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Abstract— The use of social media networks and mobile devices
has experienced tremendous growth in recent years. This has
led to a surge in the number of videos recorded and uploaded
to social media platforms like TikTok and YouTube. However,
this increase has also resulted in the rise of illegal duplicate
videos, which are essentially the same as the original videos but
with minor editing effects and variations in coding. In addition,
the large number of duplicate videos is a major storage and
communication efficiency issue. The task of finding duplicate
videos from a large repository is referred to as video dedu-
plication. Video deduplication is a crucial task for applications
like saving storage space and detecting copyright infringement.
This work proposes a fast and robust location-aware video
deduplication system capable of retrieving duplicate videos from
a large repository extremely quickly. In addition, the proposed
system has the ability to find the precise location of the query
video in the retrieved videos. To identify and localize short
video clips against large video repositories, we utilize robust
image-level features from keypoint aggregation and deep learning
along with an efficient KNN search of query frames with a
multiple k-d tree setup, giving us a set of candidate video clips.
Then, a fast temporal consistence pruning algorithm re-ranks
the clip-level candidates and identifies the matching clip along
with its temporal location in a sequence in an efficient way. The
system was tested on 1 million frame/145 hour and 4.5 million
frame/636 hour repositories generated via the large-scale
FIVR-200K and VCSL datasets, respectively. The proposed
system achieves a recall of 98.8% and 94.1% for the FIVR-200K
and VCSL datasets, respectively. A query frame is searched
as fast as 83.96ms and 462.59ms from a 1 million frame/
145 hour and a 4.5 million frame/636 hour repository, respec-
tively. These experimental results demonstrate that our system is
highly accurate and that the time consumption is extremely low
for retrieving video along with its timestamp information from
large-scale repositories.

Index Terms— Video deduplication, video retrieval, near-
duplicate video retrieval, video copy detection, fisher vector.
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I. INTRODUCTION

IN RECENT years, the easy accessibility to mobile devices

and increasing usage of social media platforms like

YouTube,1 Facebook,2 and TikTok3 have led to explosive

growth in the amount of video content shared online. For

instance, as of May 2019, the rate of video content uploaded

to YouTube surpassed 500 hours per minute.4 As a result,

an increase in the amount of illegal pirated video content

shared has been witnessed. These illegal pirate videos essen-

tially contain content identical to the original videos. However,

these videos are edited by adding slight variations to evade

detection by copy detection systems. These variations are

usually added by transformations such as modifying the aspect

ratio, changing color, changing frame rate, padding, overlaying

text, flipping, etc. Such videos are known as duplicates or

near-duplicates. In addition, storing this huge amount of video

content is a challenging issue that further worsens the problem.

The detection of such duplicate videos is referred to as

video deduplication. Video deduplication systems aim to iden-

tify and remove duplicate videos from a large collection of

videos. A task similar (but distinct) to video deduplication

is near-duplicate video retrieval (NDVR) [1], [2], [3], [4],

which aims to retrieve near-duplicate videos from a large-scale

video repository or database. Near-duplicates are similar to

original videos but not exactly the same. Both NDVR and

video deduplication systems are useful for applications like

copyright infringement detection [5], [6], [7], [8], video

search/recommendation [9], [10], [11], etc. Video dedupli-

cation is more useful for applications that generally require

duplicate video removal due to limited storage resources.

Such tasks include video content management, video surveil-

lance [12], [13], etc. NDVR, on the other hand, is more useful

for content-based video search and recommendation systems.

Most video deduplication/NDVR systems work by extract-

ing features from frames/videos and then computing a

similarity score to obtain duplicates/near-duplicates. These

systems can be broadly divided into frame-level [7], [14],

[15], [16], [17], [18] and video-level [19], [20], [21], [22],

[23], [24], [25] methods. Frame-level methods extract features

from frames in the video, whereas video-level methods rep-

1https://www.youtube.com
2https://www.facebook.com
3https://www.tiktok.com
4https://en.wikipedia.org/wiki/YouTube
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resent the entire video with a global representation. While

recent methods have shown promising results in retriev-

ing duplicate/near-duplicate videos, most methods are not

location-aware and have limited scalability. Generally, video

deduplication systems are computationally expensive; conse-

quently, such systems require a considerably large amount of

time to retrieve videos from a large-scale video repository.

Therefore, a fast and robust location-aware video dedupli-

cation system is crucial for applications requiring real-time

processing.

In this work, we propose a frame-level video deduplication

system that is fast, robust, and location-aware. The proposed

system is based on fisher vector, VGG feature, and thumbnail

feature extraction which are used to represent a video frame.

This representation is then used for frame retrieval from

large-scale 1 million frame (145 hour) and 4.5 million frame

repositories using our multiple k-d tree setup. A temporal con-

sistence pruning strategy is proposed that utilizes sequence ID

and global timestamp information to retrieve duplicate videos

along with their precise location accurately. The proposed

system was tested on the large-scale FIVR-200K dataset [26]

and VCSL dataset [27]. Experimental results validate that

the retrieval results are highly accurate and the system can

process a query frame within a few milliseconds. The main

contributions of this paper are mentioned below:

1) We propose a fast and robust location-aware video dedu-

plication system. Given a query video, the system is able

to retrieve the duplicate video from a large 636 hours

video repository along with its precise location.

2) The system is fast, requiring as low as 83.96ms and

462.59ms to search a query frame from a 145 hour and

636 hour video repository, respectively.

The remainder of the paper is organized as follows.

Section II presents the related works, whereas the proposed

method is described in Section III. The experimental setup and

experimental results are discussed in Section IV and Section V,

respectively. Conclusions are presented in the last section of

this paper.

II. RELATED WORKS

A. Frame-Level Retrieval Methods

Frame-based methods generally represent individual video

frames and use nearest neighbor search to retrieve relevant

frames. The retrieved video frames are used to compute a

video similarity score via post-filtering.

A video copy detection system that matched individual

frames and verified their spatiotemporal consistency was pro-

posed in [7]. Hessian-Affine region detector [28] was used to

extract local patches from frames and Scale-Invariant Feature

Transform (SIFT) [29] or CS-LBP [30] descriptors were used

as the descriptors. Video frames were represented using SIFT

and bag-of-words representation by the study in [14]. Incorrect

matches were filtered out via a weak geometric consistency.

Temporal-concentration SIFT (TCSIFT) that encoded temporal

information by tracking SIFT was proposed in [15]. The

work by [16] used binary temporal alignment to efficiently

find a match. Fast CenSurE keypoint detector and BRIEF

descriptor were used for feature detection and description,

respectively. The study in [17] utilized a scalable K-means

clustering technique for learning a visual vocabulary based on

the color correlograms of training images. The study leveraged

inverted file indexing for efficient video retrieval. In [18],

compact spatiotemporal features based on feature selection

and a w-shingling scheme are used to represent videos and

a modified inverted file index was constructed for real-time

video retrieval.

