




based on auto Variational AutoEncoder [21] and Generative

Adversarial Networks [22], [7], [8]. While achieving im-

proved performance, these methods still face precision issues

under large viewpoint variations due to the lack of fine view

prediction.

Inspired by the diffusion model [18], [5], we propose a

novel framework, ViewDiffGait, employing a view pyramid

structure and diffusion models. ViewDiffGait is formulated

as an iterative refinement generation task in a biologically

interpretable way, generating more accurate lateral view

images from coarse to fine.

The structure of three generative models is illustrated

in Figure 2. VAE structure encompasses one encoder and

one decoder. GAN structure involves a generator and a

discriminator. However, VAE has the weakness of limited

sample quality, and GAN has the weakness of mode collapse.

In contrast, the diffusion model structure includes diffusion

and denoising processes. Compared with VAE and GAN,

diffusion models directly estimate data likelihood, avoiding

mode collapse, providing a clear generative process, and

offering more stable training.

The diffusion model can directly add and remove noise

from the GEI image, as shown in Figure 2. However, this

strategy is similar to existing VAE-based or GAN-based

methods, lacking fine view prediction under large viewpoint

variations. This paper introduces a view pyramid strategy

to achieve fine view prediction. This view pyramid strategy

perfectly matches the structure of diffusion models, involving

adding view noise from the pyramid top to the bottom

during diffusion and denoising by removing view noise

from the bottom to the top. Considering the advantages and

structure of diffusion models, the diffusion model is used in

our proposed ViewDiffGait framework over other generative

models.

III. METHODOLOGY

Unlike the typical diffusion models [18], [5] which involve

iteratively adding random Gaussian noise for T steps, and

iteratively denoising the Gaussian noise, as shown in Figure 2

Diffusion Model. The proposed ViewDiffGait framework

introduces a paradigm of view pyramid noise adding and

removing, which is an innovative approach to iterative re-

finement generation tasks, particularly for generating more

realistic images resembling lateral view images. ViewDiffGait

includes diffusion process and denoising process. The diffu-

sion process is to add view noise to form the view pyramid,

while denoising process is to remove view noise from view

paramid, as shown in Figure 1, 3.

A. View Pyramid and View Noise

View Pyramid: It plays a crucial role in the ViewDiffGait

framework, serving as a mechanism for view transformation.

Specifically designed for datasets such as CASIA-B [23],

the view pyramid encompasses a combination of view trans-

formations. In this case, the input view is set at 90◦, and

the output views vary from 0◦ to 180◦. The interval degree

between each nearby pair of views, denoted as xα → xβ , is

either 0◦ or 18◦. The diagram of view pyramid as shown in

Figure 1, mathematical expression as followings:

x90◦ → x72◦ → x54◦ → x36◦ → x18◦ → x0◦

x90◦ → x90◦ → x72◦ → x54◦ → x36◦ → x18◦

x90◦ → x90◦ → x90◦ → x72◦ → x54◦ → x36◦

x90◦ → x90◦ → x90◦ → x90◦ → x72◦ → x54◦

x90◦ → x90◦ → x90◦ → x90◦ → x90◦ → x72◦

x90◦ → x90◦ → x90◦ → x90◦ → x90◦ → x90◦

x90◦ → x90◦ → x90◦ → x90◦ → x90◦ → x108◦

x90◦ → x90◦ → x90◦ → x90◦ → x108◦ → x126◦

x90◦ → x90◦ → x90◦ → x108◦ → x126◦ → x144◦

x90◦ → x90◦ → x108◦ → x126◦ → x144◦ → x162◦

x90◦ → x108◦ → x126◦ → x144◦ → x162◦ → x180◦

The purpose of the view pyramid diffusion is to facilitate

a step-by-step, view-wise transformation in a coarse-to-fine

manner. This approach aligns with an iterative refinement

generation task, contributing to a biologically interpretable

progression. The ultimate goal is to generate more realistic

images that closely resemble lateral view images, enhancing

the quality and interpretability of the generated content.

View Noise Definition: In the diffusion process from xα

to xβ , the generation of xβ involves the addition of noiseβ−α

to xα. This step, illustrated in Figure 4, is a departure from

the typical diffusion model of adding random Gaussian noise.

The noiseβ−α is determined by the difference between a

series of view β images and a series of view α images, both

belonging to the same identity.

The choice of utilizing view-specific noise and incorporat-

ing it into the diffusion process is a meaningful contribution

of the ViewDiffGait diffusion process. This departure from

traditional noise addition allows for a more tailored and

context-aware generation of images, resulting in a finer and

more accurate representation of lateral views.

