use a = O(b) to de-
note a = O(b polylog b). For two symmetric matrices A, B, we use
|A] 2 B to denote —B < A =< B. Unless specified otherwise, for a
vector v and a PSD matrix M, ||v|| and ||Z|| refer to the f,-norm of
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v and the operator norm of 3, respectively. We use R to denote the
extended real number system R U {+o0}.

We recall notions of common probability divergences/distances
between distributions.

Definition 1.11. For y, v € P(R"), the f-divergence of y towards
v with y < v is defined as, for a convex function f : R — R with

f(1) =0and f’(c0) = oo,
D(ullv) = /f(%) dv.

For g € (1, 00), the KL-divergence and y4-divergence correspond to
f(x) = xlogx and x7 — 1, respectively. The g-Rényi divergence is
defined as

Ry (e[l v) = 5 log (x| v) +1)
The Rényi-infinity divergence is defined as

d
Reo(pt || v) :=logess sup,, d—‘: .

A distribution p is said to be M-warm with respect to a distribution v
if (S

v(S)
warm with respect to v). The total variation (TV) distance for p, v €

P(R™) is defined by

= vy =5 [ ) = vl dx = suplu() = vS)1

< M for any measurable subset S (i.e., y is exp(Reo (12 || v))-

where F is the collection of all measurable subsets of R™.

We recall KL = limg|; Rg < Rg < Ry < Reo for1 < g < ¢
and 2 ||-||%v < KL < Ry = log(x? +1) < y% We refer readers
to [36] for basic properties of the Rényi-divergence (e.g., continu-
ity/monotonicity in g).
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