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• Autonomous drone swarm for 3D high 
resolution measurements of smoke 
plume dispersion

• Dynamic multiview imaging via coordi
nated swarm of one manager and four 
worker drones

• Integration of deep learning tools for 3D 
plume reconstruction in complex 
environment

• Field validation reveals plume volume, 
direction, shape with second-level detail

• Versatile platform for fire modeling, air- 
quality monitoring, and disaster 
response

A R T I C L E  I N F O

Editor: Meng Gao

Keywords:
Drone swarm
Smoke plume 3D reconstruction
Environmental monitoring
Plume dispersion characterization
Multi-view imaging
Autonomous drones

A B S T R A C T

This study presents an advanced multi-view drone swarm imaging system for the three-dimensional character
ization of smoke plume dispersion dynamics. The system comprises a manager drone and four worker drones, 
each equipped with high-resolution cameras and precise GPS modules. The manager drone uses image feedback 
to autonomously detect and position itself above the plume, then commands the worker drones to orbit the area 
in a synchronized circular flight pattern, capturing multi-angle images. The camera poses of these images are first 
estimated, then the images are grouped in batches and processed using Neural Radiance Fields (NeRF) to 
generate high-resolution 3D reconstructions of plume dynamics over time. Field tests demonstrated the system's 
ability to capture critical plume characteristics including volume dynamics, wind-driven directional shifts, and 
lofting behavior at a temporal resolution of about 1 s. The 3D reconstructions generated by this system provide 
unique field data for enhancing the predictive models of smoke plume dispersion and fire spread. Broadly, the 
drone swarm system offer a versatile platform for high resolution measurements of pollutant emissions and 
transport in wildfires, volcanic eruptions, prescribed burns, and industrial processes, ultimately supporting more 
effective fire control decisions and mitigating wildfire risks.

1. Introduction

Understanding the transport dynamics of atmospheric particles, such 

as dust, snow, smoke, and sand, is essential due to its significant impact 
on air quality, climate, and ecological systems across various environ
mental processes, including wildfires, sandstorms, snowstorms, and 
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volcanic eruptions (Mott et al., 2010; Kumar et al., 2011; Kok et al., 
2012; Butwin et al., 2019; Evangeliou et al., 2020; Jaffe et al., 2020; 
Dentoni et al., 2022). This is important for prescribed burns, which are 
controlled fires used in forest management to enhance ecological health 
and reduce the risk of wildfires. However, the occurrence of 43 wildfires 
out of 50,000 prescribed burns in the U.S. between 2012 and 2021 un
derscores the need for effective smoke management to ensure public 
safety and minimize adverse effects on air quality (Associated Press, 
2024). The challenges in managing these burns highlight a critical gap in 
our understanding of the dispersion dynamics of particles during these 
events, which can lead to severe and potentially devastating outcomes 
(Kalabokidis, 2000; Pereira et al., 2021). Therefore, there is a pressing 
need for comprehensive research to better predict, manage, and mitigate 
the risks associated with prescribed burns.

To address these challenges, researchers are developing various 
simulation tools, such as QUIC-Fire and FIRETEC (Linn et al., 2002, 
2020), that aim to model fire and smoke particle behavior. These tools 
utilize complex inputs, including 3D maps of fuel sources, vegetation 
structure, topography, moisture content, and wind predictions (Rowell 
et al., 2020; Robinson et al., 2023). Despite these advancements, sig
nificant limitations remain. There is a lack of validation that compares 
the predicted movement of particles with actual plume dispersion, a 
shortage of dynamic 3D ground truth data on particle dispersion, and 
difficulties in making accurate predictions in areas where 3D fuel data is 
unavailable (Linn et al., 2020; Brambilla, 2023). These limitations un
derscore the ongoing need for field data to validate and improve these 
models, ensuring more accurate predictions and better management.

However, current field tools for data collection have significant 
limitations. Remote sensing and Lidar technologies, while valuable, lack 
the spatial and temporal resolution required to capture the highly dy
namic flows of smoke plumes during prescribed burns (Prichard et al., 
2019; Sokolik et al., 2019). Moreover, these tools are constrained by 
their limited mobility, making it difficult to effectively monitor events 
across varied terrains or in remote and inaccessible areas. The inability 
to collect such detailed data hinders the development of more accurate 
and reliable models for managing prescribed burns and predicting 
smoke dispersion.

