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Abstract— Block-based video codecs such as Versatile
Video Coding (VVC)/H.266, High Efficiency Video Coding
(HEVC)/H.265, Advanced Video Coding (AVC)/H.264 etc. inher-
ently introduces compression artifacts. Although these codecs
have in-loop filters to correct these distortions, they are not
always effective due to the complexity of the noise. Recently,
deep-learning approaches emerged as a promising solution for
in-loop filtering. However, most of the previous approaches
were designed solely for learning from images and neglected
the high-frequency signals present in the reconstructed video
frames. Furthermore, some previous methods employed a multi-
level feature-extraction and feature-fusion strategy to enhance
performance. However, they utilized complex feature-extractors
while relying on naive feature-fusion methods. In this article,
we propose a novel framework called TSF-Net, which jointly
learns from both the pixel (spatial) and frequency-decomposed
information and through powerful capability of a channel-wise
transformer, it fuses both these information to improve per-
formance. Our approach deviates from previous approaches by
employing a simple feature-extractor coupled with an advanced
transformer-based feature-fusion module. Simultaneously, TSF-

Net introduces a few fundamental modifications in the multi-head
self-attention module of the channel-wise transformer to make it
computationally efficient. Our experimental results show that the
proposed TSF-Net achieves a Bjøntegaard Delta (BD) - bitrate
saving of up to 10.258% for the luma (Y) component under
all-intra (AI) profile outperforming the VVC baseline and other
state-of-the-art methods. Moreover, the proposed TSF-Net with
an efficient channel-wise transformer is twice as efficient as TSF-

Net with a vanilla channel-wise transformer.

Index Terms— In-loop filters, versatile video coding, convolu-
tional neural network, channel-wise transformer, feature fusion.

I. INTRODUCTION

A
DVANCEMENTS in the internet, computing, and display

technologies have revolutionized the way we consume
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video content. Today, the majority of internet traffic is domi-

nated by video data from various sources such as streaming,

conferencing, surveillance, and more. Video compression

technology is the cornerstone of these video-processing appli-

cations, enabling the efficient transmission and storage of large

amounts of video data. Over the years, with the continuous

improvement of video capture and processing technology, sev-

eral video compression standards have been developed to meet

the increasing demand. These standards include Advanced

Video Coding (AVC)/H.264 [1], High Efficiency Video Coding

(HEVC)/H.265 [2], and Versatile Video Coding (VVC)/H.266

[3] among others.

Currently, Versatile Video Coding (VVC)/H.266 [3] has

been established as the next generation video coding stan-

dard by the Joint Video Experts Team (JVET), with over

30% performance improvement over its predecessor, High

Efficiency Video Coding (HEVC)/H.265. VVC was developed

to meet the quality-of-experience (QoE) demands of end-users

as the resolution of displays (and videos) increased, supporting

ultra-high definition (UHD) videos up to 16K. Secondly, VVC

is designed to be versatile, providing coding and transport

support for a wide range of applications and content types,

such as conventional video streaming, screen content optimiza-

tion, 360◦ video for AR/VR, live broadcasting, and ultra-low

latency applications.

Nonetheless, VVC is not completely a new technology but

rather an evolution of HEVC, wherein most of the technologies

from HEVC are further improved, and many new coding tools

are invented to account for larger resolutions and different

contents. This implies that VVC is still a block-based hybrid

video coding standard, where a picture is partitioned into

smaller, non-overlapping blocks that go through operations

like prediction, transform, quantization, etc. in an independent

manner. These blocks are named based on the operations

applied, such as prediction unit (PU), coding unit (CU),

transform unit (TU), etc.

Like HEVC, VVC also suffers from inherent com-

pression artifacts such as blocking, ringing, blurring, and

mosquito noise due to block-based operations. In intra-

frames (I-frames), the transform coefficients from neighboring

blocks typically undergo quantization differently. Similarly,

in prediction-frames (P-frames) and bidirectional prediction-

frames (B-frames), the neighboring blocks are likely to use
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different motion vectors, resulting in discontinuities at the

block boundary. Simultaneously, the quantization applied to

transform coefficients and prediction residues at the block level

results in ringing, blurring, and other noise. If these compres-

sion artifacts are not handled properly, they can degrade not

only the subjective and objective quality of the current frame

but also propagate to successive frames if referenced by the

P- or B-frame.

VVC, similar to HEVC, is equipped with in-loop filters

[4] that correct compression artifacts. The in-loop filters in

VVC include three types of traditional filters, namely deblock-

ing filter (DBF) [5], sample adaptive offset (SAO) [6], and

adaptive loop filter (ALF) [7]. These filters are applied to

a reconstructed picture one after another in the given order.

DBF is responsible for suppressing the blocking artifacts at

block boundaries, while SAO and ALF filters are designed

to remove artifacts caused by quantization. Nonetheless, these

filters’ quality restoration capability is sub-optimal and leaves

a large room for improvement.

In recent times, deep learning has achieved numerous

breakthroughs in the field of computer vision. Deep learning

methods, such as convolutional neural networks (CNNs) [8]

and vision transformers [9], have already made great strides

in applications such as image super-resolution [10], [11], [12]

and image restoration tasks such as denoising, deblurring,

dehazing, and image enhancement [13], [14], [15], [16], [17],

[18], [19], [20]. CNN-extracted features are locally correlated,

whereas transformers can extract features with long-range

correlation. Recently, hybrid architectures that employ both

CNN and transformers [15], [21] have emerged. These hybrid

models are capable of extracting deep features with better

super-resolving and image-restoration power.

To improve the feature representation power of CNN,

researchers are now proposing complex architectures [16],

[17], [18] that operate at multi-scale feature-size. With this

“coarse-to-fine” strategy, features of various spatial sizes are

extracted (multi-scale), which are then progressively fused

from coarser to finer scales until the original scale is achieved.

Other approaches inspired by Inception-like-network [22] uti-

lize kernels of variable sizes to derive features with various

receptive-field and fuse them to enrich the feature semantics

[23]. Prior works [24], [25], [26], [27], [28], [29] have also

demonstrated the benefit of utilizing frequency decomposition

(Discrete Cosine Transform (DCT) and Wavelet Transform) in

conjunction with CNN to improve feature representation for

learning low-level vision tasks. DCT and Wavelet-transform

decompose a signal (image) into multiple frequency bands

that can be utilized as crucial prior information for image

restoration tasks where high-frequency contents such as noises

need to be discriminated from the signal.

