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ARTICLE INFO ABSTRACT
Keywords: Statistical inference for stochastic processes based on high frequency observations has been an
Integrated volatility estimation active research area for more than two decades. One of the most well-known and widely studied
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High-frequency data
Truncated realized variations
Efficiency

problems has been the estimation of the quadratic variation of the continuous component of
an Itd semimartingale with jumps. Several rate- and variance-efficient estimators have been
proposed in the literature when the jump component is of bounded variation. However, to date,
very few methods can deal with jumps of unbounded variation. By developing new high-order
expansions of the truncated moments of a locally stable Lévy process, we propose a new rate-
and variance-efficient volatility estimator for a class of It6 semimartingales whose jumps behave
locally like those of a stable Lévy process with Blumenthal-Getoor index Y € (1,8/5) (hence,
of unbounded variation). The proposed method is based on a two-step debiasing procedure for
the truncated realized quadratic variation of the process and can also cover the case Y < 1.
Our Monte Carlo experiments indicate that the method outperforms other efficient alternatives
in the literature in the setting covered by our theoretical framework.

1. Introduction

Statistical inference for stochastic processes based on high-frequency observations has attracted considerable attention in the
literature for more than two decades. Among the many problems studied to date, arguably none has received more attention than
that of the estimation of the continuous (or predictable) quadratic variation of an It6 semimartingale X = {X,}5o. Specifically, if

N t r .
X = Xo+ X{ + X! :=X0+/0 bsds+/0 o dW,+ X/, 1€[0,T], @

where X, € R, W = {W,},5, is a Wiener process and X/ = {X { }i>0 is @ pure-jump It6 semimartingale, then our estimation target is

T
IV = / o2ds.
0

This quantity, also known as the integrated volatility or integrated variance of X, has many applications, especially in finance, where X
typically models the log-return process of a risky asset and IV, measures the overall uncertainty or variability inherent in X during
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the time period [0,7]. When X is observed at evenly spaced times 0 =1, <f; < <1, =T, in the absence of jumps, an efficient
estimator of IV is given by the realized quadratic variation v V=20 (X, - ,H)Z in the so-called high-frequency (or infill)
asymptotic regime; i.e., when n - o0 and T =1, is fixed. In the presence of jumps, v 1 is no longer even consistent for I'V;, instead
converging to IVy + Y, 7 (4X,)?, where AX, := X, — X, denotes the jump at time s. To account for jumps, several estimators have
been proposed, among which the most well-known are the truncated realized quadratic variation and the multipower variations.
We focus on the first class, which, unlike the second, is both rate- and variance-efficient, in the Cramer-Rao lower bound sense,
when jumps are of bounded variation under certain additional conditions.

The truncated realized quadratic variation (TRQV), also called truncated realized volatility, was first introduced by [1,2] and is
defined as

n
G = Y (X0 g x1<c @
i=1
where € = ¢, > 0 is a tuning parameter converging to 0 at a suitable rate. Above, 47X =X, — X,  is the ith increment of (X,);,
based on evenly spaced observations X, t2 e+ > Xy, OVEr a fixed time interval [0,T] (i.e., t; = ih, w1th h =T /n). It is shown in [3] that
TRQV is consistent when either the jumps have finite activity or stem from an 1nf1n1te -activity Lévy process. In a semimartingale
model with Lévy jumps of bounded variation, Cont and Mancini [4] showed that the TRQV admits a feasible central limit theorem
(CLT), provided that ¢, = ch? with some » € [— = Y 5), where Y € [0, 1) denotes the Blumenthal-Getoor index. In [5], consistency
was established for a general Ito semimartingale X, and a corresponding CLT is given when the jumps of X are of bounded variation.
In that case, the TRQV attains the optimal rate and asymptotic variance of \/h_,, and 2 fOT G?ds, respectively.

However, in the presence of jumps of unbounded variation, arguably the most relevant for financial applications (see, e.g., [6-8],
and the results in Table 1 below), the situation is notably different, and the available literature on TRQV offers an incomplete
picture. In [4], it is shown that when jumps stem from a Lévy process with stable-like small-jumps of infinite variation, the
TRQV estimator 6,,(5) converges to IV, at a rate slower than \/h_,, Further, in [9] it is shown that when the jump component
J is a symmetric Y-stable Lévy process and ¢, = h? with @ € (0,1/2), the decomposition Coe,) - IVy = \Vh,Z, + R, holds,
where Z, converges stably in law to N'(0,2 /OT G?ds), while R, is precisely of order ef,‘y in the sense that R, = O p(eﬁ‘y) and
634 = Op(R,) (which decays too slowly to allow for efficiency when Y > 1). In [10], a smoothed version of the TRQV estimator
of the form 6;?""(8) = ZLI(X” - Xt,-,l)z(/’((Xt,- - X,H)/g) is considered,’ where ¢ € C* vanishes in R\(-2,2) and ¢(x) = 1 for
x € (=1,1). In that case, using the truncation level ¢, := A%, it is shown that éfm(en) - IVy = \/h,Z, + R, with R, such that

&R, - ¢y [ @@)ul'~Y du, for a constant ¢, # 0, and still Z, i N0, 2/0T c?ds). By taking ¢ such that [ e@)|u|'" du = 0,

a “bias-corrected” estimator was considered under the additional condition that Y < 4/3. Specifically, the resultmg estimator is
such that, for any € > 0, CS'"(E ) =1V = oP(h =), “nearly” attaining the optimal statistical error Op(h ) Unfortunately, the
construction of such an estimator requires knowledge or accurate estimation of the jump intensity index Y, and no feasible CLT was
proved when jumps are of unbounded variation even assuming Y is known.

Apart from TQRV-based approaches, efficient estimation of 7V, when the jumps have unbounded variation is intrinsically limited
in the general case. In [11], it was shown that when the jump intensity index Y > 1, the best possible convergence rate, in a minimax
sense, over certain “bounded” classes of semimartingales, is of order (nlog n)~>=Y)/2, Nevertheless, in principle, a faster convergence
rate may be attainable if one constrains the process X to belong to a certain semiparametric class such as when the jumps exhibit
a “locally stable”-like behavior. Obviously, the fastest possible rate one can hope to achieve is n~!/2, which coincides with the one
attained by the realized quadratic variation in the continuous case and is known to be optimal in a minimax sense.

The first (and to-date, only) rate- and variance-efficient estimator of the integrated volatility known in the literature for
semimartingales when Y > 1 was proposed by [12], under a locally-stable assumption on jumps, but with some notable additional
restrictions: these results require either that the jump intensity index Y < 3/2, or that the “small” jumps of the process X are
“symmetric”.? Their estimator is based on locally estimating the volatility from the empirical characteristic function of the process’
increments over disjoint time intervals shrinking to 0, but still containing an increasing number of observations. It requires two
debiasing steps, which are simpler to explain for a Lévy process X with symmetric Y-stable jump component X/. The first debiasing
step is meant to reduce the bias introduced when attempting to estimate log E(cosX, / \/h,)) with 10g{ 1 Zf L cos(ud? X /y/h,)}. The
second debiasing step is aimed at eliminating the second term in the expansion —2 log E(cos(uX hy / \/_ N =o +2|y|YuY‘2h,11_Y/ 2y
O(h,), which otherwise diverges when multiplied by the optimal scaling 4, V2 _ g2, Using an extension of this approach, Jacod
and Todorov were able to apply these techniques to a more general class of It6 semimartingales in [13], even allowing any Y < 2,
though only rate-efficient, but not variance-efficient, estimators were ultimately constructed.

On the other hand, in the special case of Lévy processes, efficiency across the full range 0 < Y < 2 without symmetry requirements
has been attained by [14], again under a locally stable assumption, via a generalized method of moments. Specifically, for some
suitable smooth functions f}, f,, ..., f,, and a scaling factor u,, - o, [14] proposed to search for the parameter values 0= (51, ,gm)
such that

1 Zf] U, A" X Eﬁ(fj(u,,A;’)?)) =0, j=1,....m, 3)

1 The authors in [10], in fact, consider the more general estimation of fDT f(x S)afdx for functions f of polynomial growth, for which IV; is a special case.
2 Jacod and Todorov [12] also constructed an estimator that is rate-efficient even in the presence of asymmetric jumps, but its asymptotic variance is twice
as big as the optimal value 2 _/OT o¥ds and, thus, it is not variance efficient.
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Table 1

Parameter estimates for a Lévy model oW, + X/ with semi-parametric Lévy density (C,1,., +
x=0

C_1,.9)q()|x|™"~" with g(x) — 1 applied to stock data over a 1-year horizon at different

sampling frequencies. Parameter estimates were obtained via the method [14] with M = 1.
Intraday data was obtained from the NYSE TAQ database of 2005 trades via Wharton’s WRDS

system.

Stock Freq. & ¢, [l Y
INTC 1 min 0.216 0.0096 0.0075 1.43
INTC 5 sec 0.241 0.0311 0.0292 1.60
PFE 5 min 0.180 0.0232 0.0199 1.14
PFE 1 min 0.196 0.0105 0.0066 1.37
AMAT 5 sec 0.344 0.0014 0.0012 1.85
SPY 5 sec 0.103 0.0003 0.00005 1.82
AMGN 1 min 0.211 0.0032 0.0038 1.53
MOT 1 min 0.244 0.0183 0.0066 1.33

where X is the superposition of a Brownian motion and independent stable Lévy processes closely approximating X in a certain
sense. The distribution measure Py of X depends on some parameters 0 = (|, ..., 6,,), one of which is the volatility ¢ of X, and Eg(-)
denotes the expectation with respect to Py. Aside from the fact that this method can only be applied to Lévy processes, it also suffers
from other drawbacks. First, its finite-sample performance critically depends on the chosen moment functions fi, ..., f,,. Secondly,
its implementation is computationally expensive and may lead to numerical issues since it involves solving a system of nonlinear
equations (including possible non-existence of solutions to (3) over finite samples). Moreover, in addition to the required use of a
numerical solver to determine the values of 8 in (3), the expectations appearing therein need to be numerically approximated since
explicit expressions for the moments Eq(f j(u,,A;')? )) are typically not available. This fact introduces additional numerical errors that
complicates its performance.

In this paper, we consider a new method to estimate the integrated volatility IV, = fOT afd s of an It6 semimartingale whose jump
component is given by a stochastic integral with respect to a tempered-stable-like Lévy process J of unbounded variation. To the
best of our knowledge, our method, together with [12], are the only efficient methods to deal with jumps of unbounded variation
for semimartingales. The idea is natural. We simply apply debiasing steps similar to those of [12] to the TRQV of [3]. To give
the heuristics as to why this strategy works, consider a small-time expansion of the truncated moments E(X 2:1” X, 1<e,}) of a Lévy
process X, = bt +oW,+ X f in the asymptotic regime h,, ¢, — 0 with ¢,/ \/E — 0. Using a variety of techniques, including a change
of probability measure, Fourier-based methods, and small-large jump decompositions, we show the following two expansions, for
integers k > 2:

E [Xﬁnluxh”'gn)] = 02h, + e h,e2 Y e, h2eY +hod.,
X3 1y1x, 1201 | = @k = DURE + ¢3 h,e Y +hou,

for certain constants ¢, ¢,, ¢; # 0 that are explicitly computed. Hereafter, h.o.t. stands for ‘higher order terms’. The expansions above
are the most precise of their type in the literature and are of interest in their own right. Based on the first expansion above, it is

easy to see that the rescaled bias E[h;l/ 2(6,,(5) — 02T)] satisfies

EREN _1 1
E [h,, 2 (Cn(e) - GZT)] =Tc h, €2 +Te,hle]” +hot., 4

which suggests the necessity of the condition h;l/ 253‘"’ = o(1) for a feasible CLT for 6,,(5) at the rate \/h,. However, together with
the (necessary) condition ¢,/+/h, — oo, this can happen only if Y < 1, and removal of the first terms in (4) is consequently necessary
for efficient estimation when jumps are of unbounded variation. To that end, note that for any ¢ > 1,

E(C,c0-C,0) =@~ +hot,
E(C,@%0-26,¢0+6,@) =@ =177 +hot.
The above formulas motivate the “bias-corrected” estimator
(Gco-Go)

C,(c2e) - 2C,Ce) + Cyle)

which is the essence of the debiasing procedure of [12]. As we shall see, the story is more complicated than what the simple heuristics
above suggest. Our main result shows that, for the class of Itd semimartingales described above, the estimator (5) is indeed rate-
and variance-efficient provided that Y € (1,4/3). Furthermore, if Y € (1,8/5), a second bias-correcting step will achieve both rate-
and variance-efficiency (for the case 8/5 < Y < 2, see remark at the end of Section 3). Even though our main motivation lies in
incorporating jumps of unbounded variation, we show that the debiasing steps will still achieve efficiency in the case that Y < 1
(though, of course, no debiasing is needed in that case because the jumps are of bounded variation).

