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Abstract. A novel high-frequency market making approach in discrete time is proposed that admits closed-form
solutions. By taking advantage of demand functions that are linear in the quoted bid and ask spreads
with random coefficients, we model the variability of the partial filling of limit orders posted in a
limit order book (LOB). As a result, we uncover new patterns as to how the demand’s randomness
affects the optimal placement strategy. We also allow the price process to follow general dynamics
without any Brownian or martingale assumption as is commonly adopted in the literature. The most
important feature of our optimal placement strategy is that it can react or adapt to the behavior
of market orders online. Using LOB data, we train our model and reproduce the anticipated final
profit and loss of the optimal strategy on a given testing date using the actual flow of orders in the
LOB. Our adaptive optimal strategies outperform the nonadaptive strategy and those that quote
limit orders at a fixed distance from the midprice.
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1. Introduction.

1.1. Overview. In a financial market, a market maker (MM) provides liquidity to the
market by repeatedly placing bid and ask orders into the market and profiting from the bid-ask
spread of her orders. The literature of market making is extensive (see, e.g., the monographs
of Cartea, Jaimungal, and Penalva (2015) and Guéant (2016) for references on the subject).
In subsection 1.2 below, we mention a few important works in addition to those more closely
related to our model, which are reviewed in this part. In the context of a limit order book
(LOB) based market, we consider an intraday high-frequency MM who quotes both bid and
ask limit orders (LO) at some prespecified discrete times and liquidates her inventory at the
end of the trading period. As is often assumed in the literature, the terminal liquidation cost or
price impact, originated from the use of a market order (MO), is modeled as I7(S7—AIr), with
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St and Ip respectively denoting the final fundamental stock price and the MM’s inventory.
Here, A is a constant “penalization” parameter. We aim to maximize the final profit and loss
(PnL), W + Ip(Sp — A7), at the end of the trading period T, where Wy is the MM’s final
wealth. Her wealth and inventory trajectory are determined by the prices of her quotes and
the number of shares that are filled or lifted from her orders at these prices.

Modeling the number of lifted shares between consecutive actions is a key element of
our framework. In continuous-time control problems, a common approach is to model the
probability with which an incoming MO can lift one share of the MM’s LO in the book (known
as “lifting probability”). This approach, rooted in the seminal work of Ho and Stoll (1981), was
popularized by the work of Avellaneda and Stoikov (2008) and later on by other important
works including Guéant, Lehalle, and Fernandez-Tapia (2013) and Cartea, Jaimungal, and
Ricci (2014), among others. For instance, in the seminal work of Cartea and Jaimungal (2015),
it is assumed that MOs arrive according to a Poisson process and the lifting probability is
modeled as the exponential of the negative distance of the MM’s quote from the fundamental
price times a constant.

An alternative approach is to directly model the number of lifted shares between actions
via a liquidity demand function. For instance, in their work on price pressures, Hendershott
and Menkveld (2014) assume that the liquidity demand is normally distributed with a mean
parameter that is linear in the bid and ask quoted prices and constant variance. Adrian
et al. (2020) propose a demand function that decreases linearly with the distance of the quotes
from a reference price, though their demand function is further restricted to be deterministic.
We refer the reader to Remark 3 below for some further discussion about possible connections
between the lifting probabilities based and the demand function based approaches.

Our work extends existing models of high-frequency market making in several ways. As
in Adrian et al. (2020), we assume the demand to be linear in the spreads when modeling
the number of filled shares from the MM’s limit orders. However, in our case, the demand
is not deterministic but stochastic. This means that the actual number of shares bought
or sold varies over time, even if the distances of quotes from the reference stock price stay
the same. The resulting optimal placement strategy does not boil down to simply replacing
the constant demand slope and reservation price in the optimal strategy obtained in Adrian
et al. (2020) with their respective average values, but also depends on their “second-order”
information and their mutual correlation. The proposed randomization not only allows for
greater flexibility and better fit to empirically observed order flows, but also uncovers novel
properties of the resulting optimal placement strategies. For instance, it is known from Adrian
et al. (2020) that, under a constant demand slope, the required inventory adjustment in the
optimal placement at any given time decreases with the size of the slope. We show that the
variance of the slope further reduces the strength of this adjustment. This implies that assets
with more volatile demand profiles require less strict inventory adjustments. We also find that
the optimal placement spreads (i.e., the distances between the optimal bid and ask prices and
the fundamental price) increase with the correlation between the demand slope and investors’
reservation price.

Another distinguishing feature of our study is that we allow a general reference stock
price process without assuming that its dynamics follow that of a martingale or some kind
of parametric specification (e.g., a Brownian It6 semimartingale). We obtain a parsimonious
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formula that describes how the investor should adjust online her LO placements based on her
ongoing forecasts of future asset prices. Intuitively, if the MM expects future price changes to
be negative, she will reduce the ask spread and increase the bid spread, proportionally to the
expected price change. The proportionality constant depends on the model parameters in a
nontrivial way, which we characterize precisely. This feature could also enable the investor to
take advantage of sophisticated time series or machine learning based forecast procedures for
asset prices and incorporate them into the intraday market making process.

One of the key factors that affect the performance of any placement strategy is the arrival
intensity of MOs on either side of the book. A successful placement strategy should incor-
porate, in an online manner, current information about the intensity level of MOs or about
imbalances in the likelihood of buying and selling MOs. In other words, it is desirable that
the placement strategy adapts to the local behavior of MOs. In many works, the intensity of
MOs is fixed a priori as a deterministic function of time. In reality, the intensity of a MO is
highly random and “rough,” as indicated by Figure 1, where the averages of the indicators
signaling the arrivals of buy MOs in a rolling window are plotted. However, as shown by the
same figure, the intensity’s level can be tracked or predicted quite well in an adaptive or online
manner (see subsection 3.1.1 for details on how to perform this prediction) and it would be
desirable that the optimal strategy incorporates this information online.

By construction, it would seem that adaptive placement strategies are not feasible since
the dynamic programming problem to find them is solved in a backward manner in time,
which contradicts the direction of a natural learning process that proceeds forward in time.
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Figure 1. Moving average of adaptive arrival probabilities of buy MO and the moving average of the indica-
tors signaling arrival of MOs in consecutive intervals of 1 second based on LOB MSFT data on July 11, 2019.
The window size of the rolling moving average is 500. Note that the scale for the blue (red) curve is shown on
the left (right) side of the figure.

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.



Downloaded 07/09/25 to 157.27.209.103 . Redistribution subject to STAM license or copyright; see https://epubs.siam.org/terms-privacy

656 CHAVEZ-CASILLAS, FIGUEROA-LOPEZ, YU, AND ZHANG

However, in this work, we offer a natural approach to resolve this riddle. Essentially, we
propose to create a “catalog” of optimal strategies depending not only on the current asset
price and inventory level as well as future price forecasts but also on the recent history of
MOs arrivals. In some figurative sense, we create parallel “universes,” one for each possible
combination or scenario of past MOs events, and solve the optimal placement in each of those
universes. We do this by making the conditional probabilities of arrivals of MOs dependent
on the recent history of MOs. When implementing the placements strategy, the MM observes
the recent history or combinations of MOs to determine in which “universe” or scenario she
is in, and places her LOs accordingly using the catalog of optimal strategies.

To put our proposed approach to the test, we implement our optimal placement strategy
using actual LOB data. Specifically, for a given testing day, we start calibrating the model
parameters using LOB data of the past few days and then compute, backward in time, the
optimal placement strategy for each possible scenario of consecutive MOs. Next, we roll
forward our optimal placement strategy using the actual LOB events of the testing day to
determine in an online manner the scenario we are at and choose the optimal placements
accordingly. We then compute the MM’s cash flows and inventory changes using the actual
flow of MOs and the LOB state. At the end of the trading period, the MM submits a MO
to liquidate its final inventory and determine the actual cost taking into account the state
of the LOB. We repeat this procedure for each day of a 1-year time span. We find that our
optimal placement yields, on average, larger revenue compared to those where the intensity
of MO is assumed to be deterministic (time-dependent). Our empirical analysis also lends
strong support to demand stochasticity: the slope coefficient has a standard deviation that is
about 200% larger than the average demand level, and a correlation of about 20% with the
investors’ reservation price. Moreover, using real LOB data we estimate the optimal placement
strategy based on a simple one-step-ahead price process forecast and compare it to the one
that presumes a martingale price evolution.

1.2. Other relevant works. Optimal market making problems have a long history. In
this part we mention a few important works that have not previously been discussed. Early
contributions include those of Bradfield (1979), who analyzes the increasing price variability
induced by strategies that target a flat end-of-day inventory level, and O’Hara and Oldfield
(1986), who consider a repeated optimal market making problem, in which each day consists of
several trading periods, and the MM maximizes utility over an infinite number of trading days
while facing end-of-day inventory costs. More recently, Guilbaud and Phan (2013) studied
the performance of a MM submitting buy/sell LOs at the best two bid and ask levels, while
Guilbaud and Phan (2015) also considered agents that can submit MOs. Both of these works
assume a constant spread of one tick (the so-called large-tick stocks) and price dynamics that
move one tick at a time. Other works in the same vein include Fodra and Pham (2015) and
Fodra and Pham (2015). In all these works, there is no partial filling and the MM’s LOs are
filled in their totality when they are lifted.

Stochastic demand functions of different types have been considered in other works. As
mentioned above, both Cartea and Jaimungal (2015) and Cartea, Jaimungal, and Ricci (2014)
modeled the demand during a given time interval via filling probabilities, which depend on the
distance between the quotes and the fundamental price. While in the first of those two works,
the features of these probabilities are assumed to be deterministic, in the second work, those
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are assumed to be stochastic. As explained in Remark 3 below, there is a possible connection
between the linear demand assumption adopted in this work and the fill probabilities approach,
but, in general, the two models are not equivalent. It is worth mentioning that liquidity models
with stochastic features have also been considered in other problems of algorithmic trading.
For instance, Barger and Lorig (2019) and Becherer, Bilarev, and Frentrup (2018) both assume
stochastic price impact of trades in optimal liquidation problems.

More recent works in the area have also incorporated other model features such as price
impact (Cartea, Jaimungal, and Ricci (2014), Barger and Lorig (2019)), model ambiguity
(Cartea and Jaimungal (2015), Nystrom, Ould Aly, and Zhang (2014)), and latency (Cartea,
Jaimungal, and Sénchez-Betancourt (2021), Gao and Wang (2020)). More recently, Bergault
and Guéant (2021) introduced a different modeling approach to incorporate different trans-
action sizes and the possibility for the MM to respond to requests with different sizes using
marked point processes.

1.3. Outline of the paper. The rest of the paper is organized as follows. In section 2,
we present the model setup and our assumptions together with the Bellman equation for our
problem and its explicit solutions. In section 3, we assess the performance of our market
making strategy against real LOB data. We finish with a conclusion section. We defer the
proofs to an appendix.

2. A finite-horizon optimal control problem for a market maker. In this section, we
introduce the model along with the relevant notation and its assumptions. Then, by using the
dynamic programming principle, we propose an adaptive trading strategy, and by using the
verification theorem, it is shown that, indeed, the solution is optimal. Finally, its admissibility
is investigated. All the proofs of this section will be deferred to Appendix A.

2.1. The model and its assumptions. We assume that a high-frequency MM places si-
multaneously buy and sell LOs at some preset discrete times 0 = tg < t; < --- < ty, where
ty < ty4+1 =T and hereafter T represents the terminal time of the trading. All the ran-
dom variables used in the model are defined on the same probability space (€2, F,P) equipped
with an information filtration {F;}ie7, where 7 = {to,t1,...,tn4+1}. For k =0,...,N, let
]1;2 . €Ft, (L, € Fr,y,) be Bernoulli random variables indicating whether at least one buy

(sell) MO arrived during the time period [tg,tg+1), i-e.,

1,
(1)

]l;c_,_l = ]l{At least one sell MO arrives during [tx,tk41)}"

= ]l{At least one buy MO arrives during [tx,tr+1)}>

Let @ be a fixed positive integer and define the lag-w recent history of MOs at time ¢ as

(2) e, = (1,1, 1 _ 1, ) e{0,1}*%.

We often use the shorthand notation e;, = (]li, . '7]1i7w+1)' Above, we are assuming that
to = 0 is the beginning of the MM’s trading and that there is a sufficiently large “burn-
out” period prior to it. In particular, the indicators (1) are also defined for k = 0,—1,...
by setting some times 0 > t_; > t_g > ... before the beginning of the trading at time O.
Thus, for instance, Ilfo is 1 if at least one MO arrived during the time period (¢_;,0] and
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ey, = (]ltio, ]liu ey ]lti_wH) represents the indicators of MOs in the w time periods previous to
0. For future reference, let us introduce some notation. For any adapted process u = {us, }x>0,
we set

ng+l ::E [utk+1 ‘ Fth] )

F 13 :z}, i€{0,1},

it
(3) utk+1 =K |:utk+1 [

wd —E [utk“ | P 1, =15 :j} . d,jef0,1),

which can be considered some sort of one-step-ahead forecasts of u. Note that all these
processes are adapted to the information process {F; }e7-

As mentioned before, at each time ¢z, the MM will place simultaneously a buy and a sell
LO. Her sell LO will be submitted with an execution price of a, , while her buy LO will have
an execution price of b;,. The volume of these orders is typically set to be the average volume
of submitted LO in the stock of interest. Both a, and b;, are the MM’s “controls.” It will
be important to reparameterize the controls relative to a reference price S;, associated with
the stock such as the midprice or other related proxy. The MM’s buy (sell) LOs submitted
at time t; (k=0,...,N) will be matched against the sell (buy) MOs submitted during the
period [tg,tr+1) as follows. Let us first consider the ask side. If S;, denotes the reference or
fundamental price of the stock at time ¢;, and the MM’s ask LO is placed L;: above S, (i.e.,
ay, = St + L{ ), then the total number of shares from the MM that are sold during [tx, t541)
is denoted by Q;: ., and is given by

(4) Q;:-H = ]]'22+1Cz;+1 [(Stk +pli-;-l) - (Stk + Lz;)] = ]]'21;4-10;;-#1 (pz;-u - Lz;)’

where pzc +1’C£ ., € Ft,,, are nonnegative random variables. Broadly (but not literally) p;; -
is related to the maximum depth that buy MOs walk into the LOB during [tx,tx+1) and c:; o
is such that C?; +1sz: ., indicates the executed volume of a sell LO if this were placed at the
same level as the reference price (that is, if L;: =0). We can also interpret p;: ., as the buyers’
reservation price in the market, i.e., the highest price that “buyers” in the market are willing
to pay for the stock. These interpretations should not be taken literally as explained in points
2—4 of Remark 1 below.

We analogously define the corresponding quantities for the bid side of the book. That is,
provided that at least one sell MO arrives during the time interval [tg,tg11), Qy, o will be the
executed volume of the MM’s buy LO placed at time t; at the price level by, . Similarly to
at,, we reparameterize by, in terms of the distance L; below the reference price Sy, so that
by, = Sy, — Ly, . Similarly to (4), @y, ,, is modeled as

(5) Q;c+1 = 1t_k+lc;c+l [(Stk - L;c) - (Stk - p’;c+1 )] = :[Lt_k+lct_k+l (pt_lc+1 - Lt_k)’

where p, € Fiy, and ¢ € Ft.., has analogous interpretations as p;: ., and c;; . Above,
both Ltt and L; are the MM “controls,” while the reference price S;, is exogenously deter-
mined by market conditions independently from the MM actions. The form of the function
of Qiﬂ is illustrated in Figure 2.

Remark 1. Some comments are in order to clarify our model assumptions (4)—(5) and
contrast to earlier work:
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Number of filled shares
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Figure 2. S;, — Py is the lowest price that a sell MO can attain, and Sy, +p?;+1 1s the highest price that
a buy MO can attain during the time interval [ti,tk+1). The number of filled shares increases as the MM places
limit orders closer to the fundamental price Sy, .

