
TSF-NET3D: TSF-NET FOR 3D POINT CLOUD ATTRIBUTE COMPRESSION ARTIFACTS

REMOVAL

Birendra Kathariya∗, Zhu Li∗, Geert Van der Auwera†

∗University of Missouri-Kansas City, MO 64110 USA
†Qualcomm Technologies Inc., San Diego, CA 92121 USA

ABSTRACT

Transformer-based Spatial and Frequency-Decomposed Fea-

ture Fusion Network (TSF-Net) exhibited great potential as

a learned in-loop filter in Versatile Video Coding (VVC).

Utilizing a channel-wise transformer for pixel and frequency-

decomposed feature fusion in a multi-scale deep-learning

setup, TSF-Net achieved remarkable success in removing

video compression artifacts. In this article, considering the

potential of TSF-Net, we extend this work to the 3D do-

main of point clouds and propose a new framework called

TSF-Net3D. More specifically, we incorporate sparse convo-

lution (SparseConv) to process point clouds and implement

TSF-Net3D as a post-processing block in Geometry-based

Point Cloud Compression (G-PCC) to enhance the quality of

color attribute in the reconstructed frame. Implementation-

wise, TSF-Net3D differs from TSF-Net in two fronts: (1)

TSF-Net3D does not utilize frequency-decomposed infor-

mation but rather pixel information only; (2) TSF-Net3D

extends point cloud processing in three scales with two-level

feature fusion, unlike TSF-Net, which processes features at

only two scales with single-level feature fusion. We evaluate

TSF-Net3D on the 8iVFBv2 dataset, and our experimental

results demonstrate that our proposed method achieves a sig-

nificant YUV Bjøntegaard Delta (BD) - bitrate saving of up

to −13.12% over the G-PCC(TMC13v21) RAHT baseline

while also outperforming other state-of-the-art methods.

Index Terms— point cloud, compression artifact, post-

processing filter, sparse-convolution, multi-scale feature

1. INTRODUCTION

Video coding standards, such as High Efficiency Video Cod-

ing (HEVC) [1] and Versatile Video Coding (VVC) [2], have

played a crucial role in enabling the various video applica-

tions we experience today. Similar efforts have also been

made by various researchers and technology groups to de-

velop efficient point cloud compression technology. One such

effort, led by the MPEG-PCC group, proposed two solutions:

Geometry-based Point Cloud Compression (G-PCC) [3] and

This work is accomplished in collaboration with Qualcomm and partially

supported by the NSF under grant CNS-2148382.

Video-based Point Cloud Compression (V-PCC) [4], as PCC

standards [5]. G-PCC was initially developed to compress

static and LiDAR point clouds. Nonetheless, it has now been

extended to compress dynamic point clouds as well. V-PCC

is developed to compress dynamic point clouds only. The

fundamental difference between G-PCC and V-PCC is that

G-PCC processes 3D geometry and its attributes in the 3D do-

main only and compresses them into a bitstream, whereas V-

PCC transforms 3D geometry and its attributes into 2D videos

and utilizes highly optimized video compression technology

like HEVC/VVC to compress them into a bitstream. At the

decoder, V-PCC transforms the 2D videos back to 3D geom-

etry and attributes.

G-PCC encodes geometry independently from attributes,

where three separate methods: octree, predictive geometry,

and trisoup, are introduced for this purpose. In contrast,

attribute coding utilizes geometry-based tree structures to

hierarchically predict and compute attribute residue. Cur-

rently, G-PCC implements two attribute compression meth-

ods: Region-Adaptive Hierarchical Transform (RAHT) [6]

and Hierarchical Prediction as Lifting Transform (PredLift)

[7]. In lossy attribute compression, due to transform and

residue quantization, G-PCC often introduces compression

artifacts in the attributes of the reconstructed point cloud. In

video codecs such as HEVC and VVC, in-loop filters are em-

ployed to correct compression artifacts present in the recon-

structed frame. Similalry, numerous learning-based in-loop

filters and post-processing methods have been developed for

HEVC/VVC. However, implementing hand-crafted in-loop

filters is non-trivial in PCC codecs due to the point irregular-

ity in the point cloud. However, researchers are currently

exploring technologies such as PointNet/PointNet++[8],

Graph-Convolution-Network(GCN) [9], Sparse-Convolution-

Network (SCN) [10] to develop in-loop and post-processing

filters to suppress compression artifacts in both G-PCC and

V-PCC.