Cle:0) :=Cyle) - ©)
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Though our approach is natural, mathematically establishing its efficiency is highly nontrivial, starting from the new high-
order expansions of the truncated moments of Lévy processes — which, beyond heuristics, ultimately play a key role in analyzing
asymptotics for the debiasing technique - to the application of Jacod’s stable central limit theorem for semimartingales (in particular,
the verification of the asymptotic ‘orthogonality’ condition (2.2.40) in [15]). Our Monte Carlo experiments indicate improved
performance compared to [12] (and also [14]) for the important class of CGMY Lévy processes (cf. [16]) and for a Heston stochastic
volatility model with CGMY jumps in the range of values of Y covered by our theoretical framework.

If we limit ourselves to a Lévy model, our approach is more computationally efficient and numerically stable than that in [14].°
For more general semimartingales, our procedure is simpler than that in [12] since it does not require an extra debiasing step to
correct the nonlinear nature of the logarithmic transformation employed therein nor does it require a symmetrization step to deal
with asymmetric jump components. Furthermore, our method does not rely on a ‘localization’ technique in the sense that it does
not need to break the data into disjoint blocks where the integrated volatility is locally estimated. The latter step introduces an
additional tuning parameter absent from our method.

Let us emphasize that our method is the first variance- and rate-efficient nonparametric method for integrated volatility free of
complete symmetry assumptions on small jumps that is capable of exceeding the limit ¥ < 3/2 imposed in [12,13]. Symmetry is
potentially a strong assumption for financial returns as there is a general belief that significant losses are more likely than significant
gains. For instance, recently [17] examined several empirical studies from the literature and observed that the majority display
negative skewness. Of course, skewness may arise from either large or small jumps, though large jump asymmetry has received
most attention in empirical work. Indeed, there are few studies to date that estimate the intensity of small positive and negative
jumps separately. An exception is [18], who, using MLE applied to daily S&P500 index data from 1996-2006, obtained the estimates
C, =0.7119, C_ = 05412, G = 59.94, M = 59.94, ¥, = 1.0457, and ¥~ = 1.1521 under a pure-jump Lévy model with Lévy density
Coe/Gx|7+ 711 o+ C_e /M |x|7-=11__,. which points to asymmetry in small jumps. For further illustration, in Table 1 below,
we fit a Lévy model oW, + X,j, with semi-parametric Lévy density (C, 1, + C_1x<0)q(x)|x|_y_1 (here, g(x) ﬂ 1). We use Mies’
method of moments (cf. [14]) for different stocks and frequencies* over a 1-year period in 2005. It is clear that ¢ ', is different
from C_, sometimes by a relatively large value, indicating further evidence for asymmetry in small jump behavior. Furthermore, all
values of ¥ are larger than 1, indicating the presence of a jump component of unbounded variation.

Finally, let us also remark that our result opens the doors to attain rate- and variance-efficient estimators free of symmetry
requirements beyond the mark 8/5 or in more general semiparametric models with successive Blumenthal-Getoor indices by
considering further debiasing steps. These directions will be investigated in further work.

The rest of this paper is organized as follows. Section 2 introduces the framework and assumptions as well as some known
preliminary results from the literature. Section 3 introduces the debiasing method and main results of the paper. Section 4 illustrates
the performance of our method via Monte Carlo simulations and compares it to the method in [12]. The proofs of the key results
are deferred to two appendix sections. The proofs of some technical lemmas and other supporting propositions are deferred to the
accompanying supplemental material to this article.

2. Setting and background

In this section, we introduce the model, main assumptions, and some notation. We consider a 1-dimensional It6 semimartingale
X = (X,)er, of the form (1), defined on a complete filtered probability space (2, #, (%),eg, . P)- Since it has no impact on the value
of the increments of X, for simplicity throughout we assume X,, = 0. We assume the jump component X/ can be decomposed into
a sum of an infinite-variation process X/*® and a finite variation process X’ given, for t € R, as

X! = X2+ x7°
t t
:=/ ;(SfdJs+/ /{50(s,z)p0(ds,dz)+51(s,z)p1(ds,dz)}, ©)
0 0

where y = {4, },»9 is an adapted process satisfying appropriate integrability conditions, J := (J,),cg, is an independent pure-jump
Lévy process with Lévy triplet (b,0, v), py, p;, are Poisson random measures on R, x R with intensities q;(ds, dz) = ds ® 4;(dz), where
the A,’s are o-finite measures on R, and p, is assumed independent of J. The specific conditions on v, 4;, and on the coefficient
processes §;, y, and o are given below.

The Lévy measure v is assumed to admit a density s : Ry — R, of the form

500 1= 22 = (€110 + C o)) x| @

Above, Ry :=R\{0}, C, >0,Y €(1,2),and g : Ry — R, is a bounded Borel-measurable function satisfying the following conditions:

Assumption 1.

(i) g(x) > 1,as x > 0;

3 Though the method of [14] allows for simultaneous estimation of several parameters of the model (such as both ¢ and Y).
4 As pointed out in [14] (see also the paragraph after (3) above), numerical issues can arise related to feasibility of the estimating equations associated with
the method. We are only presenting the results when the algorithm successfully finishes and yields reasonable values.
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(ii) there exist a, # 0 such that

1 0
/ )q(x) -1- a+x’x_y_ldx +/ )q(x) —1—a_x||x] Y 1dx < .
0 -1

These processes are sometimes called “stable-like Lévy processes” and were studied in [19,20] and many other works. In simple
terms, condition (i) above says that the small jumps of the Lévy process X behave like those of a Y-stable Lévy process with Lévy
measure

Wdx) 1= (Cy1(g,00)(X) + C_1 (oo 0)(x)) x|V 'dx. (®)

The condition Y € (1,2) implies that J has unbounded variation in that sense that ), |J;, = J;, | = oo, as., as the partition
0=ty<t <--<t,=T is such that max{s; —#,_;} - 0.

As discussed in Section 1, in view of [11], the locally Y-stable aspect of Assumption 1 is crucially important for our results,
and similar assumptions have been made by other authors (e.g, [12,14]). Though not completely general, the class is still relevant
in applications, as many of the models proposed in the literature (especially, in finance) fall within this class. Nevertheless, from
a theoretical point of view, it remains to be seen as to what the broadest assumptions may be under which one can still attain
estimation efficiency.

As in [19], it will be important for our analysis to apply a density transformation technique [21, Section 6.33] to “transform”
the process J into a stable Lévy process. Concretely, we can change the probability measure from P to another locally absolutely
continuous measure IP‘ under which W is still a standard Brownian motion independent of J, but, under IP’ J has Lévy triplet (5,0, v),
where V(dx) is given as in (8) and bi=b+ /0 <xl<1 x(V—v)(dx). The key assumption above is (ii), which would allow us to decompose
the log-density process

#,

U, :==In s
dIP’|%

as a sum of a bounded variation process and two spectrally one-sided Y-stable Lévy processes.
Finally, we give the conditions on ¢ and the coefficient processes b, &y,5;, and y in (1) and (6).

Assumption 2.

(i) o is cadlag adapted.
(ii) The process y is given as

t t
Xr=XO+A bé(ds-i_/o Z,{st'

(iii) The processes W, B are Brownian motions independent of (J, p,.p,); (6;,p;) is independent of (X¢, J, y,py.8y); J is indepen-
dent of o.

(iv) The processes X4, b, and b% are cadlag adapted, and &, §, are predictable. There is also a sequence {7}, of stopping times
increasing to infinity, nonnegative 4,;(dz)-integrable functions H;, and a positive sequence {M,},, such that

lo ] + 16,1 + 167 | + | ZF | < M,
[Eo,4s — 0 F)| + Elloyy, — 0,17 [F) < M,s,
(180t 2)] A 1)0 < M, H(2).
(18, D AT < M, H,(2),

t<rt

for some r; € [0, =) and r; € [0,Y/2).

2% Y

Above, the parameters ry,r; control the degree of activity in the nuisance finite-variation jump terms. Two such terms are
included to allow for a broader range of finite-variation jump activity in our model setup. Note that Y /2 is always bigger than
Y /(2 + Y), which shows that when the bounded variation jump component is independent from the other processes, we can
incorporate a wider range of jump activity. These restrictions effectively guarantee that the bias introduced by finite variation
components are negligible in comparison to leading bias terms arising from the locally-stable jumps in X.

3. Main results

In this section, we construct an efficient estimator for the integrated volatility 1V = fOT o2ds based on the well-studied estimator
TRQV (2). All proofs are deferred to the Appendix and supplement.

Throughout, we assume the process X = {X,},» is sampled at n evenly spaced observations, X, , X, ,..., X, , during a fixed time
interval [0,T], where for i =0, ...,n, t; = t;,, = ih, with h, = T /n, and, for simplicity, assume that T = 1. As usual, we define the

increments of a generic process V = {V;},5o as 47V =V, =V, ,i=1,...,n. We often use the shorthand notation:

V! =V,. E[1=ELIF,]
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As mentioned in the introduction, in the presence of jumps of unbounded variation, the TRQV estimator 5,,(5) is not efficient
since it possesses a bias that vanishes at a rate slower than n~1/2, the rate at which the “centered” TRQV

n
Ce=2 { (47 %) 1016 =~ By [(A7X)21(|A;‘X|s£>] } : ®
i=1
admits a CLT. To overcome this, our idea is to apply the debiasing procedure of [12] to the TRQV. As mentioned in the introduction,
our procedure is simpler than [12] since it does not require an extra debiasing step to account for the logarithmic transformation
nor does it require a symmetrization step to deal with asymmetric Lévy measures. Furthermore, our method does not have to be
applied in each subinterval of a partition of the time horizon, which introduces another tuning parameter.

Before constructing our estimator, we first establish the asymptotic behavior of TRQV (2) with a fully specified centering quantity
A(e, h) rather than the inexplicit centering E,_, [(AI'.‘X )21 (4 X‘Sg}l of (9). It also characterizes the structure of the bias A(e, h) in the
threshold parameter ¢ that will ultimately be exploited in our de iasing procedure. Below and throughout the rest of the paper, we
use the usual notation a, < b,, whenever a, /b, — 0 as n - co.

EENN 0
Proposition 1. Suppose that Y € (0,1) U (1,8/5) and h,**" * <« ¢, < h}". Let

1
Z,(e) i= ﬁ(én(s) —/ olds — A(e, h)), 1o
0
where

= 1 1
C _ Y+ DY +2 -
A(e, h) := m/o |)(S|Ydsz€2 Y —C(2)+/0 |)(S|Y532dsh5 Y 11

and C :=C, + C_. Then, as n — o,

1
Z (e,) — N<0,2/ ajds>. (12)
0

A~ st
Remark 1. As expected, the statement above shows that, when Y < 1, we have y/n (C,,(s) - /01 a?ds) Yy (0,2 /01 ajds),
1

1
whenever 2 < ¢, < h;®" and the indices r, and r; in Assumption 2 are less than Y (i.e., the constraints r, € [0, %) and

r, € [0,Y/2) are needed in Proposition 1 only in the case Y > 1). Indeed, in this case, since the leading order bias is O(*~Y), so
1
taking € < h,°™" renders it asymptotically negligible.

