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Abstract—Block-based video codecs such as Versatile
Video Coding (VVC)/H.266, High Efficiency Video Coding
(HEVC)/H.265, Advanced Video Coding (AVC)/H.264 etc. inher-
ently introduces compression artifacts. Although these codecs
have in-loop filters to correct these distortions, they are not
always effective due to the complexity of the noise. Recently,
deep-learning approaches emerged as a promising solution for
in-loop filtering. However, most of the previous approaches
were designed solely for learning from images and neglected
the high-frequency signals present in the reconstructed video
frames. Furthermore, some previous methods employed a multi-
level feature-extraction and feature-fusion strategy to enhance
performance. However, they utilized complex feature-extractors
while relying on naive feature-fusion methods. In this article,
we propose a novel framework called 7SF-Net, which jointly
learns from both the pixel (spatial) and frequency-decomposed
information and through powerful capability of a channel-wise
transformer, it fuses both these information to improve per-
formance. Our approach deviates from previous approaches by
employing a simple feature-extractor coupled with an advanced
transformer-based feature-fusion module. Simultaneously, 7SF-
Net introduces a few fundamental modifications in the multi-head
self-attention module of the channel-wise transformer to make it
computationally efficient. Our experimental results show that the
proposed TSF-Net achieves a Bjgntegaard Delta (BD) - bitrate
saving of up to 10.258% for the luma (Y) component under
all-intra (AI) profile outperforming the VVC baseline and other
state-of-the-art methods. Moreover, the proposed T'SF-Net with
an efficient channel-wise transformer is twice as efficient as 7SF-
Net with a vanilla channel-wise transformer.

Index Terms—In-loop filters, versatile video coding, convolu-
tional neural network, channel-wise transformer, feature fusion.

I. INTRODUCTION

DVANCEMENTS in the internet, computing, and display
technologies have revolutionized the way we consume
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video content. Today, the majority of internet traffic is domi-
nated by video data from various sources such as streaming,
conferencing, surveillance, and more. Video compression
technology is the cornerstone of these video-processing appli-
cations, enabling the efficient transmission and storage of large
amounts of video data. Over the years, with the continuous
improvement of video capture and processing technology, sev-
eral video compression standards have been developed to meet
the increasing demand. These standards include Advanced
Video Coding (AVC)/H.264 [1], High Efficiency Video Coding
(HEVC)/H.265 [2], and Versatile Video Coding (VVC)/H.266
[3] among others.

Currently, Versatile Video Coding (VVC)/H.266 [3] has
been established as the next generation video coding stan-
dard by the Joint Video Experts Team (JVET), with over
30% performance improvement over its predecessor, High
Efficiency Video Coding (HEVC)/H.265. VVC was developed
to meet the quality-of-experience (QoE) demands of end-users
as the resolution of displays (and videos) increased, supporting
ultra-high definition (UHD) videos up to 16K. Secondly, VVC
is designed to be versatile, providing coding and transport
support for a wide range of applications and content types,
such as conventional video streaming, screen content optimiza-
tion, 360° video for AR/VR, live broadcasting, and ultra-low
latency applications.

Nonetheless, VVC is not completely a new technology but
rather an evolution of HEVC, wherein most of the technologies
from HEVC are further improved, and many new coding tools
are invented to account for larger resolutions and different
contents. This implies that VVC is still a block-based hybrid
video coding standard, where a picture is partitioned into
smaller, non-overlapping blocks that go through operations
like prediction, transform, quantization, etc. in an independent
manner. These blocks are named based on the operations
applied, such as prediction unit (PU), coding unit (CU),
transform unit (TU), etc.

Like HEVC, VVC also suffers from inherent com-
pression artifacts such as blocking, ringing, blurring, and
mosquito noise due to block-based operations. In intra-
frames (I-frames), the transform coefficients from neighboring
blocks typically undergo quantization differently. Similarly,
in prediction-frames (P-frames) and bidirectional prediction-
frames (B-frames), the neighboring blocks are likely to use
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different motion vectors, resulting in discontinuities at the
block boundary. Simultaneously, the quantization applied to
transform coefficients and prediction residues at the block level
results in ringing, blurring, and other noise. If these compres-
sion artifacts are not handled properly, they can degrade not
only the subjective and objective quality of the current frame
but also propagate to successive frames if referenced by the
P- or B-frame.

VVC, similar to HEVC, is equipped with in-loop filters
[4] that correct compression artifacts. The in-loop filters in
VVC include three types of traditional filters, namely deblock-
ing filter (DBF) [5], sample adaptive offset (SAO) [6], and
adaptive loop filter (ALF) [7]. These filters are applied to
a reconstructed picture one after another in the given order.
DBF is responsible for suppressing the blocking artifacts at
block boundaries, while SAO and ALF filters are designed
to remove artifacts caused by quantization. Nonetheless, these
filters’ quality restoration capability is sub-optimal and leaves
a large room for improvement.

In recent times, deep learning has achieved numerous
breakthroughs in the field of computer vision. Deep learning
methods, such as convolutional neural networks (CNNs) [8]
and vision transformers [9], have already made great strides
in applications such as image super-resolution [10], [11], [12]
and image restoration tasks such as denoising, deblurring,
dehazing, and image enhancement [13], [14], [15], [16], [17],
[18], [19], [20]. CNN-extracted features are locally correlated,
whereas transformers can extract features with long-range
correlation. Recently, hybrid architectures that employ both
CNN and transformers [15], [21] have emerged. These hybrid
models are capable of extracting deep features with better
super-resolving and image-restoration power.

To improve the feature representation power of CNN,
researchers are now proposing complex architectures [16],
[17], [18] that operate at multi-scale feature-size. With this
“coarse-to-fine” strategy, features of various spatial sizes are
extracted (multi-scale), which are then progressively fused
from coarser to finer scales until the original scale is achieved.
Other approaches inspired by Inception-like-network [22] uti-
lize kernels of variable sizes to derive features with various
receptive-field and fuse them to enrich the feature semantics
[23]. Prior works [24], [25], [26], [27], [28], [29] have also
demonstrated the benefit of utilizing frequency decomposition
(Discrete Cosine Transform (DCT) and Wavelet Transform) in
conjunction with CNN to improve feature representation for
learning low-level vision tasks. DCT and Wavelet-transform
decompose a signal (image) into multiple frequency bands
that can be utilized as crucial prior information for image
restoration tasks where high-frequency contents such as noises
need to be discriminated from the signal.

Inspired by the success of CNN in image restoration tasks,
researchers have successfully implemented CNN to fill the per-
formance gap of the in-loop filter of HEVC and VVC. Plenty
of works have also implemented CNN as a post-processing
block in both HEVC and VVC to improve the final picture
quality. A few works have even utilized CNN to improve or
replace conventional coding tools like intra-prediction [30],
inter-prediction [31], etc. Researchers have also trained CNN-
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Fig. 1.