1. As mentioned in the introduction, in a continuous-time setting, Adrian et al. (2020)
considered demand functions similar to (4)—(5), but with ¢ and p being known deter-
ministic constants. Then, the actual numbers of shares bought or sold over [ty,tx 1)
depend only on the spreads Li. Introducing randomness is more realistic since the
actual demand during [tg, tx+1] not only depends on the spreads of the quotes, but also
on the initial state of the book, which is hard to summarize and incorporate given its
high-dimensionality and variability, and on the flow of orders during the interval, which
is extremely unpredictable at time t;. One may argue that for the purposes of market
making all that matters is the average demand during the given trading period [0, 7.
That is, all we need is to take the deterministic demand functions 112;1#;? (u;)t — Li)

or ]liﬂ(ufp — ,uétLi), where uf, /{»Zt? ,u,ég, are the average values of ¢, p, and ¢p over
[0, T, respectively. This is not the case. As explained in items 1 and 4 following Corol-
lary 3 (see formulas (24) and (26)), the randomness of ¢ and the correlation between
¢ and p play key roles in the optimal MM strategy. This is further verified in our
numerical /empirical section 3 (see Tables 6 and 7).

2. As mentioned above, the actual demand during [tx,t;11) corresponding to placements
Li would depend on the shape of the book at time t; as well as the volume and
timing of MMs and the arrival of other LLOs and cancellations during that interval.
Figure 3 shows the approximate demand during a prototypical time interval where at
least one MM order arrived (see subsection 3.1.2 for details about how to estimate
such a demand). Then, in a nutshell, ctik+1 and ptikJrl are chosen so that the resulting

linear model ciﬂ (p;[c+1 - Liﬂ) is close to the actual demand. In other words, (4)—(5)
are viewed as the “best” linear fit for the actual demand during a given time period.

3. One of the obvious drawbacks of (4)—(5) is that, in principle, we are assuming the
possibility of negative demands (negative number of units sold or bought), which is
obviously not realistic. But, this would happen only if the LO quotes Ltik were large
compared to S, . This assumption would then be an issue if the resulting optimal
placements were, at times, far away from the reference price, since, in that case, the
optimal strategy may be favoring or looking for negative demands, which in reality are
not feasible. In the context of Figure 3, this would be the case if the optimal placements
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Figure 3. Prototypical plot of the actual demand versus estimated linear demand over time interval [tx, tet1).

were more than about six ticks away from S;,, that is, when the linear demand func-
tions start to produce negative values. However, our empirical implementation in
section 3 shows us that the resulting optimal placements are almost never far away
from the reference price (almost always less than or equal to four ticks away) and,
thus, the linear demand assumption is not an issue in practice.

4. Above it was mentioned that p;: L, I8 connected to the maximum depth that the buy
MOs walk into the LOB during [tg,tx+1). This is because, under this interpretation,
we obviously have that if L;: > pz; o then the corresponding demand should be 0.
However, as mentioned above, it is more accurate to see pz; L, 8s the value for which

+ + +
c (plthrl —L

e tr,,) provides a good fit for the demand when Li+1 is small.

Next we introduce the main assumptions on the distribution of the random variables

1 and p; ..

trt1? ]]'tk+1 ’ Ctk+1 ’ptk+1 ) Ctk+1 ’

Assumption 1. For k€ {0,1,...,N}, let Gy, ., := a(ftk,ﬂiﬂ,ﬂ;cﬁ). Then,
(i) (ciﬂ,piﬂ) and (¢, Py, ,,) are conditionally independent given Gy, ., ;

(ii) the conditional distribution of (cj; s P;ZH) given Gy, ., is a measurable function de-
pending solely on ]1:Z+17 and it does not depend on k;

(iii) the conditional distribution of (c;,  ,py,.,) given Gi,,, is a measurable function de-
pending solely of 1, o that does not depend on k;

(iv) let @ be the fixed number defined in (2) and define Hf? = o(e;, ) C Fy,. Then, for some
d € N, we assume the existence of functions g : {0,1}?® — R? and f, f* : R? — [0,1]
such that for all k£ €{0,1,2,...,N},

+ + +
i = PG, =11F,) =P, = 1HE) = = (g(es,)),

tr+1

7Ttk+1(17 1) = IP(]]'tt_H = 17]]'1;€+1 = 1|]:tk) :P(:ﬂ-zﬁ_l = 1’1;c+1 = 1|H5) = f(g(etk))

(6)

By virtue of conditions (ii) and (iii) above, for each m,n € N, there exist functions A, , :
{0,1} =R and hy, , : {0,1} — R such that

(7) E| (6, )" 0,0 |G | =E[(cF, )"0, )1 | = hEa (1)

for any k € {0,1,...,N}. The optimal placement strategy will depend on the following non-
random quantities:
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trt1

(8) g = b (D) =E[(cF, )", )"

1+ :1]

When m or n are 0, we simply write uci = ufm 20 and ,u]jfn = ,uz%pn and omit the exponents if
m and/or n are 1. Note also that

T, (1,0) := ]P’{]lJr

tht1

—1,1; =0 ’ ]-"tk] = = (1,1),

9) 7, (0,1) =P [1#

trt1

=0,1; =1 ‘ftk] =Ty, ., — T, (1,1),

()

7Ttk+1 (07 O) =P |:]l+

tht1

:O’]l;c-*-l :Olftk] :1—71':;_'_1 —W;C_H —|—7Ttk+1(1,1),

and, thus, they all satisfy representations similar to (6) and, in particular, can be written as
functions of g(ey, ).

Remark 2. Tt is important to stress the relevance of the assumption given by (6). In
Adrian et al. (2020) and our earlier preprint (Capponi, Figueroa-Lépez, and Yu (2021)), it is
assumed that the probabilities W;EH and 7, ., (1,1) are deterministic smooth functions of time,
fixed throughout the trading day. In that case, for implementation purposes, these functions
have to be estimated at the beginning of the trading day from, for instance, historical data or
another type of preliminary market analysis, but once they are chosen, they cannot be changed
through the trading day. In the present work these probabilities are allowed to “react” to the
“recent” history of buy/sell MOs e;, = (Jli, ]li_l, . .,]li_w+1), through a chosen function g.
The purpose of the function g is twofold: it summarizes the information contained in e, and it
allows us to alleviate the computational burden by reducing the dimension of past information.
This novelty enables the MM to adapt or adjust her trading strategy to the recently observed
“trades” in the market, which as shown empirically in section 3.1 can provide a good forecast
for the likelihood of a MO arriving on a given interval in either side of the book. In our
framework, the hyperparameter functions f* and f in (6) will then have to be calibrated at
the beginning of the trading day based on historical data. We can think of each value of g
as a possible “scenario” of the recent MOs history. At the beginning of the trading day, we
calibrate the probabilities 71'?;_1 and 7, ., (1,1) for each possible scenario. This will allow us to
choose the best possible placement strategy for each possible scenario. We give further details
in subsection 3.1.

Remark 3. There is a possible connection between the approach based on exponential
lifting probabilities (cf. Cartea and Jaimungal (2015)) and that based on linear demand func-
tions. Specifically, if AT is the arrival intensity of MOs and the lifting probability is set to be
exp(—/iiLi), where LT is the distance between the LO quote and the fundamental price, then,
during a time span of A, we expect that AANT exp(—xTLT) times a MO will lift a LO placed
at distance LT, Since in this stream of literature, it is typically assumed that only one share
of the order is lifted at a time, when L¥ is small (as it is commonly the case), the expected
number of shares filled during a time span A is approximately equal to ANT — ANFRELE,
which is precisely linear in L*. Since we are allowing actions to take place only at discrete
times, we believe that the modeling based on stochastic linear demand functions provides
greater flexibility.
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As in Cartea, Jaimungal, and Penalva (2015), Adrian et al. (2020), and others, for the
performance criterion of our placement strategy, we use Wp + Splp — /\I%, where W; and
I respectively represent the MM'’s cash holding and stock inventory at time ¢, and A is a
constant penalization term. Note that at time T'=1%y1, the last two terms can be rewritten
as Splr — )\I% = Ip(St — A7), which may be interpreted as the MM’s end-of-day cash flow
incurred when liquidating her inventory Ir using a MO. Overall, the latter interpretation
seems to be a good approximation of reality as shown by our empirical analysis of section 3.2
(compare Tables 2 and 3).! The optimal control problem then consists of finding the adapted
placement positions LT = (Ltio, Lff, e, Lffv ) that maximize

(10) E[Wr + Srlr — \IZ].
For future reference, note that, in light of (4) and (5), we have, for k€ {0,1,...,N},

(11) Itk+1 = Itk - ]l;/_c+1cl:/:+1 (p;/:+1 - LZ’;:) + :H';g+1ct_k+1 (pt_k+1 B Lt_k:)7
(12) Wtk+1 = Wtk + (Stk + Li)1;+1ci+1 (p;—c+1 B L;I_c) B (Stk B L;c)1;C+IC;€+1 (pI;€+1 B L;)

2.2. Optimal placement strategy for a martingale midprice process. For ease of expo-
sition and to establish the main ideas, in this subsection we first present the solution of the
optimal placement problem under the assumption that the reference price process {St, }x>0
is a martingale. The case of a general price process is presented in the following subsection.
The results herein will enable us to give a more tractable presentation of the general case. All
the proofs in this subsection are deferred to Appendix A.1.

In order to proceed, we need to make an additional assumption on the distribution of the
increments of the price process.

Assumption 2. (i) For any k € {0,1,...,N}, the price increments S;_, — S, and the
random vector (IL;Z ol c,;: o p;: 1 Clpr o P +) are conditionally independent given F;, , and

(ii) {St.., — St tk=0,... .~ is a martingale, i.e., E[S;, ., — S, |F:,] =0, for any k=0,...,N.
We now specify when a strategy will be admissible. We specify two types of admissibility.

Definition 1. For any k € {0,1,...,N}, a strategy (Li,...,Li) running from time t
to time ty is said to be admissible if, for every j > k, LZ € Fi,. If, in addition, we have
L;; + L, >0, for all 7 > k, we say that the strategy is strictly admissible. The set of all

(strictly) admissible strategies running from time ty, to time tx is denoted by (Ag 1x) Aty tx-

Note that the strict admissibility condition L?; + Lt_j > 0 is equivalent to a;, > by, i.e., the
selling price a;, = S, + Ltt of the MM is higher than her buying price b;, = S, — Ly at all
future times. We don’t require that L™ and L~ are nonnegative because S;, is not necessarily
seen as the midprice Sg‘id, but rather as the “fundamental” price of the stock. In practice,
the placement will always be set at the tick right above (below) the midprice if at, (b,) is
found to be below (above) Sy,

In accordance with performance criterion (10), we can then write the value function at
time t as

'Related to this, some recent works have proposed equilibrium models to deduce the price impact of a MO
(see, e.g., Cetin and Waelbroeck (2023)). See also Bhattacharya and Saar (2021) for further insights about the
relation between price impact and the depth of the book or the arrival frequencies of trades.
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(13) Vi, = sup E(Wr + Splr — M7| 7],  k=0,1,...,N.
(Liv“'thz,tN)EAtk‘tN

To solve the optimal control problem, we first assume that V;, follows the ansatz
(14) Vi, = Wi, + Si Lo, + o, I + by 1y, + g1,

where g, by, , g, are some F;, -adapted real-valued random variables to be determined from
the dynamical programming principle (see Theorem 1 below). The ansatz is motivated by
the specific form of the performance criterion in (10) and the dynamic principle given in (15)
below.

The dynamic programming principle (see, e.g., Hernandez-Lerma and Lasserre (1996) and
Béuerle and Rieder (2011)) associated with (13) can then be written as

(15) Vi, = sup E[Wk+l
L €Ay,

ftk}, k=0,...,N,

where we set Vp := V., = Wr + Srlr — )\I% and A;, consists of all Li € Fy,. Using the
ansatz (14), we can rewrite (15) as

Wy, + atklfk + St Ity + he 1ty + gy,
(16) - iSup E Wtk+1 + O‘tk+11t2k+1 + Stk+1ltk+1 + htk+1]tk+1 + Gtiis
Ltk GAtk

}'tk} .

By plugging the recursions (11)—(12) in (16), we will be able to find a candidate for the optimal
placement strategy (Theorem 1 and Corollary 3 below). It is not until Theorem 4 that we
shall verify that our candidate is indeed the solutions to our original optimal control problem
(13). In section 2.4, we study the strict admissibility of the optimal strategy.

To write explicit formulas for the optimal placement strategy, we introduce the following
terminology:

+._ _+ — +/ 1F F __ ,F
ptk T Trtk+17rtk+1uc (at;H,l/’Lc? /’LC )7

+ 1,1+ 2
wtk = 7rtji+17rtk+1 (17 1)atk+1:uc (:uz::F) )

1 1,1 2 Pi.Py,
Vi 1= (WtHl(l,l)at;Huguj) ——
ﬂ-tk+17rtk+1'u’c He
where o} and o' are defined using the notation (3). We will prove below that the
thi1 tht1

optimal spreads for the ask and bid side can be written as Lz; *= “)A;: L, + (Q’A:Z + <3)A;: and
Ly " =—DA I, — @A + @A, with the coefficients

1+ £+ 1F 4+
(1)Ai L atk+lptk atk+1wtk
te ° ?

Vi
(18) 1+ &+ 1 +
(2)A:|: L htk+1ptlc - htilwtk
T )

2,
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pi bi g
@AE .— b ot (Mi N >+2 kHep
B am e, | T e (ud)?
Q;Z)ti 1 d’tZFMg[p
vl 1(lﬁ = 20,7 1 )+2ﬁ )
27Ti+1l//c$'7tk + cp +17¢c*p 7Ttk+1(ﬂc )2

where we again used (3) to define hg}il. We first show that the maximization problem in (16)
is indeed well-posed.

Theorem 1. Under Assumptions 1 and 2, the following statements hold:
(i) There exist coefficients oy, , hy,, and gy, that solve (16) for k=0,..., N with dynamics

(11)~(12) and terminal conditions oy, = —X\ and hyy,, = giy,, =0.

(i) Fork=0,...,N+1, the coefficients oy, , hy,, and gy, in (i) are HiY -measurable random
variables, where recall from Assumption 1 that HY = o(es,) = U(ﬂiﬂliq?'“’ﬂiwﬁ)
C Ftk .

(ili) For k=0,...,N, the coefficients of (1) can be computed recursively by the equations

2
_ 0 ) 16 1 é (1) A0 16 O (1) AD
Qp, =y, + E T ren [(atk+1/‘1’02 _Mc)< Atk) +2atk+1ﬂc Atk
o=+
1,1 +,, - AT DA
+204tk+177tk+1(171)ﬂc Ly Atk: A

Tr?

(20) Ay =R+ {2(04};11 - Mg) wAl <<2>Afk + (6 <3’Afk)>
==+

(19)

+ 20f? 8 (6047 + @AY, ) —2(0af?, )l + (6 VA7)

tr+1 trt1

1) 1 1) 1) 1)
X (/J'cp + (5}%}“1)% - 2az}k+1p’c?p) }

1,1 —la - 2) A — A= [ :
- 2atk+1ﬂ-tk+l(]‘7 Dpdpg | )A;Z ((S)Atk = )Atk) - WA, <( )Ai + (”Az;)

+ p—
+ <1>A;€ L‘f —(”A;: 'uc_l’]’
He He

and

(21)

1) 1 1 8\ ((3) A0 2) A0 1 1 1 1
gt, = g?k+1 + Z 7Tthrl [(a%k+1MCQ - :u’c)(( )Atk + (5( )Atk))Q + agk+1ﬂc2p2 - (6h7}k+1):u’cp
o==%

(il + (ORE7 )l — 2088 %, ) (VAT + (5947)]

it tht
1,1 T o
_ zatk+17rtk+1(1’ 1)'“2_,“0 [(< )A;: + (rs)A;Z)((mAt,c o )Atk)
+ ~ L
_ L‘f((s)Al; _ (2>At_k) _ Lc_p((z)A:}; + (3)14;:) + 'Ulcfiutf}
pe fhe He e

where we used the notation (3), (17), and (18).
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Before finding the optimal controls of (15), we state an important preliminary result that
will also be needed to show the verification theorem and the strict admissibility of the optimal
controls. This result is deceptivelysimple, though its proof is rather intricate.