B. ViewDiffGait Diffusion Process

The ViewDiffGait diffusion process presents a novel view

pyramid diffusion to iterative refinement adding view noise

in a biologically interpretable manner. It focuses on view-

wise, coarse-to-fine transformation steps.

Provide a GEI image, denoted as x0 with 90◦ view.

The diffusion process involves iteratively introducing view

noise for a total of T steps. The forward trajectory, which

corresponds to initiating the diffusion process from the gait

distribution x0 and proceeding through T diffusion steps, is

described by the following equation:

q(xt|xt−1) := N (xt;
√

1− βtxt−1, βtI) (1)

Here, t represents the step number, and βt signifies the

variance schedule. This procedure, known as the ”diffusion

process” or ”forward process,” establishes a Markov chain

that systematically introduces view noise to the data in

accordance with the variance schedule βt.

For clarity, starting with the initial GEI x0, one random

view noise is added to produce x1. Subsequently, noise is

Authorized licensed use limited to: IEEE Editors-in-Chief. Downloaded on July 09,2025 at 09:03:53 UTC from IEEE Xplore.  Restrictions apply. 





The xt−1 can be get from xt.

In the typical denoising process, several different meth-

ods [13] are likely to parameterize pθ, including the predic-

tion of mean value µθ, the prediction of the noise z, and

the prediction of variance σt. In our proposal, we use a

neural network fθ(xt, t) to predict xt−1, instead of directly

predicting the µθ. To optimize the model, a mean squared

error loss can be used to match fθ(xt, t) and xt−1: Lt =
||fθ(xt, t)−xt−1||

2. The step t is randomly selected at each

training iteration. Finally, the generated images x0 would be

added to the triplet loss to increase the inter-gait distance

and reduce the intra-gait distance.

In our experiment, we utilized the Euclidean distance

measure for triplet loss evaluation with a margin of 1,

ensuring effective discrimination between anchor, positive,

and negative instances. Employing two NVIDIA GeForce

GTX 1080 with 12GB of memory expedited computations.

We set T as 5 on the training with CASIA-B dataset.

IV. EXPERIMENTS

A. Datasets

CASIA-B[23]: A widely utilized gait dataset, CASIA-B

comprises 124 subjects, each contributing 10 sequences.

These sequences encompass 6 instances of normal walking

(NM), 2 sequences involving walking with a bag (BG),

and 2 sequences involving walking with a coat (CL). Each

sequence captures gait from 11 distinct views {0◦, 18◦, · · ·,
180◦}, as visually represented in Figure 4. The experimental

setup for training and testing involves allocating the initial

62 subjects to the training set, while the remaining subjects

constitute the test set. Within the test set, the gallery set

is formed by retaining the last 4 normal walking sequences

for each subject. The probe set comprises the remaining 2

normal walking sequences, as shown in Table I.

TABLE I

EXPERIMENTAL SETTING ON CASIA-B DATASET. NM: NORMAL

WALKING.

Training
Testing

Gallery Set Probe Set

ID: 001-062 ID: 063-124 ID: 063-124
Seqs: NM01-NM06 Seqs: NM01-NM04 Seqs: NM05-NM06

OU-MVLP [15]: Comprising a diverse population of 10,307

individuals (5,114 males and 5,193 females) spanning a wide

age range from 2 to 87 years, the OU-MVLP dataset captures

gait images from 14 view angles, covering the ranges of 0°-

90° and 180°-270° at intervals of 15-deg azimuth angles .

Each subject is associated with 28 sequences, incorporating

2 sequences (indexed as Seq#00 and Seq#01) for each of the

14 camera views. The first 5153 subjects contribute to the

training set, while the remaining 5154 subjects are designated

for testing. During testing, sequences with index Seq#01 are

designated as the gallery set, while those with index Seq#00

form the probe set, as shown in Table II.

TABLE II

EXPERIMENTAL SETTING ON THE OU-MVLP [15] DATASET.

Training
Test

Gallery Set Probe Set

5153 subjects 5154 subjects 5154 subjects
Seq#00,Seq#01 Seq#01 Seq#00

B. Experimental Analysis on CASIA-B Dataset

In this subsection, we provide a comprehensive com-

parison between the proposed ViewDiffGait and recent ad-

vanced methods, encompassing three typical categories:

GEI-based methods, skeleton-based methods, and silhouette-

based methods, as outlined in Table III, III.

Comparison with Skeleton-based Methods: We evaluate

the performance against skeleton-based methods, including

PTSN [9], PTSN-3D [1], PoseGait [11], and PoseMap-

Gait [10]. From Table III, it is evident that our proposed

method achieves the highest mean accuracy (87.5%). This

surpasses the best existing method, PoseMapGait [10], by a

substantial margin of 11.8% (75.7%).