The next theorem establishes the stable convergence (in particular, the convergence rate) of the difference Z,,(gj £) — Z,(e), for
some ¢ > 1, which is the second main technical result we use to deduce the efficiency of our debiased estimator.

4 1
Proposition 2. Suppose Y € (0,1) U (1,8/5), and h}*" <« €, < h}. With the notation of Proposition 1, for arbitrary ¢ > 1,

~ ~ st C 1
i (Ze) - Zyen) = N (0.7 / L2, ds@*Y =1 ). 13)
- 0

4-y

1
2,72
g, —0.

as n - oo, where u, :=h,

Remark 2. Note that (13) implies that

ap(Gea-CE ¢ Ly /1 ¥
€ < = Ty @D s

N C v Loy
N<O,4_Y(C 1)/0 17 dS)-

In particular,

PN _A = 1
Ceo-Ce ¢ 2cy(gz_y_l)/ ¥ ds (14
- 0

£2-
Expression (14) plays a role in our numerical implementation in Section 4.

We are now in a position to introduce our proposed estimator. To this end, we will exploit the structure of the bias term A(e, h)
in €. The idea is simple. Suppose that a function f(x) takes the form a + bx® for any a € R and a, b # 0. Then, it is easy to see that,
for any ¢ > 1,

(f&x) = f(0) « i (S Vi

— — bx% — -
T f o0 —2ro+ 7 T T e -

6
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hence, recovering a without requiring knowledge of » and «. These heuristics suggest the following debiasing procedure to
successively remove each term appearing in A(e, h). For any ¢;,¢, > 1, in a first step, we compute

(E@o-6©)

Crle.t) = Cyle) = x— — —, (15)
C(&e) —2C,(816) + C, ()
and, in the second step,
~ ~ 2
s s (Ciee.cn-Ce.t)
C,,,,(& 0.6 = C,’,(&C]) - (16)

Cr(2e.6) = 2C(Ge 6 + Cllen b))

The next theorem is the main result of the paper. It establishes the rate- and variance-efficiency of the two-step debiased estimator
C"(e,6,.¢,) provided Y € (0,1) U (1,8/5).

4 1y 2
Theorem 1. Suppose that Y € (0,1) U (1,8/5), and h}"" < ¢, < h,‘,“yv“y. Then, for any fixed ¢;,¢, > 1, as n — oo,

1 1
ﬁ(ﬁ;/(g,gz,gl)—/ afds> i N(o,z/ ajds>.
0 0

It is customary to use power thresholds of the form ¢, = cyh?, where ¢; > 0 and ® > 0 are some constants.” In that case, the
4 1

2

. g V&Y
assumption 13" <« e, < h" 7 in Theorem 1 becomes

1 2 4
1,2 _4 17
(4—Y 4+Y)<w<8+Y a7

Remark 3. Note that, if Y > 1 — the case where debiasing is strictly necessary for estimation efficiency — the value of w = 5/12
satisfies the above constraint (17) for any value Y of the possible range 4/5 < Y < 8/5 (on relaxations of these constraints, see
Remark 5).

Remark 4. The case Y = 1 is excluded from the above statements since part of our arguments rely on moment estimates for the
truncated increments of Y-stable Lévy processes, whose characteristic function differs slightly when Y = 1, though this case can be
handled similarly with minor adjustments to our arguments.

Remark 5. As a consequence of the proof of Theorem 1, it follows that if 1 < Y < 4/3, then only one debiasing step is needed to
achieve efficiency. That is, for 1 <Y < 4/3, we already have

1 1
al Ceen- | oas )| S w02 ] otas),
\/— n 1 N s
0 0

1 2
whenever h? < ¢, <« h*7 . If 4/3 <Y < 8/5, the proof of Theorem 1 shows a second debiasing step is required. These two facts
suggest that further debiasing steps similar to (15)-(16) could be used to handle values of Y larger than 8/5, or more broadly, less
restrictive conditions on the jump measure of X at zero. This conjecture requires significant further analysis beyond the scope of
the present paper and, hence, we leave it for future research.

4. Monte Carlo performance with CGMY jumps

In this section, we study the performance of the two-step debiasing procedure of the previous section in two settings: the case
of a Lévy process with a CGMY jump component J (cf. [16]) and a Heston stochastic volatility model with again a CGMY jump
component. Following [12], we also consider variants of our debiasing procedure that make use of the sign of the bias terms that
lead to further improved finite-sample performance.

4.1. Constant volatility

We start by considering simulated data from the model (1) and (6), where the coefficient processes o, b, and y are constants,
8y = 6, = 0 (no bounded variation components), and {/J,},5o is a CGMY process, independent of the Brownian motion {W,} 5, with
Lévy measure having a ¢-function, in the notation of (7), of the form:

q(x) = e’Mxl(Ovm)(x) + 0% 10,00,

5 Though, it is shown in [22] that in the case of a Lévy process X with jump component J as in Section 2, the MSE-optimal threshold & is such that

e ~/2- Y)o2h,In(1/h,), as n - co.
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and C, = C_ = C. Thus, the conditions of Assumption 1 are satisfied with a, = —M and a_ = G. For simplicity we take b = 0 and
x = 1, and adopt the parameter setting

C=0.028, G=2318, M =4.025, (18)

which are similar to those used in [20],° and take ¢ = 0.2, 0.4, and Y = 1.25, 1.35, 1.5, 1.7, respectively. We fix T = 1 year and
n = 252(6.5)(60), which corresponds to a frequency of 1 minute (assuming 252 trading days and a 6.5-hour trading period each day).
In a fashion similar to [12], for the threshold & = ¢yh®, we take ¢, = o), Where

n
T
o2, = 7 Z 4" X||4"X],
i=2

which is the standard bipower variation estimator of ¢2 first introduced by [24]. For the value of w we take w = 15—2, which, as

mentioned above, satisfies the condition (17) for any Y € (1,8/5). We compare the performance of the following estimators:

PN 2
L. TRQV: Cy(e) = T, (47 X) 1 nx1<c)5
2. 1-step debiasing estimator removing positive bias:
Gl et =G - (6,00 -6,),
¢ - (19)
where 5, = — 2,,(111 le) w1 e),\ V0,
C,(p1 £78) —2C,(p1 £18) + Cy(py €)

with ¢, = 1.45 and p, = 0.6, which were selected to achieve favorable performance across all considered values of Y and ¢. If
Cr/, pb(s, {1, py) is negative, we recompute #; with € = 2¢/3. This method is inspired by [12] and is motivated by the following
decomposition of the bias correction term of (15) into a product of two factors:

(C@er-Co)
C, (%) = 2C,(Ge) + Cyle)

x (6,00 -C,).

where, due to (14), the first factor estimates (¢ IZ‘Y — 1)~1, which is positive. So, we should expect 7, > 0.
3. With 5:, & = 5}: & S1P1) defined as in Step 1, the 2-step debiasing estimator removing negative bias is given by:

Gl et Ciop2p) = C @) = 1y (€ (G0) = €0 ) v0)).
Cl P2 6e)=Cl(pr ) " (20)

where 7, = = > = =
G266 =2C, (0 &6) +C, 1 (py €)

with ¢, = 1.2, { = 1.2, p; = 0.65, and p, = 0.75. If it turns out that Cj’l’nb(e, $.¢1,py, py) is negative, we recompute 5, with
e = 2¢/3. The reason for this adjustment is the fact that 5, is expected to be negative since it serves as estimate of (o Y-l
The values of the tuning parameters ¢, ¢,, p;, p, were selected for ‘overall favorable’ performance for all considered values
of Y and o.

We further compare the simulated performance of the above estimators to the estimators proposed in [12] and [14]. Specifically,
we use the Eq. (5.3) in the paper [12]:
Crr3ye ©) = Cntuy) = ((EonC) = Cntwy) ) 10).
with 7= — Crr(py Ciin) = Crrlpy “nj A0,
Cyrlpo C2uy) = 2Cyr(po Cuty) + Cyr(po uy)

where @JT denotes their “nonsymmetrized” two-step debiased estimator (see Eq. (3.1) in therein). For the tuning parameters, we
take

(=15, u,=n/h)"/opy. py=02,

where the values of ¢ and u, were those suggested by [12] and the value of p, was chosen for favorable estimation performance.
Note that, since a Lévy model has constant volatility, it is not necessary to localize the estimator and, hence, we treat the 1-year data
as one block, which corresponds to taking k, = 252(6.5)(60) in the notation of [12]. For the moment estimator proposed in [14], we
use the same moment functions and the parameter settings as suggested by [14]. We denote this estimator 6M,4' We also examine
the performance of another moment estimator, denoted 61\/[,3, that is computed under a similar algorithm to [14] but with 3 different
moment functions suggested in [22]. We remark that the moment functions used in the construction of CA‘M‘_; do not satisfy the strict

6 Figueroa-Lépez and Olafsson [20] considers the asymmetric case v(dx) = ngn(x)q(x)lxl"’y dx with C, =0.015 and C_ = 0.041. Here, we take C = (C, +C_)/2
in order to simplify the simulation of the model. The parameter values of C,, C_, G, and M used in [20] were taken from [23], who calibrated the tempered

stable model using market option prices.
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Table 2
Estimation based on simulated 1-minute observations of 1000 paths over a 1 year time horizon. The parameters are Y = 0.8 and ¢ = 0.2.
The best tuning parameters are {; = 1.4, {7 = 1.35, p; = 0.5, p; = 0.85; {* = 1.2, p; =0.2.

c=02, Y=08

Sample Mean Sample SD Mean of RE SD of RE MSE MAD
6,, 0.036881 0.0002 —0.0780 0.0050 9.77E-06 3.12E-03
C,'I'j,b 0.039902 0.0002 —-0.0024 0.0047 4.50E-08 1.44E-04
6}153 0.039997 0.0003 —0.0001 0.0070 7.80E-08 1.25E-04
(?Mj 0.038777 0.0002 —-0.0306 0.0055 1.55E-06 1.23E-03
6M‘4 0.040530 0.0003 0.0132 0.0077 3.75E-07 5.08E-04
CN,;APb 0.036881 0.0002 —-0.0780 0.0050 9.77E-06 3.12E-03
CNZM 0.038108 0.0002 —-0.0473 0.0048 3.62E-06 1.90E-03
CAJT'53 0.039916 0.0010 —0.0021 0.0241 9.40E-07 1.39E-04
Table 3

Estimation based on simulated 1-minute observations of 1000 paths over a 1 year time horizon. The parameters are Y = 1.25 and ¢ = 0.2.
The best tuning parameters are ¢§ = 1.35, { = 1.2, p; =0.5, p; =0.85; {* = 1.5, p; =0.1.

=02, Y=125

Sample Mean Sample SD Mean of RE SD of RE MSE MAD
c, 0.037544 0.000205 —0.0614 0.0051 6.07E-06 2.45E-03
cr, 0.039987 0.000216 -0.0003 0.0054 4.70E-08 1.40E-04
6.1*153 0.040156 0.000300 0.0039 0.0075 1.14E-07 2.25E-04
éMj 0.039661 0.000268 —0.0085 0.0067 1.87E-07 3.28E-04
6M,4 0.046369 0.000939 0.1592 0.0235 4.14E-05 6.37E-03
CN;AN’ 0.037544 0.000205 —0.0614 0.0051 6.07E-06 2.45E-03
CN"’]f"b 0.040323 0.000203 0.0081 0.0051 1.45E-07 3.15E-04
Crrss 0.040742 0.000257 0.0185 0.0064 6.16E—07 7.60E—04

constraints imposed in [14], and therefore the asymptotic efficiency of the estimator éM 3 has not been established. We refer to [22]
for more details about the computations of 6M,3 and 6M,4. ,

The sample means, standard deviations (SDs), the average and SD of relative errors, the mean squared errors (MSEs), and median
of absolute deviations (MADs) for each of the estimators described above are reported in Tables 2-11. In addition, we show the
results corresponding to ‘case-by-case favorably-tuned’ versions of CN‘V’lfpb, and 6JT’53; i.e., their tuning parameters were chosen for
achieving the ‘best’ performance for each pair (Y, c) based on a grid search; we distinguish these estimators and their corresponding
tuning parameters by the superscript *. That is, 6;{ph is based on t~he choices (¢, ¢, p1.py) = (1.2,1.2,.65,.75) across all considered
values of Y and o. With these values of theN tuning parameters, Cr/,fpb exhibits generally good performance overall. However, for
each given fixed pair (Y, o), its counterpart Cr’,f;‘b is tuned to have superior performance for those particular values of Y and o. For
instance, as shown in Table 3, when Y = 1.25 and ¢ = 0.2, the estimator 5;be attains an MSE of 1.45 x 107, whereas the choice of
parameters ({}', ¢}, p}, p;) = (1.35,1.20,0.5,0.85) leads to an MSE of 4.70 x 1078 for 5;{;17.

