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ABSTRACT

A point cloud (PC) is a popular 3D data representation that

poses challenges due to its size, dimensionality, and unstruc-

tured nature. This paper introduces the Residual Neural Ra-

diance Field for Point Cloud Attribute Coding (ResNeRF-

PCAC), a novel approach for point cloud attribute compres-

sion. ResNeRF-PCAC combines sparse convolutions with

neural radiance fields, to create a highly efficient attribute

coding solution. It initially downscales the point cloud to gen-

erate a coarse thumbnail point cloud and encodes it using the

G-PCC attribute encoder. The thumbnail PC is upsampled

using a super-resolution network to generate a recolored PC.

Color attribute residuals are then computed between the origi-

nal and the super-resolved recolored PC. A ResNeRF network

is employed to predict these residuals. The trained ResNeRF

weights are compressed into a bitstream. The thumbnail bit-

stream and the compressed model weights are then transmit-

ted to the decoder. Sparse convolution-based super-resolving

network weights are shared and common across all content

and need not to be signaled. Experiments on the MPEG-8i

dataset demonstrate superior performance in terms of recon-

struction quality and compression ratio compared to G-PCC-

RAHT and G-PCC-Predlift for both v14 and v21.

Index Terms— 3D Point Cloud, Attributes Compression,

Deep Learning, NeRF, Model Compression

1. INTRODUCTION

Point cloud is a collection of 3D data points that represent

the shape and position of objects in a real space. Each data

point has its own (x, y, z) geometry coordinates and their

associated attributes such as color (r, g, b), reflectance, etc.

3D point clouds are widely used in many fields such as

augmented and virtual reality AR/VR, gaming, autonomous

driving, animations, and robotics. The rapid progress of 3D

sensing and capturing technology has enabled applications

like immersive video technology that require dense point

clouds suitable for human viewing. These point clouds often

contain millions of points per frame [1] that require efficient
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compression schemes for storage and transmission. Point

cloud compression includes geometry compression as well as

attribute compression. In this paper, we propose a point cloud

attribute encoding scheme. Traditionally, different well-

known approaches are used for point cloud attributes com-

pression which is based on rules-based transformation such

as Region-Adaptive Hierarchical Transform (RAHT) [2],

hierarchical nearest neighbor prediction based Lifting Trans-

form [3], and Graph Fourier Transform (GFT) [4]. Due to its

high efficiency, RAHT is adopted by MPEG G-PCC. Zhang

et al. [5] introduced a geometric coordinate-based graph and

suggested compressing point cloud attributes with a graph

transform but this method is not well optimized and leads to a

subgraph issue. Queiroz et al. [6] developed an RAHT-based

method for attribute compression and employed hierarchical

subband transform to compress the point cloud attributes.

Sheng et al. [7] proposed the deep learning-based end-to-end

framework for point cloud attribute compression and utilized

an autoencoder to encode and decode the point cloud at-

tributes using geometry but the performance of this approach

is worse compared to G-PCC with a significant loss. Fang

et al. [8] proposed the learning-based attributes compression

method called 3DAC that converts attributes to transform

coefficients and uses a deep entropy model to predict the

probabilities of these coefficients and generate an attributes

bitstream but they only improve RAHT rather than achieve

transform based compression of attributes. Quach et al. [9]

map the point cloud attributes to a 2D grid and perform com-

pression to generate the compressed bitstream. However,

the efficiency of coding suffers and the generalization of the

model is very difficult and also for individual samples, the

mapping function is overfitted. Liu et al. [10] proposed a

hybrid compression framework and used virtual and adaptive

sampling-based sparse representation strategy, discrete cosine

transform, and k-d tree decomposition for color attributes

compression. Wang et al. [11] proposed a sparse tensor-based

variational autoencoder (VAE) framework for point cloud

attribute compression. Rodrigo et al. [12] developed a nor-

malizing flow using the sparse convolutions-based solution

for attribute compression but at high bitrates the perfor-

mance of this method is worse compared to the latest G-PCC.

Neural Radiance Field (NeRF) [13] has gained tremendous
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Table 1: ResNeRF Experimental Results.

Point Cloud

Sequence

Gaussian

Dimension(GD)

ResNeRF No. of

Parameters

Q

(Bit)

Bitstream Size (Bytes)
BPP

Y-PSNR

(Avg.)Layers Nodes Thumbnail-R1 Weights-R2

Soldier

128 3 32 5283 10

178476

4671 0.093 31.28

128 3 128 33411 10 30671 0.142 32.72

128 6 128 82947 10 82603 0.239 34.93

256 6 256 329731 10 337631 0.720 40.17

RedandBlack

128 3 32 5283 10

148423

4218 0.108 34.20

256 6 128 99331 9 84051 0.165 35.17

512 8 128 165123 9 135301 0.201 35.64

512 8 256 526851 10 520927 0.475 37.99

Loot

128 3 32 5283 7

62952

1311 0.0412 32.86

128 3 32 5283 10 2230 0.0418 33.08

256 6 128 99331 8 74703 0.088 34.73

256 6 128 99331 9 87405 0.096 35.04

Longdress

128 6 32 8451 10

349201

8012 0.231 28.76

512 6 64 49667 10 46258 0.280 29.12

512 6 128 132099 10 159354 0.319 29.49

512 8 128 165123 10 161407 0.425 30.01

are shown in Fig. 4. We can see that, our system per-

formed better than G-PCC-RAHT-v21, G-PCC-Predlift-v21,

G-PCC-RAHT-v14 and G-PCC-Predlift-v14. We visualize

the reconstructed point cloud and compare it with other meth-

ods in Fig. 5. Our system improves the reconstruction quality

of the point cloud with more smoothness, clarity, and the

closest look toward the ground truth.

