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Abstract— The use of social media networks and mobile devices
has experienced tremendous growth in recent years. This has
led to a surge in the number of videos recorded and uploaded
to social media platforms like TikTok and YouTube. However,
this increase has also resulted in the rise of illegal duplicate
videos, which are essentially the same as the original videos but
with minor editing effects and variations in coding. In addition,
the large number of duplicate videos is a major storage and
communication efficiency issue. The task of finding duplicate
videos from a large repository is referred to as video dedu-
plication. Video deduplication is a crucial task for applications
like saving storage space and detecting copyright infringement.
This work proposes a fast and robust location-aware video
deduplication system capable of retrieving duplicate videos from
a large repository extremely quickly. In addition, the proposed
system has the ability to find the precise location of the query
video in the retrieved videos. To identify and localize short
video clips against large video repositories, we utilize robust
image-level features from keypoint aggregation and deep learning
along with an efficient KNN search of query frames with a
multiple k-d tree setup, giving us a set of candidate video clips.
Then, a fast temporal consistence pruning algorithm re-ranks
the clip-level candidates and identifies the matching clip along
with its temporal location in a sequence in an efficient way. The
system was tested on 1 million frame/145 hour and 4.5 million
frame/636 hour repositories generated via the large-scale
FIVR-200K and VCSL datasets, respectively. The proposed
system achieves a recall of 98.8% and 94.1% for the FIVR-200K
and VCSL datasets, respectively. A query frame is searched
as fast as 83.96ms and 462.59ms from a 1 million frame/
145 hour and a 4.5 million frame/636 hour repository, respec-
tively. These experimental results demonstrate that our system is
highly accurate and that the time consumption is extremely low
for retrieving video along with its timestamp information from
large-scale repositories.

Index Terms— Video deduplication, video retrieval, near-
duplicate video retrieval, video copy detection, fisher vector.
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I. INTRODUCTION

N RECENT years, the easy accessibility to mobile devices

and increasing usage of social media platforms like
YouTube,! Facebook,? and TikTok® have led to explosive
growth in the amount of video content shared online. For
instance, as of May 2019, the rate of video content uploaded
to YouTube surpassed 500 hours per minute.* As a result,
an increase in the amount of illegal pirated video content
shared has been witnessed. These illegal pirate videos essen-
tially contain content identical to the original videos. However,
these videos are edited by adding slight variations to evade
detection by copy detection systems. These variations are
usually added by transformations such as modifying the aspect
ratio, changing color, changing frame rate, padding, overlaying
text, flipping, etc. Such videos are known as duplicates or
near-duplicates. In addition, storing this huge amount of video
content is a challenging issue that further worsens the problem.

The detection of such duplicate videos is referred to as
video deduplication. Video deduplication systems aim to iden-
tify and remove duplicate videos from a large collection of
videos. A task similar (but distinct) to video deduplication
is near-duplicate video retrieval (NDVR) [1], [2], [3], [4],
which aims to retrieve near-duplicate videos from a large-scale
video repository or database. Near-duplicates are similar to
original videos but not exactly the same. Both NDVR and
video deduplication systems are useful for applications like
copyright infringement detection [5], [6], [7], [8], video
search/recommendation [9], [10], [11], etc. Video dedupli-
cation is more useful for applications that generally require
duplicate video removal due to limited storage resources.
Such tasks include video content management, video surveil-
lance [12], [13], etc. NDVR, on the other hand, is more useful
for content-based video search and recommendation systems.

Most video deduplication/NDVR systems work by extract-
ing features from frames/videos and then computing a
similarity score to obtain duplicates/near-duplicates. These
systems can be broadly divided into frame-level [7], [14],
[15], [16], [17], [18] and video-level [19], [20], [21], [22],
[23], [24], [25] methods. Frame-level methods extract features
from frames in the video, whereas video-level methods rep-

1 https://www.youtube.com
2https://Www.facebook.com

3 https://www.tiktok.com
4https://en.wikipedia.org/wiki/YouTube
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resent the entire video with a global representation. While
recent methods have shown promising results in retriev-
ing duplicate/near-duplicate videos, most methods are not
location-aware and have limited scalability. Generally, video
deduplication systems are computationally expensive; conse-
quently, such systems require a considerably large amount of
time to retrieve videos from a large-scale video repository.
Therefore, a fast and robust location-aware video dedupli-
cation system 1is crucial for applications requiring real-time
processing.

In this work, we propose a frame-level video deduplication
system that is fast, robust, and location-aware. The proposed
system is based on fisher vector, VGG feature, and thumbnail
feature extraction which are used to represent a video frame.
This representation is then used for frame retrieval from
large-scale 1 million frame (145 hour) and 4.5 million frame
repositories using our multiple k-d tree setup. A temporal con-
sistence pruning strategy is proposed that utilizes sequence ID
and global timestamp information to retrieve duplicate videos
along with their precise location accurately. The proposed
system was tested on the large-scale FIVR-200K dataset [26]
and VCSL dataset [27]. Experimental results validate that
the retrieval results are highly accurate and the system can
process a query frame within a few milliseconds. The main
contributions of this paper are mentioned below:

1) We propose a fast and robust location-aware video dedu-
plication system. Given a query video, the system is able
to retrieve the duplicate video from a large 636 hours
video repository along with its precise location.

2) The system is fast, requiring as low as 83.96ms and
462.59ms to search a query frame from a 145 hour and
636 hour video repository, respectively.

The remainder of the paper is organized as follows.
Section II presents the related works, whereas the proposed
method is described in Section III. The experimental setup and
experimental results are discussed in Section IV and Section V,
respectively. Conclusions are presented in the last section of
this paper.