We provide a broad summary of our simulation results. For the estimators using the case-by-case tuned parameters ({}', ¢}, p}, p3)s
based on both MSE and MAD, C”, outperforms every other estimator considered in each setting, except when Y = 0.8 when the
performance between 5r’lf:b and 63;153 is comparable (c.f. Table 2, top row) but 6}153 has a slight edge in both MAD and MSE when
o = 0.4 and a slight edge in MAD when ¢ = 0.2. Using the parameters (¢,.&,p;,p,) = (1.2,1.2,.65,.75), compared to the method
of [14], anb outperforms 6M,4 in all cases, as measured by MSE and MAD in Tables 3-11. When ¢ = 0.2 and Y = 1.25, or when
c=04and Y =1.25,1.35,15,1.7, 5}2{”[, outperforms 6M,3 (though, as noted earlier, computation of G}an is much faster and more
numerically stable than that of either Cy;3 or Cy4). Next, compared with [12], when 6 = 0.2 and Y = 1.25,1.35, 1.5, or when ¢ = 0.4
and Y = 1.25 or 1.35, 5}: fnb has superior pérformance compared to @153 as measured by MSE and MAD. Generally, 5:”1; significantly
outperforms C] b Table 5 also shows that, though when ¢ =0.2and Y = 1.5, C/ fnb has larger MSE and MAD than €, and 6"1 b it still
performs better than 6JT’53: the MSE and MAD of 5,’, f" , in these cases are approximately 22% and 85% of those of CAJT,53, respectively.
Tables 6 and 11 show that, when Y = 1.7, which is not covered by our theoretical framework (see Remark 5), Cr/,fnb has slightly
larger MSE and MAD than 6JT,53. Overall, we conclude that our debiasing procedure outperforms @153 when Y = 1.25,1.35,1.5,
and outperforms 6M‘4 in all parameter settings considered, and the estimation performance of 6JTYS3 and Ganb is comparable when
Y =0.8.

We also study the asymptotic approximation for the sampling distribution of 5; fn , and C\JTVS3 based on the case-by-case optimally-

tuned estimators 5;{:,1 and CA}T,53. Fig. 1 shows their normalized simulated sampling distributions, \/Z(& — 6%)/V20%, and the

theoretical asymptotic normal distribution, N'(0, 1). Compared to G;T 530

with the asymptotic normal distribution, especially for ¥ < 1.5. Note that, in general, the values of 5;’:[7 are much less spread out

the simulated distribution of 5;’:[7 yields a better match

9



B.C. Boniece et al.

0.4
0.31
0.21
0.1
0.0 1

T

2-step estimator

0.4
0.3 [

0.2 i\
0.1 7 3,
0.04

Stochastic Processes and their Applications 176 (2024) 104429

JT :_— -: std. normal

0.4
0.3
0.2
0.1
0.0

_10

el

-5

S 0.44 S

0.34 7.
e 021 ‘
\ 0.1
- 0.0

e e etk 3 =

0.4
0.3
0.21
0.1
0.0

o

-5

0 5
=02 Y=1.25

o 5 0 5
=04 Y=1.25

e

0.4
0.3
0.21
0.1
0.0

0.4
0.3
0.2
0.1

0.0

Fig. 1. Simulated and theoretical asymptotic distributions of the estimators based on simulated 1-minute observations of 1000 paths over a 1 year time horizon.
The bold dashed red curve is the theoretical asymptotic distribution, A'(0, 1). The solid yellow curve is the simulated distribution of (264)~!/2 \/;(C,’,’:b —062). The

dotted blue curve is the normalized simulated distribution of (264)~'/2 \/;(CA;T —02).

Table 4

Estimation based on simulated 1-minute observations of 1000 paths over a 1 year time horizon. The parameters are Y = 1.35 and ¢ = 0.2.

The best tuning parameters are { =

135, & = L1, p! =06, p; =0.75; {* = 1.5, pi =0.1.

=02, Y=135
Sample Mean Sample SD Mean of RE SD of RE MSE MAD
c, 0.038264 0.000203 —0.0434 0.0051 3.05E-06 1.73E-03
Cj{:b 0.040010 0.000206 0.0003 0.0052 4.27E-08 1.33E-04
6}“3 0.040418 0.000316 0.0104 0.0079 2.74E-07 4.30E-04
éM,J 0.040461 0.000277 0.0115 0.0069 2.89E-07 4.70E-04
6M,4 0.050576 0.001121 0.2644 0.0280 1.13E-04 1.06E-02
CN"’Lpb 0.038264 0.000203 —0.0434 0.0051 3.05E-06 1.73E-03
E:an 0.041044 0.000211 0.0261 0.0053 1.13E-06 1.05E-03
6JT53 0.041547 0.001111 0.0387 0.0278 3.63E-06 1.59E-03

A
than those of CJT,S/S\'

Though the simulated distributions of Cy;; and Cy;, are not shown in Fig. 1, we can see that C""*, performs
s K n,nb

much better than Cy;; and 6M,4 as seen in Tables 3-11.

10



B.C. Boniece et al. Stochastic Processes and their Applications 176 (2024) 104429

Table 5
Estimation based on simulated 1-minute observations of 1000 paths over a 1 year time horizon. The parameters are Y = 1.5 and ¢ = 0.2.
The best tuning parameters are ¢ = 145, {7 = 1.3, p; =0.1, p; =0.2; {* = 1.5, p; =0.1.

c=02, Y=15

Sample Mean Sample SD Mean of RE SD of RE MSE MAD
6,, 0.041326 0.000223 0.0332 0.0056 1.81E-06 1.33E-03
C,'I'j,b 0.039333 0.000259 —-0.0167 0.0065 5.12E-07 6.58E-04
6}153 0.040371 0.000740 0.0093 0.0185 6.85E-07 6.20E-04
(?Mj 0.044022 0.000311 0.1006 0.0078 1.63E-05 4.02E-03
6M‘4 0.063113 0.001598 0.5778 0.0400 5.37E-04 2.30E-02
CN,;APb 0.041326 0.000223 0.0332 0.0056 1.81E-06 1.33E-03
CNZM 0.044331 0.000232 0.1083 0.0058 1.88E-05 4.33E-03
CAJT'53 0.040092 0.009267 0.0023 0.2317 8.59E-05 5.12E-03
Table 6

Estimation based on simulated 1-minute observations of 1000 paths over a 1 year time horizon. The parameters are Y = 1.7 and ¢ = 0.2.
The best tuning parameters are (' = 1.3, {F = 1.3, p; =04, p; =0.8; {* =2, p; = 0.4. The parameters for C,,,,,,b and C;fnb are {;=12,¢=12,
p; = 0.6, and p, = 0.85.

c=02, Y=17

Sample Mean Sample SD Mean of RE SD of RE MSE MAD
c, 0.063772 0.000359 0.5943 0.0090 5.65E-04 2.38E-02
CN;;:b 0.038238 0.001842 —0.0441 0.0461 6.50E—06 1.91E-03
6}153 0.039833 0.006706 —0.0042 0.1677 4.50E—05 4.38E-03
6M,3 0.069247 0.000469 0.7312 0.0117 8.56E-04 2.93E-02
6M,4 0.110533 0.002272 1.7633 0.0568 4.98E-03 7.05E-02
Cho 0.063772 0.000359 0.5943 0.0090 5.65E-04 2.38E-02
é;f"b 0.069421 0.001187 0.7355 0.0297 8.67E-04 2.93E-02
Cirss 0.066487 0.000488 0.6622 0.0122 7.02E-04 2.65E-02
Table 7
Estimation based on simulated 1-minute observations of 1000 paths over a 1 year time horizon. The parameters are Y = 1.25 and ¢ = 0.2.

The best tuning parameters are ¢} = 1.4, {7 = 1.35, p; = 0.5, p; = 0.85; {* = 1.5, p; =0.1.
c=04, Y =08

Sample Mean Sample SD Mean of RE SD of RE MSE MAD
C, 0.147467 0.0008 —-0.0783 0.0049 1.58E-04 1.26E-02
CN,;’_:D 0.159698 0.0008 —-0.0019 0.0047 6.66E—07 5.17E-04
6}153 0.159963 0.0007 —-0.0002 0.0047 5.61E-07 4.75E-04
Cus 0.160908 0.0008 0.0057 0.0051 1.49E-06 9.39E-04
CAMA 0.160531 0.0008 0.0033 0.0049 9.00E-07 6.34E-04
CN‘;'pb 0.147467 0.0008 —0.0783 0.0049 1.58E-04 1.26E-02
CN’ZM 0.152373 0.0007 —-0.0477 0.0047 5.87E-05 7.61E-03
6JT53 0.159312 0.0038 —-0.0043 0.0235 1.47E-05 5.73E-04
Table 8

Estimation based on simulated 1-minute observations of 1000 paths over a 1 year time horizon. The parameters are Y = 1.25 and ¢ = 0.4.
The best tuning parameters are ¢; = 1.35, {5 = 1.3, p; = 0.5, p; = 0.85; {* = 1.5, p; = 0.2.

c=04, Y =125

Sample Mean Sample SD Mean of RE SD of RE MSE MAD
C, 0.148523 0.000775 -0.0717 0.0048 1.32E-04 1.14E-02
5;; 0.160102 0.000754 0.0006 0.0047 5.79E-07 5.24E-04
6}53 0.160376 0.001062 0.0023 0.0066 1.27E-06 7.70E-04
6,\“ 0.162777 0.000825 0.0174 0.0052 8.39E-06 2.78E-03
61\4‘4 0.166381 0.001159 0.0399 0.0072 4.21E-05 6.32E-03
CNLPb 0.148523 0.000775 -0.0717 0.0048 1.32E-04 1.14E-02
(Zf’m 0.159879 0.000785 —-0.0008 0.0049 6.31E-07 5.34E-04
5”‘53 0.160376 0.001062 0.0023 0.0066 1.27E-06 7.70E-04

4.2. Stochastic volatility

In this section, we apply our two-step debiasing procedure to estimate the daily integrated variance under a stochastic volatility
model with a CGMY jump component and compare it with the estimator of Jacod and Todorov [12].