B. Video-Level Retrieval Methods

Video-level retrieval methods usually represent an entire

video as a global signature and a similarity metric is used to

compute similarity between videos in the embedding space.

A video clip representation model referred to as a bounded

coordinate system was proposed in [19]. The model was

based on Principal Component Analysis (PCA). The study

in [20] proposed multiple feature hashing that used multiple

image features to learn a group of hash functions that map

video keyframes into the Hamming space. A series of binary

codes were used to generate signatures for the video dataset.

In [21], a deep video hashing method was proposed that

used CNN to represent a video via meaningful binary codes.

A self-supervised video hashing framework [22] that used an

encoder–decoder architecture for generating binary codes to

represent videos. A global video representation was generated

in [23] by using intermediate CNN features via a layer-based

feature aggregation scheme. In [24], intermediate CNN fea-

tures were used to generate global video signatures together

with a deep metric learning framework. The metric learning

framework used Triplet loss [31] to minimize the distance

between relevant videos and maximize the distance between

irrelevant videos. A video representation framework dubbed

as Temporal Context Aggregation for Video Retrieval (TCA)

was proposed in [25]. TCA incorporated temporal information

among frame-level features via temporal context aggregation

that used a self-attention mechanism. The framework was

trained via a supervised contrastive learning method.

III. VIDEO CLIP IDENTIFICATION AND LOCALIZATION

This section describes the proposed video deduplication

system. The block diagram of the proposed system is presented

in Fig. 1. The proposed method can be divided into the

following steps:

A. Feature Generation

1) Fisher Vector: This subsection introduces fisher vector

aggregation for image classification. Fisher vector aggregation

is used in computer vision and image processing to encode

local features from an image. The MPEG-CDVS Standard [32]

used the scalable compressed Fisher Vector (SCFV) repre-

sentation for the task of visual search and achieved high

matching accuracy with minimal memory requirements. The

studies in [33] and [34] also used fisher vector for the task of

video deduplication. Inspired by [32], [33], and [34], we also

incorporate fisher vector in our work.

Let X = {xt , t = 1, . . . , T } represent the set of T local

descriptors (such as SIFT [29])) extracted from an image.

The main idea of fisher vector aggregation is to model the

distribution of local features X via a probability density func-

tion uλ with parameters λ. Gaussian mixture model (GMM)
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Fig. 1. Overall workflow of the proposed approach.

is generally used to model the probability density function uλ.

This is followed by computing the gradient of log-likelihood

function with respect to the model parameters. The gradient

of the log-likelihood can be mathematically formulated as:

G X
λ = ∇λ log uλ(X) (1)

The gradient of the log-likelihood function of the model with

respect to its parameters λ indicates how each parameter

influences the generation process of X . The parameters λ =
{wk, µk, σk, k = 1, . . . , K } where wk , µk , and σk represent the

mixture weights, means, and diagonal covariance matrices of

GMM containing K number of components. The fisher vector,

a 2K d-dimensional super vector, is obtained by concatenating

the gradients G X
µ,k and G X

σ,k with respect to µk and σk of the

k-th GMM component. These gradients can be computed as

follows:

G X
µ,k =

1

T
√

wi

T
∑

t=1

γt (k)

(

xt − µk

σk

)

(2)

G X
σ,k =

1

T
√

2wi

T
∑

t=1

γt (k)

[

(xt − µk)
2

σk
2

− 1

]

(3)

where γt (k) represents the weight of local feature xt for the

k-th Gaussian component and is defined as:

γt (k) =
πkµk (xt )

∑K
j=1 w jµ j (xt )

(4)

This work uses SIFT keypoints as local image features due

to the scale and rotation invariance properties of SIFT features.

We fit GMM using SIFT keypoint descriptors [29] which were

extracted from frames in the CDVS dataset [32]. Each SIFT

keypoint descriptor is a 128-d vector. We project the 128-d

vector to a 16-d vector using Principal Component Analysis

(PCA). The 16-d vector is then used for training the GMM

with 64 number of components. The projected SIFT keypoint

descriptors were randomly sampled from the entire dataset.

The outcome of fitting the GMM is a visual vocabulary of

dominant image features and their distributions. The 16-d SIFT

keypoint descriptors and the trained GMM model are used to

generate the fisher vectors. The dimension of the generated

fisher vector is 1024-d. The fisher vector is reduced to a d f isher

dimension vector via PCA and will be denoted by f f isher in

the following text.

2) VGG Feature: The VGG feature is generated by

inputting the frame to a pretrained VGG16 [35] (trained on

ImageNet [36]). VGG16 is a convolutional neural network

architecture that was introduced in 2014 by the Visual Geom-

etry Group (VGG) at the University of Oxford. It consists of

13 convolutional layers and 3 fully connected (fc) layers and

achieved outstanding results on image recognition tasks. The

last layer (output layer) is removed from the VGG16 and a

4096-d feature is extracted from the ‘fc2’ (fully connected 2)

layer of VGG16. This 4096-d feature vector is projected to

a lower dimension of dV GG via PCA. The VGG feature is

denoted as fV GG .

3) Thumbnail Feature: The thumbnail feature is computed

by converting the video frame to grayscale, followed by

resizing the video frame to a resolution of 12 × 12 pixels.

The thumbnail is transformed into a 144-d vector with values

ranging between 0 − 1. The global mean is also subtracted

from the thumbnail feature. The thumbnail feature is reduced

to a dthumb dimension vector via PCA. The thumbnail feature

is denoted as fthumb.

B. Efficient Frame Retrieval via Multiple k-d Tree Setup

The proposed features are used for efficient frame retrieval

using k-d trees. A k-d tree is a data structure that is used

for organizing points in a k-dimensional space. A k-d tree

enables efficient nearest neighbor searches by partitioning the

k-dimensional space into smaller regions based on the points’

coordinates.

We use multiple k-d tree setup for the frame retrieval

system. A single k-d tree could also be built by merging

the three features into one. However, this would degrade the

performance of the k-d tree. This is because a k-d tree’s

performance degrades with high-dimensional data due to the
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Fig. 2. Overview of the feature generation step.

Fig. 3. Block diagram for Efficient Frame Retrieval via Multiple k-d Tree
Setup.

curse of dimensionality. In addition, each feature has its own

latent space, so merging these features into one might not

work out well. Therefore, a separate k-d tree is built for each

of the three features generated via the process mentioned in

Section III-A. This keeps the feature dimension small for the

k-d tree and also maximizes the chances of correct frame

retrieval in at least one of the three k-d trees. In case one

k-d tree gives incorrect retrieval results, the remaining trees

can cover for it. The overall frame retrieval setup is shown

in Fig. 3.