To address these challenges, this study aims to develop an autono
mous drone swarm equipped with cameras to capture multi-angle im
ages of smoke plumes. This approach will enable the 3D reconstruction 
of plume dispersal dynamics, allowing for detailed analysis of flow 
patterns. By deploying a fleet of drones for multi-view imaging, we 
intend to create a comprehensive 3D ground truth model of specific burn 
events. This model will provide researchers with critical data for vali
dating simulation predictions and offer essential guidance for hazard 
response and management. While there has been no prior work on 3D 
reconstruction of particle transport using multi-view images from 
drones, significant advancements have been made in 3D reconstruction 
techniques with static objects (Schenk, 2005; Goesele et al., 2006; 
Schonberger and Frahm, 2016; Hackl et al., 2018; Mildenhall et al., 
2021; Müller et al., 2022). Prominent methods include Structure from 
Motion (SfM) and Multi-view Stereo (MVS), which reconstructs 3D 
models from 2D image sequences through feature tracking and photo
grammetry, allowing for precise estimation of camera poses and 3D 
structures (Goesele et al., 2006; Schonberger and Frahm, 2016). Neural 
Radiance Fields (NeRF) have further pushed the boundaries of scene 
reconstruction by generating photorealistic views through the optimi
zation of a continuous 5D neural radiance field from sparse input images 
(Mildenhall et al., 2021; Müller et al., 2022). Building on these ad
vancements, D-NeRF extends this capability to dynamic scenes, 
capturing non-rigid motion and deformation over time (Pumarola et al., 
2021). Additionally, RoDynRF enables dynamic view synthesis from 
monocular videos, even without known camera poses (Liu et al., 2023). 
However, reconstructing atmospheric dispersion plumes presents 
unique challenges. SfM struggles with the featureless nature of plumes 
(Schonberger and Frahm, 2016), NeRF is primarily designed for static 

scenes (Mildenhall et al., 2021; Müller et al., 2022), D-NeRF may not 
perform well with unfamiliar or highly variable scenes (Pumarola et al., 
2021), and RoDynRF faces difficulties with the complex dynamics of 
plumes and demands extensive training times (Liu et al., 2023). These 
limitations can be effectively addressed using our multi-view drone 
swarm approach. By deploying multiple drones, we can adaptively 
capture images of the plume at various scales and positions, tailored to 
the plume's size and dynamic evolution. With this adaptive imaging 
strategy, we can fully harness the efficiency (compared to D-NeRF) and 
accuracy of the NeRF pipeline, generating highly detailed 3D re
constructions for each temporal snapshot. This approach allows us to 
capture multiple reconstructions over time, facilitating the study of the 
plume's dispersion change.

The structure of this paper is as follows: Section 2 details the pro
posed drone swarm platform for 3D plume characterization, including 
both the drone hardware and 3D reconstruction method. Section 3
demonstrates the efficiency of our system through field deployment of 
our multi-view drone swarm and the follow-up 3D plume reconstruction 
and plume characterization. Finally, we summarize our findings and 
discuss their implications and limitations.

2. Methodology

2.1. Overview

As illustrated in Fig. 1, our drone swarm system for multi-view im
aging comprises two main components: the data acquisition module and 
the data processing module. The data acquisition module includes a 
manager drone and four worker drones, which work in a coordinated 
manner to capture multi-view images of the smoke plume and its evo
lution over time. These drones are equipped with synchronized imaging 
systems that allow them to document the plume at different time steps 
from various angles.

In the data processing module, the captured images from the worker 
drones are compiled and segregated by segmented time intervals. The 
images are then fed into the NeRF network, and the output point cloud 
from this is further processed to remove the background and segment 
the plume in 3D. This 3D model is used to extract important charac
teristics of the plume, such as its volume, angle of deviation, and other 
dynamics of plume dispersion in the atmosphere. The process is repeated 
for each time segment to provide a comprehensive spatial and temporal 

Fig. 1. Illustration of the drone swarm system that uses multi-view imaging for 
3D smoke plume characterization.
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characterization of the plume dynamics.

