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ABSTRACT

In recent years, event cameras have achieved significant atten-
tion due to their advantages over conventional cameras. Event
cameras have high dynamic range, no motion blur, and high
temporal resolution. Contrary to traditional cameras which
generate intensity frames, event cameras output a stream of
asynchronous events based on brightness change. There is
extensive ongoing research on performing computer vision
tasks like object detection, classification, etc via the event
camera. However, due to the unconventional output format
of the event camera, it is difficult to perform computer vi-
sion tasks directly on the event stream. Mostly, works re-
construct the intensity image from the event stream and then
perform such tasks. An important and crucial task is feature
detection and description. Scale-invariant feature transform
(SIFT) is a widely-used scale-invariant keypoint detector and
descriptor that is invariant to transformations like scale, ro-
tation, noise, and illumination. In this work, given an event
voxel, we directly generate the LoG pyramid for SIFT key-
point detection. We fit a 3rd-degree polynomial and calculate
the polynomial roots to compute the scale-space extrema re-
sponse for SIFT keypoint detection. Since the extrema com-
putation is performed after LoG thresholding, the solution is
computationally less expensive. Experimental results validate
the effectiveness of our system.

Index Terms— neuromorphic vision sensor, event cam-
era, scale-invariant feature transform, SIFT, keypoint detec-
tion

1. INTRODUCTION

Neuromorphic or dynamic vision sensors, commonly known
as event cameras, are revolutionary vision sensors that offer
several benefits over traditional cameras. Contrary to tradi-
tional cameras that capture intensity images at uniform in-
tervals, event cameras produce asynchronous event streams
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based on brightness changes. Event cameras record changes
in luminance at each pixel independently that signal an event
rather than capturing a full image frame. Event cameras have
high dynamic range, no motion blur, and high temporal res-
olution. These properties make event cameras ideal for a
wide range of fast-paced environments, such as robotics for
real-time motion tracking and navigation, surveillance sys-
tems for dynamic scene monitoring, autonomous vehicles,
and immersive technologies for virtual and augmented real-
ity. The event-driven approach also offers benefits in terms
of power efficiency, low latency, reduced data bandwidth, and
enhanced performance in challenging lighting conditions.

The last decade has witnessed a substantial amount of re-
search on event camera-based computer vision attributable
to the superiority of event cameras over conventional cam-
eras. Ongoing research on event-based vision includes tasks
like feature detection and tracking, object recognition, ob-
ject segmentation, and simultaneous localization and map-
ping (SLAM). In regards to event camera-based feature de-
tection, most research works only focus on corner detection
instead of keypoint detection. An extremely meager amount
of research has been conducted on event camera-based key-
point detection.

The scale-invariant feature transform (SIFT) [1] is a
widely used and renowned feature detector and descriptor
developed by David G. Lowe. This is attributed to its robust-
ness in tackling various image transformations like variations
in scale, orientation, and illumination. The scale-space pyra-
mid is computed by using the difference of Gaussians (DoG)
which is an approximation of Laplacian of Gaussian (LoG).
Keypoints are identified at locations where the DoG pyramid
exhibits extreme values (maxima or minima). Spatial coordi-
nates in the image domain and at the scale level are considered
while identifying the extrema in the DoG pyramid. Once the
keypoints are determined, a descriptor is calculated around
each point which generates a feature vector that incorporates
information about the local image structure.

The computation of the LoG pyramid is computation-
ally more expensive when compared to the DoG pyramid
which is basically subtraction of matrices. Since DoG is an
approximation of LoG, there is a possibility of information
loss and consequently accuracy loss in keypoint detection. In
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this work, we extract SIFT keypoints directly from the asyn-
chronous event stream captured via the event camera. The
proposed system directly learns to generate the LoG pyramid
from an event voxel. Given the LoG pyramid, we propose
an alternate solution based on polynomial fitting and root
finding for computing scale-space extrema. This solution is
applied after eliminating non-maximum responses by LoG
peak thresholding which results in an overall lower complex-
ity as compared to the original SIFT paper [1]. The main
contributions are mentioned below:

1. A direct SIFT keypoint detection scheme from event
camera sensor data is proposed. The proposed sys-
tem does not require conversion of events to intensity
frames. Instead of using dense intensity frames, a
sparse SIFT feature pyramid recovery via learning is
developed.

