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Adaptive Optimal Market Making Strategies with Inventory Liquidation Cost∗
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Abstract. A novel high-frequency market making approach in discrete time is proposed that admits closed-form
solutions. By taking advantage of demand functions that are linear in the quoted bid and ask spreads
with random coefficients, we model the variability of the partial filling of limit orders posted in a
limit order book (LOB). As a result, we uncover new patterns as to how the demand’s randomness
affects the optimal placement strategy. We also allow the price process to follow general dynamics
without any Brownian or martingale assumption as is commonly adopted in the literature. The most
important feature of our optimal placement strategy is that it can react or adapt to the behavior
of market orders online. Using LOB data, we train our model and reproduce the anticipated final
profit and loss of the optimal strategy on a given testing date using the actual flow of orders in the
LOB. Our adaptive optimal strategies outperform the nonadaptive strategy and those that quote
limit orders at a fixed distance from the midprice.
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1. Introduction.

1.1. Overview. In a financial market, a market maker (MM) provides liquidity to the
market by repeatedly placing bid and ask orders into the market and profiting from the bid-ask
spread of her orders. The literature of market making is extensive (see, e.g., the monographs
of Cartea, Jaimungal, and Penalva (2015) and Guéant (2016) for references on the subject).
In subsection 1.2 below, we mention a few important works in addition to those more closely
related to our model, which are reviewed in this part. In the context of a limit order book
(LOB) based market, we consider an intraday high-frequency MM who quotes both bid and
ask limit orders (LO) at some prespecified discrete times and liquidates her inventory at the
end of the trading period. As is often assumed in the literature, the terminal liquidation cost or
price impact, originated from the use of a market order (MO), is modeled as IT (ST−λIT ), with
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654 CHÁVEZ-CASILLAS, FIGUEROA-LÓPEZ, YU, AND ZHANG

ST and IT respectively denoting the final fundamental stock price and the MM’s inventory.
Here, λ is a constant “penalization” parameter. We aim to maximize the final profit and loss
(PnL), WT + IT (ST − λIT ), at the end of the trading period T , where WT is the MM’s final
wealth. Her wealth and inventory trajectory are determined by the prices of her quotes and
the number of shares that are filled or lifted from her orders at these prices.

Modeling the number of lifted shares between consecutive actions is a key element of
our framework. In continuous-time control problems, a common approach is to model the
probability with which an incoming MO can lift one share of the MM’s LO in the book (known
as “lifting probability”). This approach, rooted in the seminal work of Ho and Stoll (1981), was
popularized by the work of Avellaneda and Stoikov (2008) and later on by other important
works including Guéant, Lehalle, and Fernandez-Tapia (2013) and Cartea, Jaimungal, and
Ricci (2014), among others. For instance, in the seminal work of Cartea and Jaimungal (2015),
it is assumed that MOs arrive according to a Poisson process and the lifting probability is
modeled as the exponential of the negative distance of the MM’s quote from the fundamental
price times a constant.

An alternative approach is to directly model the number of lifted shares between actions
via a liquidity demand function. For instance, in their work on price pressures, Hendershott
and Menkveld (2014) assume that the liquidity demand is normally distributed with a mean
parameter that is linear in the bid and ask quoted prices and constant variance. Adrian
et al. (2020) propose a demand function that decreases linearly with the distance of the quotes
from a reference price, though their demand function is further restricted to be deterministic.
We refer the reader to Remark 3 below for some further discussion about possible connections
between the lifting probabilities based and the demand function based approaches.

Our work extends existing models of high-frequency market making in several ways. As
in Adrian et al. (2020), we assume the demand to be linear in the spreads when modeling
the number of filled shares from the MM’s limit orders. However, in our case, the demand
is not deterministic but stochastic. This means that the actual number of shares bought
or sold varies over time, even if the distances of quotes from the reference stock price stay
the same. The resulting optimal placement strategy does not boil down to simply replacing
the constant demand slope and reservation price in the optimal strategy obtained in Adrian
et al. (2020) with their respective average values, but also depends on their “second-order”
information and their mutual correlation. The proposed randomization not only allows for
greater flexibility and better fit to empirically observed order flows, but also uncovers novel
properties of the resulting optimal placement strategies. For instance, it is known from Adrian
et al. (2020) that, under a constant demand slope, the required inventory adjustment in the
optimal placement at any given time decreases with the size of the slope. We show that the
variance of the slope further reduces the strength of this adjustment. This implies that assets
with more volatile demand profiles require less strict inventory adjustments. We also find that
the optimal placement spreads (i.e., the distances between the optimal bid and ask prices and
the fundamental price) increase with the correlation between the demand slope and investors’
reservation price.

Another distinguishing feature of our study is that we allow a general reference stock
price process without assuming that its dynamics follow that of a martingale or some kind
of parametric specification (e.g., a Brownian Itô semimartingale). We obtain a parsimonious
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ADAPTIVE OPTIMAL MARKET MAKING 655

formula that describes how the investor should adjust online her LO placements based on her
ongoing forecasts of future asset prices. Intuitively, if the MM expects future price changes to
be negative, she will reduce the ask spread and increase the bid spread, proportionally to the
expected price change. The proportionality constant depends on the model parameters in a
nontrivial way, which we characterize precisely. This feature could also enable the investor to
take advantage of sophisticated time series or machine learning based forecast procedures for
asset prices and incorporate them into the intraday market making process.

One of the key factors that affect the performance of any placement strategy is the arrival
intensity of MOs on either side of the book. A successful placement strategy should incor-
porate, in an online manner, current information about the intensity level of MOs or about
imbalances in the likelihood of buying and selling MOs. In other words, it is desirable that
the placement strategy adapts to the local behavior of MOs. In many works, the intensity of
MOs is fixed a priori as a deterministic function of time. In reality, the intensity of a MO is
highly random and “rough,” as indicated by Figure 1, where the averages of the indicators
signaling the arrivals of buy MOs in a rolling window are plotted. However, as shown by the
same figure, the intensity’s level can be tracked or predicted quite well in an adaptive or online
manner (see subsection 3.1.1 for details on how to perform this prediction) and it would be
desirable that the optimal strategy incorporates this information online.

By construction, it would seem that adaptive placement strategies are not feasible since
the dynamic programming problem to find them is solved in a backward manner in time,
which contradicts the direction of a natural learning process that proceeds forward in time.

Figure 1. Moving average of adaptive arrival probabilities of buy MO and the moving average of the indica-
tors signaling arrival of MOs in consecutive intervals of 1 second based on LOB MSFT data on July 11, 2019.
The window size of the rolling moving average is 500. Note that the scale for the blue (red) curve is shown on
the left (right) side of the figure.
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656 CHÁVEZ-CASILLAS, FIGUEROA-LÓPEZ, YU, AND ZHANG

However, in this work, we offer a natural approach to resolve this riddle. Essentially, we
propose to create a “catalog” of optimal strategies depending not only on the current asset
price and inventory level as well as future price forecasts but also on the recent history of
MOs arrivals. In some figurative sense, we create parallel “universes,” one for each possible
combination or scenario of past MOs events, and solve the optimal placement in each of those
universes. We do this by making the conditional probabilities of arrivals of MOs dependent
on the recent history of MOs. When implementing the placements strategy, the MM observes
the recent history or combinations of MOs to determine in which “universe” or scenario she
is in, and places her LOs accordingly using the catalog of optimal strategies.

To put our proposed approach to the test, we implement our optimal placement strategy
using actual LOB data. Specifically, for a given testing day, we start calibrating the model
parameters using LOB data of the past few days and then compute, backward in time, the
optimal placement strategy for each possible scenario of consecutive MOs. Next, we roll
forward our optimal placement strategy using the actual LOB events of the testing day to
determine in an online manner the scenario we are at and choose the optimal placements
accordingly. We then compute the MM’s cash flows and inventory changes using the actual
flow of MOs and the LOB state. At the end of the trading period, the MM submits a MO
to liquidate its final inventory and determine the actual cost taking into account the state
of the LOB. We repeat this procedure for each day of a 1-year time span. We find that our
optimal placement yields, on average, larger revenue compared to those where the intensity
of MO is assumed to be deterministic (time-dependent). Our empirical analysis also lends
strong support to demand stochasticity: the slope coefficient has a standard deviation that is
about 200% larger than the average demand level, and a correlation of about 20% with the
investors’ reservation price. Moreover, using real LOB data we estimate the optimal placement
strategy based on a simple one-step-ahead price process forecast and compare it to the one
that presumes a martingale price evolution.

1.2. Other relevant works. Optimal market making problems have a long history. In
this part we mention a few important works that have not previously been discussed. Early
contributions include those of Bradfield (1979), who analyzes the increasing price variability
induced by strategies that target a flat end-of-day inventory level, and O’Hara and Oldfield
(1986), who consider a repeated optimal market making problem, in which each day consists of
several trading periods, and the MM maximizes utility over an infinite number of trading days
while facing end-of-day inventory costs. More recently, Guilbaud and Phan (2013) studied
the performance of a MM submitting buy/sell LOs at the best two bid and ask levels, while
Guilbaud and Phan (2015) also considered agents that can submit MOs. Both of these works
assume a constant spread of one tick (the so-called large-tick stocks) and price dynamics that
move one tick at a time. Other works in the same vein include Fodra and Pham (2015) and
Fodra and Pham (2015). In all these works, there is no partial filling and the MM’s LOs are
filled in their totality when they are lifted.

Stochastic demand functions of different types have been considered in other works. As
mentioned above, both Cartea and Jaimungal (2015) and Cartea, Jaimungal, and Ricci (2014)
modeled the demand during a given time interval via filling probabilities, which depend on the
distance between the quotes and the fundamental price. While in the first of those two works,
the features of these probabilities are assumed to be deterministic, in the second work, those
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ADAPTIVE OPTIMAL MARKET MAKING 657

are assumed to be stochastic. As explained in Remark 3 below, there is a possible connection
between the linear demand assumption adopted in this work and the fill probabilities approach,
but, in general, the two models are not equivalent. It is worth mentioning that liquidity models
with stochastic features have also been considered in other problems of algorithmic trading.
For instance, Barger and Lorig (2019) and Becherer, Bilarev, and Frentrup (2018) both assume
stochastic price impact of trades in optimal liquidation problems.

More recent works in the area have also incorporated other model features such as price
impact (Cartea, Jaimungal, and Ricci (2014), Barger and Lorig (2019)), model ambiguity
(Cartea and Jaimungal (2015), Nyström, Ould Aly, and Zhang (2014)), and latency (Cartea,
Jaimungal, and Sánchez-Betancourt (2021), Gao and Wang (2020)). More recently, Bergault
and Guéant (2021) introduced a different modeling approach to incorporate different trans-
action sizes and the possibility for the MM to respond to requests with different sizes using
marked point processes.

1.3. Outline of the paper. The rest of the paper is organized as follows. In section 2,
we present the model setup and our assumptions together with the Bellman equation for our
problem and its explicit solutions. In section 3, we assess the performance of our market
making strategy against real LOB data. We finish with a conclusion section. We defer the
proofs to an appendix.

2. A finite-horizon optimal control problem for a market maker. In this section, we
introduce the model along with the relevant notation and its assumptions. Then, by using the
dynamic programming principle, we propose an adaptive trading strategy, and by using the
verification theorem, it is shown that, indeed, the solution is optimal. Finally, its admissibility
is investigated. All the proofs of this section will be deferred to Appendix A.

2.1. The model and its assumptions. We assume that a high-frequency MM places si-
multaneously buy and sell LOs at some preset discrete times 0 = t0 < t1 < · · · < tN , where
tN < tN+1 := T and hereafter T represents the terminal time of the trading. All the ran-
dom variables used in the model are defined on the same probability space (Ω,F ,P) equipped
with an information filtration {Ft}t∈T , where T = {t0, t1, . . . , tN+1}. For k = 0, . . . ,N , let
1
+
tk+1

∈Ftk+1
(1−

tk+1
∈Ftk+1

) be Bernoulli random variables indicating whether at least one buy
(sell) MO arrived during the time period [tk, tk+1), i.e.,

1
+
tk+1

= 1{At least one buy MO arrives during [tk,tk+1)},

1
−
tk+1

= 1{At least one sell MO arrives during [tk,tk+1)}.
(1)

Let $ be a fixed positive integer and define the lag-$ recent history of MOs at time tk as

etk = (1+
tk
,1−

tk
, . . . ,1+

tk−$+1
,1−

tk−$+1
)∈ {0,1}2$.(2)

We often use the shorthand notation etk = (1±
tk
, . . . ,1±

tk−$+1
). Above, we are assuming that

t0 = 0 is the beginning of the MM’s trading and that there is a sufficiently large “burn-
out” period prior to it. In particular, the indicators (1) are also defined for k = 0,−1, . . .
by setting some times 0 > t−1 > t−2 > . . . before the beginning of the trading at time 0.
Thus, for instance, 1

±
t0

is 1 if at least one MO arrived during the time period (t−1,0] and
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658 CHÁVEZ-CASILLAS, FIGUEROA-LÓPEZ, YU, AND ZHANG

et0 = (1±
t0
,1±

t−1
, . . . ,1±

t−$+1
) represents the indicators of MOs in the $ time periods previous to

0. For future reference, let us introduce some notation. For any adapted process u= {utk}k≥0,
we set

u0tk+1
:=E

[
utk+1

∣∣ Ftk

]
,

ui±tk+1
:=E

[
utk+1

∣∣ Ftk ,1
±
tk+1

= i
]
, i∈ {0,1},

ui,jtk+1
:=E

[
utk+1

∣∣ Ftk ,1
+
tk+1

= i,1−
tk+1

= j
]
, i, j ∈ {0,1},

(3)

which can be considered some sort of one-step-ahead forecasts of u. Note that all these
processes are adapted to the information process {Ft}t∈T .

As mentioned before, at each time tk, the MM will place simultaneously a buy and a sell
LO. Her sell LO will be submitted with an execution price of atk , while her buy LO will have
an execution price of btk . The volume of these orders is typically set to be the average volume
of submitted LO in the stock of interest. Both atk and btk are the MM’s “controls.” It will
be important to reparameterize the controls relative to a reference price Stk associated with
the stock such as the midprice or other related proxy. The MM’s buy (sell) LOs submitted
at time tk (k = 0, . . . ,N) will be matched against the sell (buy) MOs submitted during the
period [tk, tk+1) as follows. Let us first consider the ask side. If Stk denotes the reference or
fundamental price of the stock at time tk and the MM’s ask LO is placed L+

tk
above Stk (i.e.,

atk = Stk +L+
tk
), then the total number of shares from the MM that are sold during [tk, tk+1)

is denoted by Q+
tk+1

and is given by

Q+
tk+1

:= 1
+
tk+1

c+tk+1
[(Stk + p+tk+1

)− (Stk +L+
tk
)] = 1

+
tk+1

c+tk+1
(p+tk+1

−L+
tk
),(4)

where p+tk+1
, c+tk+1

∈ Ftk+1
are nonnegative random variables. Broadly (but not literally) p+tk+1

is related to the maximum depth that buy MOs walk into the LOB during [tk, tk+1) and c
+
tk+1

is such that c+tk+1
p+tk+1

indicates the executed volume of a sell LO if this were placed at the

same level as the reference price (that is, if L+
tk
= 0). We can also interpret p+tk+1

as the buyers’
reservation price in the market, i.e., the highest price that “buyers” in the market are willing
to pay for the stock. These interpretations should not be taken literally as explained in points
2–4 of Remark 1 below.

We analogously define the corresponding quantities for the bid side of the book. That is,
provided that at least one sell MO arrives during the time interval [tk, tk+1), Q

−
tk+1

will be the
executed volume of the MM’s buy LO placed at time tk at the price level btk . Similarly to
atk , we reparameterize btk in terms of the distance L−

tk
below the reference price Stk so that

btk = Stk −L−
tk
. Similarly to (4), Q−

tk+1
is modeled as

Q−
tk+1

:= 1
−
tk+1

c−tk+1
[(Stk −L−

tk
)− (Stk − p−tk+1

)] = 1
−
tk+1

c−tk+1
(p−tk+1

−L−
tk
),(5)

where p−tk+1
∈ Ftk+1

and c−tk+1
∈ Ftk+1

has analogous interpretations as p+tk+1
and c+tk+1

. Above,

both L+
tk

and L−
tk

are the MM “controls,” while the reference price Stk is exogenously deter-
mined by market conditions independently from the MM actions. The form of the function
of Q±

tk+1
is illustrated in Figure 2.

Remark 1. Some comments are in order to clarify our model assumptions (4)–(5) and
contrast to earlier work:
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ADAPTIVE OPTIMAL MARKET MAKING 659

Stk Stk
+ p+

tk+1
Stk

− p−
tk+1

btk atk

L−

tk
L+

tk

Q+

tk+1Q−

tk+1

c+
tk+1

p+
tk+1

c−
tk+1

p−
tk+1

Price

Number of filled shares

Figure 2. Stk
−p−tk+1

is the lowest price that a sell MO can attain, and Stk
+p+tk+1

is the highest price that

a buy MO can attain during the time interval [tk, tk+1). The number of filled shares increases as the MM places
limit orders closer to the fundamental price Stk

.

1. As mentioned in the introduction, in a continuous-time setting, Adrian et al. (2020)
considered demand functions similar to (4)–(5), but with c and p being known deter-
ministic constants. Then, the actual numbers of shares bought or sold over [tk, tk+1)
depend only on the spreads L±

tk
. Introducing randomness is more realistic since the

actual demand during [tk, tk+1] not only depends on the spreads of the quotes, but also
on the initial state of the book, which is hard to summarize and incorporate given its
high-dimensionality and variability, and on the flow of orders during the interval, which
is extremely unpredictable at time tk. One may argue that for the purposes of market
making all that matters is the average demand during the given trading period [0, T ].
That is, all we need is to take the deterministic demand functions 1

±
tk+1

µ±c (µ
±
p − L±

tk
)

or 1
±
tk+1

(µ±cp − µ±c L
±
tk
), where µ±c , µ

±
p , µ

±
cp are the average values of c, p, and cp over

[0, T ], respectively. This is not the case. As explained in items 1 and 4 following Corol-
lary 3 (see formulas (24) and (26)), the randomness of c and the correlation between
c and p play key roles in the optimal MM strategy. This is further verified in our
numerical/empirical section 3 (see Tables 6 and 7).

2. As mentioned above, the actual demand during [tk, tk+1) corresponding to placements
L±
tk

would depend on the shape of the book at time tk as well as the volume and
timing of MMs and the arrival of other LOs and cancellations during that interval.
Figure 3 shows the approximate demand during a prototypical time interval where at
least one MM order arrived (see subsection 3.1.2 for details about how to estimate
such a demand). Then, in a nutshell, c±tk+1

and p±tk+1
are chosen so that the resulting

linear model c±tk+1
(p±tk+1

−L±
tk+1

) is close to the actual demand. In other words, (4)–(5)
are viewed as the “best” linear fit for the actual demand during a given time period.

3. One of the obvious drawbacks of (4)–(5) is that, in principle, we are assuming the
possibility of negative demands (negative number of units sold or bought), which is
obviously not realistic. But, this would happen only if the LO quotes L±

tk
were large

compared to Stk . This assumption would then be an issue if the resulting optimal
placements were, at times, far away from the reference price, since, in that case, the
optimal strategy may be favoring or looking for negative demands, which in reality are
not feasible. In the context of Figure 3, this would be the case if the optimal placements
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660 CHÁVEZ-CASILLAS, FIGUEROA-LÓPEZ, YU, AND ZHANG

Figure 3. Prototypical plot of the actual demand versus estimated linear demand over time interval [tk, tk+1).

were more than about six ticks away from Stk , that is, when the linear demand func-
tions start to produce negative values. However, our empirical implementation in
section 3 shows us that the resulting optimal placements are almost never far away
from the reference price (almost always less than or equal to four ticks away) and,
thus, the linear demand assumption is not an issue in practice.