II. RELATED WORKS
A. Frame-Level Retrieval Methods

Frame-based methods generally represent individual video
frames and use nearest neighbor search to retrieve relevant
frames. The retrieved video frames are used to compute a
video similarity score via post-filtering.

A video copy detection system that matched individual
frames and verified their spatiotemporal consistency was pro-
posed in [7]. Hessian-Affine region detector [28] was used to
extract local patches from frames and Scale-Invariant Feature
Transform (SIFT) [29] or CS-LBP [30] descriptors were used
as the descriptors. Video frames were represented using SIFT
and bag-of-words representation by the study in [14]. Incorrect
matches were filtered out via a weak geometric consistency.
Temporal-concentration SIFT (TCSIFT) that encoded temporal
information by tracking SIFT was proposed in [15]. The
work by [16] used binary temporal alignment to efficiently
find a match. Fast CenSurE keypoint detector and BRIEF
descriptor were used for feature detection and description,
respectively. The study in [17] utilized a scalable K-means
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clustering technique for learning a visual vocabulary based on
the color correlograms of training images. The study leveraged
inverted file indexing for efficient video retrieval. In [18],
compact spatiotemporal features based on feature selection
and a w-shingling scheme are used to represent videos and
a modified inverted file index was constructed for real-time
video retrieval.

B. Video-Level Retrieval Methods

Video-level retrieval methods usually represent an entire
video as a global signature and a similarity metric is used to
compute similarity between videos in the embedding space.

A video clip representation model referred to as a bounded
coordinate system was proposed in [19]. The model was
based on Principal Component Analysis (PCA). The study
in [20] proposed multiple feature hashing that used multiple
image features to learn a group of hash functions that map
video keyframes into the Hamming space. A series of binary
codes were used to generate signatures for the video dataset.
In [21], a deep video hashing method was proposed that
used CNN to represent a video via meaningful binary codes.
A self-supervised video hashing framework [22] that used an
encoder—decoder architecture for generating binary codes to
represent videos. A global video representation was generated
in [23] by using intermediate CNN features via a layer-based
feature aggregation scheme. In [24], intermediate CNN fea-
tures were used to generate global video signatures together
with a deep metric learning framework. The metric learning
framework used Triplet loss [31] to minimize the distance
between relevant videos and maximize the distance between
irrelevant videos. A video representation framework dubbed
as Temporal Context Aggregation for Video Retrieval (TCA)
was proposed in [25]. TCA incorporated temporal information
among frame-level features via temporal context aggregation
that used a self-attention mechanism. The framework was
trained via a supervised contrastive learning method.

III. VIDEO CLIP IDENTIFICATION AND LOCALIZATION

This section describes the proposed video deduplication
system. The block diagram of the proposed system is presented
in Fig. 1. The proposed method can be divided into the
following steps:

A. Feature Generation

1) Fisher Vector: This subsection introduces fisher vector
aggregation for image classification. Fisher vector aggregation
is used in computer vision and image processing to encode
local features from an image. The MPEG-CDVS Standard [32]
used the scalable compressed Fisher Vector (SCFV) repre-
sentation for the task of visual search and achieved high
matching accuracy with minimal memory requirements. The
studies in [33] and [34] also used fisher vector for the task of
video deduplication. Inspired by [32], [33], and [34], we also
incorporate fisher vector in our work.

Let X = {x;,t = 1,..., T} represent the set of T local
descriptors (such as SIFT [29])) extracted from an image.
The main idea of fisher vector aggregation is to model the
distribution of local features X via a probability density func-
tion u); with parameters A. Gaussian mixture model (GMM)
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Fig. 1. Overall workflow of the proposed approach.

is generally used to model the probability density function u;.
This is followed by computing the gradient of log-likelihood
function with respect to the model parameters. The gradient
of the log-likelihood can be mathematically formulated as:

G = V; logu; (X) (1)

The gradient of the log-likelihood function of the model with
respect to its parameters A indicates how each parameter
influences the generation process of X. The parameters A =
{wg, nr, ok, k =1, ..., K} where wg, (i, and oy represent the
mixture weights, means, and diagonal covariance matrices of
GMM containing K number of components. The fisher vector,
a 2K d-dimensional super vector, is obtained by concatenating
the gradients Gi.  and Gi{ « With respect to u; and oy of the
k-th GMM component. These gradients can be computed as

follows:
1 a Xr — Mk
GX = —— E k !

T — up)?
Gy = o > vk [% - 1} 3)
=1

where y; (k) represents the weight of local feature x; for the
k-th Gaussian component and is defined as:

2

Yok = — OO @)
Zj:l wijpkj (Xr)

This work uses SIFT keypoints as local image features due
to the scale and rotation invariance properties of SIFT features.
We fit GMM using SIFT keypoint descriptors [29] which were
extracted from frames in the CDVS dataset [32]. Each SIFT
keypoint descriptor is a 128-d vector. We project the 128-d
vector to a 16-d vector using Principal Component Analysis
(PCA). The 16-d vector is then used for training the GMM
with 64 number of components. The projected SIFT keypoint
descriptors were randomly sampled from the entire dataset.
The outcome of fitting the GMM is a visual vocabulary of
dominant image features and their distributions. The 16-d SIFT

Temporal

C—>| Consistence —>

Pruning

Frame Localized

Retrieval

Video

keypoint descriptors and the trained GMM model are used to
generate the fisher vectors. The dimension of the generated
fisher vector is 1024-d. The fisher vector is reduced to a d f;sper
dimension vector via PCA and will be denoted by fFisher in
the following text.