During query time, the k-nearest neighbor (KNN) search

is used to search for the samples in the repository that are

nearest to the query. The time consumption for KNN search

increases as the number of neighbors K increases. The KNN

search results return k number of frames. k depends upon

the K value selected during KNN search. The k-d trees are

used to index 1-million and 4.5-million frame repositories

which are generated by uniformly sampling video frames at

regular intervals from the FIVR-200K dataset [26] and VCSL

dataset [27], respectively. Each frame is associated with its

video ID Vid and the global timestamp tsglobal .

Given the three features ( f f isher , fV GG , and fthumb),

we generate three k-d trees t f isher , tV GG , and tthumb using

f f isher , fV GG , and fthumb, respectively. Each k-d tree returns

the k neighbors nearest to the query frame. The neighbors

are returned as indexes in the frame repository. The returned

indexes from each k-d tree are merged to form a set SI Ds =
{I f isher ∪ IV GG ∪ Ithumb} containing the frame IDs from each

k-d tree. I f isher , IV GG , and Ithumb are the indexes of retrieved

frame IDs from t f isher , tV GG , and tthumb, respectively. Sid may

contain many false positives; however, these false positives

will be pruned via the proposed temporal consistence pruning

strategy, as explained in the following subsection.

C. Re-Ranking and Localization With Temporal Consistence

Pruning

In this step, we utilize the temporal coherence constraint to

remove the false positives obtained during the frame retrieval

step. This step uses the global timestamp tsglobal and video

ID Vid information to retrieve duplicate videos from the large-

scale repository. The overall temporal consistence pruning

algorithm is shown in Algorithm 1.

A query video Q = {q(τ1), q(τ2), . . . , q(τm)} is represented

by query frames q(τ ) extracted from query video sampled

at interval τ . For each query frame q(τ ), the fisher vector

f f isher , VGG feature fV GG , and thumbnail feature fthumb

are generated via the procedure explained in Section III-A.

These features are inputted to the three k-d trees (t f isher ,

tV GG , and tthumb) to retrieve matching frames for each of the

query frames. The multiple k-d tree setup returns indexes of

retrieved frames S
q(τm )

id for each query frame q(τm). m number

of S
q(τm )

id are returned by the frame retrieval setup. Each index

retrieved in S
q(τm )

id is associated with its video ID Vid and

global timestamp tsglobal in the repository. So given query

video Q = {q(τ1), q(τ2), . . . , q(τm)}, the frame retrieval

setup returns S
q
id = {S

q(τ1)

id , S
q(τ2)

id , . . . , S
q(τm )

id } where S
q(τm )

id
contains the indexes of the retrieved frames in the repository

for query frame q(τm).

We utilize the video ID Vid and global timestamp tsglobal

to prune the retrieved frames’ indexes S
q
id . The temporal

consistence pruning strategy can be divided into 3 steps - video

ID pruning, timestamp pruning, and localized video retrieval.

In video ID pruning, we compare the video IDs of the retrieved

frames in each set in S
q
id . Only the same video IDs are kept

while the remaining are pruned. The video IDs in S
q(τm+1)

id

are compared with the preceding set S
q(τm )

id and video IDs are

Authorized licensed use limited to: University of Missouri Libraries. Downloaded on February 18,2025 at 01:54:34 UTC from IEEE Xplore.  Restrictions apply. 
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Algorithm 1 Temporal Consistence Pruning

Input: S
q
id = [Sq(τ1)

id , S
q(τ2)

id , . . . , S
q(τm )

id ] where S
q(τm )

id

contains the indexes of the retrieved frames for query

frame q(τm).

Output: Videos IDs and the associated timestamps.

1: Compare video ID of each retrieved frame in S
q(τm+1)

id

with unique video IDs in previous set S
q(τm )

id until the

last set in S
q
id .

2: Update S
q(τm+1)

id by removing frames whose video IDs do

not match those in S
q(τm )

id until the last set in S
q
id .

3: Compare timestamp difference of each retrieved frame

in S
q(τm+1)

id with timestamp of each frame in previous

set S
q(τm )

id until the last set in S
q
id . The timestamp

difference should be equal to τ .

4: Update S
q(τm+1)

id by retaining frames that satisfy the

timestamp difference constraint in step 3 until the last

set in S
q
id .

5: Retrieve videos and their timestamps by extracting

retrieved which match both video ID and timestamp

constraint in all sets in S
q
id .

only kept in S
q(τm+1)

id if the video ID in S
q(τm )

id is also found

in S
q(τm+1)

id . This removes the false positive frames that were

retrieved. However, even after video ID pruning, many false

positives remain in S
q
id . These false positives are taken care

of by the timestamp pruning.

In timestamp pruning, we leverage the global times-

tamp tsglobal information available in the repository. The

frame sampling interval τ used to sample the query frames

from the query video is known. This information about

τ can be leveraged to further prune the remaining frames

retrieved. Since the query video is sampled at regular inter-

val τ , the difference between a frame in S
q(τm+1)

id and

a frame in preceding S
q(τm )

id should be equivalent to τ .

Based on this timestamp constraint, we further reduce the

number of false positives and are left with the relevant

frames.

Finally, we are left with frames that satisfy the video ID

and timestamp constraint. The final videos are retrieved by

extracting frames that have the same video ID and timestamps

increasing by an interval of τ . Since we know the timestamp

associated with each retrieved frame, our algorithm is also

able to accurately localize the video. This is better illustrated

in Fig. 4. Please see the light green and light blue colored

boxes which represent the final retrieved videos along with

their time stamp. Note that the same video was returned with

two different timestamps. However, it must be noted that both

the timestamps differ only by 0.5 seconds which is acceptable

since it is possible for the frames to be static at such short

intervals.

IV. EXPERIMENTAL SETUP

A. Dataset Details

This paper used the following datasets:

1) FIVR-200K Dataset: The FIVR-200K dataset [26]

is a large-scale dataset for the problem of Fine-grained

Fig. 4. Intuition behind the temporal consistence pruning strategy. The blue
and green colored sequences are retrieved while the red colored sequences
are rejected. Note: Figure best viewed in color.

Incident Video Retrieval (FVIR). It consists of 225, 960

YouTube videos which are associated with 100 selected video

queries and 4, 687 Wikipedia events. Videos are categorized

into Duplicate Scene Videos (DSVs), Complementary Scene

Videos (CSVs), and Incident Scene Videos (ISVs). In our

work, we are particularly interested in DSVs which refer to

videos sharing at least one scene regardless of the transfor-

mations applied. DSVs are close to exact duplicates of each

other; however, they can be different in terms of transfor-

mations such as photometric variations, editing, length, etc.

