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Abstract— View transformation is crucial for gait recognition.
Most existing methods use a view transformation models (VTM)
or generative models (VAE or GAN) to achieve transformation.
These approaches commonly adopt a paradigm of transforming
a gait feature from one view to another. However, most
existing methods attempt to use a single or multiple, large-
view transformation model to directly transform a source
view image to the target view image. Such transformations
usually suffer from precision problems under large viewpoint
variations due to the lack of fine view prediction. To overcome
this challenge, we introduce a novel framework, ViewDiffGait,
employing a view pyramid structure and diffusion models.
ViewDiffGait is formulated as an iterative refinement generation
task in a biologically interpretable way, capable of generating
more accurate lateral view images from coarse to fine. Unlike
the typical diffusion model that directly adds and removes
Gaussian noise in the original image, the ViewDiffGait diffusion
process involves a view pyramid structure to capture fine
view transformations. The diffusion process adds view noise
from the pyramid top to the bottom, while the denoising
process removes view noise from the pyramid bottom to the
top. We conducted extensive experiments on the CASIA-B
and OUMVLP datasets, demonstrating that ViewDiffGait can
generate more realistic images, remove variations effectively,
and lead to high performance in real applications.

keywords: Gait Recognition, Diffusion Model, View Pyramid,
View Noise Removing

I. INTRODUCTION
A. Motivation

With the outbreak of the novel coronavirus 2019 (COVID-
19), it has become imperative to develop biometric technolo-
gies to address various concerns arising from a similar virus
event. Biometric technologies usually have two categories,
contact and non-contact biometrics. Contact biometrics such
as fingerprints and palm prints will obviously speed up
the spread of the virus. For non-contact biometric technol-
ogy, face recognition [20] is one of the mature biometric
technologies. But identifying subjects becomes challenging
when people are wearing masks. Iris recognition also faces
challenges when wearing anti-virus glasses. What is more,
due to the close-range collection of iris data, it also brings
the risk of personnel touching the device.

Compared with the above biometrics, gait biometric has
the following advantages, 1) long-distance human identi-
fication 2) no user action and cooperation required. It is
particularly suitable for impeding the spread of COVID-19,
monitoring people [19], video surveillance, crime prevention,
and forensic identification.
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Fig. 1.  ViewDiffGait employs a view pyramid structure and diffusion
models. It involves adding view noise from the pyramid top to the bottom
during diffusion and denoising by removing view noise from the bottom to
the top.
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However, automatic gait recognition faces challenges due
to various sources of variation, including viewpoint, clothing,
and carried objects, potentially compromising recognition
accuracy. Among these, view angle stands out as a common
challenge, given the uncontrollable walking directions in
real-world scenarios—this forms the central focus of our
work.

To enhance robustness against view-angle variation, ex-
isting methods often employ View Transformation Model
(VTM) [14], [6], [24] to transform gait features from one
view to another. While effective in cross-view recognition,
VTM are limited as each model can only handle a specific
view angle. Some recent approaches seek view invariance
using a single generative model (VAE [21] or GAN [22],
[71, [8]), as shown in Figure 2. They achieve improved
performance but still face precision issues, particularly under
large viewpoint variations. This is because of the lack of
fine view prediction under large viewpoint variations. To
address these challenges, we draw inspiration from the state-
of-the-art diffusion models and introduce a novel framework,
ViewDiffGait , which incorporates a view pyramid structure
for an iterative refinement generation task.