11
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Table 9
Estimation based on simulated 1-minute observations of 1000 paths over a 1 year time horizon. The parameters are Y = 1.35 and ¢ = 0.4.
The best tuning parameters are ¢ = 1.2, { = 1.2, p; = 0.6, p; = 0.85; {* = 1.5, p; =0.2.

c=04, Y =135

Sample Mean Sample SD Mean of RE SD of RE MSE MAD
6,, 0.149582 0.000788 —0.0651 0.0049 1.09E-04 1.04E-02
C:.?,b 0.160284 0.000757 0.0018 0.0047 6.53E-07 5.65E-04
6}153 0.160950 0.001125 0.0059 0.0070 2.17E-06 1.09E-03
(,A“M,3 0.164366 0.000860 0.0273 0.0054 1.98E-05 4.38E-03
6M‘4 0.170625 0.001292 0.0664 0.0081 1.15E-04 1.06E-02
CN;Apb 0.149582 0.000788 —0.0651 0.0049 1.09E-04 1.04E-02
CNZ",! 0.160937 0.000758 0.0059 0.0047 1.45E-06 9.54E-04
CAJT'53 0.160950 0.001125 0.0059 0.0070 2.17E-06 1.09E-03
Table 10

Estimation based on simulated 1-minute observations of 1000 paths over a 1 year time horizon. The parameters are Y = 1.5 and ¢ = 0.4.
The best tuning parameters are ¢ = 1.35, {7 = 1.1, p; =0.5, p} =0.9; {* =14, p; =0.2.

c=04, Y=15

Sample Mean Sample SD Mean of RE SD of RE MSE MAD
C, 0.153623 0.000811 —-0.0399 0.0051 4.13E-05 6.39E-03
CN,;’A:b 0.160721 0.000826 0.0045 0.0052 1.20E-06 8.13E-04
6;153 0.158146 0.002499 -0.0116 0.0156 9.68E-06 1.89E-03
6,\“ 0.168253 0.000981 0.0516 0.0061 6.91E-05 8.24E-03
61\4‘4 0.183132 0.001785 0.1446 0.0112 5.38E-04 2.31E-02
E:Lpb 0.153623 0.000811 —-0.0399 0.0051 4.13E-05 6.39E-03
CN,;fnb 0.165112 0.000800 0.0319 0.0050 2.68E-05 5.13E-03
€JT‘53 0.163082 0.001305 0.0193 0.0082 1.12E-05 3.08E-03
Table 11

Estimation based on simulated 1-minute observations of 1000 paths over a 1 year time horizon. The parameters are Y = 1.7 and ¢ = 0.4.
The best tuning parameters are { = 1.2, {} = 1.35, p; =02, p} = 0.3; {* = L5, p; =0.2.

c=04, Y=17

Sample Mean Sample SD Mean of RE SD of RE MSE MAD
c, 0.178820 0.000946 0.1176 0.0059 3.55E-04 1.88E-02
CN;:':b 0.159715 0.001594 —0.0018 0.0100 2.62E-06 1.09E-03
6}153 0.151628 0.013172 —0.0523 0.0823 2.44E-04 6.87E-03
6M,3 0.192848 0.001222 0.2053 0.0076 1.08E-03 3.29E-02
6M,4 0.230606 0.002466 0.4413 0.0154 4.99E-03 7.05E-02
CN"’I‘pb 0.178820 0.000946 0.1176 0.0059 3.55E-04 1.88E-02
G;f"b 0.192674 0.000972 0.2042 0.0061 1.07E-03 3.27E-02
Cirss 0.151628 0.013172 —0.0523 0.0823 2.44E-04 6.87E-03

Specifically, we consider the following Heston model:

t t t
x,=1+/ \V, dW, + J,, V,=9+/K(0—Vs)ds+§/ \V,dB,,
0 0 0

where {W,},5o and {B,}5, are two correlated standard Brownian motions with correlation p and {J,}5, is a CGMY Lévy process
independent of {W,},5, and {B,},5¢. The parameters are set as

k=5 £=050=0.16, p=-05.

The values of «, & and p above are borrowed from [25]. The CGMY parameters are the same as those in the previous section.

We consider 1-min observations over a one-year (252 days) time horizon with 6.5 trading hours per day. We break each path
into 252 blocks (one for each day) and estimate the integrated volatility IV = /t’“/ 232 V.ds for each day (r = 0,1/252,...,251/252).
As suggested and used in [12], to improve the stability of the estimates, the estimated bias terms in (19) and (20) are split into
two components each: (é\"(g“le) - 6,,(5)) and (ér’hpb(cze, Cip) — éé,pb(e, ¢1,p). These are computed using the data in each day, and
the factors #,, n,, which only depend on Y, are computed using the data during the whole time horizon. In practice, one would
precompute #; and #, using historical data over 1 year and use those values to compute the daily integrated volatility afterward.
The precise formulas for our estimators are described below:

12
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Table 12

The MSE and MADs for Cn ., and Cyrs;. The results are based on simulated 1-minute observations of 1000 paths over a one-year time
horizon with Y =0.8,1.25,1.35,1.5,1.7. The parameters for debiasing method are ¢, = 1.2, {, = 1.2, p; = 0.65, and p, = 0.75 in all cases. The
smallest average MSE and smallest average MAD is displayed in bold in each row.

Estimation performance in a Heston model

Y Method Day 2 Day 63 Day 126 Day 189 Day 252 Average
ol MSE 2.38E-09 2.77E-09 2.64E-09 2.64E-09 2.39E-09 2.57E-09
08 nnb MAD 2.86E-05 2.92E-05 2.90E-05 3.02E-05 2.82E-05 2.93E-05
’ G MSE 7.89E—-09 8.30E—-09 8.09E—-09 8.98E-09 8.17E-09 8.68E—09
IT.53 MAD 3.34E-05 3.51E-05 3.23E-05 3.38E-05 3.34E-05 3.40E-05
ol MSE 2.50E-09 2.37E-09 2.48E-09 2.57E-09 2.45E-09 2.45E-09
195 nb MAD 2.90E-05 2.93E-05 2.98E-05 2.91E-05 2.89E-05 2.88E-05
’ c MSE 5.80E-09 5.49E-09 5.26E-09 5.21E-09 5.79E-09 5.52E-09
JT53 MAD 3.49E-05 3.43E-05 3.45E-05 3.26E-05 3.44E-05 3.40E-05
& MSE 2.52E-09 2.40E-09 2.55E-09 2.55E-09 2.45E-09 2.47E-09
Las nab MAD 2.83E-05 2.93E-05 2.97E-05 2.91E-05 2.81E-05 2.90E-05
) G MSE 7.63E—09 7.31E-09 6.85E—09 6.50E—-09 7.55E-09 7.25E—-09
IT.53 MAD 3.63E-05 3.55E-05 3.51E-05 3.29E-05 3.53E-05 3.46E-05
ol MSE 3.05E-09 3.12E-09 3.10E-09 3.19E-09 3.01E-09 3.07E-09
1s nnb MAD 3.25E-05 3.48E-05 3.37E-05 3.30E-05 3.22E-05 3.31E-05
: = MSE 6.25E-09 6.27E—09 5.76E—09 5.62E—09 6.21E—-09 5.98E-09
IT.53 MAD 3.65E-05 3.76E-05 3.85E-05 3.53E-05 3.60E-05 3.66E-05
rol MSE 2.08E-08 2.14E-08 2.04E-08 2.13E-08 2.09E-08 2.07E-08
17 b MAD 1.23E-04 1.28E-04 1.26E-04 1.30E-04 1.24E-04 1.26E-04
’ G MSE 1.89E-08 1.86E-08 1.82E-08 1.75E-08 1.88E-08 1.82E-08
JT53 MAD 1.06E-04 1.07E-04 1.05E-04 1.04E-04 1.06E-04 1.05E-04

1. 1-step debiasing estimator removing positive bias:
— ~ ~ ~
C (&0 = G, =i (G610, - Ee,)
225 (Gt ~Cupio) L)

_ v o,
p2pil (C (py Cze) i —2C n(P1 4'15) - +C,(py E) 75 )

2. With the estimator E;,pb(s), = E;’pb(s, ), defined in Step 1 above, the 2-step debiasing estimator removing negative bias is
given by:

Cr (. 60:60, = C @y = 1y ((C pu(&28), = Tyt ) V0,

251 =
22 (Copr 60 L = Cpm0) 1) )
m = A0,
251 (A 2N =
22 (Crpte Gery - 2Cn’pb(172 G +Cypae) )

with the same parameters used in the previous subsection ¢, = 1.2, {, = 1.2, p; = 0.65, and p, = 0.75.

For the estimator of [12], we use Eq. (5.3) therein with tuning parameter k, = 130 (number of observation in each block),
& =15 and u, = (~Inh,)"'/30/ \/ﬁ (these values were suggested in [12]). Here, BV is the bipower variation of the previous
day. The resulting estimator is denoted as EJT'53. To assess the accuracy of the different methods, we compute the Median Absolute
Deviation (MAD) around the true value, IV, = [ZM/ 2 V,ds, and the MSE, i.e. the sample mean of av . — IV,)?, for 5 arbitrarily
chosen days over 1000 simulation paths.

The results are shown in Table 12. The last column of Table 12 shows the sam le means of the MSE and MAD over the 252 days
for the different estimators. When Y = 0.8,1.25,1.35, 1.5, all MSEs and MADs of C np are smaller than those of c JT.53> With the MSE
of Cn b all ]
and MAD of C, , is slightly larger than those of C;r ;.

This behavior can also be observed in Fig. 2, which shows il},e true daily integrated volaltility (dashed red line) for one fixed
simulated path compared with the estimates corresponding to Com (solid black line) and Cyrs; in [12] (dotted blue line). From
the figure, we conclude that for this specific stochastlc volatility model, our debiasing method achieves significant improvement
when Y < 1.5. For Y = 1.7, both estimators Cn . and c JT.53 are very close and significantly overestimate the true daily integrated

typically half of that of C 1,53 or smaller. For the case Y = 1.7 (outside the scope of our theoretical framework), the MSE

volatility for this simulated path. This changes from path to path, though Cn’nb and C 1,53 are typically close when Y = 1.7.

13
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Fig. 2. Plots of daily integrated volatility estimates E:nb(e,cz,cl,pz,p,)(L a1 . Except for a change in the jump index Y of the CGMY component, the same
v 2527252

path of X, is for each plot. Above are the plots for ¥ = 0.8,1.25,1.5,1.7 (Y = 1.35 is similar to ¥ = 1.25 and was removed to save space). The dashed red line

corresponds to the true daily integrated volatility, while the solid black (respectively, blue) line corresponds to the daily estimates using our debiasing estimator

C:‘inb (respectively, the estimator given in expression (5.3) in [12]).
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Appendix A. Proofs of the main results

Throughout all appendices, we routinely make use of the following fact: under the assumption hj/ B+ « €, made throughout

Section 3, it holds exp(— Z;Z”h ) < h for any s > 0. For notational simplicity, we also often omit the subscript n in &, and ¢,. We
denote by C or K generic constants independent of n that may be different from line to line. In all proofs, based on Assumption 2,
by a standard localization argument, we may assume without restriction that |o|, |5], |b¥|, ||, | 24|, are almost surely bounded by a

nonrandom constant, and (|5;(z, z)| A 1)i < KH,(z), i =0, 1. Further, we have the following estimates valid for all s,7 > O:

E(|;{t+s—)(t|p|Ft)§Ks1’/2, pzl E(|o‘,+5—0',|2‘7’,>5Ks.

In the proofs below, we will show that we can neglect the finite variation jump component X/ and prove the results for the Itd
semimartingale

X' =X - X0 =X+ x>
i.e., the process consisting of the continuous component X; = fot beds + /0' o,dW, and the infinite variation jump component
i, t
X® = [) x-dJ.
Proof of Proposition 1. Note that Z,(e) in (10) can be decomposed as follows:
n
5 2 2
Ze)=n Y, ((A?X) Ljarxi<e) = (47X7) 1(|47X’\55))
i=1

n
Vi Y (40X gizey = B [(4X) L woie])
i=1

n
+vn Y (E,-_l (47X L xnice)] — 02 b= Aite, h)h)
i=1
n

+ \/Z<Z (o2 n+ Ate.ion) - /1 o2ds — Ate, h)>
- |

i=1

=Ty+T +T, +T;,

where f/f,.(e, h) is defined as in (B.4). Lemma 5 implies T, = op(1), and Lemma 2 directly implies that T, = op(1). We also have
T; = 0p(1), which follows from the fact that

n 1
Z szl-l h= / Uszds = OP("_I/z),
i=1 0
n 1
Yl = [l ds =optr
i=1 0

n 1
and he”Y Z Lz, |YG’2,>1h - hs’y/ Lx1Y o2ds = op(n™1/?).
i=1 0

The above is established in Lemma 5 of the accompanying supplemental material to this article for completeness.
We now show T 2N (0,2 fol c*ds) by applying the martingale difference CLT (Theorem 2.2.15 of [15]), which will complete
the proof. Define

g = \/;((A?X’)zl(m?msu ~E i ((41x)° 1{\A,"X’|s6))) :

P
We first need to show that ¥, := Y E,_, [€")2] — 2/, o*ds. The left-hand side can be written as

n

V,=n), <]E,-_1 [(4rx7)* Lygrxrise] = [Eioy (41x")° 1(\A?X’|s£)]2> :
i=1

Lemmas 2 and 4 imply that
E;_ [(A?X,)21(|ATX/|S6):| = UIZH h+0p(he’™),
4 _
By [(A?X,) 1(|A;*x’|55)] = 3‘73,1}’2 +0p(he*™).