A total of 7, 558 videos are labeled as DSVs; however, only

4, 960 videos were available for download at the time of

writing this manuscript.

We use these 4, 960 videos to build a 1-million frame

repository (1, 016, 035 frames exactly) which is equivalent to

about 145 hours of video. The frames were extracted at a fixed

interval of 0.5 seconds which translates to 2 frames being

extracted per second of video. This large-scale repository is

used as the database of videos in which we will search for the

query video. We generate two test sets of varying difficulty

levels for testing the proposed system. These test sets will

be referred to as FIVR-200K-Normal and FIVR-200K-Hard

throughout the remaining paper. For generating the query

videos for testing, we chose 1, 000 videos randomly from

the FIVR-200K dataset [26] in a way that ensures at least

10 videos were selected from each of the 100 video queries

and also ensures that the selected videos have a duration of at

least 41 seconds. We randomly extract a 40 second clip from

each video and sample frames at an interval of 10 seconds,

generating a total of 5 frames per 40 seconds query video.

For each query video, we have the video ID and timestamp

information as the ground truth. We refer to videos that have

a match in the 1-million frame repository as positive videos.

For the FIVR-200K-Normal test set, the frames were

augmented with transformations that included changing hue,

saturation, gamma, adding blur, and JPEG compression.

A tougher set of augmentations containing rotation, horizontal

flipping, changing hue, saturation, gamma, adding blur, and

JPEG compression were used for generating the FIVR-200K-

Hard test set. Samples from both FIVR-200K-Normal and

FIVR-200K-Hard can be visualized in Fig. 5. Notice the

frames and red boxes in the top right corner of Fig. 5 which

show that the augmented frame is challenging to retrieve due to

flipping and rotation as compared to the original frame. As can

be seen in the top left corner of Fig. 5, the yellow boxes show
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Fig. 5. Dataset samples for FIVR-200K-Normal (top left), FIVR-200K-Hard (top right), VCSL-Normal (bottom left), and VCSL-Hard (bottom right). Notice
that the hard version of the dataset contained vertical flipping and rotation, essentially changing the entire frame. Note: Figure best viewed in color.

that the augmented frame used for testing is extremely blurry

as compared to the original frame.

2) VCSL Dataset: VCSL (Video Copy Segment Local-

ization) [27] is a large-scale segment-level annotated video

copy dataset introduced in 2022. It contains 160, 000 realistic

video copy pairs which include more than 280, 000 localized

copied segment pairs. The dataset covers a wide range of

video duration in addition to diverse video categories. The

precise start and end timestamps are provided for all the copied

segments inside each video pair. The dataset provides a total

of 9, 207 video links from YouTube and BiliBili.5 At the time

of writing this manuscript, only 6, 649 videos were available

for downloading.

These 6, 649 videos were sampled every 0.5 seconds, gen-

erating 2 frames every second for each video. A large-scale

636 hours of video repository containing 4.5-million frames

(4, 524, 789-frames exactly) was generated for the VCSL

dataset [27]. Similar to the FIVR-200K dataset [26], we create

VCSL-Normal and VCSL-Hard test sets. We randomly chose

1, 000 videos from the VCSL dataset [27] and augmented them

with various transformations to create the test data. We applied

the same sets of transformations that were used to create

FIVR-Normal and FIVR-Hard. We extract 40 second chunks

5https://www.bilibili.com/

from each test video and sample at an interval of 10 seconds

to represent a query video with 5 frames. Each query video is

accompanied by its video ID and timestamp information which

is used as ground truth to estimate the performance of our

proposed system. Samples from VCSL-Normal and VCSL-

Hard are visualized in Fig. 5. Notice the difficulty level in the

hard test set for the VCSL dataset (see Fig. 5’s lower right

corner).

3) Negative Videos: To evaluate the performance of videos

that have no match in the repository, we generate negative

videos. We randomly downloaded videos from the ‘DW Doc-

umentary6’ YouTube channel. We extract 1, 000 clips with

a duration of 40 seconds from the downloaded videos and

represent each negative video as 5 frames sampled at an

interval of 10 seconds.

B. Implementation Details

The system was implemented on a desktop computer with

Intel Core i7-12700 CPU and 64 gigabytes of RAM. Python

programming language was used to implement the video

deduplication system. MATLAB was used to extract SIFT

keypoints, perform GMM training, and compute fisher vectors.

PyTorch framework was used to extract VGG features from

6https://www.youtube.com/c/DWDocumentary
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TABLE I

RECALL (%) AT DIFFERENT K VALUES FOR POSITIVE QUERIES

VGG16 on a single NVIDIA RTX A5000. We used leaf size

(the maximum number of points allowed in a leaf node) of

32 when building k-d trees.

C. Optimization Guidelines

This subsection provides guidelines for optimizing the pro-

posed video deduplication system. An important parameter is

the number of PCA components/feature dimension. A common

way to determine the number of components is to analyze

the cumulative explained variance ratio as a function of the

number of components. Choose the number of components

by visually inspecting the plot and selecting the point where

the curve starts to reach a plateau. Generally, more compo-

nents/higher feature dimension can better represent the data,

leading to better results but higher time consumption. Lower

feature dimensions decrease the time consumption but achieve

lower recall. A recall-time consumption trade-off should be

determined based on the application.

Regarding thumbnail size, an optimal thumbnail size should

perform frame abstraction and produce a low-dimensional

embedding to reduce computation cost. In our case,

12 × 12 was empirically chosen. Similarly, for fisher vector,

lower dimensions are preferred to effectively deal with compu-

tation and memory constraints. For k-d tree generation, lower

dimensional data is better since k-d trees become inefficient for

high-dimensional data. As for the leaf size (maximum number

of points allowed in a leaf node), a smaller leaf size produces

a deeper k-d tree but faster query times, while a larger leaf size

produces a shallower k-d tree but slower query times. Another

important parameter is the value K used during k-d tree search.

A higher K value achieves better results with greater time

consumption, whereas lower K results in faster search times

but lower recall rates.

V. EXPERIMENTAL RESULT

The proposed system was evaluated on FIVR-200K [26]

and VCSL [27] datasets - both of which are two large-scale

video copy detection datasets.

A. Duplicate Video Retrieval

In this section, we evaluate the performance of our proposed

video deduplication system in terms of recall for different

values of K and different feature dimensions (d f isher , dV GG ,

and dthumb). Table I presents the recall for normal and hard test

sets generated from FIVR-200K [26] and VCSL [27] datasets.