There exist a few works that applies traditional methods

to denoise point cloud color attribute. For e.g. [11] utilizes

graph total variation (GTV) prior to formulate point cloud

color denoising as maximum a posteriori (MAP) estimation

problem. Then the cost function is minimized using alter-

nating direction method of multipliers (ADMM) and proxi-
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mal gradient descent to show a satisfactory denoising perfor-

mance. Similarly, [12] also employs graph signal process-

ing to denoise the point cloud color. However, it utilizes

3D patch-based similarity to construct the graph where sim-

ilarity is calculated with small 3D patches around the con-

nected points. Learning-based methods such as [13] also uti-

lizes graph-based method, however, to remove the compres-

sion artifacts in the G-PCC coded color. This work proposed

Multi-Scale Graph Attention Network (MS-GAT) which uses

Chebyshev graph convolution to extract features at multiple

scales and weighted graph attention layer to pay attention on

points with more compression artifacts. Likeiwse, [14] pro-

posed Compression Artifact Reduction Network (CARNet)

to reduce compression artifacts on G-PCC coded point cloud

color. CARNet first generates multiple Most-Probable Sam-

ple Offsets (MPSOs) as potential compression distortion ap-

proximations, and then linearly weights them for artifact mit-

igation.

In this work, we propose TSF-Net3D, a multi-scale sparse

feature learning and fusion method, to reduce compression

artifacts in G-PCC coded attributes, specifically point cloud

color. TSF-Net3D is an extension of Transformer-based Spa-

tial and Frequency-Decomposed Feature Fusion Network

(TSF-Net) [15] into the 3D point cloud domain. TSF-Net was

introduced as a learned in-loop filter for VVC and demon-

strated its effectiveness in reducing compression artifacts in

images. The method relies on multi-scale feature learning on

pixel and frequency-decomposed information. It implements

a naive convolution-based feature extractor but an advanced

channel-wise transformer-based feature aggregator to fuse

both feature types at two different scales. Given the remark-

able performance of TSF-Net, we adapt the implementation

into the point cloud domain with two distinct differences:

(1) With TSF-Net3D, we extend feature learning to three

scales with two-level feature fusion. (2) To simplify feature

learning, we design TSF-Net3D to learn only in the pixel

space.

We summarize the contributions of this article in the fol-

lowing points.

• We propose TSF-Net3D, a multi-scale sparse feature

learning approach with state-of-the-art performance

in suppressing compression artifact present in G-PCC

coded color attribute.

• We allow feature learning in TSF-Net3D at three scales,

thereby exploiting a larger receptive field. This enables

us to design a wider but shallower network, offering

inherent advantage in inference speed.

• We train TSF-Net3D with the THUman2.0 dataset

[16] and test it on five 8iVFBv2 point clouds in-

cluded in the MPEG-PCC category 1. We utilize

G-PCC(TMC13v21) reference software and perform

a comprehensive evaluation on RAHT baselines.

2. PROPOSED METHOD

Our proposed TSF-Net3D is implemented as a post-processing

filter in G-PCC with the goal of reducing compression arti-

facts in the color attribute and thereby enhancing the over-

all quality of the reconstructed point cloud. TSF-Net3D

is based on SparseConv, which operates on a sparse-tensor

T = {C,F} where C and F represent coordinates and fea-

tures, respectively. Therefore, the reconstructed point cloud

P = {xi, yi}, i = {1, 2, ..., N} with N points, is represented

as a sparse-tensor where coordinates C = xi are the XYZ

positions and features F = yi are the YUV color components.