2.2. Data acquisition module

The drone swarm system consists of a manager drone and four 
worker drones, built on durable Holybro S500 V2 quadcopter frames. 
Each drone is equipped with a 12 Megapixel (MP) ArduCam USB-based 
camera mounted on a 3-axis gimbal for smoke detection, image feedback 
control, and dataset collection to facilitate 3D reconstruction, as shown 
in Fig. 2. The drones are powered by 6000 mAh lithium-polymer bat
teries and controlled using Holybro Pixhawk 6C flight controllers 
running ArduPilot. Commands can be transmitted through a 2.4 GHz 
FrSky RC controller, a 915 MHz telemetry radio via MAVLink, or directly 
over USB using the NVIDIA Jetson platform. These components are 
similar to those used in (Bristow et al., 2023).

The manager drone is equipped with an NVIDIA Jetson Orin Nano, 
while the worker drones use the NVIDIA Jetson Nano, with the manager 
drone having a more powerful computer to handle the computational 
demands of smoke detection and navigation control for both itself and 
the worker drones. All drones run MAVROS, which facilitates commu
nication between the onboard computer and the flight controller by 
creating ROS topics. These topics consist of subscribers that receive 
sensor data such as GPS location, altitude, orientation, velocity, time
stamps, and drone state, while publishers send control commands to the 
flight controller for autonomous operations. The manager drone oper
ates on ROS Noetic, while the worker drones run ROS Melodic, ensuring 
compatibility with their respective hardware. MAVROS also enables 
WiFi-based broadcasting of all ROS topics, allowing each drone to access 
real-time data from others, supporting inter-sensor communication and 
drone-to-drone coordination for autonomous swarm operations.

To enable coordinated data collection, the drones are interconnected 
via a robust outdoor Wi-Fi network with a speed of approximately 1775 
Mbps, providing stable wireless coverage up to 200–300 m at the 5 GHz 
band. Additionally, for high-precision positioning, we employ Real- 
Time Kinematic (RTK) technology, which provides centimeter-level 
accuracy by utilizing carrier phase measurements from GNSS signals, 
achieved through triangulation between the RTK base station, GPS, and 
satellites. The drones operate based on a swarm control algorithm, 
depicted in Fig. 3, maintaining optimal spacing and coverage around the 
plume to capture images from multiple perspectives. 

1) Capturing and Undistorting Images: To ensure accurate 3D recon
struction and image feedback control, camera calibration is per
formed to determine the camera matrix and distortion coefficients, 
which are then used to undistort images. In this setup, the manager 
drone captures images at a resolution of 640 × 480 pixels and pro
cesses (segmentation) at a rate of ten fps for realtime feedback, while 
worker drones use a resolution of 1280 × 720 pixels for better image 
reconstruction. The full-sensor size of the camera is not used due to 

its low frame rate and the excessive computational load it would 
impose on the Jetson Nano.

2) Detecting Smoke: The smoke plume detection is performed using a 
YOLOv8-Segmentation model (Jocher et al., 2023), specifically the 
YOLO-Seg-N variant, which provides the lightest model weights to 
maximize inference speed. A dataset of top-down smoke plume im
ages is collected using a drone under varying background and 
lighting conditions. The dataset is constructed by manually anno
tating smoke regions, followed by a train-validation-test split of 66.7 
%–16.7 %–16.7 %, ensuring no overlap between subsets. The model 
undergoes 400 training epochs, allowing it to generalize effectively 
to unseen smoke plume scenarios. Field testing demonstrates effec
tive plume detection, enabling autonomous operations in real-world 
environments.

3) Centering Manager Drone: The drone tracks and centers on the 
plume's centroid obtained from plume segmentation in the previous 
step by adjusting its position until the centroid is within a specified 
threshold of the image center. It accomplishes this by publishing 
velocity commands (cmd_vel) with twist values for the x and y axes 
to the drone via MAVROS. These commands move the drone in the 
direction of the centroid. The process continues until the centroid is 
aligned with the image center, ensuring accurate tracking.

4) Adjusting Altitude of Manager Drone: The drone adjusts its altitude 
based on the segmented smoke area, ensuring optimal positioning for 
effective tracking. If the smoke area exceeds an upper threshold, the 
drone ascends; conversely, if the smoke area falls below a lower 
threshold, the drone descends. This process continues until the drone 
reaches the optimal range, where the smoke area comprises 8 % to 
12 % of the image. This threshold is chosen to ensure that most of the 
smoke is captured within the frame, while still including a portion of 
the background. Maintaining this balance helps in accurately posi
tioning the drone for swarm operations, allowing the drones to sur
round the smoke plume effectively and coordinate the mission.

