2024 IEEE International Conference on Image Processing (ICIP) | 979-8-3503-4939-9/24/$31.00 ©2024 1IEEE | DOI: 10.1109/ICIP51287.2024.10648101

TSF-NET3D: TSF-NET FOR 3D POINT CLOUD ATTRIBUTE COMPRESSION ARTIFACTS
REMOVAL

Birendra Kathariya®, Zhu Li*, Geert Van der Auwerat

“University of Missouri-Kansas City, MO 64110 USA
fQualcomm Technologies Inc., San Diego, CA 92121 USA

ABSTRACT

Transformer-based Spatial and Frequency-Decomposed Fea-
ture Fusion Network (TSF-Net) exhibited great potential as
a learned in-loop filter in Versatile Video Coding (VVC).
Utilizing a channel-wise transformer for pixel and frequency-
decomposed feature fusion in a multi-scale deep-learning
setup, TSF-Net achieved remarkable success in removing
video compression artifacts. In this article, considering the
potential of TSF-Net, we extend this work to the 3D do-
main of point clouds and propose a new framework called
TSF-Net3D. More specifically, we incorporate sparse convo-
lution (SparseConv) to process point clouds and implement
TSF-Net3D as a post-processing block in Geometry-based
Point Cloud Compression (G-PCC) to enhance the quality of
color attribute in the reconstructed frame. Implementation-
wise, TSF-Net3D differs from TSF-Net in two fronts: (1)
TSF-Net3D does not utilize frequency-decomposed infor-
mation but rather pixel information only; (2) TSF-Net3D
extends point cloud processing in three scales with two-level
feature fusion, unlike TSF-Net, which processes features at
only two scales with single-level feature fusion. We evaluate
TSF-Net3D on the 8iVFBv2 dataset, and our experimental
results demonstrate that our proposed method achieves a sig-
nificant YUV Bjgntegaard Delta (BD) - bitrate saving of up
to —13.12% over the G-PCC(TMC13v21) RAHT baseline
while also outperforming other state-of-the-art methods.

Index Terms— point cloud, compression artifact, post-
processing filter, sparse-convolution, multi-scale feature

1. INTRODUCTION

Video coding standards, such as High Efficiency Video Cod-
ing (HEVC) [1] and Versatile Video Coding (VVC) [2], have
played a crucial role in enabling the various video applica-
tions we experience today. Similar efforts have also been
made by various researchers and technology groups to de-
velop efficient point cloud compression technology. One such
effort, led by the MPEG-PCC group, proposed two solutions:
Geometry-based Point Cloud Compression (G-PCC) [3] and

This work is accomplished in collaboration with Qualcomm and partially
supported by the NSF under grant CNS-2148382.

979-8-3503-4939-9/24/$31.00 ©2024 IEEE 3334

Video-based Point Cloud Compression (V-PCC) [4], as PCC
standards [5]. G-PCC was initially developed to compress
static and LiDAR point clouds. Nonetheless, it has now been
extended to compress dynamic point clouds as well. V-PCC
is developed to compress dynamic point clouds only. The
fundamental difference between G-PCC and V-PCC is that
G-PCC processes 3D geometry and its attributes in the 3D do-
main only and compresses them into a bitstream, whereas V-
PCC transforms 3D geometry and its attributes into 2D videos
and utilizes highly optimized video compression technology
like HEVC/VVC to compress them into a bitstream. At the
decoder, V-PCC transforms the 2D videos back to 3D geom-
etry and attributes.