Comparison with GEI-based Methods: The compari-

son generative model methods, including SPAE [21], Gait-

GANv2 [22], DV-GEIs-pre [8], and DV-GEIs [7], are based

on existing generative models (VAE or GAN). The results

in Table III demonstrate that our proposed method achieves

the highest mean accuracy (87.5%). This outperforms the

best existing method, DV-GEIs [10], by a significant margin

of 11.1% (76.4%). This showcases the superiority of the

diffusion generative model over traditional VAE and GAN

approaches.

Comparison with Silhouette-based Methods: Silhouette-

based methods, represented by GaitSet [2] and GaitPart [4],

are comparable in performance with our proposed method.

The probe view is under 36◦, 54◦, 72◦, the performance gap

is minimal, as shown in Figure IV. It’s important to note

that silhouette-based methods typically utilize a sequence of

silhouettes as input data, usually employing 30 frames, while

our proposed method leverages only one gait feature frame.

Notably, when the silhouette-based method GaitSet [2] uses

the same input (GEI) as ours, its accuracy decreases to

80.4%, while our method consistently achieves high accuracy

at 89.9%.

Moreover, we compare the reference time with GaitSet [2]

and GaitPart [4], as shown in Table IV. Test environment

in a single GeForce GTX 1080, 12GB, CUDA version:

10.2, PyTorch vesrion: 1.9.1. The results clearly indicate that

our proposed method exhibits faster processing speed than

silhouette-based methods. This underscores that ViewDiffGait

not only achieves high performance in cross-view conditions

but also operates at a faster pace. This balance between

performance and speed positions ViewDiffGait as a promising

solution for real-world gait recognition applications.
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C. Ablation Study

In this section, we systematically examine the integral

components of our proposed gait recognition framework –

the View Pyramid Module and the View Noise Diffusion

Module. Through a detailed analysis, we elucidate the spe-

cific contributions and benefits that these modules bring to

the overall system.

Analysis of View Pyramid Module: The View Pyramid

Module is designed to capture fine view transformations

by employing a hierarchical pyramid structure. Each level

of the pyramid refines the view prediction, allowing for a

gradual and detailed adjustment from coarse to fine views.

This intricate mechanism proves to be invaluable, especially

under large viewpoint variations. The absence of the View

Pyramid Module, as demonstrated by the DiffGait method,

results in a direct transformation without the intermediary

steps provided by the pyramid (T = 1 in Equation 2). From

Figure 5, we can see the significance of the View Pyramid

Module becomes apparent in its ability to enhance precision

and generate more accurate lateral view images. It acts as a

sophisticated guidance system, ensuring that the gait feature

transformation is not only efficient but also attuned to the

subtleties of different viewpoints.

Analysis of View Noise Diffusion Module: The View

Noise Diffusion (defined in Section III-A) Module stands

as a distinctive feature in our framework, deviating from

the typical Gaussian Noise Diffusion approach. This module

integrates the view pyramid structure into the diffusion

process, strategically adding and removing view noise in

a hierarchical manner. This dynamic diffusion mechanism

plays a pivotal role in refining the gait image generation

task. In contrast to conventional methods that directly add

and remove Gaussian noise to and from the original image,

as demonstrated by the DiffGait-Gaussian method. The com-

parison of result can be seen in From Figure 5, showcases

a remarkable improvement in performance with view noise

diffusion. The View Noise Diffusion Module not only aids

in denoising but also facilitates the generation of more

realistic images by capturing fine view transformations. This

nuanced approach ensures that the recognition framework is

robust and effective, particularly in scenarios characterized

by significant viewpoint variations.

In essence, both the View Pyramid Module and the

View Noise Diffusion Module contribute substantially to

the success of our proposed ViewDiffGait framework. They

collectively address challenges associated with precision,

viewpoint variations, and overall recognition performance,

making our approach a robust and sophisticated solution in

the realm of gait recognition.

D. Experimental Analysis on OU-MVLP Dataset

In order to robustly demonstrate the effectiveness of

our proposed ViewDiffGait, we meticulously conduct an

extensive experimental analysis, pitting it against state-of-

the-art methods on the challenging OU-MVLP dataset. Our

evaluation spans two key categories: GEI-based methods and

silhouette-based methods, each meticulously compared and

contrasted in Table V and Table VI.

