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A B S T R A C T

Statistical inference for stochastic processes based on high frequency observations has been an
active research area for more than two decades. One of the most well-known and widely studied
problems has been the estimation of the quadratic variation of the continuous component of
an Itô semimartingale with jumps. Several rate- and variance-efficient estimators have been
proposed in the literature when the jump component is of bounded variation. However, to date,
very few methods can deal with jumps of unbounded variation. By developing new high-order
expansions of the truncated moments of a locally stable Lévy process, we propose a new rate-
and variance-efficient volatility estimator for a class of Itô semimartingales whose jumps behave
locally like those of a stable Lévy process with Blumenthal–Getoor index Y * (1, 8∕5) (hence,
of unbounded variation). The proposed method is based on a two-step debiasing procedure for
the truncated realized quadratic variation of the process and can also cover the case Y < 1.
Our Monte Carlo experiments indicate that the method outperforms other efficient alternatives
in the literature in the setting covered by our theoretical framework.

1. Introduction

Statistical inference for stochastic processes based on high-frequency observations has attracted considerable attention in the
literature for more than two decades. Among the many problems studied to date, arguably none has received more attention than
that of the estimation of the continuous (or predictable) quadratic variation of an Itô semimartingale X = {Xt}te0. Specifically, if

Xt ∶= X0 +Xc
t +X

j
t ∶= X0 + +

t

0

bsds + +
t

0

�sdWs +X
j
t , t * [0, T ], (1)

where X0 * R, W = {Wt}te0 is a Wiener process and Xj = {X
j
t }te0 is a pure-jump Itô semimartingale, then our estimation target is

IVT = +
T

0

�2sds.

This quantity, also known as the integrated volatility or integrated variance of X, has many applications, especially in finance, where X
typically models the log-return process of a risky asset and IVT measures the overall uncertainty or variability inherent in X during
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the time period [0, T ]. When X is observed at evenly spaced times 0 = t0 < t1 < ď < tn = T , in the absence of jumps, an efficient
estimator of IVT is given by the realized quadratic variation ÎV T =

1n
i=1(Xti

− Xti−1
)2 in the so-called high-frequency (or infill)

asymptotic regime; i.e., when n ³ @ and T � tn is fixed. In the presence of jumps, ÎV T is no longer even consistent for IVT , instead
converging to IVT +

1
sdT (�Xs)

2, where �Xs ∶= Xs −Xs− denotes the jump at time s. To account for jumps, several estimators have
been proposed, among which the most well-known are the truncated realized quadratic variation and the multipower variations.
We focus on the first class, which, unlike the second, is both rate- and variance-efficient, in the Cramer–Rao lower bound sense,
when jumps are of bounded variation under certain additional conditions.

The truncated realized quadratic variation (TRQV), also called truncated realized volatility, was first introduced by [1,2] and is
defined as

Ĉn(") =

n1
i=1

(�n
iX)2Ā{|�n

i
X|d"}, (2)

where " = "n > 0 is a tuning parameter converging to 0 at a suitable rate. Above, �n
iX ∶= Xti

−Xti−1
is the ith increment of (Xt)te0

based on evenly spaced observations Xt0
,& , Xtn

over a fixed time interval [0, T ] (i.e., ti = iℎn with ℎn = T ∕n). It is shown in [3] that
TRQV is consistent when either the jumps have finite activity or stem from an infinite-activity Lévy process. In a semimartingale
model with Lévy jumps of bounded variation, Cont and Mancini [4] showed that the TRQV admits a feasible central limit theorem
(CLT), provided that "n = cℎ!n with some ! * [

1

4−Y
, 1
2
), where Y * [0, 1) denotes the Blumenthal–Getoor index. In [5], consistency

was established for a general Itô semimartingale X, and a corresponding CLT is given when the jumps of X are of bounded variation.
In that case, the TRQV attains the optimal rate and asymptotic variance of

√
ℎn and 2 + T

0
�4sds, respectively.

However, in the presence of jumps of unbounded variation, arguably the most relevant for financial applications (see, e.g., [6–8],
and the results in Table 1 below), the situation is notably different, and the available literature on TRQV offers an incomplete
picture. In [4], it is shown that when jumps stem from a Lévy process with stable-like small-jumps of infinite variation, the
TRQV estimator Ĉn(") converges to IVT at a rate slower than

√
ℎn. Further, in [9] it is shown that when the jump component

J is a symmetric Y -stable Lévy process and "n = ℎ!n with ! * (0, 1∕2), the decomposition Ĉn("n) − IVT =
√
ℎnZn + Ān holds,

where Zn converges stably in law to ü (0, 2 + T
0

�4sds), while Ān is precisely of order "2−Yn in the sense that Ān = OP ("
2−Y
n ) and

"2−Yn = OP (Ān) (which decays too slowly to allow for efficiency when Y > 1). In [10], a smoothed version of the TRQV estimator
of the form ĈSm

n (") =
1n

i=1(Xti
− Xti−1

)2'((Xti
− Xti−1

)∕") is considered,1 where ' * C@ vanishes in R∖(−2, 2) and '(x) = 1 for
x * (−1, 1). In that case, using the truncation level "n ∶= ℎ!n , it is shown that Ĉ

Sm
n ("n) − IVT =

√
ℎnZn + Ān with Ān such that

"
−(2−Y )
n Ān ³ cY + '(u)|u|1−Y du, for a constant cY � 0, and still Zn

st
³ ü (0, 2 + T

0
�4sds). By taking ' such that + '(u)|u|1−Y du = 0,

a ‘‘bias-corrected’’ estimator was considered under the additional condition that Y < 4∕3. Specifically, the resulting estimator is
such that, for any �̃ > 0, ĈSm

n ("n) − IVT = oP (ℎ
1∕2−�̃
n ), ‘‘nearly’’ attaining the optimal statistical error OP (ℎ

1∕2
n ). Unfortunately, the

construction of such an estimator requires knowledge or accurate estimation of the jump intensity index Y , and no feasible CLT was
proved when jumps are of unbounded variation even assuming Y is known.

Apart from TQRV-based approaches, efficient estimation of IVT when the jumps have unbounded variation is intrinsically limited
in the general case. In [11], it was shown that when the jump intensity index Y > 1, the best possible convergence rate, in a minimax
sense, over certain ‘‘bounded’’ classes of semimartingales, is of order (n log n)−(2−Y )∕2. Nevertheless, in principle, a faster convergence
rate may be attainable if one constrains the process X to belong to a certain semiparametric class such as when the jumps exhibit
a ‘‘locally stable’’-like behavior. Obviously, the fastest possible rate one can hope to achieve is n−1∕2, which coincides with the one
attained by the realized quadratic variation in the continuous case and is known to be optimal in a minimax sense.

The first (and to-date, only) rate- and variance-efficient estimator of the integrated volatility known in the literature for
semimartingales when Y > 1 was proposed by [12], under a locally-stable assumption on jumps, but with some notable additional
restrictions: these results require either that the jump intensity index Y < 3∕2, or that the ‘‘small’’ jumps of the process X are
‘‘symmetric’’.2 Their estimator is based on locally estimating the volatility from the empirical characteristic function of the process’
increments over disjoint time intervals shrinking to 0, but still containing an increasing number of observations. It requires two
debiasing steps, which are simpler to explain for a Lévy process X with symmetric Y -stable jump component Xj . The first debiasing
step is meant to reduce the bias introduced when attempting to estimate logE(cos(uXℎn

∕
√
ℎn)) with log

{ 1

n

1n
i=1 cos

(
u�n

iX∕
√
ℎn

)}
. The

second debiasing step is aimed at eliminating the second term in the expansion −2 logE(cos(uXℎn
∕
√
ℎn))∕u

2 = �2+2|
|Y uY−2ℎ1−Y ∕2n +

O(ℎn), which otherwise diverges when multiplied by the optimal scaling ℎ
−1∕2
n = n1∕2. Using an extension of this approach, Jacod

and Todorov were able to apply these techniques to a more general class of Itô semimartingales in [13], even allowing any Y < 2,
though only rate-efficient, but not variance-efficient, estimators were ultimately constructed.

On the other hand, in the special case of Lévy processes, efficiency across the full range 0 < Y < 2 without symmetry requirements
has been attained by [14], again under a locally stable assumption, via a generalized method of moments. Specifically, for some
suitable smooth functions f1, f2,& , fm and a scaling factor un ³ @, [14] proposed to search for the parameter values ā̂ = (�̂1,& , �̂m)

such that

1

n

n1
i=1

fj
(
un�

n
iX

)
− E

ā̂

(
fj
(
un�

n
i X̃

))
= 0, j = 1,& , m, (3)

1 The authors in [10], in fact, consider the more general estimation of + T

0
f (Xs)�

2
s
ds for functions f of polynomial growth, for which IVT is a special case.

2 Jacod and Todorov [12] also constructed an estimator that is rate-efficient even in the presence of asymmetric jumps, but its asymptotic variance is twice
as big as the optimal value 2 + T

0
�4
s
ds and, thus, it is not variance efficient.
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Table 1
Parameter estimates for a Lévy model �Wt + Xj

t with semi-parametric Lévy density (C+Āx>0 +

C−Āx<0)q(x)|x|−Y−1 with q(x)
x³0
ú 1 applied to stock data over a 1-year horizon at different

sampling frequencies. Parameter estimates were obtained via the method [14] with M = 1.
Intraday data was obtained from the NYSE TAQ database of 2005 trades via Wharton’s WRDS
system.

Stock Freq. �̂ Ĉ+ Ĉ− Ŷ

INTC 1 min 0.216 0.0096 0.0075 1.43
INTC 5 sec 0.241 0.0311 0.0292 1.60
PFE 5 min 0.180 0.0232 0.0199 1.14
PFE 1 min 0.196 0.0105 0.0066 1.37
AMAT 5 sec 0.344 0.0014 0.0012 1.85
SPY 5 sec 0.103 0.0003 0.00005 1.82
AMGN 1 min 0.211 0.0032 0.0038 1.53
MOT 1 min 0.244 0.0183 0.0066 1.33

where X̃ is the superposition of a Brownian motion and independent stable Lévy processes closely approximating X in a certain
sense. The distribution measure Pā of X̃ depends on some parameters ā = (�1,& , �m), one of which is the volatility � of X, and Eā(ç)

denotes the expectation with respect to Pā. Aside from the fact that this method can only be applied to Lévy processes, it also suffers
from other drawbacks. First, its finite-sample performance critically depends on the chosen moment functions f1,& , fm. Secondly,
its implementation is computationally expensive and may lead to numerical issues since it involves solving a system of nonlinear
equations (including possible non-existence of solutions to (3) over finite samples). Moreover, in addition to the required use of a
numerical solver to determine the values of �̂�� in (3), the expectations appearing therein need to be numerically approximated since
explicit expressions for the moments Eā(fj (un�

n
i X̃)) are typically not available. This fact introduces additional numerical errors that

complicates its performance.
In this paper, we consider a new method to estimate the integrated volatility IVT = + T

0
�2sds of an Itô semimartingale whose jump

component is given by a stochastic integral with respect to a tempered-stable-like Lévy process J of unbounded variation. To the
best of our knowledge, our method, together with [12], are the only efficient methods to deal with jumps of unbounded variation
for semimartingales. The idea is natural. We simply apply debiasing steps similar to those of [12] to the TRQV of [3]. To give
the heuristics as to why this strategy works, consider a small-time expansion of the truncated moments E(X2k

ℎn
Ā{|Xℎn

|d"n}) of a Lévy
process Xt = bt+�Wt +X

j
t in the asymptotic regime ℎn, "n ³ 0 with "n∕

√
ℎn ³ @. Using a variety of techniques, including a change

of probability measure, Fourier-based methods, and small-large jump decompositions, we show the following two expansions, for
integers k e 2:

E

[
X2

ℎn
Ā{|Xℎn

|d"n}
]
= �2ℎn + c1ℎn"

2−Y
n + c2ℎ

2
n"

−Y
n + h.o.t.,

E

[
X2k

ℎn
Ā{|Xℎn

|d"}
]
= (2k − 1)!! �2kℎkn + c3 ℎn"

2k−Y
n + h.o.t.,

for certain constants c1, c2, c3 � 0 that are explicitly computed. Hereafter, h.o.t. stands for ‘higher order terms’. The expansions above
are the most precise of their type in the literature and are of interest in their own right. Based on the first expansion above, it is
easy to see that the rescaled bias E[ℎ−1∕2n (Ĉn(") − �2T )] satisfies

E

[
ℎ
−

1
2

n

(
Ĉn(") − �2T

)]
= T c1ℎ

−
1
2

n "2−Yn + T c2ℎ
1
2
n "

−Y
n + h.o.t., (4)

which suggests the necessity of the condition ℎ
−1∕2
n "2−Yn = o(1) for a feasible CLT for Ĉn(") at the rate

√
ℎn. However, together with

the (necessary) condition "n∕
√
ℎn ³ @, this can happen only if Y < 1, and removal of the first terms in (4) is consequently necessary

for efficient estimation when jumps are of unbounded variation. To that end, note that for any � > 1,

E

(
Ĉn(�") − Ĉn(")

)
= c1(�

2−Y − 1)"2−Yn + h.o.t.,

E

(
Ĉn(�

2") − 2Ĉn(�") + Ĉn(")
)
= c1(�

2−Y − 1)2"2−Yn + h.o.t..

The above formulas motivate the ‘‘bias-corrected’’ estimator

Ĉ 2
n("; � ) ∶= Ĉn(") −

(
Ĉn(�") − Ĉn(")

)2

Ĉn(�
2") − 2Ĉn(�") + Ĉn(")

, (5)

which is the essence of the debiasing procedure of [12]. As we shall see, the story is more complicated than what the simple heuristics
above suggest. Our main result shows that, for the class of Itô semimartingales described above, the estimator (5) is indeed rate-
and variance-efficient provided that Y * (1, 4∕3). Furthermore, if Y * (1, 8∕5), a second bias-correcting step will achieve both rate-
and variance-efficiency (for the case 8∕5 d Y < 2, see remark at the end of Section 3). Even though our main motivation lies in
incorporating jumps of unbounded variation, we show that the debiasing steps will still achieve efficiency in the case that Y < 1

(though, of course, no debiasing is needed in that case because the jumps are of bounded variation).
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Though our approach is natural, mathematically establishing its efficiency is highly nontrivial, starting from the new high-
order expansions of the truncated moments of Lévy processes – which, beyond heuristics, ultimately play a key role in analyzing
asymptotics for the debiasing technique – to the application of Jacod’s stable central limit theorem for semimartingales (in particular,
the verification of the asymptotic ‘orthogonality’ condition (2.2.40) in [15]). Our Monte Carlo experiments indicate improved
performance compared to [12] (and also [14]) for the important class of CGMY Lévy processes (cf. [16]) and for a Heston stochastic
volatility model with CGMY jumps in the range of values of Y covered by our theoretical framework.