Lemma 2. The random variables {ou, }r>0 defined in (19) are such that
ang <oy, <0 forany ke{0,1,...,N},

where {&f Yo is computed from {ay, }r>0 using (3).

We are now ready to find the optimal controls of (15) under the ansatz (14). Most of its
proof is embedded in the proof of Theorem 1 but due to its importance it is stated separately.

Corollary 3. The optimal placements that mazximize the right-hand side of (15) under the
ansatz (14) are given by
+k __ (1 2 3
(22) Ltk _()A;i;[tk_i_()A;:_‘_()A;:’
L;cy* — _ (I)A;c[tk _ (2)‘/4;C + (3)14;C7

where the coefficients above are given as in (18).

In light of the previous result, the optimal placement strategy takes the form
o G = S+ AL + AT+ 0T
bi, = St + VA I, + DA, — DAL
In the preprint (Capponi, Figueroa-Lépez, and Yu (2021)), an extensive analysis of the prop-
erties of the optimal strategy was carried out in the case that the arrival intensity of MOs is
deterministic rather than adaptive as in our setting (see Remark 2). One of the main con-
clusions therein is that the randomness of ¢ and p is not just a mathematical artifact for the
sake of generalization, but plays an important role in the behavior of the optimal placement
strategy. Many of the conclusions therein transfer to our setting, but, for the sake of space,
we just highlight some of the most important here:
1. The second term in (23) is fundamental as it can be interpreted as the inventory
adjustment to the optimal strategy. In the case of m(1,1) = 0 (which is met to a

good degree when trading frequency is high enough), the coefficient VA, simplifies as

follows:
+ 1+ 1+
(24) (I)Ai = He Yy i - Ytiin
ty T & 1+ 4+ 1+  + 1+

+ + -
He — Qo B2 1- Qg He — atkHVar(ctkH | Ft, )/ e

Due to Lemma 2, the coefficient above is negative, which means that when the in-
ventory is positive (negative), the ask and bid levels decrease (increase) to stimulate
selling (buying) of stock and, hence, bring inventory closer to 0. The larger the level
of the slope ¢, the smaller the effect of inventory in the optimal placement strategy.
However, with the same average value of ¢, stocks with more variable ¢ require smaller
inventory adjustment.
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2. In the case of m(1,1) # 0, we still have that “)Ai < 0. Indeed, recalling (17)—(18) and

a%}il <0, and applying (A.11), the numerator of “)Ai < 0 satisfies

1+ 4+ 1F 4+
atk+1ptk atk+l/l!)tk
— ot ot o E AT uF —uF) —olF AT L1 +0,F)2
- atk+1ﬂtk+17rtk+1lu’c (athrllu’cz :u’c ) atk+17rtk+1ﬂ-tk+l(l7 1)atk+1lu’c (MC )
1= + - ,*/ 1F F _ ,F_ JAF _F 1+ 4+ £/, F\2
Z atk+17rtk+1ﬂ-tk+1iuc (athrllu’cQ lu’c ) atk+1wtk+1atk+1ﬂ-tk+1/’éc (Mc )

o1+ - 4+ _— 4 T o2y 1+ _—
_atk+1atk+1ﬂ-tk+1ﬂ-tk+1uc (/"ch (MC) ) atk+1ﬂ-tk+17rtk+1ﬂc l’LC >0'

Since the denominator v, <0 (cf. (A.12)), we conclude that “)Ai <.

. Again, assuming that 7(1,1) =0, we can further write

+ o 1t +p 1+ Y
a =8, + Fe @, I, + 1 He htk+l 1 fep 2atk+1N02p
te — Ptk T _ I+ A+t Ty Iy F T o+ 1+ T+
(25) He = Qi Hez 2MC T Qi Fe2 2 He — Qg Foez
- 1 —71— - 1+ =
N He O,y 1 pehy, 1 thep = 2004, " ey,
btk = Stk + S p— Itk + 5 — 1— — — 5 — 1— —.
He = Oy Hez He — O He2 He = Oy Hez

Computationally, it can be shown that oztlil and htlil are close to 0 for most of the
time interval [0, 7] and it is only for ;1 close to T that their values are significantly

different from 0 (especially, a%}il). Then, we have the approximations

* S +1@_S +£+COV(C£:H,])Z:H’E}9)
(26) Y 2 ’
26 _ _

e iy Covlem )

TR s T 2 2p1c '

The correlation between ¢ and p now plays a key role in the optimal placements. When
c and p are uncorrelated (such as when ¢ or p is deterministic), the optimal placements
are near the midpoint between S;, and the average reservation price S;, £ ,u;t for most
of the time. However, when the correlation between ¢ and p is positive, instead of
placing LOs around Sy, + ,u,g /2, the high-frequency MM will tend to go deeper into
the book. Roughly, a larger realization of ¢ also implies a large value of p, resulting in
a larger demand function and, hence, greater opportunity for the MM to obtain better
prices for her filled LOs.

. Under the condition w(1,1) =0 and certain market symmetry and independence condi-

tions, we can strengthen the conclusions of the previous item. Specifically, if we assume
that 7 = 7=, pk = pFut, s, = polis, pd = pign = pem, and h = pin =t ppm,
when m =1,2, and o't = a!~ (see Lemma 8 and the proof of Corollary 7 for sufficient
conditions for the latter to hold), then we have that hi}il =0 and (25) uncovers the
existence of a critical inventory level that dictates the relation of the optimal place-
ments relative to the nominal values a?k =S, + & and b?k =Sy, — 5. Specifically,
let 1Y := £222 Then, we have as follows:

e When CItk =1° (I, = —1I°), the optimal ask (bid) quote is at the level Sy, + 1,,/2

(St = 1p/2)-
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e When the inventory level I;, € (0,1°) (I;, € (—1°,0)), the optimal ask (bid) quote
is deeper in the LOB relative to the levels Sy, + 1p/2 (St — ptp/2).

e When the inventory level I;, > I° (I;, < —I°), the optimal strategy is to place
the ask (bid) quote closer to Sy, than to Sy, + /2 (St — pp/2) and the bid (ask)
quote farther from S;, than from Sy, — p,/2 (St, + pp/2) into the LOB.

We next prove a verification theorem for the optimal placements given in (23). Its proof
is given in Appendix 4.

Theorem 4. The optimal value function Vi, of the control problem (13) is given by
Vi, = v(ti, Sy, Wi, It ),
where, forty €T,
v(th, 5, W, 1) =W + oy, i2 + 50+ hy, i+ gt

with oy, , hy,, and g, given as in Theorem 1. Furthermore, the optimal controls are given by
L** as defined in (22).

2.3. Optimal placement strategy for a general midprice process. The objective of this
subsection is to extend our previous results to the case when the midprice process is a general
stochastic process without relying on a martingale assumption. As we will see below, in that
case, the optimal placement strategy will also depend on the forecasts of future price changes:

(27) Al =E(S;,

j+1

_St]|ftk)7 jZki

We can see Aif as the MM'’s forecast of the price change during the time interval [t;,¢;1],
j >k, as seen at time t;. We first need to modify our Assumption 2 as follows.

Assumption 3. For any k =1,2,..., N, {Stj+1 — St_,»}j:k,...,N and (]li+1,]l;c+l,cz;+l,pi+l,
Cprro Pty +1) are conditionally independent given F, .

To solve the optimization problem (15), we use an ansatz for the value function similar to
that in the previous subsection:

(28) ‘/tk = Wtk + Stkjtk + atkItZk +Etkjtk +§tm

where ay,, ﬁtk, and g, are JFy, -adapted real-valued random variables to be determined from
the dynamical programming principle (15). As one may suspect from the notation above, ay,
will turn out to be the same as before: an H{ -measurable random variable determined by the
recursive relation (19). However, hy, will be different (in fact, not necessarily H{-measurable).

The following theorem summarizes the analogous results of Theorem 1 and Corollary 3
under a general price dynamics. Its proof is provided in Appendix A.2.

Theorem 5. Under Assumptions 1 and 3, the optimal strategy that solves the Bellman
equation (15) with the ansatz (28) and terminal conditions oy, = —\ and hy,, =0 is given,
fork=0,...,N, by

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.



Downloaded 07/09/25 to 157.27.209.103 . Redistribution subject to STAM license or copyright; see https://epubs.siam.org/terms-privacy

668 CHAVEZ-CASILLAS, FIGUEROA-LOPEZ, YU, AND ZHANG

i1
~1 % p * w k K :
LZ; :LZ; _}_% — Z {Pz;AZ-E E( H & ‘Ftk+1> ‘Ftk’ trt1 _1]
Vix Tt s T I=k+2
1+1
- ¢3;A§fE E < H & ‘FtkH) Ftk’lgcﬂ =1 }’
I=k+2
(29) _ur Lo i+1
~_ 4 % pt t — Al
il e T AYE |E P | |Fioth,, =1
t b 27% th Q’Ytk iz%;J {ptk t; H § tret > t tht1 ]

— ¢, AVE FourLip,, =

LI
1)

i+1
E( II &

I=k+2

‘Ftk+1>

where Li’* is defined as in Corollary 3, 7, pi, and zptk are defined as in (17), and the
quantity g1 € Fy,,, 15 given as

+
_ tht1 + 1+ - N
€k+1 - 1 + 7_‘_-|- ’Yt ( tk+1:u’c tk+1ptk tk+1lLLC atk+1¢tk)
trit
(30 T
trht1 — - 1- - +
+ = (ﬂ-tk+1'u’0 atk+1ptk - ﬂ-tk’+1’U/C tk+1wtk)
7Ttk+1/ytk'

Remark 4. Formula (29) gives us some interesting insights, even in the simplest case where
only one-step-ahead forecast Ai’; is implemented, while assuming that Ai’“ = 0 afterward
(1 > k+1). In that case, the third summands of EI’* and E;* vanish, yielding the following
parsimonious formulas for the optimal placement strategy:

Ptk ¢tk

=S, + L =8, + L+ ?Aiz,
tr
(31) B B o
b =S, — L, =S, —L;" + tk2% AL
k

The last term above allows the MM to adjust “online” her strategy depending on her views
or forecast of the next price change at each time instant t;. This feature in turn provides a
more data driven placement strategy in addition to the method described in Remark 2 above.
Using the facts that oz;il <0, (uf)? < ,ucig, and (A.9)—(A.10), it is possible to show that

+ ot
Pt — ¢tk

1 1] o (L)
+ - 4+ - 0,1 - Uk ’
< ﬂ-t,ﬁ_lﬂ-tk“/‘c tk+1uc2ﬂ-tk+1 (1 1) — - F — He + atk+1ﬂc2 1- +1_ )
T T T
L e+t k+1 ] L k41
Pr, — ¥y,
+ — — 1,1 + 1 1 + 1,0  + Tty g1 (17 1)
S s Tty He <atk+1'uczﬂ—tk+l (1,1) + T = —He tag pe 11— T .
T T T
L Yk+1 k+1 | L k41
Since O‘?,ll a;}fil <0, we conclude that pi - 1/1?; <0 if
_ + .-
(32) T, (1,1)=0, or T =T,
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In those cases, since v, < 0 (cf. (A.12)), the coeficients of Aj* in (31) are positive. This
sign makes sense since if, for example, Ai’; > 0, the MM will try to post her LOs at higher
price levels (on both sides of the book) to anticipate the expected higher price Sy, ., in the
subsequent interval. The first condition in (32) is satisfied to a good extent when the trading
frequency is high enough, while the second condition therein is supported empirically by our
analysis in section 3.1.

2.4. Admissibility of the optimal strategy. In this section, we will give sufficient con-
ditions to guarantee that the optimal strategy of Theorem 5 is strictly admissible. All the
proofs of this subsection are deferred to Appendix A.3.

Recall from Definition 1 that a strategy (Lff), e, LtiN ) is strictly admissible if for all k €
{0,1,...,N}, Li € Fi,, and L;: + L, >0, implying that the execution price a;, = S, —i—Lz; of
the ask LO is always larger than the execution price by, =S¢, —Li of the bid LO. Proposition 6
below provides sufficient conditions under which the optimal strategy introduced in Theorem 5
enjoys this property.

Proposition 6. Under Assumptions 1 and 3 and regardless of the dynamics of the midprice
process, the optimal strategy of Theorem 5 yields positive spreads at all times (i.e., ag, > by, ,
for all k€{0,...,N}), provided that the following four conditions hold:

1. The first and second conditional moments of ¢*, as defined in (8), satisfy

(33) fle = jif = pg s e = i = g
2. At every time k€ {0,...,N},

+ - .
(34) Ty = My = Tty

3. For every k € {0,1,2,...,N}, the conditional expectations of cipffc and (ci)Qpi, as
defined in (8), satisfy

(35) Py = Ml s My = Higa fhy

4. For every k € {1,2,...,N + 1}, the Hf -measurable random wvariables oy, and hy,,
defined by (19) and (20), depend on 1} and 1;, only through 1;. +1; .

Conditions (33) and (34) are some type of symmetry conditions between the bid and ask
sides of the market. Condition (35) postulates that the demand and supply slopes ctik+1 and
the corresponding reservation prices piﬂ are uncorrelated. These assumptions are empirically
supported by our empirical analysis in section 3 (see Figure 4 and Table 1).

The following result shows that conditions 2 and 3 of Proposition 6 can be relaxed in the
case that there is no possibility of simultaneous arrivals of sell and buy MOs in the same
subinterval. The latter condition is expected to be met reasonably well when the frequency
of trades is high enough (i.e., maxy{ty —tx—1} ~0).

Corollary 7. Suppose that, for every k € {0,1,...,N + 1}, the conditional probability
T, (1,1) = ]P’(]l;'c+1 =11, = 1|F,) = ]P’(IL?;+1 =11, = 1|H) is 0. Then, regard-
less of the dynamics of the midprice process, the optimal strategy is admissible if conditions 1

and 4 of Proposition 6 are satisfied.

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.



Downloaded 07/09/25 to 157.27.209.103 . Redistribution subject to STAM license or copyright; see https://epubs.siam.org/terms-privacy

670 CHAVEZ-CASILLAS, FIGUEROA-LOPEZ, YU, AND ZHANG

The most technical condition in the results above is 4, which can also be interpreted
as another symmetry assumption. This condition could be difficult to verify due to the
intrinsic complexity of the recursive formulas (19) and (20). In Lemma 8 below, we show
that it suffices to pick the function g : R?® — R? introduced in (6) such that it depends on

+._(1F + - (1— - + e
e/ =(1;,...,1, _  )ande, =(1,,....1, _ ) throughe; +e,.

Lemma 8. If the function g in (6) is of the form g(ey) = (p(e;; + e; ) for some ¢ :
{0,1,2}*% — R, then a4, and hy, will depend on ez; and e, only thorugh ez; +e, . In
particular, they depend on ]l;: and 1, only through ]l;: +1;, and condition 4 in Proposition 6
1$ satisfied.

2.5. Inventory analysis of the optimal strategy. In this section we analyze the behavior
of the inventory under the optimal strategy found in section 2.2, when 7y, (1,1) = 0 and
some symmetry conditions are satisfied. As explained above, the first condition is reasonable
when the trading frequency is high enough. The following result shows that when the initial
inventory is 0, then the expected inventory stays at 0 at all future times. The proofs of this
part are deferred to section A.4.