Given a positive query, the results in Table I evaluate our

system’s ability to retrieve the same video from the repository

correctly.

As evident in Table I, the recall increases with the

increase in K and feature dimensionality. The proposed system

achieves a maximum recall of 98.8% at K = 512, d f isher =
128, and dV GG/dthumb = 64 and a minimum recall of 96.5%

for K = 64, d f isher/dV GG/dthumb = 32 for FIVR-200K-

Normal. In case of FIVR-200K-Hard, best recall of 96.5% is

obtained at K = 512, d f isher = 128, and dV GG/dthumb = 64.

Similar to FIVR-200K dataset [26], the best recall is obtained

at K = 512, d f isher = 128, and dV GG/dthumb = 64 and

worst recall at K = 64, d f isher/dV GG/dthumb = 32 for the

VCSL dataset [27]. The recall varies with K because the

greater the number of retrieved frames from the k-d trees,

the greater the chances of correct frames being retrieved,

ultimately leading to retrieving the correct video. Regarding

feature dimension, higher feature dimensions tend to generate

more distinctive representations, leading to better recall at

the expense of increased time consumption (discussed in the

following subsections).

We only report recall because of how the 1-million and

4.5-million frame repositories are built. The repositories

contain multiple same/similar videos from the FIVR-200K

dataset [26] and VCSL dataset [27]. Sometimes, our system

retrieves multiple videos from the same query class with

timestamps different than the ground truth timestamp. This

can be better visualized in Fig. 6 which shows this exact

phenomenon. In Fig. 6, the video ID ‘tOhDhU6Lh00’ is

actually from the same class as the ground truth video and

is visually almost the same.

B. Duplicate Video Retrieval With Localization

This subsection evaluates the system for duplicate video

retrieval with localization. In addition to the video ID, our

system also retrieves the timestamps. A localized video is

considered a correct match if it matches the ground truth

video id and ground truth timestamps (with a tolerance of

±0s, ±1s, and ±5s). A tolerance of ±1 means that the
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Fig. 6. Video retrieval results by our system. Note: Figure best viewed in color.

TABLE II

TABLE SHOWING TIMESTAMP ACCURACY (%) AT VARYING TOLERANCE VALUES

predicted timestamp is within ±1s seconds of the ground truth

timestamps. This tolerance was added for fair evaluation since

videos in both datasets tend to have static scenes spanning a

couple of seconds. In such situations, our system retrieves the

same video ID and varying timestamps since the frames are

exactly the same. This can be better visualized in Fig. 6.

Table II presents the timestamp accuracy for feature dimen-

sions d f isher = 128, dV GG = 64, and dthumb = 64 at

varying values of K for both FIVR-200K [26] and VCSL [27]

datasets. As observed in Table II, the accuracy increases with

the increasing value of K . This is true for normal and hard test

sets from both FIVR-200K [26] and VCSL [27] datasets. The

maximum timestamp accuracy ±5 of 97.5% and 89.8% was

achieved at the highest value of K = 512 for FIVR-200K-

Normal and FIVR-200K-Hard, respectively. The same holds

true for the VCSL dataset [27] which achieves a maximum

timestamp accuracy ±5 of 88.7% and 75.2% for the normal

and hard test sets, respectively. Higher values of K retrieve
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TABLE III

RECALL (%) AT DIFFERENT K VALUES FOR NEGATIVE QUERIES

more frames, increasing the likelihood of retrieving the correct

video ID with the correct timestamps. The results in Table II

validates that our system can accurately localize the video

from the 636 hour VCSL repository with a timestamp accuracy

88.7% (normal) and 75% (hard) with a small tolerance of

±1 at K = 512. For the 145 hour FIVR-200K repository,

timestamp accuracy of 97.3% (normal) and 89.8% (hard) was

achieved for a tolerance of ±1 at K = 512. Considering the

huge size of repositories, being able to localize the video

within ±1 seconds reflects the robustness of the proposed

video deduplication system.

Another important metric for evaluating our video dedu-

plication system is its ability to reject false positives. Given

a negative query, our system must not retrieve any videos.

Table III presents the results for negative queries generated via

videos downloaded from ‘DW Documentary7’. The negative

queries were searched against the 1 million frame/145 hour

and 4.5 million frame/636 hour repositories generated via

FIVR-200K [26] and VCSL [27] datasets, respectively. For

negative videos, contrary to positive queries, the fewer frames

retrieved by k-d trees, the greater the chances that no frames

are left after the temporal consistency pruning; hence, no video

is retrieved. This is exactly what can be observed by the results

for negative queries, as shown in Table III. We can see that for

the 1 million frame and 4.5 frame search repository, a recall

of 100% is achieved at K = 64 while the lowest recall is

obtained for the highest K value. This trend is also true for

the various feature dimensions. As evident in Table III, the

proposed system performs extremely well at rejecting false

positives given negative queries as input.

C. Effect of Feature Dimension Reduction

In this subsection, we study the effect of dimension reduc-

tion on fisher vector f f isher , thumbnail feature fthumb, and

VGG feature fV GG . Figure 7 presents accuracy vs. feature

dimension plots for each of the three features. We reduce

the dimension of f f isher and fV GG to 32, 64, 128, 256, and

512 and calculate the timestamp accuracy ±5 for different

values of K . In the case of fthumb, the feature dimension is

reduced to 16, 32, and 64 before calculating the timestamp

accuracy ±5 at different K values. As evident in Fig. 7,

higher dimensions and higher K values increase the timestamp

accuracy ±5. Notice that the maximum timestamp accuracy

7https://www.youtube.com/c/DWDocumentary

TABLE IV

AVERAGE TIME IN MS/FRAME REQUIRED FOR RAW FEATURE

GENERATION AND PCA PROJECTION FOR FIVR-200K-NORMAL

AND VCSL-NORMAL DATASETS

±5 of 61.3% and 95.2% was achieved at K = 512 and feature

dimension 512 for f f isher and fV GG , respectively. For fthumb,

maximum timestamp accuracy ±5 of 62.7% was obtained

at K = 512 and feature dimension 512. Higher dimensions

can better represent the data, leading to better performance.

Dimensions higher than the ones shown in Fig. 7 were not

tested since k-d trees become inefficient with high-dimensional

data, leading to worst performance.

D. Time Consumption

This subsection presents the time consumption of the pro-

posed video deduplication system for different steps involved

in building the repository and during test query processing.

It must be noted that all the results presented regarding time

consumption are approximated and vary based on multiple

factors, such as the hardware used. The time to save features to

disk was excluded from these results since these times highly

vary with the type of storage used (HDD or SSD). In addition,

the time consumption results for PCA projection represent the

time it takes to project a feature to a lower dimension given

the input feature and trained PCA model.