2.1. Description of TSF-Net3D

The architecture of TSF-Net3D is shown in Fig. 1(a). TSF-

Net3D is designed to process the input point cloud at three

scales: the original scale (1×), two-times downscaled (2×↓),

and four-times downscaled (4×↓) denoted as T1×, T2×↓, and

T4×↓ respectively. The input point cloud T1× is first pro-

cessed with a head, which expands the 3-channel YUV-color

to a d = 16 channel-wide feature. The output is then pro-

cessed with two successive head↓s, each time expanding

the feature channel by a factor of two. The head consists

of “conv→BN→ReLU→conv”, as shown in Fig. 2(a),

while head↓ consists of “conv↓→BN→ReLU→conv”, as

shown in Fig. 2(b). The presence of a stride s = 2 sparse-

convolution layer (“conv↓”) in the head↓ downscales the

input sparse-tensor by a factor of two. Therefore, the out-

put from the head is a sparse tensor T1× = {C1×, F1× |
F1× ∈ R

N×16} at the original point cloud scale. Similarly,

the output from the first and second head↓s are two-times

T2×↓ = {C2×↓, F2×↓ | F2×↓ ∈ R
N1×32} and four-times

T4×↓ = {C4×↓, F4×↓ | F4×↓ ∈ R
N2×64} down-scaled

sparse-tensors, respectively, where N1 and N2 are the num-

bers of points at two- and four-times downscale.

Next, the sparse-tensors T1×, T2×↓, and T4×↓ are fur-

ther processed by B instances of the 3-Level Residual Fu-

sion Block (RFB-3L) successively. The RFB-3L takes these

sparse-tensors at three-scales as inputs, extracts deeper fea-

tures separately, and gradually aggregates the features from

lower scale to higher scale. The outputs are again the three

sparse-tensors at the same three-scales but with deeper fea-

tures. Once the sparse-tensors are processed by B instances

of RFB-3L blocks, the T1× output from the last RFB-3L

block is added to the output from the head as a feature-level

residual connection. This summed output is again processed

with a tail, which has the same layer configuration as the

head, except for the last “conv” layer, which reduces the

channel size from 16 down to 3. This output is then added

again with the input point cloud as a global-level residual

connection to generate the final clean output.
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Fig. 1. The overall architecture of our proposed TSF-Net3D.
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Fig. 2. The components of TSF-Net3D.

2.2. 3-Level Residual Fusion Block (RFB-3L)

The RFB-3L is the primary component of TSF-Net3D, as

illustrated in Fig. 1(b). It extracts deeper features at all the

three scales of sparse-tensors T1×, T2×↓, and T4×↓ through

separate “conv→BN→ReLU→conv” blocks. The output

feature F4×↓ ∈ T4×↓ is first fused into F2×↓ ∈ T2×↓ through

a fusion module. The fused output feature F2×↓ ∈ T2×↓

is then fused again into F1× ∈ T1× through another fusion

module. The output at all three scales is now then added to

their respective inputs as a residual connection to form the

final outputs of RFB-3L. These residual connections allow

TSF-Net3D to form a deeper network by stacking multiple

RFB-3L blocks, much like the ResNet architecture.

2.2.1. Fusion Module

The fusion module takes sparse-tensors at two different scales

and fuses the feature at lower scale onto the higher scale as

depicted in the Fig. 2(c). Let Th = {Ch, Fh | Fh ∈ R
M×d}

and Tl = {Cl, Fl | Fl ∈ R
M1×2d} are the sparse-tensors at

these two scales, where M and M1 represent the numbers

of points, and d is the channel-size. Tl is first processed

with a transposed-convolution with stride s = 2 (“conv↑”)

which up-scales Tl by a factor of 2 and reduces the channel-

size from 2d to d. Since, the Th and Tl are now at the

same geometric scale, the features are concatenated to form

a sparse-tensor Tc = {Ch, Fc | Fc ∈ R
M×2d}, where

Fc = (Fh©Fl) and © implies concatenation. Then Tc is

processed with a “conv→BN→ReLU” blocks and output

feature Fc ∈ R
M×2d is provided to the channel-wise trans-

former module (Ch-TF) for feature aggregation. Ch-TF

fuses the feature by applying the self-attention along the

channel. The Tc is now assigned the fused feature Ff as

Tc = {Ch, Ff | Ff ∈ R
M×d}. Lastly, the input Th is added

back to Tc as a residual connection to form the final output of

the fusion module.