4. Above it was mentioned that p+tk+1
is connected to the maximum depth that the buy

MOs walk into the LOB during [tk, tk+1). This is because, under this interpretation,
we obviously have that if L+

tk
> p+tk+1

, then the corresponding demand should be 0.

However, as mentioned above, it is more accurate to see p+tk+1
as the value for which

c±tk+1
(p±tk+1

−L±
tk+1

) provides a good fit for the demand when L±
tk+1

is small.

Next we introduce the main assumptions on the distribution of the random variables
1
+
tk+1

,1−
tk+1

, c+tk+1
, p+tk+1

, c−tk+1
, and p−tk+1

.

Assumption 1. For k ∈ {0,1, . . . ,N}, let Gtk+1
:= σ(Ftk ,1

+
tk+1

,1−
tk+1

). Then,
(i) (c+tk+1

, p+tk+1
) and (c−tk+1

, p−tk+1
) are conditionally independent given Gtk+1

;

(ii) the conditional distribution of (c+tk+1
, p+tk+1

) given Gtk+1
is a measurable function de-

pending solely on 1
+
tk+1

, and it does not depend on k;

(iii) the conditional distribution of (c−tk+1
, p−tk+1

) given Gtk+1
is a measurable function de-

pending solely of 1
−
tk+1

that does not depend on k;
(iv) let $ be the fixed number defined in (2) and define H$

tk = σ(etk)⊂Ftk . Then, for some
d ∈ N, we assume the existence of functions g : {0,1}2$ → R

d and f, f± : Rd → [0,1]
such that for all k ∈ {0,1,2, . . . ,N},

π±tk+1
:= P(1±

tk+1
= 1|Ftk) = P(1±

tk+1
= 1|H$

tk) = f±(g(etk)),

πtk+1
(1,1) := P(1+

tk+1
= 1,1−

tk+1
= 1|Ftk) = P(1+

tk+1
= 1,1−

tk+1
= 1|H$

tk) = f(g(etk)).
(6)

By virtue of conditions (ii) and (iii) above, for each m,n ∈N, there exist functions h+m,n :
{0,1}→R and h−m,n : {0,1}→R such that

E

[
(c±tk+1

)m(p±tk+1
)n
∣∣∣Gtk+1

]
=E

[
(c±tk+1

)m(p±tk+1
)n
∣∣∣1±

tk+1

]
= h±m,n(1

±
tk+1

)(7)

for any k ∈ {0,1, . . . ,N}. The optimal placement strategy will depend on the following non-
random quantities:
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ADAPTIVE OPTIMAL MARKET MAKING 661

µ±cmpn := h±m,n(1) =E

[
(c±tk+1

)m(p±tk+1
)n
∣∣∣1±

tk+1
= 1
]
.(8)

When m or n are 0, we simply write µ±cm := µ±cmp0 and µ±pn := µ±c0pn and omit the exponents if
m and/or n are 1. Note also that

πtk+1
(1,0) := P

[
1
+
tk+1

= 1,1−
tk+1

= 0
∣∣∣Ftk

]
= π+tk+1

− πtk+1
(1,1),

πtk+1
(0,1) := P

[
1
+
tk+1

= 0,1−
tk+1

= 1
∣∣∣Ftk

]
= π−tk+1

− πtk+1
(1,1),(9)

πtk+1
(0,0) := P

[
1
+
tk+1

= 0,1−
tk+1

= 0
∣∣∣Ftk

]
= 1− π+tk+1

− π−tk+1
+ πtk+1

(1,1),

and, thus, they all satisfy representations similar to (6) and, in particular, can be written as
functions of g(etk).

Remark 2. It is important to stress the relevance of the assumption given by (6). In
Adrian et al. (2020) and our earlier preprint (Capponi, Figueroa-López, and Yu (2021)), it is
assumed that the probabilities π±tk+1

and πtk+1
(1,1) are deterministic smooth functions of time,

fixed throughout the trading day. In that case, for implementation purposes, these functions
have to be estimated at the beginning of the trading day from, for instance, historical data or
another type of preliminary market analysis, but once they are chosen, they cannot be changed
through the trading day. In the present work these probabilities are allowed to “react” to the
“recent” history of buy/sell MOs etk = (1±

tk
,1±

tk−1
, . . . ,1±

tk−$+1
), through a chosen function g.

The purpose of the function g is twofold: it summarizes the information contained in etk and it
allows us to alleviate the computational burden by reducing the dimension of past information.
This novelty enables the MM to adapt or adjust her trading strategy to the recently observed
“trades” in the market, which as shown empirically in section 3.1 can provide a good forecast
for the likelihood of a MO arriving on a given interval in either side of the book. In our
framework, the hyperparameter functions f± and f in (6) will then have to be calibrated at
the beginning of the trading day based on historical data. We can think of each value of g
as a possible “scenario” of the recent MOs history. At the beginning of the trading day, we
calibrate the probabilities π±tk+1

and πtk+1
(1,1) for each possible scenario. This will allow us to

choose the best possible placement strategy for each possible scenario. We give further details
in subsection 3.1.

Remark 3. There is a possible connection between the approach based on exponential
lifting probabilities (cf. Cartea and Jaimungal (2015)) and that based on linear demand func-
tions. Specifically, if λ± is the arrival intensity of MOs and the lifting probability is set to be
exp(−κ±L±), where L± is the distance between the LO quote and the fundamental price, then,
during a time span of ∆, we expect that ∆λ± exp(−κ±L±) times a MO will lift a LO placed
at distance L±. Since in this stream of literature, it is typically assumed that only one share
of the order is lifted at a time, when L± is small (as it is commonly the case), the expected
number of shares filled during a time span ∆ is approximately equal to ∆λ± −∆λ±κ±L±,
which is precisely linear in L±. Since we are allowing actions to take place only at discrete
times, we believe that the modeling based on stochastic linear demand functions provides
greater flexibility.
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662 CHÁVEZ-CASILLAS, FIGUEROA-LÓPEZ, YU, AND ZHANG

As in Cartea, Jaimungal, and Penalva (2015), Adrian et al. (2020), and others, for the
performance criterion of our placement strategy, we use WT + ST IT − λI2T , where Wt and
It respectively represent the MM’s cash holding and stock inventory at time t, and λ is a
constant penalization term. Note that at time T = tN+1, the last two terms can be rewritten
as ST IT − λI2T = IT (ST − λIT ), which may be interpreted as the MM’s end-of-day cash flow
incurred when liquidating her inventory IT using a MO. Overall, the latter interpretation
seems to be a good approximation of reality as shown by our empirical analysis of section 3.2
(compare Tables 2 and 3).1 The optimal control problem then consists of finding the adapted
placement positions L± = (L±

t0
,L±

t1
, . . . ,L±

tN
) that maximize

E[WT + ST IT − λI2T ].(10)

For future reference, note that, in light of (4) and (5), we have, for k ∈ {0,1, . . . ,N},

Itk+1
= Itk − 1

+
tk+1

c+tk+1
(p+tk+1

−L+
tk
) + 1

−
tk+1

c−tk+1
(p−tk+1

−L−
tk
),(11)

Wtk+1
=Wtk + (Stk +L+

tk
)1+

tk+1
c+tk+1

(p+tk+1
−L+

tk
)− (Stk −L−

tk
)1−

tk+1
c−tk+1

(p−tk+1
−L−

tk
).(12)

2.2. Optimal placement strategy for a martingale midprice process. For ease of expo-
sition and to establish the main ideas, in this subsection we first present the solution of the
optimal placement problem under the assumption that the reference price process {Stk}k≥0

is a martingale. The case of a general price process is presented in the following subsection.
The results herein will enable us to give a more tractable presentation of the general case. All
the proofs in this subsection are deferred to Appendix A.1.

In order to proceed, we need to make an additional assumption on the distribution of the
increments of the price process.

Assumption 2. (i) For any k ∈ {0,1, . . . ,N}, the price increments Stk+1
− Stk and the

random vector (1+
tk+1

,1−
tk+1

, c+tk+1
, p+tk+1

, c−tk+1
, p−tk+

) are conditionally independent given Ftk , and
(ii) {Stk+1

− Stk}k=0,...,N is a martingale, i.e., E[Stk+1
− Stk |Ftk ] = 0, for any k= 0, . . . ,N .

We now specify when a strategy will be admissible. We specify two types of admissibility.

Definition 1. For any k ∈ {0,1, . . . ,N}, a strategy (L±
tk
, . . . ,L±

tN
) running from time tk

to time tN is said to be admissible if, for every j ≥ k, L±
tj

∈ Ftj . If, in addition, we have

L+
tj
+ L−

tj
> 0, for all j ≥ k, we say that the strategy is strictly admissible. The set of all

(strictly) admissible strategies running from time tk to time tN is denoted by (Ātk,tN ) Atk,tN .

Note that the strict admissibility condition L+
tj
+L−

tj
> 0 is equivalent to atj > btj , i.e., the

selling price atj = Stj + L+
tj

of the MM is higher than her buying price btj = Stj − L−
tj

at all

future times. We don’t require that L+ and L− are nonnegative because Stk is not necessarily
seen as the midprice Smid

tk , but rather as the “fundamental” price of the stock. In practice,
the placement will always be set at the tick right above (below) the midprice if atk (btk) is
found to be below (above) Smid

tk .
In accordance with performance criterion (10), we can then write the value function at

time tk as

1Related to this, some recent works have proposed equilibrium models to deduce the price impact of a MO
(see, e.g., Cetin and Waelbroeck (2023)). See also Bhattacharya and Saar (2021) for further insights about the
relation between price impact and the depth of the book or the arrival frequencies of trades.
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ADAPTIVE OPTIMAL MARKET MAKING 663

Vtk := sup
(L±

tk
,...,L±

tN
)∈Atk,tN

E[WT + ST IT − λI2T
∣∣Ftk ], k= 0,1, . . . ,N.(13)

To solve the optimal control problem, we first assume that Vtk follows the ansatz

Vtk =Wtk + StkItk + αtkI
2
tk + htkItk + gtk ,(14)

where αtk , htk , gtk are some Ftk-adapted real-valued random variables to be determined from
the dynamical programming principle (see Theorem 1 below). The ansatz is motivated by
the specific form of the performance criterion in (10) and the dynamic principle given in (15)
below.

The dynamic programming principle (see, e.g., Hernández-Lerma and Lasserre (1996) and
Bäuerle and Rieder (2011)) associated with (13) can then be written as

Vtk = sup
L±

tk
∈Atk

E

[
Vtk+1

∣∣∣Ftk

]
, k= 0, . . . ,N,(15)

where we set VT := VtN+1
:= WT + ST IT − λI2T and Atk consists of all L±

tk
∈ Ftk . Using the

ansatz (14), we can rewrite (15) as

Wtk + αtkI
2
tk + StkItk + htkItk + gtk

= sup
L±

tk
∈Atk

E

[
Wtk+1

+ αtk+1
I2tk+1

+ Stk+1
Itk+1

+ htk+1
Itk+1

+ gtk+1

∣∣∣Ftk

]
.(16)

By plugging the recursions (11)–(12) in (16), we will be able to find a candidate for the optimal
placement strategy (Theorem 1 and Corollary 3 below). It is not until Theorem 4 that we
shall verify that our candidate is indeed the solutions to our original optimal control problem
(13). In section 2.4, we study the strict admissibility of the optimal strategy.

To write explicit formulas for the optimal placement strategy, we introduce the following
terminology:

ρ±tk := π+tk+1
π−tk+1

µ±c (α
1∓
tk+1

µ∓c2 − µ∓c ),

ψ±
tk
:= π∓tk+1

πtk+1
(1,1)α1,1

tk+1
µ±c (µ

∓
c )

2,

γtk :=
(
πtk+1

(1,1)α1,1
tk+1

µ−c µ
+
c

)2
−

ρ+tkρ
−
tk

π+tk+1
π−tk+1

µ+c µ
−
c

,

(17)

where α1±
tk+1

and α1,1
tk+1

are defined using the notation (3). We will prove below that the

optimal spreads for the ask and bid side can be written as L+,∗
tk

:= (1)A+
tk
Itk +

(2)A+
tk
+ (3)A+

tk
and

L−,∗
tk

=− (1)A−
tk
Itk −

(2)A−
tk
+ (3)A−

tk
with the coefficients

(1)A±
tk
:=

α1±
tk+1

ρ±tk − α1∓
tk+1

ψ±
tk

γtk
,

(2)A±
tk
:=

h1±tk+1
ρ±tk − h1∓tk+1

ψ±
tk

2γtk
,

(18)
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664 CHÁVEZ-CASILLAS, FIGUEROA-LÓPEZ, YU, AND ZHANG

(3)A±
tk
:=

ρ±tk
2π±tk+1

µ±c γtk

[
π±tk+1

(
µ±cp − 2α1±

tk+1
µ±c2p

)
+ 2

ψ±
tk
µ∓cp

π∓tk+1
(µ∓c )2

]

+
ψ±
tk

2π∓tk+1
µ∓c γtk

[
π∓tk+1

(
µ∓cp − 2α1∓

tk+1
µ∓c2p

)
+ 2

ψ∓
tk
µ±cp

π±tk+1
(µ±c )2

]
,

where we again used (3) to define h1±tk+1
. We first show that the maximization problem in (16)

is indeed well-posed.

Theorem 1. Under Assumptions 1 and 2, the following statements hold:
(i) There exist coefficients αtk , htk , and gtk that solve (16) for k= 0, . . . ,N with dynamics

(11)–(12) and terminal conditions αtN+1
=−λ and htN+1

= gtN+1
= 0.

(ii) For k= 0, . . . ,N+1, the coefficients αtk , htk , and gtk in (i) are H$
tk-measurable random

variables, where recall from Assumption 1 that H$
tk = σ(etk) = σ(1±

tk
,1±

tk−1
, . . . ,1±

tk−$+1
)

⊂Ftk .
(iii) For k= 0, . . . ,N , the coefficients of (i) can be computed recursively by the equations

αtk = α0
tk+1

+
∑

δ=±

πδtk+1

[(
α1δ
tk+1

µδc2 − µδc

)(
(1)Aδ

tk

)2
+ 2α1δ

tk+1
µδc

(1)Aδ
tk

]

+ 2α1,1
tk+1

πtk+1
(1,1)µ+c µ

−
c

(1)A+
tk

(1)A−
tk
,

(19)

htk = h0tk+1
+
∑

δ=±

πδtk+1

{
2
(
α1δ
tk+1

µδc2 − µδc

)
(1)Aδ

tk

(
(2)Aδ

tk + (δ (3)Aδ
tk)
)

(20)

+ 2α1δ
tk+1

µδc

(
(δ (3)Aδ

tk) +
(2)Aδ

tk

)
− 2(δα1δ

tk+1
)µδcp + (δ (1)Aδ

tk)

×
(
µδcp + (δh1δtk+1

)µδc − 2α1δ
tk+1

µδc2p

)}

− 2α1,1
tk+1

πtk+1
(1,1)µ+c µ

−
c

[
(1)A+

tk

(
(3)A−

tk
− (2)A−

tk

)
− (1)A−

tk

(
(2)A+

tk
+ (3)A+

tk

)

+ (1)A−
tk

µ+cp

µ+c
− (1)A+

tk

µ−cp

µ−c

]
,

and

gtk = g0tk+1
+
∑

δ=±

πδtk+1

[
(α1δ

tk+1
µδc2 − µδc)(

(3)Aδ
tk + (δ (2)Aδ

tk))
2 + α1δ

tk+1
µδc2p2 − (δh1δtk+1

)µδcp

(21)

+ (µδcp + (δh1δtk+1
)µδc − 2α1δ

tk+1
µδc2p)(

(3)Aδ
tk + (δ (2)Aδ

tk))
]

− 2α1,1
tk+1

πtk+1
(1,1)µ+c µ

−
c

[
((2)A+

tk
+ (3)A+

tk
)((3)A−

tk
− (2)A−

tk
)

−
µ+cp

µ+c
((3)A−

tk
− (2)A−

tk
)−

µ−cp

µ−c
((2)A+

tk
+ (3)A+

tk
) +

µ+cpµ
−
cp

µ−c µ
+
c

]
,

where we used the notation (3), (17), and (18).
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ADAPTIVE OPTIMAL MARKET MAKING 665

Before finding the optimal controls of (15), we state an important preliminary result that
will also be needed to show the verification theorem and the strict admissibility of the optimal
controls. This result is deceptivelysimple, though its proof is rather intricate.

Lemma 2. The random variables {αtk}k≥0 defined in (19) are such that

α0
tk+1

<αtk < 0 for any k ∈ {0,1, . . . ,N},

where {α0
tk}k≥0 is computed from {αtk}k≥0 using (3).

We are now ready to find the optimal controls of (15) under the ansatz (14). Most of its
proof is embedded in the proof of Theorem 1 but due to its importance it is stated separately.

Corollary 3. The optimal placements that maximize the right-hand side of (15) under the
ansatz (14) are given by

L+,∗
tk

= (1)A+
tk
Itk +

(2)A+
tk
+ (3)A+

tk
,

L−,∗
tk

=− (1)A−
tk
Itk −

(2)A−
tk
+ (3)A−

tk
,

(22)

where the coefficients above are given as in (18).

In light of the previous result, the optimal placement strategy takes the form

a∗tk = Stk +
(1)A+

tk
Itk +

(2)A+
tk
+ (3)A+

tk
,

b∗tk = Stk +
(1)A−

tk
Itk +

(2)A−
tk
− (3)A−

tk
.

(23)

In the preprint (Capponi, Figueroa-López, and Yu (2021)), an extensive analysis of the prop-
erties of the optimal strategy was carried out in the case that the arrival intensity of MOs is
deterministic rather than adaptive as in our setting (see Remark 2). One of the main con-
clusions therein is that the randomness of c and p is not just a mathematical artifact for the
sake of generalization, but plays an important role in the behavior of the optimal placement
strategy. Many of the conclusions therein transfer to our setting, but, for the sake of space,
we just highlight some of the most important here:

1. The second term in (23) is fundamental as it can be interpreted as the inventory
adjustment to the optimal strategy. In the case of π(1,1) = 0 (which is met to a
good degree when trading frequency is high enough), the coefficient (1)A−

tk
simplifies as

follows:

(1)A±
tk
=

µ±c α
1±
tk+1

µ±c − α1±
tk+1

µ±c2
=

α1±
tk+1

1− α1±
tk+1

µ±c − α1±
tk+1

Var(c±tk+1
|Ftk)/µ

±
c

.(24)

Due to Lemma 2, the coefficient above is negative, which means that when the in-
ventory is positive (negative), the ask and bid levels decrease (increase) to stimulate
selling (buying) of stock and, hence, bring inventory closer to 0. The larger the level
of the slope c, the smaller the effect of inventory in the optimal placement strategy.
However, with the same average value of c, stocks with more variable c require smaller
inventory adjustment.
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2. In the case of π(1,1) 6= 0, we still have that (1)A±
tk
< 0. Indeed, recalling (17)–(18) and

α1±
tk+1

≤ 0, and applying (A.11), the numerator of (1)A±
tk
< 0 satisfies

α1±
tk+1

ρ±tk − α1∓
tk+1

ψ±
tk

= α1±
tk+1

π+tk+1
π−tk+1

µ±c (α
1∓
tk+1

µ∓c2 − µ∓c )− α1∓
tk+1

π∓tk+1
πtk+1

(1,1)α1,1
tk+1

µ±c (µ
∓
c )

2

≥ α1±
tk+1

π+tk+1
π−tk+1

µ±c (α
1∓
tk+1

µ∓c2 − µ∓c )− α1∓
tk+1

π∓tk+1
α1±
tk+1

π±tk+1
µ±c (µ

∓
c )

2

= α1+
tk+1

α1−
tk+1

π+tk+1
π−tk+1

µ±c (µ
∓
c2 − (µ∓c )

2)− α1±
tk+1

π+tk+1
π−tk+1

µ+c µ
−
c > 0.