Table IV presents the time consumption for raw feature

generation which includes raw feature generation followed
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Fig. 7. Plots showing the effect of (a) FV, (b) thumbnail, and (c) VGG feature dimension on timestamp accuracy ±5 (%) for FIVR-200k-Normal test set.
Colored lines in each plot represent different values of K . Note: Figure best viewed in color.

by dimension reduction. As can be observed in Table IV,

thumbnail and VGG feature generation is extremely fast,

taking about 1.3 ms/frame and 7 ms/frame for VCSL-

Normal, respectively. The fisher vector generation takes about

177 ms/frame and 118 ms/frame for FIVR-200K-Normal and

VCSL-Normal, respectively. Fisher vector generation is a bit

slower because it was implemented in MATLAB which is

slower than Python (used to implement thumbnail and VGG

feature generation). Regarding projecting features to a lower

dimension via PCA, it takes a minimal amount of time to

process. It consumes about 0.33/0.19/0.84 ms/frame (fisher

vector/thumbnail/VGG) and 0.64/0.18/2.58 ms/frame (fisher

vector/thumbnail/VGG) for FIVR-200K-Normal and VCSL-

Normal, respectively.

Table V presents the time consumption (in seconds) for

building the repository, i.e., tree generation for the FIVR-

200K [26] and VCSL [27] datasets. Given the projected

features, the tree for fisher vector, thumbnail, and VGG feature

can be generated in about 2.72s, 1.55s, and 1.64s, respectively,

for the 1-Million frame/145 hour repository (FIVR-200K

dataset [26]). The 4.5-Million frame/636 hour repository con-

sumes about 14.71s, 8.13s, and 10.50s to build fisher vector,

thumbnail, and VGG feature repository, respectively. It can

be observed in Table V that a higher feature dimension and

larger repository size increase the time to build a repository.

The repository building time for normal and hard test sets is

extremely fast due to the relatively small dataset size.

Fig. 8 presents the time consumption plots for frame

retrieval (Fig. 8a) and temporal pruning (Fig. 8b). The total

time/frame is shown in Fig. 8c. The results are presented for

the FIVR-200K-Normal, FIVR-200K-Hard, VCSL-Normal,

and VCSL-Hard test sets. Feature dimension of d f isher = 128,

dthumb = 64, and dV GG = 64 were used for computing

these results. Frame retrieval time refers to the time it con-

sumes to retrieve the frames from the frame retrieval step

(Section III-B), temporal pruning is the time it takes to

prune the frames retrieved during frame retrieval, and total

time/frame is the total time it takes to process a video frame.

All the results in Fig. 8 represent time consumption per frame.

Time consumption per frame can better evaluate the system

since a query video can be represented with a variable number

of frames. All CPU cores were utilized during the k-d tree

search.

As evident in all the subfigures in Fig. 8, the time con-

sumption for each task is directly proportional to the K value.

In addition, the time consumption increases with the increase

Authorized licensed use limited to: University of Missouri Libraries. Downloaded on February 18,2025 at 01:54:34 UTC from IEEE Xplore.  Restrictions apply. 



12016 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 34, NO. 11, NOVEMBER 2024

Fig. 8. Plots showing time consumption per frame in msec for (a) frame retrieval and (b) temporal pruning. The total time consumption per frame is shown
in (c). Each line in every plot represents a different dataset. Feature dimension of d f isher = 128, dthumb = 64, and dV GG = 64 were used for these results.
Note: Figure best viewed in color.

TABLE V

TIME IN SECONDS REQUIRED FOR GENERATING KD-TREE (LEAF SIZE OF 32) FOR EACH OF THE THREE FEATURES

in the size of the search repository. This can be validated by

the results for VCSL-Normal and VCSL-Hard datasets which

were computed for the 4.5-million frame/636 hour repository.

The results for the FIVR-200K-Normal and FIVR-200K-Hard

test sets show significantly lower time consumption since

these were computed for the 1 million frame/145 hour search

repository. Our temporal consistence pruning is extremely fast,

as observed in Fig. 8b with prune times as low as 0.56ms

for FIVR-200K-Normal and FIVR-200K-Hard at K = 64.

Most of the time is consumed searching the query frame

against the search repository. It takes as low as 83.36 ms

and 461.82 ms for FIVR-200K-Normal and VCSL-Normal

test sets, respectively, at K = 64. Overall, it consumes 84ms

and 463ms to process a query frame at K = 64 for the FIVR-

200K-Normal and VCSL-Normal test sets, respectively. These

results validate that our system is fast in processing the query
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Fig. 9. Timestamp accuracy ±5 (%) vs. total time consumption/frame (in
msec) plot for different K values. Each line represents a different dataset.
Note: Figure best viewed in color.

TABLE VI

RESULTS FOR ABLATION STUDY (REMOVING EACH OF

THE THREE FEATURES ONCE AT A TIME)

frames. A graph showing the timestamp accuracy ±5 versus

time consumption at different K values can be seen in Fig. 9.

E. Ablation Study

We conduct an ablation study that signifies the importance

of each of the three features used in our work. We experiment

by removing one feature at a time and evaluating the system

using only two features. In Table VI, we present the results for

three different feature combinations - VGG feature/thumbnail

feature, fisher vector/thumbnail feature, and fisher vector/VGG

feature. For each combination, we present the recall and

timestamp accuracy ±5 seconds for FIVR-200K-Normal and

VCSL-Normal test sets. All these experiments are performed

at K = 64 and feature dimensions of d f isher = 128, dV GG =
64, and dthumb = 64. The importance of each of the three

features is validated by the results presented in Table VI. The

recall for FIVR-200K-Normal reduces to 96.5%, 87.1%, and

96.1% from 97.8% after removing fisher vector f f isher , VGG

feature fV GG , and thumbnail feature fthumb, respectively.

A similar trend can be seen for timestamp accuracy ±5.

These results show that the VGG feature is the most important

feature as compared to the fisher vector and thumbnail feature.

That being said, the fisher vector and thumbnail features also

contribute to improving the recall. These results confirm that

each feature is important and contributes towards improving

performance.

VI. CONCLUSION

This study proposed a robust video deduplication system

for large video repositories. The system is fast, consuming

only a few milliseconds to search a query frame from a

large-scale video repository of about 1 million frame/145 hour

and 4.5 million frame/636 hours. The system can retrieve

the duplicate video from the repository along with its precise

location. The system is based on fisher vector, VGG feature,

and thumbnail feature that are used to represent a video frame

in latent space. A multiple k-d tree setup was designed for

efficient frame retrieval along with a temporal consistence

pruning strategy that can prune the retrieved video frames

to retrieve the video ID and the timestamp. The system

is extremely useful for tasks like saving storage space and

copyright infringement detection. The system was evaluated

on the large-scale FIVR-200K and VCSL datasets and the

experimental results validate our claims.