B. Contributions

In summary, our major contributions are:

o A novel framework ViewDiffGait for gait recognition
is proposed based on the denoising diffusion model.
This framework, formulated as an iterative refinement
generation task, interprets biological processes, enabling
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Fig. 2. Structure of three generative models. Existing methods usually lack fine view prediction and lead to suffering from precision problems under large
viewpoints. Proposed ViewDiffGait is formulated as an iterative refinement generation task in a biologically interpretable way, capable of generating more

accurate lateral view images from coarse to fine.

the generation of more accurate lateral view images
from coarse to fine. To the best of our knowledge, we
are the first ones to use the diffusion model in gait
recognition.

o Unlike the traditional diffusion model which directly
adds and removes Gaussian noise in the image (Fig-
ure 2), ViewDiffGait ’s diffusion process incorporates a
view pyramid structure. This approach involves adding
view noise from the pyramid top to the bottom during
diffusion, and denoising by removing view noise from
the bottom to the top, as shown in Figure 1.

o We evaluated our proposed method on both popular
CASIA-B dataset [23] and OUMVLP dataset [15] and
achieved a high recognition rate in comparison to recent
advanced methods. Our experiment results demonstrate
the significant improvement of the proposed method in
varied situations, validating its potential for practical
gait recognition applications.

II. RELATED WORKS

In this section, we present a concise overview of the devel-
opment and categories of existing gait recognition models,
along with on the structure of three generative models.

Gait recognition can be broadly categorized into two
groups: model-based [9], [11], [10] and appearance-
based [2], [4], [3]. Model-based approaches extract fea-
tures by modeling the human body structure and analyzing
movement patterns of different body parts, often utilizing
human skeletons as initial input features. Examples include
PTSN [9], PoseGait [11], and PoseMapGait [10]. How-
ever, these methods may suffer from low performance due
to limited input information. In contrast, appearance-based
methods extract human silhouettes as initial input features,

achieving higher recognition rates.

Appearance-based methods can be further divided into
two categories: template-based approaches [22], [7], [8]
and sequence-based approaches [2], [4], [3]. Sequence-based
approaches use a video clip of human silhouettes as in-
put data, such as GaitPart [4], GaitSet [2], GaitGL [12],
LidarGait [16], and OpenGait [3]. While achieving high
performance, these methods are often time-consuming in
the reference stage due to the need for a sequence of
human silhouettes as input data. In contrast, template-based
approaches are faster in the reference stage, requiring only
one template feature instead of a video clip. Gait Energy
Image (GEI) templates, produced by averaging all silhouettes
in a single gait cycle, are popular features in template-based
approaches due to their low computational cost and relatively
high recognition rate.

To design a fast model in the reference stage and im-
prove real-world applications, this paper primarily focuses
on GEl-based research. Previous studies extensively explored
GEI templates, introducing VTM models to enhance robust-
ness against view-angle variation. Makihara et al. [14] de-
signed FD-VTM, operating in the frequency domain. RSVD-
VTM [6] operates in the spatial domain, using reduced
singular value decomposition (SVD) and linear discriminant
analysis (LDA) to construct a VITM and generate an optimal
GEI feature vector. Zheng et al. [24] achieved a robust VIM
via RPCA for view-invariant feature extraction, with the
inspired by the robust principal component analysis (RPCA)
for feature extraction,

Most VTM-related methods [14], [6], [24] can only trans-
form one specific view angle to another, requiring numerous
models. With the development of generative models, some
researchers use a single model to transform any view angle
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based on auto Variational AutoEncoder [21] and Generative
Adversarial Networks [22], [7], [8]. While achieving im-
proved performance, these methods still face precision issues
under large viewpoint variations due to the lack of fine view
prediction.

Inspired by the diffusion model [18], [5], we propose a
novel framework, ViewDiffGait, employing a view pyramid
structure and diffusion models. ViewDiffGait is formulated
as an iterative refinement generation task in a biologically
interpretable way, generating more accurate lateral view
images from coarse to fine.

The structure of three generative models is illustrated
in Figure 2. VAE structure encompasses one encoder and
one decoder. GAN structure involves a generator and a
discriminator. However, VAE has the weakness of limited
sample quality, and GAN has the weakness of mode collapse.
In contrast, the diffusion model structure includes diffusion
and denoising processes. Compared with VAE and GAN,
diffusion models directly estimate data likelihood, avoiding
mode collapse, providing a clear generative process, and
offering more stable training.