Proposed TSF-Net as an In-loop Filter in VVC architecture.

based auto-encoder-style neural networks in an end-to-end
fashion for applications like image compression [32] and
video compression [33]. In such approaches, images and video
frames are represented by features at the bottleneck layer of an
auto-encoder. Most of the learning-based in-loop filter works
are largely inspired by CNN-based image restoration works.

In this article, we design a hybrid model consisting
of both convolutional and transformer layers for feature
extraction and feature fusion, respectively, as an in-loop
filter for VVC. We refer it as Transformer-based Spatial
and Frequency-Decomposed Feature Fusion Network (TSF-
Net). Moreover, we not only use pixel information but
also frequency-decomposed (DCT’ed image) information to
improve the feature representation capability of the model,
which was largely ignored by prior articles while designing
a learned in-loop filter. We treat each DCT coefficient as
a separate channel, thereby creating DC and AC channels.
Convolutional layers are then utilized to extract deep features
from pixel and DCT’ed information, and a transformer layer
is utilized to fuse DCT features into pixel features.

The transformer utilized in this work has a self-attention
module designed to perform attention along the channel where
each channel is treated as a token. We prepare pixel input
by pixel-unshuffling an image, which distributes local pixels
along the channel. Similarly, DCT’ed input is prepared by
separating DCT coefficients along the channel. This requires
a proper mechanism to extract features from local pixels as
well as DC and AC coefficients distributed along the channel.
Thus, we consider a transformer layer with similar function-
ality called Spectral-wise Multi-head Self-attention (S-MSA)
from the MST++ [34] article. Nonetheless, we fundamen-
tally redesign the S-MSA layer to accomplish feature fusion
between pixel (spatial) and DCT’ed (frequency-decomposed)
features efficiently.

The contributions of this article are summarized below.

e We propose TSF-Net, a learned in-loop filter for
VVC, which learns from both spatial (pixel) and
frequency-decomposed information and offers state-of-
the-art performance under all-intra (Al) profile for luma
(Y) component.

e Our proposed TSF-Net is highly scalable as it
can be constructed simply by cascading multiple
Residual Fusion Block (RFB) similar to Residual
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Fig. 2. Luma and its side-information from VVC utilized as input to the TSF-Net.

DCT’ed image

Fig. 3.
to get 16-channel (N/4) x (N /4) frequency-decomposed image.

Blocks in ResNet architectures. Each RFB bun-
dles together convolution-based feature processing and
transformer-based feature fusion operation.

o We utilize S-MSA from MST++, a channel-wise trans-
former layer, and redesign it for feature fusion. We further
propose efficient S-MSA (E-SMSA) by making fundamen-
tal modifications in the self-attention module. E-SMSA
improves the feature processing time of TSF-Net nearly
by twice.

o We utilize large patch inputs and while pixel-unshuffle
them, we are able to decrease the feature processing
time and increase the receptive field. Additionally, RFB
processes spatial and frequency-decomposed features in
parallel, contributing to a further reduction in feature
processing time.

The rest of the article is organized as follows. In Section II,
we go over the prior in-loop filtering technologies related
to classical and deep-learning approaches. In Section III,
we lay out the details of our proposed architecture and related
methods. Section IV describes the implementation and training
details of our method as an in-loop filter. In Section V,
we present the findings of the experiments processes. Finally,
we conclude our work and its findings in Section VI.

II. RELATED WORK
A. Traditional In-Loop Filters

HEVC adopts two filters: deblocking filter (DBF) [5]
and Sample Adaptive Offset (SAO) [6], as in-loop filters.
Deblocking filter is first applied to the reconstructed sample
which attenuates the discontinuities at the block boundary.
The deblocked picture is then processed by the SAO to
further mitigate the ringing artifacts and corrects the signal
(image) by applying the offsets to the pixels. The offset values

. Frequency-decomposed input

Frequency-decomposed input generation pipeline. First 4-point 2D-DCT is applied on a N x N image and then it is pixel-unshuffled on 4 x 4 block

which are calculated based on pixels’ statistics are sent to the
decoder. VVC keeps both DBF and SAO filters, however, adds
three more filters: Luma Mapping Chroma Scaling (LMCS)
[35], Adaptive Loop Filter (ALF) [7] and, Cross-Component
Adaptive Loop Filter (CC-ALF) [36]. LMCS is implemented
to improve coding efficiency through two processes: luma
mapping (LM) and chroma scaling (CS). LM remaps the
luma code values within the complete codeword range at a
specific bit-depth. CS compensates for the impact of luma
mapping on the relative chroma coding bit costs. ALF is
designed to minimize the mean square error (MSE) between
the original and reconstructed picture. The idea of ALF is to
classify non-overlapping blocks based on their local sample
gradient and apply a specific Wiener-based filter among many
to improve signal fidelity. The type of filter used is signaled
in the bitstream. CC-ALF performs the Wiener-based filtering
correction on the chroma sample utilizing the co-located and
corrected luma sample. These filters are primarily hand-crafted
and statistical-based. While ALF has a slight learning capa-
bility, its efficiency is very much limited. This leaves a large
room for improvement to exploit.

B. Learned In-Loop Filters

A plethora of articles already exist that successfully imple-
ments convolution neural networks (CNN) as both in-loop
filters and post-processing block in HEVC and VVC. Recently,
the powerful capability of vision transformers (ViT) is also
being exploited in the image and video compression domain.
In this section, we will discuss some notable previous
learning-based approaches for HEVC and VVC.

1) Learning-Based Approaches for HEVC: One of the early
works in learned in-loop filters is IFCNN [37]. IFCNN is an
SRCNN [10] (an image super-resolution) based architecture
implemented as an in-loop filter in HEVC by replacing SAO.
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This 3-layer CNN architecture outperformed HEVC by up
to 2.8% and 2.6% in low-delay(LD) and random-access(RA)
configurations. Similarly, [38] proposed MIF-Net, a multi-
frame in-loop filter for HEVC by replacing both DBF and
SAO. MIF-Net includes a reference frame selector (RFS) that
selects the reference frames with the best quality and content
similarity for the current unfiltered frame. Then, MIF-Net
utilizes both spatial and temporal information across multiple
frames to enhance the current unfiltered frames. With this
strategy, MIF-Net was able to outperform the HEVC baseline
and other state-of-arts approaches. Likewise [39] proposed
Squeeze-and-Excitation CNN (SEFCNN), a switchable in-
loop filter positioned in parallel to HEVC’s in-loop filter.
By implementing two subnets: Feature Extraction (FEX) and
Feature Enhancement (FEN), SEFCNN was able to learn very
high-quality features. FEX utilized convolutional layers to
extract deeper features, while FEN employed squeeze-and-
excitation layers to enhance features by enabling channel
interaction. SEFCNN achieved average of 9.96%, 8.04%, and
7.60% BD-Rate saving on Al, LDP and RA configurations,
respectively, compared to HEVC. Further, [40] proposed a
Recursive Residual Convolutional Network (RRCNN) in-loop
filter for HEVC. In RRCNN, the authors demonstrated the
increased capability of CNN by proposing multi-path residual
and recursive learning. With recursive learning, RRCNN uti-
lized the same layers repeatedly for deeper feature extraction.
Unlike previous works, this work trained the same model for
multiple bitrates achieving an average bitrate savings of up to
8.7% on intra-frames.