5) Aligning Yaw of Manager Drone: To align the drone perpendicularly 
to the flow of the dispersion plume, the covariance of the segmented 
mask is calculated, resulting in eigenvectors that indicate the plume's 
flow direction relative to the image. The drone is then yawed 
perpendicular to the largest eigenvector. Using the drone's current 
heading, yaw adjustment is calculated and executed to achieve 
desired orientation.

6) Stabilizing Manager Drone: The three processes are re-initiated 
repeatedly until all parameters fall within their thresholds. Once 
these conditions are met, the drone stabilizes and maintains its po
sition, ensuring it is correctly aligned and in the optimal location.

7) Computing Worker Drone Locations: Using the drone's GPS co
ordinates, altitude, and camera focal length, we calculate the real- 
world dimensions of the captured image. By applying the haver
sine formula, we calculate the latitude and longitude of the image's 
corners, based on the known latitude and longitude of the image 
center. Using this information, we compute an affine transformation 
matrix with the least error, that maps each pixel to its corresponding 
GPS coordinates.

8) Positioning Worker Drones: To precisely localize and position the 
drones around the plume from four sides, the target locations for 
each drone are calculated based on data from the manager drone. 
The manager drone captures a 640 × 480-pixel image, and the two 
vertical extreme points of this image are identified to maximize 
coverage of the smoke plume while collecting data. The distance 
from the center to these vertical extremes is used to determine cor
responding horizontal positions, ensuring that all worker drones are 
equidistant from the center. The positions will adjust with each run 
based on the size of the plume, as the altitude of the manager drone 
changes accordingly to accommodate plume size variations. Once 
these positions are computed, the drones are dispersed to their 
designated locations at the desired altitude, yawing to face the 
manager drone for optimal data collection.

Fig. 2. Drone hardware configuration showing the quadcopter with camera 
mounted on a 3-axis gimbal and GPS with RTK (left), and the NVIDIA Jetson 
Orin Nano (right).
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9) Collecting Data for 3D Reconstruction: Worker drones maintain their 
positions until they reach their designated locations as assigned by 
the manager drone. Once in position, each worker drone verifies that 
its current GPS location is within a safe offset of 0.5 m from the 
assigned coordinates. Upon confirmation, the drone transmits a 
readiness signal to the manager. When all drones have reported 
readiness, the manager drone issues a simultaneous command for the 
worker drones to establish the desired circular formation, with the 
radius determined by the distance between the manager and the 
worker drones. This configuration ensures that all drones remain 
equidistant from the manager drone and effectively encompass the 
targeted plume, optimizing spatial resolution for 3D plume recon
struction. Once the formation is set, the drones transition to circling 
mode, maintaining their designated orbit while capturing plume 
images. This synchronized movement ensures precise data acquisi
tion and consistent image quality across the swarm, thereby 
enhancing the accuracy and reliability of the 3D reconstruction 
process.

2.3. Data processing module

The data processing module consists of several stages designed to 
efficiently handle the data captured by the drones, as depicted in the 
flow chart in Fig. 3c. 

1) Preprocessing Data: Each drone captures data corresponding to one- 
quarter of a circular region. When combined, data from all four 
drones form a complete circle around the plume, representing a 
single time segment. As the drones continue capturing data, addi
tional circles are generated, each corresponding to a new time 
segment. To enhance temporal resolution, data overlaps are intro
duced between two consecutive time segments, effectively creating 
additional intermediate time segments

2) Estimating Camera Poses: Distinctive images captured by each drone 
are labeled and the aggregation of this is fed into COLMAP, which 
employs SIFT feature extraction, exhaustive feature matching, 
structure-from-motion, and bundle adjustment. This process esti
mates camera poses for all drones relative to one another, ensuring 
that independent reconstructions are aligned within a unified coor
dinate system.