2) VGG Feature: The VGG feature is generated by
inputting the frame to a pretrained VGG16 [35] (trained on
ImageNet [36]). VGG16 is a convolutional neural network
architecture that was introduced in 2014 by the Visual Geom-
etry Group (VGG) at the University of Oxford. It consists of
13 convolutional layers and 3 fully connected (fc) layers and
achieved outstanding results on image recognition tasks. The
last layer (output layer) is removed from the VGG16 and a
4096-d feature is extracted from the ‘fc2’ (fully connected 2)
layer of VGG16. This 4096-d feature vector is projected to
a lower dimension of dygg via PCA. The VGG feature is
denoted as fygg.

3) Thumbnail Feature: The thumbnail feature is computed
by converting the video frame to grayscale, followed by
resizing the video frame to a resolution of 12 x 12 pixels.
The thumbnail is transformed into a 144-d vector with values
ranging between 0 — 1. The global mean is also subtracted
from the thumbnail feature. The thumbnail feature is reduced
to a d;pump dimension vector via PCA. The thumbnail feature
is denoted as finump-

B. Efficient Frame Retrieval via Multiple k-d Tree Setup

The proposed features are used for efficient frame retrieval
using k-d trees. A k-d tree is a data structure that is used
for organizing points in a k-dimensional space. A k-d tree
enables efficient nearest neighbor searches by partitioning the
k-dimensional space into smaller regions based on the points’
coordinates.

We use multiple k-d tree setup for the frame retrieval
system. A single k-d tree could also be built by merging
the three features into one. However, this would degrade the
performance of the k-d tree. This is because a k-d tree’s
performance degrades with high-dimensional data due to the
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Block diagram for Efficient Frame Retrieval via Multiple k-d Tree

curse of dimensionality. In addition, each feature has its own
latent space, so merging these features into one might not
work out well. Therefore, a separate k-d tree is built for each
of the three features generated via the process mentioned in
Section III-A. This keeps the feature dimension small for the
k-d tree and also maximizes the chances of correct frame
retrieval in at least one of the three k-d trees. In case one
k-d tree gives incorrect retrieval results, the remaining trees
can cover for it. The overall frame retrieval setup is shown
in Fig. 3.

During query time, the k-nearest neighbor (KNN) search
is used to search for the samples in the repository that are
nearest to the query. The time consumption for KNN search
increases as the number of neighbors K increases. The KNN
search results return k number of frames. k depends upon
the K value selected during KNN search. The k-d trees are
used to index 1-million and 4.5-million frame repositories
which are generated by uniformly sampling video frames at
regular intervals from the FIVR-200K dataset [26] and VCSL
dataset [27], respectively. Each frame is associated with its
video ID V4 and the global timestamp #5gopal-

Given the three features (ffrishers fvGe, and  finump),
we generate three k-d trees ?fisper, tvGe, and fypymp using
Srishers fvGa, and fipump, respectively. Each k-d tree returns
the k neighbors nearest to the query frame. The neighbors
are returned as indexes in the frame repository. The returned

Thumbnail Feature

indexes from each k-d tree are merged to form a set S;p; =
{Ifisher U IvGG U Ithump) containing the frame IDs from each
k-d tree. I fisher, IvGG» and Itpymp are the indexes of retrieved
frame IDs from ¢ ¢isper, tv GG, and tipump, respectively. S;q may
contain many false positives; however, these false positives
will be pruned via the proposed temporal consistence pruning
strategy, as explained in the following subsection.

C. Re-Ranking and Localization With Temporal Consistence
Pruning

In this step, we utilize the temporal coherence constraint to
remove the false positives obtained during the frame retrieval
step. This step uses the global timestamp tsg/0p0; and video
ID V;; information to retrieve duplicate videos from the large-
scale repository. The overall temporal consistence pruning
algorithm is shown in Algorithm 1.

A query video Q = {q(11), q(12), ..., q(tin)} is represented
by query frames g(r) extracted from query video sampled
at interval 7. For each query frame ¢g(t), the fisher vector
Srisher» VGG feature fyge, and thumbnail feature fiump
are generated via the procedure explained in Section III-A.
These features are inputted to the three k-d trees (Zfisher,
tvgaG, and typump) to retrieve matching frames for each of the
query frames. The multiple k-d tree setup returns indexes of
retrieved frames S;’ d(f"’) for each query frame g (7,,). m number
of Sl.qd(r’”) are returned by the frame retrieval setup. Each index

retrieved in S;Id(t’”) is associated with its video ID V;; and
global timestamp #sg0pa; in the repository. So given query
video Q0 = {q(rl),q(rz),...,q)(tm)}, the frame retrieval
setup returns S?d = {S?d(n), S?d(tz ,...,Slqd(r’")} where Siqd(r’")
contains the indexes of the retrieved frames in the repository
for query frame g (t,).

We utilize the video ID V4 and global timestamp #sg/0pal
to prune the retrieved frames’ indexes Slqd. The temporal
consistence pruning strategy can be divided into 3 steps - video
ID pruning, timestamp pruning, and localized video retrieval.
In video ID pruning, we compare the video IDs of the retrieved
frames in each set in S?d. Only the same video IDs are kept
while the remaining are pruned. The video IDs in Sfd(r’”“)

q(Tm)

are compared with the preceding set S;; ™’ and video IDs are

Authorized licensed use limited to: University of Missouri Libraries. Downloaded on February 18,2025 at 01:54:34 UTC from IEEE Xplore. Restrictions apply.



12010

Algorithm 1 Temporal Consistence Pruning

Input: {, = [SL™, SE™, ... U™ where S&™
contains the indexes of the retrieved frames for query
frame q (7).

Output: Videos IDs and the associated timestamps.