Inspired by RRCNN, [41] proposed Lightweight Mul-
tiattention Recursive Residual CNN-based In-loop Filter
(LMA-RRCNN) as an alternate to HEVC’s in-loop filter.
LMA-RRCNN, similar to RRCNN, utilized parameter sharing
and feature reuse to reduce model parameters and increase
model depth, while simultaneously learning features at multi-
ple spatial scales and frequently fusing them. LMA-RRCNN
was also able to handle video compressed at various bitrates
and of various frame-types via single model while achiev-
ing excellent bitrate savings upto 13.7% and 11.87% in Al
and RA profiles, respectively. Another work [42], proposed
Frame-wise filtering for Quality Enhancement based on CNN
(FQE-CNN), which also adopted the multi-level feature extrac-
tion and feature fusion approach similar to LMA-RRCNN.
FQE-CNN utilized an inception-like residual learning block
(IResLB) to extract features and occasionally aggregated the
features between spatial levels through concatenation and
convolution. With this multi-level feature learning strategy,
FQE-CNN achieved superior performance compared to the
HEVC baseline, surpassing it by 11.1% in all-intra (AI)
configurations.

2) Learning-Based Approaches for VVC: With the emer-
gence of VVC as the latest video coding framework, a plethora
of fascinating new research has been generated on the topic
of learned in-loop filters. For example, [43] proposed a dense
residual convolutional neural network (DRN) based in-loop
filter (DRNLF) for VVC and placed it after DFB and before
SAO and ALF. By utilizing dense shortcuts in DenseNet [44]
and feature reuse, DRNLF achieved 1.52%, 1.45%, and 1.54%
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BD-rate saving in Al, RA, and LD coding configurations.
Similarly, [45] proposed a multi-gradient convolutional neural
network-based in-loop filter (MGNLF) for VVC, where the
network also considers divergence and second-derivative of
the frame along with the frame itself to improve the quality
of the frame. By utilizing contour and structural information
of a frame, MGNLF was able to reduce BD-rate savings up
to 3.29% on average. MFRNet [46], however, is proposed as
both a post-processing and an in-loop filter on both HEVC and
VVC. As an in-loop filter, MFRNet was placed after SAO (for
HEVC) and ALF (for VVC). MFRNet utilized highly dense
shortcuts for multi-level feature reuse and achieved coding
gain (BD-rate VMAF) of up to 16% and 5.1% for HEVC
and VVC, respectively. Similarly, [47] proposed Variable CNN
(VCNN), an in-loop filter specifically designed to handle
videos compressed at different quantization parameters (QPs)
and frame-types (FT) using a single model. VCNN incor-
porated a QP attention module (QPAM) and a FT attention
module (FTAM) in its residual block (RB). These modules
recalibrated the features through channel-attention, allowing
VCNN to adapt to a wide range of QPs and FTs. VCNN
outperformed VVC baseline by upto 3.63%, 4.36%, 4.23%,
3.56% in Al, LDP, LD and RA configurations. Likewise, [48]
proposed MSCNN, in which two U-Net like architectures
are utilized to extract features from reference and current
frames while aggregating both feature through gated-fusion.
MSCNN achieved 3.762% bitrate saving in Al configuration.
Likewise, as a response to the call for proposal (CfP) on
“Neural networks on video coding” [49], JVET received
[55] as a contribution from ByteDance. This work proposed
Deep In-loop filter with Adaptive Model selection (DAM)
and is currently adopted as part of the standard for further
exploration.

Interestingly, all previous works ignored high-frequency
information while designing an in-loop filter. Nonetheless, [50]
utilized both spatial(pixel) and frequency decomposed (DCT)
information and designed a CNN architecture that extracted
both pixel and DCT features while fusing them at multiple
stages. The proposed work, on average, achieved a 9.7% BD-
rate reduction compared to the VVC baseline. In this work,
convolution-based feature fusion between pixel and DCT
features was proposed. Later, the authors extended the work
by proposing MSTFNet [51] where convolution-based feature
fusion was replaced by transformer-based feature fusion and
significantly improved the BD-rate savings. MSTFNet utilized
a transformer with channel-wise self-attention to aggregate
pixel and DCT features at multiple stages. This work demon-
strated a successful implementation of a transformer along
with CNN as an in-loop filter.

To improve the performance of learned in-loop filters,
researchers extended single-level architecture to a more
advanced multi-level architecture, incorporating feature inter-
action among these levels. However, previous methods
[41], [42] primarily focused more on designing a com-
plex feature-extractor at each levels but relied on naive
feature-fusion approaches. In this article, we take a different
approach by utilizing a simple feature-extractor while imple-
menting transformers-based a more advanced feature-fusion
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module. Furthermore, our method involves fusion of spa-
tial and frequency-decomposed features. This is in contrast
to previous approaches where feature-fusion occurs only
between spatial-features but at different scales. Our current
work (TSF-Net) can be considered an extension of our prior
work MSTFNet [51]. Although both employ spatial and
frequency-decomposed inputs and a transformer-based fea-
ture aggregation scheme (S-MSA), we drastically reduce the
number of trainable parameters in TSF-Net by revamping
the overall architecture completely. In contrast to MSTFNet,
which only fuses features at 3 stages, TSF-Net fuses feature at
20 stages using 20 residual fusion blocks (RFB). Furthermore,
TSF-Net utilizes efficient S-MSA that is twice as efficient as
the vanilla S-MSA used in MSTFNet.

III. PROPOSED METHOD

In the decoder of VVC architecture, we integrate
our learned in-loop filter, Transformer-based Spatial and
Frequency-Decomposed Feature Fusion Network (TSF-Net),
by replacing all the modules: DBF, SAO, ALF (CCALF) of
the in-built in-loop filter. This integration is illustrated in figure
1. Unlike the in-built in-loop filter of VVC, TSF-Net does not
utilize any filter control data and hence, it is not communicated
to the entropy encoder. In this work, we consider three types
of information: reconstructed picture, partition information,
and residual image as input to the TSF-Net. The reconstructed
picture serves as the primary input while partition and residual
image are crucial side information that convey information
related to the block boundary and prediction error respectively.
The proposed TSF-Net is presented in figure 4. It receives five
distinct types of inputs: three spatial inputs and two frequency-
decomposed inputs, generated from the reconstructed picture,
partition, and residual image. In this section, we will first
describe the methods we adopted to prepare the inputs for
TSF-Net, followed by the details of TSF-Net itself.