2. We learn recovery of the LoG pyramid directly via
event stream rather than approximating the LoG pyra-
mid via DoG. A SIFT based on a new polynomial
fitting and root finding algorithm for scale-space ex-
trema detection is proposed.

The remainder of the paper is organized as follows. Sec-
tion 2 presents the related works whereas Section 3 describes
our proposed approach. Experimental setup and experimental
results are presented in Section 4 and Section 5, respectively.
Conclusions are presented in the last section of this paper.

2. RELATED WORKS

A major portion of event-driven feature detectors focuses on
event-based corner detectors. The initial event-based corner
detectors can be traced back to [2, 3]. In these methods, local
optical flow [4] was estimated by fitting spatiotemporal planes
to the event stream. Events lying in the intersection between
two planes were identified as corner-events. The studies [2,
3] can also track such corner-events via predictive velocity
models. The study in [5] used artificial frames generated from
events and applied the Harris corner detector [6] to a small
vicinity around each event pixel location. The study in [7]
proposed a more efficient corner-event detector than the one
proposed in [8]. It was inspired by the FAST feature detector
[9] and was locally applied to Surface of Active Events (SAE)
achieving faster but slightly mediocre performance compared
to [8].

Arc - a computationally efficient corner-event detector
was proposed in [10]. Arc [10] ensured better corner detec-
tion repeatability than [7]. FA-Harris detector [11] built a fast
and asynchronous corner detection pipeline that produced a
more refined output by merging features from Arc [10], eHar-
ris [12], and [7]. The study in [13] adapted the frame-based
AC]J detector to an event camera and dubbed it as e-ACJ. It

used Arc [10] to improve the speed of the original ACJ de-
tector. [14] introduced a learning-based corner-event detector
that used a motion-invariant, event-driven SAE and Random
Forest to discriminate corner-events from non-corner-events.
The work in [15] extracted SIFT-like descriptors [1] for the
corner-events detected in [11]. It also tracked the corner-
events using an approach similar to [16]. Asynchronous spa-
tial image convolutions were introduced for event cameras by
the study in [17]. These convolutions are beneficial for tasks
like corner-event detection. A thorough evaluation of various
corner-event detectors [10, 11, 4, 17, 12] was presented in
[18].

Although there has been ongoing research on event-driven
feature detectors, most of the previous works concentrate their
efforts on detecting event-corners rather than event keypoints.
The subtle distinction between corners and keypoints is that
keypoints may include corners, edges, or other distinctive
structures whereas corners can ideally only include corner
points. In our work, to the best of our knowledge, we present
the first-ever approach to detect SIFT keypoints directly from
the event stream.

3. PROPOSED METHOD

3.1. Overview

The goal of this work is to translate a continuous event stream
into SIFT keypoints without intensity image reconstruction.
The continuous stream of events is converted into LoG pyra-
mid LoG}y, where LoGl, is the k-th Laplacian of Gaussian at
sigma sy. For SIFT keypoint detection, LoGY, is input to our
alternate SIFT keypoint detector that is based on polynomial
fitting and root finding. The overall workflow of the proposed
solution is illustrated in Fig. la.

3.2. Event Representation

Each pixel in an event camera individually responds to
changes in the spatio-temporal brightness signal L(z,t).
These changes are encoded as a stream of asynchronous
events where each event e; = (u;, t;, p;) is activated at pixel
u; = (z;,y;)7 and time ¢; after the change in brightness
(since the last event) reaches a threshold +=C'. p; denotes the
polarity of the event.