Since, due to our conditions on &, he*~Y « h?, we clearly have

n 1
y\2) F
V,=ny (35;11112 +0p(h?) = (67 h+Op(he’™)) ) — 2/0 olds.
i=1

15
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Next, we show that Y| E, | [(¢M?] L. 0. We have
By [
<K (B LX) e )+ By (41X) 1anonza] ).
Lemma 4 implies that,
By [(4X)* 1gxize) | = 0p(89) + 0phe™ ),

1 1
for k > 1. Then, Y\ E,_; [(€M?*] = n®(0p(h*) + 0p(he¥7Y)) = 0p(1), since our assumption £ < h37 implies that ¢ < h*772, which
is equivalent to n*he®~Y « 1. It remains to check the condition (2.2.40) in [15]:

DBy (g M) Zo, (A1)
i=1

when M = W or M is a square-integrable martingale orthogonal to W. This is proved in Lemma 6 of the accompanying supplemental
material to this article. [

Proof of Proposition 2. We consider the decomposition:

i (Zn(c:gn) - 2,1(5,,))
Yy-4 "

5 2 2
=&’ ((A?X) Leqarxisce) = (47X7) 1<e<|A,."x'|s¢e))

L_A n
tet Y ((4‘,'-')(’)2 Yeqarxisce) —Einy [(A7X,)21(6<|A:'X’|S§e}])
i=1
v 2 . .
tent 2 (B [(4X) earnisze)] = AiGe, i + Ate. o)

i=1

Y4 " ~ ~
+e,? <Z (Ace = Ae.)) h= Ae.h) + Ate, h)>
= Ty+T, +T, + T,
where A\,-(e, h) is defined as in (B.4). From Lemma 5 we have
Ty = ne(Y_4)/20P(h52_Y/2) =op(l).

Lemma 3 shows that 7, = 0p(1). To show that 75 = 0p(1), Lemma 5 of the supplement implies
z ~ ~ 1 3
Z (A,.(ge, h) — Ay, h)) h—A(le, h) + A, h) = 0p(h2e¥ V) + 0p(h2e™Y),
i=1

4-Y 1 3 1 4-Y 4
and each of the terms above is op(¢ 2 ) since hZe?™Y > h2eY and h2e>Y < &2 , which is implied from our assumption A5 < ¢
1
since % > 8%. It remains to show T} N (0,2 fol cds), for which we shall again use Theorem 2.2.15 in [15]. Define
4

- Y4 2 2
gi=e 7 ((4X) Yequuize ~ B (4X) Leqgxnzen) ) -

We first need to compute V, := Y| E,_; [(¢")?]. We clearly have
n
- 4
V,=¢"* Z (Ei—l [(a7x") 1(e<\A;'X’|s§e)]
i=1

B [(47x')* 1(5<|A,”X’\g§e}]2) ~
Lemmas 2 and 4 imply that
]Ei—l(ATX/)21{5<\A;’X’|5§5) = 0p(he’™),
Cla, "

v het Y (Y — 1) + op(he*™™).

4
By (47X")" Leqanxri<cey =

Therefore,

n
- Cc - - - -
V=€ “2 (mu,,_ﬁhe“ Y@ = 1)+ 0p(he?™) + Op(he? Y)2>
=

P

1
4-y Y
_— -1 ds,
4—Y(C )/0 | 251" ds

16
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since ¥ ~*n(he?V)? = he™¥ < 1. Next, we show Y | E,_;(E"* ., 0. We have
E () < Ke?'? ( B[4 %) T eamorisce)]
+ B (4X) Yequxnsee)] ) :
Lemma 4 implies that for k > 1,
Bt (41X') Niequroisce) = Op(he™ ),

and thus, 3| E,_;(E"* = e2Y=80,(e%) = 0p(1). It remains to check the condition (2.2.40) in [15]:
c ENng AN P
Y By [Earm)] — o, (A.2)
i=1

when M = W or M is a square-integrable martingale orthogonal to W. The proof is much more involved and technical than that
of (A.1) and is given in Lemma 7 of the accompanying supplemental material to this article. []

Proof of Theorem 1. Recall the notation of Propositions 1 and 2. In addition, we set up the following notation:

= 1
—/ |;(S|Ydssz’y =: Klez’y,
Y Jo

-(Y+1)(Y+2)/ P

ai(e) :

ay(€) 1= ay(g, h) := IY 2dsh.€ =l K, he Y,

@, =1, (Z,6e) - Z,)) = 0p(1),

W, =y (Zn(cfs) —2Z, o)+ Z,,(g)) =0p(1),

where the stochastic boundedness of @, and ¥, is a consequence of Proposition 2. The proof is obtained in two steps.
Step 1. We first analyze the behavior of 5,’, (&,¢)) = 6,,(5) — a,(g), where
~ A 2
(C@er-C)

a,(e) 1= — — — (A.3)
Cﬂ(ﬁflzf) —2C,(§ &)+ Cy(e)

If we let 7,(¢) = ¢*¥ — 1 and n,(¢) = ¢7Y — 1, then, for i = 1,2, we have
a(818) — a;(e) = n(CDa(e),  ai(CPe) —2a,(C1€) + aye) = nF()ay(e).

For simplicity, we often omit the variable {; on #;(¢;). Also, note that, by definition, 6n(e) = \/ZZ,,(E) + [01 afds + A(h,e) and
A(g, h) = a;(¢) + ay(e, h). Therefore, we may write

(’71‘11(5) + '72”2(5) + \/Zuncpn)2

a;(e) = (A.4)
r]fal(e) + ngaz(e) + \/ﬁu,,h”n
By expanding the squares in the numerator and using the notation
~ ~ 2y — 71%
aj(e) 1= a (e) + Mray(e) :=ay(e) + —zaz(e),
m
we may express a,(g) as
G =3 () + 'I%(l - ﬁz)ai(s) +vh [2u,®,(n a,(e) + may(€)) — @, (e)u, P, | + hu’d?
a(e) =ay(e
n’a,(€) + nay(e) + Vhu, ¥,
O™ ) + 0p(u,e*¥)+ 0 u?)
5@+ Vi p p(Vh
n2ay(e) + o(ay (€)) + Op(V hu,)
0h3/2 -2-Y o) o) h1/22
=a,(e)+ Vhx ) )+ Opluy) + O )
iy +o(1) + Op(e¥/?)
=a,(e) + Vhx Op(u,), (A.5)

4 ~ ~
where in the last equality we use our assumption 4" < ¢, to conclude that h3/2672Y « u,. Then, we see that C'(e, ;) = C,(¢)—4; (e)
is given by

1
Cle,¢)) = VhZ (e)+ / o2ds + A(h,€) — @y(e) + Op(h'/?u,)
0
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= \/ZZ,(&)
1

" / o7ds +a)(e) +ay(e. h) ~ [a)(e) + Har(e)] + Op(h'*u,)
0

1
= \/Zzn(e)+/ olds + d(e) + Op(h'u,), (A.6)
0
where a)(e) = (1 - 7)a, (€). So,
1
Zl(e) = \/Z(c;(e,gl) —/0 olds — a'z(g)) = Z,(€) + Op(uy,), (A7)
where the Op(u,) term is a consequence of expression (A.6). Then, by Proposition 2,
~ ~ st 1
Z'(e) = Z,(e) + Opu,) — N(o,z/ ajds), (A.8)
0

1

1
since u, — 0 by our Assumption ¢, < h,;;~" . Note that if ¢, > h?", then \/Za; < 1 and in place of (A.5) we have &,(¢) + VA X op(1),
from which we conclude that

~ 1 st 1
Vil @ —/0 o2ds | -5 J\f(o,z/0 otds).
Step 2. Now we analyze 5,',’(5,{2,§1) = 5,/,(8, &) = @ (e, ¢y, ), where

(E@etn-Eed)

Cr(2e.ty) — 2C(Goe 0 + Clen 8y

@(€,61,8) 1=

For simplicity, we omit the dependence on ¢, and ¢, in CN‘; (,£1),C)(e,81,£,), ete. First, analogous to @, ¥, defined in Step 1, we
define

@ =i (Z;(gze) - Z’(e)) =u! (2,,({6) ~Z(e)+ op(un)) = 0p(1),

n

v, = (Z)(Ge) - 2Z0e) + Z)(©)) = 0p(D),

where the stochastic boundedness of @/, %/ follows from (A.7) and (13). Now, by definition (A.7), 5:: (e) = \/Zzg(s)+ fol oszds+a’2(£).
Also, with the notation #}(¢) = ¢ Y _1, the term dh(e) = (1 = p)ay(e) =: K;hE_Y satisfies
a5 (6r€) — dy(e) = ny(&)dy(e),
ay(&Fe) - 2a)(Loe) + dy(€) = (ny)*(&y)dh (R, e).

Therefore, we may express

() + V'hu, @
(o) + Vi,
Vhd (e, Q@) —¥!) + hX(@!)?
W 2dy(e) + Vhu, P!
Op(uy,) + Op(h=3/2e%)

(5?5, + op(1)

= dy(©) + Vhx Op(u,),

~
(128

= a)(e) +

= a;(£)+ \/;lx

where, in the last equality we used that ¢, < hﬁ/ @) 1o conclude that
4y 4y
2 )=0ph™'e2 ) =0p(l),

1oy
@)~'n'2E = et <u, =h, 2T .

(a'z)_1 \/Zun = Op(h_leye

Finally,

1
H{eecrf)
1
—p-l2 (5:’(5,@])_/ afds—%(&CpCz))
0
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1
=n12 (5};@,:1) —/ olds - a’z(e)) +0(u,)
0

1
= Z7/(e) + Opluy) —> N <0,2/ gjds>,
0
where the third and fourth limit follow from (A.7) and (A.8), respectively. []
Appendix B. Asymptotic expansions for truncated moments

In this section, we provide high-order asymptotic expansions for the truncated moments of the It6 semimartingale X. As in
Appendix A, we denote C or K generic constants that may be different from line to line.

To simplify some proofs, we now lay out some additional notation related to the process J. Let N be the Poisson jump
measure of J and let N be its compensated measure. Observe that due to condition (ii) in Assumption 1, there exists §, € (0, 1)
such that g(x) > 0 for all |x|] < §,. Next, let J be a pure-jump Lévy process independent of J with triplet (0,0,V), where

9(dx) = e (CL 1 g 0oy (x) + C_1(C0.0) 0N x5, |x|7'"Ydx, for a fixed p < 1 A Y, and define the Lévy process

t
Je = (13+/ xv(dx))t+/ / xN(ds.dx) + J.. (B.1)
o<Ix|<1 0 Jix|<s,

In other words, J* has Lévy measure v(dx)1y xl<so) T G(dx)le|>50), and, in particular, J satisfies all the conditions of Assumption
2 of the accompanying supplemental material to this article and, thus, we can apply the asymptotics of the truncated moments
established therein. Next, we write

t
J =0 - =/ / xN(ds,dx) = J,, (B.2)
0 JIx|>8

and observe JO has finite jump activity.
As an intermediate step, we first establish estimates for the truncated moments of the process

i 1 i
X, Z=/ bsds+/ GSdM+/ 25dJ 2. (B.3)
0 0 0

In a subsequent step, we show the same estimates also hold for X up to asymptotically negligible terms (Lemma 5, below). Note
that

t
X, - X! =x/° +/0 15dJ°.