2.2.2. Channel-wise Feature Fusion

The original TSF-Net [15] work utilizes Spectral-wise Multi-

Head Self-Attention (SMSA) layer from [17] and redesigns

it as a channel-wise feature fusion module. TSF-Net3D fol-

lows the same design from the TSF-Net, except the average-

pooling operation is avoided before computing key and query

and convolution layers are replaced with linear layers while

computing position-embedding. This channel-wise trans-

former (Ch-TF) as feature-fusion layer is illustrated in Fig.

3.

In Ch-TF, the input feature Fc ∈ R
M×Df , where Df =

2d, is first linearly projected into key K ∈ R
M×Df , query

Q ∈ R
M×Df and value V ∈ R

M×Df using 3 linear layers

with weights W q , W k and W v ∈ R
Df×Df respectively. Now

the Q, K and V is sub-divided equally into h heads as Qi, Ki
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Fig. 3. Ch-TF: Channel-wise Transformer.

and Vi, where i = 1, 2, ..., h. For each head, self-attention

is computed according to equation (1a), and the fused feature

Hi is computed following equation (1b).

Ai = softmax(σiK
T
i Qi), Ai ∈ R

(Df/h)×(Df/h) (1a)

Hi = ViAi, Hi ∈ R
M×(Df/h) (1b)

where σi ∈ R
1 is a learnable parameter employed to

adapt self-attention Ai. The fused feature Hi from all h

heads are concatenated and linearly projected into projection-

embedding Fpr = (concat(Hi))W,Fpr ∈ R
M×D using a

linear layer (W ), where D = d. Similarly, input feature

Fc is processed with a “Linear→GeLU→Linear” block to

generate position-embedding Fpo ∈ R
M×D. The final output

from Ch-TF is calculated as Ff = Fpr + Fpo, Ff ∈ R
M×D.

3. IMPLEMENTATION DETAILS

3.1. Training/Validation Dataset

We utilize THUman2.0 [16] to create the training and valida-

tion datasets. This dataset contains 526 high-quality full-body

human mesh data with an 8k texture map. Initially, we convert

the mesh to a point cloud by sampling 5 million points from

the mesh surface. The point cloud is then voxelized to 10 bits,

resulting in roughly one million points per point cloud. The

color values of each point in the newly created 10-bit vox-

elized point cloud are assigned based on the nearest point in

the original point cloud.

Next, we use the G-PCC (TMC13v21) reference soft-

ware to encode all 526 point clouds with the octree-raht

coding-mode and lossless-geometry-lossy-attribute coding-

condition, strictly following the MPEG-PCC common test

conditions (CTC). This results in a point cloud color pro-

cessed at 6 quantization-parameter (QP) rate points, includ-

ing 22, 28, 34, 40, 46, and 51. We then utilize a binary

tree [18] of depth 4 to divide a point cloud into 16 leaf-node

patches, each with approximately 62,500 points. This results

in a total of 526 × 16 = 8416 point cloud patches for each

QP rate point. The same depth binary tree is also applied

to the original 10-bit point cloud to create the ground-truth

patches. We utilize patches from the first 511 point clouds

(511× 16 = 8176) to train the network, while the remaining

(15× 16 = 240) patches are used for network validation.

3.2. Test Dataset

We select five point clouds from the 8iVFBv2 dataset (long-

dress, loot, queen, redandblack, and soldier), which are

included in the mpeg-pcc category-1 [19], as the test dataset.

These point clouds are all 10-bit voxelized. We follow the

same coding conditions mentioned in section 3.1 to en-

code the test dataset at 6 QP rate points using the G-PCC

(TMC13v21) reference software. Subsequently, we utilize

the encoded test point clouds to evaluate the TSF-Net3D.

3.3. Network Training

In this work, we implement TSF-Net3D in the PyTorch-based

point cloud processing framework called TorchSparse [20].

The network is optimized to jointly improve the YUV qual-

ity. We construct TSF-Net3D by stacking B = 8 instances

of RFB-3L blocks, with each RFB-3L configured to have 16,

32, and 64 channel sizes at 1×, 2×↓, and 4×↓, scales, respec-

tively. All convolution operations are carried out with a kernel

size of 3 × 3 × 3. We use h = 2 heads in the channel-wise

transformer layer. Similarly, we adopt the Adam optimizer

with β = (0.9, 0.999) and L1 loss to optimize the network

parameters. However, the L1 loss is computed for Y, U, and

V components individually as LY , LU , and LV , respectively.

