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ABSTRACT

A point cloud (PC) is a popular 3D data representation that
poses challenges due to its size, dimensionality, and unstruc-
tured nature. This paper introduces the Residual Neural Ra-
diance Field for Point Cloud Attribute Coding (ResNeRF-
PCAC), a novel approach for point cloud attribute compres-
sion. ResNeRF-PCAC combines sparse convolutions with
neural radiance fields, to create a highly efficient attribute
coding solution. It initially downscales the point cloud to gen-
erate a coarse thumbnail point cloud and encodes it using the
G-PCC attribute encoder. The thumbnail PC is upsampled
using a super-resolution network to generate a recolored PC.
Color attribute residuals are then computed between the origi-
nal and the super-resolved recolored PC. A ResNeRF network
is employed to predict these residuals. The trained ResNeRF
weights are compressed into a bitstream. The thumbnail bit-
stream and the compressed model weights are then transmit-
ted to the decoder. Sparse convolution-based super-resolving
network weights are shared and common across all content
and need not to be signaled. Experiments on the MPEG-8i
dataset demonstrate superior performance in terms of recon-
struction quality and compression ratio compared to G-PCC-
RAHT and G-PCC-Predlift for both v14 and v21.

Index Terms— 3D Point Cloud, Attributes Compression,
Deep Learning, NeRF, Model Compression

1. INTRODUCTION

Point cloud is a collection of 3D data points that represent
the shape and position of objects in a real space. Each data
point has its own (z,y, z) geometry coordinates and their
associated attributes such as color (r, g, b), reflectance, etc.
3D point clouds are widely used in many fields such as
augmented and virtual reality AR/VR, gaming, autonomous
driving, animations, and robotics. The rapid progress of 3D
sensing and capturing technology has enabled applications
like immersive video technology that require dense point
clouds suitable for human viewing. These point clouds often
contain millions of points per frame [1] that require efficient
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compression schemes for storage and transmission. Point
cloud compression includes geometry compression as well as
attribute compression. In this paper, we propose a point cloud
attribute encoding scheme. Traditionally, different well-
known approaches are used for point cloud attributes com-
pression which is based on rules-based transformation such
as Region-Adaptive Hierarchical Transform (RAHT) [2],
hierarchical nearest neighbor prediction based Lifting Trans-
form [3], and Graph Fourier Transform (GFT) [4]. Due to its
high efficiency, RAHT is adopted by MPEG G-PCC. Zhang
et al. [5] introduced a geometric coordinate-based graph and
suggested compressing point cloud attributes with a graph
transform but this method is not well optimized and leads to a
subgraph issue. Queiroz et al. [6] developed an RAHT-based
method for attribute compression and employed hierarchical
subband transform to compress the point cloud attributes.
Sheng et al. [7] proposed the deep learning-based end-to-end
framework for point cloud attribute compression and utilized
an autoencoder to encode and decode the point cloud at-
tributes using geometry but the performance of this approach
is worse compared to G-PCC with a significant loss. Fang
et al. [8] proposed the learning-based attributes compression
method called 3DAC that converts attributes to transform
coefficients and uses a deep entropy model to predict the
probabilities of these coefficients and generate an attributes
bitstream but they only improve RAHT rather than achieve
transform based compression of attributes. Quach et al. [9]
map the point cloud attributes to a 2D grid and perform com-
pression to generate the compressed bitstream. However,
the efficiency of coding suffers and the generalization of the
model is very difficult and also for individual samples, the
mapping function is overfitted. Liu et al. [10] proposed a
hybrid compression framework and used virtual and adaptive
sampling-based sparse representation strategy, discrete cosine
transform, and k-d tree decomposition for color attributes
compression. Wang et al. [ | 1] proposed a sparse tensor-based
variational autoencoder (VAE) framework for point cloud
attribute compression. Rodrigo et al. [12] developed a nor-
malizing flow using the sparse convolutions-based solution
for attribute compression but at high bitrates the perfor-
mance of this method is worse compared to the latest G-PCC.
Neural Radiance Field (NeRF) [13] has gained tremendous
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Fig. 1: Overall architecture and workflow of proposed ResNeRF-PCAC system including Encoder and Decoder for 3D point
cloud attributes compression. Q is Quantization and DQ is Dequantization. - sign is used for subtraction in the residual calcu-