Inspired by the success of CNN in image restoration tasks,

researchers have successfully implemented CNN to fill the per-

formance gap of the in-loop filter of HEVC and VVC. Plenty

of works have also implemented CNN as a post-processing

block in both HEVC and VVC to improve the final picture

quality. A few works have even utilized CNN to improve or

replace conventional coding tools like intra-prediction [30],

inter-prediction [31], etc. Researchers have also trained CNN-

Fig. 1. Proposed TSF-Net as an In-loop Filter in VVC architecture.

based auto-encoder-style neural networks in an end-to-end

fashion for applications like image compression [32] and

video compression [33]. In such approaches, images and video

frames are represented by features at the bottleneck layer of an

auto-encoder. Most of the learning-based in-loop filter works

are largely inspired by CNN-based image restoration works.

In this article, we design a hybrid model consisting

of both convolutional and transformer layers for feature

extraction and feature fusion, respectively, as an in-loop

filter for VVC. We refer it as Transformer-based Spatial

and Frequency-Decomposed Feature Fusion Network (TSF-

Net). Moreover, we not only use pixel information but

also frequency-decomposed (DCT’ed image) information to

improve the feature representation capability of the model,

which was largely ignored by prior articles while designing

a learned in-loop filter. We treat each DCT coefficient as

a separate channel, thereby creating DC and AC channels.

Convolutional layers are then utilized to extract deep features

from pixel and DCT’ed information, and a transformer layer

is utilized to fuse DCT features into pixel features.

The transformer utilized in this work has a self-attention

module designed to perform attention along the channel where

each channel is treated as a token. We prepare pixel input

by pixel-unshuffling an image, which distributes local pixels

along the channel. Similarly, DCT’ed input is prepared by

separating DCT coefficients along the channel. This requires

a proper mechanism to extract features from local pixels as

well as DC and AC coefficients distributed along the channel.

Thus, we consider a transformer layer with similar function-

ality called Spectral-wise Multi-head Self-attention (S-MSA)

from the MST++ [34] article. Nonetheless, we fundamen-

tally redesign the S-MSA layer to accomplish feature fusion

between pixel (spatial) and DCT’ed (frequency-decomposed)

features efficiently.

The contributions of this article are summarized below.

• We propose TSF-Net, a learned in-loop filter for

VVC, which learns from both spatial (pixel) and

frequency-decomposed information and offers state-of-

the-art performance under all-intra (AI) profile for luma

(Y) component.

• Our proposed TSF-Net is highly scalable as it

can be constructed simply by cascading multiple

Residual Fusion Block (RFB) similar to Residual
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Fig. 2. Luma and its side-information from VVC utilized as input to the TSF-Net.

Fig. 3. Frequency-decomposed input generation pipeline. First 4-point 2D-DCT is applied on a N × N image and then it is pixel-unshuffled on 4 × 4 block
to get 16-channel (N/4) × (N/4) frequency-decomposed image.

Blocks in ResNet architectures. Each RFB bun-

dles together convolution-based feature processing and

transformer-based feature fusion operation.

• We utilize S-MSA from MST++, a channel-wise trans-

former layer, and redesign it for feature fusion. We further

propose efficient S-MSA (E-SMSA) by making fundamen-

tal modifications in the self-attention module. E-SMSA

improves the feature processing time of TSF-Net nearly

by twice.

• We utilize large patch inputs and while pixel-unshuffle

them, we are able to decrease the feature processing

time and increase the receptive field. Additionally, RFB

processes spatial and frequency-decomposed features in

parallel, contributing to a further reduction in feature

processing time.

The rest of the article is organized as follows. In Section II,

we go over the prior in-loop filtering technologies related

to classical and deep-learning approaches. In Section III,

we lay out the details of our proposed architecture and related

methods. Section IV describes the implementation and training

details of our method as an in-loop filter. In Section V,

we present the findings of the experiments processes. Finally,

we conclude our work and its findings in Section VI.

II. RELATED WORK

A. Traditional In-Loop Filters

HEVC adopts two filters: deblocking filter (DBF) [5]

and Sample Adaptive Offset (SAO) [6], as in-loop filters.

Deblocking filter is first applied to the reconstructed sample

which attenuates the discontinuities at the block boundary.

The deblocked picture is then processed by the SAO to

further mitigate the ringing artifacts and corrects the signal

(image) by applying the offsets to the pixels. The offset values

which are calculated based on pixels’ statistics are sent to the

decoder. VVC keeps both DBF and SAO filters, however, adds

three more filters: Luma Mapping Chroma Scaling (LMCS)

[35], Adaptive Loop Filter (ALF) [7] and, Cross-Component

Adaptive Loop Filter (CC-ALF) [36]. LMCS is implemented

to improve coding efficiency through two processes: luma

mapping (LM) and chroma scaling (CS). LM remaps the

luma code values within the complete codeword range at a

specific bit-depth. CS compensates for the impact of luma

mapping on the relative chroma coding bit costs. ALF is

designed to minimize the mean square error (MSE) between

the original and reconstructed picture. The idea of ALF is to

classify non-overlapping blocks based on their local sample

gradient and apply a specific Wiener-based filter among many

to improve signal fidelity. The type of filter used is signaled

in the bitstream. CC-ALF performs the Wiener-based filtering

correction on the chroma sample utilizing the co-located and

corrected luma sample. These filters are primarily hand-crafted

and statistical-based. While ALF has a slight learning capa-

bility, its efficiency is very much limited. This leaves a large

room for improvement to exploit.

B. Learned In-Loop Filters

A plethora of articles already exist that successfully imple-

ments convolution neural networks (CNN) as both in-loop

filters and post-processing block in HEVC and VVC. Recently,

the powerful capability of vision transformers (ViT) is also

being exploited in the image and video compression domain.

In this section, we will discuss some notable previous

learning-based approaches for HEVC and VVC.

1) Learning-Based Approaches for HEVC: One of the early

works in learned in-loop filters is IFCNN [37]. IFCNN is an

SRCNN [10] (an image super-resolution) based architecture

implemented as an in-loop filter in HEVC by replacing SAO.
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This 3-layer CNN architecture outperformed HEVC by up

to 2.8% and 2.6% in low-delay(LD) and random-access(RA)

configurations. Similarly, [38] proposed MIF-Net, a multi-

frame in-loop filter for HEVC by replacing both DBF and

SAO. MIF-Net includes a reference frame selector (RFS) that

selects the reference frames with the best quality and content

similarity for the current unfiltered frame. Then, MIF-Net

utilizes both spatial and temporal information across multiple

frames to enhance the current unfiltered frames. With this

strategy, MIF-Net was able to outperform the HEVC baseline

and other state-of-arts approaches. Likewise [39] proposed

Squeeze-and-Excitation CNN (SEFCNN), a switchable in-

loop filter positioned in parallel to HEVC’s in-loop filter.