The diffusion model can directly add and remove noise
from the GEI image, as shown in Figure 2. However, this
strategy is similar to existing VAE-based or GAN-based
methods, lacking fine view prediction under large viewpoint
variations. This paper introduces a view pyramid strategy
to achieve fine view prediction. This view pyramid strategy
perfectly matches the structure of diffusion models, involving
adding view noise from the pyramid top to the bottom
during diffusion and denoising by removing view noise
from the bottom to the top. Considering the advantages and
structure of diffusion models, the diffusion model is used in
our proposed ViewDiffGait framework over other generative
models.

III. METHODOLOGY

Unlike the typical diffusion models [18], [5] which involve
iteratively adding random Gaussian noise for 7' steps, and
iteratively denoising the Gaussian noise, as shown in Figure 2
Diffusion Model. The proposed ViewDiffGait framework
introduces a paradigm of view pyramid noise adding and
removing, which is an innovative approach to iterative re-
finement generation tasks, particularly for generating more
realistic images resembling lateral view images. ViewDiffGait
includes diffusion process and denoising process. The diffu-
sion process is to add view noise to form the view pyramid,
while denoising process is to remove view noise from view
paramid, as shown in Figure 1, 3.

A. View Pyramid and View Noise

View Pyramid: It plays a crucial role in the ViewDiffGait
framework, serving as a mechanism for view transformation.
Specifically designed for datasets such as CASIA-B [23],
the view pyramid encompasses a combination of view trans-
formations. In this case, the input view is set at 90°, and
the output views vary from 0° to 180°. The interval degree
between each nearby pair of views, denoted as x, — g, is

either 0° or 18°. The diagram of view pyramid as shown in
Figure 1, mathematical expression as followings:

Xgpe — L7720 —» T4 —» T3ge —» L18° —» Lo
Tgpo —> XTgpe —» T720 —» Ts40 —> X360 —7 T18°
Tgpe — Tgpe —> Tgpe —» L720 —» Tr4o —r T36°
Tgge —» Lgge —» Tgge —» Tgge —» XL720 —» T540
Tgpe —> XLgpe —» Lgpe —» T9pe — Xgpe —» L720
Tgpe —> XTgpe —» Lgpe —» T9pe —7 Tgpe —» T9o°
Tgpo —> XTgpe —» Tgpe —» T9gpe —7 Tgpe — TL108°
Tgpe — Tgpe —> Tgpe — Tgpe — T108° — L126°
Tgpo — Tgpe —> Tgpe — T108° — L1260 —» L1440
Tgpe —> XLgpe —» L108° —7 T126° —7 TL144° — X162°
Tgpe —> X108° —7 X126° —7 L1440 —7 T162° —7 T180°

The purpose of the view pyramid diffusion is to facilitate
a step-by-step, view-wise transformation in a coarse-to-fine
manner. This approach aligns with an iterative refinement
generation task, contributing to a biologically interpretable
progression. The ultimate goal is to generate more realistic
images that closely resemble lateral view images, enhancing
the quality and interpretability of the generated content.

View Noise Definition: In the diffusion process from x,
to x5, the generation of x5 involves the addition of noiseg_q,
to z. This step, illustrated in Figure 4, is a departure from
the typical diffusion model of adding random Gaussian noise.
The noiseg_, is determined by the difference between a
series of view [3 images and a series of view « images, both
belonging to the same identity.

The choice of utilizing view-specific noise and incorporat-
ing it into the diffusion process is a meaningful contribution
of the ViewDiffGait diffusion process. This departure from
traditional noise addition allows for a more tailored and
context-aware generation of images, resulting in a finer and
more accurate representation of lateral views.

B. ViewDiffGait Diffusion Process

The ViewDiffGait diffusion process presents a novel view
pyramid diffusion to iterative refinement adding view noise
in a biologically interpretable manner. It focuses on view-
wise, coarse-to-fine transformation steps.