G-PCC encodes geometry independently from attributes,
where three separate methods: octree, predictive geometry,
and trisoup, are introduced for this purpose. In contrast,
attribute coding utilizes geometry-based tree structures to
hierarchically predict and compute attribute residue. Cur-
rently, G-PCC implements two attribute compression meth-
ods: Region-Adaptive Hierarchical Transform (RAHT) [6]
and Hierarchical Prediction as Lifting Transform (PredLift)
[7]1. In lossy attribute compression, due to transform and
residue quantization, G-PCC often introduces compression
artifacts in the attributes of the reconstructed point cloud. In
video codecs such as HEVC and VVC, in-loop filters are em-
ployed to correct compression artifacts present in the recon-
structed frame. Similalry, numerous learning-based in-loop
filters and post-processing methods have been developed for
HEVC/VVC. However, implementing hand-crafted in-loop
filters is non-trivial in PCC codecs due to the point irregular-
ity in the point cloud. However, researchers are currently
exploring technologies such as PointNet/PointNet++[8],
Graph-Convolution-Network(GCN) [9], Sparse-Convolution-
Network (SCN) [10] to develop in-loop and post-processing
filters to suppress compression artifacts in both G-PCC and
V-PCC.

There exist a few works that applies traditional methods
to denoise point cloud color attribute. For e.g. [11] utilizes
graph total variation (GTV) prior to formulate point cloud
color denoising as maximum a posteriori (MAP) estimation
problem. Then the cost function is minimized using alter-
nating direction method of multipliers (ADMM) and proxi-

ICIP 2024

Authorized licensed use limited to: University of Missouri Libraries. Downloaded on April 26,2025 at 12:56:36 UTC from IEEE Xplore. Restrictions apply.

mal gradient descent to show a satisfactory denoising perfor-
mance. Similarly, [12] also employs graph signal process-
ing to denoise the point cloud color. However, it utilizes
3D patch-based similarity to construct the graph where sim-
ilarity is calculated with small 3D patches around the con-
nected points. Learning-based methods such as [13] also uti-
lizes graph-based method, however, to remove the compres-
sion artifacts in the G-PCC coded color. This work proposed
Multi-Scale Graph Attention Network (MS-GAT) which uses
Chebyshev graph convolution to extract features at multiple
scales and weighted graph attention layer to pay attention on
points with more compression artifacts. Likeiwse, [14] pro-
posed Compression Artifact Reduction Network (CARNet)
to reduce compression artifacts on G-PCC coded point cloud
color. CARNet first generates multiple Most-Probable Sam-
ple Offsets (MPSOs) as potential compression distortion ap-
proximations, and then linearly weights them for artifact mit-
igation.

In this work, we propose TSF-Net3D, a multi-scale sparse
feature learning and fusion method, to reduce compression
artifacts in G-PCC coded attributes, specifically point cloud
color. TSF-Net3D is an extension of Transformer-based Spa-
tial and Frequency-Decomposed Feature Fusion Network
(TSF-Net) [15] into the 3D point cloud domain. TSF-Net was
introduced as a learned in-loop filter for VVC and demon-
strated its effectiveness in reducing compression artifacts in
images. The method relies on multi-scale feature learning on
pixel and frequency-decomposed information. It implements
a naive convolution-based feature extractor but an advanced
channel-wise transformer-based feature aggregator to fuse
both feature types at two different scales. Given the remark-
able performance of TSF-Net, we adapt the implementation
into the point cloud domain with two distinct differences:
(1) With TSF-Net3D, we extend feature learning to three
scales with two-level feature fusion. (2) To simplify feature
learning, we design TSF-Net3D to learn only in the pixel
space.

We summarize the contributions of this article in the fol-
lowing points.

* We propose TSF-Net3D, a multi-scale sparse feature
learning approach with state-of-the-art performance
in suppressing compression artifact present in G-PCC
coded color attribute.

* We allow feature learning in TSF-Net3D at three scales,
thereby exploiting a larger receptive field. This enables
us to design a wider but shallower network, offering
inherent advantage in inference speed.

e We train TSF-Net3D with the THUman2.0 dataset
[16] and test it on five 8iVFBv2 point clouds in-
cluded in the MPEG-PCC category 1. We utilize
G-PCC(TMC13v21) reference software and perform
a comprehensive evaluation on RAHT baselines.

2. PROPOSED METHOD

Our proposed TSF-Net3D is implemented as a post-processing
filter in G-PCC with the goal of reducing compression arti-
facts in the color attribute and thereby enhancing the over-
all quality of the reconstructed point cloud. TSF-Net3D
is based on SparseConv, which operates on a sparse-tensor
T = {C, F} where C' and F represent coordinates and fea-
tures, respectively. Therefore, the reconstructed point cloud
P ={z;,y;},i={1,2,..., N} with N points, is represented
as a sparse-tensor where coordinates C' = z; are the XYZ
positions and features F' = y; are the YUV color components.