Since the denominator γtk < 0 (cf. (A.12)), we conclude that (1)A±
tk
< 0.

3. Again, assuming that π(1,1)≡ 0, we can further write

a∗tk = Stk +
µ+c α

1+
tk+1

µ+c − α1+
tk+1

µ+c2
Itk +

1

2

µ+c h
1+
tk+1

µ+c − α1+
tk+1

µ+c2
+

1

2

µ+cp − 2α1+
tk+1

µ+c2p

µ+c − α1+
tk+1

µ+c2
,

b∗tk = Stk +
µ−c α

1−
tk+1

µ−c − α1−
tk+1

µ−c2
Itk +

1

2

µ−c h
1−
tk+1

µ−c − α1−
tk+1

µ−c2
−

1

2

µ−cp − 2α1+
tk+1

µ−c2p

µ−c − α1−
tk+1

µ−c2
.

(25)

Computationally, it can be shown that α1±
tk+1

and h1±tk+1
are close to 0 for most of the

time interval [0, T ] and it is only for tk+1 close to T that their values are significantly
different from 0 (especially, α1±

tk+1
). Then, we have the approximations

a∗tk ≈ Stk +
1

2

µ+cp

µ+c
= Stk +

µ+p
2

+
Cov(c+tk+1

, p+tk+1
|Ftk)

2µ+c
,

b∗tk ≈ Stk −
1

2

µ−cp

µ−c
= Stk −

µ−p
2

−
Cov(c−tk+1

, p−tk+1
|Ftk)

2µ−c
.

(26)

The correlation between c and p now plays a key role in the optimal placements. When
c and p are uncorrelated (such as when c or p is deterministic), the optimal placements
are near the midpoint between Stk and the average reservation price Stk ± µ±p for most
of the time. However, when the correlation between c and p is positive, instead of
placing LOs around Stk ± µ±p /2, the high-frequency MM will tend to go deeper into
the book. Roughly, a larger realization of c also implies a large value of p, resulting in
a larger demand function and, hence, greater opportunity for the MM to obtain better
prices for her filled LOs.

4. Under the condition π(1,1)≡ 0 and certain market symmetry and independence condi-
tions, we can strengthen the conclusions of the previous item. Specifically, if we assume
that π+ = π−, µ±cp = µ±c µ

±
p , µ

±
c2p = µ±c2µ

±
p , µ

+
cm = µ−cm =: µcm , and µ

+
pm = µ−pm =: µpm ,

when m= 1,2, and α1+ = α1− (see Lemma 8 and the proof of Corollary 7 for sufficient
conditions for the latter to hold), then we have that h1±tk+1

≡ 0 and (25) uncovers the
existence of a critical inventory level that dictates the relation of the optimal place-
ments relative to the nominal values a0tk := Stk +

µp

2 and b0tk := Stk −
µp

2 . Specifically,
let I0 := µc2µp

2µc
. Then, we have as follows:

• When Itk = I0 (Itk =−I0), the optimal ask (bid) quote is at the level Stk +µp/2
(Stk − µp/2).
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ADAPTIVE OPTIMAL MARKET MAKING 667

• When the inventory level Itk ∈ (0, I0) (Itk ∈ (−I0,0)), the optimal ask (bid) quote
is deeper in the LOB relative to the levels Stk + µp/2 (Stk − µp/2).

• When the inventory level Itk > I0 (Itk < −I0), the optimal strategy is to place
the ask (bid) quote closer to Stk than to Stk +µp/2 (Stk −µp/2) and the bid (ask)
quote farther from Stk than from Stk − µp/2 (Stk + µp/2) into the LOB.

We next prove a verification theorem for the optimal placements given in (23). Its proof
is given in Appendix 4.

Theorem 4. The optimal value function Vtk of the control problem (13) is given by

Vtk = v(tk, Stk ,Wtk , Itk),

where, for tk ∈ T ,

v(tk, s,w, i) =w+ αtki
2 + si+ htki+ gtk ,

with αtk , htk , and gtk given as in Theorem 1. Furthermore, the optimal controls are given by
L±,∗
. as defined in (22).

2.3. Optimal placement strategy for a general midprice process. The objective of this
subsection is to extend our previous results to the case when the midprice process is a general
stochastic process without relying on a martingale assumption. As we will see below, in that
case, the optimal placement strategy will also depend on the forecasts of future price changes:

∆tk
tj
:=E(Stj+1

− Stj |Ftk), j ≥ k.(27)

We can see ∆tk
tj

as the MM’s forecast of the price change during the time interval [tj , tj+1],
j ≥ k, as seen at time tk. We first need to modify our Assumption 2 as follows.

Assumption 3. For any k = 1,2, . . . ,N , {Stj+1
− Stj}j=k,...,N and (1+

tk+1
,1−

tk+1
, c+tk+1

, p+tk+1
,

c−tk+1
, p−tk+1

) are conditionally independent given Ftk .

To solve the optimization problem (15), we use an ansatz for the value function similar to
that in the previous subsection:

Vtk :=Wtk + StkItk + αtkI
2
tk + h̃tkItk + g̃tk ,(28)

where αtk , h̃tk , and g̃tk are Ftk-adapted real-valued random variables to be determined from
the dynamical programming principle (15). As one may suspect from the notation above, αtk

will turn out to be the same as before: an H$
tk-measurable random variable determined by the

recursive relation (19). However, h̃tk will be different (in fact, not necessarilyH$
tk-measurable).

The following theorem summarizes the analogous results of Theorem 1 and Corollary 3
under a general price dynamics. Its proof is provided in Appendix A.2.

Theorem 5. Under Assumptions 1 and 3, the optimal strategy that solves the Bellman
equation (15) with the ansatz (28) and terminal conditions αtN+1

=−λ and h̃tN+1
= 0 is given,

for k= 0, . . . ,N , by

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
o
w

n
lo

ad
ed

 0
7
/0

9
/2

5
 t

o
 1

5
7
.2

7
.2

0
9
.1

0
3
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y



668 CHÁVEZ-CASILLAS, FIGUEROA-LÓPEZ, YU, AND ZHANG

L̃+,∗
tk

=L+,∗
tk

+
ρ+tk −ψ+

tk

2γtk
∆tk

tk
+

1

2γtk

N∑

i=k+1

{
ρ+tk∆

tk
ti
E

[
E

(
i+1∏

l=k+2

ξl

∣∣∣∣∣Ftk+1

)∣∣∣∣∣Ftk ,1
+
tk+1

= 1

]

− ψ+
tk
∆tk

ti
E

[
E

(
i+1∏

l=k+2

ξl

∣∣∣∣∣Ftk+1

)∣∣∣∣∣Ftk ,1
−
tk+1

= 1

]}
,

L̃−,∗
tk

=L−,∗
tk

−
ρ−tk −ψ−

tk

2γtk
∆tk

tk
−

1

2γtk

N∑

i=k+1

{
ρ−tk∆

tk
ti
E

[
E

(
i+1∏

l=k+2

ξl

∣∣∣∣∣Ftk+1

)∣∣∣∣∣Ftk ,1
+
tk+1

= 1

]

−ψ−
tk
∆tk

ti
E

[
E

(
i+1∏

l=k+2

ξl

∣∣∣∣∣Ftk+1

)∣∣∣∣∣Ftk ,1
−
tk+1

= 1

]}
,

(29)

where L±,∗
tk

is defined as in Corollary 3, γtk , ρ
±
tk
, and ψ±

tk
are defined as in (17), and the

quantity ξk+1 ∈Ftk+1
is given as

ξk+1 = 1+
1
+
tk+1

π+tk+1
γtk

(π+tk+1
µ+c α

1+
tk+1

ρ+tk − π−tk+1
µ−c α

1−
tk+1

ψ−
tk
)

+
1
−
tk+1

π−tk+1
γtk

(π−tk+1
µ−c α

1−
tk+1

ρ−tk − π+tk+1
µ+c α

1+
tk+1

ψ+
tk
).

(30)

Remark 4. Formula (29) gives us some interesting insights, even in the simplest case where
only one-step-ahead forecast ∆tk

tk
is implemented, while assuming that ∆tk

ti
= 0 afterward

(i≥ k+ 1). In that case, the third summands of L̃+,∗
tk

and L̃−,∗
tk

vanish, yielding the following
parsimonious formulas for the optimal placement strategy:

ã∗tk := Stk + L̃+,∗
tk

= Stk +L+,∗
tk

+
ρ+tk −ψ+

tk

2γtk
∆tk

tk
,

b̃∗tk := Stk − L̃−,∗
tk

= Stk −L−,∗
tk

+
ρ−tk −ψ−

tk

2γtk
∆tk

tk
.

(31)

The last term above allows the MM to adjust “online” her strategy depending on her views
or forecast of the next price change at each time instant tk. This feature in turn provides a
more data driven placement strategy in addition to the method described in Remark 2 above.
Using the facts that α1,1

tk+1
≤ 0, (µ±c )

2 ≤ µ±c2 , and (A.9)–(A.10), it is possible to show that

ρ+tk −ψ+
tk

≤ π+tk+1
π−tk+1

µ+c

(
α1,1
tk+1

µ−c2πtk+1
(1,1)

[
1

π−tk+1

−
1

π+tk+1

]
− µ−c + α0,1

tk+1
µ−c2

[
1−

πtk+1
(1,1)

π−tk+1

])
,

ρ−tk −ψ−
tk

≤ π+tk+1
π−tk+1

µ−c

(
α1,1
tk+1

µ+c2πtk+1
(1,1)

[
1

π+tk+1

−
1

π−tk+1

]
− µ+c + α1,0

tk+1
µ+c2

[
1−

πtk+1
(1,1)

π+tk+1

])
.

Since α0,1
tk+1

, α1,0
tk+1

≤ 0, we conclude that ρ±tk −ψ±
tk
≤ 0 if

πtk+1
(1,1) = 0, or π+tk+1

= π−tk+1
.(32)
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ADAPTIVE OPTIMAL MARKET MAKING 669

In those cases, since γtk < 0 (cf. (A.12)), the coefficients of ∆tk
tk

in (31) are positive. This
sign makes sense since if, for example, ∆tk

tk
> 0, the MM will try to post her LOs at higher

price levels (on both sides of the book) to anticipate the expected higher price Stk+1
in the

subsequent interval. The first condition in (32) is satisfied to a good extent when the trading
frequency is high enough, while the second condition therein is supported empirically by our
analysis in section 3.1.

2.4. Admissibility of the optimal strategy. In this section, we will give sufficient con-
ditions to guarantee that the optimal strategy of Theorem 5 is strictly admissible. All the
proofs of this subsection are deferred to Appendix A.3.

Recall from Definition 1 that a strategy (L±
t0
, . . . ,L±

tN
) is strictly admissible if for all k ∈

{0,1, . . . ,N}, L±
tk
∈Ftk , and L

+
tk
+L−

tk
> 0, implying that the execution price atk = Stk +L

+
tk

of
the ask LO is always larger than the execution price btk = Stk−L

+
tk
of the bid LO. Proposition 6

below provides sufficient conditions under which the optimal strategy introduced in Theorem 5
enjoys this property.

Proposition 6. Under Assumptions 1 and 3 and regardless of the dynamics of the midprice
process, the optimal strategy of Theorem 5 yields positive spreads at all times (i.e., atk > btk ,
for all k ∈ {0, . . . ,N}), provided that the following four conditions hold:

1. The first and second conditional moments of c±, as defined in (8), satisfy

µc := µ+c = µ−c , µc2 := µ+c2 = µ−c2 .(33)

2. At every time k ∈ {0, . . . ,N},

π+tk+1
= π−tk+1

=: πtk+1
.(34)

3. For every k ∈ {0,1,2, . . . ,N}, the conditional expectations of c±tkp
±
tk

and (c±tk)
2p±tk , as

defined in (8), satisfy

µ±cp = µ±c µ
±
p , µ±c2p = µ±c2µ

±
p .(35)

4. For every k ∈ {1,2, . . . ,N + 1}, the H$
tk-measurable random variables αtk and htk ,

defined by (19) and (20), depend on 1
+
tk

and 1
−
tk

only through 1
+
tk
+ 1

−
tk
.

Conditions (33) and (34) are some type of symmetry conditions between the bid and ask
sides of the market. Condition (35) postulates that the demand and supply slopes c±tk+1

and

the corresponding reservation prices p±tk+1
are uncorrelated. These assumptions are empirically

supported by our empirical analysis in section 3 (see Figure 4 and Table 1).
The following result shows that conditions 2 and 3 of Proposition 6 can be relaxed in the

case that there is no possibility of simultaneous arrivals of sell and buy MOs in the same
subinterval. The latter condition is expected to be met reasonably well when the frequency
of trades is high enough (i.e., maxk{tk − tk−1} ≈ 0).

Corollary 7. Suppose that, for every k ∈ {0,1, . . . ,N + 1}, the conditional probability
πtk+1

(1,1) = P(1+
tk+1

= 1,1−
tk+1

= 1|Ftk) = P(1+
tk+1

= 1,1−
tk+1

= 1|H$
tk) is 0. Then, regard-

less of the dynamics of the midprice process, the optimal strategy is admissible if conditions 1
and 4 of Proposition 6 are satisfied.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
o
w

n
lo

ad
ed

 0
7
/0

9
/2

5
 t

o
 1

5
7
.2

7
.2

0
9
.1

0
3
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y



670 CHÁVEZ-CASILLAS, FIGUEROA-LÓPEZ, YU, AND ZHANG

The most technical condition in the results above is 4, which can also be interpreted
as another symmetry assumption. This condition could be difficult to verify due to the
intrinsic complexity of the recursive formulas (19) and (20). In Lemma 8 below, we show
that it suffices to pick the function g : R2$ → R

d introduced in (6) such that it depends on
e
+
tk
:= (1+

tk
, . . . ,1+

tk−$+1
) and e

−
tk
:= (1−

tk
, . . . ,1−

tk−$+1
) through e

+
tk
+ e

−
tk
.

Lemma 8. If the function g in (6) is of the form g(etk) = ϕ(e+tk + e
−
tk
) for some ϕ :

{0,1,2}$ → R, then αtk and htk will depend on e
+
tk

and e
−
tk

only thorugh e
+
tk

+ e
−
tk
. In

particular, they depend on 1
+
tk

and 1
−
tk

only through 1
+
tk
+1

−
tk

and condition 4 in Proposition 6
is satisfied.

2.5. Inventory analysis of the optimal strategy. In this section we analyze the behavior
of the inventory under the optimal strategy found in section 2.2, when πtk+1

(1,1) ≡ 0 and
some symmetry conditions are satisfied. As explained above, the first condition is reasonable
when the trading frequency is high enough. The following result shows that when the initial
inventory is 0, then the expected inventory stays at 0 at all future times. The proofs of this
part are deferred to section A.4.

Proposition 9. Suppose that the assumptions of Theorem 1, conditions 1–2 of Proposition 6,
and the condition of Lemma 8 are satisfied. We also assume that πtk+1

(1,1)≡ 0 and µ+cp = µ−cp
and µ+c2p = µ−c2p. Then, under the optimal placement strategy of Corollary 3, for any k, we
have

(i)E
[
Itk+1

|Ftk

]
=

(
1 + 2πtk+1

µ2cα
1
tk+1

µc − α1
tk+1

µc2

)
Itk , (ii)E[Itk ] = 0,(36)

where, per the proof of Corollary 7, α1
tk+1

:= α1+
tk+1

= α1−
tk+1

.

Note that (36)(ii) does not follow directly from (36)(i) as in the nonadaptive case of
Capponi, Figueroa-López, and Yu (2021) because α1

tk+1
is random here and correlated to Itk .

The derivation of (36)(ii) requires an explicit representation of Itk and heavily depends on
the symmetry condition of Lemma 8. Recalling from Lemma 2 that α1

tk+1
≤ 0 and since

πtk+1
µ2c ≤ µ2c ≤ µc2 , we have −1≤ 1 + 2πtk+1

µ2
cα

1
tk+1

µc−α1
tk+1

µc2
≤ 1. Thus, by (36)(i), it follows that

∣∣∣E
[
Itk+1

|Ftk

] ∣∣∣≤ |Itk |.(37)

In particular, if Itk > 0 (Itk < 0), then E
[
Itk+1

|Ftk

]
≤ Itk (E

[
Itk+1

|Ftk

]
≥ Itk), hence the

inventory is mean-reverting toward 0.

2.6. Optimal MM strategy under running inventory penalization. In continuous-time
settings, Guilbaud and Pham (2013), Cartea, Jaimungal, and Ricci (2014), and others have
advocated for a running inventory penalty to further control the inventory risk. Under this
control, the performance criterion is E[WT −ST IT −λI2T −φ

∫ T

t
I2sds|Ft]. In discrete time, the

analogous value function at time tk naturally takes the form

Vtk := sup
(L±

tk
,...,L±

tN
)∈Atk,tN

E


WT + ST IT − λI2T − φ

N+1∑

j=k+1

I2tj

∣∣∣∣∣∣
Ftk


 , k= 0,1, . . . ,N + 1,(38)
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ADAPTIVE OPTIMAL MARKET MAKING 671

where as usual
∑N+1

j=N+2 = 0. The dynamic programming principle corresponding to (38) can
then be written, for k= 0, . . . ,N , as

Vtk = sup
L±

tk
∈Atk

E

[
Vtk+1

− φI2tk+1

∣∣∣Ftk

]
,(39)

starting with VtN+1
=WT + ST IT − λI2T . The heuristics behind (39) is classical:

Vtk = sup
(L±

tk
,...,L±

tN
)∈Atk,tN

E


E


WT + ST IT − λI2T − φ

N+1∑

j=k+2

I2tj

∣∣∣∣∣Ftk+1


− φI2tk+1

∣∣∣Ftk




= sup
L±

tk
∈Atk

E


 sup
(L±

tk+1
,...,L±

tN
)∈Atk+1,tN

E


WT + ST IT − λI2T − φ

N+1∑

j=k+2

I2tj

∣∣∣∣∣Ftk+1


− φI2tk+1

∣∣∣Ftk




= sup
L±

tk
∈Atk

E

[
Vtk+1

− φI2tk+1

∣∣∣Ftk

]
.

The following result, whose proof is deferred to Appendix A.5, formalizes the heuristics above.
Specifically, this shows that, under (38), most of the results considered in this paper follow
with minor modifications.

Theorem 10. Suppose that the setting and assumptions of Theorem 1 and Corollary 3 hold
true. Then, the following statements hold:

1. The conclusions of Theorem 1 and Corollary 3 follow with (39) replacing (15) and an
ansatz of the form

Vtk =Wtk + StkItk +
(φ)αtkI

2
tk +

(φ)htkItk +
(φ)gtk .(40)

The optimal controls (φ)L±,∗
tk

, k= 0, . . . ,N , are then given by

(φ)L+,∗
tk

= (1)A+,φ
tk

Itk +
(2)A+,φ

tk
+ (3)A+,φ

tk
,

(φ)L−,∗
tk

=− (1)A−,φ
tk

Itk −
(2)A−,φ

tk
+ (3)A−,φ

tk
,

(41)

with the coefficients (1)A±,φ
tk

, (2)A±,φ
tk

, and (3)A±,φ
tk

taking the same form as (18), but with

α1±
tk+1

and α1,1
tk+1

replaced with (φ)α1±
tk+1

−φ and (φ)α1,1
tk+1

−φ. Here, (φ)αtk ,
(φ)htk , and

(φ)gtk
follow the same formulas as (19)–(21), but with α0

tk+1
, α1±

tk+1
, α1,1

tk+1
, h0tk+1

, g0tk+1
, and

(`)A±
tk

replaced with (φ)α0
tk+1

− φ, (φ)α1±
tk+1

− φ, (φ)α1,1
tk+1

− φ, (φ)h0tk+1
, (φ)g0tk+1

, and (`)A±,φ
tk

,
respectively, on the right-hand side of all the formulas.