Provide a GEI image, denoted as xy with 90° view.
The diffusion process involves iteratively introducing view
noise for a total of T steps. The forward trajectory, which
corresponds to initiating the diffusion process from the gait
distribution xy and proceeding through 7' diffusion steps, is
described by the following equation:

q(xi|zi—1) = N(xe; /1 — Brae—r, Bed) (D

Here, t represents the step number, and ; signifies the
variance schedule. This procedure, known as the “diffusion
process” or “forward process,” establishes a Markov chain
that systematically introduces view noise to the data in
accordance with the variance schedule (;.

For clarity, starting with the initial GEI z(, one random
view noise is added to produce x;. Subsequently, noise is
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Fig. 3.

The overview of the proposed method framework ViewDiffGait. It constructs a diffusion process and a denoising process. The diffusion process

is to add a random combination view set in the training phase, while denoising process as an iterative refinement generation task and generate real image
(Lateral View) from coarse to fine. And the triplet loss is to increase the inter-gait distance and to reduce the intra-gait distance.
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Fig. 4. The View Noise Diffusion stands as a distinctive feature, deviating from the typical Gaussian Noise Diffusion approach. This module integrates
the view pyramid structure into the diffusion process, strategically adding and removing view noise in a hierarchical manner.

added again to obtain x9, and this process is repeated for a
total of " steps, as shown in the view pyramid. As a result,
x( evolves into xp, represented as:

2)

rg —>T1 > To " > Tp_1 > TT

C. ViewDiffGait Denoising Process

The backward denoising process aims to transfer x7 with
any view angle into target image xo by denoising process,
the equation is as follows.

3)

The view pyramid will be reversed with the process of
denoising, as shown in followings:

T — Tr— > Ty > L1 — X9

Xgpe $— T7o0 $— Tpgo < T3ge < T18° < TQo
Tgpe € Tgpe ¢ 720 ¢ Tpgo < T3go <— T18°

<— TgQe
< T9Qo
< T9Qo
<— TgQe
<— TgQo

< T9Qo
< T9Qo
< T9Qo
<— Topo

< T790
< T9Qo
< T9Qo
<— Tgpo

— I'540
< 790
$— Tgge < T720

<— XTgpo < Tgpo

= Xgpe < Tgpe < Tgpe < T108°

£ Xgpe < Tgpe < Tgpe < T1pse < T126°
£ Xgpe < Tgpe < T108° < T126° < T144°
= Tgpe < T108° < T126° < T144c0 < T162°
< T108° < T1260 < L1440 < X120 < T180°

< T36°
<— Tp40

TgQo
ZTgQo
ZTgQo
Tgpo
Tgpo
ZTgQo
TgQo
ZT90°
Tgpo

Specifically, given the prior probability g(x;—_1|x;), aim to
learn the posterior probability pg(z;—1|x¢),

po(xi—1lre) = N(xi-1; po (e, ), Lo (24, 1)) 4)

where the iy and Xy represent image mean and variance,
respectively. Experimentally, set the Yg(z,t) = 021 = ;.
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The x;_; can be get from z;.

In the typical denoising process, several different meth-
ods [13] are likely to parameterize py, including the predic-
tion of mean value ugp, the prediction of the noise z, and
the prediction of variance o;. In our proposal, we use a
neural network fy(x¢,t) to predict 24—, instead of directly
predicting the pg. To optimize the model, a mean squared
error loss can be used to match fp(xy,t) and xy_q: Ly =
|| fo(xs,t) —xs_1]|%. The step t is randomly selected at each
training iteration. Finally, the generated images xy would be
added to the triplet loss to increase the inter-gait distance
and reduce the intra-gait distance.

In our experiment, we utilized the Euclidean distance
measure for triplet loss evaluation with a margin of 1,
ensuring effective discrimination between anchor, positive,
and negative instances. Employing two NVIDIA GeForce
GTX 1080 with 12GB of memory expedited computations.
We set T as 5 on the training with CASIA-B dataset.