We divide the event stream into equal non-overlapping
spatiotemporal windows ¢, of fixed duration. These spatio-
temporal windows ¢, are converted into fixed tensor repre-
sentations for input to the network for learning. Inspired by
E2VID [19], we choose the spatio-temporal voxel grid [20] to
encode the event windows. Given an event window € con-
sisting of N number of events, [20] divides the timestamp
range AT = ty_1 — to into B bins. The timestamps are then
scaled to the range [0, B — 1] to generate the event voxel V" as
follows:
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Fig. 1: (a) Overall workflow for our proposed system; (b) Overall workflow of the proposed alternate keypoint detection.

V(z,y,t) :Zp,» max (0,1 — |z — z;])
i

x max (0,1 — |y — y;]) x max (0,1 — [t —t]|),
¢))

where t; = (B — 1)(¢; — to)/AT represents the normalized
timestamp. Similar to E2VID [19], we chose B = 5 in our
experiments.

3.3. Training Data Generation

The proposed system requires input data in the form of event
voxels to generate the LoG pyramid. Event voxels are gen-
erated from event sequences by using the method mentioned
in Section 3.2. Each event voxel is associated with a ground-
truth intensity frame and its corresponding LoG pyramid.
Event voxels are selected from each event sequence based on
strict criteria that ensure the optimal event voxel and ground
truth pair.

Firstly, we extract events from an event sequence within a
fixed time duration tg4,,-. The ground truth intensity frame is
selected based on the timestamp closest to the timestamp of
the latest event within the extracted event window F,,;,,. The
selected intensity frame is at times almost completely black.
Such event voxel/intensity frame pairs make the network diffi-
cult to converge. To remedy this, we compute SIFT keypoints
[1] for the intensity frame and ignore the frame if the number
of SIFT keypoints detected is below a threshold value thy,,.

Event voxels can have an undefined range which causes
problems in network convergence. To tackle this, only vox-
els within a specific range +7,,, are chosen. In addition,
certain bins in the voxel may have almost no events which
makes it almost impossible to recover the LoG pyramid. This
is fixed by checking the standard deviation of events in each
bin. If the standard deviation within an event bin is less than

a threshold value thgg, those voxels are ignored. Lastly, we
also limit the number of events within a fixed-duration event
window. Since the events are captured asynchronously, a 5
second window may contain fewer (e.g. 100) events or more
(e.g. 100,000) events, both of which make it challenging to
recover the LoG pyramid. Based on these criteria, we gener-
ate high-quality event voxel/intensity image pairs. The LoG
pyramid is computed from the intensity frame and is used as
ground truth while training our network. Since values in event
voxels and the LoG pyramid can be in an undefined range, we
clip the values in the event voxels and the LoG pyramid to
Ecyor and %¢y,4, respectively. This is necessary to normal-
ize the event voxels and the LoG pyramid between O to 1 for
input to the network.

3.4. Events to LoG Pyramid

Given an event voxel V, the goal is to learn to generate LoG
pyramid LoG), without the intensity image reconstruction.
We utilize the Transformer-based Spatial and Frequency De-
composed Feature Fusion Network (TSF-Net) from the study
in [21]. The TSF-Net [21] receives a total of five different
inputs, out of which three are in the spatial domain while the
remaining two are in the frequency domain. For our task, we
modify the network to receive two inputs - one is the pixel
unshuffled input and the other is the frequency-decomposed
input. These two inputs are generated from the event voxel
V.