2. The conclusion of Lemma 2 also follows under the new running inventory penalty, i.e.,

(φ)α0
tk+1

< (φ)αtk < 0 for any k ∈ {0,1, . . . ,N}.

3. The verification theorem, Theorem 4, holds true with the value function (13) replaced
with (38).
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672 CHÁVEZ-CASILLAS, FIGUEROA-LÓPEZ, YU, AND ZHANG

2.7. Implementing the optimal strategy. As indicated in Remark 2, the function g in-
troduced in (6) has two main purposes. First, it summarizes the information contained in the
recent history of MOs, etk = (1±

tk
, . . . ,1±

tk−$+1
), and, more importantly, it alleviates the com-

putational burden by reducing the dimension of the different scenarios one needs to consider.
However, in order for g to work as intended, we must impose one additional condition.

Assumption 4. For k = 0, . . . ,N , g(etk+1
) is a function of (1+

tk+1
,1−

tk+1
, g(etk)); i.e., if we

denote the image of g as Ig, then there exists a function Γ : {0,1}2 ×Ig →Ig such that

g(etk+1
) = Γ(1+

tk+1
,1−

tk+1
, g(etk)).(42)

Obviously, if we picked g to be the identity function (g(etk) = etk) so that there is no
dimension reduction, then (42) is trivially satisfied by taking Γ to be the mapping that drops
the last two coordinates of the vector (1+

tk+1
,1−

tk+1
, g(etk)). A more interesting example is when

g(etk+1
) = e

+
tk+1

+ e
−
tk+1

(which satisfies the conditions for admissibility stated in Lemma 8).
In that case, denoting the mapping that drops the last two entries in a vector as Γ−, we have

g(etk+1
) = (1+

tk+1
+ 1

−
tk+1

,Γ−(e
+
tk
+ e

−
tk
)) = (1+

tk+1
+ 1

−
tk+1

,Γ−(g(etk))),

and the condition of Assumption 4 is satisfied.
Working backward by induction, it is not hard to check that, under Assumption 4, the

coefficients (1)A+
tk
, (2)A+

tk
, and (3)A+

tk
for the optimal placement strategy (22) depend only on

g(etk). Indeed, the probabilities P(1+
tk+1

= i,1−
tk+1

= j|Ftk) have this property since these

can be expressed in terms of π±tk+1
and πtk+1

(1,1) (see (9)), which enjoy the stated property

per Assumption 1(iv). So, it only remains to show that α0
tk+1

, α1±
tk+1

, and αi,j
tk+1

(and the
corresponding quantities for htk+1

) have this property. Indeed, by the induction step, we
can assume that αtk+1

= Λ(g(etk+1
)), for some function Λ : Ig → R, and, by Assumption 4,

αtk+1
=Λ(Γ(1+

tk+1
,1−

tk+1
, g(etk)). Then, similar to (A.6),

α1+
tk+1

=
∑

`∈{0,1}

Λ(Γ(1, `, g(etk))
P[1+

tk+1
= 1,1−

tk+1
= `|Ftk ]

P[1+
tk+1

= 1|Ftk ]
,(43)

which is clearly a function of g(etk). We can similarly deal with α0
tk+1

, αi,j
tk+1

, h0tk+1
, h1±tk+1

, and

hi,jtk+1
.
To carry out the optimal placement strategy, we think of each value ι∈ Ig, the image of g,

as a possible scenario of the immediate history of MOs. Before the beginning of trading, the
MM first computes, backward in time using (17)–(19), the coefficients (1)A±

tk
, (2)A±

tk
, and (3)A±

tk

of the optimal placement strategy (22) for each time tk and each possible scenario ι∈ Ig. This
results in a type of “dictionary” or “catalog.” Once the catalog is computed, she can then
start her trading moving forward in time. At each time tk, she observes the recent history of
MOs etk = (1±

tk
, . . . ,1±

tk−$+1
). Based on the etk , the inventory value Itk , the asset price Stk , and

her forecasts ∆tk
tj

of future price changes, she places her bid and ask LOs using the catalog.

For instance, if she assumes ∆tk
ti
= 0, for all i≥ k+ 1, she will place her orders at
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ADAPTIVE OPTIMAL MARKET MAKING 673

ã∗tk = Stk +
(1)A+

tk
Itk +

(2)A+
tk
+ (3)A+

tk
+
ρ+k −ψ+

k

2γtk
∆tk

tk
,

b̃∗tk := Stk +
(1)A−

tk
Itk +

(2)A−
tk
− (3)A−

tk
+
ρ−k −ψ−

k

2γtk
∆tk

tk
,

(44)

where above we are also assuming that the coefficients of ∆tk
tk

are computed at the beginning
of the trading for each time tk and each scenario ι∈ Ig.

3. Calibration and testing the optimal strategy on LOB data. In this section, we give
further details about the implementation of the optimal placement strategy of section 2.3,
including model calibration. We then illustrate our approach with real LOB data from Micro-
soft Corporation (stock symbol MSFT) during 2019.2 Our data set is obtained from Nasdaq
TotalView-ITCH 5.0, which is a direct data feed product offered by The Nasdaq Stock Market,
LLC.3 TotalView-ITCH uses a series of event messages to track any change in the LOB. For
each message, we observe the timestamp, type, direction, volume, and price. We reconstruct
the dynamics of the top 20 levels of the LOB directly from the event message data. We treat
each day as an independent sample.

In the first subsection we detail the model training or parameter estimation procedure.
The training will be based on the historical LOB data of the 20 days prior to each testing day.4

In the second subsection, we present the performance of the optimal placement policy using
the real flow of orders for MSFT in a given testing day and compare it with “fix-placement”
strategies that place LOs at fixed ask (bid) price levels. More specifically, in each test day,
we assume the MM places her LOs every second from 10:00 a.m. to 3:30 p.m., placing a total
of 19800 LOs at each side of the book.

3.1. Parameter estimation.

3.1.1. Estimation of π
±
tk+1

, π
tk+1

(1,1). We first need to specify the function g in As-
sumption 1(iv). We consider the following three functions:

g1 : {0,1}
6 →{0,1}6, g1(etk) = etk = (1+

tk
,1−

tk
,1+

tk−1
,1−

tk−1
,1+

tk−2
,1−

tk−2
),

g2 : {0,1}
6 →{0,1,2}3, g2(etk) = (1+

tk
+ 1

−
tk
,1+

tk−1
+ 1

−
tk−1

,1+
tk−2

+ 1
−
tk−2

),(45)

g3 : {0,1}
8 →{0,1,2}4, g3(etk) = (1+

tk
+ 1

−
tk
,1+

tk−1
+ 1

−
tk−1

,1+
tk−2

+ 1
−
tk−2

,1+
tk−3

+ 1
−
tk−3

).

The first function does not satisfy the conditions for admissibility of Lemma 8. However, in
practice, for each of the functions above, it is very rare that atk < btk or that atk (btk) is below
(above) the midprice Smid

tk . When any of these events happen, we simply set atk and/or btk
at the tick right above and below the midprice depending on what is appropriate.

Once we have selected the function g, we use the historical LOB data of the 20 days prior
to each testing day to estimate the functions f , f+, and f− in Assumption 1(iv). To this
end, we simply leverage the interpretations of those functions as conditional probabilities.
Specifically, setting Ig := Im(g)⊂R

d, for every ι∈ Ig, we estimate f±(ι) and f(ι) as

2We have tried a few other stocks but the results are not shown here for the sake of space.
3http://www.nasdaqtrader.com/Trader.aspx?id=Totalview2
4We tried different windows. The performance is good provided that the window size is not too small (say,

2 or 5 days).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
o
w

n
lo

ad
ed

 0
7
/0

9
/2

5
 t

o
 1

5
7
.2

7
.2

0
9
.1

0
3
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y



674 CHÁVEZ-CASILLAS, FIGUEROA-LÓPEZ, YU, AND ZHANG

(a) π± as functions of g3.

Figure 4. Estimation of π± when g is given by the function g3 defined in (45). The x-axis displays the
equivalence classes where the function g assumes different values, whereas the y-axis represents the value of π±.

f̂±(ι) =
#{1±

t`
= 1, g(et`) = ι}

#{g(et`) = ι}
,(46)

f̂(ι) =
#{1+

t`
= 1,1−

t`
= 1, g(et`) = ι}

#{g(et`) = ι}
,(47)

where #A indicates the cardinality of a set A and the times t`’s range over all the seconds from
10:00 a.m. to 3:30 p.m. in the 20 days prior to the testing day. The results of the estimation
procedure for g3 can be found in Figure 4 (similar results are found for g1 and g2). The
overall behavior is what one would expect: when ι takes a value corresponding to more ones
in et` , the probabilities π± take larger values. These figures also indicate that our symmetry
assumption π+ = π− required for admissibility (see Proposition 6) is reasonable.

Remark 5. One of the key principles behind our approach is the presumption that we
could forecast to a good degree the intensity of MOs through the day using the estimated
functions (46) and (47) and the history of previous MOs, etk . To assess the validity of this
principle, we compare the average of the sets

M+
k = {1+

tk−250
,1+

tk−249
, . . . ,1+

tk
, . . . ,1+

tk+249
,1+

tk+250
},

P+
k = {π̂+tk−250

, π̂+tk−249
, . . . , π+tk , . . . , π

+
tk+249

, π+tk+250
},

where π̂+t` := f̂+(g1(1
+
t`
,1−

t`
,1+

tk−1
,1−

t`−1
,1+

t`−2
,1−

t`−2
)). Figure 5 shows the result for all the

seconds tk in a prototypical day. This shows that our approach is surprisingly accurate in
tracking the intensity of MOs throughout the day using historical data from previous days
and past information of MOs.

3.1.2. Estimation of the demand functions. To estimate the constants µ±cmpn of (8), upon
which our strategy depends on, we use the sample averages within the previous 20 trading
days. For instance, the estimate of µ+cmpn is

µ̂+cmpn :=
1

N

N−1∑

`=0

(ĉ+t`+1
)m(p̂+t`+1

)n,(48)
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ADAPTIVE OPTIMAL MARKET MAKING 675

Figure 5. Moving average of the estimated values of P+ (using the function g= g1) and the moving average
of M+

k
on August 7, 2019.

where t`+1 ranges over all the seconds of the previous 20 days from 10:00 a.m. to 3:30 p.m.
and N is the total number of those. To estimate (ĉ+t`+1

, p̂+t`+1
) for one of those previous 1-second

time intervals [t`, t`+1), we apply the following procedure. Assume that the MM places an
ask LO at price level P` at time t` with volume VLO, and that the volume of existing ask
LOs with prices lower than P` is VL. If a buy MO with volume VM arrives during [t`, t`+1),
then the number of shares of the MM’s LO to be filled equals to ((VM − VL) ∨ 0) ∧ VLO.

5

We then compute this quantity for all buy MOs arriving during the interval [t`, t`+1) so
that Q` :=

∑
all MO(((VM − VL)∨ 0)∧ VLO) will quantify the actual demand at price level P`

during that interval. Once those demands have been computed for all price level P` above the
midprice, we performed a weighted linear regression to estimate (ĉ+t`+1

, p̂+t`+1
), with the actual

demand Q` being the response variable and the price level P` being the predictor, placing
higher weights on price levels closer to the midprice Stk . Following (4), we can estimate ĉ+t`
and p̂+t` as the slope and as the quotient intercept/slope of the regression line, respectively. In
the preprint (Capponi, Figueroa-López, and Yu (2021, p. 28)), it is shown that time series
(ĉ+t` , p̂

+
t`
) are reasonably stationary, implying that our method to estimate the constants µ±cmpn

as (48) is justifiable.
In Figure 6, we plot the average demand curve and the regression line whose slope and

p value is set to the averages of the (ĉ+t`+1
, p̂+t`+1

)’s of all 1-second time intervals [t`, t`+1)
during that date. This graph shows that the linear model in (4)–(5) is a reasonably good
approximation of the actual volume of shares executed, especially as they are closer to the
midprice where most MOs are executed.

5Here, for computational simplicity, we are assuming the MM’s LO at level P` is ahead of the queue (hence,
her shares are the first to be filled at that level), which is a common simplification in the literature.
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Figure 6. Plot of the actual demand on October 3 versus the estimated linear demand function over a
1-second trading interval.

Table 1

Average values of c± and p± over 252 trading days in 2019. Entries with the same color should be of a
similar magnitude to have our model assumptions validated.

µ̂
+
c

= 125.512 µ̂
−

c
= 130.622

µ̂
+
p

= 3.287 µ̂
−

p
= 3.292

µ̂
+
c
µ̂
+
p

= 412.558 µ̂
−

c
µ̂
−

p
= 430.008

µ̂
+
cp

= 451.263 µ̂
−

cp
= 471.685

µ̂
+

c2
= 8.47× 10

4
µ̂
−

c2
= 5.45× 10

4

µ̂
+

c2p
= 3.53× 10

5
µ̂
−

c2p
= 2.25× 10

5

µ̂
+

c2
µ̂
+
p

= 2.78× 10
5

µ̂
−

c2
µ̂
−

p
= 1.79× 10

5

To give an idea of the values of µ±cmpn , we estimate those constants for each day of the
252 days of our sample (using an estimator like that in (48) but with the t`’s ranging over all
the seconds of each day) and then we take the averages of the resulting 252 estimates µ̂±cmpn .
Table 1 shows the results. The table also shows some other related quantities to assess the
validity of (33) and (35) in Proposition 6. As shown therein, these assumptions are reasonably
met in our sample data.

3.1.3. Estimation of the drift for the midprice process. For simplicity, we set the fun-
damental price to be the midprice process. For our implementation, we assume that

∆tk
tj
=E(Stj+1

− Stj |Ftk) = 0, j ≥ k+ 1,

because in practice, one could expect ∆tk
tj
=E(Stj+1

− Stj |Ftk) to quickly decrease to 0 as j is
farther away from k (otherwise, statistical arbitrage opportunities are likely to appear) and
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ADAPTIVE OPTIMAL MARKET MAKING 677

also because the estimation error of the forecasts ∆tk
tj

increases quickly as tj is farther away
from tk. To estimate the one-step-ahead forecast ∆tk =E(Stk+1

−Stk |Ftk), we simply take the
average over the last five increments:

∆̂tk =
1

5

5∑

i=1

(Stk−i+1
− Stk−i

) =
Stk − Stk−5

5
.(49)

3.2. Numerical results. In this subsection we illustrate the performance of the optimal
trading strategy using as g function each of the functions in (45). For each of these choices
we compute the terminal value of the performance criterion WT + ST IT − λI2T under the
martingale assumption. We also compute the terminal value when applying the placement
strategy (31) with ∆tk

tk
estimated as (49) and using the function g3. As mentioned above, our

optimal placement strategy was tested based on the LOB data of MSFT observed in 2019.
As suggested in the preprint (Capponi, Figueroa-López, and Yu (2021, section 5.2)), we set
λ= 0.0005, which gives a good estimate of the average liquidity cost for our sample data. The
cash holding Wtk and the stock inventory Itk were computed as

Wtk+1
−Wtk = atkQ̃

+
tk+1

− btkQ̃
−
tk+1

, Itk+1
− Itk =−Q̃+

tk+1
+ Q̃−

tk+1
,

where atk and btk were the price of selling (buying) LOs placed at time tk and Q̃+
tk+1

(Q̃−
tk+1

)
was the executed volume of selling (buying) LOs calculated by using the actual flow of MOs
in the market in each 1-second interval of each testing day.6 Since all the parameters of the
model, namely the filling probabilities π±tk+1

, πtk+1
(1,1) and the constants µ±cmpn , are calibrated

using the past 20 days to each testing day, the first testing day is set to be January 30, which
was the 21st trading day of 2019.

3.2.1. Performance criterion distribution. The sample means and standard deviations
of the end of the day performance criterion WT + ST IT − λI2T for the 232 testing days under
the four different implementations of our optimal placement strategy are shown in Table 2.
For comparison, we also computed the corresponding values when using six deterministic

Table 2

Sample mean and std. dev. of the performance criterion WT + ST IT − λI2T over 232 days for the different
strategies considered (optimal and fixed-placement) based on LOB MSFT data in 2019.

Optimal strategy with
martingale midprice

conditioning on g1(etk
)

Optimal strategy with
martingale midprice

conditioning on g2(etk
)

Optimal strategy with
martingale midprice

conditioning on g3(etk
)

Optimal strategy with
general midprice

conditioning on g3(etk
)

Mean 8.36× 104 8.50× 104 8.57× 104 8.26× 104

Std. 1.63× 106 1.63× 106 1.62× 106 1.37× 106

Level 1 Level 2 Level 3 Level 4 Level 5 Level 6

Mean −7.78× 106 −9.99× 105 −1.14× 105 −3.64× 104 −5.16× 104 −3.69× 104

Std. 1.52× 107 4.49× 106 2.01× 106 1.07× 106 7.16× 105 4.81× 105

6Here, we are again assuming for simplicity that the MM’s LO is ahead of the queue.
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678 CHÁVEZ-CASILLAS, FIGUEROA-LÓPEZ, YU, AND ZHANG

Table 3

Sample mean and std. dev. of the terminal PnL, WT + S̄T IT (terminal cash holdings plus the actual
liquidation proceeds based on the LOB state at expiration), over 232 trading days based on LOB MSFT data in
2019.

Optimal strategy with
martingale midprice

conditioning on g1(etk
)

Optimal strategy with
martingale midprice

conditioning on g2(etk
)

Optimal strategy with
martingale midprice

conditioning on g3(etk
)

Optimal strategy with
general midprice

conditioning on g3(etk
)

Mean 8.23× 104 8.36× 104 8.44× 104 8.01× 104

Std. 1.62× 106 1.62× 106 1.61× 106 1.37× 106

Level 1 Level 2 Level 3 Level 4 Level 5 Level 6

Mean −1.88× 106 −3.06× 105 −4.41× 104 −3.12× 104 −5.26× 104 −3.86× 104

Std. 8.18× 106 3.86× 106 1.94× 106 1.05× 106 7.08× 105 4.81× 105

strategies labeled Level 1 through Level 6, where the Level i strategy is the one where the
MM always posts her orders i-ticks deep in the order book at both sides. Table 3 presents the
means and standard deviations of the terminal values WT + S̄T IT , computed using the actual
average price S̄T per share that the HFM would get when liquidating her inventory IT with
a MO based on the state of the book at time T . We refer to S̄T IT as the liquidation proceeds.
We do not observe significant differences with the results presented in Table 2, which validates
our assumption of modeling the liquidation cost as ST IT − λI2T and the chosen penalization
value of λ= 0.0005.

Based on the results observed in Tables 2 and 3, we can conclude that our optimal strategy
under any scenario significantly outperforms the fixed-level placement strategies. From these
tables, we can also observe that the mean and standard deviation for all three policies under
the martingale assumption are close to each other but the policy obtained by choosing the
function g as g3 has the highest mean and lowest standard deviation. In contrast, when using
a one-step forecast (49) and choosing the function g as g3, the average of the performance of
the optimal strategy is slightly lower than that under martingale assumption, but the standard
deviation is also lower.

