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ABSTRACT

This study presents an advanced multi-view drone swarm imaging system for the three-dimensional character-
ization of smoke plume dispersion dynamics. The system comprises a manager drone and four worker drones,
each equipped with high-resolution cameras and precise GPS modules. The manager drone uses image feedback
to autonomously detect and position itself above the plume, then commands the worker drones to orbit the area
in a synchronized circular flight pattern, capturing multi-angle images. The camera poses of these images are first
estimated, then the images are grouped in batches and processed using Neural Radiance Fields (NeRF) to
generate high-resolution 3D reconstructions of plume dynamics over time. Field tests demonstrated the system's
ability to capture critical plume characteristics including volume dynamics, wind-driven directional shifts, and
lofting behavior at a temporal resolution of about 1 s. The 3D reconstructions generated by this system provide
unique field data for enhancing the predictive models of smoke plume dispersion and fire spread. Broadly, the
drone swarm system offer a versatile platform for high resolution measurements of pollutant emissions and
transport in wildfires, volcanic eruptions, prescribed burns, and industrial processes, ultimately supporting more
effective fire control decisions and mitigating wildfire risks.

1. Introduction

Understanding the transport dynamics of atmospheric particles, such
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as dust, snow, smoke, and sand, is essential due to its significant impact
on air quality, climate, and ecological systems across various environ-
mental processes, including wildfires, sandstorms, snowstorms, and

Received 17 January 2025; Received in revised form 29 March 2025; Accepted 16 April 2025

Available online 29 April 2025

0048-9697/© 2025 Elsevier B.V. All rights are reserved, including those for text and data mining, Al training, and similar technologies.


https://orcid.org/0000-0001-7860-2181
https://orcid.org/0000-0001-7860-2181
mailto:jhong@umn.edu
www.sciencedirect.com/science/journal/00489697
https://www.elsevier.com/locate/scitotenv
https://doi.org/10.1016/j.scitotenv.2025.179466
https://doi.org/10.1016/j.scitotenv.2025.179466
http://crossmark.crossref.org/dialog/?doi=10.1016/j.scitotenv.2025.179466&domain=pdf

N. Krishnakumar et al.

volcanic eruptions (Mott et al., 2010; Kumar et al., 2011; Kok et al.,
2012; Butwin et al., 2019; Evangeliou et al., 2020; Jaffe et al., 2020;
Dentoni et al., 2022). This is important for prescribed burns, which are
controlled fires used in forest management to enhance ecological health
and reduce the risk of wildfires. However, the occurrence of 43 wildfires
out of 50,000 prescribed burns in the U.S. between 2012 and 2021 un-
derscores the need for effective smoke management to ensure public
safety and minimize adverse effects on air quality (Associated Press,
2024). The challenges in managing these burns highlight a critical gap in
our understanding of the dispersion dynamics of particles during these
events, which can lead to severe and potentially devastating outcomes
(Kalabokidis, 2000; Pereira et al., 2021). Therefore, there is a pressing
need for comprehensive research to better predict, manage, and mitigate
the risks associated with prescribed burns.

To address these challenges, researchers are developing various
simulation tools, such as QUIC-Fire and FIRETEC (Linn et al., 2002,
2020), that aim to model fire and smoke particle behavior. These tools
utilize complex inputs, including 3D maps of fuel sources, vegetation
structure, topography, moisture content, and wind predictions (Rowell
et al., 2020; Robinson et al., 2023). Despite these advancements, sig-
nificant limitations remain. There is a lack of validation that compares
the predicted movement of particles with actual plume dispersion, a
shortage of dynamic 3D ground truth data on particle dispersion, and
difficulties in making accurate predictions in areas where 3D fuel data is
unavailable (Linn et al., 2020; Brambilla, 2023). These limitations un-
derscore the ongoing need for field data to validate and improve these
models, ensuring more accurate predictions and better management.

However, current field tools for data collection have significant
limitations. Remote sensing and Lidar technologies, while valuable, lack
the spatial and temporal resolution required to capture the highly dy-
namic flows of smoke plumes during prescribed burns (Prichard et al.,
2019; Sokolik et al., 2019). Moreover, these tools are constrained by
their limited mobility, making it difficult to effectively monitor events
across varied terrains or in remote and inaccessible areas. The inability
to collect such detailed data hinders the development of more accurate
and reliable models for managing prescribed burns and predicting
smoke dispersion.