Proposition 9. Suppose that the assumptions of Theorem 1, conditions 1-2 of Proposition 0,
and the condition of Lemma 8 are satisfied. We also assume that 7y, (1,1) =0 and Pep = Hep
and ujzp = 2y Then, under the optimal placement strategy of Corollary 3, for any k, we
have

1

prooy
(36) (1) E [L,, [ Fe] = [ 1+ 27, £
fe = Oy, He2

) Itka (11) E[Itk] = 07

where, per the proof of Corollary 7, a%kﬂ = oz%k':l = a%};l.

Note that (36)(ii) does not follow directly from (36)(i) as in the nonadaptive case of
Capponi, Figueroa-Lépez, and Yu (2021) because a%kﬂ is random here and correlated to Iy, .
The derivation of (36)(ii) requires an explicit representation of I, and heavily depends on

the symmetry condition of Lemma 8. Recalling from Lemma 2 that oztlk+1 < 0 and since

Fefinm 1, Thus, by (36)(i), it follows that

T
He=04y ) He2

T M2 < p2 < fie2, we have —1 < 1+ 2m,

(37) ‘]E [Itk+1 |~7:tk}

In particular, if I, > 0 (I, < 0), then E [Iy,,|F,] < Iy, (E[L,,|F.] = I,), hence the
inventory is mean-reverting toward O.

2.6. Optimal MM strategy under running inventory penalization. In continuous-time
settings, Guilbaud and Pham (2013), Cartea, Jaimungal, and Ricci (2014), and others have
advocated for a running inventory penalty to further control the inventory risk. Under this
control, the performance criterion is E[Wyp — Syl — A2 — ¢ ftT I2ds|F;]. In discrete time, the
analogous value function at time ¢; naturally takes the form

N+1
(38) V;, = sup E|Wr+Srlp—Mi—¢ > I} F, |, k=01,...,N+1,
(Ltik,...,LtiN)E.Atk,tN j=k+1 .
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where as usual Zjv:t\} 4o ="0. The dynamic programming principle corresponding to (38) can

then be written, for k=0,..., N, as

(39) Vie= sup E[Vi,, —oI2,
Li €Ay,

ftkj|’

starting with Vi, = Wy + Splp — )\I%. The heuristics behind (39) is classical:

N+1
V=" swp E\E|Wr+Splr =M —¢ Y I\ Fi, | — 617, | Fu
(Ltk7“‘7LtN)€AtkvtN =k+2
N+1
= sup E sup E|Wr+Srlr—Mi—¢ Y I|\F,, | -2, |Fu
LtikGAf,k (Ltik_'_l,‘..,LtiN)GAthrl,f,N j=k+2
= sw E|Vi, — oI, |Fl

Lf €A,

The following result, whose proof is deferred to Appendix A.5, formalizes the heuristics above.
Specifically, this shows that, under (38), most of the results considered in this paper follow
with minor modifications.

Theorem 10. Suppose that the setting and assumptions of Theorem 1 and Corollary 3 hold
true. Then, the following statements hold:
1. The conclusions of Theorem 1 and Corollary 3 follow with (39) replacing (15) and an
ansatz of the form

(40) ‘/tk = Wtk + Stkltk + ‘q”atklfk + (¢)htk1tk + (¢)gtk'
The optimal controls W’Li’*, k=0,...,N, are then given by

+7 +7 +7 +7
" <¢>Ltk * (I)Atk ¢Itk + (z)Atk ¢4 <3)Atk¢ ¢7
W”L;’* _ (I)A;@L&k _ (Q)A;’d’ + (S)A;’¢v

with the coefficients <1>Ai’¢, (2’Ai’¢, and <3>Ai’¢ taking the same form as (18), but with

1+ 1,1 RSN = (#), 1,1 (), (#) (#)
oy, and oy replaced with Yoy " — ¢ and Vo — ¢. Here, oy, “hy,, and gy,

follow the same formulas as (19)—(21), but with a?kﬂ, a%}il, O‘tl,il’ h?kH, g?kﬂ, and
. 1,1 +,

(z)Ai replaced with (¢>a?k+1 — o, (¢)at11i:}—1 -0, (¢)O‘tk+1 — &, (¢)hgk+l’ <¢>g?k+17 and ([)Atk <¢>7
respectively, on the right-hand side of all the formulas.

2. The conclusion of Lemma 2 also follows under the new running inventory penalty, i.e.,

(¢)O‘?k+1 <oy, <0 for any ke {0,1,...,N}.

3. The verification theorem, Theorem 4, holds true with the value function (13) replaced

with (38).
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2.7. Implementing the optimal strategy. As indicated in Remark 2, the function g in-
troduced in (6) has two main purposes First, it summarizes the information contained in the
recent history of MOs, e;, = (]ltk, .. 'vﬂtk_w+1)’ and, more importantly, it alleviates the com-
putational burden by reducing the dimension of the different scenarios one needs to consider.
However, in order for g to work as intended, we must impose one additional condition.

Assumption 4. For k =0,...,N, g(eq,.,) is a function of (]l;;+1 1,....9(ey)); ie., if we
denote the image of g as Z,, then there exists a function I': {0,1}? x T, — Z; such that

(42) g(etk-H) _F(]liurlajlgﬁlvg(etk))'

Obviously, if we picked g to be the identity function (g(e;, ) = e;,) so that there is no
dimension reduction, then (42) is trivially satisfied by taking I" to be the mapping that drops
the last two coordinates of the vector (1} ,1;  ,g(es,)). A more interesting example is when

+1 k+1
gle.,,) = ethrl + €., (which satisfies the conditions for admissibility stated in Lemma 8).

In that case, denoting the mapping that drops the last two entries in a vector as I'_, we have

glen.) =04, +1;, T (e +e))= (1], +1,,,.T(g(ex))),

and the condition of Assumption 4 is satisfied.

Working backward by induction, it is not hard to check that, under Assumption 4, the
coefficients (1)A+ <2>A+, and (3)A+ for the optimal placement strategy (22) depend only on
g(et,). Indeed, the probablhtles IP’( tes, = 61, = j|F,) have this property since these

can be expressed in terms of W;EH and m, ., (1,1) (see (9)), which enjoy the stated property

per Assumption 1(iv). So, it only remains to show that a?kﬂ, Oz;il, and Oztk+1 (and the

corresponding quantities for hy,,,) have this property. Indeed, by the induction step, we
can assume that ay, ., = A(g(ey,,,)), for some function A : Z, — R, and, by Assumption 4,
Qg = A(I‘(]lz;rl,]l;chl,g(etk)). Then, similar to (A.6),

IP[]lj;H
(43) ot = D A Lglen) 5=
[1

e{0,1}

L1, =1\ F]
]‘|‘Ftk] ’

1

which is clearly a function of g(e;, ). We can similarly deal with O‘?Hw O‘t}iu RO AT and

o tit1? gy
Z7J

tt1”
To carry out the optimal placement strategy, we think of each value ¢ € Z,, the image of g,

as a possible scenario of the immediate history of MOs. Before the beginning of trading, the
MM first computes, backward in time using (17)—(19), the coefficients “)Ai , (Q)Ai , and “’Ai
of the optimal placement strategy (22) for each time ¢, and each possible scenario ¢ € Z,. This
results in a type of “dictionary” or “catalog.” Once the catalog is computed, she can then
start her trading moving forward in time. At each time t;, she observes the recent history of
MOs €4, = (]lfc, ]li ) Based on the ey, , the inventory value Iy, , the asset price Sy, , and
her forecasts A k of future price changes, she places her bid and ask LOs using the catalog.
For instance, if she assumes At’“ =0, for all 7 > k + 1, she will place her orders at
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p-i- _ ¢+
a* :St +(1)A+It +(2)A+ +(3)A+ + uAtk’
ty k (22 tr th 2%5 th
(44) k e
B = Su o+ VAT + A = A 4 PR TN,
ty

where above we are also assuming that the coefficients of Ai’; are computed at the beginning
of the trading for each time ¢; and each scenario ¢ € Z,.

3. Calibration and testing the optimal strategy on LOB data. In this section, we give
further details about the implementation of the optimal placement strategy of section 2.3,
including model calibration. We then illustrate our approach with real LOB data from Micro-
soft Corporation (stock symbol MSFT) during 2019.> Our data set is obtained from Nasdaq
TotalView-ITCH 5.0, which is a direct data feed product offered by The Nasdaq Stock Market,
LLC.? TotalView-ITCH uses a series of event messages to track any change in the LOB. For
each message, we observe the timestamp, type, direction, volume, and price. We reconstruct
the dynamics of the top 20 levels of the LOB directly from the event message data. We treat
each day as an independent sample.

In the first subsection we detail the model training or parameter estimation procedure.
The training will be based on the historical LOB data of the 20 days prior to each testing day.”
In the second subsection, we present the performance of the optimal placement policy using
the real flow of orders for MSF'T in a given testing day and compare it with “fix-placement”
strategies that place LOs at fixed ask (bid) price levels. More specifically, in each test day,
we assume the MM places her LOs every second from 10:00 a.m. to 3:30 p.m., placing a total
of 19800 LOs at each side of the book.

3.1. Parameter estimation.

3.1.1. Estimation of wi+1,7rtk+l(1, 1). We first need to specify the function g in As-
sumption 1(iv). We consider the following three functions:
91:{0,1}° = {0,1}°, gi(er,) =€y, = (1,1, 17 | 1 .15 ),
(45) g2 {07 1}6 - {07 17 2}35 gQ(Etk) = (]1;; + :ﬂ-;ca :H-;Zfl + :ﬂ-;cflv]]-z,:,2 + ]]-;c,g)a

8 4 - - — -
g3:{0,1}° = {0,1,2}*, gs3(es,) = (1& + 11%,11;__1 + 11%_1,1&_2 + 1%_2,1;_3 +1; ).

1-

tr—1

The first function does not satisfy the conditions for admissibility of Lemma 8. However, in
practice, for each of the functions above, it is very rare that a;, < b, or that as, (b, ) is below
(above) the midprice Sf;id. When any of these events happen, we simply set a;, and/or by,
at the tick right above and below the midprice depending on what is appropriate.

Once we have selected the function g, we use the historical LOB data of the 20 days prior
to each testing day to estimate the functions f, f*, and f~ in Assumption 1(iv). To this
end, we simply leverage the interpretations of those functions as conditional probabilities.
Specifically, setting Z, :=Im(g) C R?, for every ¢ € Z,;, we estimate f*(¢) and f(¢) as

2We have tried a few other stocks but the results are not shown here for the sake of space.

3http://www.nasdaqtrader.com/Trader.aspx?id=Totalview2

4We tried different windows. The performance is good provided that the window size is not too small (say,
2 or 5 days).
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(a) m* as functions of gs.

Figure 4. Estimation of 7 when g is given by the function g3 defined in (45). The x-azis displays the
equivalence classes where the function g assumes different values, whereas the y-azis represents the value of T+.

#{ﬂ-i = ]"g(etl) = L}
ﬁ{g(etz) = ”} 7
N #{:ﬂ-tezlﬁjl&:lvg(ete):”}
o = ey =0

where # A indicates the cardinality of a set A and the times t,’s range over all the seconds from
10:00 a.m. to 3:30 p.m. in the 20 days prior to the testing day. The results of the estimation
procedure for g3 can be found in Figure 4 (similar results are found for g; and g2). The
overall behavior is what one would expect: when ¢ takes a value corresponding to more ones
in e;,, the probabilities 7% take larger values. These figures also indicate that our symmetry
assumption 7T =7~ required for admissibility (see Proposition 6) is reasonable.

(46) fE) =

Remark 5. One of the key principles behind our approach is the presumption that we
could forecast to a good degree the intensity of MOs through the day using the estimated
functions (46) and (47) and the history of previous MOs, e;,. To assess the validity of this
principle, we compare the average of the sets

1+ + + +
{]]'tk 250 tk 2497 " " ]]'tk’ Tt ]]'tk+249’ :Iltk+250}’
_ AT + + +
PIC - {ﬂ.tkfzso’ a9 Tyt ,7Ttk+249 ) Trtk+250}’
. s + + - + - : <
where 4} = f(q1(1;,1;,,1; 1, 1} .1, )). Figure 5 shows the result for all the

seconds tj in a prototypical day. This shows that our approach is surprisingly accurate in
tracking the intensity of MOs throughout the day using historical data from previous days
and past information of MOs.

3.1.2. Estimation of the demand functions. To estimate the constants ufmpn of (8), upon
which our strategy depends on, we use the sample averages within the previous 20 trading
days. For instance, the estimate of ujmpn is

R 1
(48) :uj—mp" = N Z Ctg+1 pt[+1 )n7
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Figure 5. Moving average of the estimated values of P+ (using the function g = g1) and the moving average
of/\/lz on August 7, 2019.

where t,41 ranges over all the seconds of the previous 20 days from 10:00 a.m. to 3:30 p.m.
and N is the total number of those. To estimate (é;'; 1 ﬁ;’; +1) for one of those previous 1-second
time intervals [ty,tp11), we apply the following procedure. Assume that the MM places an
ask LO at price level P, at time ¢, with volume Vo, and that the volume of existing ask
LOs with prices lower than Py is V. If a buy MO with volume Vj; arrives during [ts,te41),
then the number of shares of the MM’s LO to be filled equals to ((Vas — V) V 0) A Vio.”
We then compute this quantity for all buy MOs arriving during the interval [ty,ts11) so
that Q¢ :=> .1 mo((Var = VL) V0) A Vo) will quantify the actual demand at price level Py
during that interval. Once those demands have been computed for all price level P, above the
midprice, we performed a weighted linear regression to estimate (éz; o ﬁ; +1), with the actual
demand @y being the response variable and the price level P, being the predictor, placing
higher weights on price levels closer to the midprice Sy, . Following (4), we can estimate é;;
and ﬁ;’; as the slope and as the quotient intercept/slope of the regression line, respectively. In
the preprint (Capponi, Figueroa-Lépez, and Yu (2021, p. 28)), it is shown that time series
(éj; , [3;'; ) are reasonably stationary, implying that our method to estimate the constants ;ﬁnpn
as (48) is justifiable.

In Figure 6, we plot the average demand curve and the regression line whose slope and
p value is set to the averages of the (¢ s b ,)’s of all l-second time intervals [ts,ts41)
during that date. This graph shows that the linear model in (4)—(5) is a reasonably good
approximation of the actual volume of shares executed, especially as they are closer to the
midprice where most MOs are executed.

SHere, for computational simplicity, we are assuming the MM’s LO at level P, is ahead of the queue (hence,
her shares are the first to be filled at that level), which is a common simplification in the literature.
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Figure 6. Plot of the actual demand on October 3 wversus the estimated linear demand function over a
1-second trading interval.

Table 1
Average values of ¢& and pT over 252 trading days in 2019. Entries with the same color should be of a
stmilar magnitude to have our model assumptions validated.

Jins = 125.512 fg = 130.622
[y = 3287 fi, = 3.292
fdf; = 412.558 fizfr, = 430.008
i, = 451.263 fig, = ATLG85
i = 847 x 10 i = 545x10*
fh, = 353x10° fip, = 225x10°
Ahiy = 278 %10 fizf, = L79x10°

To give an idea of the values of ,ucimpn, we estimate those constants for each day of the
252 days of our sample (using an estimator like that in (48) but with the ¢,’s ranging over all
the seconds of each day) and then we take the averages of the resulting 252 estimates ,&zcmpn.
Table 1 shows the results. The table also shows some other related quantities to assess the
validity of (33) and (35) in Proposition 6. As shown therein, these assumptions are reasonably
met in our sample data.

3.1.3. Estimation of the drift for the midprice process. For simplicity, we set the fun-
damental price to be the midprice process. For our implementation, we assume that

_Stj|ftk):07 J=k+1,

j+1

Al =E(S,

because in practice, one could expect A,’if =E(S,,, — St,|F,.) to quickly decrease to 0 as j is
farther away from k (otherwise, statistical arbitrage opportunities are likely to appear) and
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also because the estimation error of the forecasts A% increases quickly as t; is farther away
from ¢j. To estimate the one-step-ahead forecast Ay, =E(S;,,, — S, |Ft,), we simply take the
average over the last five increments:

5
" 1
(49) Atk = g Z(Stk—H—I - Stk—i) =

=1

Stk - St/cfs
5 .