For comparison, in Tables 4 and 5, we report the analogous results using the optimal
placement strategies from the preprint (Capponi, Figueroa-López, and Yu (2021)), in which
the probabilities π±tk+1

and πtk+1
(1,1) are deterministic quadratic functions of time calibrated

using historical data. While the sample standard deviations of our adaptive placement strategy
are slightly larger than those in the preprint, the sample means of the performance criteria
are significantly better.

We can further wonder how important adopting random demand is to achieve good PnL.
In Tables 6 and 7, we compute the sample means and standard deviations ofWT + ST IT − λI2T
and WT + S̄T IT based on 232 days, still assuming adaptive probabilities π, but now taking
c and p at each test day constant to their sample averages of the previous 20 trading days.
As shown therein, though the average PnL are all positive, they are significantly smaller
than those in Tables 2 and 3 and even those using nonadaptive π’s but stochastic demand as
illustrated in Tables 4 and 5.
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ADAPTIVE OPTIMAL MARKET MAKING 679

Table 4

Sample mean and std. of the terminal objective values WT +ST IT −λI2T over 232 days. We fix λ= 0.0005.
We control cash holdings and inventory processes assuming stochastic demand functions but deterministic in-
tensity of MO arrivals as in Capponi, Figueroa-López, and Yu (2021).

Optimal strategy with
nonmartingale fundamental price

and πtk
(1,1)≥ 0

Optimal strategy with
martingale fundamental price

and πtk
(1,1)≥ 0

Optimal strategy with
nonmartingale fundamental

price and πtk
(1,1)≡ 0

Mean 6.13× 104 5.80× 104 6.11× 104

Std. 1.22× 106 1.30× 106 1.22× 106

Table 5

Sample mean and std. of the terminal values WT + S̄T IT (terminal cash holdings plus the actual liquidation
proceeds based on the LOB state at expiration) over 232 days. We control cash holdings and inventory processes
assuming stochastic demands functions but deterministic intensity of MO arrivals as in Capponi, Figueroa-
López, and Yu (2021).

Optimal strategy with
nonmartingale price and

πtk
(1,1)≥ 0

Optimal strategy with
martingale price and

πtk
(1,1)≥ 0

Optimal strategy with
nonmartingale price and

πtk
(1,1)≡ 0

Mean 6.00× 104 5.56× 104 5.97× 104

Std. 1.22× 106 1.30× 106 1.22× 106

Table 6

Sample mean and std. dev. of the performance criterion WT + ST IT − λI2T over 232 days for the different
adaptive strategies, but with deterministic demand functions (i.e., c and p are constant to its average values in
the 20 days previous to each testing day.

Optimal strategy with
martingale midprice

conditioning on g1(etk
)

Optimal strategy with
martingale midprice

conditioning on g2(etk
)

Optimal strategy with
martingale midprice

conditioning on g3(etk
)

Optimal strategy with
general midprice

conditioning on g3(etk
)

Mean 3.60× 104 3.64× 104 3.90× 104 7.15× 104

Std. 2.07× 106 2.07× 106 2.06× 106 1.59× 106

Table 7

Sample mean and std. dev. of the terminal PnL, WT + S̄T IT (terminal cash holdings plus the actual
liquidation proceeds based on the LOB state at expiration), over 232 days for the different adaptive strategies,
but with deterministic demand functions (i.e., c and p are constant to its average values in the 20 days previous
to each testing day.

Optimal strategy with
martingale midprice

conditioning on g1(etk
)

Optimal strategy with
martingale midprice

conditioning on g2(etk
)

Optimal strategy with
martingale midprice

conditioning on g3(etk
)

Optimal strategy with
general midprice

conditioning on g3(etk
)

Mean 3.26× 104 3.30× 104 3.56× 104 6.67× 104

Std. 2.07× 106 2.07× 106 2.06× 106 1.60× 106

Finally, to analyze whether the penalization term in the performance criterion is indeed
able to push the MM to lower her inventory toward the end of the trading day, we display in
Figure 7 a prototypical sample inventory path throughout the trading day of August 7 when

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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680 CHÁVEZ-CASILLAS, FIGUEROA-LÓPEZ, YU, AND ZHANG

(a) The Intraday Prices Paths.

(b) The Intraday Inventory Paths.

Figure 7. A comparison of the intraday price and inventory paths of the optimal strategy under the general
price dynamics assumption when choosing the function g as g3 and the ones of the benchmark policies on
August 7.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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ADAPTIVE OPTIMAL MARKET MAKING 681

computing the optimal strategy with the choice g3, under a nonmartingale (Figure 7(a)) price
dynamics.

4. Conclusions. In this manuscript, we focus on end-of-day inventory control in a market
making problem. We assume the demand to be linear with random slope and intercept, which
allows for greater flexibility and uncovers novel features of the resulting optimal control policy.
We account for simultaneous arrivals of buy and sell MOs between consecutive market making
actions, which also lead to novel patterns of the optimal policy. We allow the market maker to
incorporate forecasts of the fundamental price in her placement strategy. Finally, we enable
the investor to integrate the information on the arrival of MOs throughout the trading. The
performance of the proposed optimal policy is assessed using historical exchange transaction
data throughout an entire year. The optimal strategy derived with the novel model specifica-
tions mentioned above yields greater flexibility and better results in our empirical study.

There are some key areas for future research based on our results:
• It is natural to consider the possibility that the features of the demand functions also

depend on the history of MOs etk rather than being assumed constants as in the
current framework.

• It would be important to drop the assumption of independent between the price
changes Stk+1

− Stk and the vector (1+
tk+1

,1−
tk+1

, c+tk+1
, p+tk+1

, c−tk+1
, p−tk+

).
• It is natural to consider the continuous limit of the model considered here. Such an

extension could help us to consider general inventory penalties.

Appendix A. Proofs of main results. In this appendix we provide all the proofs pertaining
to section 2.

A.1. Proofs of section 2.2: Optimal strategy for a martingale midprice.

Proof of Theorem 1. The proof is done by backward induction. First, note that for
k = N + 1, i.e., at the terminal time T = tN+1, the statement (ii) is immediate due to the
terminal conditions αtN+1

= −λ and htN+1
= gtN+1

= 0. So, it suffices to show the following
two assertions:

(a) If the statement (ii) is true for k= j +1, then the statements (i) and (iii) are true for
k= j.

(b) If the statement (ii) is true for k = j + 1 and the statements (i) and (iii) are true for
k= j, then the statement (ii) is true for k= j.

Let us start to prove the first assertion (a) above. To proceed, we consider (16) for k = j.
Replacing Wtj+1

and Itj+1
on the right-hand side of (16) by their corresponding recursive

formulas (11)–(12), we obtain

Vtj = sup
L±

tj
∈Atj

E

{
Wtj +

∑

δ=±

(Stj + δLδ
tj )δ1

δ
tj+1

cδtj+1
(pδtj+1

−Lδ
tj )

+ αtj+1

[
Itj −

∑

δ=±

δ1δ
tj+1

cδtj+1
(pδtj+1

−Lδ
tj )

]2(A.1)
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682 CHÁVEZ-CASILLAS, FIGUEROA-LÓPEZ, YU, AND ZHANG

+ Stj+1

[
Itj −

∑

δ=±

δ1δ
tj+1

cδtj+1
(pδtj+1

−Lδ
tj )

]

+ htj+1

[
Itj −

∑

δ=±

δ1δ
tj+1

cδtj+1
(pδtj+1

−Lδ
tj )

]
+ gtj+1

∣∣∣∣Ftj

}
.

Expanding the squares inside the expectation and rearranging terms, we can write

Vtj = sup
L±

tj
∈Atj

E

{
Wtj +

∑

δ=±

1
δ
tj+1

[− cδtj+1
(Lδ

tj )
2 + (cδtj+1

pδtj+1
− δcδtj+1

Stj )L
δ
tj + δcδtj+1

pδtj+1
Stj ]

+ αtj+1

{
I2tj +

∑

δ=±

1
δ
tj+1

[
(cδtj+1

)2(Lδ
tj )

2 + (2δItjc
δ
tj+1

− 2(cδtj+1
)2pδtj+1

)Lδ
tj

+ (cδtj+1
pδtj+1

)2 − 2δItjc
δ
tj+1

pδtj+1

]

+ 21+
tj+1

1
−
tj+1

c+tj+1
c−tj+1

(−L+
tj
L−
tj
+ p+tj+1

L−
tj
+ p−tj+1

L+
tj
− p+tj+1

p−tj+1
)

}

+ Stj+1

[
Itj +

∑

δ=±

1
δ
tj+1

(−δcδtj+1
pδtj+1

+ δcδtj+1
Lδ
tj )

]

+ htj+1
Itj +

∑

δ=±

1
δ
tj+1

(−δhtj+1
cδtj+1

pδtj+1
+ δhtj+1

cδtj+1
Lδ
tj ) + gtj+1

∣∣∣∣Ftj

}
.

(A.2)

We need to compute the conditional expectation of each term above. Recall from As-
sumption 1 that Gtj+1

= σ(Ftj ,1
+
tj+1

,1−
tj+1

) and that, by our backward induction hypothesis,
αtj+1

, htj+1
∈ H$

tj+1
= σ(etj+1

) ⊂ Gtj+1
. The idea is to apply the law of iterated expec-

tations, E[·|Ftj ] = E[E[·|Gtj+1
]|Ftj ]. We can then pull out all the Gtj+1

-measurable factors
(e.g., 1

+
tj+1

, 1
−
tj+1

, αtj+1
, htj+1

, L±
tj
, Itj , Stj , etc.) from the inside expectation E[·| Gtj+1

]. We

also use the fact that (c+tj+1
, p+tj+1

) and (c−tj+1
, p−tj+1

) are conditionally independent given Gtj+1

(see Assumption 1), in addition to (8). As an example, we will explicitly show the com-
putations of two terms in (A.2). The remaining terms follow similar arguments. Consider
A :=E[αtj+1

1
+
tj+1

1
−
tj+1

c+tj+1
c−tj+1

p+tj+1
p−tj+1

|Ftj ]:

A=E

[
E[αtj+1

1
+
tj+1

1
−
tj+1

c+tj+1
c−tj+1

p+tj+1
p−tj+1

|Gtj+1
]

∣∣∣∣Ftj

]

=E

[
1
+
tj+1

1
−
tj+1

αtj+1
E[c+tj+1

p+tj+1
c−tj+1

p−tj+1
|Gtj+1

]
∣∣∣Ftj

]

=E

[
1
+
tj+1

1
−
tj+1

αtj+1
E[c+tj+1

p+tj+1
|Gtj+1

]E[c−tj+1
p−tj+1

|Gtj+1
]
∣∣∣Ftj

]

=E

[
1
+
tj+1

1
−
tj+1

αtj+1
E[c+tj+1

p+tj+1
|1+

tj+1
]E[c−tj+1

p−tj+1
|1−

tj+1
]
∣∣∣Ftj

]
.

Now, since αtj+1
∈H$

tj+1
, we have

αtj+1
=Φ(1+

tj+1
,1−

tj+1
, . . . ,1+

tj+2−$
,1−

tj+2−$
)(A.3)
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ADAPTIVE OPTIMAL MARKET MAKING 683

for some function Φ. Using the well-known property

E(f(X,Y )|F) =
∑

x

f(x,Y )P(X = x|F)(A.4)

for a discrete r.v. X and an F-measurable variable Y , we can write

A=E

[
1
+
tj+1

1
−
tj+1

αtj+1
E[c+tj+1

p+tj+1
|1+

tj+1
]E[c−tj+1

p−tj+1
|1−

tj+1
]
∣∣∣Ftj

]

=
∑

i,`∈{0,1}

i`Φ(i, `,1±
tj
, . . . ,1±

tj+2−$
)E[c+tj+1

p+tj+1
|1+

tj+1
= i]E[c−tj+1

p−tj+1
|1−

tj+1
= `]

× P[1+
tj+1

= i,1−
tj+1

= `|Ftj ]

= µ+cp µ
−
cpΦ(1,1,1

±
tj
, . . . ,1±

tj+2−$
)P[1+

tj+1
= 1,1−

tj+1
= 1|Ftj ]

= µ+cp µ
−
cp α

1,1
tj+1

πtj+1
(1,1),

where we used the definition πtj+1
(1,1) = P(1+

tj+1
= 1,1−

tj+1
= 1|Ftk) and that

α1,1
tj+1

=E[αtj+1
|Ftj ,1

+
tj+1

= 1,1−
tj+1

= 1]

=E[Φ(1+
tj+1

,1−
tj+1

,1±
tj
, . . . ,1±

tj+2−$
) |Ftj ,1

+
tj+1

= 1,1−
tj+1

= 1]

=E[Φ(1,1,1±
tj
, . . . ,1±

tj+2−$
) |Ftj ,1

+
tj+1

= 1,1−
tj+1

= 1] =Φ(1,1,1±
tj
, . . . ,1±

tj+2−$
).

Similarly, consider B := E[Stj+1
1
δ
tj+1

cδtj+1
pδtj+1

|Ftj ] for δ ∈ {+,−}. Then, by Assumption 2
and the martingale condition E[Stj+1

− Stj |Ftj ] = 0,

B =E

[
(Stj+1

− Stj )1
δ
tj+1

cδtj+1
pδtj+1

|Ftj

]
+ StjE

[
1
δ
tj+1

cδtj+1
pδtj+1

|Ftj

]

=E

[
Stj+1

− Stj |Ftj

]
E

[
1
δ
tj+1

cδtj+1
pδtj+1

|Ftj

]
+ StjE

[
1
δ
tj+1

cδtj+1
pδtj+1

|Ftj

]

= StjE

[
1
δ
tj+1

cδtj+1
pδtj+1

|Ftj

]
.

We then proceed as before:

B = StjE

[
E[1δ

tj+1
cδtj+1

pδtj+1
|Gtj+1

]|Ftj

]
= StjE

[
1
δ
tj+1

E[cδtj+1
pδtj+1

|1δ
tj+1

]|Ftj

]

= Stj

1∑

`=0

`E[cδtj+1
pδtj+1

|1δ
tj+1

= `]P[1δ
tj+1

= `|Ftj ] = Stjµ
δ
cpπ

δ
tj+1

.

After computing the conditional expectations therein and substituting Vtk in the left-hand
side of (A.2), we get the equation

αtjI
2
tj + StjItj + htjItj + gtj

= sup
L±

tj
∈Atj

[∑

δ=±

πδtj+1

{
(α1δ

tj+1
µδc2 − µδc)(L

δ
tj )

2 + α1δ
tj+1

(µδc2p2 − 2δµδcpItj )− δh1δtj+1
µδcp

(A.5)
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+ [µδcp + δh1δtj+1
µδc + α1δ

tj+1
(2δµδcItj − 2µδc2p)]L

δ
tj

}

+ 2α1,1
tj+1

πtj+1
(1,1)

(
µ+cpµ

−
c L

−
tj
+ µ+c µ

−
cpL

+
tj
− µ+c µ

−
c L

+
tj
L−
tj
− µ+cpµ

−
cp

)

+ α0
tj+1

I2tj + ItjStj + h0tj+1
Itj + g0tj+1

]
.

The expression inside the outer brackets on the right-hand side of the above equation is a
quadratic function in (L+

tj
,L−

tj
). Simple partial differentiation and some simplifications (see

(A.27) below) show that the unique stationary points of the quadratic functional are given by

L+,∗
tj

= (1)A+
tj
Itj +

(2)A+
tj
+ (3)A+

tj
, L−,∗

tj
=−(1)A−

tj
Itj −

(2)A−
tj
+ (3)A−

tj
,

where (1)A±
tj
, (2)A±

tj
, and (3)A±

tj
satisfy the relations given in (18) with the auxiliary quantities

ρ±tj , ψ
±
tj
, and γtj satisfying the relations given in (17). It remains to show that L+,∗

tj
and

L−,∗
tj

are in fact the global maxima points of the quadratic function inside the outer brackets
on the right-hand side of (A.5). This is deferred to Corollary 3. Substituting the values of
(L+,∗

tj
,L−,∗

tj
) above into (A.5) and equating the coefficients of I2tj , Itj , and the remaining terms

that do not depend on Itj or Stj , on both sides of (A.5), we obtain (19)–(21), which proves
parts (i) and (iii) of the theorem for k= j.

We now prove the assertion (b) stated at the beginning of the proof; i.e., we show that if
statement (ii) is true for k= j+1 and statements (i) and (iii) are true for k= j, then statement
(ii) is true for k = j (that is, αtj , htj , gtj ∈ H$

tj ). We show the details for αtj ∈ H$
tj (we can

similarly prove htj , gtj ∈H$
tj ). First, notice that by Assumption 1(iv), π±tj+1

, πtj+1
(1,1) ∈H$

tj .
Furthermore, by Assumption 1(iv) again and the representation (A.3), which follows from our
backward induction assumption αtj+1

∈H$
tj+1

, we can compute the variables α0
tj+1

, α1+
tj+1

, and

α1,1
tj+1

, defined as in (3), as follows:7

α0
tj+1

=
∑

i,`∈{0,1}

Φ(i, `,1±
tj
, . . . ,1±

tj+2−$
)P[1+

tj+1
= i,1−

tj+1
= `|Ftj ]

=
∑

i,`∈{0,1}

Φ(i, `,1±
tj
, . . . ,1±

tj+2−$
)P[1+

tj+1
= i,1−

tj+1
= `|H$

tj ],

α1+
tj+1

=
∑

`∈{0,1}

Φ(1, `,1±
tj
, . . . ,1±

tj+2−$
)P[1−

tj+1
= `|Ftj ,1

+
tj+1

= 1]

=
∑

`∈{0,1}

Φ(1, `,1±
tj
, . . . ,1±

tj+2−$
)
P[1+

tj+1
= 1,1−

tj+1
= `|H$

tj ]

P[1+
tj+1

= 1|H$
tj
]

,

α1,1
tj+1

=Φ(1,1,1±
tj
, . . . ,1±

tj+2−$
).

(A.6)

Therefore, it is now clear that α0
tj+1

, α1±
tj+1

, α1,1
tj+1

∈ H$
tj . Using an identical argument, we can

conclude that h0tj+1
, h1±tj+1

, h1,1tj+1
∈H$

tj . Then, since µ
±
cmpn are constants, we can easily see that

7Note that Assumption 1(iv) actually implies that P(1+
tk+1

= i,1−

tk+1
= j|Ftk

) = P(1+
tk+1

= i,1−

tk+1
= j|H$

tk
)

for all i, j and not only for i= j = 1.
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(1)A±
tj
, (2)A±

tj
, and (3)A±

tj
are H$

tj -measurable. From (19), we conclude that αtj is H
$
tj -measurable

random variables. Finally, we conclude the validity of the statement (ii) for k= j.

Proof of Lemma 2. Substituting the value of (1)A±
tk
, defined in (18), into the recursive (19),

we get that

αtk = α0
tk+1

+Nk/γtk(A.7)

with

Nk = (α1+
tk+1

µ+c π
+
tk+1

)2π−tk+1
(α1−

tk+1
µ−c2 − µ−c ) + (α1−

tk+1
µ−c π

−
tk+1

)2π+tk+1
(α1+

tk+1
µ+c2 − µ+c )

− 2α1+
tk+1

α1−
tk+1

π+tk+1
π−tk+1

πtk+1
(1,1)α1,1

tk+1
(µ+c µ

−
c )

2,

γtk = [πtk+1
(1,1)α1,1

tk+1
µ+c µ

−
c ]

2 − π+tk+1
π−tk+1

(α1+
tk+1

µ+c2 − µ+c )(α
1−
tk+1

µ−c2 − µ−c ).