lation block. X,Y,Z are point cloud geometry coordinates and T i

popularity in the field of computer vision. Mildenhall et
al. [14] proposed a NeRF-based method for view synthesis
and representing scenes. Kerbl et al. [15] used 3D Gaussian
splatting for real-time radiance field rendering and high-
quality view synthesis. Muller et al. [16] presented an instant
neural graphics primitives-based solution using multireso-
lution hash encoding, a hash grid, and an occupancy grid
to achieve high-quality neural graphics primitives. Wei et
al. [17] proposed a super-resolution neural operator solution
which is a deep operator learning framework used to improve
the quality of low-resolution images to high-resolution im-
ages. Lu et al. [18] proposed a deep learning-based hybrid
model in which they used Transformer and CNN for image
super-resolution. Damodaran et al. [19] proposed an image
decoder called RQAT-INR, which is based on Implicit Neural
Representation(INR), in which they compressed the neural
network weights. Based on all the aforementioned points and
inspired by NeRF, we built our proposed novel system for
point cloud attributes compression. In this paper, we propose
a novel deep learning-based system for point cloud attributes
compression termed ResNeRF-PCAC. The proposed system
offers the following major contributions toward the point
cloud attributes compression:

* We propose a deep learning-based system for point
cloud attributes compression which will encode and de-
code the point cloud attributes using residual learning-
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s point cloud frame time index. ¢ represents concatenation.

based NeRF called ResNeRF and sparse-conv based
super-resolving network.

We apply quantization to downscale the original point
cloud and then encode the downscaled point cloud
using G-PCC attribute encoder to generate a coarse
thumbnail point cloud. A sparse convolution based
super-resolution network is employed to upscale the
thumbnail PC to generate the super-resolved recolored
point cloud.

A ResNeRF network is employed to predict the RGB
residuals between the original and the recolored point
cloud. The trained ResNeRF weights are compressed
into a bitstream.

Finally, the ResNeRF weight bitstream and the thumb-
nail PC bitstream transmitted to the decoder. Sparse
convolution based super-resolving network weights are
shared and common across all content and need not to
be signaled.

2. PROPOSED RESNERF-PCAC SYSTEM

In this section, we describe the proposed system “ResNeRF-
PCAC” for point cloud attribute compression which is de-
picted in Fig. 1. The focus of this work is on point cloud
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attribute compression and the geometry is assumed to be loss-
lessly transmitted separately and available at the decoder.

2.1. ResNeRF-PCAC Encoder

The overall workflow of the proposed Encoder is illustrated
in the top of Fig. 1.

2.1.1. Coarse Thumbnail Point Cloud

Given a point cloud with geometry coordinates X = {z1,xa,
., xn}, withz; € R? and color attributes Y = {y1,y2, ..., yn
}, withy; € R3. NV is the total number of points in the original
point cloud. We first apply M-bit quantization on geometry to
downscale the original point cloud and generate the quantized
point cloud with geometry coordinates X = {1, %, ..., %, },
with #; € R? and color attributes Y = {¥1, Y2, -y Yn }, With
%; € R3. nis the total number of points in the quantized
downscaled point cloud. Afterward, G-PCC (TMC13-v21.0)
is employed to encode the attribute of the quantized point
cloud using RAHT in a lossy manner with the highest rate
point (R4). As a result, we get a compressed color bitstream
for the thumbnail point cloud which is labeled R1 in Fig. 1.
The Thumbnail bitstream R1 is transmitted to the decoder.
In our experiments, we used M=1 to downscale the original
10-bit point cloud and generate a 9-bit point cloud.