By implementing two subnets: Feature Extraction (FEX) and

Feature Enhancement (FEN), SEFCNN was able to learn very

high-quality features. FEX utilized convolutional layers to

extract deeper features, while FEN employed squeeze-and-

excitation layers to enhance features by enabling channel

interaction. SEFCNN achieved average of 9.96%, 8.04%, and

7.60% BD-Rate saving on AI, LDP and RA configurations,

respectively, compared to HEVC. Further, [40] proposed a

Recursive Residual Convolutional Network (RRCNN) in-loop

filter for HEVC. In RRCNN, the authors demonstrated the

increased capability of CNN by proposing multi-path residual

and recursive learning. With recursive learning, RRCNN uti-

lized the same layers repeatedly for deeper feature extraction.

Unlike previous works, this work trained the same model for

multiple bitrates achieving an average bitrate savings of up to

8.7% on intra-frames.

Inspired by RRCNN, [41] proposed Lightweight Mul-

tiattention Recursive Residual CNN-based In-loop Filter

(LMA-RRCNN) as an alternate to HEVC’s in-loop filter.

LMA-RRCNN, similar to RRCNN, utilized parameter sharing

and feature reuse to reduce model parameters and increase

model depth, while simultaneously learning features at multi-

ple spatial scales and frequently fusing them. LMA-RRCNN

was also able to handle video compressed at various bitrates

and of various frame-types via single model while achiev-

ing excellent bitrate savings upto 13.7% and 11.87% in AI

and RA profiles, respectively. Another work [42], proposed

Frame-wise filtering for Quality Enhancement based on CNN

(FQE-CNN), which also adopted the multi-level feature extrac-

tion and feature fusion approach similar to LMA-RRCNN.

FQE-CNN utilized an inception-like residual learning block

(IResLB) to extract features and occasionally aggregated the

features between spatial levels through concatenation and

convolution. With this multi-level feature learning strategy,

FQE-CNN achieved superior performance compared to the

HEVC baseline, surpassing it by 11.1% in all-intra (AI)

configurations.

2) Learning-Based Approaches for VVC: With the emer-

gence of VVC as the latest video coding framework, a plethora

of fascinating new research has been generated on the topic

of learned in-loop filters. For example, [43] proposed a dense

residual convolutional neural network (DRN) based in-loop

filter (DRNLF) for VVC and placed it after DFB and before

SAO and ALF. By utilizing dense shortcuts in DenseNet [44]

and feature reuse, DRNLF achieved 1.52%, 1.45%, and 1.54%

BD-rate saving in AI, RA, and LD coding configurations.

Similarly, [45] proposed a multi-gradient convolutional neural

network-based in-loop filter (MGNLF) for VVC, where the

network also considers divergence and second-derivative of

the frame along with the frame itself to improve the quality

of the frame. By utilizing contour and structural information

of a frame, MGNLF was able to reduce BD-rate savings up

to 3.29% on average. MFRNet [46], however, is proposed as

both a post-processing and an in-loop filter on both HEVC and

VVC. As an in-loop filter, MFRNet was placed after SAO (for

HEVC) and ALF (for VVC). MFRNet utilized highly dense

shortcuts for multi-level feature reuse and achieved coding

gain (BD-rate VMAF) of up to 16% and 5.1% for HEVC

and VVC, respectively. Similarly, [47] proposed Variable CNN

(VCNN), an in-loop filter specifically designed to handle

videos compressed at different quantization parameters (QPs)

and frame-types (FT) using a single model. VCNN incor-

porated a QP attention module (QPAM) and a FT attention

module (FTAM) in its residual block (RB). These modules

recalibrated the features through channel-attention, allowing

VCNN to adapt to a wide range of QPs and FTs. VCNN

outperformed VVC baseline by upto 3.63%, 4.36%, 4.23%,

3.56% in AI, LDP, LD and RA configurations. Likewise, [48]

proposed MSCNN, in which two U-Net like architectures

are utilized to extract features from reference and current

frames while aggregating both feature through gated-fusion.

MSCNN achieved 3.762% bitrate saving in AI configuration.

Likewise, as a response to the call for proposal (CfP) on

“Neural networks on video coding” [49], JVET received

[55] as a contribution from ByteDance. This work proposed

Deep In-loop filter with Adaptive Model selection (DAM)

and is currently adopted as part of the standard for further

exploration.

Interestingly, all previous works ignored high-frequency

information while designing an in-loop filter. Nonetheless, [50]

utilized both spatial(pixel) and frequency decomposed (DCT)

information and designed a CNN architecture that extracted

both pixel and DCT features while fusing them at multiple

stages. The proposed work, on average, achieved a 9.7% BD-

rate reduction compared to the VVC baseline. In this work,

convolution-based feature fusion between pixel and DCT

features was proposed. Later, the authors extended the work

by proposing MSTFNet [51] where convolution-based feature

fusion was replaced by transformer-based feature fusion and

significantly improved the BD-rate savings. MSTFNet utilized

a transformer with channel-wise self-attention to aggregate

pixel and DCT features at multiple stages. This work demon-

strated a successful implementation of a transformer along

with CNN as an in-loop filter.

To improve the performance of learned in-loop filters,

researchers extended single-level architecture to a more

advanced multi-level architecture, incorporating feature inter-

action among these levels. However, previous methods

[41], [42] primarily focused more on designing a com-

plex feature-extractor at each levels but relied on naive

feature-fusion approaches. In this article, we take a different

approach by utilizing a simple feature-extractor while imple-

menting transformers-based a more advanced feature-fusion
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module. Furthermore, our method involves fusion of spa-

tial and frequency-decomposed features. This is in contrast

to previous approaches where feature-fusion occurs only

between spatial-features but at different scales. Our current

work (TSF-Net) can be considered an extension of our prior

work MSTFNet [51]. Although both employ spatial and

frequency-decomposed inputs and a transformer-based fea-

ture aggregation scheme (S-MSA), we drastically reduce the

number of trainable parameters in TSF-Net by revamping

the overall architecture completely. In contrast to MSTFNet,

which only fuses features at 3 stages, TSF-Net fuses feature at

20 stages using 20 residual fusion blocks (RFB). Furthermore,

TSF-Net utilizes efficient S-MSA that is twice as efficient as

the vanilla S-MSA used in MSTFNet.