(A.8)

Note that for k = N + 1, we have that αtN+1
= αT = −λ < 0 and thus αtN+1

< 0, as λ
is a positive constant. By backward induction, to prove the lemma it suffices to show that
Nk/γtk ∈ (0,−α0

tk+1
) whenever αtk+1

< 0. The remaining proof is then divided into three
smaller subparts: proving that, for k ∈ {0,1, . . . ,N}, (i) γtk < 0, (ii) Nk < 0, and (iii)
Nk/γtk <−α0

tk+1
.

(i) Clearly,

α1+
tk+1

π+tk+1
= α1,1

tk+1
πtk+1

(1,1) + α1,0
tk+1

(
π+tk+1

− πtk+1
(1,1)

)
,(A.9)

α1−
tk+1

π−tk+1
= α1,1

tk+1
πtk+1

(1,1) + α0,1
tk+1

(
π−tk+1

− πtk+1
(1,1)

)
.(A.10)

On the other hand, since by assumption αtk+1
< 0,

α1,1
tk+1

=E[αtk+1
|Ftk ,1

+
tk+1

= 1,1−
tk+1

= 1]≤ 0,

E[αtk+1
|Ftk ,1

+
tk+1

= 1,1−
tk+1

= 0]≤ 0, E[αtk+1
|Ftk ,1

+
tk+1

= 0,1−
tk+1

= 1]≤ 0,

πtk+1
(1,1) = P(1+

tk+1
= 1,1−

tk+1
= 1|Ftk)≤ P(1±

tk+1
= 1|Ftk) = π±tk+1

,

and, thus, by (A.9)–(A.10),

α1+
tk+1

π+tk+1
≤ α1,1

tk+1
πtk+1

(1,1)≤ 0, α1−
tk+1

π−tk+1
≤ α1,1

tk+1
πtk+1

(1,1)≤ 0.(A.11)

Since µ±c2 ≥ (µ±c )
2, these equations imply that

γtk ≤ π+tk+1
π−tk+1

α1+
tk+1

α1−
tk+1

(µ+c µ
−
c )

2 − π+tk+1
π−tk+1

(α1+
tk+1

µ+c2 − µ+c )(α
1−
tk+1

µ−c2 − µ−c )

≤ π+tk+1
π−tk+1

α1+
tk+1

α1−
tk+1

µ+c2µ
−
c2 − π+tk+1

π−tk+1
(α1+

tk+1
µ+c2 − µ+c )(α

1−
tk+1

µ−c2 − µ−c )

= π+tk+1
π−tk+1

[α1+
tk+1

µ+c2µ
−
c + α1−

tk+1
µ−c2µ

+
c − µ+c µ

−
c ]< 0,

(A.12)

where for the second and last inequalities we used that α1±
tk+1

= E[αtk+1
|Ftk ,1

±
tk+1

= 1]
≤ 0 since, by assumption, αtk+1

< 0.
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(ii) Let us first rearrange the terms in (A.8) as follows:

Nk = (α1+
tk+1

µ+c π
+
tk+1

)2π−tk+1
(α1−

tk+1
µ−c2 − µ−c ) + (α1−

tk+1
µ−c π

−
tk+1

)2π+tk+1
(α1+

tk+1
µ+c2 − µ+c )

− 2α1+
tk+1

α1−
tk+1

π+tk+1
π−tk+1

πtk+1
(1,1)α1,1

tk+1
(µ+c µ

−
c )

2

= α1+
tk+1

α1−
tk+1

π+tk+1
π−tk+1

(µ+c )
2[α1+

tk+1
π+tk+1

µ−c2 − α1,1
tk+1

πtk+1
(1,1)(µ−c )

2]

+ α1+
tk+1

α1−
tk+1

π+tk+1
π−tk+1

(µ−c )
2[α1−

tk+1
π−tk+1

µ+c2 − α1,1
tk+1

πtk+1
(1,1)(µ+c )

2]

− (α1+
tk+1

µ+c π
+
tk+1

)2π−tk+1
µ−c − (α1−

tk+1
µ−c π

−
tk+1

)2π+tk+1
µ+c .

(A.13)

Then, using once more the inequalities (A.11),

Nk ≤ α1+
tk+1

α1−
tk+1

π+tk+1
π−tk+1

(µ+c )
2πtk+1

(1,1)α1,1
tk+1

[µ−c2 − (µ−c )
2]

+ α1+
tk+1

α1−
tk+1

π+tk+1
π−tk+1

(µ+c )
2πtk+1

(1,1)α1,1
tk+1

[µ+c2 − (µ+c )
2]

− (α1+
tk+1

µ+c π
+
tk+1

)2π−tk+1
µ−c − (α1−

tk+1
µ−c π

−
tk+1

)2π+tk+1
µ+c

≤−(α1+
tk+1

µ+c π
+
tk+1

)2π−tk+1
µ−c − (α1−

tk+1
µ−c π

−
tk+1

)2π+tk+1
µ+c < 0,

(A.14)

where in the second inequality we used once more that max{α1,1
tk+1

, α+1
tk+1

, α−1
tk+1

} ≤ 0.

(iii) Note that, since we already proved that γtk < 0, proving that Nk/γtk < −α0
tk+1

a.s. whenever αtk+1
< 0 is equivalent to showing that α0

tk+1
γtk + Nk > 0 a.s. when-

ever αtk+1
< 0. Define

ϕ(x̂, ŷ) := α0
tk+1

(
[πtk+1

(1,1)α1,1
tk+1

µ+c µ
−
c ]

2 − π+tk+1
π−tk+1

(α1+
tk+1

x̂− µ+c )(α
1−
tk+1

ŷ− µ−c )
)

+ (α1+
tk+1

µ+c π
+
tk+1

)2π−tk+1
(α1−

tk+1
ŷ− µ−c ) + (α1−

tk+1
µ−c π

−
tk+1

)2π+tk+1
(α1+

tk+1
x̂− µ+c )

− 2α1+
tk+1

α1−
tk+1

π+tk+1
π−tk+1

πtk+1
(1,1)α1,1

tk+1
(µ+c µ

−
c )

2.

Notice that ϕ(µ+c2 , µ
−
c2) = α0

tk+1
γtk +Nk. Taking partial derivatives,

∂ϕ

∂x̂
=−α0

tk+1
π+tk+1

π−tk+1

[
α1+
tk+1

α1−
tk+1

ŷ− α1+
tk+1

µ−c

]
+
(
α1−
tk+1

µ−c π
−
tk+1

)2
π+tk+1

α1+
tk+1

= α1+
tk+1

α1−
tk+1

π+tk+1
π−tk+1

[
α1−
tk+1

π−tk+1
(µ−c )

2 − α0
tk+1

ŷ

]
+ α0

tk+1
π+tk+1

π−tk+1
α1+
tk+1

µ−c ,

(A.15)

∂ϕ

∂ŷ
=−α0

tk+1
π+tk+1

π−tk+1

[
α1+
tk+1

α1−
tk+1

x̂− α1−
tk+1

µ+c

]
+
(
α1+
tk+1

µ+c π
+
tk+1

)2
π−tk+1

α1−
tk+1

= α1+
tk+1

α1−
tk+1

π+tk+1
π−tk+1

[
α1+
tk+1

π+tk+1
(µ+c )

2 − α0
tk+1

x̂

]
+ α0

tk+1
π+tk+1

π−tk+1
α1−
tk+1

µ+c .

(A.16)

Recall that by assumption αtk+1
< 0 a.s. and thus,

α0
tk+1

=E[αtk+1
|Ftk ] =E

[
E[αtk+1

|Ftk ,1
±
tk+1

]

∣∣∣∣Ftk

]

= α1±
tk+1

π±tk+1
+E[αtk+1

|Ftk ,1
±
tk+1

= 0](1− π±tk+1
)≤ α1±

tk+1
π±tk+1

.(A.17)
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Using the last inequality in (A.15), we obtain that

∂ϕ

∂x̂
≥ α1+

tk+1
α1−
tk+1

π+tk+1
π−tk+1

α0
tk+1

[(µ−c )
2 − ŷ] + α0

tk+1
π+tk+1

π−tk+1
α1+
tk+1

µ−c .

Therefore, using that (µ−c )
2 ≤ µ−c2 and max{α0

tk+1
, α1+

tk+1
, α1−

tk+1
} ≤ 0, we have

∂ϕ

∂x̂
( • , µ−c2)≥ α1+

tk+1
α1−
tk+1

π+tk+1
π−tk+1

α0
tk+1

[(µ−c )
2 − µ−c2 ] + α0

tk+1
π+tk+1

π−tk+1
α1+
tk+1

µ−c

≥ α0
tk+1

π+tk+1
π−tk+1

α1+
tk+1

µ−c ≥ 0,

(A.18)

which implies that ϕ( • , µ−c2) is a nondecreasing function of the first parameter. Thus,

ϕ((µ+c )
2, µ−c2)≤ϕ(µ+c2 , µ

−
c2) = α0

tk+1
γtk +Nk.(A.19)

Using (A.16), (A.17), and max{α0
tk+1

, α1+
tk+1

, α1−
tk+1

} ≤ 0,

∂ϕ

∂ŷ
((µ+c )

2, • ) = α1+
tk+1

α1−
tk+1

π+tk+1
π−tk+1

[α1+
tk+1

π+tk+1
(µ+c )

2

− α0
tk+1

(µ+c )
2] + α0

tk+1
π+tk+1

π−tk+1
α1−
tk+1

µ+c

≥ α0
tk+1

π+tk+1
π−tk+1

α1−
tk+1

µ+c ≥ 0,

which shows that ϕ((µ+c )
2, • ) is a nondecreasing function in the second argument.

Using that (µ−c )
2 ≤ µ−c2 and (A.19), we finally get that

ϕ((µ+c )
2, (µ−c )

2)≤ϕ((µ+c )
2, µ−c2)≤ α0

tk+1
γtk +Nk.(A.20)

At this point, we only need to prove that 0 ≤ ϕ((µ+c )
2, (µ−c )

2). Evaluating, we have
that

ϕ((µ+c )
2, (µ−c )

2)

(A.21)

= µ+c µ
−
c

{
α0
tk+1

[
(πtk+1

(1,1)α1,1
tk+1

)2µ+c µ
−
c − π+tk+1

π−tk+1
(α1+

tk+1
µ+c − 1)(α1−

tk+1
µ−c − 1)

]

+ µ+c (α
1+
tk+1

π+tk+1
)2π−tk+1

(α1−
tk+1

µ−c − 1) + µ−c (α
1−
tk+1

π−tk+1
)2π+tk+1

(α1+
tk+1

µ+c − 1)

− 2α1+
tk+1

α1−
tk+1

π+tk+1
π−tk+1

πtk+1
(1,1)α1,1

tk+1
µ+c µ

−
c

}
:= µ+c µ

−
c `(µ

+
c ),

where

`(ẑ) := α0
tk+1

[
ẑµ−c (πtk+1

(1,1)α1,1
tk+1

)2 − π+tk+1
π−tk+1

(α1+
tk+1

ẑ− 1)(α1−
tk+1

µ−c − 1)
]

+ ẑ(α1+
tk+1

π+tk+1
)2π−tk+1

(α1−
tk+1

µ−c − 1) + µ−c (α
1−
tk+1

π−tk+1
)2π+tk+1

(α1+
tk+1

ẑ− 1)

− 2 ẑµ−c α
1+
tk+1

α1−
tk+1

π+tk+1
π−tk+1

πtk+1
(1,1)α1,1

tk+1
.

Due to (A.17), we have
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`(0) = π+tk+1
π−tk+1

α1−
tk+1

µ−c (α
0
tk+1

− α1−
tk+1

π−tk+1
)− α0

tk+1
π+tk+1

π−tk+1

≥−α0
tk+1

π+tk+1
π−tk+1

> 0.(A.22)

We shall prove that d`/dẑ≥ 0, which will imply that `(µ+c )≥ `(0)> 0 and, finally, that
ϕ((µ+c )

2, (µ−c )
2) > 0 due to (A.21). Finally, by using the previous equation together

with (A.20) we get that 0 < ϕ((µ+c )
2, (µ−c )

2) ≤ α0
tk+1

γtk + Nk and will conclude the
proof.
It remains to show that d`/dẑ≥ 0. Taking the derivative with respect to ẑ,

d`

dẑ
= α0

tk+1
[(πtk+1

(1,1)α1,1
tk+1

)2µ−c − π+tk+1
π−tk+1

α1+
tk+1

(α1−
tk+1

µ−c − 1)]

+ (α1+
tk+1

π+tk+1
)2π−tk+1

(α1−
tk+1

µ−c − 1) + µ−c (α
1−
tk+1

π−tk+1
)2π+tk+1

α1+
tk+1

− 2α1+
tk+1

α1−
tk+1

π+tk+1
π−tk+1

πtk+1
(1,1)α1,1

tk+1
µ−c

= π+tk+1
π−tk+1

α1+
tk+1

(α0
tk+1

− α1+
tk+1

π+tk+1
) + µ−c Ψ(α1,1

tk+1
πtk+1

(1,1)),(A.23)

where

Ψ(ẑ) := α0
tk+1

ẑ
2 − 2ẑα1+

tk+1
α1−
tk+1

π+tk+1
π−tk+1

+ (α1+
tk+1

π+tk+1
)2α1−

tk+1
π−tk+1

+ (α1−
tk+1

π−tk+1
)2α1+

tk+1
π+tk+1

− α0
tk+1

α1+
tk+1

α1−
tk+1

π+tk+1
π−tk+1

.
(A.24)

Due to (A.17), the first term of (A.23) is nonegative. It is also easy to see that
the quadratic function Ψ attains its minimum value over any interval [a, b] at the
endpoints since α0

tk+1
≤ 0. On the other hand, observe that αtk+1

(1+
tk+1

+ 1
−
tk+1

− 1)≥

αtk+1
1
+
tk+1

1
−
tk+1

. Then, by taking conditional expectation with respect to Ftk and using
(A.11), we obtain the bounds

α1+
tk+1

π+tk+1
∨ α1−

tk+1
π−tk+1

≤ α1,1
tk+1

πtk+1
(1,1)≤ (α1+

tk+1
π+tk+1

+ α1−
tk+1

π−tk+1
− α0

tk+1
)∧ 0.

(A.25)

Therefore, to show that (A.23) is nonnegative, it suffices to check that

(1) Ψ(α1+
tk+1

π+tk+1
∨ α1−

tk+1
π−tk+1

)≥ 0, (2) Ψ((α1+
tk+1

π+tk+1
+ α1−

tk+1
π−tk+1

− α0
tk+1

)∧ 0)≥ 0.

To show (1), we consider the case (a) α1+
tk+1

π+tk+1
≥ α1−

tk+1
π−tk+1

or (b) α1+
tk+1

π+tk+1
≤

α1−
tk+1

π−tk+1
. To show (2) above, we consider the case (c) (α1+

tk+1
π+tk+1

+α1−
tk+1

π−tk+1
−α0

tk+1
)≥

0 or (d) (α1+
tk+1

π+tk+1
+ α1−

tk+1
π−tk+1

− α0
tk+1

)≤ 0.

Suppose that (a) α1+
tk+1

π+tk+1
≥ α1−

tk+1
π−tk+1

. Then, in light of (A.17),

Ψ(α1+
tk+1

π+tk+1
) = α1+

tk+1
π+tk+1

[
(α1−

tk+1
π−tk+1

)2 − (α1−
tk+1

π−tk+1
)(α1+

tk+1
π+tk+1

)

+ α0
tk+1

(α1+
tk+1

π+tk+1
− α1−

tk+1
π−tk+1

)
]

= α1+
tk+1

π+tk+1
(α1−

tk+1
π−tk+1

− α1+
tk+1

π+tk+1
)(α1−

tk+1
π−tk+1

− α0
tk+1

)≥ 0.

Similarly, (b) if α1−
tk+1

π−tk+1
≥ α1+

tk+1
π+tk+1

, then Ψ(α1−
tk+1

π−tk+1
)≥ 0.
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Now, suppose that (c) α1+
tk+1

π+tk+1
+ α1−

tk+1
π−tk+1

− α0
tk+1

≥ 0. Then,

Ψ(0) = α1+
tk+1

α1−
tk+1

π+tk+1
π−tk+1

(α1+
tk+1

π+tk+1
+ α1−

tk+1
π−tk+1

− α0
tk+1

)≥ 0.

The only case left is when (d) α1+
tk+1

π+tk+1
+α1−

tk+1
π−tk+1

−α0
tk+1

≤ 0. Together with (A.17),
we will have

α0
tk+1

≤ α1+
tk+1

π+tk+1
≤ α0

tk+1
− α1−

tk+1
π−tk+1

,(A.26)

and, by rearranging terms,

Ψ(α1+
tk+1

π+tk+1
+ α1−

tk+1
π−tk+1

− α0
tk+1

)

= (α0
tk+1

− α1−
tk+1

π−tk+1
)(α1+

tk+1
π+tk+1

)2 + α0
tk+1

(α0
tk+1

− α1−
tk+1

π−tk+1
)2

− (2α0
tk+1

− α1−
tk+1

π−tk+1
)(α0

tk+1
− α1−

tk+1
π−tk+1

)(α1+
tk+1

π+tk+1
)

=: Ξ(α1+
tk+1

π+tk+1
),

where

Ξ(ẑ) = (α0
tk+1

− α1−
tk+1

π−tk+1
)ẑ2 − (2α0

tk+1
− α1−

tk+1
π−tk+1

)(α0
tk+1

− α1−
tk+1

π−tk+1
)ẑ

+ α0
tk+1

(α0
tk+1

− α1−
tk+1

π−tk+1
)2

is a quadratic function, opening downward due to (A.17). Furthermore, at the lower
and upper bounds of (A.26), we have Ξ(α0

tk+1
) = Ξ(α0

tk+1
− α1−

tk+1
π−tk+1

) = 0. Therefore,

Ξ(ẑ)≥ 0 for all ẑ∈ [α0
tk+1

, (α0
tk+1

−α1−
tk+1

π−tk+1
)]. Finally, we conclude that Ψ(α1+

tk+1
π+tk+1

+

α1−
tk+1

π−tk+1
− α0

tk+1
) = Ξ(α1+

tk+1
π+tk+1

)≥ 0 in the case (iv) as desired.

Proof of Corollary 3. Refer to the proof of Theorem 1. Denote the right-hand side of (A.5)
as supL±

tk

f(L+
tk
,L−

tk
). It is easy to observe that f(L+

tk
,L−

tk
) is a quadratic function of L+

tk
and

L−
tk
. Setting the partial derivatives with respect to L+

tk
and L−

tk
equal to 0, we have that

0 =
∂f

∂L+
tk

= 2π+tk+1
(α1+

tk+1
µ+c2 − µ+c )L

+
tk
+ π+tk+1

[µ+cp + h1+tk+1
µ+c + α1+

tk+1
(2µ+c Itk − 2µ+c2p)]

− 2α1,1
tk+1

πtk+1
(1,1)µ+c µ

−
c L

−
tk
+ 2α1,1

tk+1
πtk+1

(1,1)µ+c µ
−
cp,

0 =
∂f

∂L−
tk

= 2π−tk+1
(α1−

tk+1
µ−c2 − µ−c )L

−
tk
+ π−tk+1

[µ−cp − h1−tk+1
µ−c + α1−

tk+1
(−2µ−c Itk − 2µ−c2p)]

− 2α1,1
tk+1

πtk+1
(1,1)µ+c µ

−
c L

+
tk
+ 2α1,1

tk+1
πtk+1

(1,1)µ−c µ
+
cp.