1: Compare video ID of each retrieved frame in Sf;t"’“)

with unique video IDs in previous set Sf’d(r'") until the

<o
last set in S;,.

2: Update Sfd(r’”“) by removing frames whose video IDs do
not match those in Sfld(r’”) until the last set in Sl.qd.

3: Compare timestamp difference of each retrieved frame
in Sfd(r'"“) with timestamp of each frame in previous
set Slqd(t'") until the last set in S;’d. The timestamp
difference should be equal to t.

4:  Update Sfd(r’”“) by retaining frames that satisfy the
timestamp difference constraint in step 3 until the last
set in S?d.

5:  Retrieve videos and their timestamps by extracting
retrieved which match both video ID and timestamp
constraint in all sets in Sfd.

only kept in Slfjd(f’”“) if the video ID in Sfd(r’”) is also found
in Slf’d(f’"H) . This removes the false positive frames that were
retrieved. However, even after video ID pruning, many false
positives remain in S?d. These false positives are taken care
of by the timestamp pruning.

In timestamp pruning, we leverage the global times-
tamp #sg/0pe information available in the repository. The
frame sampling interval T used to sample the query frames
from the query video is known. This information about
T can be leveraged to further prune the remaining frames
retrieved. Since the query video is sampled at regular inter-
val 7, the difference between a frame in Sfd(r’"“) and

a frame in preceding Sl.q(j(r’") should be equivalent to .
Based on this timestamp constraint, we further reduce the
number of false positives and are left with the relevant
frames.

Finally, we are left with frames that satisfy the video ID
and timestamp constraint. The final videos are retrieved by
extracting frames that have the same video ID and timestamps
increasing by an interval of 7. Since we know the timestamp
associated with each retrieved frame, our algorithm is also
able to accurately localize the video. This is better illustrated
in Fig. 4. Please see the light green and light blue colored
boxes which represent the final retrieved videos along with
their time stamp. Note that the same video was returned with
two different timestamps. However, it must be noted that both
the timestamps differ only by 0.5 seconds which is acceptable
since it is possible for the frames to be static at such short
intervals.

IV. EXPERIMENTAL SETUP
A. Dataset Details

This paper used the following datasets:
1) FIVR-200K Dataset: The FIVR-200K dataset [26]
is a large-scale dataset for the problem of Fine-grained

Ground truth video ID = 4PWeln2JE8, Timestamp = 24.5-36.5
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§ ( (z3) (74)
51{1111) Sgirz) sgira 53114
Viqa = -4PWeln2JE8 Viq = -4PWeln2JE8
ts =24.5 ts =28.5
Viq = -4PWeln2JE8 Viq = -4PWeln2JE8 Viq = -4PWeln2JES Viq = -4PWeln2JE8
ts =25.0 ts =29.0 Lsi=32:5 ts =36.5
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TS =255 ts =29.5 ts =33.0 ts =37.0
Viq = DYsH6KOGt5M Viq = DYsH6KOGt5M
ts =232.5 ts =236.5
Retrieved video ID= -4PWeJn2JE8, Location = 24.5-36.5
Retrieved video ID= -4PWeJn2JE8, Location = 25.0-37.0
Video does not satisfy video ID and timestamp constraint.
Fig. 4. Intuition behind the temporal consistence pruning strategy. The blue

and green colored sequences are retrieved while the red colored sequences
are rejected. Note: Figure best viewed in color.

Incident Video Retrieval (FVIR). It consists of 225,960
YouTube videos which are associated with 100 selected video
queries and 4, 687 Wikipedia events. Videos are categorized
into Duplicate Scene Videos (DSVs), Complementary Scene
Videos (CSVs), and Incident Scene Videos (ISVs). In our
work, we are particularly interested in DSVs which refer to
videos sharing at least one scene regardless of the transfor-
mations applied. DSVs are close to exact duplicates of each
other; however, they can be different in terms of transfor-
mations such as photometric variations, editing, length, etc.
A total of 7,558 videos are labeled as DSVs; however, only
4,960 videos were available for download at the time of
writing this manuscript.

We use these 4,960 videos to build a 1-million frame
repository (1,016, 035 frames exactly) which is equivalent to
about 145 hours of video. The frames were extracted at a fixed
interval of 0.5 seconds which translates to 2 frames being
extracted per second of video. This large-scale repository is
used as the database of videos in which we will search for the
query video. We generate two test sets of varying difficulty
levels for testing the proposed system. These test sets will
be referred to as FIVR-200K-Normal and FIVR-200K-Hard
throughout the remaining paper. For generating the query
videos for testing, we chose 1,000 videos randomly from
the FIVR-200K dataset [26] in a way that ensures at least
10 videos were selected from each of the 100 video queries
and also ensures that the selected videos have a duration of at
least 41 seconds. We randomly extract a 40 second clip from
each video and sample frames at an interval of 10 seconds,
generating a total of 5 frames per 40 seconds query video.
For each query video, we have the video ID and timestamp
information as the ground truth. We refer to videos that have
a match in the 1-million frame repository as positive videos.

For the FIVR-200K-Normal test set, the frames were
augmented with transformations that included changing hue,
saturation, gamma, adding blur, and JPEG compression.
A tougher set of augmentations containing rotation, horizontal
flipping, changing hue, saturation, gamma, adding blur, and
JPEG compression were used for generating the FIVR-200K-
Hard test set. Samples from both FIVR-200K-Normal and
FIVR-200K-Hard can be visualized in Fig. 5. Notice the
frames and red boxes in the top right corner of Fig. 5 which
show that the augmented frame is challenging to retrieve due to
flipping and rotation as compared to the original frame. As can
be seen in the top left corner of Fig. 5, the yellow boxes show
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Fig. 5.