3.2. Numerical results. In this subsection we illustrate the performance of the optimal
trading strategy using as g function each of the functions in (45). For each of these choices
we compute the terminal value of the performance criterion Wy + Splp — /\I% under the
martingale assumption. We also compute the terminal value when applying the placement
strategy (31) with Af* estimated as (49) and using the function gs. As mentioned above, our
optimal placement strategy was tested based on the LOB data of MSFT observed in 2019.
As suggested in the preprint (Capponi, Figueroa-Lépez, and Yu (2021, section 5.2)), we set
A =0.0005, which gives a good estimate of the average liquidity cost for our sample data. The
cash holding W, and the stock inventory I;, were computed as

—a, OF - —_OF -
Wtk+1 - Wtk = Qg th+1 - btk th+1v Itk+1 - Itk: - 7th+1 + th+1’

where a;, and by, were the price of selling (buying) LOs placed at time t; and iQVZ; . (iQV;e )
was the executed volume of selling (buying) LOs calculated by using the actual flow of MOs
in the market in each 1-second interval of each testing day.® Since all the parameters of the
model, namely the filling probabilities ﬂ'iﬂ , T4, (1,1) and the constants ui[mpn, are calibrated
using the past 20 days to each testing day, the first testing day is set to be January 30, which
was the 21st trading day of 2019.

3.2.1. Performance criterion distribution. The sample means and standard deviations
of the end of the day performance criterion Wy + Srlp — A7 for the 232 testing days under
the four different implementations of our optimal placement strategy are shown in Table 2.
For comparison, we also computed the corresponding values when using six deterministic

Table 2
Sample mean and std. dev. of the performance criterion Wr + StIr — X2 over 232 days for the different
strategies considered (optimal and fized-placement) based on LOB MSFT data in 2019.

Optimal strategy with ~ Optimal strategy with ~ Optimal strategy with ~ Optimal strategy with

martingale midprice martingale midprice martingale midprice general midprice
conditioning on g1 (e¢,) conditioning on gz2(e¢,) conditioning on gsz(e;,) conditioning on gs(ey,)
Mean 8.36 x 10" 8.50 x 10* 8.57 x 10* 8.26 x 10"
Std. 1.63 x 10° 1.63 x 10° 1.62 x 10° 1.37 x 10°

Level 1 Level 2 Level 3 Level 4 Level 5 Level 6

Mean —7.78 x 10° —9.99 x 10° —1.14 x 10° —3.64 x 10* —5.16 x 10* —3.69 x 10*

Std. 1.52x 107 4.49 x10° 2.01x10° 1.07x10° 7.16x 10° 4.81 x 10°

SHere, we are again assuming for simplicity that the MM’s LO is ahead of the queue.
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Table 3
Sample mean and std. dev. of the terminal PnL, Wr + StIr (terminal cash holdings plus the actual
liquidation proceeds based on the LOB state at expiration), over 232 trading days based on LOB MSFT data in
2019.

Optimal strategy with ~ Optimal strategy with ~ Optimal strategy with  Optimal strategy with

martingale midprice martingale midprice martingale midprice general midprice
conditioning on g1 (e, ) conditioning on gz2(e;,) conditioning on gsz(e¢,) conditioning on gs(ey, )
Mean 8.23 x 10* 8.36 x 10" 8.44 x 10* 8.01 x 10*
Std. 1.62 x 10° 1.62 x 10° 1.61 x 10° 1.37 x 10°

Level 1 Level 2 Level 3 Level 4 Level 5 Level 6

Mean —1.88 x 10 —3.06 x 10° —4.41 x 10* —3.12 x 10* —5.26 x 10* —3.86 x 10*

Std. 8.18 x 10% 3.86 x 10° 1.94x 10° 1.05x 10° 7.08 x 10> 4.81 x 10°

strategies labeled Level 1 through Level 6, where the Level i strategy is the one where the
MM always posts her orders i-ticks deep in the order book at both sides. Table 3 presents the
means and standard deviations of the terminal values Wy + SrIr, computed using the actual
average price St per share that the HFM would get when liquidating her inventory I with
a MO based on the state of the book at time T". We refer to S7Ir as the liquidation proceeds.
We do not observe significant differences with the results presented in Table 2, which validates
our assumption of modeling the liquidation cost as Sl — )\I% and the chosen penalization
value of A =0.0005.

Based on the results observed in Tables 2 and 3, we can conclude that our optimal strategy
under any scenario significantly outperforms the fixed-level placement strategies. From these
tables, we can also observe that the mean and standard deviation for all three policies under
the martingale assumption are close to each other but the policy obtained by choosing the
function g as g3 has the highest mean and lowest standard deviation. In contrast, when using
a one-step forecast (49) and choosing the function g as g3, the average of the performance of
the optimal strategy is slightly lower than that under martingale assumption, but the standard
deviation is also lower.

For comparison, in Tables 4 and 5, we report the analogous results using the optimal
placement strategies from the preprint (Capponi, Figueroa-Lépez, and Yu (2021)), in which
the probabilities W;‘;H and 7, (1,1) are deterministic quadratic functions of time calibrated
using historical data. While the sample standard deviations of our adaptive placement strategy
are slightly larger than those in the preprint, the sample means of the performance criteria
are significantly better.

We can further wonder how important adopting random demand is to achieve good PnL.
In Tables 6 and 7, we compute the sample means and standard deviations of Wy + Syl — )\I%
and Wy + S7Ir based on 232 days, still assuming adaptive probabilities 7, but now taking
c and p at each test day constant to their sample averages of the previous 20 trading days.
As shown therein, though the average PnL are all positive, they are significantly smaller
than those in Tables 2 and 3 and even those using nonadaptive 7’s but stochastic demand as
illustrated in Tables 4 and 5.
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Table 4
Sample mean and std. of the terminal objective values Wr + StIr — X2 over 232 days. We fiz A =0.0005.
We control cash holdings and inventory processes assuming stochastic demand functions but deterministic in-
tensity of MO arrivals as in Capponi, Figueroa-Lépez, and Yu (2021).

Optimal strategy with Optimal strategy with Optimal strategy with
nonmartingale fundamental price martingale fundamental price  nonmartingale fundamental
and ¢, (1,1) >0 and ¢, (1,1) >0 price and ¢, (1,1) =0
Mean 6.13 x 10* 5.80 x 10* 6.11 x 10*
Std. 1.22 x 10° 1.30 x 10° 1.22 x 10°
Table 5

Sample mean and std. of the terminal values Wr +StIr (terminal cash holdings plus the actual liquidation
proceeds based on the LOB state at expiration) over 232 days. We control cash holdings and inventory processes
assuming stochastic demands functions but deterministic intensity of MO arrivals as in Capponi, Figueroa-
Lépez, and Yu (2021).

Optimal strategy with Optimal strategy with Optimal strategy with

nonmartingale price and martingale price and nonmartingale price and
my, (1,1) >0 e, (1,1) >0 m, (1,1) =0
Mean 6.00 x 10* 5.56 x 10" 5.97 x 10*
Std. 1.22 x 10° 1.30 x 10° 1.22 x 10°
Table 6

Sample mean and std. dev. of the performance criterion Wr + StIr — X2 over 232 days for the different
adaptive strategies, but with deterministic demand functions (i.e., ¢ and p are constant to its average values in
the 20 days previous to each testing day.

Optimal strategy with ~ Optimal strategy with ~ Optimal strategy with ~ Optimal strategy with

martingale midprice martingale midprice martingale midprice general midprice
conditioning on gi(es,) conditioning on g2(e:,) conditioning on gs(e,) conditioning on gs(es, )
Mean 3.60 x 10* 3.64 x 10* 3.90 x 10* 7.15 x 10*
Std. 2.07 x 108 2.07 x 108 2.06 x 10° 1.59 x 10°
Table 7

Sample mean and std. dev. of the terminal PnL, Wz + Stlr (terminal cash holdings plus the actual
liquidation proceeds based on the LOB state at expiration), over 232 days for the different adaptive strategies,
but with deterministic demand functions (i.e., ¢ and p are constant to its average values in the 20 days previous
to each testing day.

Optimal strategy with ~ Optimal strategy with ~ Optimal strategy with ~ Optimal strategy with

martingale midprice martingale midprice martingale midprice general midprice
conditioning on ¢1(e¢,) conditioning on g2(e,) conditioning on gs(e;,) conditioning on gs(e:, )
Mean 3.26 x 10* 3.30 x 10* 3.56 x 10* 6.67 x 10*
Std. 2.07 x 10° 2.07 x 10° 2.06 x 10° 1.60 x 10°

Finally, to analyze whether the penalization term in the performance criterion is indeed
able to push the MM to lower her inventory toward the end of the trading day, we display in
Figure 7 a prototypical sample inventory path throughout the trading day of August 7 when
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(b) The Intraday Inventory Paths.

Figure 7. A comparison of the intraday price and inventory paths of the optimal strategy under the general
price dynamics assumption when choosing the function g as gs and the ones of the benchmark policies on
August 7.
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computing the optimal strategy with the choice g3, under a nonmartingale (Figure 7(a)) price
dynamics.

4. Conclusions. In this manuscript, we focus on end-of-day inventory control in a market
making problem. We assume the demand to be linear with random slope and intercept, which
allows for greater flexibility and uncovers novel features of the resulting optimal control policy.
We account for simultaneous arrivals of buy and sell MOs between consecutive market making
actions, which also lead to novel patterns of the optimal policy. We allow the market maker to
incorporate forecasts of the fundamental price in her placement strategy. Finally, we enable
the investor to integrate the information on the arrival of MOs throughout the trading. The
performance of the proposed optimal policy is assessed using historical exchange transaction
data throughout an entire year. The optimal strategy derived with the novel model specifica-
tions mentioned above yields greater flexibility and better results in our empirical study.

There are some key areas for future research based on our results:

e It is natural to consider the possibility that the features of the demand functions also
depend on the history of MOs e;, rather than being assumed constants as in the
current framework.

e It would be important to drop the assumption of independent between the price
changes S;, ., — S, and the vector (IL;ZH,ﬂ;cﬂ,ci+l,pi+l,c;€+l7p;+).

e [t is natural to consider the continuous limit of the model considered here. Such an
extension could help us to consider general inventory penalties.

Appendix A. Proofs of main results. In this appendix we provide all the proofs pertaining
to section 2.

A.1. Proofs of section 2.2: Optimal strategy for a martingale midprice.

Proof of Theorem 1. The proof is done by backward induction. First, note that for
k= N +1, ie., at the terminal time 7" = ty41, the statement (ii) is immediate due to the
terminal conditions ay,,, = —A and h,,, = g¢,,, = 0. So, it suffices to show the following
two assertions:

(a) If the statement (ii) is true for k= j + 1, then the statements (i) and (iii) are true for

k=j.

(b) If the statement (ii) is true for k = j 4+ 1 and the statements (i) and (iii) are true for

k= j, then the statement (ii) is true for k= j.
Let us start to prove the first assertion (a) above. To proceed, we consider (16) for k = j.
Replacing W;,,, and I;,,, on the right-hand side of (16) by their corresponding recursive
formulas (11)—(12), we obtain

i E{W £ 378, + 018018 ol — I

Ltij GAtj o=+
(A.1) 2
) o (9 6
+ o, [y — Z 51tj+lctj+1(pta+1 o Ltj)
o=+
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) 0
+ St [It Z 01y tir1Ctia th+1 o Ltj)]

o 1
+ htﬁl [ Z o1y tit1Ctia pt1+1 - Ltj)

Expanding the squares inside the expectatlon and rearranging terms, we can write

(A.2)

o 6 \2 6 o 6 0 o §
Vi, = isup E{Wt + Z ]lt +1 Ct.7‘+1(Ltj) + (Ctj+1pt.7‘+1 - 5Ct.7+15t1)Lt.7‘ + 5Ct.f+1ptj+18ti]
L; G.Af S=—+

+ Gtja

0 0 ) 0 0 0
+ atj+1 {It + Z :H't j+1 |: Ct]+1)2(Lt])2 + (26Itjctj+1 - 2(ct]‘+1)2pt]‘+1)Lt]‘
o==+

) o
+ (ctj+1ptj+1> — 201, ct1+1pt1+1}

+ St

Iy, + Z ]1t +1 5Ct;+1pt1+1 + 6ng+1L?j )]

+21+ 1_ C?_ ( L+L +pt +1L +pty+1L7;t_p;;+1pt_j+1)}
o=+
+ htJ_HIt + Z jlt +1 5ht]+1ct]+1pt”1 + 5ht]+1 5 +1L6 ) + 9t

tit1 i J+1Ct j+1
7 }
]
o=+

We need to compute the conditional expectation of each term above. Recall from As-
sumption 1 that G; = a(]—"tj,]ltt S .,) and that, by our backward induction hypothesis,

by, € HE, = ol(ey,.,) C Gy ,. The idea is to apply the law of iterated expec-
tations, E[-|F;,] = IE[ [-|Gt,.. ]| Ft,]. We can then pull out all the G -measurable factors
(e.g., 1, oo L Qs ht7+1, f, Ij,, Si,, etc.) from the inside expectation E[-| G; ., ]. We
also use the fact that (c;” 2 +1) and (¢, ,,,py,,,) are conditionally independent given Gy,
(see Assumption 1), in addition to (8). As an example, we will explicitly show the com-
putations of two terms in (A. 2) The remaining terms follow similar arguments. Consider
A:=E|y 1, ¢ | F,]:

J1 tir t7+1pt1+1pt7+1

J+1 t7+1

_ e S
A=E E[at-7'+1]ltj+11tj+lctj+1Ctj+1ptj+1ptj+1 |gt.7’+1]

}_tj]

_ + q- + ot = =
- E :[I'tj+1]]'tj+1atj+1E[Ctj+1ptj+1ctj+1ptj+1 |gtj+1]

7|

=E 1;+11t_j+1at1+1E[C:’;+lp;’;+1|gt.i+1]E[C;+1p;j+1‘gt.7+1] ]:tj]

.7-",53} .

_wlq+ 71— + o+ gt - = -
=k _ﬂtjﬂ1t1+1atﬂ'+1E[Ctj+1ptj+1 ’]ltﬂl]E[cthptHl |]ltj+1]

Now, since a,,, € Hf7 , we have

(A.3) a,, =1 1, 1 1, . )

tjt1? Tt T T T oo

j+1
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for some function ®. Using the well-known property

(A.4) E(f(X,Y)|F)= foy X =z|F)

for a discrete r.v. X and an F-measurable variable Y, we can write

_wlqt 71— + o+ gt - = -
A=E []ltwrl]l z+1at9‘+1E[ct"+1ptj+1 ‘]ltjﬂ]]E[cthptHl ’jltjﬂ] ]:tj}

. . + + . - _
= Z We(i, 0,1, ... 1, W)E[C;;HPZH‘IL—:H =iElc, . py, 11, =1
1,0€{0,1}
x Pt =i, 1, =F,]
=l pp®(L, 1,15, 18 P

t+1

= 1’]lt_j+1 = 1’ft]:|
~ 11
:’ujp MCP atj+17rtj+l(17]‘>7

where we used the definition 7, (1,1) =P(1; =1, 1, ,, =1|F) and that

tiv1
Oé% -L _E[at1+l |]:t t+1 =1 ]ltﬁ—l _1]
=E[®(1 jm,ﬂjﬂ,ﬂti, . t” w)]]-"t L= =1
=E[®(1,1,1},...,17 w)m o= ==L L1, 10, ).