If we limit ourselves to a Lévy model, our approach is more computationally efficient and numerically stable than that in [14].3

For more general semimartingales, our procedure is simpler than that in [12] since it does not require an extra debiasing step to
correct the nonlinear nature of the logarithmic transformation employed therein nor does it require a symmetrization step to deal
with asymmetric jump components. Furthermore, our method does not rely on a ‘localization’ technique in the sense that it does
not need to break the data into disjoint blocks where the integrated volatility is locally estimated. The latter step introduces an
additional tuning parameter absent from our method.

Let us emphasize that our method is the first variance- and rate-efficient nonparametric method for integrated volatility free of
complete symmetry assumptions on small jumps that is capable of exceeding the limit Y < 3∕2 imposed in [12,13]. Symmetry is
potentially a strong assumption for financial returns as there is a general belief that significant losses are more likely than significant
gains. For instance, recently [17] examined several empirical studies from the literature and observed that the majority display
negative skewness. Of course, skewness may arise from either large or small jumps, though large jump asymmetry has received
most attention in empirical work. Indeed, there are few studies to date that estimate the intensity of small positive and negative
jumps separately. An exception is [18], who, using MLE applied to daily S&P500 index data from 1996–2006, obtained the estimates
Ĉ+ = 0.7119, Ĉ− = 0.5412, Ĝ = 59.94, M̂ = 59.94, Ŷ+ = 1.0457, and Ŷ − = 1.1521 under a pure-jump Lévy model with Lévy density
C+e

−x∕G|x|−Y+−1Āx>0 +C−e
−|x|∕M |x|−Y−−1Āx<0, which points to asymmetry in small jumps. For further illustration, in Table 1 below,

we fit a Lévy model �Wt + X
j
t , with semi-parametric Lévy density (C+Āx>0 + C−Āx<0)q(x)|x|−Y−1 (here, q(x)

x³0
ú 1). We use Mies’

method of moments (cf. [14]) for different stocks and frequencies4 over a 1-year period in 2005. It is clear that Ĉ+ is different
from Ĉ−, sometimes by a relatively large value, indicating further evidence for asymmetry in small jump behavior. Furthermore, all
values of Ŷ are larger than 1, indicating the presence of a jump component of unbounded variation.

Finally, let us also remark that our result opens the doors to attain rate- and variance-efficient estimators free of symmetry
requirements beyond the mark 8∕5 or in more general semiparametric models with successive Blumenthal–Getoor indices by
considering further debiasing steps. These directions will be investigated in further work.

The rest of this paper is organized as follows. Section 2 introduces the framework and assumptions as well as some known
preliminary results from the literature. Section 3 introduces the debiasing method and main results of the paper. Section 4 illustrates
the performance of our method via Monte Carlo simulations and compares it to the method in [12]. The proofs of the key results
are deferred to two appendix sections. The proofs of some technical lemmas and other supporting propositions are deferred to the
accompanying supplemental material to this article.

2. Setting and background

In this section, we introduce the model, main assumptions, and some notation. We consider a 1-dimensional Itô semimartingale
X = (Xt)t*R+

of the form (1), defined on a complete filtered probability space (
,2, (2t)t*R+
,P). Since it has no impact on the value

of the increments of X, for simplicity throughout we assume X0 = 0. We assume the jump component Xj can be decomposed into
a sum of an infinite-variation process Xj,@ and a finite variation process Xj,0 given, for t * R+, as

X
j
t ∶= X

j,@
t +X

j,0
t

∶= +
t

0

�s−dJs + +
t

0 +
{
�0(s, z)p0(ds, dz) + �1(s, z)p1(ds, dz)

}
, (6)

where � = {�t}te0 is an adapted process satisfying appropriate integrability conditions, J ∶= (Jt)t*R+
is an independent pure-jump

Lévy process with Lévy triplet (b, 0, �), p0, p1, are Poisson random measures on R+ ×R with intensities qi(ds, dz) = ds⊗�i(dz), where
the �i’s are �-finite measures on R, and p1 is assumed independent of J . The specific conditions on �, �i, and on the coefficient
processes �i, � , and � are given below.

The Lévy measure � is assumed to admit a density s ∶ R0 ³ R+ of the form

s(x) ∶=
d�

dx
∶=

(
C+Ā(0,@)(x) + C−Ā(−@,0)(x)

)
q(x) |x|−1−Y . (7)

Above, R0 ∶= R∖{0}, C± > 0, Y * (1, 2), and q ∶ R0 ³ R+ is a bounded Borel-measurable function satisfying the following conditions:

Assumption 1.

(i) q(x) ³ 1, as x ³ 0;

3 Though the method of [14] allows for simultaneous estimation of several parameters of the model (such as both � and Y ).
4 As pointed out in [14] (see also the paragraph after (3) above), numerical issues can arise related to feasibility of the estimating equations associated with

the method. We are only presenting the results when the algorithm successfully finishes and yields reasonable values.
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(ii) there exist �± � 0 such that

+
1

0

|||q(x) − 1 − �+x
|||x

−Y−1dx + +
0

−1

|||q(x) − 1 − �−x
||||x|

−Y−1dx < @.

These processes are sometimes called ‘‘stable-like Lévy processes’’ and were studied in [19,20] and many other works. In simple
terms, condition (i) above says that the small jumps of the Lévy process X behave like those of a Y -stable Lévy process with Lévy
measure

�̃(dx) ∶=
(
C+Ā(0,@)(x) + C−Ā(−@,0)(x)

)|x|−Y−1dx. (8)

The condition Y * (1, 2) implies that J has unbounded variation in that sense that
1n

i=1 |Jti − Jti−1 | ³ @, a.s., as the partition
0 = t0 < t1 < ď < tn = T is such that max{ti − ti−1} ³ 0.

As discussed in Section 1, in view of [11], the locally Y -stable aspect of Assumption 1 is crucially important for our results,
and similar assumptions have been made by other authors (e.g, [12,14]). Though not completely general, the class is still relevant
in applications, as many of the models proposed in the literature (especially, in finance) fall within this class. Nevertheless, from
a theoretical point of view, it remains to be seen as to what the broadest assumptions may be under which one can still attain
estimation efficiency.

As in [19], it will be important for our analysis to apply a density transformation technique [21, Section 6.33] to ‘‘transform’’
the process J into a stable Lévy process. Concretely, we can change the probability measure from P to another locally absolutely
continuous measure P̃, under whichW is still a standard Brownian motion independent of J , but, under P̃, J has Lévy triplet (b̃, 0, �̃),
where �̃(dx) is given as in (8) and b̃ ∶= b̄++

0<|x|d1 x(�̃−�)(dx). The key assumption above is (ii), which would allow us to decompose
the log-density process

Ut ∶= ln

dP̃
|||2t

dP
|||2t

,

as a sum of a bounded variation process and two spectrally one-sided Y -stable Lévy processes.
Finally, we give the conditions on � and the coefficient processes b, �0, �1, and � in (1) and (6).

Assumption 2.

(i) � is càdlàg adapted.
(ii) The process � is given as

�t = �0 + +
t

0

b�s ds + +
t

0

��
s dBs.

(iii) The processes W ,B are Brownian motions independent of (J , p0, p1); (�1, p1) is independent of (X
c , J , �, p0, �0); J is indepen-

dent of �.
(iv) The processes �� , b, and b� are càdlàg adapted, and �0, �1 are predictable. There is also a sequence {�n}ne1 of stopping times

increasing to infinity, nonnegative �i(dz)-integrable functions Hi, and a positive sequence {Mn}ne1 such that

t d �n ý

⎧⎪⎪⎨⎪⎪⎩

|�t| + |bt| + |b�t | + |��
t | d Mn,

|E(�t+s − �t|ôt)| + E(|�t+s − �t|2|ôt) d Mns,

(|�0(t, z)| I 1)r0 d MnH0(z),

(|�1(t, z)| I 1)r1 d MnH1(z),

for some r0 * [0, Y

2+Y
) and r1 * [0, Y ∕2).

Above, the parameters r0, r1 control the degree of activity in the nuisance finite-variation jump terms. Two such terms are
included to allow for a broader range of finite-variation jump activity in our model setup. Note that Y ∕2 is always bigger than
Y ∕(2 + Y ), which shows that when the bounded variation jump component is independent from the other processes, we can
incorporate a wider range of jump activity. These restrictions effectively guarantee that the bias introduced by finite variation
components are negligible in comparison to leading bias terms arising from the locally-stable jumps in X.

3. Main results

In this section, we construct an efficient estimator for the integrated volatility IVT = + T
0

�2sds based on the well-studied estimator
TRQV (2). All proofs are deferred to the Appendix and supplement.

Throughout, we assume the process X = {Xt}te0 is sampled at n evenly spaced observations, Xt1
, Xt2

,& , Xtn
, during a fixed time

interval [0, T ], where for i = 0,& , n, ti = ti,n = iℎn with ℎn = T ∕n, and, for simplicity, assume that T = 1. As usual, we define the
increments of a generic process V = {Vt}te0 as �n

i V ∶= Vti − Vti−1 , i = 1,& , n. We often use the shorthand notation:

V n
i = Vti , Ei[ç] = E[ç|ôti

].



Stochastic Processes and their Applications 176 (2024) 104429

6

B.C. Boniece et al.

As mentioned in the introduction, in the presence of jumps of unbounded variation, the TRQV estimator Ĉn(") is not efficient
since it possesses a bias that vanishes at a rate slower than n−1∕2, the rate at which the ‘‘centered’’ TRQV

Cn(") =

n1
i=1

{(
�n
iX

)2
Ā{|�n

i
X|d"} − Ei−1

[(
�n
iX

)2
Ā{|�n

i
X|d"}

]}
, (9)

admits a CLT. To overcome this, our idea is to apply the debiasing procedure of [12] to the TRQV. As mentioned in the introduction,
our procedure is simpler than [12] since it does not require an extra debiasing step to account for the logarithmic transformation
nor does it require a symmetrization step to deal with asymmetric Lévy measures. Furthermore, our method does not have to be
applied in each subinterval of a partition of the time horizon, which introduces another tuning parameter.

Before constructing our estimator, we first establish the asymptotic behavior of TRQV (2) with a fully specified centering quantity
A(", ℎ) rather than the inexplicit centering Ei−1

[(
�n
iX

)2
Ā{|�n

i
X|d"}

]
of (9). It also characterizes the structure of the bias A(", ℎ) in the

threshold parameter " that will ultimately be exploited in our debiasing procedure. Below and throughout the rest of the paper, we
use the usual notation an ≪ bn, whenever an∕bn ³ 0 as n ³ @.

Proposition 1. Suppose that Y * (0, 1) L (1, 8∕5) and ℎ
3

2(2+Y )
I
1
2

n ≪ "n ≪ ℎ
1

4−Y
n . Let

Z̃n(") ∶=
√
n

(
Ĉn(") − +

1

0

�2sds − A(", ℎ)

)
, (10)

where

A(", ℎ) ∶=
C̄

2 − Y +
1

0

|�s|Y ds"2−Y − C̄
(Y + 1)(Y + 2)

2Y +
1

0

|�s|Y �2sdsℎ"−Y , (11)

and C̄ ∶= C+ + C−. Then, as n ³ @,

Z̃n("n)
st

ú ü
(
0, 2+

1

0

�4sds

)
. (12)

Remark 1. As expected, the statement above shows that, when Y < 1, we have
√
n
(
Ĉn(") − + 1

0
�2sds

) st
ú ü (

0, 2 + 1

0
�4sds

)
,

whenever ℎ
1
2
n ≪ "n ≪ ℎ

1
2(2−Y )
n and the indices r0 and r1 in Assumption 2 are less than Y (i.e., the constraints r0 * [0, Y

2+Y
) and

r1 * [0, Y ∕2) are needed in Proposition 1 only in the case Y > 1). Indeed, in this case, since the leading order bias is O("2−Y ), so

taking " ≪ ℎ
1

2(2−Y )
n renders it asymptotically negligible.

The next theorem establishes the stable convergence (in particular, the convergence rate) of the difference Z̃n(�") − Z̃n("), for
some � > 1, which is the second main technical result we use to deduce the efficiency of our debiased estimator.

Proposition 2. Suppose Y * (0, 1) L (1, 8∕5), and ℎ
4

8+Y
n ≪ "n ≪ ℎ

1
4−Y
n . With the notation of Proposition 1, for arbitrary � > 1,

u−1n

(
Z̃n(�"n) − Z̃n("n)

) st
ú ü

(
0,

C̄

4 − Y +
1

0

|�s|Y ds(�4−Y − 1)

)
, (13)

as n ³ @, where un ∶= ℎ
−

1
2

n "
4−Y
2

n ³ 0.

Remark 2. Note that (13) implies that

"
−Y ∕2
n

(
Ĉn(�") − Ĉn(")

"2−Y
−

C̄

2 − Y
(�2−Y − 1)+

1

0

|�s|Y ds
)

st
ú ü

(
0,

C̄

4 − Y
(�4−Y − 1)+

1

0

|
s|Y ds
)
.

In particular,

Ĉn(�") − Ĉn(")

"2−Y

P

ú
C̄

2 − Y
(�2−Y − 1)+

1

0

|�s|Y ds. (14)

Expression (14) plays a role in our numerical implementation in Section 4.

We are now in a position to introduce our proposed estimator. To this end, we will exploit the structure of the bias term A(", ℎ)

in ". The idea is simple. Suppose that a function f (x) takes the form a + bx� for any a * R and �, b � 0. Then, it is easy to see that,
for any � > 1,

f (x) −
(f (�x) − f (x))2

f (�2x) − 2f (�x) + f (x)
= a + bx� −

b2x2�(�� − 1)2

bx�(�2� − 2�� + 1)
= a,
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hence, recovering a without requiring knowledge of b and �. These heuristics suggest the following debiasing procedure to
successively remove each term appearing in A(", ℎ). For any �1, �2 > 1, in a first step, we compute

C̃ 2
n(", �1) = Ĉn(") −

(
Ĉn(�1") − Ĉn(")

)2

Ĉn(�
2
1
") − 2Ĉn(�1") + Ĉn(")

, (15)

and, in the second step,

C̃ 22
n (", �2, �1) = C̃ 2

n(", �1) −

(
C̃ 2
n(�2", �1) − C̃ 2

n(", �1)
)2

C̃ 2
n(�

2
2
", �1) − 2C̃ 2

n(�2", �1) + C̃ 2
n(", �1)

. (16)

The next theorem is the main result of the paper. It establishes the rate- and variance-efficiency of the two-step debiased estimator
C̃ 22
n (", �2, �1) provided Y * (0, 1) L (1, 8∕5).