Comparison with GEI-based Methods: A meticulous ex-

amination of ViewDiffGait against leading GEI-based meth-

ods: GEINet [17], GaitGANv2 [22], DV-GEIs-pre [8], and

DV-GEIs [7], reveals a noteworthy superiority. While Gait-

GANv2, DV-GEIs-pre, and DV-GEIs did not originally per-

form experiments on the OU-MVLP dataset, we conducted

tailored experiments based on their network details to ensure

fairness. The results, meticulously presented in Table V,

unequivocally showcase that our proposed method attains the

highest mean accuracy (77.8%). This stellar performance sig-

nificantly outperforms DV-GEIs [7] by an impressive margin

of 10.6% (67.2%). The stark advancement accentuates the

unparalleled effectiveness of the diffusion generative model

in surpassing traditional GEI-based methodologies.

Comparison with Silhouette-based Methods: Silhouette-

based methods, represented by GaitSet [2] and GaitPart [4],

stand as formidable contenders with performance comparable

to our proposed ViewDiffGait. Our evaluation, meticulously

conducted for probe views under 30◦, 45◦, 210◦, and 225◦

(as illustrated in Table VI), reveals a noteworthy aspect.

Despite the typical utilization of a sequence of silhouette

images, usually comprising 30 frames, in silhouette-based

methods, our proposed approach surpasses performance ex-

pectations with minimal performance gaps.

Furthermore, the assessment of reference time, metic-

ulously detailed in Table VI, solidifies the superiority

of ViewDiffGait over silhouette-based methods. In a sin-

gle GeForce GTX 1080 environment with 12GB memory,

CUDA version 10.2, and PyTorch version 1.9.1, our proposed

method exhibits a processing speed nearly three times faster

than its counterparts. This impressive efficiency underscores

ViewDiffGait not only as a high-performing solution in cross-

view conditions but also as an expeditious option. The har-

monious balance between performance and speed reinforces

ViewDiffGait’s standing as a promising and superior solution

for real-world gait recognition applications.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we introduced a groundbreaking framework,

ViewDiffGait, aimed at addressing the critical challenge of

precision in gait recognition under significant viewpoint

variations. Leveraging a unique combination of a view pyra-

mid structure and diffusion models, ViewDiffGait emerges

as a transformative solution, capable of generating highly

accurate lateral view images through an iterative refinement

generation process. Unlike conventional large-view transfor-

mation models, our approach ensures fine view prediction,

mitigating precision issues commonly encountered in gait

recognition.

The extensive experiments conducted on the CASIA-

B and OUMVLP datasets underscore the effectiveness of

ViewDiffGait. The results reveal its capacity to generate
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Fig. 5. Ablation Study Experiment. ViewDiffGait: with View Pyramid and with View Noise. DiffGait: without View Pyramid and with View Noise.
DiffGait-Gaussian: without View Pyramid and without View Noise.
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TABLE III

RANK-1 ACCURACY (%) ON CASIA-B UNDER ALL VIEW ANGLES, EXCLUDING IDENTICAL-VIEW CASE.

Train/Test
Subjects

Input

Feature

Gallery View NM:01-04 0◦-180◦

Probe View NM:05-06 0◦ 18◦ 36◦ 54◦ 72◦ 90◦ 108◦ 126◦ 144◦ 162◦ 180◦ Mean

62/62 Skeletons

PTSN [9] 34.5 45.6 49.6 51.3 52.7 52.3 53 50.8 52.2 48.3 31.4 47.4

PTSN-3D [1] 38.7 50.2 55.9 56 56.7 54.6 54.8 56 54.1 52.4 40.2 51.9

PoseGait [11] 48.5 62.7 66.6 66.2 61.9 59.8 63.6 65.7 66 58 46.5 60.5

PoseMapGait [10] 59.9 76.2 81.7 83.1 76.8 76.1 76.3 81.1 79.6 75.4 66.1 75.7

GEI ViewDiffGait (Ours) 77.0 90.6 94.7 92.7 87.7 83.0 86.1 92.1 93.5 88.3 76.5 87.5