2.1. Description of TSF-Net3D

The architecture of TSF-Net3D is shown in Fig. 1(a). TSF-
Net3D is designed to process the input point cloud at three
scales: the original scale (1x), two-times downscaled (2x/),
and four-times downscaled (4x|) denoted as T, Tox |, and
T respectively. The input point cloud T is first pro-
cessed with a head, which expands the 3-channel YUV-color
to a d = 16 channel-wide feature. The output is then pro-
cessed with two successive headls, each time expanding
the feature channel by a factor of two. The head consists
of “conv—BN—ReLU—conv”’, as shown in Fig. 2(a),
while head] consists of “conv]—BN—ReLU—conv”, as
shown in Fig. 2(b). The presence of a stride s = 2 sparse-
convolution layer (‘“‘conv]}”) in the head| downscales the
input sparse-tensor by a factor of two. Therefore, the out-
put from the head is a sparse tensor T1x = {Cix, Fix |
Fix € RN>16} at the original point cloud scale. Similarly,
the output from the first and second head|s are two-times
Tox), = {Caxy, Foxy | Foxy € RM>*32} and four-times
T4><J(= {C4X¢,F4XJ, ‘ F4><¢ S RN2X64} down-scaled
sparse-tensors, respectively, where N7 and N5 are the num-
bers of points at two- and four-times downscale.

Next, the sparse-tensors 1w, Ty, and Ty, are fur-
ther processed by B instances of the 3-Level Residual Fu-
sion Block (RFB-3L) successively. The RFB-3L takes these
sparse-tensors at three-scales as inputs, extracts deeper fea-
tures separately, and gradually aggregates the features from
lower scale to higher scale. The outputs are again the three
sparse-tensors at the same three-scales but with deeper fea-
tures. Once the sparse-tensors are processed by B instances
of RFB-3L blocks, the 77y output from the last RFB-3L
block is added to the output from the head as a feature-level
residual connection. This summed output is again processed
with a tail, which has the same layer configuration as the
head, except for the last “conv’’ layer, which reduces the
channel size from 16 down to 3. This output is then added
again with the input point cloud as a global-level residual
connection to generate the final clean output.

3335

Authorized licensed use limited to: University of Missouri Libraries. Downloaded on April 26,2025 at 12:56:36 UTC from IEEE Xplore. Restrictions apply.

Input
Point Cloud

(a) TSF-Net3D

Scale”
] 2xl 1,
RFB-3L ..-xB---—>»| REB-3L Scale
4xl —_—
Scale

Original
Scale

Original

BN
RelLU
fusion
module

Enhanced
Point Cloud

2x)
Scale

BN
RelLU
fusion
module
|

BN
RelLU

4x|
Scale

(b) RFB-3L

Fig. 1. The overall architecture of our proposed TSF-Net3D.

|_conv |
BN
RelLU
conv

i 4

(a) head/tail

L

—0© 23—>'7—>£->
Glo 0
o o (@)

CO nv
conv

3I
—
(]

b) head!

(c) fusion module

(el convolution (stride=1)
convl | convolution (stride=2)
convl | transposed-convolution (stride=2)

Ch-TF channel-wise transformer

Fig. 2. The components of TSF-Net3D.

2.2. 3-Level Residual Fusion Block (RFB-3L)

The RFB-3L is the primary component of TSF-Net3D, as
illustrated in Fig. 1(b). It extracts deeper features at all the
three scales of sparse-tensors Ty, Tox, and Ty through
separate ‘“conv—BN—ReLLU—conv” blocks. The output
feature Fyy| € Ty is first fused into Fyy | € Toy through
a fusion module. The fused output feature Foy| € Toyy
is then fused again into F, € Tjx through another fusion
module. The output at all three scales is now then added to
their respective inputs as a residual connection to form the
final outputs of RFB-3L. These residual connections allow
TSF-Net3D to form a deeper network by stacking multiple
RFB-3L blocks, much like the ResNet architecture.