Table 2: BD-PSNR-Y(dB) and BD-Rate-Y(%) performance

against other methods.

Point

Cloud

Ours against

GPCC-RAHT-v21

Ours against

GPCC-Predlift-v21

Ours against

GPCC-RAHT-v14

Ours against

GPCC-Predlift-v14

BD-PSNR-Y BD-Rate-Y BD-PSNR-Y BD-Rate-Y BD-PSNR-Y BD-Rate-Y BD-PSNR-Y BD-Rate-Y

Soldier 0.65 -14.65 0.87 -20.45 1.10 -23.14 0.89 -20.88

Red&Black 0.20 -5.75 0.13 -3.28 0.41 -11.24 0.15 -3.93

Longdress -0.16 2.46 -0.10 4.08 -0.01 -0.30 -0.09 3.79

Loot 1.15 -2.49 1.06 1.39 1.38 -10.81 1.04 2.28

Average +0.45 dB -5.10 % +0.49 dB -4.56 % +0.72 dB -11.37 % +0.49 dB -4.68 %

Table 3: BD-PSNR-YUV(dB) and BD-Rate-YUV(%) per-

formance against other methods.

Point

Cloud

Ours against

GPCC-RAHT-v21

Ours against

GPCC-Predlift-v21

Ours against

GPCC-RAHT-v14

Ours against

GPCC-Predlift-v14

BD-PSNR-YUV BD-Rate-YUV BD-PSNR-YUV BD-Rate-YUV BD-PSNR-YUV BD-Rate-YUV BD-PSNR-YUV BD-Rate-YUV

Soldier 0.42 -12.77 0.32 -9.03 1.08 -30.30 0.34 -9.78

Red&Black -0.07 -25.01 -0.22 -20.65 0.41 -35.43 0.06 -27.83

Longdress -0.55 23.28 -0.57 24.30 0.01 2.41 -0.55 23.75

Loot 8.62 -45.06 8.59 -50.95 9.26 -59.56 8.56 -49.97

Average +2.105 dB -14.89 % +2.03 dB -14.08 % +2.69 dB -30.72 % +2.102 dB -15.95 %

Our method BD-PSNR-Y and BD-rate-Y performance

for all the sequences against the other methods are given in

Table 2. We get an average 5.10% BD-rate reduction against

G-PCC-RAHT-v21, 4.56% BD-rate reduction against G-

PCC-Predlift-v21, 11.37% BD-rate reduction against GPCC-

RAHT-v14 and 4.68% BD-rate reduction against G-PCC-

predlift-v14. We gain 0.45dB improvement against GPCC-

RAHT-v21, 0.49dB improvement against G-PCC-Predlift-

v21, 0.72dB improvement against G-PCC-RAHT-v14, and

0.49dB improvement against G-PCC-predlift-v14. Our

method BD-PSNR-YUV and BD-rate-YUV performance

for all the sequences against the competitors are given in Ta-

ble 3. We get an average 14.89% BD-rate reduction against

G-PCC-RAHT-v21, 14.08% BD-rate reduction against G-

PCC-Predlift-v21, 30.72% BD-rate reduction against G-PCC-

RAHT-v14 and 15.95% BD-rate reduction against G-PCC-

predlift-v14. We gain 2.105dB improvement against G-PCC-

RAHT-v21, 2.03dB improvement against G-PCC-Predlift-

v21, 2.69dB improvement against G-PCC-RAHT-v14, and

2.102dB improvement against G-PCC-predlift-v14.

4. ABLATION STUDY

We examine the performance of our system with different

factors. A large number of layers and nodes in ResNeRF

improve the PSNR and reconstruction quality of the point

cloud. When we decreased the number of layers and nodes

in ResNeRF, the training performance was poor. Gaussian

mapping plays a very important role in this research. Using

Gaussian mapping provides a significant gain in performance.

We also tried to directly learn the attributes RGB color us-

ing ResNeRF but the performance of residuals learning using

ReNeRF was outstanding and better that is why we consider

the residual learning approach/results.

5. CONCLUSION

We proposed a point cloud attributes compression system

called ResNeRF-PCAC. We downscale the original point

cloud and generate a thumbnail PC. The thumbnail PC is

upsampled using a super-resolution network to generate a re-

colored PC. We calculate RGB attribute residuals between the

original and super-resolved recolored point clouds and learn

the residuals using ResNeRF. We transmit the thumbnail PC

and model weights bitstream to the decoder. Experimental

results show that our proposed system performed better than

the competitor’s.
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