To address these challenges, this study aims to develop an autono-
mous drone swarm equipped with cameras to capture multi-angle im-
ages of smoke plumes. This approach will enable the 3D reconstruction
of plume dispersal dynamics, allowing for detailed analysis of flow
patterns. By deploying a fleet of drones for multi-view imaging, we
intend to create a comprehensive 3D ground truth model of specific burn
events. This model will provide researchers with critical data for vali-
dating simulation predictions and offer essential guidance for hazard
response and management. While there has been no prior work on 3D
reconstruction of particle transport using multi-view images from
drones, significant advancements have been made in 3D reconstruction
techniques with static objects (Schenk, 2005; Goesele et al., 2006;
Schonberger and Frahm, 2016; Hackl et al., 2018; Mildenhall et al.,
2021; Miiller et al., 2022). Prominent methods include Structure from
Motion (SfM) and Multi-view Stereo (MVS), which reconstructs 3D
models from 2D image sequences through feature tracking and photo-
grammetry, allowing for precise estimation of camera poses and 3D
structures (Goesele et al., 2006; Schonberger and Frahm, 2016). Neural
Radiance Fields (NeRF) have further pushed the boundaries of scene
reconstruction by generating photorealistic views through the optimi-
zation of a continuous 5D neural radiance field from sparse input images
(Mildenhall et al., 2021; Miiller et al., 2022). Building on these ad-
vancements, D-NeRF extends this capability to dynamic scenes,
capturing non-rigid motion and deformation over time (Pumarola et al.,
2021). Additionally, RoDynRF enables dynamic view synthesis from
monocular videos, even without known camera poses (Liu et al., 2023).
However, reconstructing atmospheric dispersion plumes presents
unique challenges. SfM struggles with the featureless nature of plumes
(Schonberger and Frahm, 2016), NeRF is primarily designed for static

Science of the Total Environment 980 (2025) 179466

scenes (Mildenhall et al., 2021; Miiller et al., 2022), D-NeRF may not
perform well with unfamiliar or highly variable scenes (Pumarola et al.,
2021), and RoDynRF faces difficulties with the complex dynamics of
plumes and demands extensive training times (Liu et al., 2023). These
limitations can be effectively addressed using our multi-view drone
swarm approach. By deploying multiple drones, we can adaptively
capture images of the plume at various scales and positions, tailored to
the plume's size and dynamic evolution. With this adaptive imaging
strategy, we can fully harness the efficiency (compared to D-NeRF) and
accuracy of the NeRF pipeline, generating highly detailed 3D re-
constructions for each temporal snapshot. This approach allows us to
capture multiple reconstructions over time, facilitating the study of the
plume's dispersion change.

The structure of this paper is as follows: Section 2 details the pro-
posed drone swarm platform for 3D plume characterization, including
both the drone hardware and 3D reconstruction method. Section 3
demonstrates the efficiency of our system through field deployment of
our multi-view drone swarm and the follow-up 3D plume reconstruction
and plume characterization. Finally, we summarize our findings and
discuss their implications and limitations.

2. Methodology
2.1. Overview

As illustrated in Fig. 1, our drone swarm system for multi-view im-
aging comprises two main components: the data acquisition module and
the data processing module. The data acquisition module includes a
manager drone and four worker drones, which work in a coordinated
manner to capture multi-view images of the smoke plume and its evo-
lution over time. These drones are equipped with synchronized imaging
systems that allow them to document the plume at different time steps
from various angles.

In the data processing module, the captured images from the worker
drones are compiled and segregated by segmented time intervals. The
images are then fed into the NeRF network, and the output point cloud
from this is further processed to remove the background and segment
the plume in 3D. This 3D model is used to extract important charac-
teristics of the plume, such as its volume, angle of deviation, and other
dynamics of plume dispersion in the atmosphere. The process is repeated
for each time segment to provide a comprehensive spatial and temporal

Manager Drone

Worker Drone

Fig. 1. Illustration of the drone swarm system that uses multi-view imaging for
3D smoke plume characterization.
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characterization of the plume dynamics.