2.2.1. Fusion Module

The fusion module takes sparse-tensors at two different scales
and fuses the feature at lower scale onto the higher scale as
depicted in the Fig. 2(c). Let T}, = {C,, F}, | F}, € RM*d}
and T) = {C, F} | F; € RM1%2d4} are the sparse-tensors at
these two scales, where M and M represent the numbers
of points, and d is the channel-size. T is first processed
with a transposed-convolution with stride s = 2 (“conv?”)
which up-scales 7; by a factor of 2 and reduces the channel-
size from 2d to d. Since, the T), and T; are now at the
same geometric scale, the features are concatenated to form
a sparse-tensor T, = {Cp,F. | F. € RM*24} where
F. = (F,©F)) and © implies concatenation. Then 7, is
processed with a “conv—BN—ReLU” blocks and output
feature F, € RM*24 js provided to the channel-wise trans-
former module (Ch-TF) for feature aggregation. Ch-TF
fuses the feature by applying the self-attention along the
channel. The T¢ is now assigned the fused feature F; as
T. = {Cy, Fy | Fy € RM*d}, Lastly, the input T}, is added
back to T as a residual connection to form the final output of
the fusion module.

2.2.2. Channel-wise Feature Fusion

The original TSF-Net [15] work utilizes Spectral-wise Multi-
Head Self-Attention (SMSA) layer from [17] and redesigns
it as a channel-wise feature fusion module. TSF-Net3D fol-
lows the same design from the TSF-Net, except the average-
pooling operation is avoided before computing key and guery
and convolution layers are replaced with linear layers while
computing position-embedding. This channel-wise trans-
former (Ch-TF) as feature-fusion layer is illustrated in Fig.
3.

In Ch-TF, the input feature F, € RM*Prs where Dy =
2d, is first linearly projected into key K € RM*Pr guery
Q € RM*Ds and value V- € RM*Ps using 3 linear layers
with weights W%, Wk and W@ € RP#*Ps respectively. Now
the), K and V is sub-divided equally into h heads as @Q;, K;

3336

Authorized licensed use limited to: University of Missouri Libraries. Downloaded on April 26,2025 at 12:56:36 UTC from IEEE Xplore. Restrictions apply.

Channel-wise
Self-Attention

Position
Embedding

Fig. 3. Ch-TF: Channel-wise Transformer.

and V;, where ¢ = 1,2,..., h. For each head, self-attention
is computed according to equation (la), and the fused feature
H, is computed following equation (1b).

A; = softmaz (o, KFQ;), A; € RPs/MxDi/h) (1)

H, = ‘/iAia H; €]RMX(Df/h) (1b)

where ; € R! is a learnable parameter employed to
adapt self-attention A;. The fused feature H; from all h
heads are concatenated and linearly projected into projection-
embedding F,, = (concat(H;))W, F,. € RM*P using a
linear layer (W), where D = d. Similarly, input feature
F, is processed with a “Linear— GeLU— Linear” block to
generate position-embedding F),, € RM*P_ The final output
from Ch-TF is calculated as Fy = F,, + Fp,, Fy € RM*P,

3. IMPLEMENTATION DETAILS

3.1. Training/Validation Dataset

We utilize THUman2.0 [16] to create the training and valida-
tion datasets. This dataset contains 526 high-quality full-body
human mesh data with an 8k texture map. Initially, we convert
the mesh to a point cloud by sampling 5 million points from
the mesh surface. The point cloud is then voxelized to 10 bits,
resulting in roughly one million points per point cloud. The
color values of each point in the newly created 10-bit vox-
elized point cloud are assigned based on the nearest point in
the original point cloud.