Similarly, consider B :=E[S;,, 12 - tﬁlptﬂll}}j] for 6 € {+,—}. Then, by Assumption 2
and the martingale condition E[S;,,, — S, |F,] =0,

[(Stm — 810 el ph ]]—"tj] +S,E [ I \ft]}
:E[StHl St; |-7:t ] [ i1 tJ+1th+1‘~7'—tj] + S, E [ J+1Ctj+1p?j+1|-7:tj]
= S, E [ﬂiﬂc?jﬂpfjﬂ !ft]] :
We then proceed as before:

0 & 1) 0 ) 0 0
B =5,k |:]E[]1tj+16tj+1ptj+1 |gtj+1] |‘7:tj] =S, E []ltj+1E[Ctj+1ptj+1 ]]lth] |‘7:tj]

1
9 & 1 §
= Stj ZE]E[Ctj+1ptj+l |ﬂt]~+1 = K]P[]lt_,»“ = E’]:t ] =5, ,ucht]Jrl
(=0

After computing the conditional expectations therein and substituting V;, in the left-hand
side of (A.2), we get the equation

OéthtQj + S, It, +hy, Iy, + gt

(A.5) S\ 70 5 5 5 5
= sup | Yo g (o) e — i) (LD + gl (e — 208y 11,) = OB, g,
Ltj G.Atj S=+
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508+l (20T, — 2 I}

i1 i1
1,1 L _ _ _ _
+ 2atj+17th+1 (L 1) (N;;;/'Lc Ltj + MjﬂchZ - /'Lg_uc LttLt] - :u(—:;lucp)

+ af Ifj + 13,5, + hY Iy, +g7

tiya tia tiva

The expression inside the outer brackets on the right-hand side of the above equation is a
quadratic function in (L;: ,Lt_j ). Simple partial differentiation and some simplifications (see
(A.27) below) show that the unique stationary points of the quadratic functional are given by

Tk _ () g+ @A+ L G gt+ =k (WA @A LA
LIt =CASL, + @AL + OAF, Lot =—WAL L, - A + CA;

where ‘“Af';, <2)A?;, and <3)A?; satisfy the relations given in (18) with the auxiliary quantities
pfj, wtf, and vy, satisfying the relations given in (17). It remains to show that Ltt_ * and
Lt_j " are in fact the global maxima points of the quadratic function inside the outer brackets
on the right-hand side of (A.5). This is deferred to Corollary 3. Substituting the values of
(L:;’*, L;*) above into (A.5) and equating the coefficients of Ifj, I;,, and the remaining terms
that do not depend on I;; or S;,, on both sides of (A.5), we obtain (19)—(21), which proves
parts (i) and (iii) of the theorem for k = j.

We now prove the assertion (b) stated at the beginning of the proof; i.e., we show that if
statement (ii) is true for k = j 4+ 1 and statements (i) and (iii) are true for k = j, then statement
(ii) is true for k = j (that is, oy, hy,, 9, € Hf) We show the details for oy, € HfY (we can
similarly prove he,, g, € Hf ). First, notice that by Assumption 1(iv), Wi+1,7th L) e HE .
Furthermore, by Assumption 1(iv) again and the representation (A.3), which follows from our
backward induction assumption ay,,, € Hi7, ., we can compute the variables oz%ﬂ, O‘;:N and
ozi]ﬁl, defined as in (3), as follows:”

of =Y 0G01F,.. 08 P =i =0F)]

1,£€{0,1}
. + + o _
— Z (P(/lqg’ :H-tj7...’]1tj+2—w)]PJ|:]1£:+1 :’[/7 ]]'tj+1 :ngt7]7
i,£€{0,1}
+ + _
(AG) a%j—il = Z @(176, :H-tju e 7]1tj+2—w)P[:H'tj+1 = €|th , :H_?;Jrl — 1}
¢e{0,1}
= Z é(l,g,ﬂ_i,...7ﬂ_i+2_w) [ tJI-E)l - _tJII w| tj]’
tefo.ny []ltj+1 - |Htj]
1,1 + +
ot =01, 1,15, 1, ).
1+ 11

Therefore, it is now clear that a?jﬂ,at
conclude that h9  hlE  pp!

tit1? i) Tt

: € H7. Using an identical argument, we can
+17 i t; ’

€ Hi7. Then, since ,uétmpn are constants, we can easily see that

"Note that Assumption 1(iv) actually implies that P(1;

thy1 i, ]]';c+1 :j‘]:tk) - P(lj;c+1 =1 ]]';IH»] :sz)
for all 4,j and not only for ¢ =j =1.
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“)Ai, <2>Atij, and WA?: are Hj7-measurable. From (19), we conclude that oy, is H{’-measurable

random variables. Finally, we conclude the validity of the statement (ii) for k = j.

Proof of Lemma 2. Substituting the value of “’Ai, defined in (18), into the recursive (19),

we get that
(A.7) oy, = O‘ng + Ni/t,
with
Nie= (gt idml P (a i — ) + (g g mp )Pm (gt i — i)
(A-8) =20y afn mr m (LDt (i),

1

1, —12
Yt = [Trtk+1 (17 1)atk+1:u‘(—:i_/’l‘c ] . Ty

. 1— — _
B T(tk“ﬂt’Hl (atk+1/’bc2 - /’L(—f‘r)(atk+l Moz — He )

Note that for k = N + 1, we have that a;,,, = ar = =X < 0 and thus o, , <0, as A
is a positive constant. By backward induction, to prove the lemma it suffices to show that
Ni/v,. € (0,—af ) whenever ay,,, < 0. The remaining proof is then divided into three

trt1

smaller subparts: proving that, for k& € {0,1,...,N}, (i) v, < 0, (ii) Ny < 0, and (iii)

Ni/m, < —aQM.
(i) Clearly,

1 1,1 1,0

(A.9) off it =t m (L) (7, m, (LD)),
1- - 1,1 0,1 —

(AlO) atk+17rtk+1 = atk+17rtk+1 (17 1) + atk+1 <7Ttk+1 T Tgeia (L 1)) .

On the other hand, since by assumption oy, , <0,

1,1 —
ay =Eloy,,, | Fr,, 17 =1,1,  =1] <0,

trt1
Elov, .| Fty 11,;“ =1,1; ,=0]<0, Eas,,|F, 11j;+1 =0,1;,,, =1 <0,
— + +
7Ttk+1 (17 1) = P(:ﬂ'zﬂ_l = 17 ]ltk_H = 1|~7:tk) S ]P)(]ltk+1 = 1|‘7:tk) = ﬂtk+17

and, thus, by (A.9)—(A.10),

(A.11) O‘tlfctﬂr;;“ Sa%}ilmkﬂ(l,l) <0, oztll;lﬂ't;r1 Sa%}ilmkﬂ(l,l) <0.
Since ,uztz > (uF)?, these equations imply that
(A.12)
Yoo ST T on (e )P =l m (el i = ) (d T e — i)
< omn ot ol s = m (aft o = pd) (el — )

I — 1+ + - 1- -+ +,,—
- 7rtk+17rtk+1[atk+1M02MC + CYtk+1'u’cr"lu’c — M He ] < 0’

where for the second and last inequalities we used that O‘tl,il =E[o,,, ].ﬂk,]li+1 =1]

< 0 since, by assumption, oy, ,, <0.
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(ii) Let us first rearrange the terms in (A.8) as follows:

(A13) 1 2 1 1 2 1
Ne=(ag) il P (o i — ) + (o e m )P (gl s — )
1 1—- — 1,1 —\2
- 2at;1atk+1ﬂt+k+17rtk+l7rtk+l (17 ]‘)atk+1 (H;‘FI’LC )
1 1— - 2r .1 - 1,1 —\2
- atk—‘:,latk+17r;;+17rtk+1 (M;‘r) [at]:,17r:;+1lu'c2 - at}l+17rtk+1 (17 1)(/’1/0 ) ]

1 1- — —\2r,1— . — 1,1 2
+ at:'_latk+17rt+k+17rtk+1(uc ) [atk,+17rtk+1uc+2 - atk+17rtk+l(17 1)(#2—) ]
2_+

4+ 4+ + \2 — - - - +
- (atk+1/1’c Trtk+1) Trtk+1IU’C - (atk+1/'LC 7Ttk+1) 7Ttk+1/1’c °

Then, using once more the inequalities (A.11),

_ _ 11 1 — _
Ni < Ct1+ a%k+17r+ T esn (/"Lj)2ﬂ—tk+1(1’ 1)Odtk+1 [:uc? - (:U’c )2]

Trt1 tri1
1 1— - 2 1,1 2
(A 14) + at}ilatk+1wj;+17rtk+l (/’L(—Z‘r) Trtk«i»l(]‘? ]')atk,+1 I:ILL:’; - (IU/Z_) ]
’ - ( 1+ + _+ )2 - - ( 1- - - )2 + +
athrluC ﬂ-tk+1 7rtk+1uc atk+luc 7Ttk+1 7rtk+1uc

1+ o 2 - - - - — 2 4+ 4
S _(atk+1/"llc ﬂ-tk+1) 7rtk-+1/"LC - (atk+1/’éc ﬂ—tk+1) 7rtk+11u'c <07

where in the second inequality we used once more that max{a%;}rl,a:; 11 , Q. L} <0.
(iii) Note that, since we already proved that v, < 0, proving that Ni/v, < —a?k“
a.s. whenever ay,,, < 0 is equivalent to showing that oz?kﬂfytk + Ni > 0 a.s. when-

ever oy, ., < 0. Define

(%, §):=ay ([mm L Doy wdpe ) = m (ot % — ) (0 5 — ne ))
ot ml P (a5 = pe) + (g ey )P (g % — )
=20t g w0 ey (i)
Notice that ¢(uh, ps) = a(t)k+1'ytk + Nj. Taking partial derivatives,
(A.15)
2
00 ol ool okt g+ (el e, ) w ol
- aillagl;le;ﬂwt_ﬂl [a%};lwt—kﬂ (s )? — angSI] + a?k+1w;:+lwi+laiilug,
(A.16)
0 2
% = _a?k+17r;;+17rt_k+1 [a%}:la%;lf( o atl,;luﬂ + (a%ktlujﬂttﬂ) Tr;chlag-k:l

i =+ — [+ 4+ 2 0 4 0o 4+ - _1- +
=y Y T Tt |:atk+17rtk+1('uC) atkﬂx} +atk+17rtk+17rtk+1atk+1uc :

Recall that by assumption a4, , <0 a.s. and thus,

fi)

o) =Elay,,|Fo] =E {E[atw Fou L

)

1+ _+ + + 1+ _+
(A.17) =y, Tt Elo,., |.7-',5k,]lthrl =0](1 - 7rtk+1) < T,
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Using the last inequality in (A.15), we obtain that

¢
4+ 1- _+ 1ol xt o oMt
ox = atk+1atk+lﬂ-tk+17rtk+1 tk+1 [('U’C ) y] + Oty Mg Tt '5lc+1’uC ’

Therefore, using that (u;)? < > and max{a?kﬁ,agktl,at“l} <0, we have

(A.18)
Iy - I 2_ - 0 4+ = Lt
8'~ ( MCZ) 2 atk+1at1€+1 tk+1 tk+1atk+1 [(,"LC ) - /,ch] + atk+17rtk+1ﬂ-tk+1 tk+1/’LC

+ — 1+ -
= atk+17rtk+17rtk+1atk+1'u'c = 0’

which implies that ¢( e , ;) is a nondecreasing function of the first parameter. Thus,
(A.19) ()2 1) < o(pfs, pga) = o, e, + Ny

Using (A.16), (A.17), and max{a?k+l,atk+l,atk+l} 0,

dp
0P 1\2 o1+ 1— 4 I+ + 2
ay((ﬂc) ;0 )= atk+1atk+17rtk+177tk+1[atk+17rtk+1(uc)
0 N
- atk+1 (MC ) ] + O[tk+17rtk+1ﬂ-tk+1atk+1iu“c
0 + — 1- +
Zatk+17rtk+17rtk+1atk+luc > 07

which shows that o((1F)2, e ) is a nondecreasing function in the second argument.
Using that (u;)? <, and (A.19), we finally get that

(A.20) ()2 (1)) < o) ) < o e, + N

At this point, we only need to prove that 0 < o((u)?, (u;)?). Evaluating, we have
that

(A21)
()2, ()%
— e { b, [ (L V0l Vo =i, i (el it = (o =1

1 2_— - - 1= _— N2 1
+ ol (gt mh Vg (g pe =0+ g (g m, VPt (gt pd = 1)

1= o+ Lo+ =t
- 2atk+1atk+1 tk+17rtk+17rtk+1 (17 1)atk+llu’c Ke = e He E(,u,c )’

where
- 0 1,1 \2 - 1+ 4 1—  —
E(Z) = atk_H Z/‘I’C (ﬂ-thrl (1 1)atk+1) W;;+17Ttk+1 (Oét:;dZ - 1)(atk+1:u’c - 1)
1 2 1 2 1 A
+ Z(at,ilﬂttﬂ) 7Ttk+1(04tk+1ﬂc 1) +p (O‘tkﬂﬂ'tkﬂ) 77;,;“ (atlilz —-1)

_ 1- +
2z /J’c atk+1 atk+1 ﬂ-tk+17rtk+1 ’/Ttk-%—l (1 1)atk+1

Due to (A.17), we have
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4+ - A= =00 1 _— N_ 0 _+ _—
E(O) - 7Ttk+17rtk+1atk+1 He (atk+1 atk+1ﬂ-tk+1) atk+l7rtk+17rtk+1

(A.22) > —a)

+ —
= tk+17rtk+17rtk+1 > 0.

We shall prove that d¢/dz > 0, which will imply that £(u}) > £(0) > 0 and, finally, that
o((uh)?, (12)?) > 0 due to (A.21). Finally, by using the previous equation together
with (A.20) we get that 0 < o((uf)?, (4z)?) < of,, Y, + N and will conclude the
proof.

It remains to show that d¢/dz > 0. Taking the derivative with respect to 2,

at 11 \2 — I I S
% :atk+1[(7rtk+1(171)atk+1) He — W;:+17Ttk+1at:;1 (atk+1:uc - 1)]
1 2 - 1- - — 1 _— 2 1
+ (atilﬁ;ﬂ) 7Ttk+1(atk+1:uc = 1)+ pg (atHthHl) W:,:H@t,:l

2atk+1 atk+17rtk+17rtk+17rtk+l (17 ]‘)atk+1 /J’C

_ _ 1,
(A23) = 7T+ 7Ttk+1al+ (ao o ) + He \Ij(at;:rlﬂ-tlprl (17 1))7

(2 o QU — Xy Ty
where
SV 20 52 gp 14 1— 4+~ 4+ _+ 21—
(A 24) \I/(Z) T atk+1z 2zatk+1atk¢+1ﬂ-tk+lﬂ-tk+l +(atk+17rtk+1) atk+17rtk+1
' + (ol w7 Valt wt —ad ot ol mf owo
g1ty Tep1 " trgr (270 Tt 7NN gt PR AR

Due to (A.17), the first term of (A.23) is nonegative. It is also easy to see that
the quadratic function ¥ attains its minimum value over any interval [a,b] at the

endpoints since af < 0. On the other hand, observe that oy, , (17 +1,; —1)>
tit1 k+1\" g tr+1
(T ]l;; .. 1¢,,,- Then, by taking conditional expectation with respect to ¢, and using

(A.11), we obtain the bounds

(A.25)
1+ -+ 1- - 1,1 1+ -+ 1- - _ 0
Xty T Vv X Tt < o Tl (1’ 1) B (atk+17rtk+1 + X Tt atk+1) A

Therefore, to show that (A.23) is nonnegative, it suffices to check that

1 - _— 1 - _— 0
(1) \Il(()ztk":lﬂjk+1 Vv atkﬂwtkﬂ) >0, (2) \Il((ozt,:l7r,§Lk+1 +oag T — o, ) AN0)=>0.