Dataset samples for FIVR-200K-Normal (top left), FIVR-200K-Hard (top right), VCSL-Normal (bottom left), and VCSL-Hard (bottom right). Notice

that the hard version of the dataset contained vertical flipping and rotation, essentially changing the entire frame. Note: Figure best viewed in color.

that the augmented frame used for testing is extremely blurry
as compared to the original frame.

2) VCSL Dataset: VCSL (Video Copy Segment Local-
ization) [27] is a large-scale segment-level annotated video
copy dataset introduced in 2022. It contains 160, 000 realistic
video copy pairs which include more than 280, 000 localized
copied segment pairs. The dataset covers a wide range of
video duration in addition to diverse video categories. The
precise start and end timestamps are provided for all the copied
segments inside each video pair. The dataset provides a total
of 9, 207 video links from YouTube and BiliBili.> At the time
of writing this manuscript, only 6, 649 videos were available
for downloading.

These 6, 649 videos were sampled every 0.5 seconds, gen-
erating 2 frames every second for each video. A large-scale
636 hours of video repository containing 4.5-million frames
(4, 524, 789-frames exactly) was generated for the VCSL
dataset [27]. Similar to the FIVR-200K dataset [26], we create
VCSL-Normal and VCSL-Hard test sets. We randomly chose
1, 000 videos from the VCSL dataset [27] and augmented them
with various transformations to create the test data. We applied
the same sets of transformations that were used to create
FIVR-Normal and FIVR-Hard. We extract 40 second chunks

Shttps://www.bilibili.com/

from each test video and sample at an interval of 10 seconds
to represent a query video with 5 frames. Each query video is
accompanied by its video ID and timestamp information which
is used as ground truth to estimate the performance of our
proposed system. Samples from VCSL-Normal and VCSL-
Hard are visualized in Fig. 5. Notice the difficulty level in the
hard test set for the VCSL dataset (see Fig. 5’s lower right
corner).

3) Negative Videos: To evaluate the performance of videos
that have no match in the repository, we generate negative
videos. We randomly downloaded videos from the ‘DW Doc-
umentary®” YouTube channel. We extract 1,000 clips with
a duration of 40 seconds from the downloaded videos and
represent each negative video as 5 frames sampled at an
interval of 10 seconds.

B. Implementation Details

The system was implemented on a desktop computer with
Intel Core 17-12700 CPU and 64 gigabytes of RAM. Python
programming language was used to implement the video
deduplication system. MATLAB was used to extract SIFT
keypoints, perform GMM training, and compute fisher vectors.
PyTorch framework was used to extract VGG features from

6https://Www.youtube.corn/c/DWDocumentalry
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TABLE I
RECALL (%) AT DIFFERENT K VALUES FOR POSITIVE QUERIES

Feature Dimension Normal Hard
Dataset
(FV, Thumbnail, VGG) Recall Recall Recall Recall Recall Recall Recall Recall
(K=64) (K=128) (K=256) (K=512) (K=64) (K=128) (K=256) (K=512)
32, 32, 32 96.5 97.3 97.39 98.0 84.7 87.2 90.6 92.9
FIVR-200K
64, 32, 32 96.7 97.39 97.89 98.2 86 89.6 924 94.89
Dataset
128, 64, 64 97.8 98.3 98.4 98.8 89.8 92.7 95.3 96.5
32, 32, 32 82.8 85.9 88.1 90.3 66 71.7 75.5 80
VCSL
64, 32, 32 84.5 87.7 89.8 91 69.89 75 78.5 83
Dataset
128, 64, 64 89.6 91.8 93.4 94.1 77 81.5 83.7 87.7

VGG16 on a single NVIDIA RTX A5000. We used leaf size
(the maximum number of points allowed in a leaf node) of
32 when building k-d trees.

C. Optimization Guidelines

This subsection provides guidelines for optimizing the pro-
posed video deduplication system. An important parameter is
the number of PCA components/feature dimension. A common
way to determine the number of components is to analyze
the cumulative explained variance ratio as a function of the
number of components. Choose the number of components
by visually inspecting the plot and selecting the point where
the curve starts to reach a plateau. Generally, more compo-
nents/higher feature dimension can better represent the data,
leading to better results but higher time consumption. Lower
feature dimensions decrease the time consumption but achieve
lower recall. A recall-time consumption trade-off should be
determined based on the application.

Regarding thumbnail size, an optimal thumbnail size should
perform frame abstraction and produce a low-dimensional
embedding to reduce computation cost. In our case,
12 x 12 was empirically chosen. Similarly, for fisher vector,
lower dimensions are preferred to effectively deal with compu-
tation and memory constraints. For k-d tree generation, lower
dimensional data is better since k-d trees become inefficient for
high-dimensional data. As for the leaf size (maximum number
of points allowed in a leaf node), a smaller leaf size produces
a deeper k-d tree but faster query times, while a larger leaf size
produces a shallower k-d tree but slower query times. Another
important parameter is the value K used during k-d tree search.
A higher K value achieves better results with greater time
consumption, whereas lower K results in faster search times
but lower recall rates.

V. EXPERIMENTAL RESULT

The proposed system was evaluated on FIVR-200K [26]
and VCSL [27] datasets - both of which are two large-scale
video copy detection datasets.

A. Duplicate Video Retrieval

In this section, we evaluate the performance of our proposed
video deduplication system in terms of recall for different

values of K and different feature dimensions (dfisher, dvGa,
and dijump ). Table I presents the recall for normal and hard test
sets generated from FIVR-200K [26] and VCSL [27] datasets.
Given a positive query, the results in Table I evaluate our
system’s ability to retrieve the same video from the repository
correctly.