Next, we use the G-PCC (TMC13v21) reference soft-
ware to encode all 526 point clouds with the octree-raht
coding-mode and lossless-geometry-lossy-attribute coding-
condition, strictly following the MPEG-PCC common test

conditions (CTC). This results in a point cloud color pro-
cessed at 6 quantization-parameter (QP) rate points, includ-
ing 22, 28, 34, 40, 46, and 51. We then utilize a binary
tree [18] of depth 4 to divide a point cloud into 16 leaf-node
patches, each with approximately 62,500 points. This results
in a total of 526 x 16 = 8416 point cloud patches for each
QP rate point. The same depth binary tree is also applied
to the original 10-bit point cloud to create the ground-truth
patches. We utilize patches from the first 511 point clouds
(511 x 16 = 8176) to train the network, while the remaining
(15 x 16 = 240) patches are used for network validation.

3.2. Test Dataset

We select five point clouds from the 8iVFBv2 dataset (long-
dress, loot, queen, redandblack, and soldier), which are
included in the mpeg-pcc category-1 [19], as the test dataset.
These point clouds are all 10-bit voxelized. We follow the
same coding conditions mentioned in section 3.1 to en-
code the test dataset at 6 QP rate points using the G-PCC
(TMC13v21) reference software. Subsequently, we utilize
the encoded test point clouds to evaluate the TSF-Net3D.

3.3. Network Training

In this work, we implement TSF-Net3D in the PyTorch-based
point cloud processing framework called TorchSparse [20].
The network is optimized to jointly improve the YUV qual-
ity. We construct TSF-Net3D by stacking B = 8§ instances
of RFB-3L blocks, with each RFB-3L configured to have 16,
32, and 64 channel sizes at 1%, 2x], and 4x|, scales, respec-
tively. All convolution operations are carried out with a kernel
size of 3 X 3 x 3. We use h = 2 heads in the channel-wise
transformer layer. Similarly, we adopt the Adam optimizer
with 8 = (0.9,0.999) and L1 loss to optimize the network
parameters. However, the L1 loss is computed for Y, U, and
V components individually as Ly, Ly, and Ly, respectively.
Then, the final loss L4+ is obtained using equation 2.

6 1 1
Ljoint = gﬁy + gﬁU + gﬁv 2

We train a total of 6 models, one for each QP. Initially,
we train a model for the highest QP, i.e., QP = 51. The
model is trained for 50 epochs, with the learning rate initial-
ized at 10~* and decreased to 10~% during training using a
cosine-annealing learning rate scheduler. Subsequently, the
models for QP = {46, 40, 34} are initialized from the pre-
trained weights of the model at QP = 51 and fine-tuned for
30 epochs. The initial learning rates for these three models
are set to 0.5 x 10~* and decreased to 10~% during training.
Finally, the models for QP = {28, 22} are trained by initial-
izing their weights from the pre-trained model at QP = 34.
These two models are fine-tuned for 30 epochs, with an initial
learning rate of 10~ while decreasing to 10~ during train-

3337

Authorized licensed use limited to: University of Missouri Libraries. Downloaded on April 26,2025 at 12:56:36 UTC from IEEE Xplore. Restrictions apply.

loot_vox10_1200 redandblack_vox10_1550

longdress_vox10_1300

46
42.5 44
—— g-pcc —— g-pcc —— g-pcc
20.0 —— ours 44 ~—+— ours 424 ~—+— ours
37.5 42 40
S 35.0 3 40 3 38
2 g =
£ 325 £ 38 £ 36+
g 2 2
30.0 36 34
275 34 321
25.0 32 30
0.0 05 10 15 20 25 0.0 01 02 03 04 05 00 02 04 06 08 10 12
bits per point (bpp) bits per point (bpp) bits per point (bpp)

Fig. 4. Rate-Distortion (RD) plots depicting the improvement due to TSF-Net3D over G-PCC (TMC13v21). The YUV-PSNR
(dB) are evaluated at 6 QPs={51, 46, 40, 34, 28, 22} over RAHT baseline following the MPEG-PCC Common-Test-Conditions.

redandblack_vox10_1550

queen_200

Ground»Trth

Ground-Truth G-PCC, YUV-psnr: 31.68 dB TSF-Net3D, YUV-psnr: 32.08 dB G-PCC, YUV-psnr: 34.98 dB TSF-Net3D, YUV-psnr: 35.70 dB