III. PROPOSED METHOD

In the decoder of VVC architecture, we integrate

our learned in-loop filter, Transformer-based Spatial and

Frequency-Decomposed Feature Fusion Network (TSF-Net),

by replacing all the modules: DBF, SAO, ALF (CCALF) of

the in-built in-loop filter. This integration is illustrated in figure

1. Unlike the in-built in-loop filter of VVC, TSF-Net does not

utilize any filter control data and hence, it is not communicated

to the entropy encoder. In this work, we consider three types

of information: reconstructed picture, partition information,

and residual image as input to the TSF-Net. The reconstructed

picture serves as the primary input while partition and residual

image are crucial side information that convey information

related to the block boundary and prediction error respectively.

The proposed TSF-Net is presented in figure 4. It receives five

distinct types of inputs: three spatial inputs and two frequency-

decomposed inputs, generated from the reconstructed picture,

partition, and residual image. In this section, we will first

describe the methods we adopted to prepare the inputs for

TSF-Net, followed by the details of TSF-Net itself.

A. Generation of Spatial and Frequency-Decomposed Inputs

The proposed TSF-Net utilizes three types of information:

reconstructed (I ), partition (P), and residual (R) image as

inputs. An example of these input images are shown in figure

2. The reconstructed picture (I ) is an unfiltered picture gener-

ated after addition of prediction image and residual image. The

residual image (R) is the difference image of the original and

the predicted image. The partition (P) image is the coding-

unit (CU) level block partition information. In this study,

we apply TSF-Net only on the luma (Y) component. Therefore,

I represents the luma component of the reconstructed picture,

whereas R and P correspond to the associated residue and

partition information respectively. Let 2H and 2W be the

height and width of these I , R, and P images.

In the next step, three spatial inputs are created from I ,

R, and P images, and two frequency-decomposed inputs

from I and R images, respectively. The I and R images are

pixel-unshuffled on a 2 × 2 block to create two spatial inputs,

Is ∈ R
4×H×W and Rs ∈ R

4×H×W , respectively. Here, pixel-

unshuffling on a 2 × 2 block converts an 2H × 2W image to

a 4-channel H × W image. Since the boundary information

is just a single pixel wide, the pixel-unshuffling operation

would break the structure in the partition image P . Therefore,

the partition image P is fed to the network unchanged, and

thus spatial input Ps = P ∈ R
1×2H×2W . Similarly, two

frequency-decomposed inputs are generated by applying a 4-

point 2D discrete cosine transform (DCT) on the reconstructed

I and residual R images. The resulting image has a DC

coefficient and 15 AC coefficients in every non-overlapping

4 × 4 block. In the next step, pixel-unshuffling is applied on

the non-overlapping 4×4 blocks of the 2H×2W sized DCT’ed

image to obtain a 16 × (H/2) × (W/2) image, where the first

channel is a DC-image and rest of the 15 channels are the AC-

images. Let I f ∈ R
16×(H/2)×(W/2), R f ∈ R

16×(H/2)×(W/2) be

the pixel-unshuffled version of the DCT’ed image of I and

R, respectively. We refer to them as frequency-decomposed

inputs. The steps to obtain frequency-decomposed inputs are

shown in figure 3.

The spatial inputs Is and Rs are normalized by dividing

them with the peak value of 2b − 1, where b is the number of

bits used to represent I . Ps is a binary image with the value of

1 at the boundary and 0 everywhere else, so it does not require

normalization. In the DCT domain, however, the DC coeffi-

cient has the largest value and AC values gradually decrease.

Thus, frequency-decomposed inputs I f and R f are normalized

channel-wise using “min-max” normalization method. The

channel-wise minimum and maximum values {min I , max I } ∈

R
16×1×1 and {minR, maxR} ∈ R

16×1×1 of I f and R f respec-

tively, are first computed from the training dataset. For this,

we utilize 25000 randomly cropped co-located patches of

size 256 × 256 from I and R images. The same channel-

wise “min-max” values obtained from the training dataset are

used for normalizing the frequency-decomposed inputs during

inference.

B. Description of TSF-Net Architecture

The overall architecture of TSF-Net is presented in figure

4. The proposed network is slightly inspired by EDSR [52]

as it includes both global and feature-level skip connections.

TSF-Net can be better explained by dividing it into three parts:

head, body, and tail.

1) Head: The head of TSF-Net comprises

four “conv→PReLU→conv” blocks and one

“conv→PReLU→conv→avg-pool” block. The two

spatial inputs Is and Rs and two frequency-decomposed

inputs I f and R f are processed through their

respective “conv→PReLU→conv” blocks. We use the

“conv→PReLU→conv→avg-pool” block to process

the partition input Ps . Since Ps is at its original size

2H × 2W , the average-pooling layer (“avg-pool”) of

“conv→PReLU→conv→avg-pool” reduces it to H ×W . The

“conv→PReLU→conv” and “conv→PReLU→conv→avg-

pool” blocks transform spatial and frequency-decomposed

inputs into the initial feature representation. Let

Cn, n = {1, 2, 3, 4, 5} represent the channel-size of the initial

features. Similarly, let F I
s ∈ R

C1×H×W , F R
s ∈ R

C2×H×W and

F P
s ∈ R

C3×H×W be the initial feature representation of spatial

inputs Is , Rs , Ps respectively, and F I
f ∈ R

C4×(H/2)×(W/2) and
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Fig. 4. Overall architecture of our proposed Transformer-based Spatial and Frequency-decomposed Feature Fusion Network (TSF-Net). TSF-Net is divided
into 3 parts: head, body and tail. Reconstructed picture, residue and partition information from VVC is processed to generate five different types of inputs:
3 spatial inputs and 2 frequency-decomposed inputs. The Head of TSF-Net transforms spatial and frequency-decomposed inputs into two types of features:
spatial and frequency-decomposed features. The body includes a series of Residual Fusion Blocks (RFB) which take both types of features and fuse them into
the spatial features. The spatial feature output from the body is finally processed by the tail to produce a clean reconstructed picture.

Fig. 5. (a) Body of TSF-Net constitutes a cascade of Residual Fusion Block (RFB) with a feature-level skip connection. (b) The internal details of
RFB. It includes two branches with a set of “conv→relu→conv” block for extracting deeper features from spatial and frequency-decomposed features,
a cross-connection through transposed convolution (T-conv) for upscaling frequency-decomposed feature and an E-SMSA transformer layer for efficient feature
fusion of concatenated spatial and frequency-decomposed features. Both branches include a skip connection making the fusion block essentially a residual
block.