Theorem 1. Suppose that Y * (0, 1) L (1, 8∕5), and ℎ
4

8+Y
n ≪ "n ≪ ℎ

1
4−Y

J
2

4+Y
n . Then, for any fixed �1, �2 > 1, as n ³ @,

√
n

(
C̃ 22
n (", �2, �1) − +

1

0

�2sds

)
st

ú ü
(
0, 2+

1

0

�4sds

)
.

It is customary to use power thresholds of the form "n = c0ℎ
!
n , where c0 > 0 and ! > 0 are some constants.5 In that case, the

assumption ℎ
4

8+Y
n ≪ "n ≪ ℎ

1
4−Y

J
2

4+Y
n in Theorem 1 becomes

(
1

4 − Y
J

2

4 + Y

)
< ! <

4

8 + Y
. (17)

Remark 3. Note that, if Y > 1 – the case where debiasing is strictly necessary for estimation efficiency – the value of ! = 5∕12

satisfies the above constraint (17) for any value Y of the possible range 4∕5 < Y < 8∕5 (on relaxations of these constraints, see
Remark 5).

Remark 4. The case Y = 1 is excluded from the above statements since part of our arguments rely on moment estimates for the
truncated increments of Y -stable Lévy processes, whose characteristic function differs slightly when Y = 1, though this case can be
handled similarly with minor adjustments to our arguments.

Remark 5. As a consequence of the proof of Theorem 1, it follows that if 1 < Y < 4∕3, then only one debiasing step is needed to
achieve efficiency. That is, for 1 < Y < 4∕3, we already have

√
n

(
C̃ 2
n(", �1) − +

1

0

�2sds

)
st

ú ü
(
0, 2+

1

0

�4sds

)
,

whenever ℎ
1
2Y
n ≪ "n ≪ ℎ

2
4+Y
n . If 4∕3 d Y < 8∕5, the proof of Theorem 1 shows a second debiasing step is required. These two facts

suggest that further debiasing steps similar to (15)–(16) could be used to handle values of Y larger than 8∕5, or more broadly, less
restrictive conditions on the jump measure of X at zero. This conjecture requires significant further analysis beyond the scope of
the present paper and, hence, we leave it for future research.

4. Monte Carlo performance with CGMY jumps

In this section, we study the performance of the two-step debiasing procedure of the previous section in two settings: the case
of a Lévy process with a CGMY jump component J (cf. [16]) and a Heston stochastic volatility model with again a CGMY jump
component. Following [12], we also consider variants of our debiasing procedure that make use of the sign of the bias terms that
lead to further improved finite-sample performance.

4.1. Constant volatility

We start by considering simulated data from the model (1) and (6), where the coefficient processes �, b, and � are constants,
�0 = �1 � 0 (no bounded variation components), and {Jt}te0 is a CGMY process, independent of the Brownian motion {Wt}te0, with
Lévy measure having a q-function, in the notation of (7), of the form:

q(x) = e−Mx
Ā(0,@)(x) + eGx

Ā(−@,0)(x),

5 Though, it is shown in [22] that in the case of a Lévy process X with jump component J as in Section 2, the MSE-optimal threshold "∗
n
is such that

"∗
n
<
√
(2 − Y )�2ℎn ln(1∕ℎn), as n ³ @.
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and C+ = C− = C. Thus, the conditions of Assumption 1 are satisfied with �+ = −M and �− = G. For simplicity we take b = 0 and
� = 1, and adopt the parameter setting

C = 0.028, G = 2.318, M = 4.025, (18)

which are similar to those used in [20],6 and take � = 0.2, 0.4, and Y = 1.25, 1.35, 1.5, 1.7, respectively. We fix T = 1 year and
n = 252(6.5)(60), which corresponds to a frequency of 1 minute (assuming 252 trading days and a 6.5-hour trading period each day).

In a fashion similar to [12], for the threshold " = c0ℎ
!, we take c0 = �BV , where

�2BV ∶=
�

2

n1
i=2

|�n
i−1

X||�n
iX|,

which is the standard bipower variation estimator of �2 first introduced by [24]. For the value of ! we take ! =
5

12
, which, as

mentioned above, satisfies the condition (17) for any Y * (1, 8∕5). We compare the performance of the following estimators:

1. TRQV: Ĉn(") =
1n

i=1

(
�n
iX

)2
Ā{|�n

i
X|d"};

2. 1-step debiasing estimator removing positive bias:

C̃ 2
n,pb(", �1, p1) = Ĉn(") − �1

(
Ĉn(�1") − Ĉn(")

)
,

where �1 =
Ĉn(p1 �1") − Ĉn(p1 ")

Ĉn(p1 �
2
1
") − 2Ĉn(p1 �1") + Ĉn(p1 ")

J 0,
(19)

with �1 = 1.45 and p1 = 0.6, which were selected to achieve favorable performance across all considered values of Y and �. If
C̃ 2
n,pb

(", �1, p1) is negative, we recompute �1 with " = 2"∕3. This method is inspired by [12] and is motivated by the following
decomposition of the bias correction term of (15) into a product of two factors:

(
Ĉn(�1") − Ĉn(")

)

Ĉn(�
2
1
") − 2Ĉn(�1") + Ĉn(")

×
(
Ĉn(�1") − Ĉn(")

)
,

where, due to (14), the first factor estimates (�2−Y
1

− 1)−1, which is positive. So, we should expect �1 > 0.

3. With C̃ 2
n,pb

(") ∶= C̃ 2
n,pb

(", �1, p1) defined as in Step 1, the 2-step debiasing estimator removing negative bias is given by:

C̃ 22
n,nb(", �2, �1, p2, p1) = C̃ 2

n,pb(") − �2

((
C̃ 2
n,pb(�2") − C̃ 2

n,pb(")
)
J 0

)
,

where �2 =
C̃ 2
n,pb

(p2 �2", ) − C̃ 2
n,pb

(p2 ")

C̃ 2
n,pb

(p2 �
2
2
") − 2C̃ 2

n,pb
(p2 �2") + C̃ 2

n,pb
(p2 ")

I 0,
(20)

with �1 = 1.2, �2 = 1.2, p1 = 0.65, and p2 = 0.75. If it turns out that C̃ 22
n,nb

(", �2, �1, p2, p1) is negative, we recompute �2 with
" = 2"∕3. The reason for this adjustment is the fact that �2 is expected to be negative since it serves as estimate of (�

−Y
2

−1)−1.
The values of the tuning parameters �1, �2, p1, p2 were selected for ‘overall favorable’ performance for all considered values
of Y and �.

We further compare the simulated performance of the above estimators to the estimators proposed in [12] and [14]. Specifically,
we use the Eq. (5.3) in the paper [12]:

ĈJT,53(un, �) = ĈJT(un) − �
((

ĈJT(�un) − ĈJT(un)
)
I 0

)
,

with � =
ĈJT(p0 �un) − ĈJT(p0 un)

ĈJT(p0 �
2un) − 2ĈJT(p0 �un) + ĈJT(p0 un)

I 0,

where ĈJT denotes their ‘‘nonsymmetrized’’ two-step debiased estimator (see Eq. (3.1) in therein). For the tuning parameters, we
take

� = 1.5, un = (ln(1∕ℎn))
−1∕30∕�BV , p0 = 0.2,

where the values of � and un were those suggested by [12] and the value of p0 was chosen for favorable estimation performance.
Note that, since a Lévy model has constant volatility, it is not necessary to localize the estimator and, hence, we treat the 1-year data
as one block, which corresponds to taking kn = 252(6.5)(60) in the notation of [12]. For the moment estimator proposed in [14], we
use the same moment functions and the parameter settings as suggested by [14]. We denote this estimator ĈM,4. We also examine
the performance of another moment estimator, denoted ĈM,3, that is computed under a similar algorithm to [14] but with 3 different
moment functions suggested in [22]. We remark that the moment functions used in the construction of ĈM,3 do not satisfy the strict

6 Figueroa-López and Ólafsson [20] considers the asymmetric case �(dx) = Csgn(x) q̄(x)|x|−1−Y dx with C+ = 0.015 and C− = 0.041. Here, we take C = (C+ +C−)∕2

in order to simplify the simulation of the model. The parameter values of C+, C−, G, and M used in [20] were taken from [23], who calibrated the tempered
stable model using market option prices.
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Table 2
Estimation based on simulated 1-minute observations of 1000 paths over a 1 year time horizon. The parameters are Y = 0.8 and � = 0.2.
The best tuning parameters are �∗

1
= 1.4, �∗

2
= 1.35, p∗

1
= 0.5, p∗

2
= 0.85; �∗ = 1.2, p∗

0
= 0.2.

� = 0.2, Y = 0.8

Sample Mean Sample SD Mean of RE SD of RE MSE MAD

Ĉn 0.036881 0.0002 −0.0780 0.0050 9.77E−06 3.12E−03
C̃

22∗
n,nb

0.039902 0.0002 −0.0024 0.0047 4.50E−08 1.44E−04

Ĉ∗
JT,53 0.039997 0.0003 −0.0001 0.0070 7.80E−08 1.25E−04

ĈM,3 0.038777 0.0002 −0.0306 0.0055 1.55E−06 1.23E−03
ĈM,4 0.040530 0.0003 0.0132 0.0077 3.75E−07 5.08E−04
C̃ 2
n,pb

0.036881 0.0002 −0.0780 0.0050 9.77E−06 3.12E−03

C̃ 22
n,nb

0.038108 0.0002 −0.0473 0.0048 3.62E−06 1.90E−03

ĈJT,53 0.039916 0.0010 −0.0021 0.0241 9.40E−07 1.39E−04

Table 3
Estimation based on simulated 1-minute observations of 1000 paths over a 1 year time horizon. The parameters are Y = 1.25 and � = 0.2.
The best tuning parameters are �∗

1
= 1.35, �∗

2
= 1.2, p∗

1
= 0.5, p∗

2
= 0.85; �∗ = 1.5, p∗

0
= 0.1.

� = 0.2, Y = 1.25

Sample Mean Sample SD Mean of RE SD of RE MSE MAD

Ĉn 0.037544 0.000205 −0.0614 0.0051 6.07E−06 2.45E−03
C̃

22∗
n,nb

0.039987 0.000216 −0.0003 0.0054 4.70E−08 1.40E−04

Ĉ∗
JT,53 0.040156 0.000300 0.0039 0.0075 1.14E−07 2.25E−04

ĈM,3 0.039661 0.000268 −0.0085 0.0067 1.87E−07 3.28E−04
ĈM,4 0.046369 0.000939 0.1592 0.0235 4.14E−05 6.37E−03
C̃ 2
n,pb

0.037544 0.000205 −0.0614 0.0051 6.07E−06 2.45E−03

C̃ 22
n,nb

0.040323 0.000203 0.0081 0.0051 1.45E−07 3.15E−04

ĈJT,53 0.040742 0.000257 0.0185 0.0064 6.16E−07 7.60E−04

constraints imposed in [14], and therefore the asymptotic efficiency of the estimator ĈM,3 has not been established. We refer to [22]
for more details about the computations of ĈM,3 and ĈM,4.

The sample means, standard deviations (SDs), the average and SD of relative errors, the mean squared errors (MSEs), and median
of absolute deviations (MADs) for each of the estimators described above are reported in Tables 2–11. In addition, we show the
results corresponding to ‘case-by-case favorably-tuned’ versions of C̃ 22

n,pb
, and ĈJT,53; i.e., their tuning parameters were chosen for

achieving the ‘best’ performance for each pair (Y , �) based on a grid search; we distinguish these estimators and their corresponding
tuning parameters by the superscript ∗. That is, C̃ 22

n,pb
is based on the choices (�1, �2, p1, p2) = (1.2, 1.2, .65, .75) across all considered

values of Y and �. With these values of the tuning parameters, C̃ 22
n,pb

exhibits generally good performance overall. However, for

each given fixed pair (Y , �), its counterpart C̃ 22∗
n,pb

is tuned to have superior performance for those particular values of Y and �. For

instance, as shown in Table 3, when Y = 1.25 and � = 0.2, the estimator C̃ 22
n,pb

attains an MSE of 1.45 × 10−7, whereas the choice of

parameters (�∗
1
, �∗

2
, p∗

1
, p∗

2
) = (1.35, 1.20, 0.5, 0.85) leads to an MSE of 4.70 × 10−8 for C̃ 22∗

n,pb
.

We provide a broad summary of our simulation results. For the estimators using the case-by-case tuned parameters (�∗
1
, �∗

2
, p∗

1
, p∗

2
),

based on both MSE and MAD, C̃ 22∗
n,nb

outperforms every other estimator considered in each setting, except when Y = 0.8 when the

performance between C̃ 22∗
n,nb

and Ĉ∗
JT,53 is comparable (c.f. Table 2, top row) but Ĉ

∗
JT,53 has a slight edge in both MAD and MSE when

� = 0.4 and a slight edge in MAD when � = 0.2. Using the parameters (�1, �2, p1, p2) = (1.2, 1.2, .65, .75), compared to the method
of [14], C̃ 22

n,nb
outperforms ĈM,4 in all cases, as measured by MSE and MAD in Tables 3–11. When � = 0.2 and Y = 1.25, or when

� = 0.4 and Y = 1.25, 1.35, 1.5, 1.7, C̃ 22
n,nb

outperforms ĈM,3 (though, as noted earlier, computation of C̃
22
n,nb

is much faster and more

numerically stable than that of either ĈM,3 or ĈM,4). Next, compared with [12], when � = 0.2 and Y = 1.25, 1.35, 1.5, or when � = 0.4

and Y = 1.25 or 1.35, C̃ 22
n,nb

has superior performance compared to ĈJT,53 as measured by MSE and MAD. Generally, C̃
22
n,nb

significantly

outperforms C̃ 2
n,pb
. Table 5 also shows that, though when � = 0.2 and Y = 1.5, C̃ 22

n,nb
has larger MSE and MAD than Ĉn and C̃ 2

n,pb
, it still

performs better than ĈJT,53: the MSE and MAD of C̃
22
n,nb

in these cases are approximately 22% and 85% of those of ĈJT,53, respectively.