2.1.2. Super-Resolving

A pretrained super-resolution network is employed to upscale
the thumbnail point cloud to generate a 10-bit super-resolved
recolored point cloud. The super-resolution network is shown
in Fig. 2. The goal of the super-resolution network is to im-
prove the recoloring performance of 9-bit color to 10-bit
point cloud. It utilizes sparse convolution and utilizes sparse
tensors 1" = (C, F') where C' is the coordinate and F' is the
feature. The network is designed to operate at two scales of
point cloud: 10-bit and 9-bit scales. The 10-bit point cloud
is recolored using the decoded color at a 9-bit scale through
devoxelization. Since a 9-bit point cloud is created through
voxelization from the 10-bit point cloud, devoxelization can
be achieved through reverse indexing. The point cloud at 9-bit
and 10-bit are first processed with their respective “head”s to
expand the feature from 3 channels to 64 channels. The head
block consists of “conv—BN—ReLU—conv”’. Then output
in the 9-bit branch is processed with 8 ResBlocks, whereas in
the 10-bit branch, the output is processed with 2 ResBlocks.
A ResBlock consists of ‘“conv—BN—ReLU—conv” is
shown in Fig. 2(a). The output from the ResBlock in the
9-bit branch is then upscaled to a 10-bit scale using the “un-
pool” operation illustrated in Fig. 2(b). The un-pool layer,
through devoxelization operation, expands the feature at a
9-bit scale to a 10-bit scale geometry. The output from the
ResBlock at a 10-bit scale is then concatenated with the
output from the “un-pool” layer as they both are at a 10-
bit scale. The concatenated features are then fused using
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Fig. 2: Super Resolution Network. (a) ResBlock (b)
Unpool Block (c) Fusion Block. Head block consists
of “conv—BN—ReLU—conv” and Tail block consists
“conv—ReLU—conv”. BN is batch normalization, conv is
the convolutional layer and ReLU is the activation function.

a fusion block which consists of ‘“conv—ReLU—conv”’ as
shown in Fig. 2(c). The output from the fusion block is
added with the output from the “un-pool” layer as a residual
connection. The output is again processed with 4 ResBlocks
and then with a “tail”. The “tail” block also consists of
“conv—BN—ReLU—conv” however it reduces the channel
size from 64 channels to 3 channels. BN is batch normal-
ization. The output from the tail is finally added with the
10-bit point cloud input as a global-level residual connection
and finally, the 10-bit super-resolved recolored point cloud
is generated. We trained and validated the super-resolution
network on THUman-2.0 and tested on the 8i Voxelized Full
Bodies(8iVFBvV2) dataset thats why the super-resolution net-
work is not the part of the bitstream and we are assuming that
the super-resolution network is available on the decoder side.
The other reason is that the super-resolving network weights
are shared and common across all content and need not to be
signaled. After super-resolving, the difference in the color
(r,g,b) of the original point cloud and the super-resolved
recolored point cloud gives us the residual attributes.

2.1.3. Gaussian Mapping

The geometry coordinates of the original point cloud is
concatenated with the time index of the frame to generate
(z,vy, 2, T). Gaussian Mapping [20] is applied to the concate-
nated geometry using the equation 1 to convert (x,y, z, T) to
a higher frequency representation called gaussian dimension.

v(v) = [cos(2r Bv), sin(2w Bv)]T ()

where B € R™*4 jg samples from N (O, 02) , T is trans-
pose, A represents the normal distribution, o2 is variance and
v is the original point cloud geometry with frame time index
(z,y,2,T). We set random seed with 0, m=4 and d is Gaus-
sian dimension which we set different for different ResNeRF
which is given in Table 1.

3542

Authorized licensed use limited to: University of Missouri Libraries. Downloaded on April 26,2025 at 12:57:19 UTC from IEEE Xplore. Restrictions apply.



RelU

. = .
) o ]
> > >
© © ©
i} i} 4
o ~ =
© © ©
@ @ ]
c < c
= =i 5i

Fig. 3: Architecture of ResNeRF.

2.1.4. ResNeRF

Residual Neural Radiance Field (ResNeRF) is a fully con-
nected Multi-Layer Perceptron (MLP) demonstrated in Fig.
3. ResNeRF is employed to predict the attribute residuals be-
tween the super-resolved recolored point cloud and the origi-
nal point cloud. The input to ResNeRF is the concatenation of
high-dimensional gaussian representation, super-resolved re-
colored point cloud color (RG B), and time-indexed geome-
try (z,vy, z, T). The output of ResNeRF is the predicted resid-
uals. We placed the ReL.U layer after each Linear layer except
the last one. The Mean Squared Error (MSE) loss in equation
2 is employed for training the ResNeRF.
MSE = ~ 3 i) 2
=N > (i — i) @)

i=1

where N is total number of points, ¥; is target value and
; is predicted value.

2.1.5. ResNeRF Compression

As explained in section 2.1.4, a ResNeRF is trained to learn
the residual attributes. The ResNeRF’s trained weights are
extracted and an n — bit scalar quantization is applied to them
using equation 3. The quantized weights undergo encoding
using the PAQ entropy encoder, resulting in the creation of
bitstream R2. This bitstream is then transmitted to the de-
coder. On the decoder, PAQ entropy decoder is employed,
and de-quantization is performed using the equation 4.