F R
f ∈ R

C5×(H/2)×(W/2) be the initial feature representation

of frequency-decomposed inputs I f , R f , respectively. Next,

spatial feature (Fs) and frequency-decomposed feature (F f )

are obtained by concatenating corresponding spatial and

frequency-decomposed initial features.

Fs = concat ({F I
s , F R

s , F P
s }), F f = concat ({F I

f , F R
f })

(1)

where concat (·) is a concatenation operation. In this

article, we configure “conv→PReLU→conv” and

“conv→PReLU→conv→avg-pool” block such that initial

features channel-size become C1 = 48, C2 = 24, C3 =

8, C4 = 16, C5 = 16. Therefore, after concatenation

Fs ∈ R
Cs×H×W , Cs = 96 and F f ∈ R

C f ×(H/2)×(W/2),

C f = 32.

2) Body: The body of TSF-Net is composed of cas-

cading B Residual Feature Block (RFB), as illustrated in

figure 5 (a). An RFB receives spatial features (Fs) and

frequency-decomposed features (F f ) through its two separate

inputs and produces more refined spatial features (Fs) and
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frequency-decomposed features (F f ) through its two outputs.

In an RFB block, the frequency-decomposed features (F f )

get fused into the spatial features (Fs) through an S-MSA

transformer layer. Thus, by stacking B RFB blocks, we fuse

and refine spatial feature (Fs) and frequency-decomposed

feature (F f ) at multiple stages. The body also includes a

feature-level skip connection between the initial spatial-feature

input and the final spatial-feature output of the body, which is

illustrated in figure 5 (a). The details of the Residual Feature

Block (RFB) are described in Section III-C.

3) Tail: The tail of TSF-Net includes a convolution layer

(“conv”) and a pixel-shuffle layer (“Pix-SFL”). The final

spatial feature Fs ∈ R
Cs×H×W , Cs = 96 output from the body

of TSF-Net is processed by the “conv” layer, which reduces

the channel size to just 4 and produces Fs ∈ R
Cs×H×W , where

Cs = 4. Lastly, the “Pix-SFL” layer assembles the Fs ∈

R
4×H×W into a single channel feature Fs ∈ R

1×(2H)×(2W ).

The global skip-connection at the end adds the input recon-

structed picture (I ) back to the final spatial feature Fs ,

resulting in the clean reconstructed picture (IC ).

C. Residual Fusion Block (RFB) as Feature Fusion Block

The primary building block of TSF-Net is the Residual

Fusion Block (RFB) which is illustrated in figure 5 (b).

The inputs are the spatial (Fs) and frequency-decomposed

(F f ) features, and the outputs are the deeper and more

refined spatial (Fs) and frequency-decomposed (F f ) features.

First, the residual features are extracted from Fs and F f

by employing two sets of “conv→ReLU→conv” blocks and

later they are concatenated. Let, Fr
s ∈ R

Cs×H×W and Fr
f ∈

R
C f ×(H/2)×(W/2) be the residual features corresponding to Fs

and F f . Since the feature size of Fr
s is twice the size of

Fr
f , the frequency-decomposed residual-feature Fr

f is upscaled

by a factor of two using transposed convolution (“T-conv”)

before concatenating it with Fr
s . The concatenated feature

F = concat ({Fr
s , Fr

f }), F ∈ R
C×H×W , C = Cs + C f is then

passed to Efficient Spectral-wise Multi-head Self-Attention (E-

SMSA) layer for feature fusion. The E-SMSA transformer layer

fuses the residual features Fr
s and Fr

f into a next stage spatial

residual feature Fr1
s ∈ R

Cs×H×W . Lastly, two skip connections

are introduced to the residual features Fr1
s by adding Fr

s and

Fs . Similarly, one skip connection is also introduced to Fr
f by

adding frequency-decomposed features F f to it.

Fs = Fs ⊕ (Fr
s ⊕ Fr1

s ), F f = F f ⊕ Fr
f (2)

Thus, the final output of the RFB is again the refined spatial

feature Fs and frequency-decomposed feature F f . The skip

connections from input to output convert the fusion block

into a residual fusion block. The residual connection, which

is inspired by the ResNet [53], allows us to stack multiple

RFB blocks and make the network much deeper while still

being able to converge during training. The simplicity of the

design choice of RFB enables TSF-Net to scale it to various

other low-level vision tasks in two ways: first, by adjusting

the arbitrary number of RFB blocks, and second, by varying

the channel size (Cs and C f ).

D. Efficient Spectral-Wise Multi-Head Self-Attention

(E-SMSA)

We incorporate spectral-wise multi-head self-attention (S-

MSA) transformer layer, from MST++ [34] into our proposed

network. However, we have redesigned it to serve as a

channel-wise feature fusion layer within the RFB block. Addi-

tionally, we have modified the self-attention mechanism of the

original S-MSA to make it computationally efficient. Since E-

SMSA is present in each RFB block, these reformed aspects

significantly improve computational efficiency. Figure 6 pro-

vides an illustration of E-SMSA.

Suppose, X in is the input to the E-SMSA where X in =

F ∈ R
C×H×W . X in is then averaged-pooled (“avg-pool”)

over b × b block to get X1 ∈ R
C×(H/b)×(W/b). X1 is then

reshaped as X1 ∈ R
(H W/b2)×C and linearly projected into

query Q ∈ R
(H W/b2)×C and key K ∈ R

(H W/b2)×C . Similarly,

X in is reshaped into X2 ∈ R
H W×C and linearly projected into

value V ∈ R
H W×C .

Q = X1W q , K = X1W k, V = X2W v (3)

where W q , W k and W v ∈ R
C×C are the weights of 3 single-

layer perceptrone. In a separate branch, X in is reshaped

as X3 ∈ R
C×(H W ) and processed with 1D-convolution of

kernel-size 1 × 1 to reduce the feature to X3 ∈ R
Cs×(H W ).

X3 is again reshaped as X3 ∈ R
Cs×H×W and processed

by “G-conv→GeLU→G-conv” where “G-conv” stands for

“grouped-convolution”. Now the output is reshaped into

position-embedding E po ∈ R
(H W )×Cs .

Next, Q, K and V are subdivided along channel into h

heads, such that each head Qi ∈ R
(H W/b2)×(C/h), Ki ∈

R
(H W/b2)×(C/h) and Vi ∈ R

(H W )×(C/h) where i = 1, 2, . . . h.

Now, self-attention is computed between the key and the query

across the channel within each head. E-SMSA treats each

channel as a token and computes attention among them within

a head.