Tables 6 and 11 show that, when Y = 1.7, which is not covered by our theoretical framework (see Remark 5), C̃ 22
n,nb

has slightly

larger MSE and MAD than ĈJT,53. Overall, we conclude that our debiasing procedure outperforms ĈJT,53 when Y = 1.25, 1.35, 1.5,
and outperforms ĈM,4 in all parameter settings considered, and the estimation performance of ĈJT,53 and C̃ 22

n,nb
is comparable when

Y = 0.8.

We also study the asymptotic approximation for the sampling distribution of C̃ 22
n,nb

and ĈJT,53 based on the case-by-case optimally-

tuned estimators C̃ 22∗
n,nb

and Ĉ∗
JT,53. Fig. 1 shows their normalized simulated sampling distributions,

√
n(�̂ − �2)∕

√
2�4, and the

theoretical asymptotic normal distribution, ü (0, 1). Compared to Ĉ∗
JT,53, the simulated distribution of C̃

22∗
n,nb

yields a better match

with the asymptotic normal distribution, especially for Y d 1.5. Note that, in general, the values of C̃ 22∗
n,nb

are much less spread out
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Fig. 1. Simulated and theoretical asymptotic distributions of the estimators based on simulated 1-minute observations of 1000 paths over a 1 year time horizon.
The bold dashed red curve is the theoretical asymptotic distribution, ü (0, 1). The solid yellow curve is the simulated distribution of (2�4)−1∕2

√
n(C̃ 22∗

n,nb
− �2). The

dotted blue curve is the normalized simulated distribution of (2�4)−1∕2
√
n(Ĉ∗

JT − �2).

Table 4
Estimation based on simulated 1-minute observations of 1000 paths over a 1 year time horizon. The parameters are Y = 1.35 and � = 0.2.
The best tuning parameters are �∗

1
= 1.35, �∗

2
= 1.1, p∗

1
= 0.6, p∗

2
= 0.75; �∗ = 1.5, p∗

0
= 0.1.

� = 0.2, Y = 1.35

Sample Mean Sample SD Mean of RE SD of RE MSE MAD

Ĉn 0.038264 0.000203 −0.0434 0.0051 3.05E−06 1.73E−03
C̃

22∗
n,nb

0.040010 0.000206 0.0003 0.0052 4.27E−08 1.33E−04

Ĉ∗
JT,53 0.040418 0.000316 0.0104 0.0079 2.74E−07 4.30E−04

ĈM,3 0.040461 0.000277 0.0115 0.0069 2.89E−07 4.70E−04
ĈM,4 0.050576 0.001121 0.2644 0.0280 1.13E−04 1.06E−02
C̃ 2
n,pb

0.038264 0.000203 −0.0434 0.0051 3.05E−06 1.73E−03

C̃ 22
n,nb

0.041044 0.000211 0.0261 0.0053 1.13E−06 1.05E−03

ĈJT,53 0.041547 0.001111 0.0387 0.0278 3.63E−06 1.59E−03

than those of Ĉ∗
JT,53. Though the simulated distributions of ĈM,3 and ĈM,4 are not shown in Fig. 1, we can see that C̃

22∗
n,nb

performs

much better than ĈM,3 and ĈM,4 as seen in Tables 3–11.
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Table 5
Estimation based on simulated 1-minute observations of 1000 paths over a 1 year time horizon. The parameters are Y = 1.5 and � = 0.2.
The best tuning parameters are �∗

1
= 1.45, �∗

2
= 1.3, p∗

1
= 0.1, p∗

2
= 0.2; �∗ = 1.5, p∗

0
= 0.1.

� = 0.2, Y = 1.5

Sample Mean Sample SD Mean of RE SD of RE MSE MAD

Ĉn 0.041326 0.000223 0.0332 0.0056 1.81E−06 1.33E−03
C̃

22∗
n,nb

0.039333 0.000259 −0.0167 0.0065 5.12E−07 6.58E−04

Ĉ∗
JT,53 0.040371 0.000740 0.0093 0.0185 6.85E−07 6.20E−04

ĈM,3 0.044022 0.000311 0.1006 0.0078 1.63E−05 4.02E−03
ĈM,4 0.063113 0.001598 0.5778 0.0400 5.37E−04 2.30E−02
C̃ 2
n,pb

0.041326 0.000223 0.0332 0.0056 1.81E−06 1.33E−03

C̃ 22
n,nb

0.044331 0.000232 0.1083 0.0058 1.88E−05 4.33E−03

ĈJT,53 0.040092 0.009267 0.0023 0.2317 8.59E−05 5.12E−03

Table 6
Estimation based on simulated 1-minute observations of 1000 paths over a 1 year time horizon. The parameters are Y = 1.7 and � = 0.2.
The best tuning parameters are �∗

1
= 1.3, �∗

2
= 1.3, p∗

1
= 0.4, p∗

2
= 0.8; �∗ = 2, p∗

0
= 0.4. The parameters for C̃ 2

n,pb
and C̃ 22

n,nb
are �1 = 1.2, �2 = 1.2,

p1 = 0.6, and p2 = 0.85.

� = 0.2, Y = 1.7

Sample Mean Sample SD Mean of RE SD of RE MSE MAD

Ĉn 0.063772 0.000359 0.5943 0.0090 5.65E−04 2.38E−02
C̃

22∗
n,nb

0.038238 0.001842 −0.0441 0.0461 6.50E−06 1.91E−03

Ĉ∗
JT,53 0.039833 0.006706 −0.0042 0.1677 4.50E−05 4.38E−03

ĈM,3 0.069247 0.000469 0.7312 0.0117 8.56E−04 2.93E−02
ĈM,4 0.110533 0.002272 1.7633 0.0568 4.98E−03 7.05E−02
C̃ 2
n,pb

0.063772 0.000359 0.5943 0.0090 5.65E−04 2.38E−02

C̃ 22
n,nb

0.069421 0.001187 0.7355 0.0297 8.67E−04 2.93E−02

ĈJT,53 0.066487 0.000488 0.6622 0.0122 7.02E−04 2.65E−02

Table 7
Estimation based on simulated 1-minute observations of 1000 paths over a 1 year time horizon. The parameters are Y = 1.25 and � = 0.2.
The best tuning parameters are �∗

1
= 1.4, �∗

2
= 1.35, p∗

1
= 0.5, p∗

2
= 0.85; �∗ = 1.5, p∗

0
= 0.1.

� = 0.4, Y = 0.8

Sample Mean Sample SD Mean of RE SD of RE MSE MAD

Ĉn 0.147467 0.0008 −0.0783 0.0049 1.58E−04 1.26E−02
C̃

22∗
n,nb

0.159698 0.0008 −0.0019 0.0047 6.66E−07 5.17E−04

Ĉ∗
JT,53 0.159963 0.0007 −0.0002 0.0047 5.61E−07 4.75E−04

ĈM,3 0.160908 0.0008 0.0057 0.0051 1.49E−06 9.39E−04
ĈM,4 0.160531 0.0008 0.0033 0.0049 9.00E−07 6.34E−04
C̃ 2
n,pb

0.147467 0.0008 −0.0783 0.0049 1.58E−04 1.26E−02

C̃ 22
n,nb

0.152373 0.0007 −0.0477 0.0047 5.87E−05 7.61E−03

ĈJT,53 0.159312 0.0038 −0.0043 0.0235 1.47E−05 5.73E−04

Table 8
Estimation based on simulated 1-minute observations of 1000 paths over a 1 year time horizon. The parameters are Y = 1.25 and � = 0.4.
The best tuning parameters are �∗

1
= 1.35, �∗

2
= 1.3, p∗

1
= 0.5, p∗

2
= 0.85; �∗ = 1.5, p∗

0
= 0.2.

� = 0.4, Y = 1.25

Sample Mean Sample SD Mean of RE SD of RE MSE MAD

Ĉn 0.148523 0.000775 −0.0717 0.0048 1.32E−04 1.14E−02
C̃

22∗
n,nb

0.160102 0.000754 0.0006 0.0047 5.79E−07 5.24E−04

Ĉ∗
JT,53 0.160376 0.001062 0.0023 0.0066 1.27E−06 7.70E−04

ĈM,3 0.162777 0.000825 0.0174 0.0052 8.39E−06 2.78E−03
ĈM,4 0.166381 0.001159 0.0399 0.0072 4.21E−05 6.32E−03
C̃ 2
n,pb

0.148523 0.000775 −0.0717 0.0048 1.32E−04 1.14E−02

C̃ 22
n,nb

0.159879 0.000785 −0.0008 0.0049 6.31E−07 5.34E−04

ĈJT,53 0.160376 0.001062 0.0023 0.0066 1.27E−06 7.70E−04

4.2. Stochastic volatility

In this section, we apply our two-step debiasing procedure to estimate the daily integrated variance under a stochastic volatility
model with a CGMY jump component and compare it with the estimator of Jacod and Todorov [12].
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Table 9
Estimation based on simulated 1-minute observations of 1000 paths over a 1 year time horizon. The parameters are Y = 1.35 and � = 0.4.
The best tuning parameters are �∗

1
= 1.2, �∗

2
= 1.2, p∗

1
= 0.6, p∗

2
= 0.85; �∗ = 1.5, p∗

0
= 0.2.

� = 0.4, Y = 1.35

Sample Mean Sample SD Mean of RE SD of RE MSE MAD

Ĉn 0.149582 0.000788 −0.0651 0.0049 1.09E−04 1.04E−02
C̃

22∗
n,nb

0.160284 0.000757 0.0018 0.0047 6.53E−07 5.65E−04

Ĉ∗
JT,53 0.160950 0.001125 0.0059 0.0070 2.17E−06 1.09E−03

ĈM,3 0.164366 0.000860 0.0273 0.0054 1.98E−05 4.38E−03
ĈM,4 0.170625 0.001292 0.0664 0.0081 1.15E−04 1.06E−02
C̃ 2
n,pb

0.149582 0.000788 −0.0651 0.0049 1.09E−04 1.04E−02

C̃ 22
n,nb

0.160937 0.000758 0.0059 0.0047 1.45E−06 9.54E−04

ĈJT,53 0.160950 0.001125 0.0059 0.0070 2.17E−06 1.09E−03

Table 10
Estimation based on simulated 1-minute observations of 1000 paths over a 1 year time horizon. The parameters are Y = 1.5 and � = 0.4.
The best tuning parameters are �∗

1
= 1.35, �∗

2
= 1.1, p∗

1
= 0.5, p∗

2
= 0.9; �∗ = 1.4, p∗

0
= 0.2.

� = 0.4, Y = 1.5

Sample Mean Sample SD Mean of RE SD of RE MSE MAD

Ĉn 0.153623 0.000811 −0.0399 0.0051 4.13E−05 6.39E−03
C̃

22∗
n,nb

0.160721 0.000826 0.0045 0.0052 1.20E−06 8.13E−04

Ĉ∗
JT,53 0.158146 0.002499 −0.0116 0.0156 9.68E−06 1.89E−03

ĈM,3 0.168253 0.000981 0.0516 0.0061 6.91E−05 8.24E−03
ĈM,4 0.183132 0.001785 0.1446 0.0112 5.38E−04 2.31E−02
C̃ 2
n,pb

0.153623 0.000811 −0.0399 0.0051 4.13E−05 6.39E−03

C̃ 22
n,nb

0.165112 0.000800 0.0319 0.0050 2.68E−05 5.13E−03

ĈJT,53 0.163082 0.001305 0.0193 0.0082 1.12E−05 3.08E−03

Table 11
Estimation based on simulated 1-minute observations of 1000 paths over a 1 year time horizon. The parameters are Y = 1.7 and � = 0.4.
The best tuning parameters are �∗

1
= 1.2, �∗

2
= 1.35, p∗

1
= 0.2, p∗

2
= 0.3; �∗ = 1.5, p∗

0
= 0.2.

� = 0.4, Y = 1.7

Sample Mean Sample SD Mean of RE SD of RE MSE MAD

Ĉn 0.178820 0.000946 0.1176 0.0059 3.55E−04 1.88E−02
C̃

22∗
n,nb

0.159715 0.001594 −0.0018 0.0100 2.62E−06 1.09E−03

Ĉ∗
JT,53 0.151628 0.013172 −0.0523 0.0823 2.44E−04 6.87E−03

ĈM,3 0.192848 0.001222 0.2053 0.0076 1.08E−03 3.29E−02
ĈM,4 0.230606 0.002466 0.4413 0.0154 4.99E−03 7.05E−02
C̃ 2
n,pb

0.178820 0.000946 0.1176 0.0059 3.55E−04 1.88E−02

C̃ 22
n,nb

0.192674 0.000972 0.2042 0.0061 1.07E−03 3.27E−02

ĈJT,53 0.151628 0.013172 −0.0523 0.0823 2.44E−04 6.87E−03

Specifically, we consider the following Heston model:

Xt = 1 + +
t

0

√
Vs dWs + Jt, Vt = � + +

t

0

�
(
� − Vs

)
ds + � +

t

0

√
Vs dBs,

where {Wt}te0 and {Bt}te0 are two correlated standard Brownian motions with correlation � and {Jt}te0 is a CGMY Lévy process
independent of {Wt}te0 and {Bt}te0. The parameters are set as

� = 5, � = 0.5, � = 0.16, � = −0.5.

The values of �, �, and � above are borrowed from [25]. The CGMY parameters are the same as those in the previous section.
We consider 1-min observations over a one-year (252 days) time horizon with 6.5 trading hours per day. We break each path

into 252 blocks (one for each day) and estimate the integrated volatility IV = + t+1∕252
t Vsds for each day (t = 0, 1∕252,& , 251∕252).

As suggested and used in [12], to improve the stability of the estimates, the estimated bias terms in (19) and (20) are split into
two components each:

(
Ĉn(�1") − Ĉn(")

)
and

(
C̃ 2
n,pb

(�2", �1, p1) − C̃ 2
n,pb

(", �1, p1)
)
. These are computed using the data in each day, and

the factors �1, �2, which only depend on Y , are computed using the data during the whole time horizon. In practice, one would
precompute �1 and �2 using historical data over 1 year and use those values to compute the daily integrated volatility afterward.
The precise formulas for our estimators are described below:
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Table 12
The MSE and MADs for C

22

n,nb
and CJT,53. The results are based on simulated 1-minute observations of 1000 paths over a one-year time

horizon with Y = 0.8, 1.25, 1.35, 1.5, 1.7. The parameters for debiasing method are �1 = 1.2, �2 = 1.2, p1 = 0.65, and p2 = 0.75 in all cases. The
smallest average MSE and smallest average MAD is displayed in bold in each row.