(A.27)

Solving for L+
tk

and L−
tk
, we get that the unique stationary points L+,∗

tk
and L−,∗

tk
are given by

L+,∗
tk

= (1)A+
tk
Itk +

(2)A+
tk
+ (3)A+

tk
,

L−,∗
tk

=−(1)A−
tk
Itk −

(2)A−
tk
+ (3)A−

tk
,

(A.28)

as pointed out in (22). To prove that the stationary point (L+,∗
tk
,L−,∗

tk
) is the maximum of f ,

we apply the second derivative test. Indeed,
(

∂2f

∂
(
L±
tk

)2

)
= 2π±tk+1

(α1±
tk+1

µ±c2 − µ±c )< 0,
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because, due to Lemma 2, we have αtk < 0 and, thus, α1±
tk

= E[αtk |Ftk−1
,1±

tk
= 1] ≤ 0. It

remains to show that

Bk =

(
∂2f

∂
(
L+
tk

)2

)(
∂2f

∂
(
L−
tk

)2

)
−

(
∂2f

∂L+
tk
∂L−

tk

)2

= 4π+tk+1
π−tk+1

(α1+
tk+1

µ+c2 − µ+c )(α
1−
tk+1

µ−c2 − µ−c )− 4[πtk+1
(1,1)α1,1

tk+1
µ+c µ

−
c ]

2 > 0.(A.29)

However, Bk above is just −4γtk , with γtk defined as in (A.8), and it was shown in the
proof of Lemma 2 that γtk < 0 (see (A.12)). The proof is now complete.

Proof of Theorem 4. Throughout, Wti , Iti , for i = k, . . . ,N + 1, are the cash holding and
inventory processes resulting from adopting an admissible placement strategy L±

ti
, i= k, . . . ,N .

Similarly, for i = k + 1, . . . ,N + 1, W ∗
ti , I

∗
ti are the resulting cash holding and inventory

processes, starting from time tk at the initial states Wtk , Itk , when setting L±
ti
= L±,∗

ti
. First

note that, for an arbitrary admissible placement strategy L±
ti
, {v(ti, Sti ,Wti , Iti)}i=k,...,N+1 is

a supermartingale since

E[v(ti+1, Sti+1
,Wti+1

, Iti+1
)|Fti ]≤ sup

L̂±
ti

E[v(ti+1, Sti+1
, Ŵti+1

, Îti+1
)|Fti ]

= v(ti, Sti ,Wti , Iti),(A.30)

where Ŵti+1
and Îti+1

are the time-ti+1 cash holding and inventory for an arbitrary admissible

placement strategy L̂±
ti

when Ŵti = Wti and Îti = Iti . The equation in (A.30) follows from
(16) and Corollary 3. That is, αti , hti , gti are picked in order for (A.30) to hold true.

From the supermartingale condition, we then have that

v(tk, Stk ,Wtk , Itk)≥ sup
(L±

ti
)k≤i≤N

E[v(T,ST ,WT , IT )|Ftk ]

= sup
(L±

ti
)k≤i≤N

E[WT + ST IT − λI2T |Ftk ]

= Vtk .

(A.31)

The first equality in (A.31) holds because v(T,ST ,WT , IT ) =WT +ST IT −λI
2
T by the terminal

conditions αT =−λ, gT = 0, hT = 0.
Next we prove that v(tk, Stk ,Wtk , Itk)≤ Vtk . To this end, recall from (16) and Corollary 3

that L±,∗
ti

are chosen so that

v(ti, Sti ,W
∗
ti , I

∗
ti) =E[v(ti+1, Sti+1

,W ∗
ti+1

, I∗ti+1
)|Fti ]

for all i= k, . . . ,N . Hence, recalling that we set W ∗
tk =Wtk and I∗tk = Itk , by induction,

v(tk, Stk ,Wtk , Itk) = v(tk, Stk ,W
∗
tk , I

∗
tk) =E[v(tN+1, StN+1

,W ∗
tN+1

, I∗tN+1
)|Ftk ]

=E[W ∗
T + ST I

∗
T − λ(I∗T )

2|Ftk ].

It also trivially follows that

E[W ∗
T + ST I

∗
T − λ(I∗T )

2|Ftk ]≤ sup
(L±

ti
)k≤i≤N

E[WT + ST IT − λI2T |Ftk ] = Vtk .

We then conclude that v(tk, Stk ,Wtk , Itk) ≤ Vtk , which combined with (A.31) implies that
v(tk, Stk ,Wtk , Itk) = Vtk .
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A.2. Proofs of section 2.3: Optimal strategy for a general midprice.

Proof of Theorem 5. For simplicity, we write ρ±k = ρ±tk and ψ±
k =ψ±

tk
. For future reference,

define h̃0tk+1
, h̃1±tk+1

, and h̃1,1tk+1
using the notation (3). Let us start by writing the optimization

problem (15) in terms of the ansatz (28):

Wtk + αtkI
2
tk + StkItk + h̃tkItk = sup

L±
tk
∈Atk

E[Wtk+1
+ αtk+1

I2tk+1
+ Stk+1

Itk+1
+ h̃tk+1

Itk+1
|Ftk ].

(A.32)

We will prove the result by backward induction. Consider the following statements:
(i) For δ ∈ {+,−}, we have

E[h̃tk+1
1
δ
tk+1

cδtk+1
|Ftk ] = h̃1δtk+1

πδtk+1
µδc,(A.33)

E[h̃tk+1
1
δ
tk+1

cδtk+1
pδtk+1

|Ftk ] = h̃1δtk+1
πδtk+1

µδcp.(A.34)

(ii) The optimal controls L̃±,∗
tk

that solve (A.32) under dynamics (11) with terminal con-

ditions αtN+1
=−λ and h̃tN+1

= 0 are given by

L̃+,∗
tk

= (1)A+
tk
Itk +

(2)Ã+
tk
+ (3)Ã+

tk
, L̃−,∗

tk
=−(1)A−

tk
Itk −

(2)Ã−
tk
+ (3)Ã−

tk
,(A.35)

where

(2)Ã±
tk
=
h̃1±tk+1

ρ±k − h̃1∓tk+1
ψ±
k

2γtk
, (3)Ã±

tk
= (3)A±

tk
±
ρ±k −ψ±

k

2γtk
∆tk

tk
,(A.36)

whereas (1)A±
tk

and (3)A±
tk

are the same as in Theorem 1.

(iii) The random variables h̃tk satisfy the iterative equation

h̃tk = h̃0tk+1
+
∑

δ=±

πδtk+1

{
2
[
α1δ
tk+1

µδc2 − µδc

][
(1)Aδ

tk(δ
(3)Ãδ

tk +
(2)Ãδ

tk)
]

+ 2α1δ
tk+1

µδc(δ
(3)Ãδ

tk +
(2)Ãδ

tk)− 2δα1δ
tk+1

µδcp + δ(1)Aδ
tk

(
µδcp + δh̃1δtk+1

µδc − 2α1δ
tk+1

µδc2p

)}

− 2α1,1
tk+1

πtk+1
(1,1)µ+c µ

−
c

[
(1)A+

tk

(
(3)Ã−

tk
− (2)Ã−

tk

)
− (1)A−

tk

(
(2)Ã+

tk
+ (3)Ã+

tk

)

+ (1)A−
tk

µ+cp

µ+c
− (1)A+

tk

µ−cp

µ−c

]
+∆tk

tk

(
(1)A+

tk
π+tk+1

µ+c + (1)A−
tk
π−tk+1

µ−c + 1
)
,

(A.37)

while

g̃tk = g̃ 0
tk+1

+
∑

δ=±

πδtk+1

{(
α1δ
tk+1

µδc2 − µδc

)(
(3)Ãδ

tk + δ (2)Ãδ
tk

)2
+ α1δ

tk+1
µδc2p2 − δ h̃tk+1

µδcp

+
(
µδcp + δh̃tk+1

µδc − 2α1δ
tk+1

µδc2p

)(
(3)Ãδ

tk + (δ (2)Ãδ
tk)
)}

(A.38)
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− 2α1,1
tk+1

πtk+1
(1,1)µ+c µ

−
c

[(
(2)Ã+

tk
+ (3)Ã+

tk

)(
(3)Ã−

tk
− (2)Ã−

tk

)

−
µ+cp

µ+c

(
(3)Ã−

tk
− (2)Ã−

tk

)
−
µ−cp

µ−c

(
(2)Ã+

tk
+ (3)Ã+

tk

)
+
µ+cpµ

−
cp

µ−c µ
+
c

]

+ ∆tk
tk

[(
(3)Ãδ

tk +
(2)Ãδ

tk

)
π+tk+1

µ+c −
(

(3)Ãδ
tk −

(2)Ãδ
tk

)
π−tk+1

µ−c − π+tk+1
µ+cp + π−tk+1

µ−cp

]
.

(iv) Equation (29) holds true (at time tk) and the random variables ρ±k and ψ±
k , as defined

in (17), are Ftk-measurable while the random variables ξk+1 given by (30) are Ftk+1
-

measurable.
To start, note that the statement (i) is immediate for k=N due to the terminal condition

on h̃. The strategy that we will employ to finish the proof is the following: we will show that
if statement (i) holds true for k= j, j + 1, . . . ,N , then statements (ii), (iii), and (iv) will hold
true for k = j. In the final step, we prove that the statement (i) holds true for k = j − 1 if
(i)–(iv) hold for k= j.

Let us start with the first step described in the previous paragraph. Assume that statement
(i) is true for k= j, j+1, . . . ,N . By substituting the values ofWtj+1

and Itj+1
given by (11)–(12)

into the optimization problem (A.32) with k= j we get

Vtj = sup
L±

tj
∈Atj

E

{∑

δ=±

1
δ
tj+1

[− cδtj+1
(Lδ

tj )
2 + (cδtj+1

pδtj+1
− δcδtj+1

Stj )L
δ
tj + δcδtj+1

pδtj+1
Stj ]

+ αtj+1

{
I2tj +

∑

δ=±

1
δ
tj+1

[
(cδtj+1

)2(Lδ
tj )

2 + (2δItjc
δ
tj+1

− 2(cδtj+1
)2pδtj+1

)Lδ
tj

+ (cδtj+1
pδtj+1

)2 − 2δItjc
δ
tj+1

pδtj+1

]

+ 21+
tj+1

1
−
tj+1

c+tj+1
c−tj+1

(−L+
tj
L−
tj
+ p+tj+1

L−
tj
+ p−tj+1

L+
tj
− p+tj+1

p−tj+1
)

}

+ Stj+1

[
Itj +

∑

δ=±

1
δ
tj+1

(−δcδtj+1
pδtj+1

+ δcδtj+1
Lδ
tj )

]

+ h̃tj+1
Itj +

∑

δ=±

1
δ
tj+1

(−δh̃tj+1
cδtj+1

pδtj+1
+ δh̃tj+1

cδtj+1
Lδ
tj ) + g̃tj+1

∣∣∣∣∣Ftj

}
.

(A.39)

Computing the conditional expectations on the right-hand side using statement (i) and the
techniques used in the proof of Theorem 1, we get that

αtjI
2
tj + StjItj + h̃tjItj + g̃tj

= sup
L±

tj
∈Atj

[∑

δ=±

πδtj+1

{
(α1δ

tj+1
µδc2 − µδc)(L

δ
tj )

2

+ [µδcp + δµδc(h̃
1δ
tj+1

+∆
tj
tj
) + α1δ

tj+1
(2δµδcItj − 2µδc2p)]L

δ
tj

(A.40)
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+ α1δ
tj+1

(µδc2p2 − 2δµδcpItj )− δµδcp(h̃
1δ
tj+1

+∆
tj
tj
)

}

+ 2α1,1
tj+1

πtj+1
(1,1)

(
µ+cpµ

−
c L

−
tj
+ µ+c µ

−
cpL

+
tj
− µ+c µ

−
c L

+
tj
L−
tj
− µ+cpµ

−
cp

)

+ α0
tj+1

I2tj + ItjStj + h̃0tj+1
Itj +∆

tj
tj
Itj + g̃ 0

tj+1

]
.

Then, since the function of the right-hand side is a quadratic function of the controls L±
tj
,

it can be shown, as in the proof Theorem 1, that the optimal controls are the ones given in
statement (ii) with k = j. Furthermore, after plugging in the optimal controls and equating
the coefficients of Itj on both sides and the independent terms on both sides, we obtain
statement (iii).

To obtain statement (iv), notice that by plugging the expression for (2)A±
tj
, given by (18),

into (20), we can rewrite htj as

htj =E(htj+1
ξj+1|Ftj ) +Zj

=E


htN+1

N∏

u=j

ξu+1|Ftk


+

N∑

u=j

E


Zu

u∏

i=j+1

ξi|Ftj


 ,(A.41)

where {Zk}
N
k=1 is a collection of H$

tk-measurable random variables. In the same fashion, by

plugging the quantities defined in (A.36) into (A.37), we can rewrite h̃tj as

h̃tj =E[(htj+1
+∆

tj
tj
)ξj+1|Ftj ] +Zj = htu +

N∑

u=j

∆
tj
tu
E




u+1∏

i=j+1

ξi|Ftj


 .(A.42)

Next, by substituting the value of h̃tj in (A.42) into the term (2)Ã±
tj
, as defined in (A.36), and

then plugging this equivalent formula along with (3)Ã±
tu

as given by (A.36) into (A.35), we
obtain (29). To verify the measurability of ρ±j and ψ±

j , notice that by definition (see (8)–

(6)), the random variables π±tj+1
, πtj+1

(1,1) and µ±cmpn are Fj-measurable. Also, by definition

(see (3)) the random variables {α0
tj+1

},{α1±
tj+1

}, and {α1,1
tj+1

} are also Ftj -measurable. All of

this implies that {ρ±j } and {ψ±
j } are Ftj -measurable. However, due to the presence of the

random variables 1
+
tj+1

,1−
tj+1

, the random variables ξj+1 cannot be Ftj -measurable but they
are certainly Ftj+1

-measurable.
Finally, all that is left is to prove that if statements (i)–(iv) hold true for k = j + 1, j +

2, . . . ,N , then statement (i) holds true for k = j. Indeed, since (A.33) and (A.34) hold for
k= j + 1, . . . ,N , then (A.42) holds for k= j + 1. That is,

h̃tj+1
= htj+1

+

N∑

i=j+1

∆
tj+1

ti
E




i+1∏

u=j+2

ξu|Ftj+1


 .

Multiplying both sides by 1
δ
tj+1

cδtj+1
and taking the conditional expectation with respect to

Ftj , we have that

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
o
w

n
lo

ad
ed

 0
7
/0

9
/2

5
 t

o
 1

5
7
.2

7
.2

0
9
.1

0
3
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y
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E[h̃tj+1
1
δ
tj+1

cδtj+1
|Ftj ] =E






htj+1

+

N∑

i=j+1

∆
tj+1

ti
E




i+1∏

u=j+2

ξu

∣∣∣∣∣∣
Ftj+1




1

δ
tj+1

cδtj+1

∣∣∣∣∣Ftj





= h1δtj+1
πδtj+1

µδc + πδtj+1
µδc

N∑

i=j+1

∆
tj
ti
E

[
E

(
i+1∏

u=j+2

ξu

∣∣∣∣Ftj+1

)∣∣∣∣∣Ftj ,1
δ
tj+1

= 1

]

= h̃1δtj+1
πδtj+1

µδc,

where we used that E[
∏i+1

u=j+2 ξu|Ftj+1
] is anH$

tj+1
-measurable random variable. Thus, we have

that (A.33) holds for k = j. Similarly we can prove (A.34) holds for k = j, which concludes
the proof.

A.3. Proofs of section 2.4: Admissibility of the optimal strategy.

Proof of Proposition 6. Let us define the numerators of (1)A+
tk

and (2)A+
tk

in (18) as β±tk
and η±tk , respectively. First, we will prove the result when the price process is a martingale.

In this case, all we need to show is that L+,∗
tk

+ L−,∗
tk

= ((1)A+
tk
− (1)A−

tk
)Itk + ((2)A+

tk
− (2)A−

tk
) +

((3)A+
tk
+ (3)A−

tk
)> 0. First we prove that, under condition 2 (equation (34)) and condition 4 of

Proposition 6, α1+
tk+1

= α1−
tk+1

. Indeed, by (A.9) and (A.10),

α1+
tk+1

= α1,1
tk+1

πtk+1
(1,1)

π+tk+1

+E[αtk+1
|Ftk ,1

+
tk+1

= 1,1−
tk+1

= 0]

(
1−

πtk+1
(1,1)

π+tk+1

)
,

α1−
tk+1

= α1,1
tk+1

πtk+1
(1,1)

π−tk+1

+E[αtk+1
|Ftk ,1

+
tk+1

= 0,1−
tk+1

= 1]

(
1−

πtk+1
(1,1)

π−tk+1

)
.

Now, recall that αtk+1
is H$

tk+1
-measurable (see Theorem 1), and, by assumption, αtk+1

de-

pends on 1
+
tk+1

and 1
−
tk+1

only through 1
+
tk+1

+ 1
−
tk+1

. This means that αtk+1
= Φ(1+

tk+1
+

1
−
tk+1

,1±
tk
, . . . ,1±

tk+2−$
) for some function Φ. It follows that

E[αtk+1
|Ftk ,1

+
tk+1

= 1,1−
tk+1

= 0] =Φ(1 + 0,1±
tk
, . . . ,1±

tk+2−$
) =E[αtk+1

|Ftk ,1
+
tk+1

= 0,1−
tk+1

= 1].

Since π+tk+1
= π−tk+1

, we then conclude that α1+
tk+1

= α1−
tk+1

. By doing the same computations as
in (A.9), we can obtain the analogous relations to (A.9) and (A.10) for htk+1

and these can be
used to show that h1+tk = h1−tk in the same way as above.

Let α1
tk+1

:= α1±
tk+1

and h1tk+1
:= h1±tk+1

. Since π+tk+1
= π−tk+1

, it follows that

β+tk − β−tk = π+tk+1
π−tk+1

(α1
tk+1

)2(µ+c µ
−
c2 − µ−c µ

+
c2)

− α1
tk+1

πtk+1
(1,1)α1,1

tk+1
µ−c µ

+
c (π

−
tk+1

µ−c − π+tk+1
µ+c ) = 0,

η+tk − η−tk = π+tk+1
π−tk+1

α1
tk+1

h1tk+1
(µ+c µ

−
c2 − µ−c µ

+
c2)

− h1tk+1
πtk+1

(1,1)α1,1
tk+1

µ−c µ
+
c (π

−
tk+1

µ−c − π+tk+1
µ+c ) = 0,

implying that (1)A+
tk
− (1)A−

tk
= 0 and (2)A+

tk
− (2)A−

tk
= 0. Thus, it suffices to show that (3)A+

tk
+

(3)A−
tk
> 0. By assumption 4 of Proposition 6, µ±cp = µ±c µ

±
p and µ±c2p = µ±c2µ

±
p and, thus, we can

write (3)A+
tk
+ (3)A−

tk
as (3)A+

tk
+ (3)A−

tk
= 1

2γtk

(µ+p Γ
+(µ+c2 , µ

−
c2) + µ−p Γ

−(µ+c2 , µ
−
c2)), where
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Γ+(x,y) = π+tk+1
π−tk+1

(α1
tk+1

y− µ−c )(µ
+
c − 2α1

tk+1
x)

+ 2[α1,1
tk+1

πtk+1
(1,1)µ+c µ

−
c ]

2 − π+tk+1
πtk+1

(1,1)α1,1
tk+1

(µ+c )
2µ−c ,

Γ−(x,y) = π+tk+1
π−tk+1

(α1
tk+1

x− µ+c )(µ
−
c − 2α1

tk+1
y)

+ 2[α1,1
tk+1

πtk+1
(1,1)µ+c µ

−
c ]

2 − π−tk+1
πtk+1

(1,1)α1,1
tk+1

(µ−c )
2µ+c .