To show (1), we consider the case (a) ol 7/ > al” n
’ tit1 "ttt trt1 " trta

1+ _+
c ¢ or1 (b) T <
o m; . Toshow (2) above, we consider the case (c) (o " 7" 4a;” 7, —af )>
thr1 trat T 1 ’ 0 trt1 "ty ti1 " tryr k41
0 or (d) (atkﬂwtk+1 +oy T, O‘tk+1) <0.

Suppose that (a) a%}ilwtiﬂ > atl;lw;cH. Then, in light of (A.17),

1+ __+ _ A+ + 1—- _— 2 1- - 1+ __+
\Il(atk+17rtk+1) - atk+17rtk+1 [(atk+17rtk+1) - (atk+17rtk+1)(atk+lﬂ-tk+l)

0 (A 1 -
+ atk+1 (atk+17rtk+1 atk+17rtk+1)]

S B E 1+ .+ - _— _ 0
- atk+17rtk+1 (atk+l7rtk+1 atk+lﬂtk+l)(atk+lﬂ-tk+l atk+1) = 0.

. . . 1— — 1+ -+ 1— —
Similarly, (b) if oy ™, >’ m , then W(oy  m, ) >0.
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1+ + 1- - 0
Now, suppose that (c¢) o, 7  +oy  m  —ap  >0. Then,

14+ 11—+ — 1+ __+ N
\I/(O) - atk+1atk+1ﬂ-tk+1ﬂ—tk+l (atk+17rtk-+l + athrlﬂ-thrl atk+1) >0.

. 1 1— - .
The only case left is when (d) O‘t;:l”ttﬂ +oy T, —a?kﬂ <0. Together with (A.17),
we will have
0 1+ _+ 0 - -
(A26) atk+1 < atk+17rtk+1 < atk+1 - atk+17rtk'+17

and, by rearranging terms,

1+ _+ - _— 0
\I/(atk+17rtk+1 + atk+1ﬂ-tk+1 atk+1)

0 A= _— A+ N2, 0 (01— 2
_(atk+1 atk+17rtk+1)(atk+1ﬂ-tk+l) +atk-+1(atk+1 atk+17rtk+1)

0 - - 0 - - 1+ _+
- (2atk+l - atk+17rtk+l)(atk+l - atk+1ﬂ-tk+l)(atk+l7rtk+l)

=: E(a%}ilﬂiﬂ),

where
E(z)= (O‘ng — a%};lﬂ;Hl)ZQ — (20[?}c+1 — ai};lwt_ﬂl)(agﬂl — (X%};lﬂ't_kﬁ)i

+ a0, = 0, T,
is a quadratic function, opening downward due to (A.17). Furthermore, at the lower
and upper bounds of (A.26), we halve E(a?Hl) = E(oz,?k+1 - a%};lwtzﬂ) =0. ;Fherefore,
:E) 2_0 for al(l] AS [a%+1 ,1(+a?kt; ~ O T )] Flnal‘ly, we con.clude that \I/(O‘t;:/r;;ﬂ +
T, —ap,,) = (e T ) >0 in the case (iv) as desired. [ ]

Proof of Corollary 3. Refer to the proof of Theorem 1. Denote the right-hand side of (A.5)
as sup;+ f (L:; , Ly ). It is easy to observe that f (L;: ,Ly,) is a quadratic function of L?; and
Tk
L, . Setting the partial derivatives with respect to L;: and L; equal to 0, we have that

8f 1 1 1
0= = 2wl (ent b —p L+ wdy + el nd o Qud I, —2u )]
tr
1,1 L 1,1 _
(A.27) 8f - 2atk+1ﬂ-tk+1 (17 1)”2_/‘0 Ltk + 2atk+1ﬂ-tk+1 (1’ 1)/‘2_Mcpv
— 1— — — — — — 1— - 1— — —
0 = aL— = 27Ttk+1 (atk+1 /"LCQ - /"LC )Ilt;€ + ﬂ-t]H,l [:ucp - ht;H,l/’LC + atk+1 (_2/'1/0 Itk - 2Mc2p)]
tr

1,1 - 1,1 _
- 2atk+1ﬂ-tk+1 (17 1)“?“0 L;: + Qatk+17rtk+1 (17 1)IU‘C Mc+p
Solving for L;: and L; , we get that the unique stationary points L;: ™ and Ly, * are given by
+7
Li*=OA L, + @A + ©Af,

(A.28) " _ _ _
Ltk’ = _(I)Atk Itk - (Z)Atk + (S)Atk,

as pointed out in (22). To prove that the stationary point (L:;’*,L;c’*) is the maximum of f,
we apply the second derivative test. Indeed,

a2f 2| = 27Ttik+1 (az}ill‘zé - Iu’ét) <0,
0 (L)
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because, due to Lemma 2, we have a4, < 0 and, thus, oztlki = Elay, ’ftkﬂ,]li =1<0. It
remains to show that

o f 2 f 2r \’
Be=1\ 5 e 2 | " \arLfor;
(Ltk) 9 (Ltk) t tr

_ N _ 1,1 —12

(A.29) =dm) m (ot ok =) el pn — ) = Alm,,, (L) ey pd P > 0.
However, By, above is just —4;,, with ~;, defined as in (A.8), and it was shown in the

proof of Lemma 2 that v, <0 (see (A.12)). The proof is now complete. [ ]
Proof of Theorem 4. Throughout, Wy, I;,, for i = k,..., N + 1, are the cash holding and

inventory processes resulting from adopting an admissible placement strategy Lt ,i=k,...,N.

Similarly, for « = k + 1,...,N + 1, W/, I} are the resulting cash holding and inventory
processes, starting from time t; at the initial states Wtk,Itk, when setting LjE = LjE First
note that, for an arbitrary admissible placement strategy Lt , {v(ti, Sy, W4, ,It ) Yiek,. N41 1S
a supermartingale since

E[ (tz-l—la St +17th+1a H_l)’J_:t ] < SUPE[ (ti—‘rla Sti+1?Wt1+17 tit1 ’ft ]
Li
(A30) :v(ti,St.,WtA,It.)

where Wt ., and It i1 ATe the tlme ti+1 cash holdlng and inventory for an arbitrary admissible
placement strategy L when Wt = W;, and It = I;,. The equation in (A.30) follows from
(16) and Corollary 3. That is, au,, he,, g, are picked in order for (A.30) to hold true.
From the supermartingale condition, we then have that
U(tka‘s’thtmItk) > sSup E[U(Ta ST?WT?IT)|‘7:tk]

(LF rzisn
(A.31) = sup E[Wrp+ Splr — M| F;,]

(L) k<isn

= %k .

The first equality in (A.31) holds because v(T, Sp, Wy, I7) = Wp+ Syl — )\I% by the terminal
conditions ar = -\, g7 =0,h7 =0
Next we prove that v(tg, St , W, , It, ) < Vi,. To this end, recall from (16) and Corollary 3
+ %
that L; " are chosen so that

U(tiastm thajii) :E[ (tl-l-l?St +17Wt "Ft ]

for all i=k,..., N. Hence, recalling that we set W;; =W, and I = I;,, by induction,
U(tk> Stk Wiy, Itk) = U(tkv Stk ) W{; ) I;:) = E[’U(tN-H? StN+1 ) Wt2+1 ) I} )|ftk]

tN4+1

=E[W7 + Srlp — AI7)?| F.].

it1) t1+1 )

It also trivially follows that

E[W5 + Sk — MNIF)?|F )< sup  E[Wrp 4+ Srlp — M2 F ] =Vi,.
(L k<i<n

We then conclude that v(tg, St , We,,It,) < V4., which combined with (A.31) implies that
U(tk7Stk’Wtk’Itk) =Vi,. |
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A.2. Proofs of section 2.3: Optimal strategy for a general midprice.

Proof of Theorem 5. For simplicity, we write pk = pt and wk = wt For future reference,
define h?k , ht1i , and h using the notation (3). Let us start by writing the optimization
+1 k+1 +1

problem (15) in terms of the ansatz (28):
(A.32)

Wt;c =+ O‘tklt%c =+ StkItk +7Ltkltk = sup E[Wtk+1 + atkHI

. thi1 + Stk+1Itk+1 + h’tk+1Itk+1 ’ftk]
Ly, €A,

We will prove the result by backward induction. Consider the following statements:
(i) For 6 € {+,—}, we have

T 0 ) é §
(A33) E[htk+1 ]ltk+1ctk+1 |‘Ftk] h%k+17rtk+1 ILLC7
T é &
(A34) E[htk+1:u-tk+1 tk+1ptk+1|ftk] h%k+1 tk+1/~”cp
(ii) The optimal controls Ei* that solve (A.32) under dynamics (11) with terminal con-
ditions oy, ,, = —A and hy, , =0 are given by
T+, 1 27 34 T =% 1) A— 2) A — 3)A—
(A.35) LI =WAN L, + @A, + @AY, L7 =—-CA L, —PA; +PA,
where
. WEpE—hiT -
(A.36) (2>Ai — e Pk t’““wk (S)Ai _ <3)Ai ¢k A?;Z:
2f)/tk 2,7tk

whereas (”Ai and (?’)Ai are the same as in Theorem 1.
(iii) The random variables hy, satisfy the iterative equation

(A.37)

RIS A0 2) 40
htk+1 + Z 7rtk+1{ |:atk+1 Hez — lucj| |:( )Atk (6 (3)Atk +( )Atk)]
3) A0 2) 46 1 1) A0
+ 2atk+1 ,uc(d( )Atk +( )At ) - 25at1k+1:ucp + ) )At (:ucp + 5htk+1uc - 2atk+1'u02 ) }

1,1 —la 3) A — 2) A — DA— (@A 3) A
- 2atk+17rtk+1(17 1)/1’;rlu’c ( )Az; <( )Atk = )Atk> - )Atk <( >A£: +< )Az'l_c>

+ —
ng— M ya+ M . VA= — =
s oag e gt o)y a(ontn it b oagm i 1),

c He

while
(A.38)

~ ~ 2 ~
~ ~0 E 1 16 1 3) A0 2) A0 16 1 1)
gt, = gtk+1 + ﬂ-tk+1 {( tk+1/’LC2 o MC) (( >Atk + 5 )Atk> T atk+lﬂc2p2 B 6htk+1M0p
o=+

(o 20l ) (P 4 0 3)
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1,1 _
- 2atk+17rtk+1 (17 1)Mjuc

((2@;; + “’@i) ((3@;@ _ (2)2{;)

+ - +,,-
_ ch(mA;c _ mA;) _ ch(@)A;: + (3)14;;) + 'ucfuff
e He He e

te | [(3) A0 2) A6 + + A0 _ (@ + + - -
+ A [( A} + Atk>7rtk+1,uc - ( Aj Atk)ﬂtHlMc — Ty Mep T, Hep |-

(iv) Equation (29) holds true (at time ¢;) and the random variables pi- and ¢, as defined
n (17), are F;,-measurable while the random variables {1 given by (30) are Fy, -
measurable.

_To start, note that the statement (i) is immediate for k = N due to the terminal condition
on h. The strategy that we will employ to finish the proof is the following: we will show that
if statement (i) holds true for k=j,7+1,..., N, then statements (ii), (iii), and (iv) will hold
true for k = j. In the final step, we prove that the statement (i) holds true for £k = j — 1 if
(i)—(iv) hold for k= .

Let us start with the first step described in the previous paragraph. Assume that statement
(i) is true for k = j,j+1,..., N. By substituting the values of W;, , and I, , given by (11)—(12)
into the optimization problem (A.32) with k= j we get

j+1

S 2 o ) o 1) S o
Y= qui { Z ]lt +1 T Ctin Lt]’) + (Ctj+1ptj+1 - 6Ctj+15tj)Ltj + 5ctj+1ptj+15t1]
€ t;
tj

o 4 4 4 4 1
+ at]+1 {It + Z ﬂ't j+1 |: ctJ+1)2(Lt])2 + (2($Itjctj+1 - 2(Ctj+1)2ptj+1)Ltj
o==+
0 0 2261
+ (Ctj+1ptj+1) ¢ Ctﬁrlptﬂrl
(A.39)
+ 21'5 +1]1 g+1cg;+1ct_+1( L L +pt1+1L +pt]+1L; - p';:ﬂpt_jﬂ)

f}

Computing the conditional expectations on the right-hand side using statement (i) and the
techniques used in the proof of Theorem 1, we get that

+ Sty

1) § o § 6
I, + Z jltj+1 (_5ctj+1ptj+1 + 6Ctj+1Ltj)]
o=+

7 ] T 5 5 T 5 ) ~
+ htj+lltj + Z ]ltj+1 (_5htj+1ctj+1ptj+1 + 5htj+1ctj+1Ltj) + Gt
5=+

Oétjffj + 5, 1, +ﬁt,-ftj +qt,

6 6 0 0 0
(A40) — up Z " { (019 %y — d)(LE)?
Ltij €Ay | 5= :t
t;
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1) 5 1) § (7,18 t;
+ Oé%ﬂ_l (Mc2p2 — 25/~ch-[tj) — 5ucp(h%j+1 + Atj)}

1,1 S _ _ _ _
+ 2047 T (1,1) (M;;)/’Lc Ltj + ,Uj,uchZ — g g LttLtj - M?pﬂcp)

+a? Ifj + 13,54, +hY Iy, + Azjtj +§t0

i1 tjt1 g |

Then, since the function of the right-hand side is a quadratic function of the controls L?J:_,
it can be shown, as in the proof Theorem 1, that the optimal controls are the ones given in
statement (ii) with £ = j. Furthermore, after plugging in the optimal controls and equating
the coefficients of I;, on both sides and the independent terms on both sides, we obtain
statement (iii).

To obtain statement (iv), notice that by plugging the expression for (2>Atij, given by (18),
into (20), we can rewrite hs, as '

htj = E(ht_7~+1fj+1’}—tj) + Zj
N N u
(A.41) =E | hewpr [[&arrl P | +D E| 2 I] &1, |
u=j u=j i=j+1

where {Z;,}4_, is a collection of H{-measurable random variables. In the same fashion, by
plugging the quantities defined in (A.36) into (A.37), we can rewrite h;, as

N u+1
(A.42) he, =E[(he,,, + APl F )+ Zi=he, + > _APE| ] &IF,
u=j i=j+1

Next, by substituting the value of %tj in (A.42) into the term (2@?;, as defined in (A.36), and
then plugging this equivalent formula along with ‘3)121? as given by (A.36) into (A.35), we
obtain (29). To verify the measurability of pj[ and 1/{%, notice that by definition (see (8)-
(6)), the random variables 71'5;1,71}]. ., (1,1) and ucimpn are Fj-measurable. Also, by definition
(see (3)) the random variables {a?jﬂ},{a%ﬁl}, and {oz%]ﬁl} are also Jj,-measurable. All of
this implies that {pT} and {Qﬁ]i} are J;,-measurable. However, due to the presence of the
random variables LIPS P the random variables ;41 cannot be JF; -measurable but they
are certainly JF; -measurable.

Finally, all that is left is to prove that if statements (i)—(iv) hold true for k = j + 1,5 +
2,..., N, then statement (i) holds true for £ = j. Indeed, since (A.33) and (A.34) hold for
k=j7+1,...,N, then (A.42) holds for k=7 + 1. That is,

N i+1
~ .
bty = iy + E : AtiﬂE H €“|]:tj+1
i=j+1 u=j+2

Multiplying both sides by 121_“@;5”1 and taking the conditional expectation with respect to
Ft;, we have that
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N i+1
_ it )
[htJ+1 ]+1Ct +1|ft ]_E htj+1 + Z Ati ]E H gu ‘thJrl ]]' J+1Ctj+1 ‘th
i=j+1 u=j+2
i+1

s _

htnlﬂ-t +1'U’0+7Tt1+1'u’0 Z A ]]E H €u ‘Ftﬁrl ‘th’ liv1 =
=741 u=j+2

1)

ht]+1ﬂ—t]+1'u’0’

where we used that IE[HZJrl +2 ulFt;,,) is an H7  -measurable random variable. Thus, we have
that (A.33) holds for k= j. Similarly we can prove (A.34) holds for k = j, which concludes
the proof. |

A.3. Proofs of section 2.4: Admissibility of the optimal strategy.