Ai = so f tmax(σi K T
i Qi ), Ai ∈ R

(C/h)×(C/h) (4)

where σi ∈ R
1 is a learnable parameter employed to adapt

self-attention Ai during matrix-multiplication K T
i Qi . For sin-

gle head h = 1, self-attention matrix Ai ∈ R
C×C which

is depicted in figure 6 for simplicity. Next, value Vi is

matrix-multiplied with self-attention matrix Ai to generate a

fused-feature Hi for i th head.

Hi = V T
i Ai , Hi ∈ R

(H W )×(C/h) (5)

The fused feature Hi from all h heads are now concatenated

and linearly projected to generate projection-embedding E pr .

E pr = (concat (Hi ))W, E pr ∈ R
(H W )×Cs , i = 1, 2, . . . , h

(6)

where W ∈ R
C×Cs is the learnable weights of a single-layer

perceptrone. Finally, the output of E-SMSA layer is computed

as below.

Xout = E pr + E po, Xout ∈ R
(H W )×Cs (7)

Here, Xout is then reshaped into residual feature output Fr
s

as mentioned in the section III-C.
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Fig. 6. Efficient Spectral-wise Multihead Self-Attention (E-SMSA).

IV. NETWORK IMPLEMENTATION

A. Training/Validation Dataset Preparation

We train our proposed TSF-Net with Div2K [54] dataset,

which includes 900 high-quality still images of 8-bit depth.

Out of 900 images, we consider 875 images for training the

TSF-Net and the remaining 25 for validating the network.

To align the TSF-Net to operate in the YUV color space,

we convert the 8-bit RGB images in the Div2K dataset

to YUV 4:2:0 10-bit color format. Then, we encoded the

YUV images with the VVC reference software, VTM-11.0,

at four quantization-parameter (QP) rate points: 27, 32, 37 and

42 following the common test condition (CTC) under all-

intra (AI) profile. However, we encoded the YUV images by

disabling all the components (DBF, SAO, ALF(CCALF)) of

the default VVC in-loop filter as the TSF-Net replaces the

whole in-loop filter block in the VVC codec. In this article,

we only consider the luma (Y) component for testing with

TSF-Net. Therefore, for each of the 900 images we collected

its VTM-11.0 encoded luma (Y) component and corresponding

partition and residue information to construct training and

validation patches.

B. Network Training

To improve the variance in the training sample, we generate

training patches on the fly during network training. The

training involves cropping 50 patches of size 256 × 256 from

a luma image (I) and its co-located partition (P) and residue

image (R). The strides of a window are computed to be

random but to lie within a certain range, such that the extracted

50 patches cover a whole image but are also slightly different

in the later epochs. During one epoch, the network sees a

total of 875 × 50 = 43750 training patches. To augment the

data, the training patches are randomly flipped horizontally and

vertically. On the other hand, validation patches are prepared

only once before network training. From 25 validation images,

25 × 100 = 2500 validation patches of size 256 × 256 are

created with a fixed stride. Once the stride is fixed, the same

set of validation patches is created for all sets of experiments.

Since the training and validation patch size is H = W =

256, the size of spatial input and frequency-decomposed input

to TSF-Net is 128×128 and 64×64, respectively. In this article,

we cascade B = 20 RFB blocks. All 2d-convolution operations

involved in TSF-Net employ a kernel of 3 × 3. Similarly,

we set the spatial feature channel size to Cs = 96 and

frequency-decomposed feature channel size to C f = 32.

We set h = 4, so E-SMSA operates with 4 heads and the

size of each self-attention matrix is Ai ∈ R
32×32.

We train four separate models for four different Q P values.

However, we first train a model from scratch at Q P =

42 utilizing training/validation patches encoded at the same

Q P . The models for the other Q P values (Q P = {37, 32, 27})

are then initialized with the weights from the pre-trained model

at Q P = 42 and fine-tuned with the patches encoded at the

respective Q P values. This approach allows the rest of the

model to train faster and potentially with better performance.

We adopt the Adam optimizer with β = (0.9, 0.999) and

L1-loss to optimize the network parameters. The model at

Q P = 42 is trained for 150 epochs, while the models for

the other Q P values (Q P = {37, 32, 27}) are trained for

only 100 epochs. The initial learning rate of the model at

Q P = 42 is set to 10−4, while for the other models, it is

initialized to 0.5 × 10−4. We use a cosine-annealing learning-

rate scheduler to decrease the learning rate until 10−6 during

training. The batch-size is set to 16 for all model training.

V. EXPERIMENTAL RESULTS AND DISCUSSION

We evaluate the BD-rate performance of TSF-Net at four

QPs={27, 32, 37, 42} against the VVC reference software,

VTM-11.0 (with all in-loop filters enabled), under the all-

intra (AI) configuration. To test TSF-Net, we disable all the
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Fig. 7. Rate-Distortion (RD) plots for few test sequences comparing TSF-Net with VVC reference software. The Y-PSNR (dB) are evaluated at 4 QPs={42,
37, 32, 27}.

Fig. 8. Left: An original frame from CatRobot sequence. Middle: The same frame coded at QP=32 and processed with VTM-11.0’s In-loop filters. Right:
The same frame coded with VTM-11.0 at QP=32 and processed with TSF-Net.

components of the in-loop filter of VVC reference software

and replace it with TSF-Net. We choose 19 common test

sequences [56] recommended by JVET to evaluate the per-

formance of TSF-Net. The selected 19 sequences are from

5 classes: A1 (3840 × 2160), A2 (3840 × 2160), B (1920 ×

1080), C (480×832) and D (240×416). These test sequences

are listed in Table II.

A. Comparison of TSF-Net With VVC’s In-Loop Filter

The rate-distortion (RD) plots (Bitrate vs ‘Y’-PSNR) for a

few test sequences are shown in figure 7. The RD-plots clearly

indicate that the TSF-Net, as an in-loop filter, outperforms

VTM-11.0’s in-loop filter at all Q P values. Moreover, except

for a few sequences, the performance gap between VTM-

11.0 and TSF-Net gets widens at lower QPs or correspondingly

at larger bitrates. This suggests that our method tends to per-

form better at lower QPs compared to VVC. Blocking is less

pronounced at lower bitrates and the distortions are primarily

due to quantization noises. Therefore, the above observation

points to the benefit of using frequency-decomposed input as

prior information to the high-frequency content of an image.

Here, TSF-Net is able to intercept high-frequency noises even

in relatively good quality images (i.e. at higher bitrates) and

correct them accordingly. This also demonstrates the powerful

feature fusion capability of E-SMSA layer.
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Fig. 9. Left: An original frame from BasketballPass sequence. Middle: The same frame coded and reconstructed at QP=42 by VTM-11.0 but yet to be
processed by the in-loop filter. This is also an input to TSF-Net. Right: The output frame of TSF-Net after processing the frame shown in the middle.