A. Generation of Spatial and Frequency-Decomposed Inputs

The proposed TSF-Net utilizes three types of information:
reconstructed (), partition (P), and residual (R) image as
inputs. An example of these input images are shown in figure
2. The reconstructed picture (/) is an unfiltered picture gener-
ated after addition of prediction image and residual image. The
residual image (R) is the difference image of the original and
the predicted image. The partition (P) image is the coding-
unit (CU) level block partition information. In this study,
we apply TSF-Net only on the luma (Y) component. Therefore,
I represents the luma component of the reconstructed picture,
whereas R and P correspond to the associated residue and
partition information respectively. Let 2H and 2W be the
height and width of these /, R, and P images.

In the next step, three spatial inputs are created from I,
R, and P images, and two frequency-decomposed inputs
from I and R images, respectively. The I and R images are
pixel-unshuffled on a 2 x 2 block to create two spatial inputs,
Iy € RYHXW and Ry € R¥>HXW respectively. Here, pixel-
unshuffling on a 2 x 2 block converts an 2H x 2W image to
a 4-channel H x W image. Since the boundary information
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is just a single pixel wide, the pixel-unshuffling operation
would break the structure in the partition image P. Therefore,
the partition image P is fed to the network unchanged, and
thus spatial input Py = P e RVZHX2W_ Gimilarly, two
frequency-decomposed inputs are generated by applying a 4-
point 2D discrete cosine transform (DCT) on the reconstructed
I and residual R images. The resulting image has a DC
coefficient and 15 AC coefficients in every non-overlapping
4 x 4 block. In the next step, pixel-unshuffling is applied on
the non-overlapping 4 x4 blocks of the 2H x2W sized DCT’ed
image to obtain a 16 x (H/2) x (W/2) image, where the first
channel is a DC-image and rest of the 15 channels are the AC-
images. Let Iy € RI16x(H/2)x(W/2) Rr e RI6*H/2x(W/2) pe
the pixel-unshuffled version of the DCT’ed image of / and
R, respectively. We refer to them as frequency-decomposed
inputs. The steps to obtain frequency-decomposed inputs are
shown in figure 3.

The spatial inputs Iy and R; are normalized by dividing
them with the peak value of 25 _ 1, where b is the number of
bits used to represent /. P; is a binary image with the value of
1 at the boundary and O everywhere else, so it does not require
normalization. In the DCT domain, however, the DC coeffi-
cient has the largest value and AC values gradually decrease.
Thus, frequency-decomposed inputs /s and Ry are normalized
channel-wise using “min-max” normalization method. The
channel-wise minimum and maximum values {min;, max;} €
RIIx1 and {ming, maxg} € R11*! of I, and R respec-
tively, are first computed from the training dataset. For this,
we utilize 25000 randomly cropped co-located patches of
size 256 x 256 from I and R images. The same channel-
wise “min-max” values obtained from the training dataset are
used for normalizing the frequency-decomposed inputs during
inference.

B. Description of TSF-Net Architecture

The overall architecture of TSF-Net is presented in figure
4. The proposed network is slightly inspired by EDSR [52]
as it includes both global and feature-level skip connections.
TSF-Net can be better explained by dividing it into three parts:
head, body, and tail.

1) Head: The head of  TSF-Net  comprises
four “conv—PReLU—conv” blocks and one
“conv—PReLU—conv—avg-pool”  block. The two

spatial inputs I; and R; and two frequency-decomposed

inputs Iy and Ry are processed through their
respective  “conv—PReLU—conv”’ blocks. We wuse the
“conv—PReLU—conv—avg-pool” block to  process

the partition input Ps. Since Py is at its original size
2H x 2W, the average-pooling layer (‘“avg-pool”) of
“conv—PReLU—conv—avg-pool” reduces it to H x W. The
“conv—PReLU—conv”’ and ‘“conv—PReLU—conv—avg-
pool” blocks transform spatial and frequency-decomposed
inputs into the initial feature representation. Let
Cp,n=1{1,2,3,4,5} represent the channel-size of the initial
features. Similarly, let F/ € RCVHXW  FR ¢ RO XHXW 4pq
FF e RG>*HxW pe the initial feature representation of spatial
inputs Iy, Ry, P; respectively, and F ; € RCxH/D=x(W/2) gpq
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RFB. 1t includes two branches with a set of “conv—relu—conv” block for extracting deeper features from spatial and frequency-decomposed features,
a cross-connection through transposed convolution (T-conv) for upscaling frequency-decomposed feature and an E-SMSA transformer layer for efficient feature
fusion of concatenated spatial and frequency-decomposed features. Both branches include a skip connection making the fusion block essentially a residual

block.

F Jlf € RE*H/Dx(W/2) pe the initial feature representation
of frequency-decomposed inputs /r, Ry, respectively. Next,
spatial feature (Fy) and frequency-decomposed feature (Fy)
are obtained by concatenating corresponding spatial and
frequency-decomposed initial features.

Fy = concat({F}, FX, FI'Y),  Fp = concat({F}, F{})

(1
where concat(-) is a concatenation operation. In this
article, we  configure ‘“conv—PReLU—conv”’ and

“conv—PReLU—conv—avg-pool” block such that initial
features channel-size become C; 48, Cy 24, C3

8,C4 = 16,C5 = 16. Therefore, after concatenation
Fy € ROXHXW Co = 96 and Fy e ROr*HxW/2)
Cr =32

2) Body: The body of TSF-Net is composed of cas-
cading B Residual Feature Block (RFB), as illustrated in
figure 5 (a). An RFB receives spatial features (F;) and
frequency-decomposed features (Fy) through its two separate
inputs and produces more refined spatial features (Fy) and
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frequency-decomposed features (Fy) through its two outputs.
In an RFB block, the frequency-decomposed features (Fy)
get fused into the spatial features (F;) through an S-MSA
transformer layer. Thus, by stacking B RFB blocks, we fuse
and refine spatial feature (F;) and frequency-decomposed
feature (Fy) at multiple stages. The body also includes a
feature-level skip connection between the initial spatial-feature
input and the final spatial-feature output of the body, which is
illustrated in figure 5 (a). The details of the Residual Feature
Block (RFB) are described in Section III-C.

3) Tail: The tail of TSF-Net includes a convolution layer
(“conv”’) and a pixel-shuffle layer (“Pix-SFL”). The final
spatial feature Fy € RE>*H>*W = 96 output from the body
of TSF-Net is processed by the “conv” layer, which reduces
the channel size to just 4 and produces Fy € R >*H#*W where
C; = 4. Lastly, the “Pix-SFL” layer assembles the F; €
R>HXW into a single channel feature Fy, € RI*CH)xCW)
The global skip-connection at the end adds the input recon-
structed picture (/) back to the final spatial feature Ffj,
resulting in the clean reconstructed picture (Ic).