Fig. 5. Visual quality comparison on redandblack and queen point clouds before and after applying TSF-Net3D. The color of
redandblack and queen are compressed with RAHT(TMC13v21) at QP=51 and QP=46 respectively.

ing. Throughout all training phases, we set the batch size t
. throughout all framing phases, we set the batich I2€ 10 o ble 2. BD-Rate(%) results of CARNet and TSE-Net3D

2 compared against G-PCC(TMC13v14).
. YUV BD-Rate (%)
Table 1. BD-Rate(%) results of TSF-Net3D compared Point Cloud CARNet [14] | TSF-Net3D
against G-PCC(TMC13v21). Jongdress 9.05 1361
Point Cloud BD-Rate (%) oot 572 1761
Y v v YUv queen -13.78 -15.72
longdress_vox10-1300 -11.89 | 0.024 | 0.06 -9.40 redandblack 835 19.89
loot_vox10_1200 -15.67 | 0.32 0.24 | -12.86 soldier 251 1930
queen_0200 -2043 | -0.27 | -1.84 | -16.51 average 808 173
redandblack_vox10_1550 | -17.32 | 0.073 | -0.02 | -13.44
soldier_vox10-0690 -16.11 2.77 3.67 | -13.37
average -16.29 | 0.58 | 042 | -13.12

table, TSF-Net improves the RAHT baseline by -16.29%,
0.58%, 0.42%, and -13.12% BD-Rate gain in Y, U, V, and
YUYV color spaces, respectively. Although we observe a slight
loss in the U and V components due to joint YUV learning,
there is a significant performance gain in the combined YUV
space. While longdress_vox10_1300 shows the least improve-
ment with -9.40% YUV BD-Rate gain, queen_200 exhibits
In this section, we compare the compression artifact removal ~ the most improvement with -16.51% YUV BD-Rate gain.
performance of TSF-Net3D with the G-PCC (TMC13v21) The BD-Rate improvement is inversely correlated with the
RAHT baseline. The performance comparison in terms of color complexity of a point cloud.

BD-Rate gain is presented in Table 1. As evident from the Similarly, the improvement in color quality due to TSF-

4. EXPERIMENTAL RESULTS

4.1. Comparison with G-PCC

3338

Authorized licensed use limited to: University of Missouri Libraries. Downloaded on April 26,2025 at 12:56:36 UTC from IEEE Xplore. Restrictions apply.

Net3D over RAHT can be observed in Fig. 4 as a rate-
distortion (RD) plot (‘YUV-psnr’ vs ‘bits-per-point’). We
notice that TSF-Net3D consistently outperforms RAHT in
all 6 QP rates, with a slightly larger PSNR gap at higher
QPs. Likewise, the improvement in visual quality attained by
TSF-Net over RAHT is shown in Fig. 5. The figure indicates
the obvious presence of compression artifacts in the RAHT
reconstructed point cloud. The higher the QP value, the more
severe the compression artifacts. Nonetheless, TSF-Net3D
suppresses the compression artifacts to a large degree, as
seen in redandblack and queen. TSF-Net typically smooths
the artifacts to create a pleasing picture, as evident in the
case of queen. Nevertheless, it also preserves sharp edges, as
observed in the contour of the cloth in redandblack.

4.2. Comparison with Other Methods

We compare TSF-Net3D with CARNet [14], which is cur-
rently the state-of-the-art (SOTA) method for removing com-
pression artifacts in G-PCC coded point cloud attributes.
However, in the original work, the authors evaluate CARNet
with RAHT baselines of G-PCC (TMC13v14) at only the
largest 4 QPs. Therefore, for the purpose of comparison with
CARNet, we train TSF-Net3D with the THUman2.0 dataset
coded with G-PCC (TMC13v14) RAHT at the same 4 QPs.
Additionally, the authors of CARNet select the first frame of
8iVFBvV2 sequences included in the MPEG-PCC category 2
dataset as the test dataset. Thus, we also follow the same test
setup. Similarly, the authors of CARNet train the model on
Y, U, and V individually, as well as on YUV jointly. Since
we optimize TSF-Net3D jointly on YUV space, we compare
our method with the jointly optimized CARNet model.