For example, figure 8 illustrates the difference in the

reconstructed picture processed by VVC’s in-loop filter and

TSF-Net. The middle and right figures are reconstructed

versions of the left figure, coded and reconstructed by VTM-

11.0 at Q P = 32. While the middle one is processed by

VTM-11.0’s in-loop filter, the right one is processed by the

proposed TSF-Net. The zoomed-in pictures clearly demon-

strate the difference between the two methods. The picture

processed by VVC’s in-loop filter exhibits ringing effects

around the edges of the ring and appears slightly fuzzy.

In contrast, the picture processed by TSF-Net has almost no

ringing noises and looks sharper.

Similarly, figure 9 reveals an interesting aspect of TSF-

Net: its slight generative capability. The leftmost figure is an

original frame taken from BasketballPass. It is then coded at

Q P = 42 by VTM-11.0 (with in-loop filter disabled) and

given as an input to TSF-Net which is shown in the middle

figure. While the rightmost figure displays the processed

output from TSF-Net. The vertical strip shown in the original

figure, within the red rectangle, is shorter in the input frame

and its reflection is absent on the floor. However, in the output

frame generated by TSF-Net, the same strip is longer than in

the input frame, and its reflection on the floor is appropriately

generated. This confirms the generative capability of TSF-Net.

This capability may be attributed to the fact that TSF-Net has

learned to generate new information employing locality, or that

the information was present in the input frame but not visible

to the human eye, and TSF-Net made it more pronounced.

We also present the time complexity of TSF-Net as an

in-loop filter in Table I. Since, TSF-Net is implemented only

on the decoder side, the table includes the decoding time com-

plexity against VVC when its in-loop filters are enabled. The

decoding time complexity is calculated as 100 × (ttest/tre f ),

where ttest is the decoding time of VVC with TSF-Net as

in-loop filter and tre f is the decoding time of VVC with its

in-loop filter enabled. For each sequence, we obtain the final

decoding time complexity by averaging them over all the QPs.

Table I presents these values averaged over per class and all

the sequences. From the table, we observe that our proposed

TSF-Net also suffer the same fate as most other learning-based

solutions, which is being slower. While analysing decoding

time complexity per class, we notice that the complexity

increases when video resolution decreases. One promising

future research direction would be to improve the decoding

time complexity.

TABLE I

DECODING TIME COMPLEXITY OF VVC WITH TSF-NET (ON GPU) COM-
PARED TO VVC WITH ITS IN-LOOP FILTER ENABLED

B. Comparison of TSF-Net With Other Learning-Based

In-Loop Filter

We also obtain the BD-rate and BD-PSNR performance of

three additional learning-based methods: Deep In-loop Filter

with Adaptive Model Selection (DAM) [55], [57], Uformer

[14], and MSTFNet [51]. These methods were also evaluated

against VTM-11.0, and their BD-rate and BD-PSNR perfor-

mance, along with TSF-Net, for all 19 sequences can be found

in Table II. Additionally, Table III presents the number of

parameters (in million) and inference time (in seconds) for

all four models. The inference time was tested on a Linux

system with PyTorch 2.0 and Nvidia RTX A6000 GPU and

is the average time required to process an input image of size

256 × 256 over 100 rounds.

The Deep In-loop Filter with Adaptive Model Selection

(DAM) was proposed by ByteDance to a JVET meeting as a

response to the CfP on “neural network-based video coding”

and has also been studied in [57]. DAM is placed before ALF

while disabling DBF and SAO filters in VTM-11.0. During

inference, patches are processed at the coding unit (CU) level,

and for intra-coding, a CU-level flag is sent to indicate whether

the CU-block is processed by DAM or VVC’s default in-loop

filter as a rate-distortion (RD) optimization. In contrast, there is

currently no such optimization proposed with TSF-Net. During

inference, TSF-Net processes high-resolution images at a patch

size of 512 × 512, while low-resolution images (smaller than

512 × 512) are processed as a whole. Comparing the coding

performance from Table II, we see that the BD-rate and BD-

PSNR gain of our proposed TSF-Net is larger than that of

DAM for all sequences (except BQTerrace). On average, TSF-

Net outperforms DAM in all classes and leads by −0.477%

and 0.017dB in BD-rate and BD-PSNR gain respectively.
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TABLE II

COMPARISON OF BD-RATE(%) AND BD-PSNR(dB) PERFORMANCE ON LUMA COMPONENT UNDER ALL-INTRA (AI) CONFIGURATION

TABLE III

NO. OF PARAMETERS AND INFERENCE SPEED OF DIFFERENT MODELS

From Table III, we observe that both TSF-Net and DAM have

approximately the same number of parameters and almost the

same inference speed.

Considering the remarkable performance of Uformer [14] in

various image restoration (IR) tasks such as image denoising,

motion blur removal, defocus blur removal and rain removal,

we investigate its potential as an in-loop filter and compare its

performance with TSF-Net. Uformer is a transformer-based

U-shaped IR model. We choose Uformer-T (Tiny) (C = 16,

depths of Encoder={2,2,2,2}) variant which has approximately

5.29 millions parameter, similar to TSF-Net’s parameters.

We follow the training setup from [14] (for e.g. initialize

TABLE IV

PSNR PERFORMANCE OF TWO VARIANTS OF TSF-NET (VANILLA AND

EFFICIENT) AT QP=42

learning rate to 2×10−4 and decrease it until 10−6) to train a

model at Q P = 42. For other Q Ps = {37, 32, 27} we follow

the training strategy of TSF-Net (i.e. initialize the weights from

model trained at Q P = 42) while initializing the learning

rate to 10−4 and decrease it until 10−6. Analyzing the results

in Table II, we observed that Uformer outperforms all other

methods in Class A1 and Class A2. However, in Class C and

Class D, Uformer performs less effectively compared to other

methods. In Class B, it achieves similar performance to TSF-

Net. Overall, Uformer falls behind TSF-Net by 0.336% in
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TABLE V

COMPARISON OF BD-RATE SAVING ON LUMA COMPONENT UNDER

ALL-INTRA CONFIGURATION OF TSF-NET WHEN “FREQUENCY PATH”
IS DISABLED

terms of BD-rate and 0.023 dB in terms of BD-PSNR gain. Its

inference speed is slightly better, nonetheless comparable to

TSF-Net as presented in Table III. The performance analysis of

Uformer emphasizes the strength of transformer-based models

in exploiting long-range correlations in high-resolution videos,

for example, in Class A1 and Class A2, where CNN-based

models lack severely. Conversely, for low-resolution videos

such as Class C and Class D, CNN-based model proves to be

the better choice.