Regarding future work, a promising direction is to incorpo-

rate neural processing unit-based acceleration for query feature

generation on mobile devices and fully exploit the multi-core

and multi-GPU resources on the cloud side for video retrieval.

REFERENCES

[1] D. Xu, T. J. Cham, S. Yan, L. Duan, and S.-F. Chang, “Near duplicate
identification with spatially aligned pyramid matching,” IEEE Trans.

Circuits Syst. Video Technol., vol. 20, no. 8, pp. 1068–1079, Aug. 2010.

[2] K. Liao et al., “IR feature embedded BOF indexing method for near-
duplicate video retrieval,” IEEE Trans. Circuits Syst. Video Technol.,
vol. 29, no. 12, pp. 3743–3753, Dec. 2019.

[3] H.-s. Min, J. Y. Choi, W. De Neve, and Y. M. Ro, “Near-duplicate
video clip detection using model-free semantic concept detection and
adaptive semantic distance measurement,” IEEE Trans. Circuits Syst.

Video Technol., vol. 22, no. 8, pp. 1174–1187, Aug. 2012.

[4] C.-Y. Chiu and H.-M. Wang, “Time-series linear search for video copies
based on compact signature manipulation and containment relation
modeling,” IEEE Trans. Circuits Syst. Video Technol., vol. 20, no. 11,
pp. 1603–1613, Nov. 2010.

[5] M. M. Esmaeili, M. Fatourechi, and R. K. Ward, “A robust and fast
video copy detection system using content-based fingerprinting,” IEEE

Trans. Inf. Forensics Security, vol. 6, no. 1, pp. 213–226, Mar. 2011.

[6] C. Kim and B. Vasudev, “Spatiotemporal sequence matching for efficient
video copy detection,” IEEE Trans. Circuits Syst. Video Technol., vol. 15,
no. 1, pp. 127–132, Jan. 2005.

[7] M. Douze, H. Jegou, and C. Schmid, “An image-based approach to
video copy detection with spatio-temporal post-filtering,” IEEE Trans.

Multimedia, vol. 12, no. 4, pp. 257–266, Jun. 2010.

[8] S. He et al., “TransVCL: Attention-enhanced video copy localization
network with flexible supervision,” in Proc. AAAI Conf. Artif. Intell.,
2023, vol. 37, no. 1, pp. 799–807.

[9] S. Sowmyayani and P. A. J. Rani, “Content based video retrieval system
using two stream convolutional neural network,” Multimedia Tools Appl.,
vol. 82, no. 16, pp. 24465–24483, Jul. 2023.

[10] Z. Li and M. Zhu, “A light-weight relevance feedback solution for large
scale content-based video retrieval,” Int. J. Comput. Sci. Issues, vol. 10,
no. 1, p. 382, 2013.

[11] L. Shen, R. Hong, H. Zhang, X. Tian, and M. Wang, “Video retrieval
with similarity-preserving deep temporal hashing,” ACM Trans. Multi-

media Comput., Commun., Appl., vol. 15, no. 4, pp. 1–16, Nov. 2019.

[12] X. Wang, “Intelligent multi-camera video surveillance: A review,” Pat-

tern Recognit. Lett., vol. 34, no. 1, pp. 3–19, Jan. 2013.

[13] C. Rougier, J. Meunier, A. St-Arnaud, and J. Rousseau, “Robust video
surveillance for fall detection based on human shape deformation,”
IEEE Trans. Circuits Syst. Video Technol., vol. 21, no. 5, pp. 611–622,
May 2011.

Authorized licensed use limited to: University of Missouri Libraries. Downloaded on February 18,2025 at 01:54:34 UTC from IEEE Xplore.  Restrictions apply. 



12018 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 34, NO. 11, NOVEMBER 2024

[14] Y.-G. Jiang, Y. Jiang, and J. Wang, “VCDB: A large-scale database
for partial copy detection in videos,” in Proc. Eur. Conf. Comput. Vis.,
Zurich, Switzerland. Cham, Switzerland: Springer, 2014, pp. 357–371.

[15] Y. Zhu, X. Huang, Q. Huang, and Q. Tian, “Large-scale video copy
retrieval with temporal-concentration SIFT,” Neurocomputing, vol. 187,
pp. 83–91, Apr. 2016.

[16] Y. Zhang and X. Zhang, “Effective real-scenario video copy detec-
tion,” in Proc. 23rd Int. Conf. Pattern Recognit. (ICPR), Dec. 2016,
pp. 3951–3956.

[17] Y. Cai et al., “Million-scale near-duplicate video retrieval system,” in
Proc. 19th ACM Int. Conf. Multimedia, Nov. 2011, pp. 837–838.

[18] L. Shang, L. Yang, F. Wang, K.-P. Chan, and X.-S. Hua, “Real-time
large scale near-duplicate web video retrieval,” in Proc. 18th ACM Int.

Conf. Multimedia, Oct. 2010, pp. 531–540.

[19] Z. Huang, H. T. Shen, J. Shao, X. Zhou, and B. Cui, “Bounded
coordinate system indexing for real-time video clip search,” ACM Trans.

Inf. Syst., vol. 27, no. 3, pp. 1–33, May 2009.

[20] J. Song, Y. Yang, Z. Huang, H. T. Shen, and J. Luo, “Effective multiple
feature hashing for large-scale near-duplicate video retrieval,” IEEE

Trans. Multimedia, vol. 15, no. 8, pp. 1997–2008, Dec. 2013.

[21] V. E. Liong, J. Lu, Y.-P. Tan, and J. Zhou, “Deep video hashing,” IEEE

Trans. Multimedia, vol. 19, no. 6, pp. 1209–1219, Jun. 2017.

[22] J. Song, H. Zhang, X. Li, L. Gao, M. Wang, and R. Hong, “Self-
supervised video hashing with hierarchical binary auto-encoder,” IEEE

Trans. Image Process., vol. 27, no. 7, pp. 3210–3221, Jul. 2018.

[23] G. Kordopatis-Zilos, S. Papadopoulos, I. Patras, and Y. Kompatsiaris,
“Near-duplicate video retrieval by aggregating intermediate CNN lay-
ers,” in Proc. MultiMedia Modeling, 23rd Int. Conf. (MMM), Reykjavik,
Iceland. Cham, Switzerland: Springer, Jan. 2017, pp. 251–263.