Recall from (A.12) that γtk < 0 and, thus, it remains to show that the numerator N((3)A+
tk
+

(3)A−
tk
) = µ+p Γ

+(µ+c2 , µ
−
c2) + µ−p Γ

−(µ+c2 , µ
−
c2) is also negative. Since Γ+ is a linear function of y,

µ−c2 ≥ (µ−c )
2 and, by Lemma 2, α1

tk+1 < 0, we have that

∂

∂y
Γ+(x,y)

∣∣∣∣
x=µ+

c2

= π+tk+1
π−tk+1

α1
tk+1

(µ+c − 2α1
tk+1

µ+c2)< 0.

From here, it follows that for every x∈R, Γ+(x, µ−c2)≤ Γ+(x, (µ−c )
2). Similarly,

∂

∂x
Γ+(x, (µ−c )

2) =−2α1
tk+1

π+tk+1
π−tk+1

[α1
tk+1

(µ−c )
2 − µ−c ]< 0,

implying that Γ+(µ+c2 , µ
−
c2)≤ Γ+((µ+c )

2, (µ−c )
2). Note

Γ+
(
(µ+c )

2, (µ−c )
2
)
= µ+c µ

−
c

{
2
[
(α1,1

tk+1
πtk+1

(1,1))2 − (α1
tk+1

)2π+tk+1
π−tk+1︸ ︷︷ ︸

(I)

]
µ+c µ

−
c

+ 2α1
tk+1

π+tk+1
π−tk+1

µ+c︸ ︷︷ ︸
(II)

+ π+tk+1

[
α1
tk+1

π−tk+1
µ−c − α1,1

tk+1
πtk+1

(1,1)µ+c︸ ︷︷ ︸
(III)

]
− π+tk+1

π−tk+1

}
.

By (A.11), (α1,1
tk+1

πtk+1
(1,1))2 ≤ (α1

tk+1
)2π+tk+1

π−tk+1
, implying that the term (I) above is negative.

Further, by Lemma 2, we know that αtk+1
< 0 and, thus, the term (II) above is also negative.

Finally, by using our assumption (33) and (A.11), we can conclude that the term (III) above
also negative. It follows that Γ+(µ+c2 , µ

−
c2)≤ Γ+((µ+c )

2, (µ−c )
2)< 0. Similarly, we can show that

Γ−(µ+c2 , (µ
−
c )

2)< 0 and conclude that N((3)A+
tk
+ (3)A−

tk
)< 0.

For the general midprice dynamics, we need to recall (17). Then, under our conditions
1–4, we have trivially that ρ+k = ρ−k and ψ+

k =ψ−
k . It then follows from (29) that L̃+,∗

tk
+ L̃−,∗

tk
=

L+,∗
tk

+ L−,∗
tk

> 0, as we have already shown. This concludes the general dynamics of the
midprice process.

Proof of Corollary 7. The proof follows along the same lines as the one of Proposition 6.
As before, since αtk+1

depends on 1
+
tk

and 1
−
tk

only through 1
+
tk
+ 1

−
tk
,

α1,0
tk+1

=E[αtk+1
|Ftk ,1

+
tk+1

= 1,1−
tk+1

= 0] =E[αtk+1
|Ftk ,1

+
tk+1

= 0,1−
tk+1

= 1] = α0,1
tk+1

,

and, thus, recalling (A.9)–(A.10), it follows that α1+
tk+1

= α1−
tk+1

when πtk+1
(1,1) = 0. Similarly,

h1+tk+1
= h1−tk+1

and we can denote α1
tk+1

:= α1±
tk+1

and h1tk+1
:= h1±tk+1

. Since πtk+1
(1,1) = 0,
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µ+c = µ−c , and µ+c2 = µ−c2 , it also follows that β+tk − β−tk = 0 and η+tk − η−tk = 0, implying that
(1)A+

tk
− (1)A−

tk
= 0 and (2)A+

tk
− (2)A−

tk
= 0. We are only left to prove that (3)A+

tk
+ (3)A−

tk
> 0,

but as the denominator is negative, we only need to prove that its numerator, denoted by
N((3)A+

tk
+ (3)A−

tk
), is also negative. However, under our conditions, we have that

N((3)A+
tk
+ (3)A−

tk
) = π+tk+1

π−tk+1
(α1

tk+1
µc2 − µc)

[
(µ+cp − 2α1

tk+1
µ+c2p) + (µ−cp − 2α1

tk+1
µ−c2p)

]
,

which is negative because α1
tk+1

µc2 −µc < 0 (since α1
tk+1

≤ 0), and each of the terms inside the
brackets above is positive. For the general midprice dynamics notice that our conditions and
the definitions (17) readily imply that ρ+k = ρ−k and ψ+

k = ψ−
k = 0, and the proof follows as in

the proof of Proposition 6.

Proof of Lemma 8. The proof will done by backward induction. We only give the details
for {αtk}

N+1
k=1 (the proof for {htk}

N+1
k=1 is very similar). To start, note that at time k =N + 1,

αtN+1
=−λ and, hence, it trivially satisfies the condition. For the inductive step, assume that

the lemma holds for j = k+1. We will now proceed to prove that αtk depends on e
+
tk
,e−tk only

thorugh e
+
tk
+ e

−
tk
. By (A.7), αtk = α0

tk+1
+Nk/γtk with

Nk = (α1+
tk+1

µ+c π
+
tk+1

)2π−tk+1
(α1−

tk+1
µ−c2 − µ−c ) + (α1−

tk+1
µ−c π

−
tk+1

)2π+tk+1
(α1+

tk+1
µ+c2 − µ+c )

− 2α1+
tk+1

α1−
tk+1

π+tk+1
π−tk+1

πtk+1
(1,1)α1,1

tk+1
(µ+c µ

−
c )

2,

γtk = [πtk+1
(1,1)α1,1

tk+1
µ+c µ

−
c ]

2 − π+tk+1
π−tk+1

(α1+
tk+1

µ+c2 − µ+c )(α
1−
tk+1

µ−c2 − µ−c ).

(A.43)

By assumption, π+tk+1
, π−tk+1

, and πtk+1
(1,1) are functions of e+tk + e

−
tk
. Then, we only need to

show that α0
tk+1

, α1+
tk+1

, α1−
tk+1

, and α1,1
tk+1

have the same property. By the induction hypothesis,

we have that αtk+1
is of the form αtk+1

=Φ(e+tk+1
+e

−
tk+1

) = Φ(1+
tk+1

+1
−
tk+1

, . . . ,1+
tk+2−$

+1
−
tk+2−$

)
for a function Φ : {0,1,2}$ →R. Thus, using (A.4) and (6),

α0
tk+1

=E[αtk+1
|Ftk ] =

1∑

u=0

1∑

v=0

Φ
(
u+ v,1+

tk
+ 1

−
tk
. . . ,1+

tk+2−$
+ 1

−
tk+2−$

)

× P

[
1
+
tk+1

= u,1−
tk+1

= v
∣∣∣H$

tk

]
,

implying that α0
tk+1

is a function of e+tk + e
−
tk

in light of (9). We can similarly deal with α1+
tk+1

,

α1−
tk+1

, and α11
tk+1

using the expressions in (A.6). For instance,

α1+
tk+1

=E[αtk+1
|Ftk ,1

+
tk+1

= 1]

=
∑

`∈{0,1}

Φ(1+ `,1+
tk
+ 1

−
tk
, . . . ,1+

tk+2−$
+ 1

−
tk+2−$

)
P[1+

tk+1
= 1,1−

tk+1
= `|H$

tj ]

P[1+
tk+1

= 1|H$
tk
]

,

which it is now evidently a function of e+tk + e
−
tk
.

A.4. Proofs of section 2.5: Inventory analysis of the optimal strategy.

Proof of Proposition 9. For simplicity, we omit “*” when referring to the optimal strate-
gies L±,∗

tk
. By (11) and Corollary 3, we have that Itk+1

= Itk − 1
+
tk+1

c+tk+1
(p+tk+1

− L+
tk
) +
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1
−
tk+1

c−tk+1
(p−tk+1

−L−
tk
) with L+

tk
= (1)A+

tk
Itk +

(2)A+
tk
+ (3)A+

tk
and L−

tk
=− (1)A−

tk
Itk −

(2)A−
tk
+ (3)A−

tk
.

Under the condition πtk+1
(1,1) = 0, the coefficients simplify to

(1)A±
tk
=

µ±c α
1±
tk+1

µ±c − α1±
tk+1

µ±c2
, (2)A±

tk
=
h1±tk+1

2

µ±c
µ±c − α1±

tk+1
µ±c2

, (3)A±
tk
=
α1±
tk+1

2

µ±cp − 2α1±
tk+1

µ±c2p

µ±c − α1±
tk+1

µ±c2
.

As explained in the proof of Corollary 7, (1)A+
tk

= (1)A−
tk
, (2)A+

tk
= (2)A−

tk
, α1+

tk+1
= α1−

tk+1
, and

h1+tk+1
= h1−tk+1

. In particular, we also have (3)A+
tk

= (3)A−
tk
. Hereafter, we omit ± in the super-

scripts of (`)A±
tk
, α1±

tk+1
, h1±tk+1

, etc. Furthermore, since πtk+1
= π+tk+1

= π−tk+1
, we can see that (20)

simplifies to

htk = h0tk+1
+ 2πtk+1

α1
tk+1

µ2c

µc − α1
tk+1

µc2
h1tk+1

,

which, combined with the condition htN+1
= 0, implies that htk ≡ 0 and, thus, (2)A+

tk
≡ 0, for

all k.
We can then write Itk+1

= ξtk+1
+ (1+ ηtk+1

(1)Atk)Itk , where

ηtk+1
:= 1

+
tk+1

c+tk+1
+ 1

−
tk+1

c−tk+1
,

ξtk+1
:= (1+

tk+1
c+tk+1

− 1
−
tk+1

c−tk+1
)(3)Atk − (1+

tk+1
c+tk+1

p+tk+1
− 1

−
tk+1

c−tk+1
p−tk+1

).

Since E[ξtk+1
|Ftk ] = 0 and E[ηtk+1

|Ftk ] = 2πtk+1
µc, we can then conclude (36)(i).

For (36)(ii), first note that, by simple induction, we have that, when I0 = 0,

Itk+1
=

k+1∑

j=1

ξtj

k∏

`=j

(1 + ηt`+1

(1)At`),(A.44)

under the usual convention that
∏k

`=k+1 = 1. Next, we claim that, for any i, there is a function
Φi : {0,1,2}

$ →R such that

E

[
k∏

`=i

(1 + ηt`+1

(1)At`)

∣∣∣∣∣Fti

]
=Φi

(
e
+
ti
+ e

−
ti

)
.(A.45)

Indeed, as shown in the proof of Lemma 8, α1±
tk+1

are functions of e+tk + e
−
tk

and, thus, (1)Atk =

Ψk(e
+
tk
+ e

−
tk
) for some function Ψk. Then, by conditioning on 1

+
tk+1

and 1
−
tk+1

,

E
[
(1 + ηtk+1

(1)Atk)
∣∣Ftk

]
= 1+ 2µcπtk+1

Ψk(e
+
tk
+ e

−
tk
) =: Φk

(
e
+
tk
+ e

−
tk

)
.

Suppose (A.45) holds for i= j + 1. Then,

E




k∏

`=j

(1 + ηt`+1

(1)At`)

∣∣∣∣∣∣
Ftj




=E


(1 + ηtj+1

(1)Atj )E




k∏

`=j+1

(1 + ηt`+1

(1)At`)

∣∣∣∣∣∣
Ftj+1



∣∣∣∣∣∣
Ftj



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=E

[
(1 + ηtj+1

(1)Atj )Φj+1

(
e
+
tj+1

+ e
−
tj+1

)∣∣∣Ftj

]

= 2(1 + 2µcΨj(e
+
tj
+ e

−
tj
))Φj+1(1,1

+
tj
+ 1

−
tj
, . . . ,1+

tj+2−$
+ 1

−
tj+2−$

)πtj+1

+ Φj+1(0,1
+
tj
+ 1

−
tj
, . . . ,1+

tj+2−$
+ 1

−
tj+2−$

)(1− 2πtj+1
),

which is clearly of the form Φj(e
+
tj
+ e

−
tj
). This shows the validity of (A.45).

We are now ready to show the result:

E


ξtj

k∏

`=j

(1 + ηt`+1

(1)At`)

∣∣∣∣∣∣
Ftj−1




=
(
E

[
ξtj
∣∣Ftj−1

,1+
tj
= 1,1−

tj
= 0
]
+E

[
ξtj
∣∣Ftj−1

,1+
tj
= 0,1−

tj
= 1
])

× Φj(1,1
+
tj−1

+ 1
−
tj−1

, . . . ,1+
tj+1−$

+ 1
−
tj+1−$

)πtj

+ E

[
ξtj
∣∣Ftj−1

,1+
tj
= 0,1−

tj
= 0
]
Φj(0,1

+
tj−1

+ 1
−
tj−1

, . . . ,1+
tj+1−$

+ 1
−
tj+1−$

)(1− 2πtj+1
),

which, recalling that ξtj := (1+
tj
c+tj − 1

−
tj
c−tj )

(3)Atj−1
− (1+

tj
c+tjp

+
tj
− 1

−
tj
c−tjp

−
tj
), equals to 0 because

E[ξtj
∣∣Ftj−1

,1+
tj
= 0,1−

tj
= 0] = 0 and E[ξtj

∣∣Ftj−1
,1+

tj
= 1,1−

tj
= 0] = µc

(3)Atj−1
− µcp, as well

as E[ξtj
∣∣Ftj−1

,1+
tj

= 0,1−
tj

= 1] = −µc
(3)Atj−1

+ µcp. We then conclude that E[ξtj
∏k

`=j(1 +

ηt`+1

(1)At`)] = 0 and, thus, in light of the representation (A.44), we conclude that E
[
Itk+1

]
= 0,

for any k.

A.5. Proofs of section 2.6: Running inventory penalization.

Proof of Theorem 10. Plugging the ansatz (40) into 39, we arrive at the equation

Wtk +
(φ)αtkI

2
tk + StkItk +

(φ)htkItk +
(φ)gtk

= sup
L±

tk
∈Atk

E

[
Wtk+1

+ (φ)αtk+1
I2tk+1

+ Stk+1
Itk+1

+ (φ)htk+1
Itk+1

+ (φ)gtk+1
− φI2tk+1

∣∣∣Ftk

]

= sup
L±

tk
∈Atk

E

[
Wtk+1

+ ((φ)αtk+1
− φ)I2tk+1

+ Stk+1
Itk+1

+ (φ)htk+1
Itk+1

+ (φ)gtk+1

∣∣∣Ftk

]
.

(A.46)

The above expression has the same structure as (16), but with αtk+1
replaced by (φ)αtk+1

− φ.
This is the reason why the results of Theorem 1 and Corollary 3 follow along the same steps
as in Theorem 1 and Corollary 3 with the term αtk+1

(and its variants) replaced by (φ)αtk+1
−φ.

The proof of Lemma 2 also follows though it needs a bit more care. Indeed, this proof is heavily
based on the inequalities (A.11), (A.17), (A.25), which still hold for (φ)α1±

tk+1
and (φ)α1,1

tk+1
, but we

need them to hold for (φ)α1±
tk+1

−φ and (φ)α1,1
tk+1

−φ. Indeed, for (A.11), since πtk+1
(1,1)≤ π±tk+1

,

then −φπ±tk+1
≤ −φπtk+1

(1,1), which together with (φ)α1±
tk+1

π±tk+1
≤ (φ)α1,1

tk+1
πtk+1

(1,1) implies

((φ)α1±
tk+1

− φ)π+tk+1
≤ ((φ)α1,1

tk+1
− φ)πtk+1

(1,1). The proof of (A.17) is similar. For the second

inequality in (A.25), since π+tk+1
+ π−tk+1

− πtk+1
(1,1) ≤ 1, we have −φπtk+1

(1,1) ≤ − φπ+tk+1
−

φπ−tk+1
+φ, which, together with (φ)α1,1

tk+1
πtk+1

(1,1)≤ (φ)α1+
tk+1

π+tk+1
+ (φ)α1−

tk+1
π−tk+1

−α0
tk+1

, implies

((φ)α1,1
tk+1

− φ)πtk+1
(1,1)≤ ((φ)α1+

tk+1
− φ)π+tk+1

+ ((φ)α1−
tk+1

− φ)π−tk+1
− (α0

tk+1
− φ).

The rest of the proof follows the same arguments as in the proof of Lemma 2.
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Á. Cartea and S. Jaimungal (2015), Risk metrics and fine tuning of high-frequency trading strategies, Math.

Finance, 25, pp. 576–611.
A. Cartea, S. Jaimungal, and J. Ricci (2014), Buy low, sell high: A high frequency trading perspective,

SIAM J. Financial Math., 5, pp. 415–444.
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O. Guéant (2016), The Financial Mathematics of Market Liquidity: From Optimal Execution to Market

Making, Chapman & Hall/CRC Financ. Math. Ser. 33, CRC Press, Boca Raton, FL.
F. Guilbaud and H. Pham (2013), Optimal high-frequency trading with limit and market orders, Quant.

Finance, 13, pp. 79–94.
F. Guilbaud and H. Pham (2015), Optimal high-frequency trading in a pro rata microstructure with predictive

information, Math. Finance, 25, pp. 545–575.
O. Hernández-Lerma and J. Lasserre (1996), Discrete-Time Markov Control Processes, Springer,

New York.
T. Hendershott and A. J. Menkveld (2014), Price pressures, J. Financ. Econ., 114, pp. 405–423.
T. Ho and H. R. Stoll (1981), Optimal dealer pricing under transactions and return uncertainty , J. Financ.

Econ., 9, pp. 47–73.
K. Nyström, S. M. Ould Aly, and C. Zhang (2014), Market making and portfolio liquidation under

uncertainty , Int. J. Theor. Appl. Finance, 17.
M. O’Hara and G. Oldfield (1986), The microeconomics of market making , J. Financ. Quant. Anal., 21,

pp. 2603–2619.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
o
w

n
lo

ad
ed

 0
7
/0

9
/2

5
 t

o
 1

5
7
.2

7
.2

0
9
.1

0
3
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y


	Introduction
	Overview
	Other relevant works
	Outline of the paper

	A finite-horizon optimal control problem for a market maker
	The model and its assumptions
	Optimal placement strategy for a martingale midprice process
	Optimal placement strategy for a general midprice process
	Admissibility of the optimal strategy
	Inventory analysis of the optimal strategy
	Optimal MM strategy under running inventory penalization
	Implementing the optimal strategy

	Calibration and testing the optimal strategy on LOB data
	Parameter estimation
	Estimation of <0:inline-formula ><0:tex-math 0:notation="LaTeX" 0:version="MathJax" ><?LDGXML	tk+1, tk+1(1,1)?></0:tex-math></0:inline-formula>
	Estimation of the demand functions
	Estimation of the drift for the midprice process

	Numerical results
	Performance criterion distribution


	Conclusions
	References
	Proofs of main results
	Proofs of section&#x00A0;<0:xref 0:ref-type="sec" 0:rid="s2-2" >2.2</0:xref>: Optimal strategy for a martingale midprice
	Proofs of section&#x00A0;<0:xref 0:ref-type="sec" 0:rid="s2-3" >2.3</0:xref>: Optimal strategy for a general midprice
	Proofs of section&#x00A0;<0:xref 0:ref-type="sec" 0:rid="s2-4" >2.4</0:xref>: Admissibility of the optimal strategy
	Proofs of section&#x00A0;<0:xref 0:ref-type="sec" 0:rid="s2-5" >2.5</0:xref>: Inventory analysis of the optimal strategy
	Proofs of section&#x00A0;<0:xref 0:ref-type="sec" 0:rid="s2-6" >2.6</0:xref>: Running inventory penalization