3) Reconstructing 3D Plumes with NeRF: For each time segment, the 
required camera poses are extracted from the total poses computed 
by COLMAP. Using the COLMAP camera trajectory and corre
sponding image data, a NeRF model is trained to reconstruct the 3D 
structure of the plume (Mildenhall et al., 2021). During this process, 
2D image data is projected into radiance fields, which encode spatial 
density and view-dependent color variations for each point in the 
scene. NeRF learns a continuous volumetric representation of the 
plume by optimizing a fully connected neural network, mapping 
input camera rays to density and color values. This enables NeRF to 
synthesize novel views and interpolate missing visual data between 
captured angles, producing a more complete and smooth 3D repre
sentation of the smoke plume. To refine the output, the resulting 3D 
data outside the defined enclosure region is cropped, ensuring that 
only the relevant smoke volume is retained. The final reconstructed 
plume structure is then exported as point clouds

4) Post-Processing Data: Background removal is performed using a 
combination of YOLO-v8 and a Naive Bayes Gaussian model. YOLO- 
v8 is used to detect and segment smoke plumes in three randomly 
selected images from the input data. These segmented masks, along 
with the background RGB data, are then used to train a Naive Bayes 
Gaussian classifier. The classifier is employed to segment the smoke 
plumes from the point clouds, effectively removing the background.

5) Characterizing Plume Dynamics: In the final step, the processed 3D 
model is analyzed to extract crucial plume characteristics, such as 
spatial extent and expansion angle. These features are essential for 

Fig. 3. Flowcharts detailing the steps involved in (a) stabilizing the manager drone, (b) collecting data with the worker drone swarm, and (c) processing captured 
data for 3D plume reconstruction and characterization.
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understanding plume dynamics and supporting the development of 
predictive models for behavior in various atmospheric conditions.

3. System demonstration

3.1. Field deployment

We conducted field testing in two phases. The first phase focused on 
assessing our drone system's 3D reconstruction accuracy using a static 
reference object—specifically a 2011 Ford F-350 pickup truck—while 
the second phase demonstrated its ability to capture the 3D dispersion of 
a smoke plume. Because smoke is inherently dynamic, validating 
reconstruction fidelity under real plume conditions is challenging. Thus, 
in the first phase as shown in Fig. 4, we deployed the drones at an 
altitude of approximately 10 m in a circular trajectory around the truck 
(20 m in diameter), capturing images from multiple perspectives. After 
generating a point cloud from these images, we scaled it and measured 
reconstruction accuracy against eight known reference points on the 
truck. The results showed an average error of roughly 1.18 % with a 
standard deviation near 0.98 %, confirming the system's capacity to 
accurately capture 3D structures and establishing a foundation for the 
second phase's focus on dynamic smoke plumes.

Following the static validation, we conducted the second major 
experiment to evaluate the system's performance in reconstructing dy
namic smoke plumes, as shown in Fig. 5. For this test, smoke plumes 
were generated using a high-density smoke generator, which utilizes a 
non-harmful smoke fluid composed of high-density fog liquid, food- 
grade glycerine, and propylene glycol. The generated smoke typically 
extended up to 40 m in length, with variability depending on the smoke 
machine's emission intensity. To enhance plume production and density, 
we employed two smoke machines—one producing a high volume of 
smoke that diminished and regenerated cyclically, while the other 
operated intermittently to optimize overall density. Together, these 
machines generated plumes with widths ranging from 1 to 10 m and a 
maximum height of 10 m.

Once the smoke generator and Wi-Fi network were set up, the drones 
were powered on and connected to the network. We initiate MAVROS 
nodes in each drone via Secure Socket Shell (SSH), with the manager 
drone serving as the ROS Master. From the base station, commands were 
executed to begin operations. The manager drone was launched manu
ally first to process images and relay data to the base station. Upon 
detecting smoke, the drone was switched to GUIDED mode to autono
mously position itself above the plume. Following this, worker drones 
were launched and set to GUIDED mode to autonomously adjust their 
positions and optimize coverage based on plume size.

In the experiment, the drones followed circular paths with an 
average radius of 21 m around the plume. Each drone completed a full 
circle in approximately 32 s, recording data at eight fps. Equipped with 
6000 mAh, 4S batteries, each drone could perform up to five complete 

circles before experiencing performance degradation, such as altitude 
drops due to reduced thrust voltage. At this proof-of-concept stage, the 
system provided 2 min and 20 s of stable flight time, allowing for five 
full data collection circuits. All data were recorded onboard for post- 
flight analysis.

3.2. 3D plume reconstruction

In this study, we applied NeRF to reconstruct the 3D dynamics of a 
smoke plume over 2 min and 20 s recording interval, during which each 
drone completed five revolutions around the plume. The reconstruction 
was based on images captured by four drones, each circling the plume at 
quarter-circle intervals. Each drone required 8 s to complete a quarter- 
circle, and because all drones operated synchronously, the combined 
data provided a full-circle dataset every 8 s. During each quarter-circle, a 
drone captured 65 images, resulting in a total of 260 images per full 
revolution. These images were then processed to reconstruct the plume 
in 20 distinct time segments, with each segment covering approximately 
8 s of plume dynamics.