[24] G. Kordopatis-Zilos, S. Papadopoulos, I. Patras, and Y. Kompatsiaris,
“Near-duplicate video retrieval with deep metric learning,” in Proc. IEEE

Int. Conf. Comput. Vis. Workshops (ICCVW), Venice, Italy, Oct. 2017,
pp. 347–356.

[25] J. Shao, X. Wen, B. Zhao, and X. Xue, “Temporal context aggregation
for video retrieval with contrastive learning,” in Proc. IEEE/CVF Winter

Conf. Appl. Comput. Vis. (WACV), Jan. 2021, pp. 3268–3278.

[26] G. Kordopatis-Zilos, S. Papadopoulos, I. Patras, and I. Kompatsiaris,
“FIVR: Fine-grained incident video retrieval,” IEEE Trans. Multimedia,
vol. 21, no. 10, pp. 2638–2652, Oct. 2019.

[27] S. He et al., “A large-scale comprehensive dataset and copy-overlap
aware evaluation protocol for segment-level video copy detection,”
in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2022, pp. 21054–21063.

[28] K. Mikolajczyk and K. Mikolajczyk, “Scale & affine invariant inter-
est point detectors,” Int. J. Comput. Vis., vol. 60, no. 1, pp. 63–86,
Oct. 2004.

[29] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,”
Int. J. Comput. Vis., vol. 60, no. 2, pp. 91–110, Nov. 2004.

[30] M. Heikkilä, M. Pietikäinen, and C. Schmid, “Description of interest
regions with local binary patterns,” Pattern Recognit., vol. 42, no. 3,
pp. 425–436, Mar. 2009.

[31] F. Schroff, D. Kalenichenko, and J. Philbin, “FaceNet: A uni-
fied embedding for face recognition and clustering,” in Proc.

IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2015,
pp. 815–823.

[32] L.-Y. Duan et al., “Overview of the MPEG-CDVS standard,”
IEEE Trans. Image Process., vol. 25, no. 1, pp. 179–194,
Jan. 2016.

[33] C. Henry, R. Liao, R. Lin, Z. Zhang, H. Sun, and Z. Li, “Lightweight
Fisher vector transfer learning for video deduplication,” in Proc.

IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP), Jun. 2023,
pp. 1–5.

[34] C. Henry, R. Liao, R. Lin, Z. Zhang, H. Sun, and Z. Li, “Fast and robust
video deduplication,” in Proc. 2nd Mile-High Video Conf., May 2023,
p. 160.

[35] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” 2014, arXiv:1409.1556.

[36] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei,
“ImageNet: A large-scale hierarchical image database,” in Proc. IEEE

Conf. Comput. Vis. Pattern Recognit., Miami, FL, USA, Jun. 2009,
pp. 248–255.

Chris Henry (Student Member, IEEE) received the
B.E. degree in electronic engineering from Ham-
dard University, Pakistan, in 2015, and the M.E.
degree in IT convergence engineering from Gachon
University, South Korea, in 2019. He is currently
pursuing the Ph.D. degree in electrical and computer
engineering with the University of Missouri–Kansas
City, Kansas City, MO, USA. He is also affiliated
with the Multimedia Computing and Communica-
tion Laboratory, University of Missouri–Kansas City.
His research interests include image processing,

computer vision, and deep learning.

Li Song (Senior Member, IEEE) received the B.E.
and M.S. degrees in engineering and the Ph.D.
degree in electrical engineering from Shanghai Jiao
Tong University, Shanghai, China, in 1997, 2000,
and 2005, respectively. From 2011 to 2012, he was
a Visiting Professor with Santa Clara University,
Santa Clara, CA, USA. He is currently a Full Profes-
sor with the Department of Electronic Engineering,
Shanghai Jiao Tong University. He has more than
200 publications, more than 50 granted patents, and
18 standard technical proposals in the field of video

coding and image processing. His research interests include video processing
and multimedia systems. He was a recipient of the National Science and
Technology Progress Award in 2015, the Okawa Foundation Research Grant
in 2012, the Second Place Award from IEEE ICME-Twitch Grand Challenge
in 2017, the Best 10% Paper Award from IEEE VCIP in 2016, and the Best
Paper Award from the International Conference on Wireless Communications
and Signal Processing in 2010. He was the area or session chair for various
international conferences and workshops. He has been an Associate Editor of
Multidimensional Systems and Signal Processing since 2012. He was a Guest
Editor of IEEE TRANSACTIONS ON BROADCASTING, a special issue on the
quality of experience of advanced broadcast services, in June 2018.

Zhu Li (Senior Member, IEEE) received the Ph.D.
degree in electrical and computer engineering from
Northwestern University in 2004. He was an AFRL
Summer Faculty Member of the UAV Research Cen-
ter, U.S. Air Force Academy (USAFA), from 2016 to
2018 and from 2020 to 2023. He was a Senior
Staff Researcher with the Samsung Research Amer-
ica’s Multimedia Standards Research Laboratory,
Richardson, TX, USA, from 2012 to 2015, a Senior
Staff Researcher with the FutureWei Technol-
ogy’s Media Laboratory, Bridgewater, NJ, USA,

from 2010 to 2012, an Assistant Professor with the Department of Computing,
The Hong Kong Polytechnic University, from 2008 to 2010, and a Principal
Staff Research Engineer with the Multimedia Research Laboratory (MRL),
Motorola Labs, from 2000 to 2008. He is currently a Professor with the
Department of Computer Science and Electrical Engineering, University
of Missouri–Kansas City, Kansas City, where he is also the Director of
the NSF I/UCRC Center for Big Learning (CBL). His research interests
include point cloud and light field compression, graph signal processing
and deep learning in the next-gen visual compression, and image processing
and understanding. He has more than 50 issued or pending patents, and
more than 190 publications in book chapters, journals, and conferences in
these areas. He received the Best Paper Award from the IEEE International
Conference on Multimedia and Expo (ICME), Toronto, in 2006, and the
IEEE International Conference on Image Processing (ICIP), San Antonio,
in 2007. He is the Associate Editor-in-Chief of IEEE TRANSACTIONS ON

CIRCUITS AND SYSTEM FOR VIDEO TECHNOLOGY from 2016 to 2019, and
an Associate Editor of IEEE TRANSACTIONS ON IMAGE PROCESSING since
2020, IEEE TRANSACTIONS ON MULTIMEDIA from 2015 to 2018, and IEEE
TRANSACTIONS ON CIRCUITS AND SYSTEM FOR VIDEO TECHNOLOGY

from 2016 to 2019.

Authorized licensed use limited to: University of Missouri Libraries. Downloaded on February 18,2025 at 01:54:34 UTC from IEEE Xplore.  Restrictions apply. 