IV. EXPERIMENTS

A. Datasets

CASIA-B[23]: A widely utilized gait dataset, CASIA-B
comprises 124 subjects, each contributing 10 sequences.
These sequences encompass 6 instances of normal walking
(NM), 2 sequences involving walking with a bag (BG),
and 2 sequences involving walking with a coat (CL). Each
sequence captures gait from 11 distinct views {0°, 18°, - - -,
180°}, as visually represented in Figure 4. The experimental
setup for training and testing involves allocating the initial
62 subjects to the training set, while the remaining subjects
constitute the test set. Within the test set, the gallery set
is formed by retaining the last 4 normal walking sequences
for each subject. The probe set comprises the remaining 2
normal walking sequences, as shown in Table I.

TABLE I
EXPERIMENTAL SETTING ON CASIA-B DATASET. NM: NORMAL
WALKING.
Trainin, Testing
g Gallery Set Probe Set
1D: 001-062 ID: 063-124 ID: 063-124
Seqs: NMO1-NMO06 | Seqs: NMO1-NMO04 | Seqs: NM05-NM06

OU-MVLP [15]: Comprising a diverse population of 10,307
individuals (5,114 males and 5,193 females) spanning a wide
age range from 2 to 87 years, the OU-MVLP dataset captures
gait images from 14 view angles, covering the ranges of 0°-
90° and 180°-270° at intervals of 15-deg azimuth angles .
Each subject is associated with 28 sequences, incorporating
2 sequences (indexed as Seq#00 and Seq#01) for each of the
14 camera views. The first 5153 subjects contribute to the
training set, while the remaining 5154 subjects are designated
for testing. During testing, sequences with index Seq#01 are
designated as the gallery set, while those with index Seq#00
form the probe set, as shown in Table II.

TABLE I
EXPERIMENTAL SETTING ON THE OU-MVLP [15] DATASET.

Training Test

Gallery Set Probe Set
5153 subjects 5154 subjects | 5154 subjects
Seq#00,Seq#01 | Seq#01 Seq#00

B. Experimental Analysis on CASIA-B Dataset

In this subsection, we provide a comprehensive com-
parison between the proposed ViewDiffGait and recent ad-
vanced methods, encompassing three typical categories:
GEI-based methods, skeleton-based methods, and silhouette-
based methods, as outlined in Table III, III.

Comparison with Skeleton-based Methods: We evaluate
the performance against skeleton-based methods, including
PTSN [9], PTSN-3D [1], PoseGait [11], and PoseMap-
Gait [10]. From Table III, it is evident that our proposed
method achieves the highest mean accuracy (87.5%). This
surpasses the best existing method, PoseMapGait [10], by a
substantial margin of 11.8% (75.7%).

Comparison with GEI-based Methods: The compari-
son generative model methods, including SPAE [21], Gait-
GANV2 [22], DV-GElIs-pre [8], and DV-GEIs [7], are based
on existing generative models (VAE or GAN). The results
in Table III demonstrate that our proposed method achieves
the highest mean accuracy (87.5%). This outperforms the
best existing method, DV-GEIs [10], by a significant margin
of 11.1% (76.4%). This showcases the superiority of the
diffusion generative model over traditional VAE and GAN
approaches.

Comparison with Silhouette-based Methods: Silhouette-
based methods, represented by GaitSet [2] and GaitPart [4],
are comparable in performance with our proposed method.
The probe view is under 36°, 54°, 72°, the performance gap
is minimal, as shown in Figure IV. It’s important to note
that silhouette-based methods typically utilize a sequence of
silhouettes as input data, usually employing 30 frames, while
our proposed method leverages only one gait feature frame.
Notably, when the silhouette-based method GaitSet [2] uses
the same input (GEI) as ours, its accuracy decreases to
80.4%, while our method consistently achieves high accuracy
at 89.9%.