Estimation performance in a Heston model

Y Method Day 2 Day 63 Day 126 Day 189 Day 252 Average

0.8
C

22

n,nb

MSE 2.38E−09 2.77E−09 2.64E−09 2.64E−09 2.39E−09 2.57E−09
MAD 2.86E−05 2.92E−05 2.90E−05 3.02E−05 2.82E−05 2.93E−05

CJT,53
MSE 7.89E−09 8.30E−09 8.09E−09 8.98E−09 8.17E−09 8.68E−09
MAD 3.34E−05 3.51E−05 3.23E−05 3.38E−05 3.34E−05 3.40E−05

1.25
C

22

n,nb

MSE 2.50E−09 2.37E−09 2.48E−09 2.57E−09 2.45E−09 2.45E−09
MAD 2.90E−05 2.93E−05 2.98E−05 2.91E−05 2.89E−05 2.88E−05

CJT,53
MSE 5.80E−09 5.49E−09 5.26E−09 5.21E−09 5.79E−09 5.52E−09
MAD 3.49E−05 3.43E−05 3.45E−05 3.26E−05 3.44E−05 3.40E−05

1.35
C

22

n,nb

MSE 2.52E−09 2.40E−09 2.55E−09 2.55E−09 2.45E−09 2.47E−09
MAD 2.83E−05 2.93E−05 2.97E−05 2.91E−05 2.81E−05 2.90E−05

CJT,53
MSE 7.63E−09 7.31E−09 6.85E−09 6.50E−09 7.55E−09 7.25E−09
MAD 3.63E−05 3.55E−05 3.51E−05 3.29E−05 3.53E−05 3.46E−05

1.5
C

22

n,nb

MSE 3.05E−09 3.12E−09 3.10E−09 3.19E−09 3.01E−09 3.07E−09
MAD 3.25E−05 3.48E−05 3.37E−05 3.30E−05 3.22E−05 3.31E−05

CJT,53
MSE 6.25E−09 6.27E−09 5.76E−09 5.62E−09 6.21E−09 5.98E−09
MAD 3.65E−05 3.76E−05 3.85E−05 3.53E−05 3.60E−05 3.66E−05

1.7
C

22

n,nb

MSE 2.08E−08 2.14E−08 2.04E−08 2.13E−08 2.09E−08 2.07E−08
MAD 1.23E−04 1.28E−04 1.26E−04 1.30E−04 1.24E−04 1.26E−04

CJT,53
MSE 1.89E−08 1.86E−08 1.82E−08 1.75E−08 1.88E−08 1.82E−08
MAD 1.06E−04 1.07E−04 1.05E−04 1.04E−04 1.06E−04 1.05E−04

1. 1-step debiasing estimator removing positive bias:

C
2

n,pb(", �1)t = Ĉn(")t − �1

(
Ĉn(�1")t − Ĉn(")t

)
,

�1 =

1251
i=0

(
Ĉn(p1 �1") i

252

− Ĉn(p1 ") i
252

)

1251
i=0

(
Ĉn(p1 �

2
1
") i

252

− 2Ĉn(p1 �1") i
252

+ Ĉn(p1 ") i
252

) J 0,

2. With the estimator C
2

n,pb(")t ∶= C
2

n,pb(", �1)t defined in Step 1 above, the 2-step debiasing estimator removing negative bias is
given by:

C
22

n,nb(", �2, �1)t = C
2

n,pb(")t − �2

((
C

2

n,pb(�2")t − C
2

n,pb(")t

)
J 0

)
,

�2 =

1251
i=0

(
C

2

n,pb(p2 �2") i
252

− C
2

n,pb(p2 ") i
252

)

1251
i=0

(
C

2

n,pb(p2 �
2
2
") i

252

− 2C
2

n,pb(p2 �2") i
252

+ C
2

n,pb(p2 ") i
252

) I 0,

with the same parameters used in the previous subsection �1 = 1.2, �2 = 1.2, p1 = 0.65, and p2 = 0.75.

For the estimator of [12], we use Eq. (5.3) therein with tuning parameter kn = 130 (number of observation in each block),
� = 1.5, and un = (− lnℎn)

−1∕30∕
√
BV (these values were suggested in [12]). Here, BV is the bipower variation of the previous

day. The resulting estimator is denoted as CJT,53. To assess the accuracy of the different methods, we compute the Median Absolute
Deviation (MAD) around the true value, IVt = + t+1∕252

t Vsds, and the MSE, i.e. the sample mean of (ÎV t − IVt)
2, for 5 arbitrarily

chosen days over 1000 simulation paths.

The results are shown in Table 12. The last column of Table 12 shows the sample means of the MSE and MAD over the 252 days
for the different estimators. When Y = 0.8, 1.25, 1.35, 1.5, all MSEs and MADs of C

22

n,nb are smaller than those of CJT,53, with the MSE

of C
22

n,nb typically half of that of CJT,53 or smaller. For the case Y = 1.7 (outside the scope of our theoretical framework), the MSE

and MAD of C
22

n,nb is slightly larger than those of CJT,53.

This behavior can also be observed in Fig. 2, which shows the true daily integrated volatility (dashed red line) for one fixed
simulated path compared with the estimates corresponding to C

22

n,nb (solid black line) and CJT,53 in [12] (dotted blue line). From
the figure, we conclude that for this specific stochastic volatility model, our debiasing method achieves significant improvement
when Y d 1.5. For Y = 1.7, both estimators C

22

n,nb and CJT,53 are very close and significantly overestimate the true daily integrated

volatility for this simulated path. This changes from path to path, though C
22

n,nb and CJT,53 are typically close when Y = 1.7.
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Fig. 2. Plots of daily integrated volatility estimates C
22

n,nb
(", �2 , �1 , p2 , p1)( t

252
, t+1
252

]. Except for a change in the jump index Y of the CGMY component, the same

path of Xt is for each plot. Above are the plots for Y = 0.8, 1.25, 1.5, 1.7 (Y = 1.35 is similar to Y = 1.25 and was removed to save space). The dashed red line
corresponds to the true daily integrated volatility, while the solid black (respectively, blue) line corresponds to the daily estimates using our debiasing estimator

C
22

n,nb
(respectively, the estimator given in expression (5.3) in [12]).
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Appendix A. Proofs of the main results

Throughout all appendices, we routinely make use of the following fact: under the assumption ℎ
4∕(8+Y )
n ≪ "n made throughout

Section 3, it holds exp
(
−

"2n
2�2ℎn

)
≪ ℎsn for any s > 0. For notational simplicity, we also often omit the subscript n in ℎn and "n. We

denote by C or K generic constants independent of n that may be different from line to line. In all proofs, based on Assumption 2,
by a standard localization argument, we may assume without restriction that |�|, |b|, |b� |, |�|, |�� |, are almost surely bounded by a
nonrandom constant, and (|�i(t, z)| I 1)ri d KHi(z), i = 0, 1. Further, we have the following estimates valid for all s, t > 0:

E
( |�t+s − �t|p||ôt

) d Ksp∕2, p e 1; E

(
|�t+s − �t|2|||ôt

) d Ks.

In the proofs below, we will show that we can neglect the finite variation jump component Xj,0 and prove the results for the Itô
semimartingale

X2 ∶= X −Xj,0 = Xc
t +X

j,@
t ;

i.e., the process consisting of the continuous component Xc
t = + t

0
bsds + + t

0
�sdWs and the infinite variation jump component

X
j,@
t = + t

0
�s−dJs.

Proof of Proposition 1. Note that Z̃n(") in (10) can be decomposed as follows:

Z̃n(") =
√
n

n1
i=1

((
�n
iX

)2
Ā{|�n

i
X|d"} −

(
�n
iX

2
)2

Ā{|�n
i
X2|d"}

)

+
√
n

n1
i=1

((
�n
iX

2
)2

Ā{|�n
i
X2|d"} − Ei−1

[(
�n
iX

2
)2

Ā{|�n
i
X2|d"}

])

+
√
n

n1
i=1

(
Ei−1

[(
�n
iX

2
)2

Ā{|�n
i
X2|d"}

]
− �2ti−1

ℎ − Âi(", ℎ)ℎ
)

+
√
n

(
n1
i=1

(
�2ti−1

ℎ + Âi(", ℎ)ℎ
)
− +

1

0

�2sds − A(", ℎ)

)

=∶ T0 + T1 + T2 + T3,

where Âi(", ℎ) is defined as in (B.4). Lemma 5 implies T0 = oP (1), and Lemma 2 directly implies that T2 = oP (1). We also have
T3 = oP (1), which follows from the fact that

n1
i=1

�2ti−1
ℎ − +

1

0

�2sds = oP (n
−1∕2),

"2−Y
n1
i=1

|�ti−1
|Y ℎ − "2−Y +

1

0

|�s|Y ds = oP (n
−1∕2),

and ℎ"−Y
n1
i=1

|�ti−1
|Y �2ti−1ℎ − ℎ"−Y +

1

0

|�s|Y �2sds = oP (n
−1∕2).

The above is established in Lemma 5 of the accompanying supplemental material to this article for completeness.

We now show T1
st

ú ü (
0, 2 + 1

0
�4sds

)
by applying the martingale difference CLT (Theorem 2.2.15 of [15]), which will complete

the proof. Define

�ni ∶=
√
n
((

�n
iX

2
)2
Ā{|�n

i
X2|d"} − Ei−1

((
�n
iX

2
)2

Ā{|�n
i
X2|d"}

))
.

We first need to show that Vn ∶=
1n

i=1 Ei−1

[
(�ni )

2
] P

ú 2 + 1

0
�4sds. The left-hand side can be written as

Vn = n

n1
i=1

(
Ei−1

[(
�n
iX

2
)4

Ā{|�n
i
X2|d"}

]
−
[
Ei−1

(
�n
iX

2
)2

Ā{|�n
i
X2|d"}

]2)
.

Lemmas 2 and 4 imply that

Ei−1

[
(�n

iX
2)2Ā{|�n

i
X2|d"}

]
= �2ti−1

ℎ + OP (ℎ"
2−Y ),

Ei−1

[(
�n
iX

2
)4

Ā{|�n
i
X2|d"}

]
= 3�4ti−1

ℎ2 + OP (ℎ"
4−Y ).

Since, due to our conditions on ", ℎ"4−Y ≪ ℎ2, we clearly have

Vn = n

n1
i=1

(
3�4ti−1

ℎ2 + oP (ℎ
2) −

(
�2ti−1

ℎ + OP (ℎ"
2−Y )

)2) P

ú 2+
1

0

�4sds.
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Next, we show that
1n

i=1 Ei−1

[
(�ni )

4
] P

ú 0. We have

Ei−1

[
(�ni )

4
]

d n2K
(
Ei−1[

(
�n
iX

2
)8
Ā{|�n

i
X2|d"}] +

[
Ei−1

(
�n
iX

2
)2

Ā{|�n
i
X2|d"}

]4)
.

Lemma 4 implies that,

Ei−1

[(
�n
iX

2
)2k

Ā{|�n
i
X2|d"}

]
= OP (ℎ

k) + OP (ℎ"
2k−Y ),

for k e 1. Then,
1n

i=1 Ei−1

[
(�ni )

4
]
= n3

(
OP (ℎ

4) + OP (ℎ"
8−Y )

)
= oP (1), since our assumption " ≪ ℎ

1
4−Y implies that " ≪ ℎ

1
4−Y ∕2 , which

is equivalent to n3ℎ"8−Y ≪ 1. It remains to check the condition (2.2.40) in [15]:
n1
i=1

Ei−1

[
�ni (�

n
iM)

] P

ú 0, (A.1)

whenM = W orM is a square-integrable martingale orthogonal toW . This is proved in Lemma 6 of the accompanying supplemental
material to this article. ¦

Proof of Proposition 2. We consider the decomposition:

u−1n

(
Z̃n(�"n) − Z̃n("n)

)

= "
Y−4
2

n

n1
i=1

((
�n
iX

)2
Ā{"<|�n

i
X|d�"} −

(
�n
iX

2
)2

Ā{"<|�n
i
X2|d�"}

)

+ "
Y−4
2

n

n1
i=1

((
�n
iX

2
)2

Ā{"<|�n
i
X2|d�"} − Ei−1

[(
�n
iX

2
)2

Ā{"<|�n
i
X2|d�"}

])

+ "
Y−4
2

n

n1
i=1

(
Ei−1

[(
�n
iX

2
)2

Ā{"<|�n
i
X2|d�"}

]
− Âi(�", ℎ)ℎ + Âi(", ℎ)ℎ

)

+ "
Y−4
2

n

(
n1
i=1

(
Âi(�", ℎ) − Âi(", ℎ)

)
ℎ − A(�", ℎ) + A(", ℎ)

)

=∶ T0 + T1 + T2 + T3,

where Âi(", ℎ) is defined as in (B.4). From Lemma 5 we have

T0 = n"(Y−4)∕2oP (ℎ"
2−Y ∕2) = oP (1).

Lemma 3 shows that T2 = oP (1). To show that T3 = oP (1), Lemma 5 of the supplement implies
n1
i=1

(
Âi(�", ℎ) − Âi(", ℎ)

)
ℎ − A(�", ℎ) + A(", ℎ) = oP (ℎ

1
2 "2−Y ) + oP (ℎ

3
2 "−Y ),

and each of the terms above is oP ("
4−Y
2 ) since ℎ

1
2 "2−Y ≫ ℎ

3
2 "−Y and ℎ

1
2 "2−Y ≪ "

4−Y
2 , which is implied from our assumption ℎ

4
8+Y ≪ "

since 1

Y
> 4

8+Y
. It remains to show T1

st
ú ü (

0, 2 + 1

0
�4sds

)
, for which we shall again use Theorem 2.2.15 in [15]. Define

�̃ni ∶= "
Y−4
2

((
�n
iX

2
)2
Ā{"<|�n

i
X2|d�"} − Ei−1

((
�n
iX

2
)2

Ā{"<|�n
i
X2|d�"}

))
.

We first need to compute Vn ∶=
1n

i=1 Ei−1

[
(�̃ni )

2
]
. We clearly have

Vn = "Y−4
n1
i=1

(
Ei−1

[(
�n
iX

2
)4

Ā{"<|�n
i
X2|d�"}

]

−Ei−1

[(
�n
iX

2
)2

Ā{"<|�n
i
X2|d�"}

]2)
.