To enhance temporal resolution and capture smoother plume dy
namics, we introduced overlaps of 25 %, 50 %, and 75 % between time 
segments, generating three additional reconstructions between each 
pair of segments. This approach resulted in a total of 77 reconstructed 
time segments, providing a finer temporal resolution of 1.75 s. This 
adjustment enabled a more detailed and continuous observation of 
plume behavior over time.

The 3D reconstruction was performed using a high-performance 
computing system equipped with a 13th Gen Intel Core i7-13700K 
CPU, 64 GB of RAM, and an NVIDIA RTX 5000 Ada GPU with 32 GB 
of memory. The computational time for each 8-s segment was approxi
mately 10 min. The process for reconstructing and saving filtered point 
clouds from segregated data has been fully automated, ensuring effi
ciency and consistency in data handling.

As shown in Fig. 6, the reconstructed models capture significant 
changes in plume dynamics over the recording period. Snapshots reveal 
the plume's variations in volume, direction, and shape. Early in the 
sampling period, the plume exhibits an average volume and elevation, 
while later stages show greater dispersion, distinct directional de
viations, and reduced density. Key stages include initial growth and 
ascent, lateral dispersion under wind influence, and eventual dissipation 
with diminished volume and height. The reconstructed models reveal 
critical changes in the plume's evolution over time, showcasing its 
growth, directional shifts, and eventual dissipation. These dynamic re
constructions lay the groundwork for quantitative analysis of plume 

Fig. 4. 3D Reconstruction of truck to validate accuracy (a) Field setup and (b) 
the corresponding 3D reconstructed point cloud of a 2011 Ford F-350 pickup 
truck, generated using our multi-view drone swarm imaging system to evaluate 
its 3D reconstruction accuracy.

Fig. 5. Field deployment setup for data collection, featuring a manager drone 
positioned above the plume for centralized control and four worker drones 
encircling the plume to capture multi-angle images for 3D reconstruction.
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characteristics, discussed in the following section.

3.3. Quantitative characterization of plume dynamics

This section highlights the capability of our drone swarm-based 3D 
reconstruction system to quantitatively analyze essential plume pa
rameters for controlled burns. From the reconstructed 3D models, we 
extracted critical metrics: total plume volume Vs, angle of deviation 
(AOD) Δθs, and average plume height Hs. Researchers modeling plumes 
have shown significant interest in studying changes in elevation and 
volume to better understand plume lifecycles (Cao et al., 2021; Razn
jevic, 2023). AOD has been particularly critical in the development of 
tools like QUIC-Fire, as it captures the influence of wind on particle 
transport and fire behavior (Robinson et al., 2023). Guided by these 
findings, we incorporated the extraction of these parameters into our 3D 
reconstruction models to enhance the analysis of smoke dynamics. These 
metrics provide valuable insights into plume behavior, including 
growth, transport direction, and lofting, which are crucial for applica
tions such as prescribed burn management and forest fire research.

To calculate these critical parameters of plume dynamics, specific 
methodologies were applied to the reconstructed 3D data, as illustrated 
in Fig. 7. The Vs was estimated using the Convex Hull approach, which 
encloses the plume's data points within the smallest convex shape, 
providing a practical, though approximate, measure of its spatial 
boundaries. This method allowed us to plot the plume's volume changes 
over time. The Δθs, reflecting the influence of wind on plume direction, 
was determined by projecting the plume onto a horizontal plane and 
calculating the average x and y coordinates. A vector connecting these 
coordinates to the plume's origin was used to compute the angle between 
this vector and a reference line parallel to the x-axis, representing the 
plume's average direction. Lastly, the Hs of the plume was analyzed by 
calculating the mean elevation of all points in the cloud and plotting it 
against time.

To ensure these computed parameters were scaled to real-world di
mensions, we utilized the known diameter of the drone trajectories. The 

NeRF model reconstructs data based on trajectory and pose estimations 
derived from COLMAP, which adheres to a unified coordinate system. 
By applying the known real-world diameter of the drone paths as a 
scaling factor, the reconstructed data could be converted into real-world 
measurement units, enabling physical interpretation of the plume vol
ume, AOD, and height.