Moreover, we compare the reference time with GaitSet [2]
and GaitPart [4], as shown in Table IV. Test environment
in a single GeForce GTX 1080, 12GB, CUDA version:
10.2, PyTorch vesrion: 1.9.1. The results clearly indicate that
our proposed method exhibits faster processing speed than
silhouette-based methods. This underscores that ViewDiffGait
not only achieves high performance in cross-view conditions
but also operates at a faster pace. This balance between
performance and speed positions ViewDiffGait as a promising
solution for real-world gait recognition applications.
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C. Ablation Study

In this section, we systematically examine the integral
components of our proposed gait recognition framework —
the View Pyramid Module and the View Noise Diffusion
Module. Through a detailed analysis, we elucidate the spe-
cific contributions and benefits that these modules bring to
the overall system.

Analysis of View Pyramid Module: The View Pyramid
Module is designed to capture fine view transformations
by employing a hierarchical pyramid structure. Each level
of the pyramid refines the view prediction, allowing for a
gradual and detailed adjustment from coarse to fine views.
This intricate mechanism proves to be invaluable, especially
under large viewpoint variations. The absence of the View
Pyramid Module, as demonstrated by the DiffGait method,
results in a direct transformation without the intermediary
steps provided by the pyramid (7" = 1 in Equation 2). From
Figure 5, we can see the significance of the View Pyramid
Module becomes apparent in its ability to enhance precision
and generate more accurate lateral view images. It acts as a
sophisticated guidance system, ensuring that the gait feature
transformation is not only efficient but also attuned to the
subtleties of different viewpoints.

Analysis of View Noise Diffusion Module: The View
Noise Diffusion (defined in Section III-A) Module stands
as a distinctive feature in our framework, deviating from
the typical Gaussian Noise Diffusion approach. This module
integrates the view pyramid structure into the diffusion
process, strategically adding and removing view noise in
a hierarchical manner. This dynamic diffusion mechanism
plays a pivotal role in refining the gait image generation
task. In contrast to conventional methods that directly add
and remove Gaussian noise to and from the original image,
as demonstrated by the DiffGait-Gaussian method. The com-
parison of result can be seen in From Figure 5, showcases
a remarkable improvement in performance with view noise
diffusion. The View Noise Diffusion Module not only aids
in denoising but also facilitates the generation of more
realistic images by capturing fine view transformations. This
nuanced approach ensures that the recognition framework is
robust and effective, particularly in scenarios characterized
by significant viewpoint variations.

In essence, both the View Pyramid Module and the
View Noise Diffusion Module contribute substantially to
the success of our proposed ViewDiffGait framework. They
collectively address challenges associated with precision,
viewpoint variations, and overall recognition performance,
making our approach a robust and sophisticated solution in
the realm of gait recognition.

D. Experimental Analysis on OU-MVLP Dataset

In order to robustly demonstrate the effectiveness of
our proposed ViewDiffGait, we meticulously conduct an
extensive experimental analysis, pitting it against state-of-
the-art methods on the challenging OU-MVLP dataset. Our

evaluation spans two key categories: GEI-based methods and
silhouette-based methods, each meticulously compared and
contrasted in Table V and Table VI

Comparison with GEI-based Methods: A meticulous ex-
amination of ViewDiffGait against leading GEI-based meth-
ods: GEINet [17], GaitGANv2 [22], DV-GEIs-pre [8], and
DV-GEIs [7], reveals a noteworthy superiority. While Gait-
GANvV2, DV-GEIs-pre, and DV-GEIs did not originally per-
form experiments on the OU-MVLP dataset, we conducted
tailored experiments based on their network details to ensure
fairness. The results, meticulously presented in Table V,
unequivocally showcase that our proposed method attains the
highest mean accuracy (77.8%). This stellar performance sig-
nificantly outperforms DV-GEIs [7] by an impressive margin
of 10.6% (67.2%). The stark advancement accentuates the
unparalleled effectiveness of the diffusion generative model
in surpassing traditional GEI-based methodologies.