Lemmas 2 and 4 imply that

Ei−1(�
n
iX

2)2Ā{"<|�n
i
X2|d�"} = OP (ℎ"

2−Y ),

Ei−1

(
�n
iX

2
)4

Ā{"<|�n
i
X2|d�"} =

C̄|�ti−1
|Y

4 − Y
ℎ"4−Y (�4−Y − 1) + oP (ℎ"

4−Y ).

Therefore,

Vn = "Y−4
n1
i=1

(
C̄

4 − Y
|�ti−1

|Y ℎ"4−Y (�4−Y − 1) + oP (ℎ"
4−Y ) + OP (ℎ"

2−Y )2
)

P

ú
C̄

4 − Y
(�4−Y − 1)+

1

0

|�s|Y ds,
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since "Y−4n(ℎ"2−Y )2 = ℎ"−Y ≪ 1. Next, we show
1n

i=1 Ei−1(�̃
n
i )

4
P

ú 0. We have

Ei−1(�̃
n
i )

4 d K"2Y−8
(
Ei−1[

(
�n
iX

2
)8
Ā{"<|�n

i
X2|d�"}]

+
[
Ei−1

(
�n
iX

2
)2

Ā{"<|�n
i
X2|d�"}

]4 )
.

Lemma 4 implies that for k e 1,

Ei−1

(
�n
iX

2
)2k

Ā{"<|�n
i
X2|d�"} = OP (ℎ"

2k−Y ),

and thus,
1n

i=1 Ei−1(�̃
n
i )

4 = "2Y−8OP ("
8−Y ) = oP (1). It remains to check the condition (2.2.40) in [15]:

n1
i=1

Ei−1

[
�̃ni (�

n
iM)

] P

ú 0, (A.2)

when M = W or M is a square-integrable martingale orthogonal to W . The proof is much more involved and technical than that
of (A.1) and is given in Lemma 7 of the accompanying supplemental material to this article. ¦

Proof of Theorem 1. Recall the notation of Propositions 1 and 2. In addition, we set up the following notation:

a1(") ∶=
C̄

2 − Y +
1

0

|�s|Y ds"2−Y =∶ �1"
2−Y ,

a2(") ∶= a2(", ℎ) ∶= −C̄
(Y + 1)(Y + 2)

2Y +
1

0

|�s|Y �2sdsℎ"−Y =∶ �2ℎ"
−Y ,

�n ∶= u−1n

(
Z̃n(�1") − Z̃n(")

)
= OP (1),

	n ∶= u−1n

(
Z̃n(�

2
1
") − 2Z̃n(�1") + Z̃n(")

)
= OP (1),

where the stochastic boundedness of �n and 	n is a consequence of Proposition 2. The proof is obtained in two steps.

Step 1. We first analyze the behavior of C̃ 2
n(", �1) = Ĉn(") − â1("), where

â1(") ∶=

(
Ĉn(�1") − Ĉn(")

)2

Ĉn(�
2
1
") − 2Ĉn(�1") + Ĉn(")

. (A.3)

If we let �1(� ) = �2−Y − 1 and �2(� ) = �−Y − 1, then, for i = 1, 2, we have

ai(�1") − ai(") = �i(�1)ai("), ai(�
2
1
") − 2ai(�1") + ai(") = �2i (�1)ai(").

For simplicity, we often omit the variable �1 on �i(�1). Also, note that, by definition, Ĉn(") =
√
ℎZ̃n(") + + 1

0
�2sds + A(ℎ, ") and

A(", ℎ) = a1(") + a2(", ℎ). Therefore, we may write

â1(") =
(�1a1(") + �2a2(") +

√
ℎun�n)

2

�2
1
a1(") + �2

2
a2(") +

√
ℎun	n

. (A.4)

By expanding the squares in the numerator and using the notation

ã1(") ∶= a1(") + �̃2a2(") ∶= a1(") +
2�1�2 − �2

2

�2
1

a2("),

we may express â1(") as

â1(") = ã1(") +
�2
2
(1 − �̃2)a

2
2
(") +

√
ℎ
[
2un�n(�1a1(") + �2a2(")) − ã1(")un	n

]
+ ℎu2n�

2
n

�2
1
a1(") + �2

2
a2(") +

√
ℎun	n

= ã1(") +
√
ℎ ×

O(ℎ3∕2"−2Y ) + OP (un"
2−Y ) + OP (

√
ℎu2n)

�2
1
a1(") + o(a1(")) + OP (

√
ℎun)

= ã1(") +
√
ℎ ×

O(ℎ3∕2"−2−Y ) + OP (un) + OP (ℎ
−1∕2"2)

�2
1
�1 + o(1) + OP ("

Y ∕2)

= ã1(") +
√
ℎ × OP (un), (A.5)

where in the last equality we use our assumption ℎ
4

8+Y
n ≪ "n to conclude that ℎ

3∕2"−2−Y ≪ un. Then, we see that C̃
2
n(", �1) = Ĉn(")−â1(")

is given by

C̃ 2
n(", �1) =

√
ℎZ̃n(") + +

1

0

�2sds + A(ℎ, ") − ã1(") + OP (ℎ
1∕2un)
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=
√
ℎZ̃n(")

+ +
1

0

�2sds + a1(") + a2(", ℎ) − [a1(") + �̃2a2(")] + OP (ℎ
1∕2un)

=
√
ℎZ̃n(") + +

1

0

�2sds + a2
2
(") + OP (ℎ

1∕2un), (A.6)

where a2
2
(") = (1 − �̃2)a2("). So,

Z̃2
n(") ∶=

√
n

(
C̃ 2
n(", �1) − +

1

0

�2sds − a2
2
(")

)
= Z̃n(") + OP (un), (A.7)

where the OP (un) term is a consequence of expression (A.6). Then, by Proposition 2,

Z̃2
n(") = Z̃n(") + OP (un)

st
ú ü(

0, 2+
1

0

�4sds
)
, (A.8)

since un ³ 0 by our Assumption "n ≪ ℎ
1

4−Y
n . Note that if "n ≫ ℎ

1
2Y
n , then

√
na2

2
≪ 1 and in place of (A.5) we have ã1(") +

√
ℎ × oP (1),

from which we conclude that

√
n

(
C̃ 2
n(", �1) − +

1

0

�2sds

)
st

ú ü(
0, 2+

1

0

�4sds
)
.

Step 2. Now we analyze C̃ 22
n (", �2, �1) = C̃ 2

n(", �1) − â2
2
(", �1, �2), where

â2
2
(", �1, �2) ∶=

(
C̃ 2
n(�2", �1) − C̃ 2

n(", �1)
)2

C̃ 2
n(�

2
2
", �1) − 2C̃ 2

n(�2", �1) + C̃ 2
n(", �1)

.

For simplicity, we omit the dependence on �1 and �2 in C̃ 2
n(", �1), C

22
n (", �1, �2), etc. First, analogous to �n, 	n defined in Step 1, we

define

�2
n ∶=u

−1
n

(
Z̃2

n(�2") − Z̃2(")
)
= u−1n

(
Z̃n(�") − Z̃n(") + OP (un)

)
= OP (1),

	 2
n ∶=u

−1
n

(
Z̃2

n(�
2
2
") − 2Z̃2

n(�2") + Z̃2
n(")

)
= OP (1),

where the stochastic boundedness of �2
n, 	

2
n follows from (A.7) and (13). Now, by definition (A.7), C̃ 2

n(") =
√
ℎZ̃2

n(")++ 1

0
�2sds+a2

2
(").

Also, with the notation �2
2
(� ) = �−Y − 1, the term a2

2
(") = (1 − �̃2)a2(") =∶ �2

2
ℎ"−Y satisfies

a2
2
(�2") − a2

2
(") = �2

2
(�2)a

2
2
("),

a2
2
(�2

2
") − 2a2

2
(�2") + a2

2
(") = (�2

2
)2(�2)a

2
2
(ℎ, ").

Therefore, we may express

â2
2
(") =

(�2
2
a2
2
(") +

√
ℎun�

2
n)

2

(�2
2
)2a2

2
(") +

√
ℎun	

2
n

= a2
2
(") +

√
ℎa2

2
(")un(2�

2
n − 	 2

n) + ℎu2n(�
2
n)

2

(�2
2
)2a2

2
(") +

√
ℎun	

2
n

= a2
2
(") +

√
ℎ ×

OP (un) + OP (ℎ
−3∕2"4)

(�2
2
)2�2

2
+ oP (1)

= a2
2
(") +

√
ℎ × OP (un),

where, in the last equality we used that "n ≪ ℎ
2∕(4+Y )
n to conclude that

(a2
2
)−1

√
ℎun = OP (ℎ

−1"Y "
4−Y
2 ) = OP (ℎ

−1"
4+Y
2 ) = oP (1),

(a2
2
)−1ℎ1∕2u2n = ℎ−3∕2"4 ≪ un = ℎ

−
1
2

n "
4−Y
2 .

Finally,

√
n

(
C̃ 22
n (", �2, �1) − +

1

0

�2sds

)

= ℎ−1∕2

(
C̃ 2
n(", �1) − +

1

0

�2sds − â2
2
(", �1, �2)

)
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= ℎ−1∕2

(
C̃ 2
n(", �1) − +

1

0

�2sds − a2
2
(")

)
+ O(un)

= Z̃2
n(") + OP (un)

st
ú ü

(
0, 2+

1

0

�4sds

)
,

where the third and fourth limit follow from (A.7) and (A.8), respectively. ¦

Appendix B. Asymptotic expansions for truncated moments

In this section, we provide high-order asymptotic expansions for the truncated moments of the Itô semimartingale X. As in
Appendix A, we denote C or K generic constants that may be different from line to line.

To simplify some proofs, we now lay out some additional notation related to the process J . Let N be the Poisson jump
measure of J and let N̄ be its compensated measure. Observe that due to condition (ii) in Assumption 1, there exists �0 * (0, 1)

such that q(x) > 0 for all |x| d �0. Next, let J̆ be a pure-jump Lévy process independent of J with triplet (0, 0, �̆), where
�̆(dx) = e−|x|p (C+Ā(0,@)(x) + C−Ā(−@,0)(x))Ā|x|>�0 |x|−1−Y dx, for a fixed p < 1 I Y , and define the Lévy process

J@
t =

(
b̄ + +�0<|x|d1 x�(dx)

)
t + +

t

0 +|x|d�0 xN̄(ds, dx) + J̆t. (B.1)

In other words, J@ has Lévy measure �(dx)Ā{|x|d�0} + �̆(dx)Ā{|x|>�0}, and, in particular, J
@
t satisfies all the conditions of Assumption

2 of the accompanying supplemental material to this article and, thus, we can apply the asymptotics of the truncated moments
established therein. Next, we write

J 0
t ∶= Jt − J@

t = +
t

0 +|x|>�0 xN(ds, dx) − J̆t, (B.2)

and observe J 0 has finite jump activity.
As an intermediate step, we first establish estimates for the truncated moments of the process

X2
t ∶= +

t

0

bsds + +
t

0

�sdWs + +
t

0

�sdJ
@
s . (B.3)

In a subsequent step, we show the same estimates also hold for X up to asymptotically negligible terms (Lemma 5, below). Note
that

Xt −X2
t = X

j,0
t + +

t

0

�sdJ
0
s .

In other words, the process X2 includes the continuous component of X and the infinite variation component + t
0
�sdJ

@
s , and X−X2

contains only finite variation terms.

Lemma 2. Let

Âi(", ℎ) =
C̄|�ti−1

|Y
2 − Y

"2−Y − C̄
(Y + 1)(Y + 2)

2Y
�2ti−1

|�ti−1
|Y ℎ"−Y . (B.4)

Suppose that Y * (0, 1) L (1, 8
5
) and ℎ

3
2(2+Y )

I
1
2

n ≪ "n ≪ ℎ
1

4−s
n , for some s * (0, 4). Then, for any i = 1,& , n,

Ei−1

[
(�n

iX
2)2Ā{|�n

i
X2|d"}

]
= �2ti−1

ℎ + Âi(", ℎ)ℎ + oP (ℎ
3∕2). (B.5)

Proof. We use the following notation

xi ∶= bti−1ℎ + �ti−1�
n
iW + �ti−1

�n
i J

@ =∶ xi,1 + xi,2 + xi,3,

ói ∶= �n
iX

2 − xi, ói,1 = +
ti

ti−1

bsds − bti−1ℎ, (B.6)

ói,2 = +
ti

ti−1

�sdWs − �ti−1�iW , ói,3 = +
ti

ti−1

�sdJ
@
s − �ti−1

�n
i J

@.

The following estimates, established in Lemma 3 of the accompanying supplemental material to this article, are often used:

Ei−1

[||ói,ā||p] d C

⎧⎪⎨⎪⎩

ℎp, ā = 1, p > 0

ℎ
(2Ip)+p

2
,

ā = 2, p > 0

ℎ1+
p
2 ā = 3, p * [1,@) K (Y ,@).

(B.7)

In particular Ei−1

[||ói||p] d Cℎ1+
p
2 for all p e 2. By our expansion for the truncated second-order moment of Lévy process given in

Proposition 2 of the accompanying supplemental material to this article, we can easily see that

Ei−1

[
x2i Ā{|xi|d"}

]
= �2ti−1

ℎ + Âi(", ℎ)ℎ + oP (ℎ
3
2 ),
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because the higher-order terms ℎ3"−Y−2, ℎ2"2−2Y , and ℎ"2−�̄ (�̄ > 0 arbitrary) are smaller than ℎ
3
2 due to the restrictions Y < 8∕5

and ℎ
3

2(2+Y )
I
1
2

n ≪ "n ≪ ℎ
1

4−s
n . Therefore, for (B.5) to hold, it suffices that

Āi ∶= Ei−1

[
(�n

iX
2)2Ā{|�n

i
X2|d"}

]
− Ei−1

[
x2i Ā{|xi|d"}

]
= oP (ℎ

3∕2). (B.8)

Clearly,

|Āi| d 2Ei−1

[
x2i Ā{|xi+ói|d"<|xi|}

]
+ 2Ei−1

[ó2
i Ā{|xi+ói|d"<|xi|}

]

+ 2|Ei−1

[
xióiĀ{|xi+ói|d",|xi|d"}

]
|

+ Ei−1

[
x2i Ā{|xi|d"<|xi+ói|}

]
+ Ei−1

[ó2
i Ā{|xi+ói|d",|xi|d"}

]
=

51
ā=1

Āi,ā .

