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ABSTRACT

In recent years, event cameras have achieved significant atten-

tion due to their advantages over conventional cameras. Event

cameras have high dynamic range, no motion blur, and high

temporal resolution. Contrary to traditional cameras which

generate intensity frames, event cameras output a stream of

asynchronous events based on brightness change. There is

extensive ongoing research on performing computer vision

tasks like object detection, classification, etc via the event

camera. However, due to the unconventional output format

of the event camera, it is difficult to perform computer vi-

sion tasks directly on the event stream. Mostly, works re-

construct the intensity image from the event stream and then

perform such tasks. An important and crucial task is feature

detection and description. Scale-invariant feature transform

(SIFT) is a widely-used scale-invariant keypoint detector and

descriptor that is invariant to transformations like scale, ro-

tation, noise, and illumination. In this work, given an event

voxel, we directly generate the LoG pyramid for SIFT key-

point detection. We fit a 3rd-degree polynomial and calculate

the polynomial roots to compute the scale-space extrema re-

sponse for SIFT keypoint detection. Since the extrema com-

putation is performed after LoG thresholding, the solution is

computationally less expensive. Experimental results validate

the effectiveness of our system.

Index Terms— neuromorphic vision sensor, event cam-

era, scale-invariant feature transform, SIFT, keypoint detec-

tion

1. INTRODUCTION

Neuromorphic or dynamic vision sensors, commonly known

as event cameras, are revolutionary vision sensors that offer

several benefits over traditional cameras. Contrary to tradi-

tional cameras that capture intensity images at uniform in-

tervals, event cameras produce asynchronous event streams
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based on brightness changes. Event cameras record changes

in luminance at each pixel independently that signal an event

rather than capturing a full image frame. Event cameras have

high dynamic range, no motion blur, and high temporal res-

olution. These properties make event cameras ideal for a

wide range of fast-paced environments, such as robotics for

real-time motion tracking and navigation, surveillance sys-

tems for dynamic scene monitoring, autonomous vehicles,

and immersive technologies for virtual and augmented real-

ity. The event-driven approach also offers benefits in terms

of power efficiency, low latency, reduced data bandwidth, and

enhanced performance in challenging lighting conditions.

The last decade has witnessed a substantial amount of re-

search on event camera-based computer vision attributable

to the superiority of event cameras over conventional cam-

eras. Ongoing research on event-based vision includes tasks

like feature detection and tracking, object recognition, ob-

ject segmentation, and simultaneous localization and map-

ping (SLAM). In regards to event camera-based feature de-

tection, most research works only focus on corner detection

instead of keypoint detection. An extremely meager amount

of research has been conducted on event camera-based key-

point detection.

The scale-invariant feature transform (SIFT) [1] is a

widely used and renowned feature detector and descriptor

developed by David G. Lowe. This is attributed to its robust-

ness in tackling various image transformations like variations

in scale, orientation, and illumination. The scale-space pyra-

mid is computed by using the difference of Gaussians (DoG)

which is an approximation of Laplacian of Gaussian (LoG).

Keypoints are identified at locations where the DoG pyramid

exhibits extreme values (maxima or minima). Spatial coordi-

nates in the image domain and at the scale level are considered

while identifying the extrema in the DoG pyramid. Once the

keypoints are determined, a descriptor is calculated around

each point which generates a feature vector that incorporates

information about the local image structure.

The computation of the LoG pyramid is computation-

ally more expensive when compared to the DoG pyramid

which is basically subtraction of matrices. Since DoG is an

approximation of LoG, there is a possibility of information

loss and consequently accuracy loss in keypoint detection. In
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this work, we extract SIFT keypoints directly from the asyn-

chronous event stream captured via the event camera. The

proposed system directly learns to generate the LoG pyramid

from an event voxel. Given the LoG pyramid, we propose

an alternate solution based on polynomial fitting and root

finding for computing scale-space extrema. This solution is

applied after eliminating non-maximum responses by LoG

peak thresholding which results in an overall lower complex-

ity as compared to the original SIFT paper [1]. The main

contributions are mentioned below:

1. A direct SIFT keypoint detection scheme from event

camera sensor data is proposed. The proposed sys-

tem does not require conversion of events to intensity

frames. Instead of using dense intensity frames, a

sparse SIFT feature pyramid recovery via learning is

developed.