Comparison with Silhouette-based Methods: Silhouette-
based methods, represented by GaitSet [2] and GaitPart [4],
stand as formidable contenders with performance comparable
to our proposed ViewDiffGait. Our evaluation, meticulously
conducted for probe views under 30°, 45°, 210°, and 225°
(as illustrated in Table VI), reveals a noteworthy aspect.
Despite the typical utilization of a sequence of silhouette
images, usually comprising 30 frames, in silhouette-based
methods, our proposed approach surpasses performance ex-
pectations with minimal performance gaps.

Furthermore, the assessment of reference time, metic-
ulously detailed in Table VI, solidifies the superiority
of ViewDiffGait over silhouette-based methods. In a sin-
gle GeForce GTX 1080 environment with 12GB memory,
CUDA version 10.2, and PyTorch version 1.9.1, our proposed
method exhibits a processing speed nearly three times faster
than its counterparts. This impressive efficiency underscores
ViewDiffGait not only as a high-performing solution in cross-
view conditions but also as an expeditious option. The har-
monious balance between performance and speed reinforces
ViewDiffGait’s standing as a promising and superior solution
for real-world gait recognition applications.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we introduced a groundbreaking framework,
ViewDiffGait, aimed at addressing the critical challenge of
precision in gait recognition under significant viewpoint
variations. Leveraging a unique combination of a view pyra-
mid structure and diffusion models, ViewDiffGait emerges
as a transformative solution, capable of generating highly
accurate lateral view images through an iterative refinement
generation process. Unlike conventional large-view transfor-
mation models, our approach ensures fine view prediction,
mitigating precision issues commonly encountered in gait
recognition.

The extensive experiments conducted on the CASIA-
B and OUMVLP datasets underscore the effectiveness of
ViewDiffGait. The results reveal its capacity to generate
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TABLE III
RANK-1 ACCURACY (%) ON CASIA-B UNDER ALL VIEW ANGLES, EXCLUDING IDENTICAL-VIEW CASE.

Train/Test Tnput Gallery View NM:01-04 0°-180°
Subjects Feature Probe View NM:05-06 0 18 36° 54° 72 90° 1087 126° 144° 162 180° Mean
PTSN [9] 345 45.6 49.6 51.3 52.7 52.3 53 50.8 522 48.3 314 474
62/62 Skelet PTSN-3D [1] 38.7 50.2 55.9 56 56.7 54.6 54.8 56 54.1 524 40.2 51.9
¢letons 1 poseGait [11] 485 | 627 | 666 | 662 | 61.9 | 598 | 636 | 657 | 66 58 | 465 | 605
PoseMapGait [10] 59.9 76.2 81.7 83.1 76.8 76.1 76.3 81.1 79.6 75.4 66.1 75.7
GEI ViewDiffGait (Ours) 77.0 90.6 94.7 92.7 87.7 83.0 86.1 92.1 93.5 88.3 76.5 87.5
SPAE [21] 50.0 58.1 61.0 63.3 64.0 62.1 62.3 66.3 64.4 54.5 46.7 59.3
GaitGANv2 [22] 48.1 61.9 68.7 71.7 66.7 64.8 66.0 70.2 71.6 58.9 46.1 63.1
62/62 GEI DV-GElIs-pre [8] 64.5 76.2 81.3 80.8 77.1 72.6 74.4 78.9 80.6 75.6 63.7 75.1
DV-GEIs [7] 63.1 79.4 84.6 79.8 77.0 72.6 77.4 80.3 84.0 78.5 63.7 76.4
ViewDiffGait (Ours) 77.0 90.6 94.7 92.7 87.7 83.0 86.1 92.1 93.5 88.3 76.5 87.5
DV-GElIs-pre [8] 71.0 86.4 91.4 89.6 80.4 80.1 82.5 90.1 90.4 85.3 70.5 834
DV-GEIs [7] 72.9 85.9 89.3 87.1 83.7 81.7 82.8 87.3 91.3 87.1 74.9 84.0
74150 GEI GaitSet [2] . ; . ; ; . . ; ; . ) 80.4
ViewDiffGait (Ours) 78.9 93.7 96.6 94.3 90.7 86.7 89.0 93.5 96.1 90.9 78.6 89.9
TABLE IV
RANK-1 ACCURACY (%) ON CASIA-B UNDER ALL VIEW ANGLES, EXCLUDING IDENTICAL-VIEW CASE.
Train/Test Tnput Gallery View NM:01-04 0°-180° Inference Time Inference Time
Subjects Feature Probe View NM:05-06 367 54° 72 Mean Total (s) Per Sequence (ms)
Silhouettes GaitSet [2] 99.4 96.9 93.6 96.6 66.86 12.19
74/50 ; GaitPart [4] 99.3 98.5 94.0 97.3 93.68 17.08
GEI ViewDiffGait (Ours) 96.6 94.3 90.7 93.9 44.99 8.2
TABLE V
RANK-1 ACCURACY (%) ON OUMVLP UNDER 14 PROBE VIEWS EXCLUDING IDENTICAL-VIEW CASES.
Probe View
Methods 0° 15° 30° 45° 60° 75° 90° 180° | 195° | 210° | 225° | 240° | 255° | 270° | Mean
GEINet [17] 23.2 | 38.1 48 51.8 | 475 | 48.1 | 43.8 | 27.3 37.9 46.8 49.9 459 45.7 41 42,5
GaitGANV2 [22] 46.8 | 553 | 60.5 | 59.6 | 57.6 | 57.1 | 56.2 | 495 54.5 57.5 60.5 55.4 57.5 55.4 55.9
DV-GEIs-pre [8] 513 | 63.7 | 69.6 | 71.4 | 66.2 | 68.5 | 66.1 57.9 64.9 69.5 69.2 64.7 65.6 65.6 65.3
DV-GEIs [7] 535 | 675 | 72.1 | 73.8 | 68.7 | 70.5 | 68.5 | 56.9 67.3 70.5 71.8 66.5 68.1 64.7 67.2
ViewDiffGait (Ours) | 61.3 | 77.3 | 84.5 | 852 | 78.7 | 799 | 78.6 | 67.5 77.1 83.2 83.9 77.5 77.9 76.5 77.8
TABLE VI