As evident in Table I, the recall increases with the
increase in K and feature dimensionality. The proposed system
achieves a maximum recall of 98.8% at K = 512, dyisher =
128, and dy GG /dihump = 64 and a minimum recall of 96.5%
for K = 64, dfisher/dvce/dihump = 32 for FIVR-200K-
Normal. In case of FIVR-200K-Hard, best recall of 96.5% is
obtained at K = 512, disper = 128, and dv g /dihump = 64.
Similar to FIVR-200K dataset [26], the best recall is obtained
at K = 512, dfixher = 128, and dVGG/dthumb = 64 and
worst recall at K = 64, dfisher/dvcG/dihump = 32 for the
VCSL dataset [27]. The recall varies with K because the
greater the number of retrieved frames from the k-d trees,
the greater the chances of correct frames being retrieved,
ultimately leading to retrieving the correct video. Regarding
feature dimension, higher feature dimensions tend to generate
more distinctive representations, leading to better recall at
the expense of increased time consumption (discussed in the
following subsections).

We only report recall because of how the 1-million and
4.5-million frame repositories are built. The repositories
contain multiple same/similar videos from the FIVR-200K
dataset [26] and VCSL dataset [27]. Sometimes, our system
retrieves multiple videos from the same query class with
timestamps different than the ground truth timestamp. This
can be better visualized in Fig. 6 which shows this exact
phenomenon. In Fig. 6, the video ID ‘tOhDhUG6LhOO’ is
actually from the same class as the ground truth video and
is visually almost the same.

B. Duplicate Video Retrieval With Localization

This subsection evaluates the system for duplicate video
retrieval with localization. In addition to the video ID, our
system also retrieves the timestamps. A localized video is
considered a correct match if it matches the ground truth
video id and ground truth timestamps (with a tolerance of
+0s, *1s, and £5s). A tolerance of +1 means that the
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Fig. 6. Video retrieval results by our system. Note: Figure best viewed in color.

TABLE II
TABLE SHOWING TIMESTAMP ACCURACY (%) AT VARYING TOLERANCE VALUES

Dataset Accuracy Normal Hard
K=64 K=128 K=256 K=512 K=64 K=128 K=256 K=512
T'meStamfoA““racy 91.6  94.1 95.5 9.6 742 804 84.5 88.9
FIVR200K >0
fmes amfl CUTaY 904 946 96.1 97.3 757 82 86 89.8
T'meStamfsAcc“mcy 926 948 96.1 975 762 823 86.2 89.8
T'meStamfoA““racy 775 824 85.5 883 557 62 68.4 73.9
VCSL Dataset Timest. B A
mes amfl couracy - gg1 829 86.2 88.7 57 63.6 69.5 75
T'meStamfsA““racy 782 83.1 864 887 573 643 69.6 752

predicted timestamp is within £1s seconds of the ground truth
timestamps. This tolerance was added for fair evaluation since
videos in both datasets tend to have static scenes spanning a
couple of seconds. In such situations, our system retrieves the
same video ID and varying timestamps since the frames are
exactly the same. This can be better visualized in Fig. 6.
Table II presents the timestamp accuracy for feature dimen-
sions dfisper = 128, dygc = 64, and dypymp = 64 at
varying values of K for both FIVR-200K [26] and VCSL [27]

datasets. As observed in Table II, the accuracy increases with
the increasing value of K. This is true for normal and hard test
sets from both FIVR-200K [26] and VCSL [27] datasets. The
maximum timestamp accuracy £5 of 97.5% and 89.8% was
achieved at the highest value of K = 512 for FIVR-200K-
Normal and FIVR-200K-Hard, respectively. The same holds
true for the VCSL dataset [27] which achieves a maximum
timestamp accuracy %5 of 88.7% and 75.2% for the normal
and hard test sets, respectively. Higher values of K retrieve
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TABLE III
RECALL (%) AT DIFFERENT K VALUES FOR NEGATIVE QUERIES

Feature Dimension Recall Recall Recall Recall
Dataset Search Repository
(FV, Thumbnail, VGG) (K=64) (K=128) (K=256) (K=512)
32, 32, 32 100.0 100.0 99.9 99.8
FIVR-200K
64, 32, 32 100.0 100.0 99.9 99.8
1-M frame/145 hr
DW Documentary 128, 64, 64 100.0 99.9 99.9 99.7
(Negative Queries) 32, 32, 32 100.0 100.0 99.9 99.8
VCSL
64, 32, 32 100.0 100.0 100.0 99.9
4.5-M frame/636 hr
128, 64, 64 100.0 100.0 100.0 99.9
TABLE 1V

more frames, increasing the likelihood of retrieving the correct
video ID with the correct timestamps. The results in Table II
validates that our system can accurately localize the video
from the 636 hour VCSL repository with a timestamp accuracy
88.7% (normal) and 75% (hard) with a small tolerance of
+1 at K = 512. For the 145 hour FIVR-200K repository,
timestamp accuracy of 97.3% (normal) and 89.8% (hard) was
achieved for a tolerance of =1 at K = 512. Considering the
huge size of repositories, being able to localize the video
within £1 seconds reflects the robustness of the proposed
video deduplication system.