The TSF-Net consists of three main parts - head, body,
and tail. We only keep two of the “conv—PReLU— conv”
blocks in the head and remove all other blocks. The output
from the two “conv—PReLU— conv” blocks is input to the
cascade of residual fusion blocks (RFB). The RFB fuses the
spatial and frequency-decomposed features. We only use the
spatial feature from the cascade of RFB. Finally, the spatial
feature from the cascade of RFB is input to the tail of TSF-
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Net. The tail consists of a conv layer followed by a pixel-
shuffle layer. The model was trained using the following loss
function:

Loss=L1+ SSIM 2)

where L1 and SSTM represent L1 loss and SSIM loss, re-
spectively. The final output is the LoG pyramid that will be
used for the LoG-based SIFT keypoint detection scheme as
mentioned in the following subsection.

3.5. Neuromorphic SIFT Keypoint Detector

We propose modifications to the scale-space extrema detec-
tion step in the fast LoG SIFT keypoint detector introduced
in [22]. Particularly, we propose a more analytical extrema
detection solution that uses roots of a quadratic function to
detect maxima. The block diagram for neuromorphic SIFT
can be seen in Fig. 1b.

Peak strength thresholding of the LoG response generated
via TSF-Net [21] is used to reduce computation cost. Only
pixels that exceed the peak threshold P, are retained. For
each remaining pixel or keypoint candidate, a third-degree
polynomial P(o) is fitted to the peak responses obtained at
different scales. This is followed by calculating the first-order
derivative P’(o) of the fitted polynomial curve. The deriva-
tive of the third-degree polynomial curve is a quadratic func-
tion. To identify the maxima, we calculate the roots o and 3
of the quadratic function and evaluate the polynomial func-
tion at these roots. For real roots, one of the roots will give
us the maxima o,,,;. If the absolute value of the maxima is
greater than threshold Gy, then it is considered a keypoint.

Finally, similar to the original SIFT [1], the edge removal
is performed to eliminate keypoints with low contrast. The
following condition is checked for edge removal:

Tr(H)? < (r+1)2
Det(H) T
where H is a 2 x 2 Hessian matrix, Tr(H) is the trace of H,

Det(H) is the determinant of H, and r is the ratio between
the largest magnitude eigenvalue and the smaller one.

3

4. EXPERIMENTAL SETUP

4.1. Dataset Details

The Event Camera Dataset [23] and Vimeo-90k dataset [24]
were used in our work. Event Camera Dataset [23] is a real
event camera dataset while event data is synthesized via ESIM
[25] for Vimeo-90k dataset [24]. Details about these datasets
are as follows:

Vimeo-90k dataset [24] is a large-scale video dataset
containing 89,800 videos covering a diverse range of scenes
and actions. The videos are downloaded from vimeo.com and
the dataset is tailored for video processing tasks like temporal

frame interpolation, video denoising, video deblocking, and
video super-resolution. We scraped videos using the list con-
taining links for full-length original videos. The list contained
5, 831 video links out of which only 3, 279 were available for
download at the time of writing this paper. ESIM [25] was
used to synthesize event data from these downloaded videos.
The default parameters as set in the official code repository
for ESIM [26] were used while generating synthetic events.
The videos were upsampled to a higher frame rate using
frame interpolation before event synthesis.

Event Camera Dataset [23] is a real event camera dataset
captured via a DAVIS240C sensor [27]. It contains 25 se-
quences that include both synthetic and real environments.
The dataset provides asynchronous event streams along with
intensity images captured at 24 Hz. In addition, inertial mea-
surements, ground truth camera poses, and intrinsic camera
matrices are also included. All this information is accompa-
nied by accurate timestamps. We used 6 sequences for test-
ing our system and the remaining are used for training. The
sequence ‘office_zigzag’ was excluded since none of the gen-
erated event voxels passed our selection criteria as mentioned
in Section 3.3.

The event streams were processed to create event voxels
along with the respective LoG pyramid using the procedure
mentioned in Section 3.3. Training data includes both real
events (Event Camera Dataset [23]) and synthetic events
(Vimeo-90k dataset [24]) whereas testing is performed on
only real events (a subset from Event Camera Dataset [23]).
A total of 11,873 event voxels were generated for training
and 3, 383 event voxels were generated for testing our system.