Proof of Proposition 6. Let us define the numerators of “)A+ and (2)A+ in (18) as ﬁtk
and ntk, respectively. First, we will prove the result when the price process is a martingale.
In this case, all we need to show is that L, + L, ™ = (VA — WA, )T, + (PA) — @A, ) +
(WAf + @A) > 0. First we prove that, under condition 2 (equation (34)) and condition 4 of
Proposition 6, a%+ = atk . Indeed, by (A.9) and (A.10),

k+

1 1,1 Tty 1(171) — Ty, 1(171)
atkt1 = atk+1 ++ + E[atk+1 "Ftk? teer =1 ]ltk+1 = 0] 1— ++ )
7rtk+1 7Ttk:+1
_ Tthaq 1, 1 _ Tt ]., 1
O‘tlk+1 _ ai’il k+_( ) + E[atkﬂ |~7:tkv r = 0’ ]ltk = 1] 1— k+_( ) .
Tthoia ’ Tt

Now, recall that a,,, is Hf7 -measurable (see Theorem 1), and, by assumption, az,,, de-

pends on ]lJr 1jEauad 1;,., only through ]lz]:+1 +1,.,,. This means that oy, = <I>(]l;}:+l +
]l;ﬁﬁ,]li, O A ) for some function ®. It follows that

Elev,,, | Fe, 1%1 =11, ,=0=2(1+0,1;,....1; , ) =Elo,,|[F, qu =0,1,,, =1J.

Since m =, ., we then conclude that it =al” . By doing the same computations as
+1 k41 k41 k1

in (A.9), we can obtain the analogous relations to (A.9) and (A.10) for hy,,, and these can be
used to show that h1+ h%k in the same way as above.

Let af = ali and hl = hljE Since - =, it follows that
tri1 tres trt1 teer — Dlegr?

1 — —
ﬁtk By, = 7rtk+17rtk+1(atk+1) (/ij/icz — K sz)

1 L1 - - - + +y
- atk+17rt1c+1 (17 1)atk+1lu’c He (Wtk;+1 He — 7rtk+1lu'c ) - 0?
44— 1 1 k-
ntk - ntk - 7rtk+1ﬂ-tk:+1atk+lhtk+l (MC Moz — He NC2)
1 L1 = 4 - - + +y\
- htk+17‘-tk+1 (17 1)atk+1,uc 2% (Wtk+1 e — 7Ttk+1/,éc ) - Oa

implying that “)A,;: — WA, =0 and (Q)AJr (2>At_ = () Thus it sufﬁces to show that (3)A+
©A;, >0. By assumption 4 of Proposition 6, ,ucp ur ,up and p5 2p =u5 o2 ,up and, thus, we can

write @A) + @A; as QAL + @A, 271t ( ;F*(;@;,M;) 4+, T (MCQ,MCQ)), where
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I (x,y)=m  m (o y — o ) (pd =204, %)
+ 200yt o, (LD e P =t m, (L Do ()20,
I (x,y) =m0, ™, (of,, x = ud ) (ug —204,,,y)
+ 200, (L) g = (LD ey (50w
Recall from (A.12) that 7, <0 and, thus, it remains to show that the numerator N(®A; +
@A) = pf T (s, pz) + 1y T (e, i) is also negative. Since I'F is a linear function of y,
pie > (pz )? and, by Lemma 2, g ,; <0, we have that

0 - 1 1
8—F+(x, y) = W:;+17Ttk+1atk+1 (e — 20‘tk+1ﬂj2) <0.
y X:M:'z

From here, it follows that for every x € R, I'"(x, p,) <TF(x, (7 )?). Similarly,

0

ol 06 (1)) = =200, m o, (0e)?

implying that T (1, ) <TH((uf)?, (uz)?). Note

_ _ 171 _ _
F+ ((uj)Za (Mc )2) = Mjﬂc {2 [ (atk+17rtk+l (17 1))2 - <a7}k+1)27‘-;};+1ﬂ.tk+1 }Mﬁﬂc
9]

1 + — +
+ 2atk+17rtk+1ﬂ-tk+1 He

~~

(I1)

+ 1 — - 11 +1  _+ _
+ 7rtk+1 [atk+17rtk+1l’bc atk+1ﬂ-tk+l(17 1)MC 7Ttk+17rtk+1 °
~

(I11)

By (A.11), (a%}ilwtkﬂ (1,1))2 < (a%k+l)27rt+k+l7rt_k+l, implying that the term (I) above is negative.
Further, by Lemma 2, we know that oy, , <0 and, thus, the term (II) above is also negative.
Finally, by using our assumption (33) and (A.11), we can conclude that the term (III) above
also negative. It follows that I (uh, p) <TT((pd)?, (ue)?) <0. Similarly, we can show that
I~ (uh, (ug)?) <0 and conclude that N(®A; + @A, ) <0.

For the general midprice dynamics, we need to recall (17). Then, under our conditions
1-4, we have trivially that p; = p, and ¢;" =1, . It then follows from (29) that E; . —i—Z; -
Lg;’* + Ly, * > 0, as we have already shown. This concludes the general dynamics of the
midprice process. n

Proof of Corollary 7. The proof follows along the same lines as the one of Proposition 6.
As before, since o4, ., depends on ﬂz and 1; only through ]1;; +1;,,

1,0 + 14— N + _nNa- _11_ .01
atk+1 - E[atk+1 |‘7:tk ) ]ltk_H - 1a ]ltk+1 - O] - E[atk+1 |]:tk’ ]ltkH - O’ jltk+1 - 1] - atk+1’

and, thus, recalling (A.9)—(A.10), it follows that a ™ = O‘tl»_ﬂ when m;,,(1,1) =0. Similarly,

Teyr k
1+ _ p1- 1. 1t 1. gl : _
b, = hy_, and we can denote oy, = «, and hy = h Since m,,,(1,1) = 0,

trt1”
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pud = po, and ,u:g = 2, it also follows that Btt — B, = 0 and 17;; — 1, = 0, implying that
“)A;: — @A, =0 and (2>Azz — @A, = 0. We are only left to prove that (S)A;; + @A, >0,
but as the denominator is negative, we only need to prove that its numerator, denoted by
N (<3)A;c + @A} ), is also negative. However, under our conditions, we have that

3 3)A— — 1 1 — 1 —
N(OAF +CA ) =nf m (g e — pe) [(d, — 204, 15,) + (g — 204, 12, |

which is negative because a%ﬂl ez — pe < 0 (since a%ﬂl <0), and each of the terms inside the
brackets above is positive. For the general midprice dynamics notice that our conditions and
the definitions (17) readily imply that pz =p, and @ZJ,J{ =1, =0, and the proof follows as in

the proof of Proposition 6. |

Proof of Lemma 8. The proof will done by backward induction. We only give the details
for {ay, ivjll (the proof for {hy, ivjll is very similar). To start, note that at time k=N + 1,
oy, = —A and, hence, it trivially satisfies the condition. For the inductive step, assume that
the lemma holds for j =k +1. We will now proceed to prove that oy, depends on ez; ,€;, only
thorugh e +e; . By (A.7), ay, = a?kﬂ + Ni /v, with

1 2_— - — - I—  — — 32 1
Ny = (atktlﬂjﬂttﬂ) Tt (O‘tkHNcZ —He )+ (atkﬂﬂc 7Ttk+1) W;;H(O‘t:;lﬂz; — )
1 1- - 1,1 —\2
(A'43) - 2at:;1atk+17rt+k+17rtk+l7rtk+l (17 ]‘)atk+1 (/J’Z’_IU/C ) 9y
1,1 12 - 1 - - -
Voo = [Tt (L Doy pud 1" = mp (g h pnh = pd ) (g e — o)

By assumption, ﬂ;;+1, T, .o and m, ., (1,1) are functions of ez; + €;,. Then, we only need to

show that a?wrl, a%}il, 0‘%,;17 and oztllil have the same property. By the induction hypothesis,
we have that oy, ,, is of the form oy, , = (ID(eZ;+1 —l—e;m) = <I>(]lz;+1 S TTIPPRTO ]l:;ﬁ_w +]l;€+2_w)

for a function ®:{0,1,2}® — R. Thus, using (A.4) and (6),

11
0 _ _
Xy =Elay,,, | Fi.] = ZZ@ <u+ v,ll;i +1;, ..., 11;;27@ + 1tk+2,w)

u=0v=0

xP[1f,, =u 1y, =v|HE],

trin
implying that a?k+1 is a function of ei +e€;, in light of (9). We can similarly deal with a%ktl,
oztlk:l, and oztle using the expressions in (A.6). For instance,

al+ = E[atk+1 | ‘Bk ’ :H-+ = 1]

tit1 tr+1

P} =1, 1,,, =lHT]

_ — trt1
- Z (I)(l—i—ﬂ,ﬂ;: +1tk""’]l?;:+z—w +ﬂtk+2fw) ]i;[]l'*' =1|H7] 7
te{0,1} ber 7 T e
which it is now evidently a function of e:;: +ey, . |

A.4. Proofs of section 2.5: Inventory analysis of the optimal strategy.

Proof of Proposition 9. For simplicity, we omit “*” when referring to the optimal strate-

gies Li’*. By (11) and Corollary 3, we have that Iy, , = I, — 1} ¢ (p;;rl — L)+

tht1 tr+1
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1 (P, — Ly,) with L = OAF I + @AT + @AL and Ly, = — WAL I, — @A, + @A
Under the condition m,,,(1,1) =0, the coefficients simplify to

1:|: 1+ + 1:|: o 1+
(1)A:|: _ Fe @, @) AL htk+1 He GyAE X 'uCp 20 tk+1'u'62
te T+ 1+ £ ty - te T 1+ £
He — tk+1N62 2 MC - O[tk+1'u’cz 2 NC - atk+1'u’c2

As explained in the proof of Corollary 7, ‘”A+ = WA, , (Q’AJr = @A alt =al” | and
tr) “teg try1?
h1+ _ hlf
o1~ letr” "
® ; — —
scripts of Atk, O‘t;m’ htk |, etc. Furthermore, since 7, , = T = T,,,» W Can see that (20)

simplifies to

In partlcular, we also have (S)At = @4, . Hereafter, we omit £ in the super-

1

of,
_ 1,0 leyr e 1
h’tk: - htk_H + 27Ttk+1 1 tey1?
He — O‘tﬂlﬂcz

which, combined with the condition h;,,, = 0, implies that h;, =0 and, thus, mA;Z =0, for
all k.
We can then write Iy, ,, =&, ., + (1 + 1, VAs, )11, , where

— 1t oF - -
Mtryr = ]]'tlc+1 tri1 + ]]'tk+1ctk+1’

— (1t oF - @ = o= o
ftlerl . (]]'thrl trhtt :H'tk+1ctk+1) Atk ( trhit tk+1ptk+1 ]]'tk+1ctk+1ptk+1)'

Since E[&;, ., |Ft,] =0 and Eln, ., |Ft,] = 27, ., fte, We can then conclude (36)(i).
For (36)(ii), first note that, by simple induction, we have that, when Iy =0,

k+1 k

(A.44) Loy =Y & [T+, AL),
J=1 J

under the usual convention that H]Z: p+1 = L. Next, we claim that, for any i, there is a function
®,:{0,1,2}* — R such that

k

H(l + Mtosr (1)Ate)
{=i

(A.45) E

Indeed, as shown in the proof of Lemma 8, a%}il are functions of ezr + €, and, thus, VA, =
\I!k(e;: + e;, ) for some function Wy. Then, by conditioning on ]1;:+ and 1, ,

E [(1 + T]thrl(l)Atk)‘ Ftk] =1+ 2,Ufc7rtk+1\1’k(e?; + ei) =: (I)k (etk + ei) .
Suppose (A.45) holds for i = j + 1. Then,

. -
E H(l +77te+1(1)Ate) ]:tj
=3 ]
[ &
=K (]‘ + ntj+1(1)Atj )E H (1 + nttz+1(l>Atz) ‘th+1 ‘th
| =j+1
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:]E (1+77tj+1(1)At') j+1 ( +et7+1)’]:t.j|
=2(142p.V5(ef +e; ))@j+1(1,112; Sak PPRRORS P S PR L.
+ (I)jJrl(O, ]]_t]‘ + ]]_tj, ]]_Jr + ]]_;_'_2_17)(1 — 27th+1),

tita—w

which is clearly of the form <I>j(e?;_ + €;.). This shows the validity of (A.45).
We are now ready to show the result:

k
E é-tj H(l +T]te+1(l)Ate) ]:tj—l
(=
= (& A o1f =115 =0| +E & | 7,18 =015 =1])
X <1>j(1,1;;71 +1tj., R +1;j+17w)7rtj
tE [gtj ‘ ‘B%l’]l?; :O’ILt_j :0} (I)j(o’]l?;‘ﬂ + ﬂt_j— ’ ]1—11 w +1 J+1- )(1 o 27rtf+1)’

which, recalling that &; : (]l+ct =1 c,) A, (]lt ct pt —1,.¢;,p;,), equals to 0 because
E[&, ‘]-"tj 1,]l+ 0]1;—0]—0andE£t ‘]—}J 1 1 ]lt_—O]—u(?’)At — [lep, as well
as B[&, | F,_,, 1 =0, 1, =1 = —p4, , + ucp. We then conclude that E[¢;, H]g:.(l
Nt PAr,)] =0 and thus, in light of the representation (A.44), we conclude that E [ItHj =0,
for any k. |

A.5. Proofs of section 2.6: Running inventory penalization.

Proof of Theorem 10. Plugging the ansatz (40) into 39, we arrive at the equation

Wi, + (¢)Oétkjt2k + S, Iy, + Phy Iy, + P,

2
- Sup E |:Wtk+1 + (¢)atk+1jtk+1 + Stk+1Itk+1 + (¢)htk+11tk+1 + (¢)gtk+1 - d) [ ]:tk]
(A.46) Lf €A,
2
= Sup ]E |:Wtk+1 ((¢)atk+1 - ¢)Itk+1 + Stk+1Itk+l + (¢)htk+1Itk+1 + (¢)gtk+1 ]:tk] .
EAtk

The above expression has the same structure as (16), but with o4, ,, replaced by “oy, ., — ¢.
This is the reason why the results of Theorem 1 and Corollary 3 follow along the same steps
as in Theorem 1 and Corollary 3 with the term a4, , (and its variants) replaced by Yoy, , — .
The proof of Lemma 2 also follows though it needs a bit more care. Indeed, this proof is heavily

based on the inequalities (A.11), (A.17), (A.25), which still hold for Watli and (4’)041 ! but we
need them to hold for (‘”)a%i — ¢ and Wal — ¢. Indeed, for (A.11), since 7, , (1, 1) < 7rtk+1,
then —qbwti < gbwtkﬂ(l 1), which together with @al® 7 < <¢>ozt1k117rtk+1(1 1) implies

t+1 thy1 —
(("’)oz%lil - gb) e < (@apt o ¢)mt,,,(1,1). The proof of (A.17) is similar. For the second
inequality in (A.25), since 7Tt L+ wtle T, (1,1) <1, we have ¢7rtk+1(1 1)< — ¢7rt+,c+1 -
¢my, ,, + ¢, which, together w1th Woc

@it (4 0 ; ;
Trtk-%—l(l 1) < Qi Tt k+1 + atk+17rtk+1 Qe implies

1,1 1 1—- — 0
((¢)atk+1 - ¢)7Ttk,+1 (17 1) S ((¢)at:;,1 - ¢)7r;’;+1 + ((¢)atk+1 - ¢)7rtk+1 - (atk+1 - ¢)'

The rest of the proof follows the same arguments as in the proof of Lemma 2. |
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