62/62 GEI

SPAE [21] 50.0 58.1 61.0 63.3 64.0 62.1 62.3 66.3 64.4 54.5 46.7 59.3

GaitGANv2 [22] 48.1 61.9 68.7 71.7 66.7 64.8 66.0 70.2 71.6 58.9 46.1 63.1

DV-GEIs-pre [8] 64.5 76.2 81.3 80.8 77.1 72.6 74.4 78.9 80.6 75.6 63.7 75.1

DV-GEIs [7] 63.1 79.4 84.6 79.8 77.0 72.6 77.4 80.3 84.0 78.5 63.7 76.4

ViewDiffGait (Ours) 77.0 90.6 94.7 92.7 87.7 83.0 86.1 92.1 93.5 88.3 76.5 87.5

74/50 GEI

DV-GEIs-pre [8] 71.0 86.4 91.4 89.6 80.4 80.1 82.5 90.1 90.4 85.3 70.5 83.4

DV-GEIs [7] 72.9 85.9 89.3 87.1 83.7 81.7 82.8 87.3 91.3 87.1 74.9 84.0

GaitSet [2] - - - - - - - - - - - 80.4

ViewDiffGait (Ours) 78.9 93.7 96.6 94.3 90.7 86.7 89.0 93.5 96.1 90.9 78.6 89.9

TABLE IV

RANK-1 ACCURACY (%) ON CASIA-B UNDER ALL VIEW ANGLES, EXCLUDING IDENTICAL-VIEW CASE.

Train/Test
Subjects

Input

Feature

Gallery View NM:01-04 0◦-180◦ Inference Time Inference Time

Probe View NM:05-06 36◦ 54◦ 72◦ Mean Total (s) Per Sequence (ms)

74/50
Silhouettes

GaitSet [2] 99.4 96.9 93.6 96.6 66.86 12.19

GaitPart [4] 99.3 98.5 94.0 97.3 93.68 17.08

GEI ViewDiffGait (Ours) 96.6 94.3 90.7 93.9 44.99 8.2

TABLE V

RANK-1 ACCURACY (%) ON OUMVLP UNDER 14 PROBE VIEWS EXCLUDING IDENTICAL-VIEW CASES.

Probe View

Methods 0◦ 15◦ 30◦ 45◦ 60◦ 75◦ 90◦ 180◦ 195◦ 210◦ 225◦ 240◦ 255◦ 270◦ Mean

GEINet [17] 23.2 38.1 48 51.8 47.5 48.1 43.8 27.3 37.9 46.8 49.9 45.9 45.7 41 42.5
GaitGANv2 [22] 46.8 55.3 60.5 59.6 57.6 57.1 56.2 49.5 54.5 57.5 60.5 55.4 57.5 55.4 55.9
DV-GEIs-pre [8] 51.3 63.7 69.6 71.4 66.2 68.5 66.1 57.9 64.9 69.5 69.2 64.7 65.6 65.6 65.3
DV-GEIs [7] 53.5 67.5 72.1 73.8 68.7 70.5 68.5 56.9 67.3 70.5 71.8 66.5 68.1 64.7 67.2
ViewDiffGait (Ours) 61.3 77.3 84.5 85.2 78.7 79.9 78.6 67.5 77.1 83.2 83.9 77.5 77.9 76.5 77.8

TABLE VI

RANK-1 ACCURACY (%) ON OUMVLP UNDER 4 PROBE VIEWS EXCLUDING IDENTICAL-VIEW CASES.

Train/Test
Subjects

Input

Feature

Gallery View: Seq#01 0◦-360◦ Inference Time Inference Time

Probe View: Seq#00 30◦ 45◦ 210◦ 225◦ Mean Total (min) Per Sequence (ms)

5153/5154
Silhouettes

GaitSet [2] 90 90.1 89 89.2 89.6 57.32 25.69

GaitPart [4] 90.8 91 90 90.1 90.5 68.33 30.63

GEI ViewDiffGait (Ours) 84.5 85.2 83.2 83.9 84.2 23.56 10.56

realistic images, effectively remove variations, and achieve

high performance in real-world applications. Our method not

only surpasses many existing GEI-based approaches but also

stands shoulder to shoulder with state-of-the-art silhouette-

based methods, showcasing its versatility and superiority.

Moreover, ViewDiffGait exhibits an impressive processing

speed, outpacing silhouette-based methods. This efficiency

further establishes ViewDiffGait as not just a high-performing

solution for cross-view conditions but also an expeditious

option. The harmonious balance between performance and

speed positions ViewDiffGait as a promising and superior

choice for practical gait recognition applications.

In the future, our research can explore and harness the

potential of diffusion models and view pyramids within

silhouette-based methods. Such as exploring the integration

of temporal information to capture gait dynamics over time,

potentially improving recognition accuracy and performance.

Or investigate enhancements to the view pyramid structure,

exploring ways to optimize its configuration for improved

accuracy and robustness across diverse gait patterns. This

extension aims to enhance the capabilities of gait recognition

systems, addressing challenges and unlocking new possibili-

ties in the evolving landscape of biometric identification. We

anticipate that further innovations and refinements in these

directions will contribute to the continual advancement of

gait recognition technology, providing robust and efficient

solutions for real-world applications.
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