7 i
Zquant = round (S * <ﬂ> — t) 3)
max — min
unanL +1
S
where S is a scalar factor, Z is the value in the tensor,

main, and max are the minimum and maximum values in the
tensors, while ¢ is the translation factor.

) +min ()

Zgequant = (max — min) * (

2.2. ResNeRF-PCAC Decoder

The ResNeRF-PCAC decoder is illustrated in Fig. 1. All
the decoding steps are performed in an inverse order at the
decoder to generate the reconstructed point cloud. As dis-
cussed in the encoding part, the thumbnail bitstream R1
and ResNeRF MLP weights bitstream R2 are transmitted to
the decoder. These bitstreams are decoded. R1 bitstream
is decoded with G-PCC attributes decoder to generate the
thumbnail point cloud color. The pre-trained super-resolution

network is employed to upscale the thumbnail point cloud
to generate the super-resolved recolored point cloud. The
R2 bitstream is decoded with the PAQ entropy decoder, de-
quantization is applied to the decoded bitstream to generate
the model weights, and then the model weights are assigned to
the ResNeRF network. As original geometry is already avail-
able on the decoder side, the frame time index is concatenated
to the original point cloud geometry coordinates (z,y, z, T).
Gaussian mapping is applied to convert (z, y, z, T) to a higher
frequency representation similar to that in the encoder. The
higher dimensional gaussian representation, time-indexed ge-
ometry (z,y,z,T), and the super-resolved recolored point
cloud color RGB is concatenated and fed to the ResNeRF to
obtain the predicted residuals. Finally, we add the predicted
residuals with the super-resolved recolored point cloud color
RGB to generate the final color and reconstruct the output
point cloud.

3. EXPERIMENTAL SETUP AND RESULTS

3.1. Dataset

We used THUman-2.0 and 8i Voxelized Full Bodies(8iVFB
v2) datasets for our experiments. From the 8i dataset, we used
different point cloud sequences such as; Soldier, Redand-
Black, Longdress, and Loot.

3.2. Training
3.2.1. Super Resolution Network Training

We trained the super-resolution network using the THUman-
2.0 dataset, which contains 526 full-body 10-bit point cloud
models. We constructed training patches from the first 511
point clouds and created validation patches from the last 15
point clouds. Using a binary tree, each original point cloud is
divided into 16 leaf nodes/patches by setting the depth size=4.
We used quantization to downscale every patch from 10-bit to
9-bit and encode every patch using G-PCC attributes encoder
(TMC13-v21.0-RAHT) (lossless geometry lossy attributes
configuration) to generate the low-resolution patch. Each
9-bit encoded low-resolution patch is used as an input to the
super-resolution network and the original 10-bit patch is con-
sidered as a High-resolution ground truth. In total, we used
8192 patches for training and 224 for validation. For super-
resolution network testing, we used the 8iVFBv2 dataset. We
used soldier, redandblack, longdress, and loot point clouds
sequences for testing. We used 16-point cloud frames from
every point cloud sequence. For testing, first, we apply quan-
tization to downscale the original point cloud from 10-bit to
9-bit. Second, we encode the 9-bit point cloud using G-PCC
attributes encoder (TMC13-v21.0-RAHT) (lossless geometry
lossy attributes configuration) to generate the thumbnail PC,
and the thumbnail PC is fed to the super-resolution network
to get the super-resolved 10-bit recolored point cloud. For
super-resolution network implementation, we used PyTorch
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Fig. 4: Illustration of Rate-Distortion performance of proposed ResNeRF-PCAC System(Ours), G-PCC-RAHT-v21, G-PCC-

Predlift-v21, G-PCC-RAHT-v14 and G-PCC-Predlift-v14.
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Fig. 5: Qualitative results comparison of our proposed system with other competitors.

and Minkowski Engine [21]. Minkowski Engine is a very
ideal choice for dealing with sparse tensors. We used L1 loss,
Adam optimizer for network parameters optimization, and
cosine-annealing learning rate scheduler. We set the learning
rate between 10~% to 1075, We trained the model for 30
epochs and set the batch size=2. For all convolution layers,
we used Kernel size=3 and channel size=64.