In other words, the process X’ includes the continuous component of X and the infinite variation component /0’ 2;dJ®, and X — X'
contains only finite variation terms.

Lemma 2. Let
= Y
Cla_, ",y O+ +2) ,
5 -C o,
2-Y 2Y i-1

3 1
+y)’\§

Aye, h) = Lz, ¥ he™. (B.4)

1
Suppose that Y € (0,1) U (1, §) and h,,z(2 < g, < h}™*, for some s € (0,4). Then, forany i =1,...,n,

Bt [WX 1 g01c0)| = 02 1 Ae. o + 0p (/) (®B.5)

Proof. We use the following notation

xpi=by hto, AW+ AT =1x0+x,5+X3,

tI
& =4'X —x, 5,;1:/ byds—b, h (B.6)
1

lio1™
i1

1 L4
gi,l = / Udex - O_t[,lA[W7 8[,3 = / IsdJ;o - /YII,IA?JW'
tio1 tio1

The following estimates, established in Lemma 3 of the accompanying supplemental material to this article, are often used:
e, £=1,p>0

@)
R =2, p>0 (B.7)
At £=3 pelloo)n (Y, ).

E_i[|&]) <C

In particular E,_; [|&"] < Ch'*% for all p > 2. By our expansion for the truncated second-order moment of Lévy process given in
Proposition 2 of the accompanying supplemental material to this article, we can easily see that

~ 3
By xizl(lx,»lsd] = ‘7;2,_1 h+ Ai(e, Hh + 0p(h2),
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= _ 3
because the higher-order terms h3¢Y =2, h2¢2~?Y | and he?~° (§ > 0 arbitrary) are smaller than hZ due to the restrictions Y < 8/5
3 1 1

3 .1 1
h)* " « g, < h}~ . Therefore, for (B.5) to hold, it suffices that

and
Ry =By [X Y010 | = By [ 1101 | = 0p (7). (B.8)
Clearly,
IRl < 2B, [X?1<|x,-+£,-\sf<|x,»|>] +2E, [5,-21<|x,-+£i\sf<|x,»|>]

+2|E;_, [xieil{\x,+5,-|S&,\X,|Se)] |

5
2 2
+Ei [x,- 1(|x,-|Ss<|x,-+£,|)] +E [5; 1{|x,-+5,|$a,|x,-|$e)] = Z Rie-
221

The terms R;, and R, 5 are straightforward since R, , < E,_; [£?] < Ch? = 0p(h*/?). For the term R, 3, expanding the product x;&;

i~
we get 9 terms of the form A, := |E;_; Sifx,-f/1(|xi+g’,‘55,|xi|§)] | (one for each pair #,#’ € {1,2,3}). For terms with x; , since
|x; 1] < Kh clearly
1
Ap < ChE;_, [|£i,f|] < ChE,_, [|5if|2] 2 <Ch.

For terms involving x; ;, Lemma 12 of the accompanying supplemental material to this article implies

Af.} <CE;_, [|A?J°°||5t,f|1(|x,-lsu]

L 1 1 2-Y
<CE,_, [|47Jm|2|1{|x,-\55)] "By [Siz,fl] P <ChieT h=op(h’?).
The terms involving x; , are more delicate. We start with

Apy SCIE [{WE ]| +CE,_, [lA?W”gi,fll{Ixﬁ&PE or \x[|>£}] . (8.9)

Clearly, E,_| [A"W ;] =0for £ = 1,3. For £ =2, E,_| [A'WE,| =E,_, [/I"_] (o, — U,H)ds] = Op(h?). For the second term in (B.9)
on the event {|x; + &| > ¢ or |x;| > ¢}, we have that |x; ,| > £/4 for at least one ¢ or |1 > £/4. The case |x; ;| > £/4 is eventually
impossible for n large enough (since b is bounded), while both cases |x;,| > £/4 and |&;| > £/4 are straightforward to handle using
the Markov’s and Holder’s inequalities. For instance, for any m > 1,

E;,_; |A?W||£i,f|1(\£,|>e/4):|
C

< LB (1AW €, . 11E1™]

1
C 3 L 1
< B [|A?W|3] PE (16,8 By [IEPT]

< Cninini*ts =cninins (L) (B.10)
em €2

So, by picking m = 1, we can make this term op(h%2). The remaining term is when |x; 3| > £/4. In that case, for any p,q > 2 such
that }7 + é = %, applying Lemma 6,

E,_, [lA:‘Wl|£i,f|1{\x,‘73|>5/4)]
1 et 1
<CE (14w B (1401 > §) By (16,
3 1 3
<Ch2(he ¥)s < h2,

1 3
since, by our assumption on ¢, we have 7Y < ¢. We then conclude that R;; = 0p(h2).
It remains to analyze R;; and R,,. The proof is similar in both cases and we only give the details for the second case to save
space. For some 6 = 5, - 0 (0 < § < ¢), whose precise asymptotic behavior will be determined below, we consider the decomposition:

Ris<E;, [x[zl(s—5<\xl|§£)] +Ei |:x,'21(|x,|5£—5,£5\xi+€i|}] =:D;; +Dj,.
By the expansion in the Proposition 3 of the accompanying supplemental material to this article and our assumptions, we have
Dy, = ChIe¥™Y — (e — 6 Y1+ C'h2e™ — (e = 5) Y1+ op(h?)
= Chgl-Yﬁ+o,,(hsl—Y5)+oP(h%). (B.11)
Therefore, to obtain D;; = o P(h%), we require

1
s<h2el 1. (B.12)
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For D;,, note that |x;| < e —6 and ¢ < |x; + & imply that |&;| > 6. Also, € < |x; + & implies that |x; .| > £/4 for at least one 7 or
|€;] > £/4. The case |x;,| > £/4 is eventually impossible for n large enough, while both cases |x;,| > £/4 and |&;| > £/4 are again
straightforward to handle using Markov’s and Holder’s inequalities as in (B.10). Therefore, we need only to consider the case when
|x;3] > &/4 and max{|x; [, |x;,[,|&1} < &/4. In particular, since |x;| = |x;; + x;, + x;3 + & < &, we have £/4 < |x; 3] < Ce for some
C. Then, we are left to analyze the following term:

3
2 2
By |x; 1(§<|x,-,3|SCsv|s[|>a}] <C Y B, [xi,fl(§<|x[,3|SCe,|s,-|>zs}]
=1

3
=: Z Vg
=1

Clearly, ;| = Op(h?) = 0p(h3/?). For V,,, by Holder’s inequality, for any p,q > 1, r > 2, such that 111 + ‘]; + % = 1, recalling (B.7) and
Lemma 6 below,
1
Vip < CgEi—l [(A?W)zl(iqun |€i|]
1 1 1 1
<CSE L [@w)]7 By [ < Il | By [1E1]7

1 ro1 5
scéh(he‘y)q(hlJrf)?:%hl be a.

If Y < 1, we take ¢ — oo and p = r = 2, to conclude that we only need & > h'/2 for V,, = 0p(h*/?) to hold. This is consistent with
(B.12) (meaning they can be met simultaneously for at least one choice of the sequence 6), since Y < 1.
Now we consider the case Y € (1,8/5). Clearly

1
Via < CgEi—l [(Ale)zl(§<|x,»‘3|}(|8i,1| +1&al + |€i,3|)] .

Note 1, 51(Ke<|A;‘JW|}- Thus,

Z<lx;30)
n 2
E,_, [(A; w) 1(%<|x,‘43|)|€i,1|]
< hE,_((ATW)*P (Ke < |A'T™])
<Ch¥eY.
Similarly,
E,_ [(A?W)zl(gqx,.gn|5i,2|]

< (B (A" WYE,_ 1€,17) P (Ke < |47%])

<Ch¥eY.
For ¢ =3, with p,qg > 1, Y < r <2, such that i + é + % =1, from (B.7) we have

B rg 4.
4

1ol
E,_, [(A?W)21(5<|x,3|}|5i,3|] < Ch(he™)a(h'*2)r =Ch
Then, taking r close to Y, p large, and ¢ close to Y /(Y — 1), we obtain, for some s, s” > 0 that can be made arbitrarily small,

v, < % (h%—s’el—}’—s” +h327y) _ O(é—lh%—s’gl—Y—s”)’

1 5 5
where we used h2 < ¢ to conclude that A%~ <« h1e!™Y « h2~ ¢!=Y=5" Thus, for V5 = 0p(h/?) to hold, it suffices that for some
appropriately small s',s” > 0,

hl—S’EI—Y—S” < 6. (B.13)

The conditions (B.12) and (B.13) are consistent, since
1-2s

’ " 15 _1=2s
P e pa ¥ = T <« (B.14)

3
which is implied by our condition & > h22+") when provided s’, s are both chosen small enough, since ﬁ < ﬁ when Y < 8/5.

It remains to analyze V,;. As a consequence of Lemma 4 in the accompanying supplemental material to this article,” provided
that the condition 6 > h!'/2¢Y/2 holds, we have

EV;5 < CIE[(A:'J"")ZIHA;«J&'SE)I{‘5’|>§n)] = O(h2e> ) = o(h3/?),

7 This estimate is shaper than what can be obtained by applying simply Holder’s inequality and, hence, require some special handling.
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3
where the second equality follows from & > h22+), The condition & > h'/2¢¥/? can be met under (B.12) since h'/2e¥/? « h!/2¢¥-1,
Thus, (B.8) holds and this concludes the proof. []

~ 3 AL 1
Lemma 3. Let A;(e, h) be as in (B.4) and suppose that Y € (0,1) U (1, g) and h,f(”y) P« e, < h}'. Then, for any i = 1,...,n and
{>1
B [(A?X,)21{5<|A:'X’|$§e}]
. . 4y
= A(Ce. hyh — A(e, hyh + op (he,, 2 ) ‘ (B.15)

Proof. We use the same notation as in (B.6). From the expansion in Proposition 2 of the accompanying supplemental material to
this article, we have that

ﬂ
E,_, xfl(K,xilSm] = A(Ce.hyh — A(e. b + op <hen2 > ,

4-v
2

3 Y = -
since all higher-order terms h3e~Y=2, h2622Y | h2¢'"7, and he?~° are all o(he 2 ), for § small enough. Therefore, it suffices to show

that
R; =E,, [(A;'X,)zlqsgmfstgs)] -E; x?1{55|xi|s§g)]
ﬂ
=0P(h£,,2 ) (B.16)
We have the decomposition:
IRl <2E;_, [x,-zl(s<|x,+£,.|5¢s.|x,.\>gg)] +2E,_, [x,-zl(g<|x,+£,.\ggs,|x,\<g)]
+4E,_, [E2] +Ei [lxigi|1{£<|x,+é’i|§§£,g<\xi|§§5):|

2 2
+E;i_ [X,- 1(£<|x,|§§5,|x,+€i\>4’£)] +2E;, [Xi1(e<|x,»|sls,|x,»+€fl<£)]
6
=: z Rz
£=1

The term R, 5 is clearly Op(h?) and hence, op(he®~)/?). For R, 4, by Cauchy’s inequality, the expansion (2.7) in the Proposition 2
of the accompanying supplemental material to this article, and (B.7),

1=

1
= 3
Ri4y <2E;, [lxi8i|1{5<|x,-\$§£}] <CE;, [X,-zl(s<|x,-|5§e}] By [1€]17]

2-Y
2

1 1 3
<C(he®)2 ()2 =hie T,

1
which is 0 (he®~Y)/2) since h2 « e. The proofs of the remaining terms are similar. We give only one of those for simplicity. Consider
R;1- We decompose it as

/DR, <E,_, x,-zlicé<|x,-|s¢e+a>] +Ei xle{e<|x,»+£,-|s¢e,|x,-|>¢e+5>]
=:D;, +D;,.
By the expansion (2.7) in Proposition 2.2 and our assumptions, we have
Dy = ChlGe)*™ ~ (e =87 "1+ C'RCe) ™ — e =) 1+ 0p (heA_TY )
=Che' V6 +op(he' Y 6) + 0p (he% ) .
Therefore, to obtain 51’1 = 0p(he®=Y)/2), we require
st ®.17)

For 5,;2, we follow the same analysis as in the proof of Lemma 2. Indeed, the arguments following expression (B.12) show that
under the condition

53> h'/2eY/2) (B.18)
we have

— 5 4=y

D, =0p (5-';:55”) +0p(2e* ) + 0p <h5,, 2 > : (B.19)
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Observe the condition (B.18) is consistent with (B 17) since h1/2e¥/? « e1¥Y/2 — pl/2 « ¢. For the first term on the right-hand
Y

side of (B.19) to be 0p(he®~¥)/2), we require h2£ -7 < 8, which is con51stent with the condition (B.17) since h25 -7 < etz
3

-Y
under £ > h2@+7) . Therefore taking any 6§ — 0 such that (h'/?¢ v hre! _5) <« 5 < &"*Y/2, we obtain D;, = op(he,, ), which
establishes (B.16) and completes the proof. []
1
Lemma 4. Suppose that \/Z <e<hY and Y € (0,1)u(1,8/5). Then, for any k > 2,

2k
Bt [(4X)* 1yannize (B.20)

Cly, I i
= @k =Dl opk B =T R op (k™) + 0p (H2).