2.2. Data acquisition module

The drone swarm system consists of a manager drone and four
worker drones, built on durable Holybro S500 V2 quadcopter frames.
Each drone is equipped with a 12 Megapixel (MP) ArduCam USB-based
camera mounted on a 3-axis gimbal for smoke detection, image feedback
control, and dataset collection to facilitate 3D reconstruction, as shown
in Fig. 2. The drones are powered by 6000 mAh lithium-polymer bat-
teries and controlled using Holybro Pixhawk 6C flight controllers
running ArduPilot. Commands can be transmitted through a 2.4 GHz
FrSky RC controller, a 915 MHz telemetry radio via MAVLink, or directly
over USB using the NVIDIA Jetson platform. These components are
similar to those used in (Bristow et al., 2023).

The manager drone is equipped with an NVIDIA Jetson Orin Nano,
while the worker drones use the NVIDIA Jetson Nano, with the manager
drone having a more powerful computer to handle the computational
demands of smoke detection and navigation control for both itself and
the worker drones. All drones run MAVROS, which facilitates commu-
nication between the onboard computer and the flight controller by
creating ROS topics. These topics consist of subscribers that receive
sensor data such as GPS location, altitude, orientation, velocity, time-
stamps, and drone state, while publishers send control commands to the
flight controller for autonomous operations. The manager drone oper-
ates on ROS Noetic, while the worker drones run ROS Melodic, ensuring
compatibility with their respective hardware. MAVROS also enables
WiFi-based broadcasting of all ROS topics, allowing each drone to access
real-time data from others, supporting inter-sensor communication and
drone-to-drone coordination for autonomous swarm operations.

To enable coordinated data collection, the drones are interconnected
via a robust outdoor Wi-Fi network with a speed of approximately 1775
Mbps, providing stable wireless coverage up to 200-300 m at the 5 GHz
band. Additionally, for high-precision positioning, we employ Real-
Time Kinematic (RTK) technology, which provides centimeter-level
accuracy by utilizing carrier phase measurements from GNSS signals,
achieved through triangulation between the RTK base station, GPS, and
satellites. The drones operate based on a swarm control algorithm,
depicted in Fig. 3, maintaining optimal spacing and coverage around the
plume to capture images from multiple perspectives.

1) Capturing and Undistorting Images: To ensure accurate 3D recon-
struction and image feedback control, camera calibration is per-
formed to determine the camera matrix and distortion coefficients,
which are then used to undistort images. In this setup, the manager
drone captures images at a resolution of 640 x 480 pixels and pro-
cesses (segmentation) at a rate of ten fps for realtime feedback, while
worker drones use a resolution of 1280 x 720 pixels for better image
reconstruction. The full-sensor size of the camera is not used due to

NVIDIA J etsi)n Orin Nano

»
Camera mounted
on 3-axis gimbal

Fig. 2. Drone hardware configuration showing the quadcopter with camera
mounted on a 3-axis gimbal and GPS with RTK (left), and the NVIDIA Jetson
Orin Nano (right).
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its low frame rate and the excessive computational load it would
impose on the Jetson Nano.
Detecting Smoke: The smoke plume detection is performed using a
YOLOvV8-Segmentation model (Jocher et al., 2023), specifically the
YOLO-Seg-N variant, which provides the lightest model weights to
maximize inference speed. A dataset of top-down smoke plume im-
ages is collected using a drone under varying background and
lighting conditions. The dataset is constructed by manually anno-
tating smoke regions, followed by a train-validation-test split of 66.7
%-16.7 %-16.7 %, ensuring no overlap between subsets. The model
undergoes 400 training epochs, allowing it to generalize effectively
to unseen smoke plume scenarios. Field testing demonstrates effec-
tive plume detection, enabling autonomous operations in real-world
environments.
Centering Manager Drone: The drone tracks and centers on the
plume's centroid obtained from plume segmentation in the previous
step by adjusting its position until the centroid is within a specified
threshold of the image center. It accomplishes this by publishing
velocity commands (cmd_vel) with twist values for the x and y axes
to the drone via MAVROS. These commands move the drone in the
direction of the centroid. The process continues until the centroid is
aligned with the image center, ensuring accurate tracking.