2. We learn recovery of the LoG pyramid directly via

event stream rather than approximating the LoG pyra-

mid via DoG. A SIFT based on a new polynomial

fitting and root finding algorithm for scale-space ex-

trema detection is proposed.

The remainder of the paper is organized as follows. Sec-

tion 2 presents the related works whereas Section 3 describes

our proposed approach. Experimental setup and experimental

results are presented in Section 4 and Section 5, respectively.

Conclusions are presented in the last section of this paper.

2. RELATED WORKS

A major portion of event-driven feature detectors focuses on

event-based corner detectors. The initial event-based corner

detectors can be traced back to [2, 3]. In these methods, local

optical flow [4] was estimated by fitting spatiotemporal planes

to the event stream. Events lying in the intersection between

two planes were identified as corner-events. The studies [2,

3] can also track such corner-events via predictive velocity

models. The study in [5] used artificial frames generated from

events and applied the Harris corner detector [6] to a small

vicinity around each event pixel location. The study in [7]

proposed a more efficient corner-event detector than the one

proposed in [8]. It was inspired by the FAST feature detector

[9] and was locally applied to Surface of Active Events (SAE)

achieving faster but slightly mediocre performance compared

to [8].

Arc - a computationally efficient corner-event detector

was proposed in [10]. Arc [10] ensured better corner detec-

tion repeatability than [7]. FA-Harris detector [11] built a fast

and asynchronous corner detection pipeline that produced a

more refined output by merging features from Arc [10], eHar-

ris [12], and [7]. The study in [13] adapted the frame-based

ACJ detector to an event camera and dubbed it as e-ACJ. It

used Arc [10] to improve the speed of the original ACJ de-

tector. [14] introduced a learning-based corner-event detector

that used a motion-invariant, event-driven SAE and Random

Forest to discriminate corner-events from non-corner-events.

The work in [15] extracted SIFT-like descriptors [1] for the

corner-events detected in [11]. It also tracked the corner-

events using an approach similar to [16]. Asynchronous spa-

tial image convolutions were introduced for event cameras by

the study in [17]. These convolutions are beneficial for tasks

like corner-event detection. A thorough evaluation of various

corner-event detectors [10, 11, 4, 17, 12] was presented in

[18].

Although there has been ongoing research on event-driven

feature detectors, most of the previous works concentrate their

efforts on detecting event-corners rather than event keypoints.

The subtle distinction between corners and keypoints is that

keypoints may include corners, edges, or other distinctive

structures whereas corners can ideally only include corner

points. In our work, to the best of our knowledge, we present

the first-ever approach to detect SIFT keypoints directly from

the event stream.

3. PROPOSED METHOD

3.1. Overview

The goal of this work is to translate a continuous event stream

into SIFT keypoints without intensity image reconstruction.

The continuous stream of events is converted into LoG pyra-

mid LoGk, where LoGk is the k-th Laplacian of Gaussian at

sigma sk. For SIFT keypoint detection, LoGk is input to our

alternate SIFT keypoint detector that is based on polynomial

fitting and root finding. The overall workflow of the proposed

solution is illustrated in Fig. 1a.

3.2. Event Representation

Each pixel in an event camera individually responds to

changes in the spatio-temporal brightness signal L(x, t).
These changes are encoded as a stream of asynchronous

events where each event ei = (ui, ti, pi) is activated at pixel

ui = (xi, yi)
T and time ti after the change in brightness

(since the last event) reaches a threshold ±C. pi denotes the

polarity of the event.