We also consider the recently proposed MSTFNet [51]

and compared it with TSF-Net. TSF-Net can be considered

an improvement over MSTFNet as it is built by cascad-

ing only RFBs, each containing one S-MSA, resulting in

a significantly higher number of feature-fusion operations

(S-MSA) in TSF-Net. In contrast, MSTFNet has only three

fusion blocks with S-MSA and the rest are sub-blocks with-

out S-MSA. MSTFNet also includes very large numbers of

convolutional layers compared to TSF-Net. Despite having

significantly fewer parameters, approximately 5.4 million

compared to MSTFNet’s 25.7 million, TSF-Net performs

better than MSTFNet with a BD-rate and BD-PSNR gain

of −0.119% and 0.005dB respectively. This performance

boost can be attributed to TSF-Net’s more frequent use of

feature-fusion operations (S-MSA) than MSTFNet. Despite

having more S-MSA layers, TSF-Net’s inference time is still

comparable to MSTFNet due to its efficient S-MSA (E-SMSA),

as shown in Table III.

C. Ablation Study

1) Comparison of TSF-Net With Efficient Vs Vanilla S-MSA:

The proposed TSF-Net is efficient due to the incorpora-

tion of efficient S-MSA (E-SMSA) into the residual fusion

block (RFB). E-SMSA utilizes average-pooling (“avg-pool”)

to reduce the feature size by half and computes the key (K)

and query (Q) with dimensions of K ∈ R
(H W/b2)×C and

Q ∈ R
(H W/b2)×C , respectively, where b = 2. This reduces the

computation complexity in the self-attention module by 1/4.

In contrast, in the vanilla TSF-Net, average-pooling is absent,

and K and Q are computed at the original size of H W × C ,

making it less efficient.

Table IV displays the PSNR performance of the vanilla and

efficient TSF-Net on JEVT sequences at Q P = 42. From

the table, we observe that there is barely any performance

difference between the two models. However, it is worth noting

that the proposed (efficient) TSF-Net is twice as efficient as

the vanilla TSF-Net, as presented in table III. Please note that

both models have the same number of parameters. Here, the

PSNR performance is only presented at Q P = 42, which we

assume to be sufficient to demonstrate the advantage of the

efficient TSF-Net over the vanilla TSF-Net. This is because the

models at other Q Ps are initialized from the model trained at

Q P = 42 and are further trained to adapt them to other Q Ps.

As a result, the PSNR performance at other Q Ps is expected

to follow a similar pattern and hence is not included.

2) BD-Rate Performance of TSF-Net With No “Frequency-

Decomposed Input”: We also investigate the contribution of

the “frequency-decomposed input” in the proposed TSF-Net.

To do this, we remove the “frequency-decomposed input” and

all the components responsible for processing it from the TSF-

Net. In other words, we only keep the “spatial path” and

disable the “frequency path”. When the “frequency path” is

disabled, the Residual Fusion Block (RFB) reduces to a simpler

ResBlock (“conv→ReLU→conv”). We refer to this model

as TSF-Net (FPD), where FPD stands for “Frequency Path

Disabled”. By removing the “conv” and “T-conv” layers from

the “frequency path” and eliminating the need for the E-SMSA

layer for feature fusion, the total number of trainable parame-

ters in the TSF-Net decreases from approximately 5.42 million

to around 3.34 million. This configuration is referred to as the

“shallow” configuration. To ensure a fair comparison with the

proposed TSF-Net, we increase the number of RFB blocks

from 20 to 32 and disable the “frequency path” in the TSF-

Net, resulting in another configuration of TSF-Net (FPD). This

configuration of TSF-Net (FPD) has a total of approximately

5.34 million trainable parameters and is referred to as the

“deep” configuration.

We train TSF-Net (FPD) in both the sallow and deep

configurations at four QPs={27, 32, 37, 42}. The average

BD-Rate savings per class on the Luma component under

the all-intra (AI) profile for both configurations are presented

in table V. We observe that the proposed TSF-Net offers

greater BD-Rate savings compared to TSF-Net (FPD) in both

configurations. The TSF-Net (FPD) with the sallow configu-

ration, which has the smallest number of trainable parameters,

achieves the lowest BD-Rate gain as expected. However, even

with a similar number of trainable parameters to the pro-

posed TSF-Net, the TSF-Net (FPD) in the deep configuration

still demonstrates inferior BD-Rate performance compared to

TSF-Net. These findings emphasize the significance of the

“frequency-decomposed input” and the powerful feature fusion

operation offered along the “frequency path” in the TSF-Net.

VI. CONCLUSION

In this article, we introduce a novel neural network-based

in-loop filter for VVC, referred to as TSF-Net. Previous

approaches mostly overlooked frequency-decomposed infor-

mation when designing neural network-based in-loop filters.

In contrast, TSF-Net learns jointly from both spatial (pixel) and

frequency-decomposed (DCT’ed) information to effectively

eliminate distortions in video frames. It utilizes a multi-level

feature extraction and feature fusion strategy to enhance
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performance. However, we deviate from previous methods

by designing a convolution-based simple feature extractor

and an advanced feature-aggregator based on channel-wise

transformer (S-MSA). These are combined into a block called

Residual Feature Fusion Block (RFB), which allows for scal-

ability. Additionally, we propose an efficient channel-wise

transformer (E-SMSA) that improves the efficiency of the

vanilla TSF-Net by nearly a factor of two. We evaluate

TSF-Net on 19 JVET common test sequences and achieve

−10.258% BD-rate gain and 0.456dB BD-PSNR gain on the

luma (Y) component under the all-intra (AI) configuration.

Our proposed TSF-Net also outperforms other state-of-the-art

(SOTA) methods under similar conditions.

Limitation and Future Work: The future direction of this

work will be to test TSF-Net on the chroma components

(Cb, Cr) and extend the work to other configurations: Low-

Delay P (LP), Low-Delay B (LB) and Random-Access (RA).

Additionally, introducing a rate-distortion (RD) optimization,

as proposed in DAM, will certainly bring the extra coding

gain. Another crucial direction to explore will be to make E-

SMSA fusion-layer even more efficient and possibly make it

shared among RFB blocks to reduce the number of parameters.

Furthermore, Uformer’s results proved that TSF-Net’s perfor-

mance is subpar in video sequence with larger resolution.

This finding motivates to incorporate transformer as feature

extractor in TSF-Net for future exploration.
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