The YUV BD-Rate result of CARNet and TSF-Net3D on
the five 8iVFBV2 point clouds is presented in Table 2. From
the average BD-Rate results, it is evident that TSF-Net signif-
icantly outperforms CARNet by almost -9% BD-Rate gain.
Interestingly, CARNet exhibits subpar performance even on
point clouds with less complex color structures, such as loot
and soldier. In contrast, TSF-Net demonstrates a very robust
BD-Rate performance across all types of point clouds.

5. CONCLUSION

Numerous handcrafted and learning-based in-loop and post-
processing filters have been successfully applied in video
standards such as VVC/HEVC. However, G-PCC lacks hand-
crafted in-loop filters capable of processing unorganized
points in a point cloud. This article introduces TSF-Net3D,
a learning-based post-processing filter for G-PCC designed
to mitigate compression artifacts in point cloud color. This
work extends TSF-Net, a successful application of a learned
in-loop for VVC, by utilizing sparse convolution (SparseC-
onv) to process sparsely structured points and extending its
capabilities to point clouds. Employing three-scale feature-

learning and channel-wise transformer-based cross-scale
feature-fusion, TSF-Net3D achieves a remarkable -13.12%
YUV BD-Rate gain against the G-PCC RAHT baselines.
Similarly, it surpasses previous state-of-the-art methods like
CARNet by a substantial margin.

6. REFERENCES

[1] Gary J. Sullivan, Jens-Rainer Ohm, Woo-Jin Han, and
Thomas Wiegand, “Overview of the high efficiency
video coding (hevc) standard,” IEEE Transactions on
Circuits and Systems for Video Technology, vol. 22, no.
12, pp. 1649-1668, 2012.

[2] Benjamin Bross, Ye-Kui Wang, Yan Ye, Shan Liu,
Jianle Chen, Gary J. Sullivan, and Jens-Rainer Ohm,
“Overview of the versatile video coding (vvc) standard
and its applications,” IEEE Transactions on Circuits and
Systems for Video Technology, vol. 31, no. 10, pp. 3736—
3764, 2021.

[3] MPEG, “G-pcc codec description v12,” ISO/IEC JTC
1/5C 29/WG 7 NO0O151, 2021.

[4] Euee S. Jang, Marius Preda, Khaled Mammou,
Alexis M. Tourapis, Jungsun Kim, Danillo B. Graziosi,
Sungryeul Rhyu, and Madhukar Budagavi, “Video-
based point-cloud-compression standard in mpeg: From
evidence collection to committee draft [standards in a
nutshell],” IEEE Signal Processing Magazine, vol. 36,
no. 3, pp. 118-123, 2019.

[5] D. Graziosi, O. Nakagami, S. Kuma, A. Zaghetto,
T. Suzuki, and A. Tabatabai, “An overview of ongo-
ing point cloud compression standardization activities:
video-based (v-pcc) and geometry-based (g-pcc),” AP-
SIPA Transactions on Signal and Information Process-
ing, vol. 9, pp. el3, 2020.

[6] Ricardo L. de Queiroz and Philip A. Chou, “Compres-
sion of 3d point clouds using a region-adaptive hierar-
chical transform,” IEEE Transactions on Image Pro-
cessing, vol. 25, no. 8, pp. 3947-3956, 2016.

[7] Birendra Kathariya, Vladyslav Zakharchenko, Zhu Li,
and Jianle Chen, ‘“Level-of-detail generation using
binary-tree for lifting scheme in lidar point cloud at-

tributes coding,” in 2019 Data Compression Conference
(DCC), 2019, pp. 580-580.

[8] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J
Guibas, “Pointnet++: Deep hierarchical feature learn-
ing on point sets in a metric space,” in Advances in Neu-
ral Information Processing Systems, 1. Guyon, U. Von
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vish-
wanathan, and R. Garnett, Eds. 2017, vol. 30, Curran
Associates, Inc.