Then, the final loss Ljoint is obtained using equation 2.

Ljoint =
6

8
LY +

1

8
LU +

1

8
LV (2)

We train a total of 6 models, one for each QP. Initially,

we train a model for the highest QP, i.e., QP = 51. The

model is trained for 50 epochs, with the learning rate initial-

ized at 10−4 and decreased to 10−6 during training using a

cosine-annealing learning rate scheduler. Subsequently, the

models for QP = {46, 40, 34} are initialized from the pre-

trained weights of the model at QP = 51 and fine-tuned for

30 epochs. The initial learning rates for these three models

are set to 0.5 × 10−4 and decreased to 10−6 during training.

Finally, the models for QP = {28, 22} are trained by initial-

izing their weights from the pre-trained model at QP = 34.

These two models are fine-tuned for 30 epochs, with an initial

learning rate of 10−5 while decreasing to 10−6 during train-

3337

Authorized licensed use limited to: University of Missouri Libraries. Downloaded on April 26,2025 at 12:56:36 UTC from IEEE Xplore.  Restrictions apply. 





Net3D over RAHT can be observed in Fig. 4 as a rate-

distortion (RD) plot (‘YUV-psnr’ vs ‘bits-per-point’). We

notice that TSF-Net3D consistently outperforms RAHT in

all 6 QP rates, with a slightly larger PSNR gap at higher

QPs. Likewise, the improvement in visual quality attained by

TSF-Net over RAHT is shown in Fig. 5. The figure indicates

the obvious presence of compression artifacts in the RAHT

reconstructed point cloud. The higher the QP value, the more

severe the compression artifacts. Nonetheless, TSF-Net3D

suppresses the compression artifacts to a large degree, as

seen in redandblack and queen. TSF-Net typically smooths

the artifacts to create a pleasing picture, as evident in the

case of queen. Nevertheless, it also preserves sharp edges, as

observed in the contour of the cloth in redandblack.

4.2. Comparison with Other Methods

We compare TSF-Net3D with CARNet [14], which is cur-

rently the state-of-the-art (SOTA) method for removing com-

pression artifacts in G-PCC coded point cloud attributes.

However, in the original work, the authors evaluate CARNet

with RAHT baselines of G-PCC (TMC13v14) at only the

largest 4 QPs. Therefore, for the purpose of comparison with

CARNet, we train TSF-Net3D with the THUman2.0 dataset

coded with G-PCC (TMC13v14) RAHT at the same 4 QPs.

Additionally, the authors of CARNet select the first frame of

8iVFBv2 sequences included in the MPEG-PCC category 2

dataset as the test dataset. Thus, we also follow the same test

setup. Similarly, the authors of CARNet train the model on

Y, U, and V individually, as well as on YUV jointly. Since

we optimize TSF-Net3D jointly on YUV space, we compare

our method with the jointly optimized CARNet model.

The YUV BD-Rate result of CARNet and TSF-Net3D on

the five 8iVFBv2 point clouds is presented in Table 2. From

the average BD-Rate results, it is evident that TSF-Net signif-

icantly outperforms CARNet by almost -9% BD-Rate gain.

Interestingly, CARNet exhibits subpar performance even on

point clouds with less complex color structures, such as loot

and soldier. In contrast, TSF-Net demonstrates a very robust

BD-Rate performance across all types of point clouds.

5. CONCLUSION

Numerous handcrafted and learning-based in-loop and post-

processing filters have been successfully applied in video

standards such as VVC/HEVC. However, G-PCC lacks hand-

crafted in-loop filters capable of processing unorganized

points in a point cloud. This article introduces TSF-Net3D,

a learning-based post-processing filter for G-PCC designed

to mitigate compression artifacts in point cloud color. This

work extends TSF-Net, a successful application of a learned

in-loop for VVC, by utilizing sparse convolution (SparseC-

onv) to process sparsely structured points and extending its

capabilities to point clouds. Employing three-scale feature-

learning and channel-wise transformer-based cross-scale

feature-fusion, TSF-Net3D achieves a remarkable -13.12%

YUV BD-Rate gain against the G-PCC RAHT baselines.

Similarly, it surpasses previous state-of-the-art methods like

CARNet by a substantial margin.
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