C. Residual Fusion Block (RFB) as Feature Fusion Block

The primary building block of TSF-Net is the Residual
Fusion Block (RFB) which is illustrated in figure 5 (b).
The inputs are the spatial (Fy) and frequency-decomposed
(Fy) features, and the outputs are the deeper and more
refined spatial (Fy) and frequency-decomposed (Fy) features.
First, the residual features are extracted from Fy, and Fy
by employing two sets of “conv—ReL.U—conv” blocks and
later they are concatenated. Let, F, € REs*HXW and F } IS

RCs*(H/2)x(W/2) be the residual features corresponding to Fy
and Fy. Since the feature size of F; is twice the size of
F., the frequency-decomposed residual-feature F’; is upscaled
by a factor of two using transposed convolution (“T-conv’)
before concatenating it with F]. The concatenated feature
F = concat({F], F}}), F € REXHXW € = Cs + Cy is then
passed to Efficient Spectral-wise Multi-head Self-Attention (E-
SMSA) layer for feature fusion. The E-SMSA transformer layer
fuses the residual features F; and F } into a next stage spatial
residual feature F; I'e RE>*HXW 1 astly, two skip connections
are introduced to the residual features F!! by adding F’ and
F;. Similarly, one skip connection is also introduced to F JC by
adding frequency-decomposed features Fy to it.
Fi=F&(F ®F"), Ff=F®F} )
Thus, the final output of the RFB is again the refined spatial
feature F; and frequency-decomposed feature Fy. The skip
connections from input to output convert the fusion block
into a residual fusion block. The residual connection, which
is inspired by the ResNet [53], allows us to stack multiple
RFB blocks and make the network much deeper while still
being able to converge during training. The simplicity of the
design choice of RFB enables TSF-Net to scale it to various
other low-level vision tasks in two ways: first, by adjusting
the arbitrary number of RFB blocks, and second, by varying
the channel size (Cy and Cy).
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D. Efficient Spectral-Wise Multi-Head Self-Attention
(E-SMSA)

We incorporate spectral-wise multi-head self-attention (S-
MSA) transformer layer, from MST++ [34] into our proposed
network. However, we have redesigned it to serve as a
channel-wise feature fusion layer within the RFB block. Addi-
tionally, we have modified the self-attention mechanism of the
original S-MSA to make it computationally efficient. Since E-
SMSA is present in each RFB block, these reformed aspects
significantly improve computational efficiency. Figure 6 pro-
vides an illustration of E-SMSA.

Suppose, X;, is the input to the E-SMSA where X;, =
F e RExHxW x. is then averaged-pooled (‘“avg-pool”)
over b x b block to get X| € REXH/D)x(W/b) - x5 then
reshaped as X; € RW¥ W/EHXC and linearly projected into
query Q € RHEW/HXC and key K € REW/B)XC | Similarly,
Xi, is reshaped into X» € RFW*C and linearly projected into
value V e RHWXC,

0=X,W¢, K=x,Wk Vv=xw’ (3)

where W9, WK and WV € R€*C are the weights of 3 single-
layer perceptrone. In a separate branch, X;, is reshaped
as X3 € RE*WHW) and processed with 1D-convolution of
kernel-size 1 x 1 to reduce the feature to X3 € RCs<HW)
X3 is again reshaped as X3 € RE>*H*W and processed
by “G-conv—GeLU—G-conv”’ where “G-conv” stands for
“grouped-convolution”. Now the output is reshaped into
position-embedding Ep, € REW)XCs

Next, @, K and V are subdivided along channel into &
heads, such that each head Q; e RUW/PHx(C/W) k. ¢
RHW/EHX(C/h) gpq Vi € REWX(C/M) where i = 1,2, ... h.
Now, self-attention is computed between the key and the query
across the channel within each head. E-SMSA treats each
channel as a token and computes attention among them within
a head.

A; = softmax(o; KT Q1),  A; e REC/M>C/h (g

where o; € R! is a learnable parameter employed to adapt
self-attention A; during matrix-multiplication K l.T Q;. For sin-
gle head h = 1, self-attention matrix A; € R¢*C which
is depicted in figure 6 for simplicity. Next, value V; is
matrix-multiplied with self-attention matrix A; to generate a

fused-feature H; for i'" head.
H[ — V'iTAia Hi c R(HW)X(C//’!) (5)

The fused feature H; from all & heads are now concatenated
and linearly projected to generate projection-embedding E .
E,r = (concat (H)W, E, e REW*C i — 12 h

(6)
where W € RC*Cs is the learnable weights of a single-layer

perceptrone. Finally, the output of E-SMSA layer is computed

as below.
Xour = Epr + Ep()a Xour € R(HW)XCS (N

Here, X, is then reshaped into residual feature output F;
as mentioned in the section III-C.



KATHARIYA et al.: JOINT PIXEL AND FREQUENCY FEATURE LEARNING AND FUSION

4077

_I

X
Position 1 out
Embedding e
s N
Projection .. ..
Embeddin: . ~hh Spectral
1x1 Self-Attention
W
Transpose
GelU
Ix1 Ix1
wY
Grouped-Convolution m 1D-Convolution

Fig. 6. Efficient Spectral-wise Multihead Self-Attention (E-SMSA).

IV. NETWORK IMPLEMENTATION
A. Training/Validation Dataset Preparation

We train our proposed TSF-Net with Div2K [54] dataset,
which includes 900 high-quality still images of 8-bit depth.
Out of 900 images, we consider 875 images for training the
TSF-Net and the remaining 25 for validating the network.
To align the TSF-Net to operate in the YUV color space,
we convert the 8-bit RGB images in the Div2K dataset
to YUV 4:2:0 10-bit color format. Then, we encoded the
YUV images with the VVC reference software, VIM-11.0,
at four quantization-parameter (QP) rate points: 27, 32, 37 and
42 following the common test condition (CTC) under all-
intra (Al) profile. However, we encoded the YUV images by
disabling all the components (DBF, SAO, ALF(CCALF)) of
the default VVC in-loop filter as the TSF-Net replaces the
whole in-loop filter block in the VVC codec. In this article,
we only consider the luma (Y) component for testing with
TSF-Net. Therefore, for each of the 900 images we collected
its VITM-11.0 encoded luma (Y) component and corresponding
partition and residue information to construct training and
validation patches.

B. Network Training

To improve the variance in the training sample, we generate
training patches on the fly during network training. The
training involves cropping 50 patches of size 256 x 256 from
a luma image (I) and its co-located partition (P) and residue
image (R). The strides of a window are computed to be
random but to lie within a certain range, such that the extracted
50 patches cover a whole image but are also slightly different
in the later epochs. During one epoch, the network sees a
total of 875 x 50 = 43750 training patches. To augment the
data, the training patches are randomly flipped horizontally and
vertically. On the other hand, validation patches are prepared
only once before network training. From 25 validation images,

m Average-Pooling

25 x 100 = 2500 validation patches of size 256 x 256 are
created with a fixed stride. Once the stride is fixed, the same
set of validation patches is created for all sets of experiments.