4) Adjusting Altitude of Manager Drone: The drone adjusts its altitude
based on the segmented smoke area, ensuring optimal positioning for
effective tracking. If the smoke area exceeds an upper threshold, the
drone ascends; conversely, if the smoke area falls below a lower
threshold, the drone descends. This process continues until the drone
reaches the optimal range, where the smoke area comprises 8 % to
12 % of the image. This threshold is chosen to ensure that most of the
smoke is captured within the frame, while still including a portion of
the background. Maintaining this balance helps in accurately posi-
tioning the drone for swarm operations, allowing the drones to sur-
round the smoke plume effectively and coordinate the mission.

5) Aligning Yaw of Manager Drone: To align the drone perpendicularly
to the flow of the dispersion plume, the covariance of the segmented
mask is calculated, resulting in eigenvectors that indicate the plume's
flow direction relative to the image. The drone is then yawed
perpendicular to the largest eigenvector. Using the drone's current
heading, yaw adjustment is calculated and executed to achieve
desired orientation.

6) Stabilizing Manager Drone: The three processes are re-initiated
repeatedly until all parameters fall within their thresholds. Once
these conditions are met, the drone stabilizes and maintains its po-
sition, ensuring it is correctly aligned and in the optimal location.

7) Computing Worker Drone Locations: Using the drone's GPS co-
ordinates, altitude, and camera focal length, we calculate the real-
world dimensions of the captured image. By applying the haver-
sine formula, we calculate the latitude and longitude of the image's
corners, based on the known latitude and longitude of the image
center. Using this information, we compute an affine transformation
matrix with the least error, that maps each pixel to its corresponding
GPS coordinates.
Positioning Worker Drones: To precisely localize and position the
drones around the plume from four sides, the target locations for
each drone are calculated based on data from the manager drone.
The manager drone captures a 640 x 480-pixel image, and the two
vertical extreme points of this image are identified to maximize
coverage of the smoke plume while collecting data. The distance
from the center to these vertical extremes is used to determine cor-
responding horizontal positions, ensuring that all worker drones are
equidistant from the center. The positions will adjust with each run
based on the size of the plume, as the altitude of the manager drone
changes accordingly to accommodate plume size variations. Once
these positions are computed, the drones are dispersed to their
designated locations at the desired altitude, yawing to face the
manager drone for optimal data collection.
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Fig. 3. Flowcharts detailing the steps involved in (a) stabilizing the manager drone, (b) collecting data with the worker drone swarm, and (c) processing captured

data for 3D plume reconstruction and characterization.

9) Collecting Data for 3D Reconstruction: Worker drones maintain their
positions until they reach their designated locations as assigned by
the manager drone. Once in position, each worker drone verifies that
its current GPS location is within a safe offset of 0.5 m from the
assigned coordinates. Upon confirmation, the drone transmits a
readiness signal to the manager. When all drones have reported
readiness, the manager drone issues a simultaneous command for the
worker drones to establish the desired circular formation, with the
radius determined by the distance between the manager and the
worker drones. This configuration ensures that all drones remain
equidistant from the manager drone and effectively encompass the
targeted plume, optimizing spatial resolution for 3D plume recon-
struction. Once the formation is set, the drones transition to circling
mode, maintaining their designated orbit while capturing plume
images. This synchronized movement ensures precise data acquisi-
tion and consistent image quality across the swarm, thereby
enhancing the accuracy and reliability of the 3D reconstruction
process.

2.3. Data processing module

The data processing module consists of several stages designed to
efficiently handle the data captured by the drones, as depicted in the
flow chart in Fig. 3c.

1) Preprocessing Data: Each drone captures data corresponding to one-
quarter of a circular region. When combined, data from all four
drones form a complete circle around the plume, representing a
single time segment. As the drones continue capturing data, addi-
tional circles are generated, each corresponding to a new time
segment. To enhance temporal resolution, data overlaps are intro-
duced between two consecutive time segments, effectively creating
additional intermediate time segments

2) Estimating Camera Poses: Distinctive images captured by each drone
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are labeled and the aggregation of this is fed into COLMAP, which
employs SIFT feature extraction, exhaustive feature matching,
structure-from-motion, and bundle adjustment. This process esti-
mates camera poses for all drones relative to one another, ensuring
that independent reconstructions are aligned within a unified coor-
dinate system.