We divide the event stream into equal non-overlapping

spatiotemporal windows ϵk of fixed duration. These spatio-

temporal windows ϵk are converted into fixed tensor repre-

sentations for input to the network for learning. Inspired by

E2VID [19], we choose the spatio-temporal voxel grid [20] to

encode the event windows. Given an event window ϵk con-

sisting of N number of events, [20] divides the timestamp

range △T = tN−1− t0 into B bins. The timestamps are then

scaled to the range [0, B−1] to generate the event voxel V as

follows:
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Net. The tail consists of a conv layer followed by a pixel-

shuffle layer. The model was trained using the following loss

function:

Loss = L1 + SSIM (2)

where L1 and SSIM represent L1 loss and SSIM loss, re-

spectively. The final output is the LoG pyramid that will be

used for the LoG-based SIFT keypoint detection scheme as

mentioned in the following subsection.

3.5. Neuromorphic SIFT Keypoint Detector

We propose modifications to the scale-space extrema detec-

tion step in the fast LoG SIFT keypoint detector introduced

in [22]. Particularly, we propose a more analytical extrema

detection solution that uses roots of a quadratic function to

detect maxima. The block diagram for neuromorphic SIFT

can be seen in Fig. 1b.

Peak strength thresholding of the LoG response generated

via TSF-Net [21] is used to reduce computation cost. Only

pixels that exceed the peak threshold Pth are retained. For

each remaining pixel or keypoint candidate, a third-degree

polynomial P (Ã) is fitted to the peak responses obtained at

different scales. This is followed by calculating the first-order

derivative P ′(Ã) of the fitted polynomial curve. The deriva-

tive of the third-degree polynomial curve is a quadratic func-

tion. To identify the maxima, we calculate the roots ³ and ´

of the quadratic function and evaluate the polynomial func-

tion at these roots. For real roots, one of the roots will give

us the maxima Ãmax. If the absolute value of the maxima is

greater than threshold Gth, then it is considered a keypoint.

Finally, similar to the original SIFT [1], the edge removal

is performed to eliminate keypoints with low contrast. The

following condition is checked for edge removal:

Tr(H)2

Det(H)
<

(r + 1)2

r
(3)

where H is a 2 × 2 Hessian matrix, Tr(H) is the trace of H ,

Det(H) is the determinant of H , and r is the ratio between

the largest magnitude eigenvalue and the smaller one.

4. EXPERIMENTAL SETUP

4.1. Dataset Details

The Event Camera Dataset [23] and Vimeo-90k dataset [24]

were used in our work. Event Camera Dataset [23] is a real

event camera dataset while event data is synthesized via ESIM

[25] for Vimeo-90k dataset [24]. Details about these datasets

are as follows:

Vimeo-90k dataset [24] is a large-scale video dataset

containing 89,800 videos covering a diverse range of scenes

and actions. The videos are downloaded from vimeo.com and

the dataset is tailored for video processing tasks like temporal

frame interpolation, video denoising, video deblocking, and

video super-resolution. We scraped videos using the list con-

taining links for full-length original videos. The list contained

5, 831 video links out of which only 3, 279 were available for

download at the time of writing this paper. ESIM [25] was

used to synthesize event data from these downloaded videos.

The default parameters as set in the official code repository

for ESIM [26] were used while generating synthetic events.

The videos were upsampled to a higher frame rate using

frame interpolation before event synthesis.

Event Camera Dataset [23] is a real event camera dataset

captured via a DAVIS240C sensor [27]. It contains 25 se-

quences that include both synthetic and real environments.

The dataset provides asynchronous event streams along with

intensity images captured at 24 Hz. In addition, inertial mea-

surements, ground truth camera poses, and intrinsic camera

matrices are also included. All this information is accompa-

nied by accurate timestamps. We used 6 sequences for test-

ing our system and the remaining are used for training. The

sequence ‘office zigzag’ was excluded since none of the gen-

erated event voxels passed our selection criteria as mentioned

in Section 3.3.

The event streams were processed to create event voxels

along with the respective LoG pyramid using the procedure

mentioned in Section 3.3. Training data includes both real

events (Event Camera Dataset [23]) and synthetic events

(Vimeo-90k dataset [24]) whereas testing is performed on

only real events (a subset from Event Camera Dataset [23]).

A total of 11, 873 event voxels were generated for training

and 3, 383 event voxels were generated for testing our system.