Proof. We use the same notation as in (B.6). The proof is similar to that of Lemma 2. From the expansion of Proposition 3 in the
accompanying supplemental material to this article, under our assumptions, we have that

E,_, xl.Zkl“Xi‘SE}] = dlof’j e+ dyhe Y 4o, (heY), (B.21)

where d, = 2k — D!! and d, = 2., |Y. Therefore, for (B.20) to hold, it suffices to show that

2k Y
R, =E, [(A?X)Zklcm,."stn] —Eiy [X?klux,ge)]
=op (he®*Y). (B.22)
Consider the decomposition:

IR;| < CE,;_, [x,'Zkl(lx[+f,-|Se<\x,|}] +CE,;_, [gfkl(lxﬁf,-ls«lx,-\)]
2%-1

2% , ke
+ 2 (K)Ei—l [)xfffk f|1(|x,v+£[\s£,|xf|sa]
£=0

4
2k R
+E;_, [xi 1{|Xi‘55<|xi+£"”:| - z R

By (B.7), the term R,, = Op(h'**) and, thus, is 0,(he?*~Y). In light of (B.21), the #~th summand appearing in R, ; is bounded by a
constant times

1 1
By [‘ngizk_f‘ 1(|x,~\5s1] <E_, [|X-|M 1 |xv|<s)] "E [|5-|4k72[] ’
(Op<hz)+op(h2e ) ey
= 0p(W*7) 4 0p (5657 7),

The second term above is op(he?*~Y) when & > Vh.
It remains to analyze R;; and R,,. The proof is similar in both cases and we only give the details for the second case to save
space. For some § — 0 (0 < § < ), whose precise asymptotic behavior will be determined below, we consider the decomposition:

ﬁm <E._, [x[Zkl{f—6<|x,|5£}:| +Ei [x,'Zkl(|x,|5£—5,£5|xi+€i|}] = 5,',1 +5i,2'
By the expansion (13) of Proposition 3 in the accompanying supplemental material to this article, we have
D,y = Chle®™Y — (e = 6% V] +0p (he¥ )
= 0p(he®™ 17V §) + 0p (he™Y) .

Thus, to obtain D, | = op (he?*™Y), we require
6K €. (B.23)

As in the proof of Lemma 2, when dealing with D, ,, it suffices to analyze the term:

3
2k 2k
Eiy | 1<§<|xi,3\|sc£.|£,|>6)] <CYE [xifl{§<\x,,3||sa,|e,\>é>]
=1

3 ~
= z v,

Clearly, ¥ .1 = Op(h*) = 0p(he?*=Y). For v, ,, by Holder’s inequality, for any p,q > 1 and r > Y such that P é + % =1:
P,<ct ]E, . [(A"W)2k1 el |5,.|]
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1 1 e : 1
< CgEi—l [(A?W)ka]” P, [Z < |xi,3|] By [1E7]
1 ro1 3_1 _Y
< C%hk(he’y)q(h“’i)? = %hk+2 reTT.
1 1 Y
For the above to be smaller than he2*~Y, we need § > 27577 For 6 to be consistent with (B.23), we need that

1_1 Y

P R

condition & > V/h.
It remains to analyze V, ;. Under the additional constraint

1
< 1. This is always possible if we take ¢ close to 1, p / oo, and r / oo because K*T272%~1 « 1 under our

h2e'? <, (B.24)
Lemma 4 in the accompanying supplemental material to this article implies

Vis<E_, [(Ame)Zkl{lA,"JWISCS)1(\&I>5n)] = O,
which implies 171-'3 = 0p(he?*Y) since h?e*~2Y « he?*=Y under our condition £ > h!/2. The conditions (B.23) and (B.24) are

consistent since h2¢Y/2 « ¢, under our conditions. Thus, we conclude that (B.22) holds, which completes the proof. []

1_ 1
Lemma 5. Provided h} '« €, < hyY for some s € (0,1/2), and ry v ry € (0,Y A1), for any a > 1,

2%
|(41) " 1) = WX g1 (B.25)
- Op(he”"’l) + OP(h(ngfaro) + Op(h2£2k7}’fr1a) + OP(h£2k7Y71+a).
A L
In particular, when h}*Y < e, < h}™Y, with ry,r; as in Assumption 2,
2% -
|(A7X) L4 x1<e) —(A?X/)Zklmfxqgg) = 0p(he®™ ¥ /%), (B.26)

and the estimates (B.5), (B.15) and (B.20) hold with X in place of X'.

Proof. Let D, := ‘(A;’X)zkl(mmg) — (A" X")* 1 g x11<e)| and r = ry V ry. Let us recall the definition of J° and X’ in (B.2) and
(B.3), respectively. Write V, = X, — X] = X,j Oy f0’ 2,dJ?, and set

. t t
x{’°=/ /60(s,z)p0(ds,dz)+/ /51(s,z)p1(ds,dz)=: YO +YL
0 0

For any fixed integer k > 1, we have
|arx ™ — X 1 <o, 1o
2%
A X)T g 1<e, 147X )
+ (A,'-'X')Ml(uymx, |47 X7 | <)

=T, +T,+T;.

DZk

A Taylor expansion of (x’ + v)** at v =0 gives |(x’ + v)* — (x")?| < l<|v|(|x’|2k_1 + [v]*71), so
2%-1
Ty < K(14VIPE+ 18V IAX T ) g x<e, 14030 1<e). (B.27)

Note that Corollary 2.1.9 in [15] implies that for each p > 1,

E;_ ( lA?:ml A 1>1’ < KheT'™m, m=0,1. (B.28)
Also, since J° is compound Poisson, writing N%(ds, dx) for the jump measure of J°,

E,_, (E /t: 27,dJ°| A 1)p <P(N(t,_;, 1,1, R) > 0) < Kh.
Thus we obtain E,_, <|A;’V‘p 1(|A?V|S£}> < KheP~". Therefore, since |x + v| < € and |x| < e imply |v| < 2¢, from (B.27), we have

2% 21
E_ T < K(Ei—l(A?V) Lavicoey +67 By |A;'V|1(|A;1V|gze))
< Khe?*,

On T), write

2% 2%
Ty = (A Ve, 10 xrpereny + QX)L an x| <e<iar X7 <even)

. T2, +T2H, (B.29)
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where « > 1 is to be later chosen. Using that |x" + v| < e and |x'| > € + €* imply |v| > €%, we get
E,_ T < Ke*P,_  (14"V| > %, |A'X"| > & + €%)
< Ke2* ( Py (141 = YY) > £%/2)
+ P (147Y"] > e7/2)P(1A"X"| > £ + &%) )
< KeH(emop 4 p2e™Y 110,

|ary!|

where we used that P(|AX’| > €) < Khe™Y as a consequence of Lemma 6 and that P,_, (|A;’Y1| >u) <E._( -

(B.28).
On the other hand, for T,', since |x’ + v| <€ and |x'| < e +¢” give |v] < 2 + &7,

A1) < hu™" per

E,_ T, = Ei—](A?X)Zkl(|A:’X\55<\A;'X’|55+5“)
< KB, [(7 XX + (V) )1 g <eciar xtiseveny)
< Ei_l(A;’X’)Zkl(g<|A7X,|SE+g,,) +O0p(e*~"h).
Since a > 1, arguing as in (B.11), by applying Lemma 4, we obtain
Ei i (41X VL gy <esen) = Op (A((e + €77 = 277))
— OP(hezk"l‘“").
Now, turning to T, write
2k 2
T3 = QX)L xpse, 1a7x7|<e—en) + QXD L _caqyanyr<e)
! "
= T3 + T3 .
Since |x’ +v| > € and |x'| < & —¢* imply |v| > 7, the same arguments for T, and 7, apply to T}, T}’, giving (B.25).
4 1
To obtain (B.26) under A" <« e, < h}Y, consider first k = 1. In this case, we may simultaneously satisfy each of
2

Y
1622V and he! -7+ « he* "7
1

Y Y 4
2-00p « he” 7, ( = a< %), XYY « pe? 7 (= AT ¢ = ¢ > hTT ifa <

(< a>1+Y/2) provided a is chosen such that

1+Z<a<(L>/\(l6_2Y)
2 2r, 8r; ’

8r

Y
which is always possible under the restrictions on ry, r; in Assumption 2. Since r, < Y/2, we also have £2"1 <« £*~ 2, concluding
Y Y Y
(B.26) for k = 1. When k > 2, e2k=0"0p « he?™ 7 h2e2k-Y 1% « he?"7 | and he?*~1-Y+¢ « pe>~7 all hold by taking « = 1.
1
Finally, since € <« h3-¥ implies he2~Y/2 « h3/2, expression (B.26) implies each of (B.5), (B.15) and (B.20) hold with X in place
of X'. O

Lemma 6. Suppose 0 <Y <2, and ¢ — 0 with e > h'/Y. For all p > 1V Y, the following estimates hold:

VRN 4"X]  \?
E <— A 1> <Khe™, E_, < — A 1) < K(he™¥ +hrl2e7P), (B.30)
£ 13
In particular, with V = J or V. =X, P,_, [|[A"V| > £] < he™Y.

Proof. We only give the proof for |4} X| since the proof for other term is similar. It suffices to establish the bound for /["_l b,dt,
/" 6,dW, and A7 X/ separately. It holds immediately for /" b,dt, since s“" N b,dt)p < KePh? < £7Ph?/2, for the second term,
i-1 i-1 i-1

Burkholder-Davis-Gundy inequality gives e E,_, | ft"_l o, dW,|P < K,(h'/?e=1)?. For A" X/, we first consider A" X/ as in (6). Applying
Corollary 2.1.9(a)® in, we obtain

|47 x| ?
By | —/——A1) <Khe'.
£

Applying Corollary 2.1.9(c) in [15], we have

lanx0 '
E_ | ——Al) <Knhe,
2

8 Strictly speaking, this corollary assumes ¢ = h¢ for some g € (0,1/Y), though a straightforward adaptation shows it holds provided »'/Y <& < 1.
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where r = ry vV ri, which gives
j P
|47 7|

B | —/—— A1) <Khe™.
£

The remaining statements follow since

Py [l47V] > €] <E,_, (MiVl A 1>p,
for every p > 0, and h?/2¢™? < he™Y for p large enough. This completes the proof. []
Appendix C. Supplementary data
Supplementary material related to this article can be found online at https://doi.org/10.1016/j.spa.2024.104429.
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