Another important metric for evaluating our video dedu-
plication system is its ability to reject false positives. Given
a negative query, our system must not retrieve any videos.
Table III presents the results for negative queries generated via
videos downloaded from ‘DW Documentary’’. The negative
queries were searched against the 1 million frame/145 hour
and 4.5 million frame/636 hour repositories generated via
FIVR-200K [26] and VCSL [27] datasets, respectively. For
negative videos, contrary to positive queries, the fewer frames
retrieved by k-d trees, the greater the chances that no frames
are left after the temporal consistency pruning; hence, no video
is retrieved. This is exactly what can be observed by the results
for negative queries, as shown in Table III. We can see that for
the 1 million frame and 4.5 frame search repository, a recall
of 100% is achieved at K = 64 while the lowest recall is
obtained for the highest K value. This trend is also true for
the various feature dimensions. As evident in Table III, the
proposed system performs extremely well at rejecting false
positives given negative queries as input.

C. Effect of Feature Dimension Reduction

In this subsection, we study the effect of dimension reduc-
tion on fisher vector ffisper, thumbnail feature fijump, and
VGG feature fygg. Figure 7 presents accuracy vs. feature
dimension plots for each of the three features. We reduce
the dimension of frisner and fyge to 32, 64, 128, 256, and
512 and calculate the timestamp accuracy =+5 for different
values of K. In the case of finump, the feature dimension is
reduced to 16, 32, and 64 before calculating the timestamp
accuracy =5 at different K values. As evident in Fig. 7,
higher dimensions and higher K values increase the timestamp
accuracy £5. Notice that the maximum timestamp accuracy

7https://www.youtube.com/c/DWDocumentary

AVERAGE TIME IN MS/FRAME REQUIRED FOR RAW FEATURE
GENERATION AND PCA PROJECTION FOR FIVR-200K-NORMAL
AND VCSL-NORMAL DATASETS

Time Consumption FIVR-200K  VCSL
Feature
(ms/frame) Normal Normal
Fish a
isher Vector 177 118
Feature (1024-d)
G ti Th i?
eneration umbnai 16 13
(144-d)
VGGP
8.1 7
(4096-d)
Fish a
isher Vector 033 0.64
PCA (128-d)
Proiecti a1a
rojection Thumbnail 0.19 0.18
(64-d)
a
VGG 0.84 2.58
(64-d)

4 Results computed using CPU (i7-12700).
b Results computed using a single NVIDIA RTX A5000 GPU.

+5 of 61.3% and 95.2% was achieved at K = 512 and feature
dimension 512 for frisher and fyvge, respectively. For fipump,
maximum timestamp accuracy +5 of 62.7% was obtained
at K = 512 and feature dimension 512. Higher dimensions
can better represent the data, leading to better performance.
Dimensions higher than the ones shown in Fig. 7 were not
tested since k-d trees become inefficient with high-dimensional
data, leading to worst performance.

D. Time Consumption

This subsection presents the time consumption of the pro-
posed video deduplication system for different steps involved
in building the repository and during test query processing.
It must be noted that all the results presented regarding time
consumption are approximated and vary based on multiple
factors, such as the hardware used. The time to save features to
disk was excluded from these results since these times highly
vary with the type of storage used (HDD or SSD). In addition,
the time consumption results for PCA projection represent the
time it takes to project a feature to a lower dimension given
the input feature and trained PCA model.

Table IV presents the time consumption for raw feature
generation which includes raw feature generation followed

Authorized licensed use limited to: University of Missouri Libraries. Downloaded on February 18,2025 at 01:54:34 UTC from IEEE Xplore. Restrictions apply.



HENRY et al.: FAST VIDEO DEDUPLICATION AND LOCALIZATION WITH TEMPORAL CONSISTENCE RE-RANKING
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Fig. 7.

Plots showing the effect of (a) FV, (b) thumbnail, and (c) VGG feature dimension on timestamp accuracy £5 (%) for FIVR-200k-Normal test set.

Colored lines in each plot represent different values of K. Note: Figure best viewed in color.

by dimension reduction. As can be observed in Table IV,
thumbnail and VGG feature generation is extremely fast,
taking about 1.3 ms/frame and 7 ms/frame for VCSL-
Normal, respectively. The fisher vector generation takes about
177 ms/frame and 118 ms/frame for FIVR-200K-Normal and
VCSL-Normal, respectively. Fisher vector generation is a bit
slower because it was implemented in MATLAB which is
slower than Python (used to implement thumbnail and VGG
feature generation). Regarding projecting features to a lower
dimension via PCA, it takes a minimal amount of time to
process. It consumes about 0.33/0.19/0.84 ms/frame (fisher
vector/thumbnail/VGG) and 0.64/0.18/2.58 ms/frame (fisher
vector/thumbnail/VGG) for FIVR-200K-Normal and VCSL-
Normal, respectively.

Table V presents the time consumption (in seconds) for
building the repository, i.e., tree generation for the FIVR-
200K [26] and VCSL [27] datasets. Given the projected
features, the tree for fisher vector, thumbnail, and VGG feature
can be generated in about 2.72s, 1.55s, and 1.64s, respectively,
for the 1-Million frame/145 hour repository (FIVR-200K
dataset [26]). The 4.5-Million frame/636 hour repository con-
sumes about 14.71s, 8.13s, and 10.50s to build fisher vector,
thumbnail, and VGG feature repository, respectively. It can

be observed in Table V that a higher feature dimension and
larger repository size increase the time to build a repository.
The repository building time for normal and hard test sets is
extremely fast due to the relatively small dataset size.