The terms Āi,2 and Āi,5 are straightforward since Āi,ā d Ei−1

[ó2
i

] d Cℎ2 = oP (ℎ
3∕2). For the term Āi,3, expanding the product xiói,

we get 9 terms of the form Aā,ā2 ∶= |Ei−1

[ói,āxi,ā2Ā{|xi+ói|d",|xi|d"}
]
| (one for each pair ā,ā2 * {1, 2, 3}). For terms with xi,1, since

|xi,1| d Kℎ clearly

Aā,1 d CℎEi−1

[|ói,ā|] d CℎEi−1

[|ói,ā|2]
1
2 d Cℎ2.

For terms involving xi,3, Lemma 12 of the accompanying supplemental material to this article implies

Aā,3 d CEi−1

[
|�n

i J
@||ói,ā|Ā{|xi|d"}

]

d CEi−1

[
|�n

i J
@|2|Ā{|xi|d"}

] 1
2
Ei−1

[ó2
i,ā
|
] 1
2 d Cℎ

1
2 "

2−Y
2 ℎ = oP (ℎ

3∕2).

The terms involving xi,2 are more delicate. We start with

Aā,2 d C|Ei−1

[
�n
iW ói,ā] | + CEi−1

[
|�n

iW ||ói,ā|Ā{|xi+ói|>" or |xi|>"}
]
. (B.9)

Clearly, Ei−1

[
�n
iW ói,ā] = 0 for ā = 1, 3. For ā = 2, Ei−1

[
�n
iW ói,2] = Ei−1

[+ ti
ti−1

(�s − �ti−1 )ds
]
= OP (ℎ

2). For the second term in (B.9)
on the event {|xi + ói| > " or |xi| > "}, we have that |xi,ā| > "∕4 for at least one ā or |ói| > "∕4. The case |xi,1| > "∕4 is eventually
impossible for n large enough (since b is bounded), while both cases |xi,2| > "∕4 and |ói| > "∕4 are straightforward to handle using
the Markov’s and Hölder’s inequalities. For instance, for any m e 1,

Ei−1

[
|�n

iW ||ói,ā|Ā{|ói|>"∕4}
]

d C

"m
Ei−1

[|�n
iW ||ói,ā||ói|m]

d C

"m
Ei−1

[
|�n

iW |3
] 1
3
Ei−1

[|ói,ā|3]
1
3 Ei−1

[|ói|3m]
1
3

d C

"m
ℎ

1
2 ℎ

5
6 ℎ

1
3
+

m
2 = Cℎ

1
2 ℎ

5
6 ℎ

1
3

(
ℎ

"2

) m
2

. (B.10)

So, by picking m = 1, we can make this term oP (ℎ
3∕2). The remaining term is when |xi,3| > "∕4. In that case, for any p, q > 2 such

that 1

p
+

1

q
=

1

2
, applying Lemma 6,

Ei−1

[
|�n

iW ||ói,ā|Ā{|xi,3|>"∕4}
]

d CEi−1

[|�n
iW |p] 1

p Pi−1

[
|�n

i J
@| > "

4

] 1
q
Ei−1

[|ói,ā|2]
1
2

d Cℎ
3
2 (ℎ"−Y )

1
q ≪ ℎ

3
2 ,

since, by our assumption on ", we have ℎ
1
Y ≪ ". We then conclude that Āi,3 = oP (ℎ

3
2 ).

It remains to analyze Āi,1 and Āi,4. The proof is similar in both cases and we only give the details for the second case to save
space. For some � = �n ³ 0 (0 < � < "), whose precise asymptotic behavior will be determined below, we consider the decomposition:

Āi,4 d Ei−1

[
x2i Ā{"−�<|xi|d"}

]
+ Ei−1

[
x2i Ā{|xi|d"−�,"d|xi+ói|}

]
=∶ òi,1 +òi,2.

By the expansion in the Proposition 3 of the accompanying supplemental material to this article and our assumptions, we have

òi,1 = Cℎ["2−Y − (" − �)2−Y ] + C 2ℎ2["−Y − (" − �)−Y ] + oP (ℎ
3
2 )

= Cℎ"1−Y � + oP (ℎ"
1−Y �) + oP (ℎ

3
2 ). (B.11)

Therefore, to obtain òi,1 = oP (ℎ
3
2 ), we require

� ≪ ℎ
1
2 "Y−1. (B.12)
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For òi,2, note that |xi| d " − � and " d |xi + ói| imply that |ói| > �. Also, " d |xi + ói| implies that |xi,ā| > "∕4 for at least one ā or
|ói| > "∕4. The case |xi,1| > "∕4 is eventually impossible for n large enough, while both cases |xi,2| > "∕4 and |ói| > "∕4 are again
straightforward to handle using Markov’s and Hölder’s inequalities as in (B.10). Therefore, we need only to consider the case when
|xi,3| > "∕4 and max{|xi,1|, |xi,2|, |ói|} d "∕4. In particular, since |xi| = |xi,1 + xi,2 + xi,3 + ói| < ", we have "∕4 < |xi,3| d C" for some
C. Then, we are left to analyze the following term:

Ei−1

[
x2i Ā{ "

4
<|xi,3|dC",|ói|>�}

] d C

31
ā=1

Ei−1

[
x2
i,ā
Ā{

"
4
<|xi,3|dC",|ói|>�}

]

=∶

31
ā=1

Ąi,ā .

Clearly, Ąi,1 = OP (ℎ
2) = oP (ℎ

3∕2). For Ąi,2, by Hölder’s inequality, for any p, q > 1, r e 2, such that 1

p
+

1

q
+

1

r
= 1, recalling (B.7) and

Lemma 6 below,

Ąi,2 d C
1

�
Ei−1

[
(�n

iW )2Ā{ "
4
<|xi,3|}|ói|

]

d C
1

�
Ei−1

[
(�n

iW )2p
] 1
p Pi−1

[
"

4
< |xi,3|

] 1
q
Ei−1

[|ói|r]
1
r

d C
1

�
ℎ(ℎ"−Y )

1
q (ℎ1+

r
2 )

1
r =

C

�
ℎ

5
2
−

1
p "

−
Y
q .

If Y < 1, we take q ³ @ and p = r = 2, to conclude that we only need � ≫ ℎ1∕2 for Ąi,2 = oP (ℎ
3∕2) to hold. This is consistent with

(B.12) (meaning they can be met simultaneously for at least one choice of the sequence �), since Y < 1.
Now we consider the case Y * (1, 8∕5). Clearly

Ąi,2 d C
1

�
Ei−1

[
(�n

iW )2Ā{ "
4
<|xi,3|}(|ói,1| + |ói,2| + |ói,3|)

]
.

Note Ā{
"
4
<|xi,3|} d Ā{K"<|�n

i
J@|}. Thus,

Ei−1

[
(�n

iW )2Ā{ "
4
<|xi,3|}|ói,1|

]

d ℎEi−1(�
n
iW )2P

(
K" < |�n

i J
@|)

d Cℎ3"−Y .

Similarly,

Ei−1

[
(�n

iW )2Ā{ "
4
<|xi,3|}|ói,2|

]

d (
Ei−1(�

n
iW )4Ei−1|ói,2|2)1∕2 P (

K" < |�n
i J

@|)

d Cℎ3"−Y .

For ā = 3, with p, q > 1, Y < r < 2, such that 1

p
+

1

q
+

1

r
= 1, from (B.7) we have

Ei−1

[
(�n

iW )2Ā{ "
4
<|xi,3|}|ói,3|

] d Cℎ(ℎ"−Y )
1
q (ℎ1+

r
2 )

1
r = Cℎ

5
2
−

1
p "

−
Y
q .

Then, taking r close to Y , p large, and q close to Y ∕(Y − 1), we obtain, for some s2, s22 > 0 that can be made arbitrarily small,

Ąi,2 d C

�

(
ℎ

5
2
−s2"1−Y−s

22
+ ℎ3"−Y

)
= O

(
�−1ℎ

5
2
−s2"1−Y−s

22
)
,

where we used ℎ
1
2 ≪ " to conclude that ℎ3"−Y ≪ ℎ

5
2 "1−Y ≪ ℎ

5
2
−s2"1−Y−s

22
. Thus, for Ąi,2 = oP (ℎ

3∕2) to hold, it suffices that for some
appropriately small s2, s22 > 0,

ℎ1−s
2
"1−Y−s

22
≪ �. (B.13)

The conditions (B.12) and (B.13) are consistent, since

ℎ1−s
2
"1−Y−s

22
≪ ℎ

1
2 "Y−1 þ ℎ

1−2s2

4Y−4+2s22 ≪ ", (B.14)

which is implied by our condition " ≫ ℎ
3

2(2+Y ) when provided s2, s22 are both chosen small enough, since 3

2(2+Y )
< 1

4−4Y
when Y < 8∕5.

It remains to analyze Ąi,3. As a consequence of Lemma 4 in the accompanying supplemental material to this article,
7 provided

that the condition � ≫ ℎ1∕2"Y ∕2 holds, we have

EĄi,3 d CE[(�n
i J

@)2Ā{|�n
i
J@|d"}Ā{|ói|>�n}] = O(ℎ2"2−2Y ) = o(ℎ3∕2),

7 This estimate is shaper than what can be obtained by applying simply Hölder’s inequality and, hence, require some special handling.
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where the second equality follows from " ≫ ℎ
3

2(2+Y ) . The condition � ≫ ℎ1∕2"Y ∕2 can be met under (B.12) since ℎ1∕2"Y ∕2 ≪ ℎ1∕2"Y−1.
Thus, (B.8) holds and this concludes the proof. ¦

Lemma 3. Let Âi(", ℎ) be as in (B.4) and suppose that Y * (0, 1) L (1, 8
5
) and ℎ

3
2(2+Y )

I
1
2

n ≪ "n ≪ ℎ
1

4−Y
n . Then, for any i = 1,& , n and

� > 1,

Ei−1

[
(�n

iX
2)2Ā{"<|�n

i
X2|d�"}

]

= Âi(�", ℎ)ℎ − Âi(", ℎ)ℎ + oP

(
ℎ"

4−Y
2

n

)
. (B.15)

Proof. We use the same notation as in (B.6). From the expansion in Proposition 2 of the accompanying supplemental material to
this article, we have that

Ei−1

[
x2i Ā{"<|xi|d�"}

]
= Âi(�", ℎ)ℎ − Âi(", ℎ)ℎ + oP

(
ℎ"

4−Y
2

n

)
,

since all higher-order terms ℎ3"−Y−2, ℎ2"2−2Y , ℎ
3
2 "1−

Y
2 , and ℎ"2−�̄ are all o(ℎ"

4−Y
2 ), for �̄ small enough. Therefore, it suffices to show

that

Āi ∶= Ei−1

[
(�n

iX
2)2Ā{"d|�n

i
X2|d�"}

]
− Ei−1

[
x2i Ā{"d|xi|d�"}

]

= oP

(
ℎ"

4−Y
2

n

)
. (B.16)

We have the decomposition:

|Āi| d 2Ei−1

[
x2i Ā{"<|xi+ói|d�",|xi|>�"}

]
+ 2Ei−1

[
x2i Ā{"<|xi+ói|d�",|xi|<"}

]

+ 4Ei−1

[ó2
i

]
+ Ei−1

[
|xiói|Ā{"<|xi+ói|d�","<|xi|d�"}

]

+ Ei−1

[
x2i Ā{"<|xi|d�",|xi+ói|>�"}

]
+ 2Ei−1

[
x2i Ā{"<|xi|d�",|xi+ói|<"}

]

=∶

61
ā=1

Āi,ā .

The term Āi,3 is clearly OP (ℎ
2) and hence, oP (ℎ"

(4−Y )∕2). For Āi,4, by Cauchy’s inequality, the expansion (2.7) in the Proposition 2
of the accompanying supplemental material to this article, and (B.7),

Āi,4 d 2Ei−1

[
|xiói|Ā{"<|xi|d�"}

] d CEi−1

[
x2i Ā{"<|xi|d�"}

] 1
2
Ei−1

[|ói|2]
1
2

d C
(
ℎ"2−Y

) 1
2 (ℎ2)

1
2 = ℎ

3
2 "

2−Y
2 ,

which is oP (ℎ"
(4−Y )∕2) since ℎ

1
2 ≪ ". The proofs of the remaining terms are similar. We give only one of those for simplicity. Consider

Āi,1. We decompose it as

(1∕2)Āi,1 d Ei−1

[
x2i Ā{�"<|xi|d�"+�}

]
+ Ei−1

[
x2i Ā{"<|xi+ói|d�",|xi|>�"+�}

]

=∶ òi,1 +òi,2.

By the expansion (2.7) in Proposition 2.2 and our assumptions, we have

òi,1 = Cℎ[(�")2−Y − (�" − �)2−Y ] + C 2ℎ2[(�")−Y − (�" − �)−Y ] + oP

(
ℎ"

4−Y
2

)

= Cℎ"1−Y � + oP (ℎ"
1−Y �) + oP

(
ℎ"

4−Y
2

)
.

Therefore, to obtain òi,1 = oP (ℎ"
(4−Y )∕2), we require

� ≪ "1+
Y
2 . (B.17)

For òi,2, we follow the same analysis as in the proof of Lemma 2. Indeed, the arguments following expression (B.12) show that
under the condition

� ≫ ℎ1∕2"Y ∕2, (B.18)

we have

òi,2 = OP

(
�−1ℎ

5
2 "1−Y

)
+ OP (ℎ

2"2−2Y ) + oP

(
ℎ"

4−Y
2

n

)
. (B.19)
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Observe the condition (B.18) is consistent with (B.17) since ℎ1∕2"Y ∕2 ≪ "1+Y ∕2 þ ℎ1∕2 ≪ ". For the first term on the right-hand

side of (B.19) to be oP (ℎ"
(4−Y )∕2), we require ℎ

3
2 "−1−

Y
2 ≪ �, which is consistent with the condition (B.17) since ℎ

3
2 "−1−

Y
2 ≪ "1+

Y
2

under " ≫ ℎ
3

2(2+Y ) . Therefore taking any � ³ 0 such that (ℎ1∕2" J ℎ
3
2 "−1−

Y
2 ) ≪ � ≪ "1+Y ∕2, we obtain òi,2 = oP

(
ℎ"

4−Y
2

n

)
, which

establishes (B.16) and completes the proof. ¦

Lemma 4. Suppose that
√
ℎ ≪ " ≪ ℎ

1
4−Y and Y * (0, 1) L (1, 8∕5). Then, for any k e 2,

Ei−1

[(
�n
iX

2
)2k

Ā{|�n
i
X2|d"}

]
(B.20)

= (2k − 1)!! �2kti−1
ℎk +

C̄|�ti−1
|Y

2k − Y
ℎ"2k−Y + oP

(
ℎ"2k−Y

)
+ OP

(
ℎk+

1
2
)
.