3.2.2. ResNeRF Training

We trained the ResNeRF using the 8iVFBv2 dataset. As
discussed in section 2.1.4, the input to ResNeRF is the
concatenation of high-dimensional gaussian representation,
super-resolved recolored point cloud color (RGB), and time-
indexed geometry (z,y, 2, T) to learn and predict the resid-
uals. We train and test ResNeRF on the first 16 frames
from each point cloud sequences dataset such as soldier,
redandblack, loot, and longdress. For ResNeRF testing, we
used the same input like concatenation of high-dimensional
gaussian representation, super-resolved recolored point cloud
color (RGB), and time indexed geometry (x,y, z, T) to the
ResNeRF to get the predicted residuals. The reason to use
the same input is that the same input is already available on
the decoder side. Our approach is different from a tradi-
tional approach and the training and testing data are the same.
For ResNeRF implementation, we used Python and PyTorch
frameworks. For all ResNeRF training, we used Adam op-
timizer, batch size of 32000, 2000 epochs, and learning rate
from le-3 to le-6.

3.3. Performance Evaluation Metrics

We used the Peak Signal-to-Noise Ratio(PSNR) to evalu-
ate the reconstruction quality of the point cloud and used
Bits Per Point(BPP) to check the compression performance.
pc-error software provided by MPEG-3DGC was used to
calculate the PSNR in dB of Y and YUV channels. We use
Bjgntegaard Delta bit rate(BD-BR) and Bjgntegaard Delta
PSNR(BD-PSNR) to measure averaged R-D performance.

3.4. Baselines

We compare the performance of our proposed ResNeRF-
PCAC system with G-PCC(RAHT)-v21, G-PCC(Predlift)-
v21, G-PCC(RAHT)-vi4 and G-PCC(Predlift)-vi4 provided
by MPEG.

3.5. Experimental Results

In this section, we present the experimental results of our
proposed system. We compare the proposed system with
the baselines in terms of rate-distortion performance on the
MPEG 8iVFBv2 dataset. We used different ResNeRF MLP
networks with different architectures to beat different rates
of the baselines with different parameters setups including
Gaussian Dimension(GD), number of layers and nodes in
ResNeRF, number of parameters in ResNeRF, weights quan-
tization(Q), thumbnail predictor and model weights bitstream
details and calculated Bpp and PSNR. Experimental results
for Soldier, RedandBlack, Longdress, and Loot along with
different parameter setups are given in Table. 1. The rate-
distortion performance of our system and other methods
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Table 1: ResNeRF Experimental Results.

Point Cloud Gaussian ResNeRF No. of Q Bitstream Size (Bytes) BPP Y-PSNR
Sequence Dimension(GD) | Layers | Nodes | Parameters | (Bit) | Thumbnail-R1 | Weights-R2 (Avg.)
128 3 32 5283 10 4671 0.093 | 31.28
128 3 128 33411 10 30671 0.142 | 32.72
Soldier 128 6 128 82947 10 178476 82603 0239 | 34.93
256 6 256 329731 10 337631 0.720 | 40.17
28 3 32 5283 10 218 0.108 | 34.20
256 6 128 99331 9 84051 0.165 | 35.17
RedandBlack 512 8 128 | 165123 | 9 148423 135301 | 0201 | 35.64
512 8 256 526851 10 520927 0475 | 37.99
128 3 32 5283 7 1311 0.0412 | 32.86
128 3 32 5283 10 2230 0.0418 | 33.08
Loot 256 6 128 99331 8 62952 74703 0.088 | 34.73
256 6 128 99331 9 87405 0.096 | 35.04
128 6 32 8451 10 3012 0231 | 28.76
512 6 64 49667 10 46258 0.280 | 29.12
Longdress 512 6 128 132099 10 349201 159354 0319 | 29.49
512 8 128 165123 10 161407 0425 | 30.01

are shown in Fig. 4. We can see that, our system per-
formed better than G-PCC-RAHT-v21, G-PCC-Predlift-v21,
G-PCC-RAHT-v14 and G-PCC-Predlift-vl4. We visualize
the reconstructed point cloud and compare it with other meth-
ods in Fig. 5. Our system improves the reconstruction quality
of the point cloud with more smoothness, clarity, and the
closest look toward the ground truth.

Table 2: BD-PSNR-Y(dB) and BD-Rate-Y(%) performance
against other methods.