Fig. 8 presents the time consumption plots for frame
retrieval (Fig. 8a) and temporal pruning (Fig. 8b). The total
time/frame is shown in Fig. 8c. The results are presented for
the FIVR-200K-Normal, FIVR-200K-Hard, VCSL-Normal,
and VCSL-Hard test sets. Feature dimension of d gisper = 128,
dihump = 64, and dygg = 64 were used for computing
these results. Frame retrieval time refers to the time it con-
sumes to retrieve the frames from the frame retrieval step
(Section III-B), temporal pruning is the time it takes to
prune the frames retrieved during frame retrieval, and total
time/frame is the total time it takes to process a video frame.
All the results in Fig. 8 represent time consumption per frame.
Time consumption per frame can better evaluate the system
since a query video can be represented with a variable number
of frames. All CPU cores were utilized during the k-d tree
search.

As evident in all the subfigures in Fig. 8, the time con-
sumption for each task is directly proportional to the K value.
In addition, the time consumption increases with the increase

Authorized licensed use limited to: University of Missouri Libraries. Downloaded on February 18,2025 at 01:54:34 UTC from IEEE Xplore. Restrictions apply.



IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 34, NO. 11, NOVEMBER 2024

Time consumption for Temporal Pruning
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Plots showing time consumption per frame in msec for (a) frame retrieval and (b) temporal pruning. The total time consumption per frame is shown

in (c). Each line in every plot represents a different dataset. Feature dimension of d fisper = 128, dipymp = 64, and dy g = 64 were used for these results.

Note: Figure best viewed in color.

TABLE V
TIME IN SECONDS REQUIRED FOR GENERATING KD-TREE (LEAF SIZE OF 32) FOR EACH OF THE THREE FEATURES

Time FIVR-200K Dataset [26] VCSL Dataset [27]
Consumption Feature
1-M F /145 h 45-M F /636 h
(s) ram.e g Normal Hard ralfle r Normal  Hard
Repository Repository
Fisher Vect
s gs ;c or 272 001 0758 1471 07 00137
Tree Generation Tlf l-) ) g
umbnat 155 0022  0.019 8.13 0.005 0011
(64-d)
VGG
1.64 0.005 0.004 10.50 0.004 0.0077
(64-d)

in the size of the search repository. This can be validated by
the results for VCSL-Normal and VCSL-Hard datasets which
were computed for the 4.5-million frame/636 hour repository.
The results for the FIVR-200K-Normal and FIVR-200K-Hard
test sets show significantly lower time consumption since
these were computed for the 1 million frame/145 hour search
repository. Our temporal consistence pruning is extremely fast,
as observed in Fig. 8b with prune times as low as 0.56ms

for FIVR-200K-Normal and FIVR-200K-Hard at K = 64.
Most of the time is consumed searching the query frame
against the search repository. It takes as low as 83.36 ms
and 461.82 ms for FIVR-200K-Normal and VCSL-Normal
test sets, respectively, at K = 64. Overall, it consumes 84ms
and 463ms to process a query frame at K = 64 for the FIVR-
200K-Normal and VCSL-Normal test sets, respectively. These
results validate that our system is fast in processing the query
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Timestamp Accuracy =5 vs. Total Time Consumption/frame
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Fig. 9. Timestamp accuracy 5 (%) vs. total time consumption/frame (in
msec) plot for different K values. Each line represents a different dataset.
Note: Figure best viewed in color.

TABLE VI

RESULTS FOR ABLATION STUDY (REMOVING EACH OF
THE THREE FEATURES ONCE AT A TIME)

FIVR-200K-Normal

Fisher VGG Thumbnail
Vector  Feature Feature (K=64)
Recall Timestamp
(%) Accuracy 5 (%)
X v v 96.5 90.3
v X v 87.1 73
v v X 96.1 89.1
v v v 97.8 92.6

frames. A graph showing the timestamp accuracy £5 versus
time consumption at different K values can be seen in Fig. 9.

E. Ablation Study

We conduct an ablation study that signifies the importance
of each of the three features used in our work. We experiment
by removing one feature at a time and evaluating the system
using only two features. In Table VI, we present the results for
three different feature combinations - VGG feature/thumbnail
feature, fisher vector/thumbnail feature, and fisher vector/VGG
feature. For each combination, we present the recall and
timestamp accuracy £5 seconds for FIVR-200K-Normal and
VCSL-Normal test sets. All these experiments are performed
at K = 64 and feature dimensions of dfisper = 128, dvge =
64, and d;pymp = 64. The importance of each of the three
features is validated by the results presented in Table VI. The
recall for FIVR-200K-Normal reduces to 96.5%, 87.1%, and
96.1% from 97.8% after removing fisher vector ffisher, VGG
feature fygg, and thumbnail feature fip,mp, respectively.
A similar trend can be seen for timestamp accuracy =+35.
These results show that the VGG feature is the most important
feature as compared to the fisher vector and thumbnail feature.
That being said, the fisher vector and thumbnail features also
contribute to improving the recall. These results confirm that

12017

each feature is important and contributes towards improving
performance.

VI. CONCLUSION

This study proposed a robust video deduplication system
for large video repositories. The system is fast, consuming
only a few milliseconds to search a query frame from a
large-scale video repository of about 1 million frame/145 hour
and 4.5 million frame/636 hours. The system can retrieve
the duplicate video from the repository along with its precise
location. The system is based on fisher vector, VGG feature,
and thumbnail feature that are used to represent a video frame
in latent space. A multiple k-d tree setup was designed for
efficient frame retrieval along with a temporal consistence
pruning strategy that can prune the retrieved video frames
to retrieve the video ID and the timestamp. The system
is extremely useful for tasks like saving storage space and
copyright infringement detection. The system was evaluated
on the large-scale FIVR-200K and VCSL datasets and the
experimental results validate our claims.

Regarding future work, a promising direction is to incorpo-
rate neural processing unit-based acceleration for query feature
generation on mobile devices and fully exploit the multi-core
and multi-GPU resources on the cloud side for video retrieval.
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