Based on the calculation methods described above, each parameter 
(Vs, Δθs, Hs) was computed, and the results are presented in Fig. 8. The 
trends are analyzed as follows: 

1) Volume Change Analysis: As shown in Fig. 8a, the plume's volume 
exhibits a cyclic pattern over time, with distinct peaks and troughs 
corresponding to periods of smoke generation and diminishment. 
These fluctuations align with the operation of the smoke machines, 
where active emissions produce large, dense plumes, and intervals of 
reduced output result in smaller, more dispersed plumes. This cyclic 
behavior reflects the temporal dynamics of the plume, driven by the 
smoke machine's operational cycles. Validation using drone- 
captured images confirms this pattern, showcasing high-volume 
plumes during active phases and diminished plumes during quieter 
intervals. The alignment between these visual observations and the 
plotted data supports the accuracy of the extracted volume 
measurements.

2) AOD Analysis: The angle of deviation, as shown in Fig. 8b, captures 
directional shifts in the plume's trajectory under the influence of 
wind. During steady wind conditions, deviations are minimal, with a 
typical range of ±10◦. However, when the second smoke machine 
activates, the plume intensity increases, resulting in higher velocity 
and longer travel distances. In these cases, the wind's influence be
comes more pronounced, causing distinct peaks in the AOD plot. 
Visual validation highlights this behavior, with the plume initially 
remaining straight due to the machine's propulsion, then displaying a 
turning effect as dispersion increases. The visuals also include a 
reference line that clearly illustrates deviations from the plume's 
average direction, emphasizing the transition from machine-driven 
to wind-driven behavior.

3) Average Height Analysis: The trends in average height, depicted in 
Fig. 8c, closely follow the volume pattern in Fig. 8a for most of the 
recording period. During active smoke generation, the plume ach
ieves higher elevations, especially when wind direction aligns with 
the plume's flow. Conversely, reduced emissions result in lower 
plume heights, with the smoke dispersing rapidly at the far end due 
to wind effects. Notable exceptions occur when Hs remains relatively 
high despite low Vs, which is attributed to narrower plume widths 
maintaining lofting while reducing overall volume. Validation with 
drone-captured visuals further supports these observations, illus
trating the interplay between smoke generation, vertical expansion, 
and wind-driven dissipation.

Overall, the deployment of the swarm-based 3D reconstruction sys
tem effectively captured and characterized the dynamic nature of smoke 
plumes, highlighting critical behaviors such as cyclic volume variations, 
wind-driven directional changes, and the intricate interplay between 

Fig. 6. Snapshots of the 3D reconstructed plume showing variations in volume, direction, and shape over the 140 s sampling period. Major dotted lines indicate 
reference lines for the angle of deviation, with the green-highlighted angle between the major dotted line and the white solid line representing the angle of deviation. 
Minor dotted lines serve as reference lines for average height, while the vertical red line highlights the average height.

Fig. 7. Quantitative analysis of reconstructed plume dynamics: (a) Volume 
trends over time, showing cyclic behavior, (b) Side view (x-z plane) illustrating 
variations in average plume height, and (c) Top view (x-y plane) depicting 
angle of deviation and directional changes.
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smoke generation and lofting. Specifically, AOD measurements offered 
insights into how quickly plumes bend under various atmospheric con
ditions, and time-resolved 3D reconstructions of plume lofting revealed 
how far and how quickly smoke can rise under influences like wind 
shear, terrain, and the smoke source's output rate (Achtemeier et al., 
2012). These set of information are especially useful for validating 
simulation tools such as QUIC-Fire and FIRETEC to ensure the simulated 
behavior is matching with the actual variations in terrain changes and 
wind parameters.

3.4. Conclusion and discussion

This study presented a novel drone swarm system for 3D recon
struction of dynamic smoke plumes, combining multi-view imaging with 
NeRF to achieve high-resolution temporal and spatial plume charac
terization. The system comprises one manager drone and four worker 
drones working in a coordinated fashion, with each drone equipped with 
high-resolution cameras, RTK-enabled GPS for precise positioning, and 
onboard processing units. Field deployment was conducted to validate 
both the model's accuracy and the effectiveness of the 3D reconstruction 
process. To assess reconstruction precision, the system was first tested 
against a static reference object before applying it to dynamic plume 
reconstruction. The validation confirmed an average reconstruction 
error of approximately 1.18 %, demonstrating the system's ability to 
accurately model 3D structures, ensuring confidence in its application 
for smoke plume analysis. Following this validation, the system was 
deployed in capturing dynamic plume characteristics such as cyclic 
volume variations, wind-driven directional shifts, and the interplay 
between smoke generation and lofting. The system reconstructed 77 
time segments over a 2 min and 20 s interval with a temporal resolution 
of 1.75 s, yielding detailed quantitative data on plume volume, angle of 
deviation, and average height. These results validate its precision in 
analyzing highly dynamic and complex plume dispersal patterns.