Ours against Ours against Ours against Ours against
GPCC-RAHT-v21 GPCC-Predlift-v21 GPCC-RAHT-v14 GPCC-Predlift-v14
BD-PSNR-Y | BD-Rate-Y |BD-PSNR-Y |BD-Rate-Y | BD-PSNR-Y | BD-Rate-Y | BD-PSNR-Y | BD-Rate-Y

Point
Cloud

Soldier 0.65 -14.65 0.87 -20.45 1.10 -23.14 0.89 -20.88
Red&Black 0.20 -5.75 0.13 -3.28 0.41 -11.24 0.15 -3.93
Longdress -0.16 2.46 -0.10 4.08 -0.01 -0.30 -0.09 3.79
Loot 1.15 -2.49 1.06 1.39 1.38 -10.81 1.04 228

Average +0.45 dB -5.10 % +0.49 dB -4.56 % +0.72dB | -11.37 % | +0.49dB -4.68 %

Table 3: BD-PSNR-YUV(dB) and BD-Rate-YUV(%) per-
formance against other methods.

Ours against Ours against Ours against Ours against
GPCC-RAHT-v21 ‘GPCC-Predlift-v21 GPCC-RAHT-v14 GPCC-Predlift-v14
BD-PSNR-YUV |BD-Rate-YUV |BD-PSNR-YUV | BD-Rate-YUV| BD-PSNR-YUV | BD-Rate-YUV| BD-PSNR-YUV |BD-Rate-YUV

Soldier 042 1277 032 9.03 108 3030 034 9.78

Red&Black -0.07 -25.01 -0.22 -20.65 0.41 -35.43 0.06 -27.83

Longdress 0.55 2328 057 2430 0.01 241 055 23.75
Loot 8.62 -45.06 8.59 -50.95 9.26 -59.56 8.56 -49.97

+2.105 dB 1489 % +2.03 dB -14.08 % +2.69 dB 3072 % +2.102dB -1595 %

Point
Cloud

Average

Our method BD-PSNR-Y and BD-rate-Y performance
for all the sequences against the other methods are given in
Table 2. We get an average 5.10% BD-rate reduction against
G-PCC-RAHT-v21, 4.56% BD-rate reduction against G-
PCC-Predlift-v21, 11.37% BD-rate reduction against GPCC-
RAHT-v14 and 4.68% BD-rate reduction against G-PCC-
predlift-vl4. We gain 0.45dB improvement against GPCC-
RAHT-v21, 0.49dB improvement against G-PCC-Predlift-
v21, 0.72dB improvement against G-PCC-RAHT-v14, and
0.49dB improvement against G-PCC-predlift-vl4.  Our
method BD-PSNR-YUV and BD-rate-YUV performance
for all the sequences against the competitors are given in Ta-
ble 3. We get an average 14.89% BD-rate reduction against
G-PCC-RAHT-v21, 14.08% BD-rate reduction against G-

PCC-Predlift-v21, 30.72% BD-rate reduction against G-PCC-
RAHT-v14 and 15.95% BD-rate reduction against G-PCC-
predlift-v14. We gain 2.105dB improvement against G-PCC-
RAHT-v21, 2.03dB improvement against G-PCC-Predlift-
v21, 2.69dB improvement against G-PCC-RAHT-v14, and
2.102dB improvement against G-PCC-predlift-v14.

4. ABLATION STUDY

We examine the performance of our system with different
factors. A large number of layers and nodes in ResNeRF
improve the PSNR and reconstruction quality of the point
cloud. When we decreased the number of layers and nodes
in ResNeREF, the training performance was poor. Gaussian
mapping plays a very important role in this research. Using
Gaussian mapping provides a significant gain in performance.
We also tried to directly learn the attributes RGB color us-
ing ResNeRF but the performance of residuals learning using
ReNeRF was outstanding and better that is why we consider
the residual learning approach/results.

5. CONCLUSION

We proposed a point cloud attributes compression system
called ResNeRF-PCAC. We downscale the original point
cloud and generate a thumbnail PC. The thumbnail PC is
upsampled using a super-resolution network to generate a re-
colored PC. We calculate RGB attribute residuals between the
original and super-resolved recolored point clouds and learn
the residuals using ResNeRF. We transmit the thumbnail PC
and model weights bitstream to the decoder. Experimental
results show that our proposed system performed better than
the competitor’s.
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