Since the training and validation patch size is H = W =
256, the size of spatial input and frequency-decomposed input
to TSF-Net is 128 x 128 and 64 x 64, respectively. In this article,
we cascade B = 20 RFB blocks. All 2d-convolution operations
involved in TSF-Net employ a kernel of 3 x 3. Similarly,
we set the spatial feature channel size to C; = 96 and
frequency-decomposed feature channel size to Cy 32.
We set h = 4, so E-SMSA operates with 4 heads and the
size of each self-attention matrix is A; € R32*32,

We train four separate models for four different Q P values.
However, we first train a model from scratch at QP
42 utilizing training/validation patches encoded at the same
Q P. The models for the other Q P values (Q P = {37, 32, 27})
are then initialized with the weights from the pre-trained model
at QP = 42 and fine-tuned with the patches encoded at the
respective Q P values. This approach allows the rest of the
model to train faster and potentially with better performance.
We adopt the Adam optimizer with 8 = (0.9, 0.999) and
Li-loss to optimize the network parameters. The model at
QP = 42 is trained for 150 epochs, while the models for
the other QP values (QP {37,32,27}) are trained for
only 100 epochs. The initial learning rate of the model at
QP = 42 is set to 10_4, while for the other models, it is
initialized to 0.5 x 10~*. We use a cosine-annealing learning-
rate scheduler to decrease the learning rate until 107 during
training. The batch-size is set to 16 for all model training.

V. EXPERIMENTAL RESULTS AND DISCUSSION

We evaluate the BD-rate performance of TSF-Net at four
QPs={27, 32, 37, 42} against the VVC reference software,
VTM-11.0 (with all in-loop filters enabled), under the all-
intra (AI) configuration. To test TSF-Net, we disable all the
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Fig. 7. Rate-Distortion (RD) plots for few test sequences comparing 7SF-Net with VVC reference software. The Y-PSNR (dB) are evaluated at 4 QPs={42,

37, 32, 27}.

Fig. 8.

Left: An original frame from CatRobot sequence. Middle: The same frame coded at QP=32 and processed with VTM-11.0’s In-loop filters. Right:

The same frame coded with VTM-11.0 at QP=32 and processed with TSF-Net.

components of the in-loop filter of VVC reference software
and replace it with TSF-Net. We choose 19 common test
sequences [56] recommended by JVET to evaluate the per-
formance of TSF-Net. The selected 19 sequences are from
5 classes: Al (3840 x 2160), A2 (3840 x 2160), B (1920 x
1080), C (480 x 832) and D (240 x 416). These test sequences
are listed in Table II.

A. Comparison of TSF-Net With VVC’s In-Loop Filter

The rate-distortion (RD) plots (Bitrate vs “Y’-PSNR) for a
few test sequences are shown in figure 7. The RD-plots clearly
indicate that the TSF-Net, as an in-loop filter, outperforms

VTM-11.0’s in-loop filter at all Q P values. Moreover, except
for a few sequences, the performance gap between VTM-
11.0 and TSF-Net gets widens at lower QPs or correspondingly
at larger bitrates. This suggests that our method tends to per-
form better at lower QPs compared to VVC. Blocking is less
pronounced at lower bitrates and the distortions are primarily
due to quantization noises. Therefore, the above observation
points to the benefit of using frequency-decomposed input as
prior information to the high-frequency content of an image.
Here, TSF-Net is able to intercept high-frequency noises even
in relatively good quality images (i.e. at higher bitrates) and
correct them accordingly. This also demonstrates the powerful
feature fusion capability of E-SMSA layer.
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(a) original

Fig. 9.

(b) input
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(c) output

Left: An original frame from BasketballPass sequence. Middle: The same frame coded and reconstructed at QP=42 by VITM-11.0 but yet to be

processed by the in-loop filter. This is also an input to TSF-Net. Right: The output frame of TSF-Net after processing the frame shown in the middle.

For example, figure 8 illustrates the difference in the
reconstructed picture processed by VVC’s in-loop filter and
TSF-Net. The middle and right figures are reconstructed
versions of the left figure, coded and reconstructed by VTM-
11.0 at QP = 32. While the middle one is processed by
VTM-11.0’s in-loop filter, the right one is processed by the
proposed TSF-Net. The zoomed-in pictures clearly demon-
strate the difference between the two methods. The picture
processed by VVC’s in-loop filter exhibits ringing effects
around the edges of the ring and appears slightly fuzzy.
In contrast, the picture processed by TSF-Net has almost no
ringing noises and looks sharper.

Similarly, figure 9 reveals an interesting aspect of TSF-
Net: its slight generative capability. The leftmost figure is an
original frame taken from BasketballPass. It is then coded at
QP = 42 by VIM-11.0 (with in-loop filter disabled) and
given as an input to TSF-Net which is shown in the middle
figure. While the rightmost figure displays the processed
output from 7SF-Net. The vertical strip shown in the original
figure, within the red rectangle, is shorter in the input frame
and its reflection is absent on the floor. However, in the output
frame generated by TSF-Net, the same strip is longer than in
the input frame, and its reflection on the floor is appropriately
generated. This confirms the generative capability of TSF-Net.
This capability may be attributed to the fact that 7SF-Net has
learned to generate new information employing locality, or that
the information was present in the input frame but not visible
to the human eye, and TSF-Net made it more pronounced.

We also present the time complexity of 7SF-Net as an
in-loop filter in Table I. Since, TSF-Net is implemented only
on the decoder side, the table includes the decoding time com-
plexity against VVC when its in-loop filters are enabled. The
decoding time complexity is calculated as 100 X (tes1/tref),
where f.5; is the decoding time of VVC with TSF-Net as
in-loop filter and 7. is the decoding time of VVC with its
in-loop filter enabled. For each sequence, we obtain the final
decoding time complexity by averaging them over all the QPs.
Table I presents these values averaged over per class and all
the sequences. From the table, we observe that our proposed
TSF-Net also suffer the same fate as most other learning-based
solutions, which is being slower. While analysing decoding
time complexity per class, we notice that the complexity
increases when video resolution decreases. One promising
future research direction would be to improve the decoding
time complexity.

TABLE I

DECODING TIME COMPLEXITY OF VVC WITH TSF-NET (ON GPU) CoM-
PARED TO VVC WITH ITS IN-LOOP FILTER ENABLED

Class Decoding Complexity (%)
Al 965.87
A2 713.11
B 1369.49
C 1987.32
D 4966.89
Overall | 2089.54

B. Comparison of TSF-Net With Other Learning-Based
In-Loop Filter

We also obtain the BD-rate and BD-PSNR performance of
three additional learning-based methods: Deep In-loop Filter
with Adaptive Model Selection (DAM) [55], [57], Uformer
[14], and MSTFNet [51]. These methods were also evaluated
against VIM-11.0, and their BD-rate and BD-PSNR perfor-
mance, along with TSF-Net, for all 19 sequences can be found
in Table II. Additionally, Table III presents the number of
parameters (in million) and inference time (in seconds) for
all four models. The inference time was tested on a Linux
system with PyTorch 2.0 and Nvidia RTX A6000 GPU and
is the average time required to process an input image of size
256 x 256 over 100 rounds.