RANK-1 ACCURACY (%) ON OUMVLP UNDER 4 PROBE VIEWS EXCLUDING IDENTICAL-VIEW CASES.

Train/Test Input Gallery View: Seq#01 0°-360° Inference Time Inference Time
Subjects Feature Probe View: Seq#00 30° 45° 210° 225 Mean Total (min) Per Sequence (ms)
Silhouettes GaitSet [2] 90 90.1 89 89.2 89.6 57.32 25.69
5153/5154 ) GaitPart [4] 90.8 91 90 90.1 90.5 68.33 30.63
GEI ViewDiffGait (Ours) 845 | 852 83.2 83.9 84.2 23.56 10.56

realistic images, effectively remove variations, and achieve
high performance in real-world applications. Our method not
only surpasses many existing GEI-based approaches but also
stands shoulder to shoulder with state-of-the-art silhouette-
based methods, showcasing its versatility and superiority.

Moreover, ViewDiffGait exhibits an impressive processing
speed, outpacing silhouette-based methods. This efficiency
further establishes ViewDiffGait as not just a high-performing
solution for cross-view conditions but also an expeditious
option. The harmonious balance between performance and
speed positions ViewDiffGait as a promising and superior
choice for practical gait recognition applications.

In the future, our research can explore and harness the
potential of diffusion models and view pyramids within
silhouette-based methods. Such as exploring the integration
of temporal information to capture gait dynamics over time,
potentially improving recognition accuracy and performance.
Or investigate enhancements to the view pyramid structure,

exploring ways to optimize its configuration for improved
accuracy and robustness across diverse gait patterns. This
extension aims to enhance the capabilities of gait recognition
systems, addressing challenges and unlocking new possibili-
ties in the evolving landscape of biometric identification. We
anticipate that further innovations and refinements in these
directions will contribute to the continual advancement of
gait recognition technology, providing robust and efficient
solutions for real-world applications.
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