3339

Authorized licensed use limited to: University of Missouri Libraries. Downloaded on April 26,2025 at 12:56:36 UTC from IEEE Xplore. Restrictions apply.

[9] Zhi-Hao Lin, Sheng-Yu Huang, and Yu-Chiang Frank IEEE International Conference on Multimedia and
Wang, “Convolution in the cloud: Learning deformable Expo (ICME), 2018, pp. 1-6.
kernels in 3d graph convolution networks for point cloud . .)
analysis,” in Proceedings of the IEEE/CVF Conference [19] Eyangelos Alex1ou,. Irene Viola, Tc?mas M Borges:
on Computer Vision and Pattern Recognition (CVPR), Tiago A Fonseca, Ricardo L De Queiroz, and Touradj

June 2020. Ebrahimi, “A comprehensive study of the rate-distortion

performance in mpeg point cloud compression,” AP-

[10] Baoyuan Liu, Min Wang, Hassan Foroosh, Marshall SIPA Transactions on Signal and Information Process-
Tappen, and Marianna Penksy, ‘“Sparse convolutional ing, vol. 8, pp. €27, 2019.

neural networks,” in 2015 IEEE Conference on Com-))
puter Vision and Pattern Recognition (CVPR), 2015, pp. ~ [20] Haotian Tang, Shang Yang, Zhijian Liu, Ke Hong,

206-814. Zhongming Yu, Xiuyu Li, Guohao Dai, Yu Wang, and
Song Han, “Torchsparse++: Efficient point cloud en-
[11] Chinthaka Dinesh, Gene Cheung, and Ivan V. Baji¢, “3d gine,” in 2023 IEEE/CVF Conference on Computer
point cloud color denoising using convex graph-signal Vision and Pattern Recognition Workshops (CVPRW),
smoothness priors,” in 2019 IEEE 21st International 2023, pp. 202-209.
Workshop on Multimedia Signal Processing (MMSP),
2019, pp. 1-6.

[12] Ryosuke Watanabe, Keisuke Nonaka, Eduardo Pavez,
Tatsuya Kobayashi, and Antonio Ortega, “Graph-based
point cloud color denoising with 3-dimensional patch-
based similarity,” in ICASSP 2023 - 2023 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP), 2023, pp. 1-5.

[13] Xihua Sheng, Li Li, Dong Liu, and Zhiwei Xiong, “At-
tribute artifacts removal for geometry-based point cloud
compression,” IEEE Transactions on Image Processing,
vol. 31, pp. 3399-3413, 2022.

[14] Dandan Ding, Junzhe Zhang, Jianqiang Wang, and Zhan
Ma, “Carnet:compression artifact reduction for point
cloud attribute,” 2022.

[15] Birendra Kathariya, Zhu Li, and Geert Van der Auwera,
“Joint pixel and frequency feature learning and fusion
via channel-wise transformer for high-efficiency learned
in-loop filter in vve,” IEEE Transactions on Circuits and
Systems for Video Technology, pp. 1-1, 2023.

[16] Tao Yu, Zerong Zheng, Kaiwen Guo, Pengpeng Liu,
Qionghai Dai, and Yebin Liu, “Function4d: Real-time
human volumetric capture from very sparse consumer
rgbd sensors,” in IEEE Conference on Computer Vision
and Pattern Recognition (CVPR2021), June 2021.

[17] Yuanhao Cai, Jing Lin, Zudi Lin, Haogian Wang, Yu-
lun Zhang, Hanspeter Pfister, Radu Timofte, and Luc
Van Gool, “Mst++: Multi-stage spectral-wise trans-
former for efficient spectral reconstruction,” in Proceed-
ings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR) Workshops, June 2022,
pp. 745-755.

[18] Birendra Kathariya, Li Li, Zhu Li, Jose Alvarez, and
Jianle Chen, “Scalable point cloud geometry cod-
ing with binary tree embedded quadtree,” in 2018

3340

Authorized licensed use limited to: University of Missouri Libraries. Downloaded on April 26,2025 at 12:56:36 UTC from IEEE Xplore. Restrictions apply.