Reconstructing 3D Plumes with NeRF: For each time segment, the
required camera poses are extracted from the total poses computed
by COLMAP. Using the COLMAP camera trajectory and corre-
sponding image data, a NeRF model is trained to reconstruct the 3D
structure of the plume (Mildenhall et al., 2021). During this process,
2D image data is projected into radiance fields, which encode spatial
density and view-dependent color variations for each point in the
scene. NeRF learns a continuous volumetric representation of the
plume by optimizing a fully connected neural network, mapping
input camera rays to density and color values. This enables NeRF to
synthesize novel views and interpolate missing visual data between
captured angles, producing a more complete and smooth 3D repre-
sentation of the smoke plume. To refine the output, the resulting 3D
data outside the defined enclosure region is cropped, ensuring that
only the relevant smoke volume is retained. The final reconstructed
plume structure is then exported as point clouds

Post-Processing Data: Background removal is performed using a
combination of YOLO-v8 and a Naive Bayes Gaussian model. YOLO-
v8 is used to detect and segment smoke plumes in three randomly
selected images from the input data. These segmented masks, along
with the background RGB data, are then used to train a Naive Bayes
Gaussian classifier. The classifier is employed to segment the smoke
plumes from the point clouds, effectively removing the background.

5) Characterizing Plume Dynamics: In the final step, the processed 3D

model is analyzed to extract crucial plume characteristics, such as
spatial extent and expansion angle. These features are essential for
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understanding plume dynamics and supporting the development of
predictive models for behavior in various atmospheric conditions.

3. System demonstration
3.1. Field deployment

We conducted field testing in two phases. The first phase focused on
assessing our drone system's 3D reconstruction accuracy using a static
reference object—specifically a 2011 Ford F-350 pickup truck—while
the second phase demonstrated its ability to capture the 3D dispersion of
a smoke plume. Because smoke is inherently dynamic, validating
reconstruction fidelity under real plume conditions is challenging. Thus,
in the first phase as shown in Fig. 4, we deployed the drones at an
altitude of approximately 10 m in a circular trajectory around the truck
(20 m in diameter), capturing images from multiple perspectives. After
generating a point cloud from these images, we scaled it and measured
reconstruction accuracy against eight known reference points on the
truck. The results showed an average error of roughly 1.18 % with a
standard deviation near 0.98 %, confirming the system's capacity to
accurately capture 3D structures and establishing a foundation for the
second phase's focus on dynamic smoke plumes.

Following the static validation, we conducted the second major
experiment to evaluate the system's performance in reconstructing dy-
namic smoke plumes, as shown in Fig. 5. For this test, smoke plumes
were generated using a high-density smoke generator, which utilizes a
non-harmful smoke fluid composed of high-density fog liquid, food-
grade glycerine, and propylene glycol. The generated smoke typically
extended up to 40 m in length, with variability depending on the smoke
machine's emission intensity. To enhance plume production and density,
we employed two smoke machines—one producing a high volume of
smoke that diminished and regenerated cyclically, while the other
operated intermittently to optimize overall density. Together, these
machines generated plumes with widths ranging from 1 to 10 m and a
maximum height of 10 m.

Once the smoke generator and Wi-Fi network were set up, the drones
were powered on and connected to the network. We initiate MAVROS
nodes in each drone via Secure Socket Shell (SSH), with the manager
drone serving as the ROS Master. From the base station, commands were
executed to begin operations. The manager drone was launched manu-
ally first to process images and relay data to the base station. Upon
detecting smoke, the drone was switched to GUIDED mode to autono-
mously position itself above the plume. Following this, worker drones
were launched and set to GUIDED mode to autonomously adjust their
positions and optimize coverage based on plume size.

In the experiment, the drones followed circular paths with an
average radius of 21 m around the plume. Each drone completed a full
circle in approximately 32 s, recording data at eight fps. Equipped with
6000 mAh, 4S batteries, each drone could perform up to five complete

(a) (b)

[Manager drone

=

o}
[ Worker drone

T(my 2

e Reference points

Fig. 4. 3D Reconstruction of truck to validate accuracy (a) Field setup and (b)
the corresponding 3D reconstructed point cloud of a 2011 Ford F-350 pickup
truck, generated using our multi-view drone swarm imaging system to evaluate
its 3D reconstruction accuracy.
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Fig. 5. Field deployment setup for data collection, featuring a manager drone
positioned above the plume for centralized control and four worker drones
encircling the plume to capture multi-angle images for 3D reconstruction.

circles before experiencing performance degradation, such as altitude
drops due to reduced thrust voltage. At this proof-of-concept stage, the
system provided 2 min and 20 s of stable flight time, allowing for five
full data collection circuits. All data were recorded onboard for post-
flight analysis.