Proof. We use the same notation as in (B.6). The proof is similar to that of Lemma 2. From the expansion of Proposition 3 in the
accompanying supplemental material to this article, under our assumptions, we have that

Ei−1

[
x2ki Ā{|xi|d"}

]
= d1�

2k
ti−1

ℎk + d2ℎ"
2k−Y + oP

(
ℎ"2k−Y

)
, (B.21)

where d1 = (2k − 1)!! and d2 =
C̄

2k−Y
|�ti−1

|Y . Therefore, for (B.20) to hold, it suffices to show that

Ā̃i ∶= Ei−1

[
(�n

iX)2kĀ{|�n
i
X|d"}

]
− Ei−1

[
x2ki Ā{|xi|d"}

]

= oP
(
ℎ"2k−Y

)
. (B.22)

Consider the decomposition:

|Ā̃i| d CEi−1

[
x2ki Ā{|xi+ói|d"<|xi|}

]
+ CEi−1

[ó2k
i Ā{|xi+ói|d"<|xi|}

]

+

2k−11
ā=0

(
2k

ā

)
Ei−1

[|||x
ā
i ó2k−ā

i
||| Ā{|xi+ói|d",|xi|d"}

]

+ Ei−1

[
x2ki Ā{|xi|d"<|xi+ói|}

]
=

41
m=1

Ā̃i,m.

By (B.7), the term Ā̃i,2 = OP (ℎ
1+k) and, thus, is oP (ℎ"

2k−Y ). In light of (B.21), the ā–th summand appearing in Ā̃i,3 is bounded by a
constant times

Ei−1

[|||x
ā
i ó2k−ā

i
||| Ā{|xi|d"}

] d Ei−1

[||xi||2ā Ā{|xi|d"}
] 1
2
Ei−1

[||ói||4k−2ā
] 1
2

d (
OP (ℎ

ā

2 ) + OP (ℎ
1
2 "

2ā−Y
2 )

)
(ℎ1+2k−ā)

1
2

= OP

(
ℎk+

1
2
)
+ OP

(
ℎ1+k−

ā

2 "ā−
Y
2
)
.

The second term above is oP (ℎ"
2k−Y ) when " ≫

√
ℎ.

It remains to analyze Ā̃i,1 and Ā̃i,4. The proof is similar in both cases and we only give the details for the second case to save
space. For some � ³ 0 (0 < � < "), whose precise asymptotic behavior will be determined below, we consider the decomposition:

Ā̃i,4 d Ei−1

[
x2ki Ā{"−�<|xi|d"}

]
+ Ei−1

[
x2ki Ā{|xi|d"−�,"d|xi+ói|}

]
=∶ ò̃i,1 + ò̃i,2.

By the expansion (13) of Proposition 3 in the accompanying supplemental material to this article, we have

ò̃i,1 = Cℎ["2k−Y − (" − �)2k−Y ] + oP
(
ℎ"2k−Y

)

= OP (ℎ"
2k−1−Y �) + oP

(
ℎ"2k−Y

)
.

Thus, to obtain ò̃i,1 = oP
(
ℎ"2k−Y

)
, we require

� ≪ ". (B.23)

As in the proof of Lemma 2, when dealing with òi,2, it suffices to analyze the term:

Ei−1

[
x2ki Ā{

"
4
<|xi,3||dC",|ói|>�}

] d C

31
ā=1

Ei−1

[
x2k
i,ā
Ā{

"
4
<|xi,3||dC",|ói|>�}

]

=∶

31
ā=1

Ą̃i,ā .

Clearly, Ą̃i,1 = OP (ℎ
2k) = oP (ℎ"

2k−Y ). For Ą̃i,2, by Hölder’s inequality, for any p, q > 1 and r > Y such that 1

p
+

1

q
+

1

r
= 1:

Ą̃i,2 d C
1

�
Ei−1

[
(�n

iW )2kĀ{ "
4
<|xi,3|}|ói|

]
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d C
1

�
Ei−1

[
(�n

iW )2kp
] 1
p Pi−1

[
"

4
< |xi,3|

] 1
q
Ei−1

[|ói|r]
1
r

d C
1

�
ℎk(ℎ"−Y )

1
q (ℎ1+

r
2 )

1
r =

C

�
ℎ
k+ 3

2
−

1
p "

−
Y
q .

For the above to be smaller than ℎ"2k−Y , we need � ≫ ℎ
k+ 1

2
−

1
p "

Y−2k− Y
q . For � to be consistent with (B.23), we need that

ℎ
k+ 1

2
−

1
p "

Y−2k− Y
q
−1

≪ 1. This is always possible if we take q close to 1, p ¸ @, and r ¸ @ because ℎk+
1
2 "−2k−1 ≪ 1 under our

condition " ≫
√
ℎ.

It remains to analyze Ą̃i,3. Under the additional constraint

ℎ
1
2 "Y ∕2 ≪ �, (B.24)

Lemma 4 in the accompanying supplemental material to this article implies

Ą̃i,3 d Ei−1

[
(�n

i J
@)2kĀ{|�n

i
J@|dC"}Ā{|ói|>�n}

]
= O(ℎ2"2k−2Y ),

which implies Ą̃i,3 = oP (ℎ"
2k−Y ) since ℎ2"2k−2Y ≪ ℎ"2k−Y under our condition " ≫ ℎ1∕2. The conditions (B.23) and (B.24) are

consistent since ℎ
1
2 "Y ∕2 ≪ ", under our conditions. Thus, we conclude that (B.22) holds, which completes the proof. ¦

Lemma 5. Provided ℎ
1
2
−s

n ≪ "n ≪ ℎ
1

4−Y
n for some s * (0, 1∕2), and r0 J r1 * (0, Y I 1), for any � e 1,

|||
(
�n
iX

)2k
Ā{|�n

i
X|d"} − (�n

iX
2)2kĀ{|�n

i
X2|d"}||| (B.25)

= OP (ℎ"
2k−r1 ) + OP (ℎ"

2k−�r0 ) + OP (ℎ
2"2k−Y−r1�) + OP (ℎ"

2k−Y−1+�).

In particular, when ℎ
4

8+Y
n ≪ "n ≪ ℎ

1
4−Y
n , with r0, r1 as in Assumption 2,

|||
(
�n
iX

)2k
Ā{|�n

i
X|d"} − (�n

iX
2)2kĀ{|�n

i
X2|d"}||| = oP (ℎ"

2−Y ∕2), (B.26)

and the estimates (B.5), (B.15) and (B.20) hold with X in place of X2.

Proof. Let ò2k ∶=
|||
(
�n
iX

)2k
Ā{|�n

i
X|d"} − (�n

iX
2)2kĀ{|�n

i
X2|d"}||| and r = r0 J r1. Let us recall the definition of J

0 and X2 in (B.2) and

(B.3), respectively. Write Vt = Xt −X2
t = X

j,0
t + + t

0
�sdJ

0
s , and set

X
j,0
t = +

t

0 + �0(s, z)p0(ds, dz) + +
t

0 + �1(s, z)p1(ds, dz) =∶ Y 0
t + Y 1

t .

For any fixed integer k e 1, we have

ò2k =
|||(�

n
iX)2k − (�n

iX
2)2k

|||Ā{|�ni X|d", |�n
i
X2|d"}

+ (�n
iX)2kĀ{|�n

i
X|d", |�n

i
X2|>"}

+ (�n
iX

2)2kĀ{|�n
i
X|>", |�n

i
X2|d"}

=∶ T1 + T2 + T3.

A Taylor expansion of (x2 + v)2k at v = 0 gives |(x2 + v)2k − (x2)2k| d K|v|(|x2|2k−1 + |v|2k−1), so
T1 d K

(|�n
i V |2k + |�n

i V ||�n
iX

2|2k−1)Ā{|�n
i
X|d", |�n

i
X2|d"}. (B.27)

Note that Corollary 2.1.9 in [15] implies that for each p e 1,

Ei−1

(|�n
i Y

m|
"

I 1

)p

d Kℎ"−rm , m = 0, 1. (B.28)

Also, since J 0 is compound Poisson, writing N0(ds, dx) for the jump measure of J 0,

Ei−1

(|||
1

" +
ti

ti−1

�sdJ
0
s
||| I 1

)p d P
(
N0([ti−1, ti],R) > 0

) d Kℎ.

Thus we obtain Ei−1

(|||�n
i V

|||
p
Ā{|�n

i
V |d"}

) d Kℎ"p−r. Therefore, since |x + v| d " and |x| d " imply |v| d 2", from (B.27), we have

Ei−1T1 d K
(
Ei−1(�

n
i V )2kĀ{|�n

i
V |d2"} + "2k−1Ei−1|�n

i V |Ā{|�n
i
V |d2"}

)

d Kℎ"2k−r.

On T2, write

T2 = (�n
iX)2kĀ{|�n

i
X|d", |�n

i
X2|>"+"�} + (�n

iX)2kĀ{|�n
i
X|d"<|�n

i
X2|d"+"�}

=∶ T 2
2
+ T 22

2
, (B.29)
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where � e 1 is to be later chosen. Using that |x2 + v| d " and |x2| > " + "� imply |v| > "� , we get

Ei−1T
2
2
d K"2kPi−1

(|�n
i V | > "� , |�n

iX
2| > " + "�

)

d K"2k
(
Pi−1

(|�n
i (V − Y 1)| > "�∕2

)

+ Pi−1

(|�n
i Y

1| > "�∕2
)
P
(|�n

iX
2| > " + "�

) )

d K"2k
(
"−�r0ℎ + ℎ2"−Y−r1�

)
,

where we used that P(|�X2| > ") d Kℎ"−Y as a consequence of Lemma 6 and that Pi−1

(|�n
i Y

1| > u
) d Ei−1

( |�n
i
Y 1|
u

I 1
) d ℎu−r1 per

(B.28).
On the other hand, for T 22

2
, since |x2 + v| d " and |x2| d " + "� give |v| d 2" + "� ,

Ei−1T
22
2

= Ei−1(�
n
iX)2kĀ{|�n

i
X|d"<|�n

i
X2|d"+"�}

d KEi−1

[(
(�n

iX
2)2k + (�n

i V )2k
)
Ā{|�n

i
X|d"<|�n

i
X2|d"+"�}

]

d Ei−1(�
n
iX

2)2kĀ{"<|�n
i
X2|d"+"�} + OP ("

2k−rℎ).

Since � e 1, arguing as in (B.11), by applying Lemma 4, we obtain

Ei−1(�
n
iX

2)2kĀ{"<|�n
i
X2|d"+"�} = OP

(
ℎ
(
(" + "�)2k−Y − "2k−Y

))

= OP (ℎ"
2k−1−Y+�).

Now, turning to T3, write

T3 = (�n
iX

2)2kĀ{|�n
i
X|>", |�n

i
X2|d"−"�} + (�n

iX
2)2Ā{"−"�<|�n

i
X2|d"}

= T 2
3
+ T 22

3
.

Since |x2 + v| > " and |x2| d " − "� imply |v| > "� , the same arguments for T 2
2
and T 22

2
apply to T 2

3
, T 22

3
, giving (B.25).

To obtain (B.26) under ℎ
4

8+Y
n ≪ "n ≪ ℎ

1
4−Y
n , consider first k = 1. In this case, we may simultaneously satisfy each of

"2−�r0ℎ ≪ ℎ"2−
Y
2 , ( þ � < Y

2r0
), ℎ2"2−Y−r1� ≪ ℎ"2−

Y
2 ( þ ℎ

2
Y+2�r1 ≪ " ü " ≫ ℎ

4
8+Y if � < 16−2Y

8r1
), and ℎ"1−Y+� ≪ ℎ"2−

Y
2

(þ � > 1 + Y ∕2) provided � is chosen such that

1 +
Y

2
< � <

(
Y

2r0

)
I
(
16 − 2Y

8r1

)
,

which is always possible under the restrictions on r0, r1 in Assumption 2. Since r1 d Y ∕2, we also have "2−r1 ≪ "2−
Y
2 , concluding

(B.26) for k = 1. When k e 2, "2k−�r0ℎ ≪ ℎ"2−
Y
2 , ℎ2"2k−Y−r1� ≪ ℎ"2−

Y
2 , and ℎ"2k−1−Y+� ≪ ℎ"2−

Y
2 all hold by taking � = 1.

Finally, since " ≪ ℎ
1

4−Y implies ℎ"2−Y ∕2 ≪ ℎ3∕2, expression (B.26) implies each of (B.5), (B.15) and (B.20) hold with X in place
of X2. ¦

Lemma 6. Suppose 0 < Y < 2, and " ³ 0 with " ≫ ℎ1∕Y . For all p > 1 J Y , the following estimates hold:

E

(|�n
i J |
"

I 1

)p

d Kℎ"−Y , Ei−1

(|�n
iX|
"

I 1

)p

d K
(
ℎ"−Y + ℎp∕2"−p

)
. (B.30)

In particular, with V = J or V = X, Pi−1

[|�n
i V | > "

] d ℎ"−Y .

Proof. We only give the proof for |�n
iX| since the proof for other term is similar. It suffices to establish the bound for + ti

ti−1
btdt,

+ ti
ti−1

�tdWt and �n
iX

j separately. It holds immediately for + ti
ti−1

btdt, since "−p
||| + ti

ti−1
btdt

|||
p d K"−pℎp ≪ "−pℎp∕2. for the second term,

Burkholder–Davis–Gundy inequality gives "−pEi−1
||| + ti

ti−1
�tdWt|p d Kp(ℎ

1∕2"−1)p. For �n
iX

j , we first consider �n
iX

j,@ as in (6). Applying
Corollary 2.1.9(a)8 in, we obtain

Ei−1

(|�n
iX

j,@|
"

I 1

)p

d Kℎ"−Y .

Applying Corollary 2.1.9(c) in [15], we have

Ei−1

(|�n
iX

j,0|
"

I 1

)p

d Kℎ"−r,

8 Strictly speaking, this corollary assumes " = ℎq for some q * (0, 1∕Y ), though a straightforward adaptation shows it holds provided ℎ1∕Y ≪ " ≪ 1.
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where r = r0 J r1, which gives

Ei−1

(|�n
iX

j |
"

I 1

)p

d Kℎ"−Y .

The remaining statements follow since

Pi−1

[|�n
i V | > "

] d Ei−1

(|�n
i V |
"

I 1

)p

,

for every p > 0, and ℎp∕2"−p ≪ ℎ"−Y for p large enough. This completes the proof. ¦

Appendix C. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.spa.2024.104429.
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