4.2. Implementation Details

The modified TSF-Net used in this paper was implemented

using the PyTorch framework and was based on the imple-

mentation from authors of TSF-Net [21]. The E2VID [19]

implementation used in this work was taken from [28]. Both

networks were trained and tested using a single NVIDIA RTX

A5000 GPU on a desktop computer with a 12th Gen Intel

Core i7-12700 processor and 64 gigabytes of RAM. TSF-Net

and E2VID were trained for 200 epochs with a batch size of

32 and an initial learning rate of 0.0001. Adam optimizer

with ´ = (0.9, 0.999) was used and a cosine annealing learn-

ing rate scheduler was used to decrease the learning rate un-

til 1e − 6. Both networks were trained on random crops of

160× 160 and tested on center crops of 160× 160. E2VID’s

non-recurrent version as provided in [28] was trained from

scratch for the task of LoG pyramid recovery.

For voxel creation, we used a fixed time duration of

0.05 seconds, SIFT keypoint threshold thkp of 50 keypoints,

±rvox of ±20, standard deviation threshold thsd of 0.1,

±cvox of ±2.5, ±clog of ±0.15, and number of bins B = 5.

The event voxels were normalized between 0 to 1 before

inputting into the network. For the alternate SIFT keypoint
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[19] Henri Rebecq, René Ranftl, Vladlen Koltun, and Davide

Scaramuzza, “High speed and high dynamic range video

with an event camera,” IEEE transactions on pattern

analysis and machine intelligence, vol. 43, no. 6, pp.

1964–1980, 2019.

[20] Alex Zihao Zhu, Liangzhe Yuan, Kenneth Chaney, and

Kostas Daniilidis, “Unsupervised event-based optical

flow using motion compensation,” in Proceedings of

the European Conference on Computer Vision (ECCV)

Workshops, 2018, pp. 0–0.

[21] Birendra Kathariya, Zhu Li, and Geert Van der Auwera,

“Joint pixel and frequency feature learning and fusion

via channel-wise transformer for high-efficiency learned

in-loop filter in vvc,” IEEE Transactions on Circuits and

Systems for Video Technology, 2023.

[22] Paras Maharjan, Lyle Vanfossan, Zhu Li, and Jerry Jialie

Shen, “Fast log sift keypoint detector,” in 2023 IEEE

25th International Workshop on Multimedia Signal Pro-

cessing (MMSP). IEEE, 2023, pp. 1–5.

[23] Elias Mueggler, Henri Rebecq, Guillermo Gallego, Tobi

Delbruck, and Davide Scaramuzza, “The event-camera

dataset and simulator: Event-based data for pose esti-

mation, visual odometry, and slam,” The International

Journal of Robotics Research, vol. 36, no. 2, pp. 142–

149, 2017.

[24] Tianfan Xue, Baian Chen, Jiajun Wu, Donglai Wei, and

William T Freeman, “Video enhancement with task-

oriented flow,” International Journal of Computer Vi-

sion, vol. 127, pp. 1106–1125, 2019.

[25] Henri Rebecq, Daniel Gehrig, and Davide Scaramuzza,

“Esim: an open event camera simulator,” in Conference

on robot learning. PMLR, 2018, pp. 969–982.

[26] Robotics and Perception Group, “Video to events: Re-

cycling video datasets for event cameras,” https://

github.com/uzh-rpg/rpg_vid2e, Accessed:

2024-Jan-31.

[27] R Berner, C Brandli, M Yang, SC Liu, and T Delbruck,

“A 240x180 130 db 3 s latency global shutter spatiotem-

poral vision sensor,” IEEE Journal of Solid-State, 2013.

[28] Robotics and Perception Group, “High speed and high

dynamic range video with an event camera,” https:

//github.com/uzh-rpg/rpg_e2vid, Ac-

cessed: 2024-Jan-31.

2792

Authorized licensed use limited to: University of Missouri Libraries. Downloaded on April 26,2025 at 12:57:49 UTC from IEEE Xplore.  Restrictions apply. 