3.2. 3D plume reconstruction

In this study, we applied NeRF to reconstruct the 3D dynamics of a
smoke plume over 2 min and 20 s recording interval, during which each
drone completed five revolutions around the plume. The reconstruction
was based on images captured by four drones, each circling the plume at
quarter-circle intervals. Each drone required 8 s to complete a quarter-
circle, and because all drones operated synchronously, the combined
data provided a full-circle dataset every 8 s. During each quarter-circle, a
drone captured 65 images, resulting in a total of 260 images per full
revolution. These images were then processed to reconstruct the plume
in 20 distinct time segments, with each segment covering approximately
8 s of plume dynamics.

To enhance temporal resolution and capture smoother plume dy-
namics, we introduced overlaps of 25 %, 50 %, and 75 % between time
segments, generating three additional reconstructions between each
pair of segments. This approach resulted in a total of 77 reconstructed
time segments, providing a finer temporal resolution of 1.75 s. This
adjustment enabled a more detailed and continuous observation of
plume behavior over time.

The 3D reconstruction was performed using a high-performance
computing system equipped with a 13th Gen Intel Core i7-13700K
CPU, 64 GB of RAM, and an NVIDIA RTX 5000 Ada GPU with 32 GB
of memory. The computational time for each 8-s segment was approxi-
mately 10 min. The process for reconstructing and saving filtered point
clouds from segregated data has been fully automated, ensuring effi-
ciency and consistency in data handling.

As shown in Fig. 6, the reconstructed models capture significant
changes in plume dynamics over the recording period. Snapshots reveal
the plume's variations in volume, direction, and shape. Early in the
sampling period, the plume exhibits an average volume and elevation,
while later stages show greater dispersion, distinct directional de-
viations, and reduced density. Key stages include initial growth and
ascent, lateral dispersion under wind influence, and eventual dissipation
with diminished volume and height. The reconstructed models reveal
critical changes in the plume's evolution over time, showcasing its
growth, directional shifts, and eventual dissipation. These dynamic re-
constructions lay the groundwork for quantitative analysis of plume
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94.5 101.5 106.8 136.5 140

Fig. 6. Snapshots of the 3D reconstructed plume showing variations in volume, direction, and shape over the 140 s sampling period. Major dotted lines indicate
reference lines for the angle of deviation, with the green-highlighted angle between the major dotted line and the white solid line representing the angle of deviation.
Minor dotted lines serve as reference lines for average height, while the vertical red line highlights the average height.

characteristics, discussed in the following section.

3.3. Quantitative characterization of plume dynamics

This section highlights the capability of our drone swarm-based 3D
reconstruction system to quantitatively analyze essential plume pa-
rameters for controlled burns. From the reconstructed 3D models, we
extracted critical metrics: total plume volume V;, angle of deviation
(AOD) A, and average plume height H;. Researchers modeling plumes
have shown significant interest in studying changes in elevation and
volume to better understand plume lifecycles (Cao et al., 2021; Razn-
jevic, 2023). AOD has been particularly critical in the development of
tools like QUIC-Fire, as it captures the influence of wind on particle
transport and fire behavior (Robinson et al., 2023). Guided by these
findings, we incorporated the extraction of these parameters into our 3D
reconstruction models to enhance the analysis of smoke dynamics. These
metrics provide valuable insights into plume behavior, including
growth, transport direction, and lofting, which are crucial for applica-
tions such as prescribed burn management and forest fire research.

To calculate these critical parameters of plume dynamics, specific
methodologies were applied to the reconstructed 3D data, as illustrated
in Fig. 7. The V; was estimated using the Convex Hull approach, which
encloses the plume's data points within the smallest convex shape,
providing a practical, though approximate, measure of its spatial
boundaries. This method allowed us to plot the plume's volume changes
over time. The Ad;, reflecting the influence of wind on plume direction,
was determined by projecting the plume onto a horizontal plane and
calculating the average x and y coordinates. A vector connecting these
coordinates to the plume's origin was used to compute the angle between
this vector and a reference line parallel to the x-axis, representing the
plume's average direction. Lastly, the H; of the plume was analyzed by
calculating the mean elevation of all points in the cloud and plotting it
against time.