4.2. Implementation Details

The modified TSF-Net used in this paper was implemented
using the PyTorch framework and was based on the imple-
mentation from authors of TSF-Net [21]. The E2VID [19]
implementation used in this work was taken from [28]. Both
networks were trained and tested using a single NVIDIA RTX
A5000 GPU on a desktop computer with a 12th Gen Intel
Core 17-12700 processor and 64 gigabytes of RAM. TSF-Net
and E2VID were trained for 200 epochs with a batch size of
32 and an initial learning rate of 0.0001. Adam optimizer
with 8 = (0.9,0.999) was used and a cosine annealing learn-
ing rate scheduler was used to decrease the learning rate un-
til 1e — 6. Both networks were trained on random crops of
160 x 160 and tested on center crops of 160 x 160. E2VID’s
non-recurrent version as provided in [28] was trained from
scratch for the task of LoG pyramid recovery.

For voxel creation, we used a fixed time duration of
0.05 seconds, SIFT keypoint threshold thy,, of 50 keypoints,
+7y0e Of £20, standard deviation threshold thyg of 0.1,
EcCyor of £2.5, £¢j04 of +0.15, and number of bins B = 5.
The event voxels were normalized between 0 to 1 before
inputting into the network. For the alternate SIFT keypoint
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detection scheme, we used P, = 0.03, Gy, = 0.05, and
r = 10.

5. EXPERIMENTS

5.1. Events to LoG Pyramid

In this subsection, we evaluate the effectiveness of our pro-
posed events to the LoG pyramid solution. Sequences from
the Event Camera Dataset [23] were used for the evalua-
tion of LoG pyramid recovery. Peak signal-to-noise ratio
(PSNR), structural similarity index measure (SSIM), and
mean squared error (MSE) were selected as evaluation met-
rics to evaluate the LoG pyramid recovery process. Table 1
compares the LoG pyramid recovery by our modified TSF-
Net [21] with E2VID [19]. SSIM, PSNR, and MSE for
individual sequences are presented in Table 1. It is evident
from Table 1, that TSF-Net [21] outperforms E2VID [19] in
all the evaluation metrics. In terms of MSE (), TSF-Net
achieves an average score of 0.0038 whereas E2VID achieves
an average score of 0.053. A significantly better PSNR (1)
average of 25.0064 dB was achieved by TSF-Net [21] in con-
trast to E2VID’s average PSNR (1) of 23.7194 dB. In case
of SSIM (1), E2VID [19] achieved an average SSIM (1) of
0.7969 whereas TSF-Net [21] achieved an average SSIM (1)
of 0.8407.

A sample of LoG pyramid recovery can be visualized in
Fig. 2. It can be observed in Fig. 2 that the proposed LoG
pyramid recovery is superior in terms of MSE ({), PSNR (1),
and SSIM (1) as compared to the LoG pyramid recovery by
E2VID [19]. These values validate that the LoG pyramid re-
covered via TSF-Net [21] is closer to the ground truth than
the one recovered by E2VID [19].

[ B2vip ]

| Proposed |

MSE: 0.0012; PSNR: 28.965; SSIM: 0.9422

Fig. 2: LoG pyramid recovered by E2VID [19] and TSF-Net
[21].

|Ground truth |

5.2. Neuromorphic SIFT Keypoint Detector

In this subsection, we evaluate the performance of our pro-
posed event-based SIFT keypoint detector. First, we compare
the SIFT keypoint repeatability between keypoints generated
from the ground truth LoG pyramid and the ones generated
via the predicted LoG pyramid. We chose to compare our
neuromorphic SIFT to LoG-based SIFT rather than the orig-
inal DoG-based SIFT. This was inspired by the study [22]
which established that LoG-based SIFT keypoint detection
performs better than the original DoG-based SIFT keypoint
detection.