The Deep In-loop Filter with Adaptive Model Selection
(DAM) was proposed by ByteDance to a JVET meeting as a
response to the CfP on “neural network-based video coding”
and has also been studied in [57]. DAM is placed before ALF
while disabling DBF and SAO filters in VIM-11.0. During
inference, patches are processed at the coding unit (CU) level,
and for intra-coding, a CU-level flag is sent to indicate whether
the CU-block is processed by DAM or VVC’s default in-loop
filter as a rate-distortion (RD) optimization. In contrast, there is
currently no such optimization proposed with TSF-Net. During
inference, TSF-Net processes high-resolution images at a patch
size of 512 x 512, while low-resolution images (smaller than
512 x 512) are processed as a whole. Comparing the coding
performance from Table II, we see that the BD-rate and BD-
PSNR gain of our proposed TSF-Net is larger than that of
DAM for all sequences (except BQTerrace). On average, TSF-
Net outperforms DAM in all classes and leads by —0.477%
and 0.017dB in BD-rate and BD-PSNR gain respectively.
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TABLE II
COMPARISON OF BD-RATE(%) AND BD-PSNR(dB) PERFORMANCE ON LUMA COMPONENT UNDER ALL-INTRA (AI) CONFIGURATION

Class Test DAM [55] Uformer [14] MSTFNet [51] TSF-Net
Sequences BD-BR | BD-PSNR | BD-BR | BD-PSNR | BD-BR | BD-PSNR | BD-BR | BD-PSNR
Tango2 -10.015 0.241 -11.661 0.282 -11.099 0.267 -11.154 0270
Al (2160x3840) | FoodMarketd | -9.471 0.384 -10.162 0414 -9.687 0.394 9.843 0.401
Campfire 6.759 0.157 -7.640 0.176 -7.401 0.171 -7.799 0.180
CatRobot -11.290 0.408 -12.694 0.460 -11.910 0.430 -12.129 0.441
A2 (2160x3840) | DaylightRoad2 | -12.220 0313 -14.202 0.367 -13.519 0.348 -13.874 0359
ParkRunning3 | -7.233 0.396 -7.042 0.384 -7.109 0.388 -7.365 0.403
MarketPlace -7.466 0.298 -8.268 0.332 -8.037 0.322 8212 0.330
RitualDance | -10.366 0.529 -10.503 0.536 -10.320 0.526 -10.437 0.532
B (1080x1920) Cactus -9.301 0.349 -10.892 0411 -10.476 0.396 -10.785 0.407
BasketballDrive | -10.410 0.318 -11.066 0.339 -10.920 0.335 -11.025 0.338
BQTerrace -10.813 0.395 -10.485 0.383 -10.553 0.387 -10.741 0.392
BasketballDrill | -13.571 0.673 -13.005 0.640 -13.740 0.683 -13.690 0.680
C @s0x832) BQMall -11.285 0.627 -10.314 0.570 -11.364 0.631 -11.431 0.635
PartyScene -7.931 0471 -7.482 0.443 -8.049 0.479 -7.974 0.474
RaceHorses -7.539 0.370 -7.093 0.348 -7.922 0.390 -8.064 0.397
BasketballPass | -11.272 0.658 -10.040 0.583 -11.369 0.665 -11.347 0.663
b (240x416) BQSquare -10.021 0.694 -8.801 0.606 -10.00 0.693 9.952 0.689
BlowingBubbles | -8.862 0.498 -8.274 0.464 -9.07 0.511 -8.980 0.506
RaceHorses -10.013 0.557 -8.894 0.492 -10.081 0.561 -10.105 0.562
Average-Class Al -8.748 0.261 -9.821 0.291 -9.396 0.277 -9.599 0.283
Average-Class A2 -10.248 0.372 11313 0.404 -10.846 0.389 -11.123 0.401
Average-Class B -9.671 0378 -10.243 0.400 -10.061 0.393 -10.240 0.400
Average-Class C -10.081 0535 -9.473 0.500 -10.269 0.546 -10.290 0.546
Average-Class D -10.042 0.602 -9.002 0.537 -10.130 0.607 -10.096 0.605
Average-Overall 9781 0.439 9.922 0433 -10.138 0451 -10.258 0.456
TABLE III TABLE IV
NoO. OF PARAMETERS AND INFERENCE SPEED OF DIFFERENT MODELS PSNR PERFORMANCE OF TWO VARIANTS OF TSF-NET (VANILLA AND
EFFICIENT) AT QP=42
Model no. of params | inference time
(million) (second) Class TSF-Net | TSF-Net
Bytedance ~5.51 0.0234 (vanilla) | (efficient)
Uformer ~ 5.29 0.0182 Al 36.482 36.486
MSTFNet ~ 25.77 0.0204 A2 33.899 33.898
TSF-Net (vanilla) ~ 5.42 0.051 B 32.969 32.967
TSF-Net ~ 5.42 0.026 c 30.299 30.260
D 29.111 29.108
Average PSNR | 32296 32.293

From Table III, we observe that both TSF-Net and DAM have
approximately the same number of parameters and almost the
same inference speed.

Considering the remarkable performance of Uformer [14] in
various image restoration (IR) tasks such as image denoising,
motion blur removal, defocus blur removal and rain removal,
we investigate its potential as an in-loop filter and compare its
performance with TSF-Net. Uformer is a transformer-based
U-shaped IR model. We choose Uformer-T (Tiny) (C = 16,
depths of Encoder={2,2,2,2}) variant which has approximately
5.29 millions parameter, similar to 7SF-Net’s parameters.
We follow the training setup from [14] (for e.g. initialize

learning rate to 2 x 10™* and decrease it until 107°) to train a
model at QP = 42. For other QPs = {37, 32,27} we follow
the training strategy of TSF-Net (i.e. initialize the weights from
model trained at QP = 42) while initializing the learning
rate to 10™* and decrease it until 107°. Analyzing the results
in Table II, we observed that Uformer outperforms all other
methods in Class Al and Class A2. However, in Class C and
Class D, Uformer performs less effectively compared to other
methods. In Class B, it achieves similar performance to TSF-
Net. Overall, Uformer falls behind TSF-Net by 0.336% in
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TABLE V

COMPARISON OF BD-RATE SAVING ON LUMA COMPONENT UNDER
ALL-INTRA CONFIGURATION OF TSF-NET WHEN “FREQUENCY PATH”
Is DISABLED

TSF- FPD TSF- FPD
Class SF-Net ( ) SF-Net ( ) TSF-Net
(shallow) (deep)

Average-Class Al -8.956 -9.330 -9.599

Average-Class A2 -9.938 -10.586 -11.123
Average-Class B -9.318 -9.908 -10.240
Average-Class C -9.549 -10.177 -10.290
Average-Class D -9.614 -10.061 -10.096
Average Overall ‘ -9.470 ‘ -10.013 ‘ -10.258

terms of BD-rate and 0.023 dB in terms of BD-PSNR gain. Its
inference speed is slightly better, nonetheless comparable to
TSF-Net as presented in Table III. The performance analysis of
Uformer emphasizes the strength of transformer-based models
in exploiting long-range correlations in high-resolution videos,
for example, in Class Al and Class A2, where CNN-based
models lack severely. Conversely, for low-resolution videos
such as Class C and Class D, CNN-based model proves to be
the better choice.