To ensure these computed parameters were scaled to real-world di-
mensions, we utilized the known diameter of the drone trajectories. The

(a) (b)
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Fig. 7. Quantitative analysis of reconstructed plume dynamics: (a) Volume
trends over time, showing cyclic behavior, (b) Side view (x-z plane) illustrating
variations in average plume height, and (c) Top view (x-y plane) depicting
angle of deviation and directional changes.

NeRF model reconstructs data based on trajectory and pose estimations
derived from COLMAP, which adheres to a unified coordinate system.
By applying the known real-world diameter of the drone paths as a
scaling factor, the reconstructed data could be converted into real-world
measurement units, enabling physical interpretation of the plume vol-
ume, AOD, and height.

Based on the calculation methods described above, each parameter
(Vs, Ads, H) was computed, and the results are presented in Fig. 8. The
trends are analyzed as follows:

1) Volume Change Analysis: As shown in Fig. 8a, the plume's volume
exhibits a cyclic pattern over time, with distinct peaks and troughs
corresponding to periods of smoke generation and diminishment.
These fluctuations align with the operation of the smoke machines,
where active emissions produce large, dense plumes, and intervals of
reduced output result in smaller, more dispersed plumes. This cyclic
behavior reflects the temporal dynamics of the plume, driven by the
smoke machine's operational cycles. Validation using drone-
captured images confirms this pattern, showcasing high-volume
plumes during active phases and diminished plumes during quieter
intervals. The alignment between these visual observations and the
plotted data supports the accuracy of the extracted volume
measurements.

2) AOD Analysis: The angle of deviation, as shown in Fig. 8b, captures
directional shifts in the plume's trajectory under the influence of
wind. During steady wind conditions, deviations are minimal, with a
typical range of +10°. However, when the second smoke machine
activates, the plume intensity increases, resulting in higher velocity
and longer travel distances. In these cases, the wind's influence be-
comes more pronounced, causing distinct peaks in the AOD plot.
Visual validation highlights this behavior, with the plume initially
remaining straight due to the machine's propulsion, then displaying a
turning effect as dispersion increases. The visuals also include a
reference line that clearly illustrates deviations from the plume's
average direction, emphasizing the transition from machine-driven
to wind-driven behavior.

3) Average Height Analysis: The trends in average height, depicted in
Fig. 8c, closely follow the volume pattern in Fig. 8a for most of the
recording period. During active smoke generation, the plume ach-
ieves higher elevations, especially when wind direction aligns with
the plume's flow. Conversely, reduced emissions result in lower
plume heights, with the smoke dispersing rapidly at the far end due
to wind effects. Notable exceptions occur when H; remains relatively
high despite low Vi, which is attributed to narrower plume widths
maintaining lofting while reducing overall volume. Validation with
drone-captured visuals further supports these observations, illus-
trating the interplay between smoke generation, vertical expansion,
and wind-driven dissipation.

Overall, the deployment of the swarm-based 3D reconstruction sys-
tem effectively captured and characterized the dynamic nature of smoke
plumes, highlighting critical behaviors such as cyclic volume variations,
wind-driven directional changes, and the intricate interplay between
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Fig. 8. Temporal trends in plume characteristics derived from 3D reconstructions, showing the variation in (a) volume (V;), (b) angle of deviation (Aé,), and (c)

average height (H;), validated with visual data from individual drone recordings.

smoke generation and lofting. Specifically, AOD measurements offered
insights into how quickly plumes bend under various atmospheric con-
ditions, and time-resolved 3D reconstructions of plume lofting revealed
how far and how quickly smoke can rise under influences like wind
shear, terrain, and the smoke source's output rate (Achtemeier et al.,
2012). These set of information are especially useful for validating
simulation tools such as QUIC-Fire and FIRETEC to ensure the simulated
behavior is matching with the actual variations in terrain changes and
wind parameters.