The multi-view drone swarm imaging system introduced in our study 
has significant implications for fire management and environmental 
monitoring. Specifically, by providing high-resolution, time-resolved 3D 
reconstructions, the system generates unique field data to enhance 
predictive models such as QUIC-Fire and FIRETEC for prescribed burns 
and wildfire control, addressing critical gaps in existing fire and smoke 
simulation tools (Gomez and Kennedy, 2018; Kochanski et al., 2018; 
Prichard et al., 2019; Gallagher et al., 2021; Blanco et al., 2024). In 
addition, the system enables real-time tracking of plume dispersion and 
air quality monitoring associated with emissions from natural disasters 
such as wildfires and volcanic eruptions, as well as from controlled 
burns and industrial processes (Butwin et al., 2019; Cao et al., 2021). 
This capability supports more effective risk assessment, regulatory 
compliance, and mitigation strategies for air pollution and fire hazards. 
Beyond its core functionality, the UAV platform offers the flexibility to 
integrate additional sensing modalities, such as LiDAR and acoustic 
sensors, further extending its capabilities for multi-modal environ
mental assessment. These enhancements allow the system to operate 
effectively in low-visibility conditions, such as dense smoke or nighttime 
monitoring, and broaden its applicability to complex atmospheric 
studies and disaster response scenarios. Furthermore, the system is 
designed to be highly cost-effective. With each drone costing approxi
mately $1000 USD, a five-drone swarm presents a significantly more 
affordable alternative to high-resolution LiDAR or multispectral imaging 
systems. Even with upgrades for extended flight operations, the overall 
cost remains substantially lower than traditional approaches, making 
this UAV swarm system a practical and scalable solution for both real- 
time hazard response and long-term environmental monitoring.

While this system has demonstrated strong performance, there re
mains ample opportunity to enhance its adaptability. In particular, its 
use of fixed circular flight paths can be expanded into waypoint-based or 
adaptive routes, improving responsiveness to complex or rapidly 
evolving plume shapes (Tankasala et al., 2022). Such flexible 

Fig. 8. Temporal trends in plume characteristics derived from 3D reconstructions, showing the variation in (a) volume (Vs), (b) angle of deviation (Δθs), and (c) 
average height (Hs), validated with visual data from individual drone recordings.
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trajectories would not only refine spatial and temporal cover
age—especially in dense regions of a plume—but also help the drones 
stay aligned with sudden shifts caused by variable winds, all while 
preserving accurate scaling and georeferencing.

A second avenue for improvement involves camera-pose estimation. 
Although COLMAP delivers robust results, it can be computationally 
intensive. Moving toward onboard sensor–based pose estimation would 
expedite data processing and move the system closer to real-time 
operation. Similarly, while NeRF-based reconstruction offers high fi
delity, it often lacks the speed needed for immediate feedback. Imple
menting faster variants (e.g., Dynamic NeRF or Instant NGP) could 
significantly improve efficiency (Pumarola et al., 2021; Müller et al., 
2022). Moreover, the system's reliance on visual data alone poses a 
challenge in low-contrast smoke conditions, where the scarcity of 
identifiable features can hinder reconstruction (Mildenhall et al., 2021). 
Future work will thus explore adaptive exposure control and optimized 
neural architectures to extend applicability across various plume 
scenarios.

Looking ahead, enhancing autonomy, computational efficiency, and 
near-real-time 3D analysis will further expand the system's capabilities 
beyond the applications demonstrated in this study. By improving 
adaptive navigation, optimizing reconstruction speed, and refining vi
sual processing under challenging conditions, the UAV swarm can 
become a more versatile tool for large-scale fire management and 
environmental monitoring. These advancements will enable more 
effective tracking of emissions from wildfires, volcanic eruptions, pre
scribed burns, and industrial processes, providing high-resolution air- 
quality data and actionable insights for hazard response and mitigation.
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