We also consider the recently proposed MSTFNet [51]
and compared it with TSF-Net. TSF-Net can be considered
an improvement over MSTFNet as it is built by cascad-
ing only RFBs, each containing one S-MSA, resulting in
a significantly higher number of feature-fusion operations
(S-MSA) in TSF-Net. In contrast, MSTFNet has only three
fusion blocks with S-MSA and the rest are sub-blocks with-
out S-MSA. MSTFNet also includes very large numbers of
convolutional layers compared to TSF-Net. Despite having
significantly fewer parameters, approximately 5.4 million
compared to MSTFNet’s 25.7 million, TSF-Net performs
better than MSTFNet with a BD-rate and BD-PSNR gain
of —0.119% and 0.005dB respectively. This performance
boost can be attributed to TSF-Net’s more frequent use of
feature-fusion operations (S-MSA) than MSTFNet. Despite
having more S-MSA layers, TSF-Net’s inference time is still
comparable to MSTFNet due to its efficient S-MSA (E-SMSA),
as shown in Table III.

C. Ablation Study

1) Comparison of TSF-Net With Efficient Vs Vanilla S-MSA:
The proposed TSF-Net is efficient due to the incorpora-
tion of efficient S-MSA (E-SMSA) into the residual fusion
block (RFB). E-SMSA utilizes average-pooling (‘“avg-pool”)
to reduce the feature size by half and computes the key (K)
and query (Q) with dimensions of K € RUHW/H)xC anq
Qe RUW/ bz)xc, respectively, where b = 2. This reduces the
computation complexity in the self-attention module by 1/4.
In contrast, in the vanilla TSF-Net, average-pooling is absent,
and K and Q are computed at the original size of HW x C,
making it less efficient.

Table IV displays the PSNR performance of the vanilla and
efficient TSF-Net on JEVT sequences at QP = 42. From
the table, we observe that there is barely any performance
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difference between the two models. However, it is worth noting
that the proposed (efficient) TSF-Net is twice as efficient as
the vanilla TSF-Net, as presented in table III. Please note that
both models have the same number of parameters. Here, the
PSNR performance is only presented at Q P = 42, which we
assume to be sufficient to demonstrate the advantage of the
efficient T7SF-Net over the vanilla TSF-Net. This is because the
models at other Q Ps are initialized from the model trained at
QP =42 and are further trained to adapt them to other Q Ps.
As a result, the PSNR performance at other Q Ps is expected
to follow a similar pattern and hence is not included.

2) BD-Rate Performance of TSF-Net With No “Frequency-
Decomposed Input”: We also investigate the contribution of
the “frequency-decomposed input” in the proposed TSF-Net.
To do this, we remove the “frequency-decomposed input” and
all the components responsible for processing it from the TSF-
Net. In other words, we only keep the “spatial path” and
disable the “frequency path”. When the “frequency path” is
disabled, the Residual Fusion Block (RFB) reduces to a simpler
ResBlock (“conv—ReLU—conv”’). We refer to this model
as TSF-Net (FPD), where FPD stands for “Frequency Path
Disabled”. By removing the “conv”” and “T-conv”’ layers from
the “frequency path” and eliminating the need for the E-SMSA
layer for feature fusion, the total number of trainable parame-
ters in the TSF-Net decreases from approximately 5.42 million
to around 3.34 million. This configuration is referred to as the
“shallow” configuration. To ensure a fair comparison with the
proposed TSF-Net, we increase the number of RFB blocks
from 20 to 32 and disable the “frequency path” in the TSF-
Net, resulting in another configuration of TSF-Net (FPD). This
configuration of TSF-Net (FPD) has a total of approximately
5.34 million trainable parameters and is referred to as the
“deep” configuration.

We train TSF-Net (FPD) in both the sallow and deep
configurations at four QPs={27, 32, 37, 42}. The average
BD-Rate savings per class on the Luma component under
the all-intra (AI) profile for both configurations are presented
in table V. We observe that the proposed TSF-Net offers
greater BD-Rate savings compared to TSF-Net (FPD) in both
configurations. The TSF-Net (FPD) with the sallow configu-
ration, which has the smallest number of trainable parameters,
achieves the lowest BD-Rate gain as expected. However, even
with a similar number of trainable parameters to the pro-
posed TSF-Net, the TSF-Net (FPD) in the deep configuration
still demonstrates inferior BD-Rate performance compared to
TSF-Net. These findings emphasize the significance of the
“frequency-decomposed input” and the powerful feature fusion
operation offered along the “frequency path” in the TSF-Net.

VI. CONCLUSION

In this article, we introduce a novel neural network-based
in-loop filter for VVC, referred to as TSF-Net. Previous
approaches mostly overlooked frequency-decomposed infor-
mation when designing neural network-based in-loop filters.
In contrast, TSF-Net learns jointly from both spatial (pixel) and
frequency-decomposed (DCT’ed) information to effectively
eliminate distortions in video frames. It utilizes a multi-level
feature extraction and feature fusion strategy to enhance
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performance. However, we deviate from previous methods
by designing a convolution-based simple feature extractor
and an advanced feature-aggregator based on channel-wise
transformer (S-MSA). These are combined into a block called
Residual Feature Fusion Block (RFB), which allows for scal-
ability. Additionally, we propose an efficient channel-wise
transformer (E-SMSA) that improves the efficiency of the
vanilla 7SF-Net by nearly a factor of two. We evaluate
TSF-Net on 19 JVET common test sequences and achieve
—10.258% BD-rate gain and 0.456dB BD-PSNR gain on the
luma (Y) component under the all-intra (AI) configuration.
Our proposed TSF-Net also outperforms other state-of-the-art
(SOTA) methods under similar conditions.

Limitation and Future Work: The future direction of this
work will be to test 7SF-Net on the chroma components
(Cb, Cr) and extend the work to other configurations: Low-
Delay P (LP), Low-Delay B (LB) and Random-Access (RA).
Additionally, introducing a rate-distortion (RD) optimization,
as proposed in DAM, will certainly bring the extra coding
gain. Another crucial direction to explore will be to make E-
SMSA fusion-layer even more efficient and possibly make it
shared among RFB blocks to reduce the number of parameters.
Furthermore, Uformer’s results proved that TSF-Net’s perfor-
mance is subpar in video sequence with larger resolution.
This finding motivates to incorporate transformer as feature
extractor in TSF-Net for future exploration.
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