3.4. Conclusion and discussion

This study presented a novel drone swarm system for 3D recon-
struction of dynamic smoke plumes, combining multi-view imaging with
NeRF to achieve high-resolution temporal and spatial plume charac-
terization. The system comprises one manager drone and four worker
drones working in a coordinated fashion, with each drone equipped with
high-resolution cameras, RTK-enabled GPS for precise positioning, and
onboard processing units. Field deployment was conducted to validate
both the model's accuracy and the effectiveness of the 3D reconstruction
process. To assess reconstruction precision, the system was first tested
against a static reference object before applying it to dynamic plume
reconstruction. The validation confirmed an average reconstruction
error of approximately 1.18 %, demonstrating the system's ability to
accurately model 3D structures, ensuring confidence in its application
for smoke plume analysis. Following this validation, the system was
deployed in capturing dynamic plume characteristics such as cyclic
volume variations, wind-driven directional shifts, and the interplay
between smoke generation and lofting. The system reconstructed 77
time segments over a 2 min and 20 s interval with a temporal resolution
of 1.75 s, yielding detailed quantitative data on plume volume, angle of
deviation, and average height. These results validate its precision in
analyzing highly dynamic and complex plume dispersal patterns.

The multi-view drone swarm imaging system introduced in our study
has significant implications for fire management and environmental
monitoring. Specifically, by providing high-resolution, time-resolved 3D
reconstructions, the system generates unique field data to enhance
predictive models such as QUIC-Fire and FIRETEC for prescribed burns
and wildfire control, addressing critical gaps in existing fire and smoke
simulation tools (Gomez and Kennedy, 2018; Kochanski et al., 2018;
Prichard et al., 2019; Gallagher et al., 2021; Blanco et al., 2024). In
addition, the system enables real-time tracking of plume dispersion and
air quality monitoring associated with emissions from natural disasters
such as wildfires and volcanic eruptions, as well as from controlled
burns and industrial processes (Butwin et al., 2019; Cao et al., 2021).
This capability supports more effective risk assessment, regulatory
compliance, and mitigation strategies for air pollution and fire hazards.
Beyond its core functionality, the UAV platform offers the flexibility to
integrate additional sensing modalities, such as LiDAR and acoustic
sensors, further extending its capabilities for multi-modal environ-
mental assessment. These enhancements allow the system to operate
effectively in low-visibility conditions, such as dense smoke or nighttime
monitoring, and broaden its applicability to complex atmospheric
studies and disaster response scenarios. Furthermore, the system is
designed to be highly cost-effective. With each drone costing approxi-
mately $1000 USD, a five-drone swarm presents a significantly more
affordable alternative to high-resolution LiDAR or multispectral imaging
systems. Even with upgrades for extended flight operations, the overall
cost remains substantially lower than traditional approaches, making
this UAV swarm system a practical and scalable solution for both real-
time hazard response and long-term environmental monitoring.

While this system has demonstrated strong performance, there re-
mains ample opportunity to enhance its adaptability. In particular, its
use of fixed circular flight paths can be expanded into waypoint-based or
adaptive routes, improving responsiveness to complex or rapidly
evolving plume shapes (Tankasala et al., 2022). Such flexible



N. Krishnakumar et al.

trajectories would not only refine spatial and temporal cover-
age—especially in dense regions of a plume—but also help the drones
stay aligned with sudden shifts caused by variable winds, all while
preserving accurate scaling and georeferencing.

A second avenue for improvement involves camera-pose estimation.
Although COLMAP delivers robust results, it can be computationally
intensive. Moving toward onboard sensor-based pose estimation would
expedite data processing and move the system closer to real-time
operation. Similarly, while NeRF-based reconstruction offers high fi-
delity, it often lacks the speed needed for immediate feedback. Imple-
menting faster variants (e.g., Dynamic NeRF or Instant NGP) could
significantly improve efficiency (Pumarola et al., 2021; Miiller et al.,
2022). Moreover, the system's reliance on visual data alone poses a
challenge in low-contrast smoke conditions, where the scarcity of
identifiable features can hinder reconstruction (Mildenhall et al., 2021).
Future work will thus explore adaptive exposure control and optimized
neural architectures to extend applicability across various plume
scenarios.

Looking ahead, enhancing autonomy, computational efficiency, and
near-real-time 3D analysis will further expand the system's capabilities
beyond the applications demonstrated in this study. By improving
adaptive navigation, optimizing reconstruction speed, and refining vi-
sual processing under challenging conditions, the UAV swarm can
become a more versatile tool for large-scale fire management and
environmental monitoring. These advancements will enable more
effective tracking of emissions from wildfires, volcanic eruptions, pre-
scribed burns, and industrial processes, providing high-resolution air-
quality data and actionable insights for hazard response and mitigation.
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