Table 2 presents accuracy for different sequences from
the Event Camera Dataset [23]. This basically indicates how
many keypoints are matched between the SIFT computed us-
ing the ground truth LoG pyramid and the predicted LoG
pyramid. A tolerance level of 5 pixels was used while com-
puting this accuracy. A mean accuracy of 58.9117% was ob-
tained as can be seen in Table 2. Fig. 3 presents some qualita-
tive results for our neuromorphic SIFT. As evident from Fig.
3, the proposed system is able to detect keypoints similar to
the ones detected via the ground truth Log pyramid.

Intensity Image

SIFT via ground truth LoG pyramid (#keypoints: 327)  SIFT via predicted LoG pyramid (#tkeypoints: 264)
o  S———

Fig. 3: Some visual results for the SIFT keypoints detected.
Left: Intensity image; Center: SIFT keypoints via the ground
truth LoG pyramid; Right: SIFT keypoints via the predicted
LoG pyramid

Table 2: Accuracy of matched SIFT keypoints between key-
points detected via the ground truth LoG pyramid and the pre-
dicted LoG pyramid.

Dataset Accuracy %
boxes_6dof 54.19
calibration 62.07

dynamic_6dof 61.01
poster_6dof 53.15
shapes_6dof 72.44
slider_depth 50.61

Mean 58.9117
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Table 1: LoG pyramid recovery results for E2VID [19] and TSF-Net [21] on the Event Camera Dataset [23] in terms of MSE,

PSNR, and SSIM. The best performance is shown in bold.

Dataset MSE] PSNR (in dB) SSIMt
E2VID TSF-Net E2VID TSF-Net  E2VID TSF-Net

boxes_6dof  0.0044  0.0038 24.0130  24.6261 07676 0.8096
calibration  0.0103  0.0065 20.0708  22.0494 07134 0.7861
dynamic_6dof 0.0031  0.0027 255539 26.3663 0.8885  0.9114
poster_6dof  0.0028  0.0022 25.9942  27.0566 0.8502  0.8806
shapes_6dof  0.0032  0.0027 257975  26.4769 0.9038  0.9149
slider_depth  0.0082  0.0046 20.8874  23.4632 0.6579  0.7414
Mean 0.0053  0.0038 23.7194  25.0064 0.7969  0.8407

In addition, we also evaluate the effectiveness of the pro-
posed root-based extrema-finding solution. The red line in
the left and right plots in Fig. 4 represent the maxima de-
tected via [22] and via our proposed solution, respectively. It
is evident from Fig. 4 that the root-based extrema solution
performs similarly to the solution in [22].

1 15 2 25 3 35 1 1.5 2 25 3 3.5

o o

Extrema Detection by
[22]

Fig. 4: Extrema detection by [22] and by our proposed root
finding solution

Extrema Detection by proposed root finding
solution

5.3. Discussion

It is understandable that the proposed neuromorphic SIFT has
room for further improvements, especially in regard to its key-
point repeatability score. For instance, similar to the origi-
nal SIFT [1] work, one such improvement would be utilizing
LoG pyramids at different octaves. Using the octave-based
approach would also improve the edge-removal process. An-
other improvement would be the addition of the keypoint de-
scription. With that being said, we consider our neuromorphic
SIFT to be a seminal work in event-based keypoint detection.

6. CONCLUSIONS

In this work, we presented neuromorphic SIFT that can ex-
tract SIFT keypoints from the event stream captured by neu-
romorphic vision sensors. The proposed solution learned to

generate the LoG pyramid directly from the event stream. The
learning-based LoG pyramid was then processed by the pro-
posed alternate LoG-based SIFT keypoint detector. The pro-
posed system was able to generate SIFT keypoints that match
the keypoints generated by ground truth with a mean accu-
racy of 58.9117%. We consider this work to be foundational
for further research on event-driven keypoint detection. The
proposed solution was tested on a real event camera dataset
and the experimental results affirm the efficacy of the intro-
duced neuromorphic SIFT.
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